
Approximation Algorithms for Data Placement on Parallel Disks

L� Golubchik � S� Khanna y S� Khuller z R� Thurimella x A� Zhu �

Abstract
We study an optimization problem that arises in the context
of data placement in multimedia storage systems� We are
given a collection of M multimedia data objects that need
to be assigned to a storage system consisting of N disks
d�� d����� dN � We are also given sets U�� U�� ����UM such
that Ui is the set of clients requesting the ith data object�
Each disk dj is characterized by two parameters� namely� its
storage capacity Cj which indicates the maximum number of
data objects that may be assigned to it� and a load capacity
Lj which indicates the maximum number of clients that it
can serve� The goal is to �nd a placement of data objects on
disks and an assignment of clients to disks so as to maximize
the total number of clients served� subject to the capacity
constraints of the storage system�

We study this data placement problem for two natural
classes of storage systems� namely� homogeneous and uni�
form ratio� Our �rst main result is a tight upper and lower
bound on the number of items that can always be packed for
any input instance to homogeneous as well as uniform ratio
storage systems� We show that an algorithm given in ����
for data placement� achieves this bound� Our second main
result is a polynomial time approximation scheme for the
data placement problem in homogeneous and uniform ratio
storage systems� answering an open question of ����� Finally�
we also study the problem from an empirical perspective�

� Introduction

We study a data placement problem that arises in
the context of multimedia storage systems� In this
problem� we are given a collection of M multimedia
data objects that need to be assigned to a storage
system consisting of N disks d�� d����� dN� We are also
given sets U�� U�� ���� UM such that Ui is the set of

�Department of Computer Science and Institute for Advanced

Computer Studies� University of Maryland� College Park� MD

������ Research supported by NSF CAREER Award CCR�

�	�
���� E�mail � leana�cs�umd�edu�
yDepartmentof Computer and InformationScience� University

of Pennsylvania� Philadelphia� PA 
�
��� This work was done

when the author was at Bell Laboratories�Murray Hill� NJ ������

Email � sanjeev�cis�upenn�edu�
zDepartment of Computer Science and Institute for Ad�

vanced Computer Studies� University of Maryland� College

Park� MD ������ Research supported by NSF Award CCR�

�	���
� and NSF CAREER Award CCR����
���� E�mail �

samir�cs�umd�edu�
xDepartment of Computer Science� The University of Denver�

Denver� CO 	���	� This work was done while the author was

visiting the University of Maryland� E�mail � ramki�cs�du�edu�
�Computer Science Department� Stanford University� Stan�

ford� CA� ������ This work was done while the author was with

the Department of Computer Science at the University of Mary�

land� E�mail � anzhu�cs�stanford�edu�

clients requesting the ith data object� Each disk dj
is characterized by two parameters� namely� its storage
capacity Cj which indicates the maximum number of
data objects that may be assigned to it� and its load
capacity Lj which indicates the maximum number of
clients that it can serve simultaneously� The goal is
to �nd a placement of data objects on disks and an
assignment of clients to disks so as to maximize the
total number of clients served� subject to the capacity
constraints� We can view each data object simply as
a color� and each client as a unit size item with a
color corresponding to the data object in which they
are interested� Each disk dj can hold at most Lj items�
with the additional constraint that the total number of
distinct colors of the items in dj does not exceed Cj�

The data placement problem described above arises
naturally in the context of storage systems for multime�
dia objects where one seeks to �nd a placement of the
data objects� e�g�� movies� on a system of disks� These
and other issues related to the design of multimedia stor�
age systems are discussed in ���� We study this data
placement problem for the following two natural types
of storage systems�

Homogeneous Storage Systems� In a homogeneous stor�
age system� all disks are identical� We denote by k and
L the storage capacity and the load capacity� respec�
tively� of each disk and refer to this variant as k�HDP
�homogeneous data placement	�

Uniform Ratio Storage Systems� In a uniform ratio
storage system� the ratio Lj�Cj of the load to the
storage capacity is identical for each disk� We denote by
Cmin and Cmax the minimumand the maximum storage
capacity of any disk in such a system and refer to this
variant as URDP �uniform ratio data placement	� Notice
that homogeneous storage systems are a special case of
uniform ratio storage systems�

In the remainder of this paper� we assume that �i	
the total number of clients does not exceed the total
load capacity� i�e��

PM
i�� jUij �

PN
j��Lj � and �ii	 the

total number of data objects does not exceed the total
storage capacity� i�e�� M �PN

j��Cj �

��� Related Work

The data placement problem described above bears
some resemblance to the classical multi�dimensional



knapsack problem �
� ��� 
�� We may view each
disk as a knapsack with a load as well as a storage
dimension� and each client as a unit size item with
a color associated with it� However� in our problem�
the storage dimension of a disk behaves in a non�
aggregating manner in that assigning additional items
of an already present color does not increase the load
along the storage dimension� It is this particular aspect
of our problem that makes it di�cult to adapt known
techniques for multi�dimensional packing problems�

Shachnai and Tamir ���� studied the above data
placement problem� they refer to it as the class con�
strained multiple knapsack problem� The authors gave
an elegant algorithm� called the sliding window algo�
rithm� and showed that this algorithm packs all items
whenever

PN
j��Cj � M � N � � for URDP� An easy

corollary of this result is that one can always pack a
�� � �

��Cmin

	�fraction of all items for URDP� �This is
seen by increasing the capacity of each disk by �� pack�
ing all the items� and then from each disk dropping the
color with the fewest items�	 The authors showed that
the problem is NP�hard when each disk has an arbitrary
load capacity� and unit storage� Recently� Shachnai and
Tamir ��
� study a variation of the data placement prob�
lem above where in addition to having a color� each item
u has a size s�u	 and a pro�t p�u	 associated with it� For
the special case when s�u	 � p�u	 for each item� and the
total number of di�erent colors M is constant� the au�
thors give a dual approximation scheme whereby for any
� � �� they give a polynomial time algorithm to obtain a
������	�approximate solution provided the load capac�
ity is allowed to be exceeded by a factor of ��� �	� The
paper by Dawande� Kalagnanam and Sethuraman ���
deals with a related bin�packing problem� where there
are n items� each with a color and size� and m distinct
bin sizes� The objective is to pack all items into bins
such that no bin contains items of more than p colors�
The objective is to minimize the total capacity of the
bins that are used� For the case where the total number
of colors is constant they give a polynomial time ap�
proximation scheme �PTAS	� The authors also describe
some practical heuristics for the problem which give a
constant approximation guarantee�

��� Our Results

Our �rst main result is a tight upper and lower bound on
the number of items that can always be packed for any
input instance to homogeneous as well as uniform ratio
storage systems� It is worth noting that in the case of
completely arbitrary storage systems no such absolute
bounds are possible�

Theorem ���� �Section �	 It is always possible to
pack a �� � �

���
p
k��

	�fraction of items for any instance

of k�HDP� or more generally� a ��� �
���

p
Cmin��

	�fraction

of items can always be packed for any instance of URDP�
Moreover� there exists a family of instances for which it
is infeasible to pack any larger fraction of items�

The upper bounds above are constructive as they
are achieved by the sliding window algorithm of �����
A side�result of our proof technique here is a simple
alternate proof of the result that all items can be packed
whenever

PN
j��Cj �M �N � ��

Our second main result is a polynomial time ap�
proximation scheme for the data placement problem in
uniform ratio storage systems� answering an open ques�
tion of �����

Theorem ���� �Section �	 For any �xed � � ��
one can obtain in polynomial time a ����	�approximate
solution to the data placement problem for any instance
of URDP�

We also strengthen the NP�hardness results of ����
by showing that the data placement problem is NP�
hard even for very special cases of homogeneous storage
systems�

Theorem ���� �Appendix A	 The k�HDP problem
is NP�complete for homogeneous disks with storage ca�
pacity k � 
 and strongly NP�hard for k � ��

Both reductions above are from NP�hard partition�
ing problems and illustrate how item colors can e�ec�
tively encode large non�uniform sizes arising in the in�
stances of these partitioning problems� even though each
item in our problem is of unit size itself� We also note
here that the case k � � is easily solvable in polynomial
time�

Finally� we also study the problem from an empir�
ical perspective� We study the homogeneous case on
instances generated by a Zipf distribution ��� �this cor�
responds tomeasurements performed in ��� for a movies�
on�demand application	 and compare the actual perfor�
mance of the sliding window algorithm with the bounds
obtained above as well as the bounds in ����� The re�
sults of this study are presented in Section ��
� We also
show how to implement the sliding window algorithm
so that it runs in O��N � M 	 log�N �M 		 steps� im�
proving on the O�NM 	 running time of ���� �details of
this implementation will be provided in the full version
of the paper	� Note that the input size for our problem
is measured by N and M and not the total number of
items �which can be much larger	� The algorithm will
output the subset of data objects assigned to each disk
and the number of items of each color assigned to each
disk�

We next describe in some detail the motivating
application for our data placement problem�



��� Motivational Application

Recent advances in high speed networking and compres�
sion technologies have made multimedia services� such
as video�on�demand �VOD	 servers� feasible� The enor�
mous storage and bandwidth requirements of multime�
dia data necessitates that such systems have very large
disk farms� One viable architecture is a parallel �or
distributed	 system with multiple processing nodes in
which each node has its own collection of disks and
these nodes are interconnected� e�g�� via a high�speed
network�

We note that disks are a particularly interesting re�
source� Firstly� disks can be viewed as �multidimen�
sional� resources � the dimensions being storage ca�
pacity and load capacity� Based on the application one
or the other resource can be the bottleneck� Secondly�
all disk resources are not equivalent since a disk�s utility
is determined by the data stored on it� It is this �par�
titioning� of resources �based on data placement	 that
contributes to some of the di�culties in designing cost�
e�ective parallel multimedia systems� and I�O systems
in general� In a large parallel VOD system improper
data distribution can lead to a situation where requests
for �popular	 videos cannot be served even when the
overall load capacity of the system is not exhausted be�
cause these videos reside on highly loaded nodes� i�e��
the available load capacity and the necessary data are
not on the same node�

One approach to addressing the load imbalance
problem is to partition each video across all the nodes
in the system and thus avoid the problem of �splitting
resources�� e�g�� as in the staggered striping technique
���� However� this approach su�ers from a number of
implementation�related shortcomings that are detailed
in ���� An alternate system is described in ���� where the
nodes are connected in a shared�nothing manner �����
Each node j has a �nite storage capacity� Cj �in units
of continuous media �CM� objects	� as well as a �nite
load capacity� Lj �in units of CM access streams	� These
nodes are constructed by combining groups of disks into
disk clusters� In fact� in this paper we will mostly view
nodes as �logical disks�� For instance� consider a server
that supports delivery of MPEG�
 video streams where
each stream has a bandwidth requirement of � Mbits�s
and each corresponding video �le is ��� mins long� If
each node in such a server has 
� MBytes�s of load
capacity and �
 GB of storage capacity� then each such
node can support Lj � �� simultaneous MPEG�
 video
streams and store Cj � �
 MPEG�
 videos� In general�
di�erent nodes in the system may di�er in their storage
and�or load capacities�

In our system each CM object resides on one or
more nodes of the system� The objects may be striped

on an intra�node basis but not on the inter�node basis�
For example� objects that require more than a single
node�s load capacity �to support the corresponding
requests	 are replicated on multiple nodes� The number
of replicas needed to support requests for a CM object
is a function of the demand� This should result in a
scalable system which can grow on a node by node basis�

The di�culty here is in deciding on� ��	 how many
copies of each video to keep� which can be determined
by the demand for that video� e�g�� as in ����� and �
	
how to place the videos on the nodes so as to satisfy
the total anticipated demand for each video within the
constraints of the given storage system architecture�
Our data placement problem tries to capture these
issues�

��� Organization

We start with an overview of the sliding window algo�
rithm in Section 
� In Section �� we present a tight
analysis of the sliding window algorithm to derive the
upper bounds of Theorem ���� We also present here a
family of instances that give the matching lower bound
as well as numerical results� Finally� in Section � we
present our approximation schemes for homogeneous as
well as uniform ratio storage systems and thus estab�
lish Theorem ��
� A proof of Theorem ��� appears in
Appendix A�

� Sliding Window Algorithm

For sake of completeness� we describe here the sliding
window algorithm of Shachnai and Tamir �����

We maintain a list R���� � � �� R�m�� � � m � M of
colors where R�i� denotes the number of items of color
i that remain� The list R is sorted in non�decreasing
order� At step j� we assign items to disk dj� For the
sake of readability� R�i� always refers to the number of
currently unassigned items of a particular color �i�e��
we do not explicitly indicate the current step j of the
algorithm in this notation	� Assume that the disks are
numbered in a non�decreasing order of their capacities�
i�e�� C� � C� � � � � � CN � We assign items and remove
from R the colors that are packed completely� and we
move the partially packed colors to their updated places
�in the sorted set	 according to the remaining number
of unpacked items of that color�

The assignment of colors to a disk dj follows the
general rule that we select the �rst consecutive sequence
of Cj or less colors� R�u�� � � �� R�v�� whose total number
of items either equals to or exceeds the load capacity
Lj � We then assign colors R�u�� � � �� R�v� to dj� In
order to not exceed the load capacity� we will split the
items of the last color R�v�� It could happen that no
such sequence of colors is available� i�e�� all colors have
relatively few items� In this case� we greedily select



the colors with the largest number of items to �ll the
current disk� The selection procedure is as follows� we
�rst examine R���� which is the color with the smallest
number of items� If these items exceed the load capacity�
we will assign R��� to the �rst disk and re�locate the
remaining piece of R��� �which for R��� will always be
the beginning of the list	� If not� we then examine the
total number of items in R��� and R�
�� and so on until
either we �nd a sequence of colors with a su�ciently
large number of items �� Lj	� or the �rst Cj colors have
a total number of items � Lj � In the latter case� we go
on to examine the next Cj colors R�
�� � � � � R�Cj � ��
and so on� until either we �nd Cj colors with a total
number of items at least Lj or we are at the end of the
list� in which case we simply select the last sequence of
Cj colors which has the greatest total number of items�

We note that the Sliding Window algorithm can
be implemented to run in O��N � M 	 log�N � M 		
steps� where N is the number of disks and M is
the number of colors� Note that this is a signi�cant
improvement on the running time in ����� The reason
for the improvement is that we do not have to start the
�window�� of length Cj� from the beginning of the list
R in each iteration j� At the end of iteration i� after we
have determined the colors R�m�� � � � � R�n� to place in
disk di� we know that R�j� � Li

Ci
� r for all j � m � ��

This indicates that all �windows� ending with R�j�� for
all j � m � � will under��ll the load of any disk� Thus
the right end of the �window� will always monotonically
move to the right� We need to use a 
�� tree data
structure to implement this algorithm� �Skip�lists can
be used as well to get the same expected worst case
running time� with a simpler implementation�	 Details
are defered to the full version�

� Analysis

We now show that the Sliding Window Algorithm
guarantees to pack ��� �

���
p
k��

	 fraction of all items in

the homogeneous case� We assume each disk has load
capacity L and storage capacity k� The Sliding Window
Algorithm guarantees to pack ��� �

���
p
Cmin��

	 fraction

of items in the uniform ratio case� where the minimum
capacity of a disk is denoted by Cmin� We also show
that these bounds are tight�

We �rst discuss the homogeneous case� Note that
if there are any unpacked items� then every disk is
�lled to the maximum either on the number of items
it can hold or on the number of colors that can be
stored� We will call the former as load saturated and
the latter �the rest	 as storage saturated� �Therefore�
if a disk is storage saturated� then it still has some
un�lled load capacity�	 Denote the number of load�
saturated disks and the number of storage�saturated

disks by NL and NS � respectively� It is easy to see that
R���� � � � � R�NL� are load�saturated disks� and the rest
are storage�saturated disks� Let mj denote the number
of colors assigned to disk dj� Obviously for storage�
saturated disks� mj � k� Let c be the smallest fraction
of load to which a storage�saturated disk is �lled� Note
that this disk must store a color with a number of items
of that color being at most c�L�k� �Minimumis at most
the average�	 Now every color on the unassigned list
has no more than c�L�k remaining items of that color�
�Otherwise� the Sliding�Window algorithm would have
put this color on the lightest�loaded disk and increased
greedily the total number of packed items�	

Lemma ���� Using the Sliding Window Algorithm�
the number of unpacked items is at most c�L�NL

k �

Proof� The main thing we need to prove is that
there are at mostNL colors left after we run the Sliding�
Window algorithm� For each left over color we know
that the number of items is at most c�L

k � so the total

number of unpacked items is at most c�L�NL

k �
We examine the number of colors stored in the load�

saturated disks� If there is a load�saturated disk dj with
mj � k colors� then there are no colors left when the
algorithm terminates� i�e�� all items are packed� which
can be explained as follows� The reason that less than
k colors are packed into dj is due to the fact that at
step j

Pmj

i��R�i� � L� Since we sort the colors in a non�
decreasing order� at this point any consecutive sequence
of k � � colors in the list has the total size � L� Since
at step j� we �split� at most one color�� which is always
added to the beginning of R� at any step t � j we have
a guarantee that� for the new list R�

Pk
i��R�i� � L�

unless we have less than k colors� This implies that we
�ll the disks to their load capacity until we run out of
colors� Hence we can pack all items�

We can now assume that all the load�saturated disks
have k colors� The storage�saturated disks have k colors
as well� We start with M � N � k colors� During
the process� we can split at most NL colors� i�e�� we
can generate at most NL new �instances� of originally
existing colors� This is because only �lling disks that are
load�saturated can result in generating new �instances�
of colors� So the number of new �instances� of colors
generated is upper bounded by the number of load�
saturated disks� Thus the number of colors left is
�M � NL � N � k � NL� �

�By splitting a color we mean that� in the current iteration of

the algorithm� only some of the items of that color are packed into

the current disk� the remaining items might be packed in future

iterations of the algorithm� Hence� this color might be packed

into multiple disks�



Corollary ���� For �uniform ratio� disks� ifPN
j��Cj � M � N � �� then all colors can be packed

using the Sliding Window algorithm�

Proof� This is an alternate proof for the claim in
����� Our analysis of the algorithm makes the proof
simpler�

Let r � Lj
Cj

� denote the uniform ratio� Since the

ratios� Lj
Cj

are uniform� once any disk becomes storage�

saturated� the rest of the disks will be storage�saturated
as well� The main claim we need to prove is that after
we �ll disk dN��� we have at most CN colors left� We
will prove this shortly� If dN�� is storage�saturated�
then we can safely assign the remaining CN colors to
dN � If dN�� is load�saturated� then all previous disks
are load�saturated� Since the total number of items does
not exceed the total load capacity� we will not exceed
the load capacity�

We argue that if there is a load�saturated disk dj
with mj � Cj� then all the items will be packed� At

this stage� R��� � Lj
mj

� Cj
Cj�� � r � Ct

Ct�� � r for all

� � mj and all t � j� Recall that disks are sorted in
non�decreasing order of Ci� Thus we have the following
result� at any step t � j�

PCt
i��R�i� �

PCt
i��R�i� �

Ct� r � Lt� and so all items are packed without sliding
the window�

Since all load�saturated disks have Cj colors� after
we �ll disk dN��� we have generated at most N �� new
�instances� of colors� The total number of colors left is
�M � N � ��PN��

i�� Ci � CN � �

Lemma ���� Using the Sliding Window Algorithm�
the number of unpacked items is at most ���c	�L�NS �

Proof� At least L�NL�c�L�NS items are packed�
Subtracting this quantity from an upper bound on the
total number of items N � L gives NS � L�NL � L�
L� NL � c � L �NS � which yields the claim� �

Theorem ���� The Sliding Window Algorithm
guarantees to pack �� � �

���
p
k��

	 fraction of items in

the homogeneous case�

Proof� The above two lemmas give us two upper
bounds on the number of unpacked items� Hence the
number of unpacked items is at most min� c�L�NL

k � ���
c	 � L � NS	� The number of packed items is at least
L� NL � c� L �NS � Hence the ratio of unpacked�U	
to packed�S	 items is at most

U

S
� min� c�L�NL

k � ��� c	� L� NS	

L� NL � c � L �NS
�

This yields
S

U � S
� �� �

�� �
p
k	�

which proves the claim� �The details of this derivation
are given in Appendix B�	 �

This proof can also be extended to the uniform�ratio
case� The motto in the homogeneous case is that the
bigger the disk the better the performance of the Sliding
Window Algorithm� So in a uniform�ratio system one
should expect the algorithm to do at least as well as the
homogeneous case where all disks assume the smallest
disk size in the uniform�ratio system� The following
theorem formally proves this intuition�

Theorem ���� The Sliding Window Algorithm
guarantees to pack �� � �

���
p
Cmin��

	 fraction of items

in the uniform ratio case where Cmin denotes the mini�
mum capacity of a disk in our system�

Proof� Let r � Lj
Cj

for j � � � � �N denote the

uniform ratio� From the proof of Corollary ��� above�
if there is a load�saturated disk dj with mj � Cj� then
all items will be packed� Thus we will focus on the
case where for all j we have mj � Cj � Let ML denote
the total number of colors �we count the same colors
in di�erent disks as di�erent multiple colors	 in the

load�saturated disks �� � � � � NL� so ML �
PNL

j��mj �PNL

j�� Cj� Let MS denote the total number of colors in
the storage�saturated disks NL � �� � � � � N � so MS �PN

j�NL��
mj �

PN
j�NL��

Cj� Again let c be the
smallest fraction of load to which a storage�saturated
disk is �lled� Thus we have the following similar results�
� For each left over color we know that the number
of items is at most c� r�

� There are at most NL colors left unassigned� We
have NL � ML

mmin
� ML

Cmin

�
� The number of unpacked items is at most c � r �

ML

Cmin

�
� At least r �ML � c� r �MS items are packed�
� The number of unpacked items is at most r�ML�
r�MS � r�ML� c� r�MS � ��� c	� r�MS �

Hence the ratio of the unpacked�U	 to packed�S	 items
is at most

U

S
� min� c�r�ML

Cmin
� ��� c	� r �MS 	

r �ML � c � r �MS
�

Let y � ML

ML�MS
and thus MS

ML�MS
� �� y� Simplifying

the upper bound for this expression� we obtain

min� cy
Cmin

� ��� c	��� y		

y � c��� y	
�

Note that this is the same expression as in Theorem ���
for the homogeneous system� Optimizing this expres�
sion gives the same bound as in Equation ��� �Appendix
B	 with k replaced by Cmin� This proves the claim� �



��� Tight Example

We now give an example to show that the bound of
��� �

���
p
k��

	 is tight� In other words� there are instances

for which no solution will pack more than ��� �
���

p
k��

	

fraction of items�
Assume that k� the storage capacity of a disk is

a perfect square� and k � 
� �When k��� the tight
example is trivial�	 Let N � the number of disks� be
� �

p
k� and let L � k �

p
k� There are

p
k colors

with a large number of items each� U�� � � � � Upk with

jUij � 
 �
p
k for � � i � p

k� we will refer to these as
�large colors�� And� there are �k��	���

p
k	�� colors

with a small number of items each� Upk��� � � � � Uk���
p
k�

with jUij � � for
p
k � � � i � k�� �

p
k	� we will refer

to these as �small colors��
We will show that there are always at least

p
k items

that do not get packed� In this case� the fraction of items

that are not packed is at least
p
k

���
p
k��k�

p
k�

which is

exactly �
���

p
k��

� This proves the claim�

We �rst consider the
p
k large colors� An unsplit

set Ui has all its items packed in a single disk� A
split set Ui has its items packed in several disks� For
a disk that contains at least one large unsplit color� the
available load capacity left is at most k� 
� �Note that
after packing one large unsplit color� the available load
capacity is smaller than the storage capacity�	 We can
exchange any of the remaining colors with j � 
 items
of the same color� with any j small �distinct color	 items
in any other disk� while still packing the same number
of items� These disks now have one large unsplit color�
and at most k � 
 small colors� The remaining disks
have only large split colors� In fact� assume that there
are exactly p �� � p �

p
k	 large colors that do not get

split U�� � � � � Up� with disk di containing Ui�
Now consider the remaining N � p disks� we are

left with at least k � N � p�k � �	 � k � �N � p	 � p
colors� but we only have k � �N � p	 storage capacity
left� Since the remaining

p
k � p large colors are all

split� this generates an additional
p
k�p �instances� of

colors� Thus we have at least k� �N � p	� p �
p
k� p

colors� This will create an excess of
p
k items that we

cannot pack�

��� Numerical Results

We have implemented the Sliding Window algorithm
and compared its performance to the theoretical results
developed in this section� Refer to Figs� ��� for plots
of the fraction of unassigned items given by our worst
case bound �i�e�� �

���
p
k��

	� the bound corresponding to

�When k is not a perfect square we can get arbitrarily close to

the bound by modifying this family of examples�

the corollary of the result in ���� �i�e�� �
��k 	� as well as

the Sliding Window algorithm�
The results presented here are for the homogeneous

case only� For the purposes of this comparison we
generated the test cases using the Zipf distribution to
determine the skewness in the number of items of each
color� The Zipf distribution is de�ned as follows ����

Prob�item of color i� �
c

i�����
� i � �� � � � �M

and � � � � �

where c �
�

H
�����
M

and H
�����
M �

MX
j��

�

j�����

where � determines the degree of skewness� For in�
stance� � � ��� corresponds to the uniform distribution
whereas � � ��� corresponds to the skewness in access
patterns often attributed to movies�on�demand type ap�
plications� e�g�� similar to the measurements performed
in ����

We experimented with di�erent values of � and
computed the percentage of items that can be packed
by the Sliding Window algorithm as a function of k� the
load capacity of a disk� The results of these experiments
are given in Figs� ���� In all cases L � ��� and N � ��

0

10

20

30

40

50

60

5 10 15 20 25 30

%
 o

f u
na

ss
ig

ne
d 

ite
m

s

k -- # of colors/disk

��� �
�

� � k

sliding window algorithm

��� �
�

�� �
p
k��

Figure �� � � ����

We can draw the following conclusions from these
�gures�
� the theoretical bound is reasonably tight when the
the number of items of each color is fairly skewed
�as in Figs� 
 and �	� as is the case in a VOD server�
which is our motivational application� furthermore�
the performance of the SlidingWindow algorithm is
very close to the theoretical bound for inputs which
are �similar� to the tight example given in Section
� �as in Fig� 
	�



0

10

20

30

40

50

60

5 10 15 20 25 30

%
 o

f u
na

ss
ig

ne
d 

ite
m

s

k -- # of colors/disk

��� �
�

� � k

sliding window algorithm

��� �
�

�� �
p
k��

Figure 
� � � ����

0

10

20

30

40

50

60

5 10 15 20 25 30

%
 o

f u
na

ss
ig

ne
d 

ite
m

s

k -- # of colors/disk

��� �
�

� � k

sliding window algorithm

��� �
�

�� �
p
k��

Figure �� � � ����

� the performance of the Sliding Window algorithm
can be signi�cantly better than the theoretical
bound when the number of items of each color
is approximately the same and each disk has a
relatively small storage capacity �as in Fig� �	�
however� the theoretical bound is reasonably tight
for larger values of k �which again� is reasonable for
our motivational application	�

� Polynomial Time Approximation Schemes

We now present an approximation scheme our data
placement problem� We �rst present the approximation
scheme for homogeneous storage systems and then
brie�y sketch the ideas used to get an approximation
scheme for uniform ratio systems�

��� Homogeneous Storage Systems

We design an algorithm that for any �xed � � �� gives
a �� � �	�approximation in polynomial time� If the
error parameter � � ���� �

p
k	�� then we can simply

use the Sliding Window algorithm to obtain a �� � �	�

approximation� In the rest of this section� we focus on
the case when � � ���� �

p
k	�� In other words� k can

be assumed to be a constant when � is a �xed constant�
Our approximation scheme involves the following steps�

�� First we show that any given input instance can be
approximated by another instance I � such that no
color class in I � contains �too many� items�


� Next we show that for any input instance there ex�
ists a near�optimal solution that satis�es certain
structural properties concerning how items are as�
signed to the disks�

�� Finally� we give an algorithm that in polynomial
time �nds the near�optimal solution referred to in
step �
	 above� provided that the input instance is
as determined by step ��	 above�

We now describe in detail each of these steps� In
what follows� we use OPT�I	 to denote an optimal
solution to the instance I and 	 to denote ���� Also�
for any solution S� we use jSj to denote the number of
items packed by it�

����� Preprocessing the Input Instance

We say that an instance I is B�bounded if the size of
each color class is at most B�

Lemma ���� For any instance I� we can construct
in polynomial time another instance I� such that

� I� is �	L	�bounded�

� any solution S� to I� can be mapped to a solution S
to I of identical value� and

� jOPT�I�	j � ��� �	jOPT�I	j�
Proof� Consider a color cj in the instance I such

that jUjj � 	L� Replace cj with a new set of colors
c�j � c

�
j � ���� c

s
j where s � djUj j��	L	e� Let U i

j denote the

set of items with color cij where � � i � s� Then

jU�
j j � ��� � jU s��

j j � 	L and jU s
j j � jUjj��s��		L�

Repeat this procedure for any color class that has more
than 	L items in I� We now have our instance I��

It is easy to see that any feasible solution to I� gives
a feasible solution of same value to I� simply replace
each color cij with cj �

Now consider a solution S for instance I� We show
that it can be mapped to a solution S� of size ��� �	jSj
for I�� If jUjj � 	L for � � j �M � then clearly S is also
a feasible solution of the same value for I�� Otherwise�
�x a color class Uj in I such that jUj j � 	L� Label
the occurrences of the items of color cj as �� 
� ��� as
we move from d� to dN in solution S� Replace the ith
occurrence of a color cj item with an item of color clj
where l � di�	Le� The resulting solution may no longer
be a feasible solution for I�� A disk may now contain
items of two di�erent colors� say clj and cl��j � in place



of a single color cj and hence the total number of colors
in the disk may become k � �� We simply discard all
the items in any disks where this event occurs� Repeat
this procedure for every color class with more than 	L
items in I� We claim that we have discarded no more
than an ��fraction of packed items� The reason is that
we throw away at most L items from a color class at a
crossover disk but this event occurs only once in every
	L occurrences of items packed from a color class� Thus
what we discard is at most an ��fraction of what is
packed� �

����� Structured Approximate Solutions

Let us call a color class Uj small if jUjj � �L�k� and
large otherwise� Also� for a given solution� we say that
a disk is light if it contains less than �L items� and it
is called heavy otherwise� The lemma below shows that
there exists a �� � �	�approximate solution where the
interaction between light disks and large color classes�
and between heavy disks and small color classes� obeys
some nice properties�

Lemma ���� For any instance I� there exists a
solution S satisfying the following properties	

� at most one light disk receives items from any large
color class�

� a heavy disk is assigned either zero or all items in
a small color class� and

� S packs at least ��� �	OPT�I	 items�

Proof� Let ni denote the number of items assigned
to the ith disk in the solution OPT�I	� Relabel the
disks � through N such that n� � n���� � nN � Assume
w�l�o�g� that OPT�I	 is a lexicographically maximal
solution in the sense that among all optimal solutions�
OPT�I	 is one that maximizes the sums

Pi
j�� nj for

each i � ����N ��
It is easy to see that the �rst property follows from

the maximal property of OPT�I	� To establish that a
heavy disk in OPT�I	 receives either zero or all items
from a small color class in the solution S� we may need
to discard some items from the heavy disks in OPT�I	�
Let X be the set of heavy disks that contain at most
�� � �	L items from large color classes� Consider any
disk di � X that receives some but not all items from
a small color class Uj � Simply move all items of Uj to
di� Repeat this process till no disk in X violates this
property� Since a small color class has at most �L�k
items� clearly the capacity of no disk is violated in this
process� Finally� for the remaining disks� simply discard
any items from small color classes� Clearly� the resulting
solution is ��� �	�approximate� �

For a given solution S� a disk is said to be 
�integral
w�r�t� a color class Uj if it is assigned �d
Le items from

Uj � where � � 
 � � and � is a non�negative integer�

Lemma ���� Any solution S can be transformed
into a solution S� such that

� each heavy disk in S is ����k	�integral in S� w�r�t�
each large color class� and

� S� packs at least �� � �	jSj items�

Proof� To obtain the solution S� from S� in each
heavy disk� round down the number of items assigned
from any heavy color class to the nearest integral
multiple of d����k	Le� Then the total number of items
discarded from any heavy disk in this process is at most

k

��
�
��

k
	L

�
� �

�
� k

�
�
��

k
	L

�
� ���L	�

Since each heavy disk contains at least �L items�
the total number of items discarded in this process can
be bounded by �jSj� Thus S� satis�es both properties
above� �

����� The Approximation Scheme

We start by preprocessing the given input instance I so
as to create an �	L	�bounded instance I� as described in
Lemma ���� We now give an algorithm to �nd a solution
S to I� such that S satis�es the properties described in
Lemmas ��
 and ��� and packs the largest number of
items� Clearly�

jSj � ��� �	�jOPT�I�	j � ��� �	�jOPT�I	j�

Let O be an optimal solution to the instance I� that
is lexicographically maximal� Assume w�l�o�g� that we
know the number of heavy disks in O� say N �� Let
H be the set of disks d� through dN � and let L be
the remaining disks� dN ��� through dN � The algorithm
consists of two steps� corresponding to the packing of
items in H and L respectively�

Packing items in H� We �rst guess a vector
hl�� l�� ���� lN �i such that li denotes the number of small
color classes to be assigned �completely	 to a disk
di � H� Since all disks are identical� we can guess
such a vector in O�Nk��	 time by guessing a compact
representation of the following form� We guess a vector
hq�� q�� � � � � qki such that

Pk
i�� qi � N � and qi denotes

the number of disks in H that are assigned i small
color classes �completely	� It is easily seen that any
such vector can be mapped to a vector of the form
hl�� l�� ���� lN �i and vice versa� Now proceeding from �
through N �� we assign to a disk di the largest size li
small color classes that remain�

Next we use a dynamic program by moving across
the disks from � through N � so as to �nd an optimal
����k	�integral solution for packing the largest number
of items from the large color classes� For the purpose of



this packing� the capacity of each heavy disk is restricted
to be �� � �	L and the number of color classes allowed
in disk di is given by k � li� Let � � k��� and
q � d���L	�ke� The dynamic programming solution is
based on maintaining a ��tuple �v � hv�� v�� ���� v�i where
vi denotes the number of large color classes that have
i � q elements available in them� Proceeding from i � �
through N �� we compute a table entry T ��v� i� for each
possible state vector �v� The entry indicates the largest
number of items that can be packed in the disks d�
through di subject to the constraint that the resulting
state vector is �v� Since there are at most Nk color
classes� the total number of state vectors is bounded by
�Nk	k��

�

� which is polynomial for any �xed ��
Packing items in L� We know that our solution

need not assign items from a large color class to more
than one disk in L� Moreover� at most �L items from
any large color class are packed in a disk in L� So at
this stage we can truncate down the size of each large
color class to b�Lc� We now construct an instance of
the b�matching problem on a weighted bipartite graph
G � �X 	Y�E	 where X has a vertex for each disk in L
and Y has a vertex for each remaining color class� For
each x � X and y � Y � there is an edge �x� y	 � E whose
weight is equal to the number of items remaining in the
color class corresponding to y� Now we �nd a maximum
weight matching such that the degree of each vertex in
X is restricted to be k while the degree of each vertex in
Y is restricted to be �� Clearly� such a matching gives
a feasible solution of maximumweight� This completes
our approximation scheme�

��� Uniform Ratio Storage Systems

We now brie�y sketch how the PTAS result above can
also be extended to the case of uniform ratio storage
systems� If � � ���� �

p
Cmin	� then we can use

the Sliding Window algorithm to obtain a �� � �	�
approximation� On the other hand� if Cmin as well as
Cmax are bounded by a constant �parameterized by �	�
the approach of the preceding subsection easily extends
to give a PTAS�

The di�culty thus lies in the case when Cmin is
small but Cmax is relatively large� In other words� our
system contains disks of widely varying storage capaci�
ties� We handle this case by showing that every �large�
disk can be approximately represented by a collection of
disks with bounded storage capacity such that we loose
at most an ��fraction of items due to this approximate
representation� Once this transformation is made� we
can once again use the approach of the preceding sub�
section to obtain a PTAS� We defer the details to the
full version�

References

��� S� Berson� S� Ghandeharizadeh� R� R� Muntz� and
X� Ju� Staggered Striping in Multimedia Information
Systems� SIGMOD� pages ��	�
� �����

��� C� Chekuri and S� Khanna� On multidimensional pack

ing problems� In ACM Symp� on Discrete Algorithms�
pages ���	���� �����

��� A� L� Chervenak� Tertiary Storage� An Evaluation of
New Applications� Ph�D� Thesis� UC Berkeley� �����

��� C� F� Chou� L� Golubchik� and J� C�S� Lui� A
performance study of dynamic replication techniques
in continuous media servers� Technical Report CS
TR

����� University of Maryland� October �����

��� M� Dawande� J� Kalagnanam� and J� Sethuraman�
Variable Sized Bin Packing With Color Constraints�
Technical report� IBM Research Division� T�J� Watson
Research Center� �����

��� A� M� Frieze and M� R� B� Clarke� Approximation al

gorithms for the m
dimensional 

� knapsack problem�
worst
case and probabilistic analyses� European Jour�
nal of Operational Research� pages �

	�
�� �����

��� M� R� Garey and D� S� Johnson� Computers and in�
tractability� A guide to the theory of NP�completeness�
Freeman� San Francisco� �����

��� S� Ghandeharizadeh and R� R� Muntz� Design and
Implementation of Scalable Continuous Media Servers�
Parallel Computing Journal� ��������	���� January
�����

��� D� E� Knuth� The Art of Computer Programming�
Volume �� Addison
Wesley� �����

��
� P� Raghavan� Probabilistic construction of determin

istic algorithms� approximating packing integer pro

grams� Journal of Computer and System Sciences�
pages ��
	���� �����

���� H� Shachnai and T� Tamir� On two class
constrained
versions of the multiple knapsack problem� To appear
in Algorithmica�

���� H� Shachnai and T� Tamir� Polynomial time approx

imation schemes for class
constrained packing prob

lems� Manuscript� �����

���� M� Stonebraker� A Case for Shared Nothing� Database
Engineering� ������	�� �����

���� J� Wolf� H� Shachnai� and P� Yu� DASD Dancing� A
Disk Load Balancing Optimization Scheme for Video

on
Demand Computer Systems� In ACM SIGMET�
RICS�Performance Conf�� pages ���	���� �����

Appendix A� NP�hardness proof

In this appendix we give our proof of Theorem ���� We
�rst de�ne the PARTITION problem� and then describe
a polynomial time reduction from it to the homogeneous
data placement problem�

PARTITION� Given a �nite set A� with a size s�a	
for each element a � A� is there a subset A� 
 A such
that X

a�A�

s�a	 �
X

a�A�A�

s�a	�



This remains NP�complete even if we require jA�j �
jAj�
 � �� Let n � jAj�

Proof� The problem is easily seen to be in NP �
since a proposed solution can be trivially checked in
polynomial time�

We now show a polynomial time reduction from
PARTITION� Let amax be the maximum size item� For
the reduction� de�ne K � n�C� s�amax	 where C is a
large constant� Let L � �

�K and N � n� So there are n
disks with k � 
 �storage capacity	 and a large L value�
Let D �

Pn
i���K � s�ai		 � n � K �

Pn
i�� s�ai	� Let

M � n � 
� with xi �
�
�K � s�ai	 for � � i � n and

xn�� �
�
�D and xn�� �

�
�D�

Note that
Pn��

i�� xi �
Pn

i�� xi�D � �
�n�K which

is exactly NL� the storage capacity�
We claim that if there is a solution to the partition

problem with jA�j � jAj�
 and with s�A�	 � s�A � A�	
then there is a way to pack all items into the N disks�
The items are packed as follows� Put xi items of color
i in disk i� Disk i now has space for one new color�
and exactly �

�K � ���K � s�ai		 items� This is exactly
K � s�ai	� If item ai � A� then add items of color
n� � to disk i� otherwise add items of color n� 
 to
disk i� Since each disk can hold two colors� this does
not violate the color� Note that the number of items of
color n�� that we pack is exactly

P
ai�A� �K�s�ai		 �

n
� � K � s�A�	 � �

�D� The calculation is identical for
items of color n � 
� and this concludes the proof that
all items are packed�

We now argue that if there is a solution to 
�HDP
where all items get packed� then there is a solution to
the PARTITION problem� We �rst claim that if all
items are packed� then items of colors i and j� with
� � i� j � n cannot be packed into the same disk� This
is the case since� �a	 only two colors can be packed in a
disk and hence no other color can go into that disk� and
�b	 the total capacity used up by items of color i and
j� � � i� j � n� would not exceed K� which is much less
than the capacity of the disk� If we cannot saturate the
disk to full load capacity� then we cannot pack all items
�since the number of items exactly equals the total load
capacity	� If each items of color i is in a distinct disk�
then without loss of generality we pack items of color
i in disk i and now we are left with items of only two
colors that we need to split equally between the disks�
and each disk can only take an item of one color� with
K � s�ai	 items of that color� Since K �� s�ai	 we
must pack items of color n � � in exactly n�
 disks�
and the items of color n�
 in the remaining n�
 disks�
Let A� � faijitems of color n� � are packed in disk ig�
As said earlier jA�j � n

� � and s�A�	 � s�A � A�	� This
completes the proof� �

When k � �� the problem can be seen to be strongly

NP�hard for even the homogeneous case by a simple
reduction from ��PARTITION � ��

Appendix B� Details of Proof of Theorem ���

Given that the ratio of unpacked�U	 to packed�S	 items
is at most

U

S
� min� c�L�NL

k � ��� c	� L �NS 	

L �NL � c� L� NS

let y � NL

N
and thus NS

N
� �� y� Simplifying the upper

bound for the number of unpacked to packed items� we
obtain

min� cyk � ��� c	�� � y		

y � c��� y	
�����	

This is the same as

min�
cy
k

y � c��� y	
�
��� c	��� y	

y � c��� y	
	�

We can simplify the two functions to the following

min�
�

k � ��c �
��y
y 	

�
��� c	�� � y	

�� ��� c	��� y	
	�

The �rst term is strictly increasing as c or y increases�
while the second term is strictly decreasing as c or y
increases� So in order to maximize the expression� we
need to set the two terms equal� which means

cy

k
� ��� c	�� � y	�

This gives
y �

�� c

�� c� c
k

�

Substituting for y gives us that the upper bound for this
ratio is at most

c� c�

k � kc� c�
�

This achieves its maxima when c � ��� �
��
p
k
	�

The fraction of all items that are packed is

S

U � S
�

�

� � U
S

�

Replacing the bound that we derived for c we get that

U

S
� �

k � 

p
k
�

This yields
S

U � S
� �� �

�� �
p
k	�

�


