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ABSTRACT 

 

CYTOKINE NETWORKS AND IMMUNOSURVEILLANCE IN CANCER 

 

Timothy Chao 

 

Robert H. Vonderheide 

 

The cytokine milieu in the tumor microenvironment plays a key role in modulating the immune 

response either in favor of or against tumorigenesis. For many tumors, this complex network of 

cytokine and immune interactions represent a formidable means of escape from immune 

surveillance. These cytokine networks are particularly important in pancreatic ductal 

adenocarcinoma (PDA), where a prominent infiltration of immunosuppressive immune 

populations could be found. Myeloid-derived suppressor cells (MDSCs) have previously been 

shown to be potent suppressors of anti-tumor immunity in PDA, but the cytokine networks 

regulating their recruitment to the tumor microenvironment remain incompletely understood. Here, 

I found that CXCR2 ligand expression is specifically correlated with enrichment of the 

granulocytic subset of MDSCs (G-MDSCs) in human PDAs. Using a genetically engineered 

mouse model of PDA, I showed that CXCR2 is required for G-MDSC trafficking to the tumor 

microenvironment, but not necessary for their systemic differentiation and expansion. The specific 

lack of G-MDSCs in the tumor microenvironment led to a T cell-dependent inhibition of tumor 

growth. Expression of CXCR2 ligands in PDA tumor cells can be potently induced by NF-κB 

activation. These findings describe a cytokine network in PDA where inflammatory signals in the 

tumor microenvironment drive the expression of CXCR2 ligands and the recruitment of 

immunosuppressive G-MDSCs. To discover other potentially important cytokine networks, I 

developed a novel analysis pipeline to reconstruct and compare cytokine networks from whole 

tumor gene expression data. Using expression of cytolytic genes as a gauge for anti-tumor 
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immune activity, I found that PDA patients with high cytolytic activity have a slight survival 

advantage compared to those with lower activity. While macrophages were the most influential in 

tumors with low cytolytic activity, tumors with high cytolytic activity were characterized by 

increased activity of NK cells, recruitment of B cells, and increased importance of CD8 T cells, 

CD4 T helper cells, and B cells, among others. I further highlighted the cytokines that might be 

associated with these immune populations. Therefore, my analysis identified potentially important 

components of the cytokine network associated with high and low cytolytic activity. Collectively, 

the work in this thesis suggests that cytokine networks are crucial for maintaining an 

immunosuppressive microenvironment in cancer. Furthermore, disrupting key components of 

these networks can tip the balance in favor of cancer immunosurveillance.  
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CHAPTER 1: INTRODUCTION 

 

Pancreatic ductal adenocarcinoma  

Pancreatic cancer is currently the fourth leading cause of cancer-related deaths in the 

United States and responsible for over 200,000 deaths annually worldwide (Siegel et al., 2017). 

With a 5-year survival rate of only around 8% and rising incidence, pancreatic cancer is projected 

to become the second leading cause of cancer related deaths in the United States by 2030 

(Rahib et al., 2014). The incidence and mortality rates of pancreatic cancer are also increasing 

worldwide, particularly in European countries (Ilic and Ilic, 2016). The high lethality of this cancer 

can be primarily attributed to the fact that only 20% of patients are diagnosed at an early enough 

stage where surgical intervention is possible (Gillen et al., 2010). Even with complete surgical 

excision, recurrence usually occurs and limits the 5-year survival to about 25-34% (Sohn et al., 

2000; Lim et al., 2003; Yamamoto et al., 2015). Unfortunately, the vast majority of patients do not 

derive substantial benefit from existing chemotherapies. Unlike some other cancers, there are 

currently no standard population-wide screening guidelines for its early diagnosis. However, a 

number of factors have been identified that significantly increase the risk of developing pancreatic 

cancer. A family history of the disease is perhaps the single most significant risk factor (Klein et 

al., 2004). In fact, about 10% of pancreatic cancer cases are hereditary, only a few of which are 

accounted for by mutations in common tumor suppressor genes such as BRCA1, CDKN2A, and 

LKB1 (Hruban et al., 2010). In addition, cigarette smoking causes approximately a 75% increased 

risk that can persist for more than 10 years after cessation (Iodice et al., 2008). Other risk factors 

for pancreatic cancer include obesity, heavy alcohol use, chronic pancreatitis, and diabetes 

mellitus (Midha et al., 2016; Hao et al., 2017). Currently, initial suspicion of pancreatic cancer 

often relies on incidental radiological findings or the development of highly non-specific symptoms 

such as back pain, lethargy, and new-onset diabetes (Chari, 2007; Keane et al., 2014). A number 

of tests can then be made to confirm the diagnosis of pancreatic cancer, including multidetector 

computed topography (MDCT), magnetic resonance cholangiopancreatography (MRCP), and 
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contrast-enhanced endoscopic ultrasonography (EUS) (Ahn et al., 2009; Gong et al., 2012; 

Maccioni et al., 2010). However, most patients with pancreatic cancer do not even exhibit any 

noticeable symptoms until the disease is already at an advanced stage. In fact, 52% of patients 

present with metastatic disease (Siegel et al., 2017). Therefore, an understanding of the biology 

underlying pancreatic cancer’s tendency to metastasize and resist treatment is urgently needed.  

Pancreatic ductal adenocarcinoma (PDA) is by far the most common type of pancreatic 

cancer and also the most lethal, consisting of over 90% of all cases (Fesinmeyer et al., 2005). 

PDA usually appears as a firm, white, hypovascular mass that is surrounded by atrophic non-

malignant pancreatic tissue. In fact, PDA characteristically presents as a “hypoenhancing mass” 

on radiological images because the lack of vasculature prevents infiltration of the contrast agent 

(Fusaroli et al., 2010). Histologically, PDA is characterized by mucin-producing irregularly-shaped 

glands, incomplete glandular lumina, luminal necrosis, nuclear pleomorphism, perineural and 

lymphovascular invasion, and an intense stromal desmoplastic reaction (Kamisawa et al., 2016). 

Tumors can be histologically graded into three groups: well-, moderately-, or poorly-differentiated. 

Staging with tumor size (T), number of nodes involved (N), and presence of distant metastases 

(M) tracks significantly with survival and is used to determine the treatment strategy (La Cruz et 

al., 2014). Detailed histological analyses of PDA samples showed that microscopic hyperplasia of 

pancreatic ducts, commonly referred to as pancreatic intraepithelial neoplasias (PanINs), can 

usually be found in tissues surrounding the tumor (Hruban et al., 2001). Traditionally, PanINs can 

be classified into three progressive grades based on their morphological and cytological features. 

PanIN-1 lesions compose of columnar epithelial cells with basally oriented and rounded nuclei. 

PanIN-2 lesions are characterized by the development of atypical nuclear features, including 

pleomorphism and hyperchromasia. Finally, PanIN-3 lesions consist of extensive papillaes and 

cribriforms, along with highly atypical nuclei and nucleoli morphologies. More recently, the 

classification scheme of PanINs was simplified to just two grades: low grade (PanIN-1 and 2) and 

high grade (PanIN-3) (Basturk et al., 2015). Histological studies have shown that PanIN lesions 

are more frequent in patients with PDA than normal controls (Kozuka et al., 1979). Furthermore, 
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patients who underwent partial pancreatectomy for chronic pancreatitis were found to have 

PanINs years before the development of PDAs (Brat et al., 1998). Another study further showed 

that high-grade PanINs are more proliferative than low grade lesions (Klein et al., 2002). These 

observations led to the development of a progressive model where low-grade PanINs evolves to 

high-grade PanINs, which then progresses to full-blown PDA (Bardeesy and DePinho, 2002). 

PDA can occasionally arise from macroscopic cystic lesions known as intraductal papillary 

mucinous neoplasms (IPMNs) (Matthaei et al., 2011). However, unlike PanINs, most IPMNs can 

usually be appreciated grossly and radiographically. IPMNs can also progress to form intraductal 

papillary-mucinomus carcinomas (IPMCs) of the pancreas.  

Treatment of PDA depends heavily on the stage of disease. Clinically, PDA can be 

staged as being local or metastatic (La Cruz et al., 2014). Local disease is further subdivided as 

being resectable, borderline resectable, or locally advanced. Borderline resectable disease is 

usually defined as having no distant metastases but have some involvement with nearby major 

vasculatures. However, there is currently no official definition of borderline resectable disease as 

it is highly dependent on surgical techniques. Surgical removal of resectable or borderline 

resectable tumors currently offers the best survival benefits for PDA patients as previously 

discussed. However, these major procedures are also associated with significant morbidities and 

require close monitoring at specialized centers (Begg et al., 1998). Although laproscopic 

techniques can potentially reduce some of these complications, such procedures are only 

available at few select institutions and require highly specialized surgical skills (Shin et al., 2015). 

After surgical removal of the tumor, patients are then subjected to adjuvant gemcitabine treatment 

(Oettle et al., 2013). For marginally improved benefit, local unresectable diseases can also be 

subjected to radiation therapy (Loehrer et al., 2011). On the other hand, first-line treatment for 

advanced and metastatic PDA usually consists of one of the recently approved combination 

chemotherapy regimens. In 2011, a phase III randomized trial demonstrated that combination 

chemotherapy consisting of folic acid, fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) 

significantly extended overall survival (OS) and progression-free survival (PFS) in patients 
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compared to gemcitabine alone (OS 11.1 vs. 6.8 months and PFS of 6.4 vs. 3.3 months) (Conroy 

et al., 2011). The objective response rate was also higher in FOLFIRINOX treated compared to 

gemcitabine treated patients (31.6% vs. 9.4%). However, FOLFIRINOX treatment was associated 

with significant side effects, including febrile neutropenia, intestinal toxicities, and sensory 

neuropathies. Furthermore, this study did not include patients older than 75 years old. After 

showing efficacy in the phase III clinical trial, the combination of gemcitabine and nanoparticle 

albumin-bound paclitaxel (nab-paclitaxel) was approved by the FDA in 2013 for the treatment of 

metastatic pancreatic cancer (Hoff et al., 2013). The combination regimen was reported to be 

superior to gemcitabine monotherapy (OS of 8.5 vs. 6.7 months and PFS of 5.5 vs. 3.7 months). 

Furthermore, about 23% of patients responded to combination therapy compared to only 7% with 

gemcitabine alone. Importantly, because the adverse effects of gemcitabine plus nab-paclitaxel 

were more manageable, more patients can benefit from this combination than FOLFIRINOX. 

Gemcitabine can also be used alone or in combination with erlotinib for patients who have poor 

tolerance of the combination therapies (Moore et al., 2007). Although treatment for PDA has seen 

tremendous progress over the past decades, most patients still do not benefit and long-term 

curative responses remain the rare exceptions. 

Rational design of more effective therapies for PDA will require a deeper understanding 

of its biology. In an early effort to understand the genetic basis of PDA, Almoguera et al. 

discovered that over 95% of patients harbor activating mutations in the KRAS proto-oncogene, 

which normally encodes a GTPase that acts as a signal transducer for various growth factors 

(Almoguera et al., 1988). Activating mutations of KRAS usually results in either the direct 

impairment of KRAS-GTPase activity (Q61) or the impairment of KRAS-GTP’s ability to bind 

GTPase activating proteins (GAPs), which is required for KRAS-GTPase activation (G12 and 

G13) (Scheffzek et al., 1997; Scheidig et al., 1999). Because of impaired GTPase activity, 

oncogenic KRAS remains constitutively in its activated conformation. Point mutations in codon 12 

account for over 98% of oncogenic KRAS mutations in PDA, the majority of which is a G to A 

mutation leading to the substitution of glycine with aspartic acid (G12D) (Bryant et al., 2014). 
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Other common mutations have since been found, including inactivating mutations in the tumor 

suppressor genes CDKN2A (which encodes both p16 and ARF) (95%), TP53 (50-75%), and 

SMAD4 (55%) (Jaffee et al., 2002). Multiple whole exome sequencing (WES) studies of PDAs 

have since confirmed the occurrence and frequency of these mutations (Jones et al., 2008; 

Biankin et al., 2012; Witkiewicz et al., 2015; Bailey et al., 2016). Besides these few common 

mutations, the prevalence of most other individual mutations is fairly low. However, pathway 

enrichment analysis showed that most of these low-prevalence mutations actually converge on 

only a few biological processes, including RAS, TGF-β, DNA repair, and chromatin remodeling 

pathways. Although they do not show causality, these studies nonetheless suggest that PDA 

tumorigenesis is likely to be driven by only a handful of aberrant biological processes.  

Far from being a homogenous disease, recent integrative studies of the genomic and 

transcriptomic landscapes of whole tumors have shown that PDAs might actually consist of 

several subtypes (Bailey et al., 2016; Collisson et al., 2011; Moffitt et al., 2015). Using an 

unsupervised machine-learning algorithm known as nonnegative matrix factorization (NMF) to 

cluster whole tumor gene expression data, Collisson et al. identified 62 genes whose differential 

expressions define three distinct PDA subtypes: classical, quasimesenchymal (QM-PDA), and 

exocrine-like (EL-PDA) (Collisson et al., 2011). While the QM-PDA subtype was associated with 

the poorest survival, it was also more sensitive to gemcitabine. On the other hand, the classical 

PDA subtype was more addicted to oncogenic KRAS and sensitive to EGFR inhibition by 

erlotinib. Moffitt et al. later extended the use of NMF to deconvolute tumor-, stromal-, and normal 

tissue-associated genes (Moffitt et al., 2015). Two subtypes emerged from the differential 

expression of tumor-specific genes: classical and basal-like. Using only stroma-specific genes, 

tumor-associated stroma were further characterized as either activated or normal. The basal-like 

PDA and activated stroma subtypes were independently associated with poorer prognosis. While 

the classical PDA subtypes described in Collisson’s and Moffitt’s reports were essentially 

identical, Collisson’s QM-PDA signature was shown to be a mixture of Moffitt’s basal-like and 

stromal signatures. In light of this comparison and consistent with Collisson’s results, Moffitt et al. 
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showed that only patients with basal-like PDA subtype benefited from adjuvant gemcitabine 

chemotherapy. Most recently, Bailey et al. applied NMF to identify four PDA subtypes from whole 

tumor RNA sequencing data: squamous, pancreatic progenitor (PP), aberrantly differentiated 

endocrine exocrine (ADEX), and immunogenic (Bailey et al., 2016). The squamous subtype was 

the most similar to Collisson’s QM-PDA and also has the poorest prognosis. By integrating 

genomic and epigenomic data, Bailey et al. showed that the squamous subtype was enriched in 

TP53 mutations, hyper-methylation of pancreas cell-fate genes, and up-regulation of genes 

related to TGF-β signaling. The ADEX subtype is essentially identical to Collisson’s EL-PDA 

subtype and displays up-regulation of genes associated with KRAS activation. Finally, the PP and 

immunogenic subtypes together constituted Collisson’s classical PDA subtype. While pancreas 

cell-fate determining transcription factors are upregulated in both of these subtypes, only the 

immunogenic subtype was associated with significant up-regulation of immune-specific genes. 

Altogether, these studies have demonstrated the utility of computational approaches to identify 

candidate genomic characteristics that might be important for PDA tumorigenesis. Importantly, 

they suggested that PDA could be further divided into several subtypes that are associated with 

distinct biological processes and possessed different vulnerabilities. Studies such as these have 

significantly enhanced our understanding of PDA and are paving the way toward the development 

of targeted therapeutic approaches. 

                    

The KPC model of PDA 

Although genomic studies have greatly accelerated the discovery of associated mutations 

and biological processes, they do not provide functional evidence that these aberrations play any 

role in PDA tumorigenesis. To demonstrate functionality, experimental evidence in pre-clinical 

models is usually required. While in vitro studies and xenograft of human tumors in 

immunodeficient mice are convenient models, they do not accurately capture the complexities of 

host-tumor interactions and have very low clinical predictive value (Voskoglou-Nomikos et al., 

2003). In contrast, genetically engineered mouse models (GEMMs) of PDA have proven to 
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faithfully recapitulate key aspects of human disease. By breeding and characterizing the 

Pdx1
Cre/+

; Kras
G12D/+

 (KC) mice, Aguirre et al. were the first to functionally confirm that pancreas-

specific expression of oncogenic KRAS is sufficient to spontaneously induce PanIN lesions 

(Aguirre, 2003). Expression of the PDX1 transcription factor is primarily restricted to pancreatic 

progenitor cells during mouse embryonic day 8.5-12.5 and in adult islet cells (Ahlgren et al., 

1996). In these transgenic mice, the endogenous Pdx1 promoter drives expression of Cre 

recombinase only in pancreas-lineage cells. Cre recombinase then removes the flanking loxP 

sites of a silencing sequence (STOP) in the “LSL” cassette and permits transcription of the Kras-

G12D allele in a pancreas-specific manner (Sauer and Henderson, 1988). Serial histological 

analyses revealed that these lesions indeed progress from more low-grade to more high-grade 

PanINs with increasing age. Together with evidence from human PanINs, this result supports the 

model of PanIN progression from low-grade to high-grade lesions (Rustgi, 2006). In another study 

using the same KC model, Hingorani et al. not only confirmed that pancreas-restricted expression 

of oncogenic KRAS is sufficient to induce PanINs, but also reported that some KC mice even 

developed PDA (Hingorani et al., 2003). Furthermore, these murine PanIN and PDA lesions 

share essentially the same histological features as their human counterparts. The authors also 

noted essentially no difference in KC models with Cre recombinase driven by either of the 

pancreas-specific promoters Pdx1 or Ptf1a. In contrast, Pdx1-Cre mediated conditional 

homozygous deletion of any one of Cdkn2a, Tp53, Smad4, or Tgfbr2 in the pancreas did not 

result in the development of any observable PanINs or PDAs even in older mice (Aguirre, 2003; 

Hingorani et al., 2005; Bardeesy et al., 2006; Ijichi et al., 2006). Together, these results 

demonstrate that oncogenic KRAS expression is sufficient to drive the formation of PanINs and 

the development of PDA. More recent GEMMs with pancreas-specific, doxycycline-inducible 

Kras-G12D expression showed that removal of oncogenic KRAS results in the regression of 

established PanIN lesions to form essentially normal pancreatic tissue within 2 weeks (Collins et 

al., 2012). Using the same inducible KRAS-G12D model in conjunction with p53 knockout, the 

authors further demonstrated that even established PDA tumors regress to form residual scar 
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tissue upon oncogenic KRAS inactivation. Therefore, oncogenic KRAS is required for both the 

initiation and maintenance of PanINs and PDAs. 

Although KC mice develop PanINs within only a few months, these lesions typically do 

not progress to PDA until more than 12 months of age (Hingorani et al., 2005). This long latency 

period suggests that other genetic perturbations are likely required for development of full-blown 

PDA. Indeed, conditional homozygous deletion of Cdkn2a and expression of oncogenic KRAS in 

the Pdx1
Cre/+

; Kras
LSL-G12D/+

; Cdkn2a
L/L

 (KCC) mice resulted in the rapid development of low-grade 

PanINs by 3 weeks, full-blown PDA by 6-7 weeks, and 100% mortality by 11 weeks of age 

(Aguirre, 2003). At the time of death, widespread metastatic lesions could already be found in the 

adjacent organs.  Although this model faithfully recapitulated most histological features of human 

PDA, the authors also reported that nearly one-third of KCC tumors have a spindle-cell or 

sarcomatoid histology, which rarely occurs in human disease. Pancreas-specific, homozygous 

deletion of Tgfbr2, which encodes a TGFβ receptor upstream of SMAD4 signaling, in the 

Ptf1a
Cre/+

; Kras
LSL-G12D/+

; Tgfbr2
L/L

 (KTC) mouse model similarly resulted in the rapid progression 

of PanINs at 3 weeks to PDA at 7-10 weeks of age, with complete penetrance (Ijichi et al., 2006). 

Heterozygous deletion of Tgfbr2 in the same model significantly delayed PDA formation until 

around 6-7 months of age. PDAs from the KTC model uniformly present with a well-differentiated, 

ductal histology. Although both KTC models displayed widespread metastases, significantly more 

metastatic lesions were found in the heterozygous KTC mice at the time of death. Homozygous 

and heterozygous deletion of Smad4 in context of oncogenic KRAS resulted in the development 

of IPMNs and mucinous cystic neoplasms (MCNs), respectively, en route to formation of PDAs 

with well-differentiated histology (Bardeesy et al., 2006; Izeradjene et al., 2007). Surprisingly, 

distant metastases could still be found in a substantial percentage of these mice despite having 

homozygous Smad4-deficient tumors (i.e. 18% have metastases in the liver). Although Cdkn2a, 

Tgfbr2, and Smad4 deletion in conjunction with oncogenic KRAS all resulted in the development 

of PDA, none of these models accurately capture the full spectrum of histological features and 

metastatic pattern found in human disease. 



9 
 

Pancreas-specific, heterozygous dominant-negative p53 mutation in the Pdx1
Cre/+

; 

Kras
LSL-G12D/+

; Tp53
LSL-R172H/+

 (KPC) mouse model resulted in a relatively slower progression of 

PanIN to PDA development typically at around 5-6 months (Hingorani et al., 2005). Importantly, 

these KPC PDA tumors displayed the full spectrum of histology with similar frequencies as seen 

in human disease. Besides tumor cell morphology, this model also faithfully recapitulated the 

intense desmoplastic reaction and hypovascular nature of the tumor-associated stroma in human 

PDA. Again similar to human disease, distant metastases to the liver, lung, and diaphragm were 

frequently found. Detailed cytogenetic analyses further revealed that KPC tumor cells faithfully 

recapitulated the high degree of chromosomal instability (CIN) that is pathognomonic of human 

PDAs.  The authors then showed that while all primary and metastatic PDA cell lines harbored 

silencing mutations in the remaining wild-type p53 allele, all normal and preinvasive PanIN cell 

lines retained its expression. Given the lack of mutations in any other common tumor suppressor 

genes, it was reasoned that silencing mutations in the remaining wild-type p53 allele represent 

the key rate-limiting step in the progression from PanINs to PDAs in the KPC model. This 

conclusion supported a progressive model of sequential genetic aberrations leading up to PDA, 

namely: (1) an activating KRAS mutation drives aberrant pancreatic cell growth and PanIN 

progression, and (2) accumulating mutations in essential tumor suppressor genes (such as p53) 

ultimately leads to escape from cell cycle regulations and full-blown PDA (Rustgi, 2006). 

Curiously, spectral karyotyping (SKY) showed that primary and metastatic PDA cell lines derived 

from the same host have very distinct genomic abnormalities, a result which strongly suggested 

the early dissemination and independent evolution of metastatic cells. By inserting a lineage 

marker in the Pdx1
Cre/+

; Kras
LSL-G12D/+

; Tp53
LSL-R172H/+

; Rosa
LSL-YFP/+

 (KPCY) model, Rhim et al. 

later showed that YFP
+
 pancreatic-lineage cells can indeed be found in circulation and in liver 

micro-metastases prior to any detectable PDA (Rhim et al., 2012). They further reported that 

cerulein-induced pancreatitis greatly accelerated PanIN progression and also significantly 

increased the frequency of circulating pancreatic cells (CPCs). Conversely, dexamethasone-

mediated suppression of inflammation led to the regression of established PanINs and 
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undetectable levels of CPCs. If this early and widespread dissemination of CPCs also occur in 

humans, it can potentially explain the high frequency of metastases seen in PDA patients at 

presentation. Future comparisons of the genomic features of paired primary and metastatic tumor 

samples can retrace their evolutionary relationship more precisely and provide additional 

evidence for the early dissemination of PDA.  

Another crucial aspect of the KPC model is its ability to faithfully recapitulate response to 

existing chemotherapy regimens. To demonstrate the superiority of the KPC model, Olive et al. 

performed an in vivo comparison of the responses to gemcitabine monotherapy in spontaneous 

KPC tumors, subcutaneously transplanted KPC-derived cancer cells, and xenografts of human 

PDA cell lines (Olive et al., 2009). While all transplantation models responded at least partially to 

gemcitabine treatment, the KPC model proved to be highly resistant. In fact, transient reductions 

in tumor volume occurred in only about 12% of spontaneous KPC tumors. This low response rate 

was highly reminiscent of human PDAs, where typically about 5-10% of patients have transient 

responses to gemcitabine (Conroy et al., 2011; Hoff et al., 2013). In contrast to gemcitabine or 

nab-paclitaxel monotherapy, Frese et al. showed that only the combination of gemcitabine plus 

nab-paclitaxel significantly slowed tumor growth in the spontaneous KPC model (Frese et al., 

2012). About 28% of these tumors even regressed slightly within the 8 days of the study, which is 

remarkably similar to the 23% response rate observed in the phase III human clinical trial. 

However, the authors were unable to emulate the repeated doses of nab-paclitaxel in the human 

regimen and assess long-term survival because of the development of mouse anti-human 

albumin antibodies. Despite the short duration of this study, KPC mice treated with nab-paclitaxel 

or combination chemotherapy already have significantly reduced number of metastases. Using 

the spontaneous KPCY model, Aiello et al. later demonstrated that gemcitabine plus nab-

paclitaxel therapy significantly reduced the frequency of liver metastases uniformly regardless of 

their sizes (Aiello et al., 2016). Indeed, a retrospective study of CT and MRI images in the phase 

III clinical trial recently confirmed that combination therapy was associated with significantly 
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greater reductions in both primary and metastatic tumor burden as compared to gemcitabine 

treatment alone (Kunzmann et al., 2017).  

The KPC model has proven to faithfully recapitulate the genomic aberrations, histology, 

disease progression, and even response to existing chemotherapy. Over the past decade, 

extensive experimental investigations using this model have resulted in a tremendous increase in 

our understanding of the biological processes underlying PDAs. Despite this, it is important to 

keep in mind the difference between the KPC model and human PDA. For instance, human 

tumors usually develop progressively over many years, which allows enough time for the 

accumulation of many mutations. In contrast, KPC mice only require a LOH of the wild-type p53 

allele in order to progress to detectable PDA at merely 5-6 months of age. This relatively rapid 

development may also explain the less intense desmoplastic stroma usually seen in KPC tumors 

as opposed to in human PDA. Because of the relative ease to acquire a LOH mutation, primary 

tumor in a KPC mouse is usually polyclonal and results from the merging of multifocal precursor 

lesions (Maddipati and Stanger, 2015). The rapid transformation of KPC tumor cells may also 

prevent individual clones from accumulating as many passenger mutations as their human 

counterparts during the course of their evolution. Indeed, KPC-derived cell lines were shown to 

harbor far fewer mutations than is typically found in human PDAs (Evans et al., 2016; Waddell et 

al., 2015). Furthermore, it is currently unclear whether KPC tumors accurately reflect the full 

spectrum and frequency of human PDA subtypes. Because of its reliance on p53 mutations, KPC 

tumors may disproportionately represent the squamous, quasimesenchymal, and basal-like 

subtype. As a result of the leakiness of the Pdx1 promoter and having only one wild-type p53 

allele, KPC mice are also prone to developing biliary papillomas, sarcomas, and 

keratoacanthomas of the anal and oral mucosae. Although the KC model may be better than KPC 

model in regards to some of these issues, its widespread use is severely limited by the long 

latency period required prior to tumor development. Therefore, KPC mice remain the most widely 

used pre-clinical model of PDA.  
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Immunosurveillance and PDA 

 One essential advantage of using GEMMs with intact immune systems, such as the KPC 

model, is their ability to model the immune response throughout tumorigenesis. The host immune 

response is increasingly appreciated as a fundamental aspect of tumor biology. In the early 

1900s, Paul Ehrlich was the first to propose that the immune system may be involved in 

preventing the development of an otherwise “overwhelming frequency” of cancers in larger 

organisms (Ehrlich, 1909). In the 1950s, Sir Macfarlane Burnet expanded this idea in his proposal 

of the “immunological surveillance” of cancer (Burnet, 1964; 1970). Here, he postulated that the 

“evolutionary necessity” of eliminating or inactivating potentially dangerous mutant cells is fulfilled 

by the immune system. One of the most straightforward strategies to test this hypothesis is to 

look for increased incidence of cancers in the absence of key components of the immune system. 

Indeed, interferon-gamma (IFNγ
-/-

) and perforin1 (PRF1
-/-

) knockout mice were both more 

susceptible to developing spontaneous or carcinogen-induced tumors (Street et al., 2001). Rag2
-/-

 

mice, which lack B, T, and natural killer T (NKT) cells, were also more prone than wild-type mice 

to develop tumors spontaneously or in response to carcinogens (Shankaran et al., 2001). 

Inhibition of other key components of the immune system, such as γδ-T or NK cells, similarly led 

to increased susceptibilities of developing certain carcinogen-induced cancers (Smyth et al., 

2000; Girardi et al., 2001). Evidence of immunosurveillance also exists in human cancers. For 

instance, patients who have primary or AIDS-induced immunodeficiencies are at much higher risk 

of developing certain viral-associated malignancies (Gatti and Good, 1971; Boshoff and Weiss, 

2002). In addition, several large long-term studies tracking organ transplant recipients showed 

that these patients have much higher incidences of kidney, lung, liver, colorectal, ovarian, and 

head & neck cancers as well as lymphoma and melanoma (Adami et al., 2003; Engels et al., 

2011). On the other hand, strong positive correlations between tumor-infiltrating lymphocytes 

(TILs), especially CD8
+
 T cells, and patient survival have been noted in a variety of cancers, 

including in PDA (Pagès et al., 2010; Gentles et al., 2015). Altogether, the immune system plays 

an important role in restraining tumor formation.  
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 In a landmark study, Shankaran et al. demonstrated that the immune system is capable 

of “sculpting” or editing tumor immunogenicity (Shankaran et al., 2001). Here, the authors showed 

that carcinogen-induced tumors from wild-type mice grew equally well when transplanted to 

syngeneic wild-type or Rag2
-/-

 mice. In contrast, 40% of tumors that developed in Rag2
-/-

 mice 

failed to grow in wild-type mice. Therefore, tumors that developed in the presence of an intact 

immune system were less immunogenic and more likely to escape from additional 

immunosurveillance. On the other hand, tumors that developed in the absence of 

immunosurveillance remain highly susceptible to regulation by an intact immune system. To 

explain these results, the authors proposed the theory of “cancer immunoediting” with three 

sequential phases of tumor-immune interactions: (1) elimination, (2) equilibrium, and (3) escape 

(Dunn et al., 2002). The elimination phase encompasses the original idea of immunosurveillance, 

where nascent tumor cells are recognized and killed by the immune system. Tumor cells that 

survive the elimination phase then enter the equilibrium phase, where the immune system 

manages to contain the outgrowth of many genetically unstable tumor cells but cannot completely 

eliminate all of them. Here, selective pressures from the immune system cause the remaining 

tumor cells to become progressively less immunogenic. Finally in the escape phase, some tumor 

cells eventually acquire characteristics that allow them to escape immune regulation and 

proliferate uncontrollably. Together, the “3 E’s” of the cancer immunoediting theory have provided 

a very useful framework to describe the regulation of tumor growth by the immune system. 

 The elimination phase can be further broken down into four steps (Dunn et al., 2002). 

Firstly, pro-inflammatory signals from small growing tumors attract innate immune cells, such as 

NK, NKT, γδ-T, macrophages, and dendritic cells (DCs). Dysregulation of surface major 

histocompatibility complex class I (MHC-I) molecule expression on transformed cells can activate 

NK cells, which can kill tumor cells in an interferon-gamma (IFN-γ) and tumor necrosis factor-

related apoptosis-inducing ligand (TRAIL) dependent manner (Takeda et al., 2001). Similarly, γδ-

T cells can also eliminate tumor cells via an IFNγ-dependent mechanism (Street et al., 2004). In 

addition, IFN-γ is critical in inducing apoptosis, suppressing proliferation, inhibiting angiogenesis, 
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and orchestrating the activation of a variety of immune populations (Qin et al., 2003; Wall et al., 

2003; Schroder et al., 2004; Gollob et al., 2005). Secondly, tumor cells undergoing immunogenic 

cell death release tumor-associated antigens (TAAs), which can be ingested and processed by 

antigen presenting cells (APCs). The presence of “danger-associated molecular patterns” 

(DAMPs) in the tumor, such as certain species of DNA and RNA, activates APCs and prompts 

them to migrate to draining lymph nodes (Bianchi, 2007). Thirdly, activated APCs can present 

TAAs via MHC-II or MHC-I to naïve CD4
+
 and CD8

+
 T cells, respectively. TAA-specific CD4

+
 T 

cells can then “license” APCs via ligation of CD40, which causes them to up-regulate antigen 

presentation (signal 1), costimulatory molecules (signal 2), and secrete stimulatory cytokines 

(signal 3) (Bennett et al., 1998; Schoenberger et al., 1998). While signals 1 and 2 are sufficient to 

induce cognate CD8
+
 T cell proliferation, development of effector cytolytic function is thought to 

require the presence of signal 3, such as IL-12 or type 1 interferons (IFN-α/β) (Curtsinger et al., 

2003; 2005). Curiously, cognate CD4
+
 T cells ligation of CD40 on cognate CD8

+
 T cells were 

shown to induce them to become memory T cells (Bourgeois et al., 2002). Finally, activated TAA-

specific CD8
+
 T cells expand in number and travel to the tumor to eliminate TAA-expressing 

cancer cells. After recognition of MHC-I-bound TAAs, effector CD8
+
 T cells can kill tumor cells in 

a number of ways, including secretion of IFN-γ and the release of granules containing perforins 

(PRFs) and granzymes (GZMs) (Berke, 1995). Indeed, a “cytolytic index” signature consisting of 

PRF1 and GZMA expression was recently shown to accurately and specifically represent effector 

CD8
+
 T cell cytotoxic activity (Rooney et al., 2015). Altogether, successful immune-mediated 

elimination of tumor cells depends largely on the existence of TAAs and also requires the 

cooperation of both innate and adaptive immunity.  

 The equilibrium phase is characterized by continuous production of new tumor variants 

and their selective elimination by the immune system. One strategy to demonstrate this process 

is to inhibit components of the immune system after establishment of small, non-progressive 

tumors and look for their subsequent proliferation. Koebel et al. was the first to demonstrate this 

process by showing that inhibition of key components of adaptive immunity (CD4/8 T cells and 
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IFN-γ) after establishment of small, non-progressing tumors resulted in a significantly increased 

frequency of late outgrowths (Koebel et al., 2007). In contrast, inhibition of components of innate 

immunity with NK and NKT depletion did not result in any outgrowths. Furthermore, stable tumors 

in Rag1
-/-

 and Rag2
-/-

 mice rarely exhibit late outgrowths. Therefore, most of the late outgrowths 

upon inhibition of adaptive immunity in wild-type mice were from the expansion of pre-existing 

tumors rather than from late de novo tumorigenesis in older mice. In human transplant recipients, 

there are now multiple reports of late outgrowth of donor-derived de novo malignancies a few 

years post-engraftment (Myron Kauffman et al., 2002). Importantly, all of these donors were 

considered to be either completely healthy or cured of their cancers for decades. Another 

important aspect of the equilibrium phase is the selective elimination and survival of certain tumor 

cell variants, a process commonly referred to as “sculpting” or immunoediting. Using an elegant 

tumor clone mixture model system, Matsushita et al. demonstrated the existence of sculpting by 

showing the preferential outgrowth of clones lacking expression of a strong TAA (mutant spectrin-

β2) and the simultaneous selective elimination of mutant spectrin-β2 expressing clones by T cells 

(Matsushita et al., 2012). Therefore, expression of highly immunogenic TAAs is likely the major 

factor in deciding which tumor cell variants are eliminated during cancer immunoediting. 

 A number of factors contribute to tumor escape from immunosurveillance. Loss of tumor 

antigens, dysfunctional antigen processing and presentation, up-regulation of immune checkpoint 

molecules such as programmed cell death protein-ligand 1 (PD-L1), and resistance to apoptosis 

are all major tumor-intrinsic mechanisms that can mediate escape from immune regulation 

(Hanahan and Weinberg, 2011; Pitt et al., 2016). Accumulation of tumor-extrinsic factors can also 

promote evasion of immunosurveillance. For instance, tumor-associated factors such as vascular 

endothelial growth factor (VEGF), interleukin-10 (IL-10), transforming growth factor-β (TGF-β), 

adenosine, prostaglandin E2 (PGE2), and granulocyte-monocyte colony stimulating factor (GM-

CSF) together constitute a complex cytokine network that can directly inhibit effector immune 

cells and promote the accumulation of immunosuppressive populations, which include fibroblast 

activation protein-expressing (FAP
+
) stromal cells, tumor-associated macrophages (TAMs), 
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regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSCs) (Zou, 2005; Feig et al., 

2013; Vonderheide and Bayne, 2013). Secretion of CXCL12 by FAP
+
 stromal cell can mediate 

the exclusion of effector T cells from the tumor microenvironment (Feig et al., 2013). Rather than 

promoting adaptive immunity, tumor-infiltrating APCs such as TAMs are often suppressive toward 

cytotoxic T-helper 1 (Th1)-mediated immunity (type 1 immunity) (Noy and Pollard, 2014). These 

TAMs typically produce high levels of IL-10, which can simultaneously promote T-helper 2 (Th2) 

mediated immunity (type 2 immunity) and suppress type 1 immunity (Mantovani et al., 2002). 

TAMs are also major secretors of cytokines such as TGF-β, IL-10, and CCL2, which promote the 

differentiation, growth, and recruitment of Tregs (Gajewski et al., 2013). Tregs, in turn, can 

suppress the expansion of effector T cells by consuming IL-2 in the local environment (Pandiyan 

et al., 2007). Tregs are also capable of preventing APCs from properly stimulating effector T cells 

by the trans-endocytosis and sequestration of co-stimulatory molecules CD80/CD86 (Qureshi et 

al., 2011). Importantly, surface cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) on Tregs 

can outcompete CD28 for the binding of CD80 and CD86 on APCs, which ultimately leads to 

development of anergic TAA-specific T cells and tolerance to TAAs (Takahashi et al., 2000). 

More recently, MDSCs have been characterized as highly immunosuppressive myeloid cells that 

expand prolifically in context of diseases such as cancer (Gabrilovich and Nagaraj, 2009; 

Gabrilovich et al., 2012). There are two major subsets of MDSCs: granulocytic (G-MDSC) and 

monocytic (M-MDSC). The G-MDSC population usually constitutes the major subset and can 

directly suppresses TAA-specific CD8
+ 

T-cells by producing reactive oxygen species (ROS) in an 

IFNγ-dependent manner (Movahedi et al., 2008; Youn et al., 2008). In addition, the relationship 

between G-MDSCs and neutrophils is currently unclear, as they share essentially the same 

lineage markers (Coffelt et al., 2016). M-MDSCs are phenotypically distinct and can suppress 

CD8
+
 T-cells through inducible nitric oxide synthase (iNOS)-mediated pathways (Movahedi et al., 

2008; Youn et al., 2008). While G-MDSCs remain committed to the granulocyte lineage, M-

MDSCs were shown to be capable of differentiation into TAMs and DCs in vivo, which suggests 

that at least a subpopulation of them are immature cells (Bronte et al., 2000; Kusmartsev and 
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Gabrilovich, 2003; Li et al., 2004). MDSCs can also induce Treg differentiation and proliferation 

through the secretion of cytokines such as IL-10 and TGF-β (Huang et al., 2006). Both subsets of 

MDSCs express arginase 1 (ARG1), which depletes L-arginine in the local environment and 

restrains T cell proliferation (Rodriguez et al., 2004; Zea et al., 2005). Furthermore, both MDSCs 

and TAMs can inhibit effector T cells through surface expression of PD-L1, which engages the 

PD-1 receptor and directly inhibits T cell receptor (TCR) signaling (Lu et al., 2016; Prima et al., 

2017). Therefore, an enormous array of tumor intrinsic and extrinsic factors can cooperate 

together to promote immune escape.  

 Many immune escape factors have also been found in PDA. Using the KPC model, our 

lab has previously reported that TAMs, Tregs, and MDSCs are all prominently present in the 

tumor microenvironment (Clark et al., 2007). In particular, both TAMs and Tregs were already 

elevated and negatively correlated with CD8
+
 T cells infiltration in pre-invasive PanIN lesions. 

This early and increasing accumulation of TAMs and Tregs suggests that suppression of effective 

T cell priming by APCs is likely a preeminent immune escape mechanism employed throughout 

PDA development. In support of this hypothesis, effector T cells are essentially absent throughout 

tumorigenesis in both murine and human PDAs. In contrast to carcinogen-induced models, 

absence of adaptive immunity by T cell depletion did not affect PDA initiation or growth in the 

KPC model (Evans et al., 2016). Furthermore, cell lines derived from KPC tumors of T cell-

depleted mice grew equally well when transplanted into syngeneic wild-type and T cell-depleted 

mice, which suggested a lack of T cell-mediated immunoediting in PDA. This dearth of effector T 

cells at all stages of PDA development may also explain the resistance of both murine and 

human PDAs to anti-PD1/PDL1 therapy, which works primarily by reinvigorating pre-existing 

TAA-specific T cells (Brahmer et al., 2012; Winograd et al., 2015). Furthermore, the 

ineffectiveness of anti-CTLA4 therapy in PDA patients suggests the existence of dysfunctions 

even more upstream of the provision of signal 2 by APCs to effector T cells (Royal et al., 2010; 

Winograd et al., 2015). Recently, various tumor vaccine approaches that simultaneously promote 

the release of TAAs and activate APCs have proven to be particularly efficacious in both murine 
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and human PDAs. For example, addition of agonistic anti-CD40 antibody, which mimics CD40 

ligation to activate APCs, greatly enhanced the efficacy of gemcitabine in patients with advanced 

and metastatic PDAs (Beatty et al., 2011; 2013). Interestingly, this combination therapy induced a 

macrophage-dependent tumor regression in the KPC model. However, when circulating 

macrophages are depleted, the combination of gemcitabine and agonistic anti-CD40 elicited a 

CD8
+
 T cell-dependent tumor regression (Beatty et al., 2015). Altogether, these findings show 

that subversion of APC functions constitute a prominent immune escape mechanism in PDA.   

 Immune suppression mediated by MDSCs represents another important tumor-extrinsic 

escape mechanism in PDA. In contrast to TAMs and Tregs, systemic expansion and pancreas 

accumulation of MDSCs occurred only in conjunction with development of full-blown PDAs in the 

KPC model (Clark et al., 2007). This result suggests that MDSCs might be particularly important 

in mediating the immune escape of invasive tumors.  Although MDSCs have been defined and 

characterized in other models, their regulation and role in PDA remains unclear. Using the KPC 

model, our lab has previously shown that tumor-derived GM-CSF is sufficient for inducing the 

differentiation and expansion of MDSCs in vitro (Bayne et al., 2012). In a transplanted model of 

KPC tumors, inhibition of GM-CSF signaling resulted in reduced MDSC accumulation and a CD8
+
 

T cell-dependent tumor regression. Pylayeva-Gupta et al. further showed that oncogenic KRAS 

promotes GM-CSF expression through the MEK and PI3K signaling pathways (Pylayeva-Gupta 

et al., 2012). Together, these studies unveiled an immunosuppressive cytokine network where 

oncogenic KRAS promotes MDSC-dependent tumor immune evasion via the up-regulation of 

GM-CSF in PDA tumor cells. On the other hand, GM-CSF is the key immune stimulator in the 

“GVAX” vaccine formulation where tumor cells are transduced to express GM-CSF, irradiated, 

and then subcutaneously injected into tumor-bearing hosts (Lutz et al., 2014; Le et al., 2015). The 

contradictory functions of GM-CSF may be largely attributed to differences in the underlying 

“cytokine networks,” which consist of groups of immune cells and their associated signaling 

molecules. For instance, abundance of DAMPs in the vaccine formulation may provide additional 

activating signals to APCs, causing them to polarize toward an immune-stimulatory phenotype 
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and the secretion of activating cytokines. These cytokines can, in turn, cause other cell types to 

adopt an effector phenotype and further secrete other stimulatory cytokines, which culminates in 

a complex cytokine network that promotes anti-tumor immunity. These results demonstrate that 

the function cytokines and immune populations depend largely on the underlying cytokine 

networks. Uncovering these underlying cytokine networks is, therefore, paramount to our 

understanding of the immune response in PDA.      

   

Goals and key findings of this thesis project 

 In the discussions above, we have shown that: (1) human PDA is a deadly and 

heterogeneous disease that is likely driven by several biological processes, (2) the KPC model 

accurately recapitulate most aspects of human PDA, (3) PDA employs multiple mechanisms to 

evade immunosurveillance, and (4) cytokine networks constitute an important means of immune 

escape in PDA. Our lab has previously described one such cytokine network whereby tumor-

derived GM-CSF promotes the differentiation and expansion of MDSCs, which then suppress 

anti-tumor T cell responses (Bayne et al., 2012). However, it remains unclear which MDSC 

subset is important for mediating immunosuppression. Furthermore, the sequential order of 

MDSC recruitment and subset differentiation is also unclear. Because their immunosuppressive 

capabilities have not been individually verified, we will at first refer to these potential G-MDSCs 

and M-MDSCs in the tumor microenvironment as tumor-associated neutrophils (TANs) and 

monocytic myeloid cells, respectively. For this work, I decided to focus on investigating TANs. 

The first major goal of this thesis project was to characterize TAN involvement in PDA and 

discover the cytokine network that regulates them. We first found that subsets of both human and 

murine PDAs are enriched in TANs and CXCR2 ligand expression, especially CXCL5. We then 

showed that CXCR2 is specifically required for TAN trafficking to the tumor microenvironment, but 

not for their differentiation and expansion. Importantly, CXCR2 ablation did not significantly affect 

accumulation of monocytic myeloid cells in the tumor, which suggests that MDSC subset 

commitment occurs primarily before their separate recruitment. Furthermore, we demonstrated 
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that TANs primarily promote tumor growth by suppressing anti-tumor T cell responses. Given 

their ability to suppress T cells, a subset of TANs can be referred to as G-MDSCs. Finally, we 

showed that CXCR2 ablation confers additional benefits in conjunction with combintation 

gemcitabine, nab-paclitaxel, plus agonistic anti-CD40 treatment. Therefore, we have uncovered 

an important immunosuppressive cytokine network in PDA that involves CXCR2 ligands and 

TAN-mediated inhibition of anti-tumor T cell immunity.   

Given the importance of cytokine networks in regulating immunosurveillance, we next 

sought to discover more of these networks in human PDAs in silico. Here, we devised a novel 

analysis pipeline by combining techniques from tumor immune infiltration profiling, gene co-

expression analysis, and network theory to infer cytokine networks and highlight the most 

important components within them. After demonstrating the survival benefit of high intratumoral 

cytolytic activity, we further showed that PDA tumors with high and low cytolytic activity are 

associated with significantly different cytokine networks. The relative strength of correlations 

between immune populations and cytokines were indicative of their recruitment, activation, or 

function in the different networks. The most important or distinguishing features of cytokine 

networks in tumors with high cytolytically activity include CD8 T cells, CD4 T follicular helper cells, 

CD4 memory cells, B cells, TNFSF14/LIGHT, and IL24. On the other hand, macrophages, 

CLEC11A/SCGF, and CCL13 are among the most important in the cytokine networks in tumors 

with low cytolytic activity. To our knowledge, this analysis is the first to use a de novo approach to 

construct and compare the landscape of tumor-associated cytokine networks. Altogether, this 

thesis highlighted cytokine networks that may be important in regulating immune activity in PDA.   
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CHAPTER 2: MATERIALS AND METHODS 

 

* The majority of the methods described in this chapter are described in: 

(1) T. Chao, E.E. Furth and R.H. Vonderheide. CXCR2-Dependent Accumulation of Tumor-

Associated Neutrophils Regulates T-cell Immunity in Pancreatic Ductal Adenocarcinoma. Cancer 

Immunology Research. November 1 2016. 4(11), 968-982. 

 

(2) T. Chao and R.H. Vonderheide. “In silico reconstruction and comparison of cytokine networks 

in pancreatic ductal adenocarcinomas with high and low cytolytic activity.” In preparation. 

 

Analysis of TCGA RNA-seq Data 

Normalized RSEM counts from primary tumor samples and their matched controls were 

downloaded from the TCGA Research Network through the GDAC data portal 

(http://gdac.broadinstitute.org/) and included all available Illumina HiSeq 2000 Level 3 gene-level 

data as of January 28, 2016. The following 15 cancer types (TCGA project, n = sample size) were 

included in our analysis: hormone receptor positive breast cancer (BRCA, n = 823), colorectal 

adenocarcinoma (COADREAD, n = 379), esophageal carcinoma (ESCA, n = 184), glioblastoma 

(GBM, n = 153), head and neck squamous cell carcinoma (HNSC, n = 520), kidney renal clear 

cell carcinoma (KIRC, n = 533), kidney renal papillary carcinoma (KIRP, n = 290), liver 

hepatocellular carcinoma (LIHC, n = 371), lung adenocarcinoma (LUAD, n = 515), lung 

squamous carcinoma (LUSC, n = 501), pancreatic ductal adenocarcinoma (PAAD, n = 134), 

prostate adenocarcinoma (PRAD, n = 497), colorectal adenocarcinoma (COADREAD, n = 382), 

liver hepatocellular carcinoma (LIHC, n = 373), lung adenocarcinoma (LUAD, n = 517), lung 

squamous cell carcinoma (LUSC, n = 501), skin cutaneous melanoma (SKCM, n = 103), stomach 

adenocarcinoma (STAD, n = 415), and thyroid carcinoma (THCA, n = 501). Genes with less than 

20% of samples have a normalized RSEM count ≥ 1 were filtered out from subsequent analysis. 

The normalized RSEM values were then log-transformed using the formula: log2(RSEM +1). 
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The average log2 expression of each chemokine was calculated for cancer and normal 

samples in each of the 15 different tumor types. Unsupervised hierarchal clustering was 

performed on the difference (log2 fold change) between the cancer and normal expression using 

the “heatmap.2” or “heatmap3” packages available in R/Bioconductor. Spearman’s rank based 

correlations between chemokines were calculated with their respective P values using the 

“Hmisc” package. The neutrophil gene signature was calculated as the log-average of normalized 

RSEM expression of 31 genes that constitute a previously defined neutrophil-signature. To 

compare expression of CXCL5 and neutrophil-signature across the 15 different cancer cohorts, 

the log2-normalized RSEM values were transformed to z-scores using the formula: z-score = (X – 

average(X)) / stdev(X), where X represents the RSEM values. The average and standard 

deviation were calculated from the expression of X across all samples included in this study.  

Unsupervised hierarchal clustering was used to cluster the 134 PDA samples based on 

the expression of the neutrophil-signature genes or CXCR2 ligands. PDA subtype classifier, 

immunome gene sets, and canonical pathway gene sets were acquired from the indicated 

literature and Broad Institute’s Molecular Signature Database (MSigDB) (Bailey et al., 2016; 

Bindea et al., 2013; Collisson et al., 2011; Moffitt et al., 2015; Subramanian et al., 2005). The 

“GSVA” package available in R/Bioconductor was used to calculate GSVA signature scores for 

each gene set (rnaseq=T, mx.diff=T). Differential expression of GSVA signature scores between 

cluster groups was calculated using the Holm-Sidak multiple comparison test. Adjusted values of 

≤ 0.05 were considered significant. Spearman’s rank based correlation was calculated between 

immunome GSVA signature scores and chemokines as above. To identify chemokines most 

predictive of the neutrophil GSVA signature score, we built a random forest regression model to 

predict the signature score based on chemokine expression using the “randomForestSRC” and 

“ggRandomForests” packages in R/Bioconductor.   

 

Immune Gene Sets and Cytokine Expression Analysis in Human PDA 
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 Gene expression in transcript per million (TPM) of the134 resected, primary PDA tumor 

samples available in TCGA were downloaded from UCSC’s TOIL RNAseq recompute analysis 

(Vivian et al., 2017). A total of 55 immune gene sets were acquired from the immunome (IM, n = 

26), CIBERSORT’s LM22 (LM22, n = 22), and the FANTOM 5 Consortium (F5, n = 7) (Bindea et 

al., 2013; FANTOM Consortium, 2014; Newman et al., 2015; Rooney et al., 2015). For the LM22 

signatures, only genes that were uniquely and significantly overexpressed in each population 

were included. The cytolytic activity (GZMA and PRF1) and the cytotoxic gene signatures were 

both defined in previous studies (Rooney et al., 2015). The "GSVA" package available in 

R/Bioconductor was used to calculate the gene set variation analysis (GSVA) signature scores for 

each gene set (rnaseq=T, mx.diff=T). Because genes in three of the signatures were not 

expressed, only 52 GSVA signatures were calculated. Human genes annotated with cytokine 

activity (GO:0005125), growth factor activity (GO:0008083), chemokine activity (GO:0008009), or 

hormone activity (GO:0005179) were defined as cytokines in this study. Only 255 cytokines were 

expressed in more than 20% of the samples and included in our analysis. Cytokine TPM values 

were converted to log scale via the formula: log2(TPM+1).     

 Hierarchal clustering was performed using the “heatmap.2” package, where the distance 

was defined using Spearman’s correlation (1-rho) when comparing genes/signatures or Euclidean 

distance when comparing samples. The complete agglomeration algorithm was used for 

clustering both genes/signatures and samples. The “cutree” function was used to define 

cytolytically hot and cold samples (k=4). Cox regression analyses and survival plots were 

performed using the “coxph” and “survfit” functions in the “survival” package, respectively. 

Differential cytokine or GSVA signature expression was determined using two-tailed Wilcox test. 

FDR-adjusted P-values ≤ 0.05 were considered statistically significant.  

 

Cytokine Network Analysis 

 To calculate the distribution of correlations and network properties, 1000 bootstrapped 

populations with sample replacement were created using all (n = 134), only the hot (n = 30), or 
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only the cold (n = 71) samples. In each bootstrapped population, Spearman’s correlation (rho) 

was calculated for each pair-wise immune-immune GSVA signature scores and immune-cytokine 

relationships. Furthermore, all asymptotically significant immune-cytokine correlations ≥ 0.4 were 

incorporated into a cytokine network using the “igraph” package, where the absolute values of rho 

were used as weights of the edges. The normalized degree and eigenvector centrality of each 

node was calculated for each network, such that all possible values lie between 0-1. Correlations, 

degrees, and eigenvectors were considered significant if their empirical 95% confidence intervals 

do not contain zero. Empirical P-values comparing two populations were calculated using the 

formula: (1 + r) / (1 + n), where n is the number of samples in a population and r is the number of 

samples in that population that are greater than or equal to the mean value of the second 

population. Empirical P-values ≤ 0.05 were considered statistically significant. 

 To select the top correlations or network properties, random forest classifiers separating 

cytolytically hot populations from cytolytically cold populations were trained using the 

“randomForestSRC” package with 1000 trees and included only differentially enriched 

correlations, degrees, or eigenvectors as input variables. Both the mean decrease of accuracy 

over all out-of-bag cross-validated predictions (VIMP score) and the averaged depth (from the 

root node) to the first sub-tree involved (minimal depth score) were used to rank the input 

variables. The “ggRandomForest” package was then used to visualize the results. 

 

Histological Analysis of Human PDA 

Hematoxylin and eosin stained slides from the resected tumors of 12 patients with 

previously untreated, resectable PDA were prepared per routine at the Department of Pathology, 

Hospital of the University of Pennsylvania. The percent of cancer epithelium, stroma, and lumen 

that have significant neutrophil involvement for each sample were then recorded. These studies 

were approved by the University of Pennsylvania Institutional Review Board. 

  

Mouse PDA Models 
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All mouse protocols were reviewed and approved by the Institutional Animal Care and 

Use Committee (IACUC) of the University of Pennsylvania. Animals were maintained in a specific 

pathogen-free facility. Kras
LSL-G12D/+

;Trp53
LSL-R172H/+

;Rosa
LSL-YFP

;Pdx1-Cre (KPCY) and Kras
LSL-

G12D/+
;Trp53

LSL-R172H/+
;Pdx1-Cre (KPC) mice were bred in-house and backcrossed for over ten 

generations with C57BL/6J  mice (Hingorani et al., 2005; Rhim et al., 2012; Evans et al., 2016). 

All of these mice were confirmed on the C57BL/6 background at the DartMouse™ Speed 

Congenic Core Facility at the Giesel School of Medicine at Dartmouth College as previously 

described (Byrne and Vonderheide, 2016). Four- to six- months old KPC/KPCY mice with 

palpable tumors or with tumors >100mm
3
 by ultrasound were used in this study, with their age-

matched controls. Cxcr2
-/-

 and Cxcr2
+/+

 littermates were bred in-house from backcrossed, 

syngeneic Cxcr2
+/-

 mice purchased from the Jackson Laboratories. These mice were maintained 

on acidified water (pH ~ 3-4) to minimize opportunistic infections. Genotypes were determined by 

Transnetyx. C57BL/6J wild-type mice were purchased from Jackson Laboratories. Six to twelve 

week old mice were used for tumor implantation studies. 

 

Mouse PDA Cell Lines 

All murine PDA cell lines, including 4662, were derived from primary pancreatic tumors of 

KPC mice. Briefly, dissociated cells from primary tumor were plated in a 6-well dish with serum-

free DMEM to select for tumor cells. After two weeks, the cells were expanded in DMEM with 

10% Fetal Bovine Serum (FBS). Only cells of ten or fewer passages were used for experiments. 

The pancreatic-lineage origin of all PDA cell lines were validated by PCR for the presence of 

rearranged KrasLSL-G12D allele (Evans et al., 2016). Cell lines were tested and authenticated 

using IMPACT and RADIL. Cell lines used for implantation studies were also tested and 

confirmed to be Mycoplasma and endotoxin free. All cell lines were maintained at 37°C and 5% 

CO2 in complete media (cDMEM), which contains Dulbecco’s Modified Eagle Medium (DMEM-

GlutaMAXTM) (Thermo Scientific) supplemented with 10% fetal bovine serum, 1% L-glutamine, 

and 50 µg/mL gentamicin (Gibco).   
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In vitro treatment of 4662 PDA cell line with inhibitors and siRNA 

 4662 PDA cells were seeded at a density of 1 x 10
5
 cells/mL on 6-well plates in cDMEM 

for 24 hours in triplicates. After washing with DMEM, cells were incubated for 24 h with DMEM 

containing DMSO control, 10 ng/mL mTNFα (R&D), 10µM U0126 (MEK1/2-i, Cell Signal 

Technologies), or 20 µM LY294002 (PI3K inhibitor, Cell Signal Technologies), each with or 

without 20 µM Wedelolactone (IKK1/2-i, Sigma-Aldrich). After 24 h, the supernatant was collected 

and frozen at -20°C until further analysis. Qiagen’s RNeasy-Plus Mini Kit was used to isolate total 

RNA from pelleted cells. RNA quality was assessed using a NanoDrop ND-1000. Only samples 

with a 260/280 value of ≥1.9 were used.  First strand cDNA was synthesized using H igh-Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems). Primer probes for 18S (Applied 

Biosystems), Csf2 (GM-CSF), Kras, RelA, RelB, Gsk3α, Gsk3β, Tbk1, Yap1, Cxcl1, Cxcl2, Cxcl3, 

Cxcl5, Cxcl7 (PPBP), and Cxcr2 (IDT) were used for qPCR in a ViiA™ 7 Real-Time PCR System. 

Relative expression was determined after normalizing to 18S expression.   

 For siRNA inhibition of Yap1 and Kras, 4662 PDA cells were seeded as described above. 

After washing with DMEM, the cells were transfected with 10 nM of siRNA against Kras (Life 

Technologies, S68935), Yap1 (Sigma-Aldrich, NM_009534), RelA (Sigma-Aldrich, NM_009045), 

RelB (Sigma-Aldrich, NM_009046), Gsk3α (Sigma-Aldrich, NM_001031667), Gsk3β (Sigma-

Aldrich, NM_178613), Tbk1 (Sigma-Aldrich, NM_019786),  and a Td-Tomato fluorescent negative 

control (Sigma-Aldrich, SIC005) using the Lipofectamine® RNAiMAX Transfection Reagent (Life 

Technologies). After 48 hours of incubation, the supernatant and RNA were collected and 

analyzed as described above.    

 

In vivo subcutaneous tumor implantation studies 

PDA cells were cultured and harvested at 80-90% confluence. After assessing for > 90% 

viability via hemocytometer with Trypan blue staining, 5 x 10
5
 cells were injected subcutaneously 

into the right flank. Tumor volume was monitored using digital calipers and calculated as (l x 
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w
2
)/2, where l is the longest dimension and w is the perpendicular dimension. Mice were 

euthanized if tumor volume reached > 1 cm
3
. For the CXCL5 inhibition study, 100 µg of anti-

CXCL5 (R&D Systems, MAB433) or 100 µg of isotype control (R&D Systems, MAB0061) were 

injected intraperitoneally every 3 days starting on Day 10 for the duration of the study. For T-cell 

depletion studies, 200 µg of anti-CD4 (BioXCell, GK1.5l) and 200 µg of anti-CD8 (BioXCell, YTS 

169.4), or 400 µg of isotype control (BioXCell, LTF-2) were administered intraperitoneally every 3 

days for the duration of the study, starting 4 days prior to tumor implantation (Evans et al., 2016). 

 For the combination chemo- and immune-therapy study, mice were implanted with 5 x 

10
5
 KPC-derived 4662 cells subcutaneously into the right flank. This regimen has been previously 

reported (Winograd et al., 2015; Byrne and Vonderheide, 2016). Briefly, on day 10, mice were 

injected intraperitoneally with 2.4 mg gemcitabine and 2.4 mg Abraxane or with PBS and 2.4 mg 

human albumin. On day 12, mice were further injected with 100 µg of anti-CD40 (BioXCell, 

FGK4.5) or isotype control (BioXCell, 2A3). Tumor growth was monitored using a digital caliper 

until endpoint was reached.   

 

Processing of plasma, tumor supernatant, and single-cell suspension from tissues  

Mice were euthanized in a CO2 chamber. Whole blood from cardiac puncture was 

collected in EDTA-containing Eppendorf tubes. The tubes were centrifuged at 12,000 x g for 10 

mins. The resulting supernatants were centrifuged at 14,000 x g for 15 mins to remove remaining 

debris. Plasma samples were stored at -20˚C until further use. Pancreata or subcutaneous 

tumors were dissected and rinsed with RPMI. To prepare samples for flow cytometric analysis or 

FACS, tissues were minced with fine scissors (≥200 cuts) and incubated in collagenase IV 

solution (1 mg/ml in RPMI) for 30-45 minutes at 37°C. The solution was then placed on ice and a 

1:4 dilution with ice cold RPMI + 10%FBS was added to stop the reaction. Dissociated cells were 

passed through a 70μm cell strainer and pelleted. The supernatant was collected and frozen until 

further use. The pelleted cells were washed with FACS Buffer (PBS + 0.5% BSA + 0.5 mM 
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EDTA). After centrifugation, the cells were resuspended in FACS Buffer, filtered through another 

70 µm cell strainer, and kept on ice. 

 

Histopathology and Immunofluorescence of tumors 

Fresh pancreatic or subcutaneous tumors were rinsed in PBS and placed in Zinc 

Formalin Fixative (Sigma-Aldrich) overnight. Then they were dehydrated serially in 70%, 95%, 

and 100% ethanol. The tissues were then embedded in paraffin, which were processed to 

generate H&E and unstained sections. To rehydrate for immunofluorescence, unstained sections 

were serially submerged in Xylene (Sigma), 100% ethanol, 95% ethanol, 70% ethanol, and PBS. 

Sections were then blocked with 10% donkey serum + 0.1% TritonX-100 in PBS overnight at 4°C; 

followed by incubation with a goat anti-GFP antibody (Abcam, ab6673; 1:200) and a rat anti-

mouse Ly6G antibody (BioXCell, BE0075-1; 1:200) for 1 hour at room temperature. After 

washing, the sections were incubated with Alexa Fluor 488 donkey anti-goat IgG (Invitrogen, A-

11055; 1:200), Alexa Fluor 488 or Alexa Fluor 594 donkey anti-rat IgG (Invitrogen, A-21208 or A-

21209; 1:200), and DAPI (Biolegend; 1:1000) for 1 hour at RT in the dark. Sections were then 

washed and mounted with Aqua-Poly/Mount (Polysciences). A Nikon Eclipse Ti-U fluorescent 

microscope was used to acquire images at a 64-bit data depth.  

 

Measurement of chemokine concentrations in plasma, tumor and cell culture supernatant 

Plasma, tumor and cell culture supernatant CXCL1 and CXCL5 protein levels were 

measured using the LEGENDplex™ Mouse Proinflammatory Chemokine Panel (13-plex) kit 

following manufacturer’s protocol. Bead identity and intensity were measured with a FACSCanto 

and subsequently analyzed with FlowJo.  

 

FACS Sorting and Transcriptional analysis 

YFP
+
 and YFP

-
 populations from KPCY pancreata were sorted using a FACSAria II Flow 

Cytometer directly into TRIzol Reagent (Invitrogen). Total RNA was isolated following 
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recommendations from the manufacturer. Briefly, cells were homogenized in TRIzol reagent. 

Chloroform (0.2ml per 1ml of TRIzol Reagent) was then added, vigorously mixed, and incubated 

for 2-3 mins. After centrifugation at 12,000 x g for 15 mins at 4°C, the aqueous phase was 

isolated. Glycogen was added to the RNA solution to aid subsequent visualization of RNA pellet. 

Isopropanol was added to precipitate RNA, which was followed by washing with ethanol. The 

RNA pellet was resuspended in DNase/RNase-free water. RNA quality was assessed using a 

NanoDrop ND-1000. First strand cDNA was synthesized using High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems). Primer probes for 18S (Applied Biosystems), Cxcl1, 

Cxcl2, Cxcl3, Cxcl5, Cxcl7, and Cxcr2 (IDT) were used for qPCR in a ViiA™ 7 Real-Time PCR 

System. Relative expression was determined after normalizing to 18S expression.   

 

Flow Cytometry 

Between 5 x 10
6
 and 1 x 10

7
 cells were plated per well in a 96 well plate. For ex vivo 

stimulation, cells were incubated with the Leukocyte Activation Cocktail, with BD GolgiPlug™ 

(1:500) in RPMI for 5 hours at 37°C before subsequent staining. Viability was assessed using 

Live/Dead Fixable Aqua Dead Cell Stain Kit. Cells were then washed and stained with labeled 

antibodies (1:100) against surface markers at 4°C for 30 minutes in FACS Buffer. For intracellular 

stains, cells were fixed, permeabilized, and stained with labeled intracellular antibodies using the 

Transcription Factor Staining Buffer Set (eBioscience). After washing, labeled cells were 

analyzed using a FACSCanto or a LSR II flow cytometer (BD Biosciences). The FlowJo software 

was used to perform subsequent gating and quantification of cell populations. The gating 

strategies from several recent publications were used to define immune cell populations (12,15).  

Cell labeling was performed with the following fluorescently conjugated mAbs directed against 

mouse CD31 (MEC 13.3), CD45 (30-F11), CD3Ɛ (145-2C11), CD4 (RM4-5), CD8a (53-6.7), 

CD44 (IM7), CD62L (MEL-14), CD11a (M17/4), CD11c (N418), CD19 (6D5), F4/80 (BM8), 

-XT22), IL10 (JESS-
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16E3), IL2 (JES6-5H4), IL17 (eBio17B7), and FOXP3 (FJK-16s) – all acquired from Biolegend, 

eBiosciences, or BD Biosciences. 

 

Statistical Analysis 

Unless otherwise specified, significance in variations between two groups was 

determined by two-tailed, unpaired t-test. Significance in variations between two groups for many 

factors was calculated using the Holm-Sidak multiple comparison test. Differences among three 

(or more) related groups for one factor were analyzed by one-way ANOVA, followed by the 

Tukey’s multiple comparison test. Differences in tumor growth curves and immune populations 

were analyzed by two-way ANOVA, followed by Dunnett’s multiple comparison test. Statistical 

analyses were performed using GraphPad Prism (GraphPad). A P value ≤ 0.05 was considered 

statistically significant. 
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CHAPTER 3: CXCR2-Dependent Accumulation of Tumor-Associated Neutrophils 

Regulates T-cell Immunity in Pancreatic Ductal Adenocarcinoma 

 

* The majority of the results described in this chapter have been published in: 

T. Chao, E.E. Furth and R.H. Vonderheide. CXCR2-Dependent Accumulation of Tumor-

Associated Neutrophils Regulates T-cell Immunity in Pancreatic Ductal Adenocarcinoma. Cancer 

Immunology Research. November 1 2016. 4(11), 968-982. 

 

INTRODUCTION 

Despite advances using combination chemotherapy, pancreatic adenocarcinoma (PDA) 

remains one of the most lethal malignancies, with a dismal 5-year survival rate of ~7.7% (Conroy 

et al., 2011; Hoff et al., 2013; Siegel et al., 2017). Even with surgery and adjuvant therapy in 

patients with resectable PDA, the 5-year survival rate is just about 20% (Lim et al., 2003; Sohn et 

al., 2000; Siegel et al., 2017). Alarmingly, PDA now kills more Americans than breast cancer and 

is predicted to become the second leading cause of cancer-related deaths in the United States by 

2020 (Rahib et al., 2014). Therefore, expanding our knowledge of mechanisms promoting PDA 

progression and resistance is urgently needed. 

Avoiding host immunity is a key feature of tumor progression (Hanahan and Weinberg, 

2011), and understanding the mechanisms by which cancer cells evade immune destruction is 

critical for the development of more effective treatment strategies. To describe the immune-tumor 

interactions in PDA, our lab previously characterized the immune infiltrate during progressive 

stages of PDA development using the Kras
LSL-G12D/+

;Trp53
LSL-R172H/+

;Pdx1-Cre (KPC) murine 

model (Clark et al., 2007). We found extensive infiltration of immunosuppressive Treg and 

myeloid cells in both pancreatic intraepithelial neoplasia (PanINs) and PDA. In contrast, infiltration 

of effector T cells was scant in the tumor microenvironment. These observations suggested that a 

highly immunosuppressive environment is established even at the earliest stages of tumor 

development. Although immune checkpoint blockade with anti–PD-1/PD-L1 or anti–CTLA-4 is 
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ineffective in stimulating antitumor immunity, depleting or “re-educating” immunosuppressive 

myeloid populations has proven to be more effective at eliciting antitumor T-cell responses in 

PDA (Beatty et al., 2011; 2013; Royal et al., 2010; Brahmer et al., 2012; Winograd et al., 2015; 

Byrne and Vonderheide, 2016).     

Tumor-associated neutrophils (TANs) play important roles in cancer development, 

progression, and resistance to therapy (Fridlender and Albelda, 2012; Coffelt et al., 2016). A 

meta-analysis of the literature concluded that TANs are typically pro-tumor and are strongly 

associated with poorer prognosis in the majority of human cancers (Shen et al., 2014). TANs 

often exhibit protumorigenic functions, including promotion of angiogenesis, metastases, and 

immunosuppression (Rodriguez et al., 2004; Shojaei et al., 2007; Wculek and Malanchi, 2015; 

Spiegel et al., 2016). However, TANs also can be antitumor in early-stage cancer or when TGFβ 

is inhibited (Fridlender et al., 2009; Singhal et al., 2016). Thus, whether TANs are pro- or 

antitumor depends in part on the specific cancer type and the stage of the tumor. In the context of 

PDA, presence of TANs is strongly associated with poorer prognosis (Reid et al., 2011; Wang et 

al., 2016). High intratumoral CXCL5, a chemokine for neutrophils, have also been associated with 

poorer overall survival (Li et al., 2011). In the KPC model, systemic depletion of GR1
+
 myeloid 

cells, which includes neutrophils, can increase infiltration of effector T cells and inhibit tumor 

growth (Stromnes et al., 2014). Therefore, targeting neutrophils may be therapeutic in PDA.  

CXCR2 ligands are essential for neutrophil egression from the bone marrow and 

trafficking toward sites of inflammation (Eash et al., 2010; Mei et al., 2012). CXCR2 is also 

essential for the recruitment of TANs in various cancers (Jamieson et al., 2012; Katoh et al., 

2013; Highfill et al., 2014). In the KPC model, CXCR2 blockade by genetic ablation or 

pharmacologic inhibition reduces the recruitment of MPO
+
 neutrophils to the PDA tumor 

microenvironment and potently suppresses metastases (Steele et al., 2016). CXCR2 inhibition 

sensitized PDA tumors that were otherwise highly resistant to anti–PD-1D-1 therapy. Here, using 

both human and mouse data, we build on the above results by detailing the mechanisms involved 

in CXCR2-ligand activation in PDA and discerning the impact on T-cell responses in the setting of 
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CXCR2 disruption. We show that a subset of human PDA have significant elevation of TAN-

related genes. Analysis of gene expression in human PDA revealed a correlation between high 

expression of CXCR2 ligands and enrichment of neutrophils and NF-κB related pathways. We 

further showed that the KPC model faithfully recapitulates human disease in the expression 

profile of CXCR2 ligands, with CXCL5 being the most prominent in both. Using a KPC-derived 

PDA cell line, we discovered that NF-κB activation can potently induce CXCL5 expression and 

secretion. We found that host CXCR2 ablation dramatically inhibited TAN accumulation and 

resulted in a spontaneous, T cell–dependent suppression of tumor growth. Therefore, our data 

support the hypothesis that the CXCR2-ligand axis is a promising therapeutic target in PDA. 

 

RESULTS 

A subset of human PDA has significant TAN involvement. 

To investigate the extent of neutrophil infiltration in human PDA, we compared the 

normalized expression of a previously defined neutrophil gene signature in 134 resected PDA 

compared to 14 other primary cancer cohorts using RNA-sequencing data available from The 

Cancer Genome Atlas (TCGA) (Bindea et al., 2013; Cancer Genome Atlas Research Network et 

al., 2013). PDA ranked second, on average, among these 15 cancers in the expression of the 

neutrophil gene signature (Figure 1). Thus, TANs may be relatively abundant in PDA. The PDA 

cohort naturally clusters into a TAN-high, a TAN-medium, and a TAN-low group (Figure 2). To 

identify immune populations co-enriched in TAN-high tumors, gene set variation analysis (GSVA) 

was performed using previously defined “immunome” gene sets that specifically identify immune 

populations (Bindea et al., 2013). Confirming our cluster definition, the neutrophil-specific gene 

set was significantly enriched in the TAN-high group (Figure 3A). Of the 16 other immune 

populations tested, the macrophage and γδ T-cell gene sets were also significantly enriched in 

TAN-high compared to TAN-medium and TAN-low tumors.        

As described in the previous chapter, four main subsets of PDA were identified by Bailey 

et al.: squamous, aberrantly differentiated endocrine exocrine (ADEX), pancreatic progenitor 
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(PP), and immunogenic (Immune) (Bailey et al., 2016). Squamous, ADEX, and PP subtypes are 

most similar to Collisson et al.’s quasimesenchymal (QM-PDA), exocrine-linked, and classical 

subtypes, respectively (Collisson et al., 2011). PDA tumors could be further divided based on 

whether they have normal or activated stroma using Moffitt et al.’s signatures (Moffitt et al., 2015). 

To explore whether neutrophil infiltration is associated with certain PDA subtypes, we used GSVA 

to compare the enrichment of previously defined PDA subtype gene sets in TAN-high and TAN-

medium/low tumors. Our analysis showed that TAN-high tumors have significant enrichment of 

genes in the normal stroma subtype and the squamous subtype, which has the poorest prognosis 

(Figure 3B). However, high TAN involvement was not significantly associated with the 

immunogenic subtype, which is primarily characterized by infiltration of adaptive immune cells.               

To understand the spatial distribution of TANs in human PDA, a cohort of PDA resected 

tumors from previously untreated patients (n = 12) were examined by standard pathologic 

examination, in which neutrophils are readily identified on H&E staining (Figure 4A). Eight of 12 

tumors exhibited a mild to extensive degree of neutrophil infiltration, with a few tumors having 

significantly more TANs (Figures 4B and 4C). Four tumors were devoid of neutrophils. One tumor 

had neutrophils only in neoplastic ductal lumens. In the remaining seven samples, neutrophils 

were also found within the cancer epithelium and stroma (Figure 4B). Because none of the 

samples in this cohort was of the rare squamous subtype, comparisons of neutrophil infiltration 

between different PDA subtypes, as suggested by our analysis of TCGA data could not be made 

on a histological basis.   

 

CXCR2 ligand expression is strongly associated with neutrophil and NF-κB pathway in 

human PDA. 

To investigate whether CXCR2 ligands are involved in pancreatic cancer, we compared 

the expression of CXCR2 ligands (CXCR2Ls) in 134 PDA samples from TCGA. The expression 

of CXCL5 was not only higher than the other CXCR2Ls, but it was also markedly elevated in PDA 

compared to the other tumor types (Figures 5A-B). In general, tumors with higher CXCL5 
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expression had higher neutrophil gene signature expression, and vice versa (Figures 1 and 5B). 

However, even though PDA had the highest CXCL5 expression, it was not the highest in 

neutrophil gene expression. This may be explained by the role of other CXCR2Ls besides CXCL5 

in the recruitment of TANs in other cancers. Although CXCL5 expression was the highest among 

CXCR2Ls in human PDA, we also noted significant expression of other CXCR2Ls, especially 

CXCL8. Because these chemokines are likely redundant in their function, all CXCR2Ls were 

included in the subsequent analysis.  

Unsupervised hierarchal clustering divided the PDA cohort into a CXCR2L-high group 

and a CXCR2L-low group (Figure 6). To identify immune populations enriched in CXCR2L-high 

tumors, GSVA analysis was done using the “immunome” gene sets as above (Bindea et al., 

2013). Of the 17 immune populations tested, only the neutrophil gene set showed significant 

enrichment in CXCR2L-high compared to CXCR2L-low tumors (Figure 7A). This result supported 

the hypothesis that CXCR2 ligands are specifically and selectively important for the recruitment of 

tumor-associated neutrophils (TANs), but not for other immune populations. Because CXCR2L-

high tumors should in theory overlap with TAN-high tumors, we hypothesized that CXCR2L-high 

tumors would be relatively more enriched in genes related to the squamous subtype. However, 

GSVA analysis of PDA subtypes showed that CXCR2L-high tumors are not significantly 

associated with any PDA subtypes, though there was a trend toward enrichment of the squamous 

subtype with an adjusted P value of 0.13 (Figure 7B). Therefore, the CXCR2-ligand axis probably 

plays a role in PDA regardless of subtype.  

In addition to immune populations and PDA subtypes, we were also interested in 

signaling pathways and biological processes that may be enriched in CXCR2L-high tumors. Of 

the 2,838 Hallmark, Canonical Pathways, and Gene Ontology gene sets that were curated by 

Broad Institute’s Molecular Signature Database, only 17 gene sets (0.6%) were significantly 

enriched in CXCR2L-high tumors (Figure 8) (Subramanian et al., 2005). Confirming our 

stratification of the PDA cohort into chemokine-high and low groups, the majority of these 

significant gene sets (8 of 17) involved leukocyte trafficking and chemokine/cytokine-receptor 
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signaling. As may be expected of tumors enriched with neutrophils, pathways involved in innate 

immune functions, such as pattern recognition and glycosaminoglycan (GAG) binding, were also 

significantly enriched. Gene sets related to IL1R, NOD-like receptor (NLR), and TNFα signaling 

were also significantly enriched in CXCR2L-high tumors. Importantly, these inflammatory 

pathways all converged on NF-κB signaling downstream. These findings suggested that 

increased NF-κB signaling may be associated with elevated CXCR2 ligand expression in PDA.   

 

TAN signature score in PDA is best predicted by CXCL8 and CXLC5.  

 We have shown that PDA samples in TCGA with high CXCR2 ligand expression 

associated specifically with the neutrophil GSVA signature score (Figure 7A). This implied that 

CXCR2 ligands may be playing a role in TAN recruitment in PDA. To identify factors that may be 

regulating TAN accumulation in PDA, we correlated the expression of all chemokines with 

immunome signature scores 17 immune populations including neutrophils (Figure 9).  In 

concordance with the GSVA analysis above, the TAN signature score is significantly correlated 

with many CXCR2 ligands, especially with CXCL5 and CXCL8. The TAN signature also clustered 

most closely with macrophages, again confirming our previous finding. However, because many 

of the immunome signatures correlated with each other, it is difficult to identify which chemokines 

are most important for TANs compared to other immune cells.  

 To find chemokines most predictive of TAN involvement, we built a random forest 

regression (RF-R) model to predict the TAN signature score based on chemokine gene 

expressions. The importance of each chemokine in the RF-R model was measured by two 

methods: the variable importance (VIMP) and minimal depth scores. The VIMP score is based on 

the difference in predictive ability of the RF-R model with and without a given variable. On the 

other hand, the minimal depth score is a direct measure of the importance of a given variable in 

the RF-R model’s decision trees. In this case, an important variable would have a minimal depth 

score that is closer to the root decision node. Interestingly, CXCL8 and CXCL5 were the two most 
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important chemokines according to both measures (Figure 10). This result supports the 

hypothesis that CXCR2 ligands may be important for the accumulation of TANs in PDA.        

 

KPC tumors faithfully recapitulate CXCR2 ligand expression of human disease. 

To further elucidate the role of TANs and the CXCR2-ligand axis in PDA, we studied their 

involvement in murine models using Kras
LSL-G12D/+

;Trp53
LSL-R172H/+

;Pdx1-Cre (KPC) and KPC with 

the Rosa
LSL-YFP

 allele (KPCY) mice. Hematoxylin and eosin (H&E) staining of the pancreatic 

tumors of KPCY mice showed remarkable histological similarity with human PDA (Figures 4A and 

11). Similar to human disease, immunofluorescent staining of murine neutrophils with an antibody 

to Ly6G showed extensive infiltration of neutrophils throughout the tumor micro-environment in 

most KPC tumors (Figure 11). In contrast, almost no staining was observed in the pancreata of 

age-matched Pdx1-Cre (C) control mice. We further used flow cytometric analysis to further 

delineate the difference in the accumulation of CD19
+
 B cells, F4/80

+
 macrophages, CD4

+
 T cells, 

CD8
+
 T cells, CD11b

+
Ly6C

+
 monocytes, and CD11b

+
Ly6G

+
 TANs in pancreatic tumors in KPC 

compared to control pancreas. The results confirmed a significant accumulation of CD11b
+
Ly6G

+
 

neutrophils in KPC tumors compared to control pancreas (Figure 12). Similar flow cytometric 

analysis of the spleens showed a significant increase in the proportion of neutrophils among 

immune cells systemically (Figure 13). The increase in the proportion of myeloid cells (neutrophils 

and monocytes) is accompanied by the corresponding decrease in other immune populations, 

such as CD19
+
 B cells and CD8

+
 T cells. Therefore, the murine KPC and KPCY models faithfully 

recapitulated TAN involvement observed in human PDA. 

To investigate CXCR2 ligands in murine PDA, we first quantified CXCL1 and CXCL5 

protein in KPC tumors and normal pancreas using multiplex ELISA. The results showed that both 

CXCL1 and CXCL5 were significantly elevated in pancreatic tumors compared to control 

pancreas (Figure 14). However, the plasma concentrations of both of these chemokines did not 

differ significantly between KPC and control mice. This implied steeper chemokine gradients for 

CXCL1 and CXCL5 toward the pancreas of tumor-bearing KPC compared to control mice. To 
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address which cell populations were responsible for CXCR2 ligand expression in PDA, we 

compared the gene expression of these chemokines in YFP
+
 pancreatic-lineage and YFP

-
 

stromal cells in tumor-bearing KPCY mice using RT-PCR. Similar to human disease, Cxcl5 was 

the most highly expressed CXCR2 ligand in YFP
+
 pancreatic cancer cells in KPCY mice (Figure 

15). However, YFP
- 
stromal cells in the tumor also expressed many CXCR2 ligands, particularly 

Cxcl2. Further confirming our results above, all 9 KPC-derived PDA cell lines highly secreted 

CXCL5 as measured by multiplex bead assays, with some also secreting CXCL1 (Figure 16).  

Although not statistically significant, Cxcr2 was expressed primarily by YFP
-
 stromal cells and not 

by YFP
+
 pancreatic cancer cells (Figure 15, inset). Thus, both tumor and stromal cells were 

involved in the expression of CXCR2 ligands. However, CXCR2 receptor itself was primarily 

found in stromal populations rather than in the cancer cells themselves. 

 

KRAS/MEK inhibition and TNFα induces CXCL5 expression in a NF-κB dependent manner.  

To explore the effects of mutant Kras and mutant Trp53 in regulating CXCR2 ligand 

expression, we compared the expression of all CXCR2 ligands in YFP
+
 pancreatic-lineage or 

YFP
–
 stromal cells in 4-6 months old CY, PCY, and KCY mice. Increased expression of Cxcl5 in 

YFP
+
 tumor cells and Cxcl2 in YFP

– 
stromal cells were associated with mutant Kras and not 

mutant Trp53 expression (Figure 17). This data led us to hypothesize that pathways directly 

downstream or indirectly induced by oncogenic Kras may be responsible for regulating CXCR2 

ligand expression in these KPC-derived, murine pancreatic cancer cells. We therefore compared 

the expression of Cxcl5 via RT-qPCR in 4662 KPC cells treated with U0126 (MEK1/2 inhibitor) or 

DMSO. The 4662 cell line is a well-characterized KPC-derived PDA cell line that has been 

previously described (Byrne and Vonderheide, 2016; Evans et al., 2016; Lo et al., 2015; 

Winograd et al., 2015). Inhibition of MEK resulted in a significant increase in Cxcl5 expression 

compared to control (Figure 18A). In contrast, MEK inhibition led to a significant reduction in Csf2 

(GM-CSF) expression in PDA, which confirmed previously published observations regarding GM-

CSF regulation by oncogenic Kras (Pylayeva-Gupta et al., 2012). Cxcl5 expression was also 
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significantly increased in Kras siRNA–treated 4662 cells compared to control (Figure 18B). Thus, 

KRAS-MEK signaling is not directly responsible for Cxcl5 expression; rather, Cxcl5 expression is 

likely regulated by pathways that activate in response to KRAS-inhibition in the setting of 

oncogenic Kras expression. An elegant study using an inducible oncogenic Kras model of PDA 

has shown that YAP1 activation in PDA cancer cells allows escape from oncogenic Kras 

addiction (Zhang et al., 2014). Recently, the same group showed that YAP1 directly regulates 

Cxcl5 expression in a murine model of prostate cancer (Wang et al., 2016). To test the 

hypothesis that YAP1 directly regulates Cxcl5 expression in PDA, we compared the expression of 

Cxcl5 in Yap1 siRNA– and control siRNA–treated 4662 cells (Figure 18C). Unlike the 

observations in prostate cancer, knock down of Yap1 did not significantly alter Cxcl5 expression 

in PDA cells in our model.  

Using multiplex bead assays and flow cytometric analysis, we confirmed that MEK 

inhibition of the 4662 cells not only increased their CXCL5 mRNA expression but also their 

CXCL5 protein secretion into the media (Figure 19A). In comparison, 4662 cells treated with 

LY294002 (PI3K inhibitor) did not alter their CXCL5 secretion. To test the involvement of other 

signaling pathways potentially downstream of oncogenic Kras, we treated 4662 cells with siRNA 

directed against RelA, RelB, Gsk3α, Gsk3β, and Tbk1 (Pylayeva-Gupta et al., 2011). However, 

none of these treatment resulted in significant changes in CXCL5 secretion compared to control 

(Figure 19B). These results suggested that the baseline CXCL5 expression in 4662 PDA cells is 

not reliant on any one of these pathways.       

From our analysis of TCGA PDA data, we noted that tumors with high CXCR2 ligand 

expression were significantly enriched in expression of genes associated with inflammatory 

signaling pathways which all converged on NF-κB signaling. Therefore, we hypothesize that NF-

κB signaling may be regulating Cxcl5 expression in PDA cells. To test this hypothesis, we 

compared the amount of secreted CXCL5 in the supernatant of 4662 PDA cells treated with 

mouse TNFα, which is a potent inducer of NF-κB activity, and those treated with DMSO control 

(Figure 20A). In support of our hypothesis, TNFα treatment significantly increased CXCL5 
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secretion. The TNFα-induced increase in CXCL5 was abrogated upon co-treatment with 

wedelolactone (NF-κB inhibitor), a selective inhibitor of IKKα/β that does not affect p38 MAPK or 

AKT activities. In congruence with the siRNA result, NF-κB inhibition alone did not significantly 

alter baseline CXCL5 secretion. These results showed that NF-κB activity can potently induce 

CXCL5 secretion in PDA cells, but does not seem to affect baseline levels.  

We then tested the hypothesis that NF-κB signaling in the setting of KRAS/MEK inhibition 

is responsible for the increased CXCL5 level. Indeed, NF-κB inhibition completely abrogated the 

increase in CXCL5 in the presence of MEK inhibition (Figure 20A). Using MotifMap’s prediction 

tool, we found that high confidence NF-κB binding sites are indeed predicted to be in the 

promoter region immediately upstream of the human CXCL5 gene (Figure 20B). This showed that 

CXCL5 expression may be similarly regulated by NF-κB in humans. Altogether, NF-κB signaling 

may be an important pathway induced in response to KRAS/MEK inhibition in PDA cancer cells.   

 

TAN accumulation in KPC tumors is not significantly altered by anti-CXCL5 treatment. 

 To test the hypothesis that CXCL5 is responsible for the accumulation of TANs in PDA, 

we used an implantable model of the KPC tumors. The subcutaneous tumor growth of a KPC-

derived PDA cell line, 4662, was monitored in syngeneic wildtype mice treated with anti-CXCL5 

or isotype control antibodies for three weeks (Figure 21A). Anti-CXCL5 treatment significantly 

slowed tumor growth compared to control during this duration (Figure 21B). However, flow 

cytometric analysis of tumors excised on Day 21 did not reveal significant differences in any 

infiltrating immune populations (Figure 22). Similarly, no differences were observed systemically 

in the spleens of mice treated with anti-CXCL5 or isotype control (Figure 23). This result indicated 

that CXCL5 is not absolutely necessary for TAN recruitment in PDA, especially when other 

CXCR2 ligands are also present in the microenvironment.  

 

CXCR2 ablation specifically prevents TAN accumulation and inhibits tumor growth. 
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The expression of multiple CXCR2 ligands by different cell populations in the tumor 

microenvironment suggested significant redundancy in chemotactic signal to recruit TANs in 

PDA. This complexity made targeting individual CXCR2 ligands difficult and confounded, as 

demonstrated by inhibition of CXCL5 alone. However, CXCR2 ligands all converged on their 

binding to CXCR2, which as noted above, was primarily expressed in the non-tumor cells. To 

study the role of stromal CXCR2 in PDA, we compared the subcutaneous growth of 4662 KPC 

tumor cells in syngeneic Cxcr2
–/–

 or Cxcr2
+/+

 hosts. Tumor growth was significantly delayed in the 

absence of host Cxcr2 (Figure 24A). A significant survival benefit was also observed in Cxcr2 

knockouts (Figure 24B). Differences in tumor weight between Cxcr2
–/–

 and Cxcr2
+/+

 hosts only 

became significant two to three weeks post implantation (Figure 24C). The lack of initial 

differences in growth kinetics and tumor weights showed that the 4662 PDA cell line was able to 

seed and establish tumors in both Cxcr2
–/–

 and Cxcr2
+/+ 

hosts, suggesting that late factors were 

likely responsible for the observed differences in growth kinetics.     

To understand if CXCR2 signaling was required for TAN accumulation in this PDA model, 

we compared the tumor-infiltrating immune populations in Cxcr2
–/–

 and Cxcr2
+/+

 hosts. 

Histological analysis with H&E staining showed remarkable similarity between the subcutaneous 

model and the KPC/KPCY model of PDA (Figures 11 and 25). Immunofluorescent staining with 

anti-Ly6G on tumor sections showed diffuse tumor infiltration of neutrophils in Cxcr2
+/+

 hosts, 

similar to the pattern seen in human and KPCY PDA tumors. In contrast, TANs were almost 

completely absent in the tumors of Cxcr2
–/–

 hosts. Using flow cytometry to compare tumor-

infiltrating immune populations on days 10, 14, and 21 after implantation, we noted a striking 

reduction in the density of tumor-infiltrating CD11b
+
Ly6G

+
 neutrophils in Cxcr2

–/–
 compared to 

Cxcr2
+/+

 hosts, with no difference in the density of F4/80
+
 macrophages and CD11b

+
Ly6C

+
 

monocytes (Figure 26). Consistent with a previously published study, CD11b
+
Ly6G

+
 granulocytes 

were found to be highly abundant in the spleen of Cxcr2
–/–

 hosts at the earliest time point, which 

suggested that CXCR2 signaling primarily affected trafficking and not the differentiation of 

granulocytes (Figure 27). Importantly, the density of tumor infiltrating CD3
+
 T cells was 
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significantly elevated in Cxcr2
–/– 

compared to Cxcr2
+/+

 hosts 21 days post-implantation. Therefore, 

these data support the hypothesis that CXCR2 signaling is specifically required for the 

accumulation of TANs, but not for other myeloid populations. Furthermore, lack of TAN 

accumulation corresponded with increased accumulation of tumor-infiltrating T cells 2-3 weeks 

post-implantation.  

 

Absence of TANs correlates with increased infiltration and function of activated T cells.  

Flow cytometric analysis showed no significant difference in the density of CD45
–
CD31

+
 

endothelial cells. In contrast, we found a significant increase in the infiltration of CD3
+
 T cells in 

Cxcr2
–/–

 compared to Cxcr2
+/+

 hosts (Figure 26C). Correspondingly, there was also a significant 

increase in the density of tumor-infiltrating CD4
+
 T cells in Cxcr2

–/–
 compared to Cxcr2

+/+
 hosts 

(Figure 28A). More detailed analysis showed that activated CD44
hi
CD62L

+
 memory and 

CD44
hi
CD62L

–
 effector CD4

+
 T cells were both significantly increased in Cxcr2

–/–
 hosts (Figure 

28B). In contrast, no difference was observed in the density of infiltrating CD4
+
FOXP3

+
 Tregs 

(Figure 29A). As above, TANs were almost completely absent in this cohort of Cxcr2
–/–

 compared 

to wild-type hosts (Figure 29A). Therefore, the absence of TANs corresponded with significant 

infiltration of activated T cells in the TME.  

To highlight the change in the proportion of effector to suppressive immune populations, 

ratios of the density of activated CD4
+
CD44

hi
 T cells to the density of Tregs cells and TANs were 

calculated and found to be increased (Figure 29B). The ratio of the density of tumor infiltrating 

CD8
+
 T cells to the density of TANs was also significantly elevated. These ratios highlighted the 

significant increase in the proportion of effector T cells and corresponding decrease in the 

proportion of suppressive immune cells in the tumors of Cxcr2
–/–

 hosts. We further hypothesized 

that tumor-infiltrating effector T cells are more functional in Cxcr2
–/–

 than in Cxcr2
+/+

 hosts. 

Indeed, ex vivo PMA/ionomycin stimulation induced higher proportions of IFNγ-expressing cells in 

both CD4
+
 and CD8

+
 T-cell populations in Cxcr2

–/–
 compared to Cxcr2

+/+
 hosts (Figure 30A). A 

higher proportion of CD4
+
 T cells was also induced to express IL17, which indicated more 
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functional Th17 cells (Figure 30B). These results supported the hypothesis that T cells were 

indeed more functional in the absence of TANs. 

To test the hypothesis that T cells were responsible for inhibiting tumor growth in Cxcr2
-/-

 

mice, we compared tumor growth in Cxcr2
–/–

 and Cxcr2
+/+ 

mice treated with dual depleting 

antibodies against CD4 and CD8 or isotype control (Figure 31A). Tumor growth did not differ 

between control and CD4/8-depleted Cxcr2
+/+

 mice, which suggested that CD4
+
 and CD8

+
 T cells 

do not naturally impact PDA tumor growth, confirming our recent results (Evans et al., 2016). 

There was a significant difference in tumor growth comparing Cxcr2
+/+

 and Cxcr2
–/–

 mice in the 

control group. In contrast, tumor growth in isotype-treated Cxcr2
+/+

 and CD4/CD8-depleted Cxcr2
–

/–
 mice were not significantly different. Kaplan-Meier survival curves showed similar findings 

(Figure 31B). Thus, depletion of T cells in Cxcr2
–/–

 hosts rescued tumor growth. This result 

strongly supported the hypothesis that CD4
+
/CD8

+
 T cells were responsible for inhibiting tumor 

growth in Cxcr2
–/–

 mice. Altogether, these data show that the CXCR2-ligand axis is required for 

recruitment of TANs, which regulates T-cell immunity in PDA. 

 Our lab has previously reported that the combination of gemcitabine, abraxane (nab-

paclitaxel or nP), and agonistic anti-CD40 (Gem/nP/aCD40) treatment resulted in a T-cell 

dependent anti-tumor response in about 50% of tumors in our KPC pancreatic cancer model 

(Byrne and Vonderheide, 2016). Because CXCR2 ablation similarly elicited a T-cell dependent 

anti-tumor response, we hypothesized that it could provide benefits in addition to Gem/nP/aCD40 

therapy. Indeed, 4662 tumor growth was significantly slowed in Cxcr2
-/-

 mice treated with 

Gem/nP/aCD40 therapy compared to control Cxcr2
-/-

 mice (Figure 32). Therefore, CXCR2 

inhibition may provide additional benefit to combination therapy in pancreatic cancer.         

 

DISCUSSION AND CONCLUSIONS 

Multiple studies have demonstrated the importance of CXCR2 in the recruitment of 

tumor-promoting and immunosuppressive myeloid cells in various cancers, including PDA 

(Highfill et al., 2014; Steele et al., 2016; Wang et al., 2016). It has recently been shown that CD3
+
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T-cell infiltration increases upon CXCR2 inhibition in murine PDA (Steele et al., 2016). Here, we 

aimed to understand the relevant CXCR2 ligands and mechanisms regulating CXCR2 ligand 

expression in the TME, as this insight may help advance efforts at clinical translation. Our work 

adds to previously published studies in several key areas. We report: (1) neutrophils are an 

important aspect of the human PDA TME particularly in the squamous subtype; (2) human PDA 

has particularly high CXCL5 expression and other CXCR2 ligands compared to other cancer 

types, as confirmed in our murine model; (3) CXCL5 expression is correlated to NF-kB signaling 

pathways in human PDA and, in our mouse model, CXCL5 is strongly induced by NF-kB 

activation; (4) abrogation of CXCR2 signaling slows tumor growth in mice and triggers an influx of 

activated and functional CD4
+
 T cells into the TME; and (5) depletion of T cells completely 

reverses the antitumor effects of CXCR2 inhibition. Our data adds to important accumulating 

evidence that the CXCR2-ligand axis is a promising target for the treatment of PDA (Hertzer et 

al., 2013). 

We have previously shown that the PDA tumor microenvironment has elevated frequency 

of myeloid cells (Clark et al., 2007; Bayne et al., 2012). Several landmark studies have described 

novel methods of using predefined gene signatures to derive the relative abundance of immune 

populations from gene expression data in complex tissues (Bindea et al., 2013; Newman et al., 

2015). Here, similar to comparing relative expression of a single gene between samples, we 

compare the expression of such previously defined gene sets as a surrogate for the relative 

abundance of immune cells, pathway activation, and PDA subtypes. Our analysis of human 

TCGA data confirms that at least a subset of human PDA, especially those of the squamous 

subtype, also has significantly elevated infiltration of TANs. This is in remarkable congruence with 

the recent work by Steele et al. showing that absence of TAN accumulation in murine KPC PDA 

tumors is associated with decreased expression of genes in the squamous subtype compared to 

controls (Steele et al., 2016). We also report here that TAN-high tumors have elevated 

expression of macrophages and γδ T-cell related genes. This result supports the recent evidence 

that γδ T cells can promote TAN accumulation and may relate to their ability to suppress αβ T 
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cells in PDA (Coffelt et al., 2015; Daley et al., 2016). TANs have also been shown to highly 

express CCL chemokines, which can recruit macrophages (Fridlender et al., 2012; Gabrilovich et 

al., 2012). Although it remains to be confirmed, our analysis suggests that such interactions 

between TANs, macrophages, and γδ T cells may also exist in PDA.  

Despite ample evidence of TAN accumulation in PDA, the mechanism leading to 

increased TAN infiltration is not fully understood and may be due to active recruitment via 

chemokines or passive response to tissue damage. Recently, Steele et al. demonstrated that 

Cxcl2 expression is significantly elevated in the KPC mouse model of PDA and showed that 

CXCR2 inhibition significantly reduces the infiltration of MPO
+
 neutrophils using IHC (Steele et al., 

2016). In another study also using the KPC model, Seifert et al. showed that CXCL1 is elevated 

in a RIP1/3-dependent manner and that anti-CXCL1 treatment reduces the infiltration of 

Gr1
+
CD11b

+
 cells, which consist of a heterogeneous population including TANs and monocytes 

(Seifert et al., 2016). Using an implantable model of KPC PDA, we confirmed that CXCR2 

regulates the accumulation of TANs. In addition, our data revealed that CXCR2 ablation 

specifically inhibited the accumulation of neutrophils, without affecting infiltration of other myeloid 

populations. A role for CXCR1 was not directly studied in our work and cannot be excluded from 

our results here. Indeed, CXCR1 and CXCR2 have both been shown to be individually sufficient 

for chemotaxis of human neutrophils in vitro when induced by CXCL8 and CXCL1, respectively 

(Hammond et al., 1995). However, from the near absence of granulocytes recruited to the tumor 

in vivo using our Cxcr2 knockout mice, we hypothesize that CXCR2, rather than CXCR1, plays 

the dominant role in the recruitment of granulocytes in our mouse PDA model. Considering the 

inherent differences between mouse and human genome, whether this conclusion also applies in 

human PDA remains unknown and difficult to study in vivo using our immune-competent PDA 

mouse model. It is possible that CXCR1 inhibition may further decrease granulocyte recruitment 

when in combination with CXCR2 inhibition. 

Although previous studies have shown elevation of various CXCR2 ligands in PDA, only 

a few have attempted to delineate the source of these chemokines within the tumor 
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microenvironment (Seifert et al., 2016; Steele et al., 2016; Wang et al., 2016). Here, an unbiased 

analysis of all CXCR2 ligands using TCGA RNA-sequence data revealed that CXCL5 and CXCL8 

expression were orders of magnitude higher than other CXCR2 ligands in PDA. Furthermore, 

CXCL5 expression was much higher in PDA compared to other solid tumors. Analysis of all 

murine CXCR2 ligands in KPCY tumors revealed an abundance of Cxcl2 and Cxcl5 expression, 

which are primarily expressed by stromal and pancreatic-lineage cells, respectively. Interestingly, 

Steele et al. also reported an enrichment of Cxcl2 and Cxcl5 expression in the tumor epithelium 

of KPC tumors compared to WT pancreas (Steele et al., 2016). Assigning direct orthologous 

relationships between human and mouse chemokines can sometimes be difficult (Zlotnik and 

Yoshie, 2012). For instance, the mouse has no homolog of human CXCL8. 

Immunohistochemistry analysis has shown that CXCL8 is up-regulated and associated with 

poorer prognosis in human PDA (Hussain et al., 2010). Indeed, CXCL8 was the second highest 

expressed CXCR2 ligand in the PDA samples in TCGA and may also be playing an important 

role in neutrophil recruitment in human disease. Indeed, the random forest model showed that 

CXCL5 and CXCL8 expression were the most predictive chemokines for the expression of the 

neutrophil-specific gene signature. Because CXCL8 is absent in the mouse genome, its role 

cannot be further explored using our KPC or KPCY mouse models. Furthermore, human CXCL5 

and CXCL6 are both very similar to Cxcl5 in the mouse, which also does not have Cxcl6. Given 

the difference between species, we find the congruence of elevated CXCL5 expression in human 

and Cxcl5 expression in mouse PDA even more remarkable. CXCL5 protein level is strongly 

associated with reduced overall survival in a cohort of human PDA (Li et al., 2011). Using our 

implantable model of murine PDA, systemic inhibition of CXCL5 only resulted in slightly delayed 

tumor growth. However, this treatment did not significantly affect TAN accumulation. Therefore, 

CXCL5 is not likely to be necessary for TAN recruitment. This should be expected as many other 

CXCR2 ligands are also present in the tumor microenvironment. Future studies will be required to 

determine the specific function of tumor-derived CXCL5. Regardless, our data here highlighted 

the prominence and uniqueness of CXCL5 expression in PDA. 
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Because CXCL5 was the most highly and universally expressed CXCR2 ligand, we 

studied the regulation of its expression in more detail. Here, we discovered that NF-κB activation 

can potently increase CXCL5 protein level in KPC PDA cells. Again, this was consistent with 

human TCGA data, in which PDA tumors with high CXCR2 ligand expression are also 

significantly enriched in the expression of inflammatory pathways involving NF-κB. Although the 

populations expressing these pathways could not be determined using TCGA data alone, our 

results from the mouse model suggested that NF-κB activity may be enhanced in the cancer cells 

themselves. Studies in a mouse model of pancreatic intraepithelial neoplasia (PanIN), show that 

RELA is activated in the presence of oncogenic KRAS and regulates the expression of Cxcl1 

(Lesina et al., 2016). Indeed, RELA/p50 is constitutively activated in almost 70% of pancreatic 

cancers (Wang et al., 1999). An elegant study by Ling et al. using pancreas-targeted knockout of 

IKKβ in Pdx1-Cre;Kras
LSL-G12D/+

;Cdkn2a
L/L

 mice showed that inactivation of NF-κB signaling 

completely inhibited PDA development (Ling et al., 2012). They further demonstrated that 

KRAS
G12D

-driven AP-1 activation can induce the expression of IL1α, which in turn acted in an 

autocrine manner and activated NF-κB to induce more IL1α expression in a positive feedforward 

loop. Contrary to the implications from this study, we found that NF-κB activity actually increased 

when KRAS or MEK was inhibited. Although the mechanism of this increased activity remains to 

be determined, we speculate that it may have resulted from enhanced PI3K/AKT signaling, which 

is upstream of NF-κB activation, upon MEK inhibition (Wee et al., 2009). Altogether, our data 

suggested that NF-κB activation is important for inducing CXCL5 expression in PDA. 

The frequency of tumor-infiltrating T cells were shown to increase significantly in the 

setting of CXCR2 inhibition (Steele et al., 2016; Wang et al., 2016). This observation was also 

true in our subcutaneous, implantable murine model of PDA. This subcutaneous model faithfully 

recapitulated the histology, immune infiltration, and even response to therapy of spontaneous 

KPC pancreatic tumors (Winograd et al., 2015; Byrne and Vonderheide, 2016; Evans et al., 

2016). Another group used the spontaneous, autochthonous KPC model and reported similar 

conclusions to those presented in this paper (Steele et al., 2016). In this study, pharmacologic 
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CXCR2 inhibition suppressed metastasis and prolonged survival in KPC mice. Furthermore, in 

the context of anti–PD-1 therapy, co-treatment with a CXCR2 inhibitor led to increased infiltration 

of effector CD4
+
 and CD8

+
 T cells. Adding to this study, we observed that the tumor-infiltrating T 

cells in Cxcr2
–/–

 hosts consisted mostly of activated, effector CD4
+
 T cells. Although the density of 

tumor infiltrating CD8
+
 T cells was not increased in Cxcr2

–/–
 mice, the proportion of IFNγ-

producing cells increased among both activated CD4
+
 and CD8

+
 T-cell populations. This result 

supported the hypothesis that TANs are immunosuppressive in PDA.  

However, the specific mechanisms of how TANs suppress infiltration of T cells in PDA 

remain to be elucidated. Possible mechanisms include expression of arginase 1 (ARG1), 

inducible nitric oxide synthase (iNOS), and reactive oxygen species  (ROS) (Gabrilovich and 

Nagaraj, 2009). Besides the direct suppression of T cells, TANs may also be able to subvert the 

development of cytotoxic cellular responses by modulating the phenotype of macrophages (Sinha 

et al., 2007; Filardy et al., 2010). In addition, presentation of antigens via MHC-I on TANs can 

theoretically sequester antigen-specific CD8
+
 T cells away from antigen presenting cells and 

tumor cells. Because granulocytic-myeloid derived suppressor cells (G-MDSCs) are defined in 

mice as CD11b
+
Ly6G

+
Ly6C

lo
 cells that suppresses T-cell proliferation or function, TANs or at 

least a subset of them in our PDA model, fulfill this definition (Bronte et al., 2016). Future work 

must be done to further delineate the relationship between TANs and G-MDSCs. Given that PDA 

is naturally void of effector T cells, the observation that effector T cells could infiltrate in the 

absence of TANs is particularly exciting. Indeed, CXCR2 inhibition sensitized the otherwise highly 

resistant KPC PDA to anti–PD-1 therapy, with durable response in a small subset of tumors 

(Steele et al., 2016). We have shown here that CXCR2 ablation can also confer additional 

benefits to combination gemcitabine, nab-paclitaxel, and agonistic anti-CD40 therapy. Therefore, 

our data support the emerging notion that targeting combinations of components of the pancreatic 

tumor microenvironment may be needed in order to sensitize tumors to combination 

chemotherapy and immune checkpoint inhibitors (Feig et al., 2013; Lo et al., 2015; Winograd et 

al., 2015; Byrne and Vonderheide, 2016; Jiang et al., 2016; Nywening et al., 2016).  
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Besides their immunosuppressive function, TANs can also promote angiogenesis 

(Shojaei et al., 2007). In fact, reduced blood vessel density was observed in xenografts of a 

CXCL8 knockdown human PDA cell line compared to controls (Sparmann and Bar-Sagi, 2004). 

However, in our model with syngeneic immunocompetent mice, depletion of CD4
+
 and CD8

+
 T 

cells was sufficient to rescue tumor growth in Cxcr2
–/–

 hosts. Furthermore, the density of 

endothelial cells did not differ significantly between the tumors of Cxcr2
+/+ 

and Cxcr2
–/–

 hosts. 

These results argued that TANs primarily promote tumor growth via immunosuppressive 

mechanisms in our model rather than through reduction in angiogenesis.  

In summary, we conclude that CXCR2 is required for the recruitment of TANs, which in 

turn can suppress antitumor T-cell responses. We showed that CXCR2 ligands, particularly 

CXCL5, are elevated in both human and mouse PDA. Furthermore, expression and secretion of 

CXCL5 in our mouse model is potently induced by NF-κB activation. Finally, we showed that PDA 

tumor growth can be inhibited in a T cell–dependent manner in the context of CXCR2 inhibition. 

Therefore, the CXCR2-ligand axis is emerging as a potential target for the treatment of PDA.    
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Figure 1. Relative expression of the neutrophil gene signature across TCGA. 

Normalized expression (z-scores) of the neutrophil gene signature in primary tumors across 15 

TCGA cancer cohorts. Boxplot whiskers at 5-95th percentile. Dashed line represents the average 

expression value. 
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Figure 2. Stratification of human PDA samples by neutrophil signature genes. 

Clustering of 134 human TCGA PDA samples using 31 genes in the neutrophil signature into 

TAN-high, TAN-med, and TAN-low groups. 
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Figure 3. Immune populations and PDA subtypes enriched in TAN-high samples. 

(A) Comparison of GSVA signature scores for 17 different immune cell types between TAN-high 

and TAN-med/low groups. Holm-Sidak multiple comparison test; N.S. = Not Significant. (B) 

Comparison of GSVA signature scores for PDA subtypes between TAN-high and TAN-med/low 

groups. Holm-Sidak multiple comparison test; N.S. = Not Significant. 
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Figure 4. Significant neutrophil infiltration in a subset of human pancreatic cancer. 

(A) H&E stain of a representative, resected human PDA sample (n = 12) showing TAN 

involvement in the cancer epithelium, stroma, and lumen. (B) Bar graph of the percentage of 

cancer epithelium or stroma involved in each of the 7 PDA cases with TAN infiltration. (C) 

Percentage of cancer epithelium, stroma, and lumen with TAN involvement as scored a 

pathologist. 
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Figure 5. Elevated CXCL5 expression in PDA. 

(A) Distribution of RSEM expression for all CXCR2 ligands in 134 human TCGA PDA tumors. 

Boxplot whiskers at 5-95th percentile. Dashed line represents the average expression value of 

CXCL5.  **, P ≤ 0.01; ****, P ≤ 0.001 (1-way ANOVA, Dunnett’s multiple comparison test against 

CXCL5).  (B) Normalized expression (z-scores) of CXCL5 in primary tumors across 15 TCGA 

cancer cohorts. Boxplot whiskers at 5-95th percentile. Dashed line represents the average 

expression value. 
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Figure 6. Clustering of human PDA into CXCR2L-high and CXCR2L-low groups. 

Unsupervised hierarchal clustering of the 134 human TCGA PDA sampes into CXCR2L-high and 

CXCR2-low groups by their log normalized RSEM CXCR2 ligand expression. 
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Figure 7. CXCR2L-high samples have elevated expression of neutrophil-specific genes. 

(A) Comparison of GSVA signature scores for 17 different immune cell types between CXCR2L-

high and CXCR2L-low groups. Holm-Sidak multiple comparison test; N.S. = Not Significant. (B) 

Comparison of GSVA signature scores for PDA subtypes between CXCR2L-high and CXCR2L-

low groups. Holm-Sidak multiple comparison test; N.S. = Not Significant.  
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Figure 8. Elevation of genes in pathways related to innate immune response and NF-κB 

activation in CXCR2L-high samples.  

Log fold-change of GSVA signature scores and the adjusted p-values of canonical gene sets that 

are significantly elevated in CXCR2L-high compared to CXCR2L-low groups.  
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Figure 9. Correlation of immunome populations with all chemokines in PDA. 

Clustering of the Spearman’s rank correlation of immunome signature scores with all expressed 

chemokines in the 134 human PDA samples in TCGA (Red = positive; Blue = negative 

correlations). Only those correlations with asymptotic p-value ≤ 0.05 are colored.   
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Figure 10. CXCL8 and CXCL5 are the most important chemokines in predicting the 

neutrophil signature score in  PDA. 

Comparison of the variable importance (VIMP) and the minimal depth rankings of all chemokines 

in a random forest regression model of the neutrophil signature score in 134 human PDA 

samples. The diagonal dashed line indicates perfect match between the VIMP and minimal depth 

rankings. The vertical dashed line divides the chemokines with positive predictive values (light-

blue dots) and those with detrimental predictive values (red dots) in the model. The horizontal 

dashed line indicates the mean minimal depth of the chemokines, where those chemokines below 

the line are considered as important in the model. Chemokines where the VIMP and minimal 

depth rankings fall in the lower left quadrant are considered as important in the model using both 

measures.     
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Figure 11. Significant Ly6G
+
 neutrophil infiltration throughout the pancreatic tumors of 

KPCY mice. 

Representative H&E (10x) and YFP-Ly6G-DAPI (10x and 40x) stains of slides from the pancreas 

of 4-6 months old tumor-bearing KPCY mice and their age-matched CY controls (n = 4 per 

group). 
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Figure 12. Increased CD11b
+
Ly6G

+
 neutrophils in the pancreas of KPC mice. 

Flow cytometric analysis of immune cells as a percentage of total live cells in the pancreas of 

tumor-bearing KPC mice (n = 5) compared to age-matched controls (n = 5). Graphs show mean ± 

s.d. *, P value ≤ 0.05 (unpaired t-test).  
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Figure 13. Increased CD11b
+
Ly6G

+
 neutrophils in the spleens of tumor-bearing KPC mice. 

Flow cytometric analysis of immune cells as a percentage of live CD45+ cells in the spleens of 

tumor-bearing KPC mice (n = 5) compared to age-matched controls (n = 5). Graphs show mean ± 

s.d. *, P value ≤ 0.05 (unpaired t-test).  
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Figure 14. Elevated CXCL1 and CXCL5 levels in KPC pancreatic tumors. 

Protein quantification of CXCL1 and CXCL5 in the pancreas and plasma of KPC (n=6) compared 

to controls (n = 6) mice. Graphs show mean ± s.d. of one experiment. *, P value ≤ 0.05; (unpaired 

t-test). 
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Figure 15. Differential CXCR2 ligand expression in cancer and stromal cells in KPC 

tumors. 

CXCR2 ligand expression in YFP
+
 cancer cells compared to YFP

-
 stromal cells in KPCY 

pancreatic tumors (n = 3). Inset shows Cxcr2 expression on a different scale. Gene expressions 

were normalized to18S. Graphs show mean ± s.d. of one experiment. *, P value ≤ 0.05; **, P 

value ≤ 0.01 (unpaired t-test).  
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Figure 16. CXCL5 is abundantly secreted by KPC-derived PDA cell lines in vitro. 

KPC-derived PDA cell lines were seeded at 1x10
6
 cells/ml in triplicate and the supernatants were 

collected at 24 hrs. Figure shows heatmap of the log2 concentration (pg/ml/1x10
6
 cells) of the 

secreted cytokines and chemokines. 
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Figure 17. CXCR2 ligand expression profile in KCY pancreas is similar to KPCY tumors. 

Heatmap of average CXCR2 ligand expression by YFP+ pancreatic and YFP- stromal cells in 4-6 

months old CY, PCY, and KCY mice (n = 3 per group). Gene expressions were measured by RT-

PCR and normalized to18S.  
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Figure 18. Inhibition of the KRAS/MEK pathway increases CXCL5 expression. 

(A) Fold change of Cxcl5 and Csf2 (GM-CSF) expression in 4662 PDA cells treated with 10µM 

U0126 (MEK inhibitor) compared to DMSO. Graphs show mean ± s.d. of 3 independent 

experiments. *, P ≤ 0.05; **, P ≤ 0.01 (unpaired t-test). (B) Fold change of Cxcl5 and Kras 

expression in Kras siRNA–treated compared to control siRNA–treated 4662 PDA cells. Graph 

shows mean ± s.d. of 3 independent experiments. ***, P ≤ 0.001; ****, P ≤ 0.0001 (unpaired t-

test). (C) Fold change of Cxcl5 and Yap1 expression in si-Yap1 treated compared to si-control 

treated 4662 PDA cells. Graph shows mean ± s.d. of 3 independent experiments. ****, P ≤ 0.0001 

(unpaired t-test).  
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Figure 19. CXCL5 level is not affected by inhibition of alternative downstream KRAS 

pathways. 

(A) CXCL5 protein level in the supernatant of 4662 PDA cells treated with DMSO control, 10µM 

U0126 (MEK inhibitor), or 20µM LY294002 (PI3K inhibitor) for 24 hours. Graph shows mean ± 

s.d. of 3 independent experiments.  **, P ≤ 0.01 (unpaired t-test). (B) CXCL5 protein level in the 

supernatant of 4662 PDA cells collected 72 hours after treatment with control siRNA compared to 

siRNA targeting RelA, RelB, Gsk3a, Gsk3b, and Tbk1. Graphs show mean ± s.d. of 3 

independent experiments. 
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Figure 20. MEK inhibition-induced elevation of CXCL5 expression is dependent on NF-κB 

activation. 

(A) CXCL5 protein level in the supernatant of 4662 PDA cells treated with the indicated 

combinations of DMSO control, 10ng/mL TNFα, 10µM U0126 (MEK inhibitor), or 20µM 

wedeloactone (NF-κB inhibitor). Graph shows mean ± s.d. of 3 independent experiments.  *, P ≤ 

0.05; **, P ≤ 0.01 (1-way ANOVA, Holm-Sidak’s multiple comparison test). (B) MotifMap 

prediction of transcription factor binding sites 1000bp upstream and downstream of the human 

CXCL5 gene (FDR ≤ 0.05).  
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Figure 21. Anti-CXCL5 treatment slows PDA tumor growth. 

(A) The KPC-derived PDA cell line 4662 was implanted subcutaneously in syngeneic WT mice. 

Mice were injected intraperitoneally with either 0.1mg anti-CXCL5 or 0.1mg isotype control every 

3 days for the duration of the experiment starting one day post implantation. Tumor growth was 

monitored with digital calipers. (B) 4662 PDA tumor growth in mice treated with isotype control 

(n=8) or anti-CXCL5 (n=10). Graph shows mean ± s.d. ****, P ≤ 0.0001 on day 21 (2-way ANOVA 

with column factor P value = 0.0007, Sidak’s multiple comparison test).  
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Figure 22. No changes in the tumor immune composition with anti-CXCL5 treatment. 

Flow cytometric measurement of the density of different immune populations in the tumors of 

isotype control or anti-CXCL5 treated mice (n=5/group). Graph shows mean ± s.d.  
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Figure 23. No changes in the splenic immune composition with anti-CXCL5 treatment. 

Flow cytometric measurement of the density of different immune populations in the spleens of 

isotype control or anti-CXCL5 treated mice (n=5/group). Graph shows mean ± s.d.  
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Figure 24. CXCR2 ablation slows tumor growth and prolongs survival. 

(A) 4662 PDA tumor growth in Cxcr2
–/–

 compared to Cxcr2
+/+

 littermates after subcutaneous 

implantation (n = 7 per group). Graph shows mean ± s.d. *, P ≤ 0.05 on day 21 (2-way ANOVA, 

Sidak’s multiple comparison test). (B) Kaplan-Meier survival analysis of Cxcr2
–/–

 (n = 6) compared 

to Cxcr2
+/+

 (n = 10) littermates subcutaneously implanted with 4662 PDA tumors. (P value = 

0.0119, log rank test). (C) Comparison of tumor weights and cell-density in Cxcr2
–/–

 compared to 

Cxcr2
+/+

 hosts on Day 10, 14, and 21 (n = 7 per group/day). Graph shows mean ± s.d. ***, P ≤ 

0.001 (2-way ANOVA, Sidak’s multiple comparison test).  
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Figure 25. CXCR2 ablation eliminates the accumulation of tumor-infiltrating neutrophils. 

Representative H&E (10x) and Ly6G-DAPI (10x) stain in Cxcr2
-/-

 compared to Cxcr2
+/+

 controls 

(n=8 per group).  
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Figure 26. Changes in the immune composition of tumors in Cxcr2
+/+

 and Cxcr2
-/-

 mice. 

Flow cytometric measurement of the density of CD11b
+
Ly6G

+
 TANs (A), CD11b

+
Ly6C

+
 

monocytes (B), CD3
+
 T cells (C), and F4/80

+
 macrophages (D) in the tumors of Cxcr2

-/-
 and 

Cxcr2
+/+

 littermates on Day 10, 14, and 21 (n=7/day/group). Graph shows mean ± s.d. *, P ≤ 0.05; 

**, P ≤ 0.01; ***, P<0.001 (2-way ANOVA, Sidak’s multiple comparison test).  
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Figure 27. Changes in the splenic immune composition of tumor-bearing Cxcr2
+/+

 and 

Cxcr2
-/-

 mice. 

The percentage of CD11b
+
Ly6G

+
 TANs (A), CD11b

+
Ly6C

+
 monocytes (B), CD3

+
 T cells (C), and 

F4/80
+
 macrophages (D) in the spleens of Cxcr2

-/-
 and Cxcr2

+/+
 littermates on Day 10, 14, and 21 

post tumor implantation (n=7/day/group). Graph shows mean ± s.d. *, P ≤ 0.05; **, P ≤ 0.01 (2-

way ANOVA, Sidak’s multiple comparison test).  
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Figure 28. Increased density of activated CD4
+
 T cells in tumors of Cxcr2

-/-
 mice. 

Cxcr2
-/-

 and Cxcr2
+/+

 mice were subcutaneously implanted with the 4662 cell line and sacrificed at 

4 weeks (n=8 per group). (A) Densities of tumor-infiltration CD4
+
 and CD8

+
 T cells. (B) Densities 

of CD44
hi
CD62L

+
 memory, CD44

hi
CD62L

-
 effector, and CD44

lo
CD62L

+
 or CD44

lo
CD62L

-
 naïve 

CD4
+
 or CD8

+
 T cells. Graphs show mean ± s.d. *, P < 0.05; ***, P < 0.001 (unpaired t-test).  
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Figure 29. Increased ratios of activated T cells to immunosuppressive populations in 

tumors of Cxcr2
-/-

 mice. 

Cxcr2
-/-

 and Cxcr2
+/+

 mice were subcutaneously implanted with the 4662 cell line and sacrificed at 

4 weeks (n=8 per group). (A) Densities of CD4
+
FOXP3

+
 Tregs and CD11b

+
Ly6G

+
 tumor-

associated neutrophils. (B) Ratios of the densities of CD4
+
CD44

hi
 or CD8

+
 effector T cells to the 

densities of CD4
+
FOXP3

+
 Tregs or CD11b

+
Ly6G

+
 TANs. Graphs show mean ± s.d. *, P < 0.05; 

**, P < 0.01; ***, P < 0.001 (unpaired t-test).  
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Figure 30. Increased IFNγ and IL17 secretion in tumor-infiltrating T cells in Cxcr2
-/-

 mice. 

Cxcr2
-/-

 and Cxcr2
+/+

 mice were subcutaneously implanted with the 4662 cell line and sacrificed at 

4 weeks (n=8 per group). The percentage of CD44
hi
 activated or CD44

lo
 naïve CD4

+
 or CD8

+
 T 

cells that expresses IFNγ (A) or IL17 (B) after ex vivo stimulation with PMA/ionomycin for 5 hours 

at 37°C. Graphs show mean ± s.d. *, P < 0.05; **, P < 0.01; ***, P < 0.001 (unpaired t-test).  
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Figure 31. Depletion of T cells rescues tumor growth in Cxcr2
-/-

 mice. 

(A) 4662 PDA tumor growth in Cxcr2
–/–

 and Cxcr2
+/+

 mice treated with 0.2mg anti-CD4/anti-CD8 

depleting antibodies or 0.2mg isotype every three days intraperitoneally (n ≥ 7 per group). Graph 

shows mean ± s.e.m. ***, P ≤ 0.001 on Day 23 (2-way ANOVA with column factor P value = 

0.0277, Sidak’s multiple comparison test). (B) Kaplan-Meier survival analysis of Cxcr2
–/–

 (n = 6) 

compared to Cxcr2
+/+

 (n = 10) littermates subcutaneously implanted with 4662 PDA tumors and 

treated with anti-CD4/anti-CD8 antibodies or isotype controls . (P value = 0.0038, log rank test).  
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Figure 32. Additive response to chemo-agonistic CD40 therapy with CXCR2 ablation. 

4662 PDA tumor growth in Cxcr2
–/–

 and Cxcr2
+/+

 mice treated with gemcitabine/nab-

paclitaxol/anti-CD40 or PBS/human-albumin/isotype IgG2a intraperitoneally (n ≥ 7 per group). 

Graph shows mean ± s.e.m. *, P  ≤ 0.05;  ****, P ≤ 0.0001 (2-way ANOVA with column factor P 

value = 0.001, Sidak’s multiple comparison test).  
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Figure 33. Summary of tumor-neutrophil interactions in PDA. 

Kras
G12D

 expressing PDA tumor cells with activated NF-κB secrete CXCR2 ligands, especially 

CXCL5, which recruit neutrophils to the tumor microenvironment. These tumor-associated 

neutrophils are then responsible for suppressing effector T cells, thus preventing an anti-tumor 

response.  
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CHAPTER 4: Cytokine networks underlying cytolytic activity in pancreatic cancer. 

 

* The results described in this chapter are described in a manuscript currently in preparation:  

T. Chao and R.H. Vonderheide. “In silico reconstruction and comparison of cytokine networks in 

pancreatic ductal adenocarcinomas with high and low cytolytic activity.” In preparation. 

 

INTRODUCTION 

 Treatment for pancreatic ductal adenocarcinoma (PDA) has displayed some progress in 

the past two decades, nearly doubling the 5-year overall survival rate from merely 4.4% in 1998 

to 8.5% in 2016 (Siegel et al., 2017). Despite these advances, PDA remains one of the most 

lethal malignancies and is projected to become the second leading cause of cancer-related 

mortality in the United States by 2030 (Rahib et al., 2014). Immune checkpoint blockade has 

recently been demonstrated to be efficacious in a variety of solid tumors (Pardoll, 2012). 

However, very few PDA patients seemed to benefit from checkpoint blockade alone (Royal et al., 

2010; Brahmer et al., 2012). The highly desmoplastic and immunosuppressive microenvironment 

of PDA is thought to contribute to its high rate of resistance. In fact, multiple studies have now 

demonstrated that targeting specific components of the microenvironment can sensitize PDA to 

existing therapies (Beatty et al., 2013; Feig et al., 2013; Winograd et al., 2015; Byrne and 

Vonderheide, 2016; Jiang et al., 2016; Nywening et al., 2016). Therefore, efforts to accelerate 

target selection in the PDA tumor microenvironment are urgently needed.  

 One major determinant of survival and response to therapy is the presence of cytotoxic 

immune cells in the tumor microenvironment (Pagès et al., 2010). The anti-tumor effect of these 

cytotoxic cells is largely attributed to their potent cytolytic activity. Total mutation and neoepitope 

burdens have been shown to correlate with both infiltration of cytotoxic CD8
+
 T cells and cytolytic 

activity in various cancers (Rooney et al., 2015). However, we have previously found that 

mutational burden did not correlate with cytolytic activity in human PDA (Balli et al., 2016). This 

suggests that other factors in the microenvironment are also important in regulating the activity of 
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cytotoxic cells. Several immune cell types, especially the myeloid populations, have already been 

shown to be immunosuppressive in PDA (Bayne et al., 2012; Beatty et al., 2013; Chao et al., 

2016; Nywening et al., 2016; Steele et al., 2016). Although the individual effects of some 

components have been demonstrated, how the complex network of immune and cytokine 

interactions result in microenvironments that are permissive or suppressive to cytotoxic cells 

remains poorly understood. We propose that such a network-based approach is necessary to 

understand the complexities of the tumor immune responses. Furthermore, analysis of these 

cytokine networks can help highlight target candidates that most effectively disrupt the 

immunosuppressive microenvironment. 

Recent analyses of whole tumor RNA expression data using gene signatures have led to 

characterizations of tumor immune infiltrates with high resolution (Bindea et al., 2013; Gentles et 

al., 2015; Newman et al., 2015; Rooney et al., 2015; Charoentong et al., 2017). In these studies, 

cytotoxic immune infiltration is often associated with enhanced survival, mutations associated 

with loss of antigen presentation or resistance to apoptosis, and up-regulation of immune-

checkpoint molecules. Furthermore, gene correlation networks have proven to be useful in 

providing de novo insights to the underlying pathways in various diseases, including cancer ( 

(Miller et al., 2008; Yang et al., 2014; Bailey et al., 2016; Iyer et al., 2017). Here, we applied these 

techniques to infer and characterize cytokine networks in human PDA using RNA sequencing 

data available in The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Research Network et 

al., 2013). In addition, we demonstrate that concepts from social network theory could be applied 

to cytokine networks to aid in the discovery of the most influenced or influential players (Marsden, 

2002; Friedkin, 2015). We found that cytolytic activity corresponds with increased cytotoxic 

immune infiltration and survival in PDA. We further discovered that different immune populations 

and cytokines are enriched in tumors with high and low cytolytic activity. Differential correlation 

analysis provided evidence that immune cell recruitment, activation, and function vary according 

to the level of cytolytic activity. Finally, correlation network analysis showed that the most the 

most influential immune populations and cytokines are also different in tumors with high and low 
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cytolytic activity. By comparing immune-cytokine networks of cytolytically high and low tumors, 

our study provided novel targets, such as CLEC11A and TNFSF14/LIGHT, that may effectively 

disrupt the immunosuppressive network or promote anti-tumor cytolytic activity in PDA. 

 

RESULTS 

Cytolytic activity correlates with increased survival in PDA.  

 The cytolytic activity of effector immune cells is critical for their ability to suppress tumor 

growth and prolong survival (Shankaran et al., 2001). To explore the relative expression of 

cytolytic activity in the 134 primary PDA tumors available in TCGA, gene set variation analysis 

(GSVA) was performed using two previously defined signatures consisting of genes that define 

the cytolytic activity of effector CD8+ T cells or genes shared between all cytotoxic immune cells 

(Bindea et al., 2013; Rooney et al., 2015). Hierarchal clustering of the PDA samples using these 

two signatures resulted in a group that has relatively high scores in both signatures (cytolytically 

“hot” tumors) and a group that has low scores in both signatures (cytolytically “cold” tumors) 

(Figure 34A). More precisely, groups were defined using K-means clustering of all samples into 4 

groups. The group associated with the highest expression of the cytolytic and cytotoxic signatures 

was labeled as cytolytically “hot” tumors. Because their expression levels were highly similar, the 

two groups associated with the lowest expression were combined into one larger group and 

labeled as cytolytically “cold” tumors.  

 Given that increased cytolytic activity in tumors was correlated with survival in many other 

cancers, we hypothesized that this is also the case in PDA (Rooney et al., 2015). In support of 

our hypothesis, PDA patients with cytolytically hot tumors have significantly enhanced, though 

modest, survival benefit compared to those with cold tumors (Figure 34B). Given that patients 

with cytolytically hot and cold tumors have slightly different clinical characteristics, the observed 

survival benefit may have been confounded by these clinical factors (Figure 35A). Using Cox 

multiple regression, we analyzed the survival benefit of grouping by cytolytic activity, stage, age, 

and sex (Figure 35B). Patients with cytolytically hot tumors retained their survival advantage even 
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when taking into account these clinical factors. Therefore, our results highlight the clinical 

significance of cytolytic activity in PDA. 

 

Immune populations enriched and correlated with survival. 

 The interactions of immune populations in the tumor microenvironment play an important 

role in regulating the development and activity of cytotoxic effector cells. To estimate the relative 

abundance of immune populations in cytolytically hot and cold PDA, we performed GSVA using 

52 previously defined gene signatures that uniquely identify immune populations from three 

different databases (Bindea et al., 2013; Newman et al., 2015; Rooney et al., 2015). Hierarchal 

clustering showed that gene signatures of the same immune population but acquired from 

different databases tend to cluster together (Figure 36). For example, the macrophage signature 

derived from the immunonome (IM-Macrophages), CIBERSORT leukocyte matrix (LM22-M0), 

and FANTOM Consortium (F5-Macrophages) were all directly adjacent with each other.  

Therefore, gene signatures of the same immune population are generally consistent with each 

other. Clustering the 134 samples by the 52 gene signatures resulted in a near complete 

separation of cytolytically hot and cold tumors (Figure 36). Indeed, 46 of the 52 immune gene 

signatures were significantly altered between hot and cold tumors (Figure 37A). With the 

exception of two immune populations, the vast majority of the differentially expressed gene 

signatures (44 of 46) were enriched in cytolytically hot tumors. Consistent with the fact that the 

cytolytic signatures were derived in part from activated CD8
+
 T cells, the most significantly 

enriched populations in cytolytically hot tumors were the two CD8
+
 T cell signatures. Increase in 

CD8
+
 T cells was accompanied by the enrichment of a variety of other immune populations, 

including professional antigen-presenting cells (APCs) and regulatory CD4
+
 T cells (Treg). This 

result suggested that enrichment of CD8
+ 

T cells and cytolytic activity did not occur in isolation, 

but rather occurred as part of a larger immune response.  

 To discover which immune populations may have an effect on overall survival, Cox 

regression analysis was performed for each immune signature using samples from all, hot, or 
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cold tumors (Figure 37B). Using all the samples, we found that 16 immune signatures have 

significant positive protective ratios, including CD8
+ 

T cells. The cell types with the highest 

protective ratios are effector memory (Tem) and follicular-helper (Tfh) CD4
+
 T cells. Consistent 

with the co-enrichment of these populations in hot tumors, some classically immunosuppressive 

populations, such as Treg, were also found to have positive protective ratios in cytolytically hot 

tumors. Rather than being beneficial, the presence of these cell types might indicate increased 

counter-measures in response to enhanced cytolytic activity. Therefore, it is possible that the 

presence of immunosuppressive populations could serve as a gauge for the intensity of cytolytic 

activity in the tumor, depending on their mechanism of immunosuppression.  

In contrast, activated memory (CD4m-act) and type 2 helper CD4
+
 T cells (Th2) were 

both negatively correlated with survival in at least 2 of the populations (Figure 37B). In addition, 

an activated NK (NK-act) population and CD56-bright NK (NK-CD56bright) cells were also 

negatively correlated with survival, in cold and hot tumors respectively. CD4m-act and NK-

CD56bright cells were both significantly enriched in cytolytically cold tumors (Figure 37A). These 

results suggested that specific subsets of CD4
+
 T cells and NK cells might be antagonistic to 

cytotoxic immune responses and adversely affecting survival.  

 

Immune networks in hot and cold tumors. 

 From the analyses above, 47 immune signatures were either differentially enriched or 

impacted survival in PDA. To investigate potential relationships among these relevant 

populations, correlations between all possible pairs of immune cell types were calculated in each 

of 1000 bootstrapped populations using all, only hot, or only cold samples. Hierarchal clustering 

of the averaged correlations showed that signatures belonging to the same immune population 

grouped together even though they were derived from different sources (Figures 38A-C). This 

demonstrated that signatures of the same immune cell type are not only consistent with each 

other as mentioned before, but they also relate with other immune signatures in a similar manner. 

The vast majority of immune populations were positively correlated with each other (Figure 38A). 
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Also consistent with the results above, NK-CD56bright and CD4m-act signatures were both 

broadly and negatively correlated with many other immune populations, which included at least 

one of the CD8
+
 T cell signatures. Therefore, these two cell types might be antagonistic to the 

presence of cytotoxic CD8
+
 T cells in the tumor microenvironment.   

 In support of the hypothesis that immune populations behave differently between the two 

groups, we found that immune populations formed different clusters in hot and cold tumors 

(Figures 38B-C). For instance, CD8
+
 T cells, CD4

+
 Tem cells, Tfh cells, B cells, and plasmacytoid 

dendritic cells (pDCs) clustered together only in cytolytically hot tumors. The CD4m-act signature 

was positively correlated with the Th2 population only in cytolytically cold tumors. These 

clustering differences may be indicative of changes in the behavior of immune populations 

between these two groups. Of the 1081 possible pair-wise immune-immune correlations, we 

found that 287 (27%) correlations were significantly altered. This result suggested that a portion 

of immune populations relate to others in a significantly different way in cytolytically hot compared 

to cold tumors. To further select the most altered relationships, we found that only 10 of these 

287 correlations changed by an absolute value of over 0.7 between the averaged correlation of 

hot and cold tumors (Figure 39A). Using only these 10 correlations as input variables, a random 

forest model was built to classify the cytolytic status of each bootstrapped population. The 

importance of each correlation was quantified using both variable importance (vimp) and minimal 

depth scores (Figures 39B-C). Although not significantly more important than the other input 

variables, the correlation between NK and Tfh cells was ranked first in both measures (Figures 

39B-C). In fact, six of the ten most altered correlations involved this NK cell signature switching 

from being generally negatively correlated in cold tumors to being positively correlated with 

various immune populations in hot tumors (Figure 39A). This result suggested that that NK cells 

might have different functions or activation status in hot and cold tumors. 

The correlation between a B cell signature and a memory B cell (Bm) signature ranked as 

the second most important variable in the random forest model (Figures 39B-C). Furthermore, we 

observed that the same B cell signature changed from being more correlated with the naïve B 
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cells (Bn) in cold tumors to being strongly correlated with the Bm cells in hot tumors, which is 

suggestive of B cell activation (Figures 38B-C). The co-enrichment of Tfh signatures and increase 

in their positive correlations with the Bm signature in hot tumors lend further support to this 

hypothesis.  Altogether, our results suggested that certain immune populations, especially Bm 

and NK cells, might behave differently in cytolytically hot compared to cold tumors.          

 

Cytokines correlation with immune populations in hot and cold tumors.  

 Cytokines constitute a major avenue of communication among immune cells, regulating a 

large variety of their biological processes including proliferation, differentiation, and function. 

Clustering the 134 PDA samples by 255 expressed cytokines showed that cytolytically hot tumors 

tend to group together, suggesting that these tumors have a similar cytokine milieu (Figure 40A). 

Further analyses showed that 40 cytokines were differentially expressed with over 2-fold 

difference between the mean expressions in cytolytically hot and cold tumors (Figure 40B). The 

top three most differentially elevated cytokines in hot tumors, CXCL13, CCL19, and CCL21, 

which are all important for B cell recruitment (Okada et al., 2002). In addition, CCL19 and CCL21 

are both known for their role in recruiting CCR7
+
 T cells and dendritic cells to lymphoid structures 

(Andrian and Mempel, 2003). The enrichment of these cytokines is, therefore, consistent with the 

enrichment of Bm cells, T cells, and dendritic cells in cytolytically hot tumors.  

To identify relationships between immune populations and cytokines, immune signature 

scores were correlated with cytokine expression in each of the 1,000 bootstrapped populations 

using all, hot, or cold tumor samples (Figure 41). Many of these connections, such as the 

correlations between neutrophils and CXCR2 ligands, B cells and CXCL13, and Treg and CCL22, 

have already been documented in the context of various cancers (Curiel et al., 2004; Chao et al., 

2016; Lee et al., 2016; Steele et al., 2016; Gu-Trantien et al., 2017). Other correlations, such as 

those between CD40LG and CD8
+
 T cells, reflected indirect relationships that have also been 

shown in the context of PDA (Byrne and Vonderheide, 2016). However, there were many other 

correlations suggestive of relationships yet to be explored, such as between CLEC11A and NK 
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cells and macrophages. In addition, four cytokines, TFF1, GDF15, ADM (adrenomedullin), and 

MIF, were both significantly enriched in cytolytically cold tumors and negatively correlated with 

many immune cell types, including CD8
+
 T cells (Figures 40B, 41A-C).  

Hierarchal clustering of these immune-cytokine correlations revealed groups of immune 

populations very similar to those groups observed when immune signatures were correlated 

amongst themselves (Figures 38 and 41). The groups of immune populations further clustered 

with different cytokines, which is reflective of the specificity of immune-cytokine relations. Instead 

of being immunologically silent, cold tumors actually have an extensive cytokine network (Figures 

41B-C). Because cytokine expression is reflective of the status of immune cell activation and 

function, we hypothesize that the strength of immune-cytokine correlations will change 

significantly depending on their activation. For instance, we would expect enhanced correlations 

of T cells or NK cells with certain cytokines, such as IFNγ, to reflect their activation in cytolytically 

hot tumors. To test these hypotheses, we compared immune-cytokine correlations in cytolytically 

hot and cold bootstrapped populations. Of the 11,985 possible pair-wise immune-cytokine 

correlations, we found that 2103 (17%) were significantly altered in hot and cold tumors. Only 26 

of these correlations changed by an absolute value of over 0.7 between the averaged correlations 

of hot and cold tumors (Figure 42A). In congruence with our observations above, many of these 

top correlations that were increased in hot tumors involved NK cells and Bm cells. The increased 

correlations between TNFSF14/LIGHT and two CD4
+
 T cell types (T helper and Tcm) further 

suggest that these T cell populations are more activated in hot tumors. Therefore, changes in the 

strength of immune-cytokine correlations could indeed reflect with the activation and functional 

status of immune populations.  

A random forest model using the top 26 correlations as input variables was constructed 

to classify the cytolytic status of each bootstrapped population. The top 2 variables in the model 

involved two cytokines, IL24 and IL33, and their correlations with Bm cells (Figures 42B and 

42C). In addition, the correlation between CCL5 and NK cells ranked third, suggesting that this 

cytokine might be important for NK cells in hot tumors. Therefore, our results highlighted the 
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activation of Bm and NK cells in cytolytically hot as compared to cold tumors. Altogether, these 

results were highly congruent with our findings above.    

   

Cytokine and immune communities in hot and cold tumors. 

 To visualize all immune-cytokine connections simultaneously, network graphs were made 

using only significant (FDR-adjusted, empirical P-value ≤ 0.05) and moderately strong (rho ≥ 0.4) 

immune-cytokine correlations as edges between nodes in all, hot, and cold tumor samples 

(Figures 43, 47, and 52). Here we define a “cytokine network” as the network of all immune-

cytokine connections in a population. Nodes, which could be either immune populations or 

cytokines, were arranged such that those with more frequent and stronger connections clustered 

closer together.  The thickness and color of each edge was directly proportional to the absolutely 

value of the correlation and to the sign of the correlation (positive is red and negative is blue), 

respectively. A fast-greedy algorithm was used to detect communities, which are defined as 

groups of nodes that share more connections within the group than with those outside the group 

(Figures 44-46, 48-51, and 53-57). The color of each node corresponded to the community it 

belonged to in the overall network, which was carried through to the hot and cold network graphs 

(Figures 44-46). This coloring scheme provided a convenient method to compare the connectivity 

of the same node in the different networks.   

 There were two major communities, colored with orange and light blue nodes, observed 

in the overall network (Figures 44 and 45).  The orange community consisted primarily of myeloid 

lineage cells, such as macrophages, neutrophils, immature DCs, and subsets of NK cells (Figure 

44). The second, light blue community consisted of a variety of cells types, including those that 

are often found in lymphoid structures such as Tfh cells, B cells, and pDCs (Figure 45). While the 

orange community was present in both hot and cold tumors (Figures 48, 53-55), the light blue 

community was much more prominent in the cytolytically hot network (Figures 49 and 54). 

Indeed, the IM-CD8
+
 T cell population, which belonged to the orange community, even became 

part of the light blue community in cytolytically hot tumors (Figure 49). In this community, CD8
+
 T 
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cells were connected to pDCs through their mutual positive correlations with XCL2, which is 

highly reminiscent of a recently described cytokine network in the context of viral infections 

(Brewitz et al., 2017). In contrast, this same CD8
+
 T cell population was grouped in a community 

with CD56
bright

 NK cells and Th2 CD4
+
 T cells in the cold network (Figure 55). These results 

suggested that the at least a part of the orange community may be associated with the 

maintenance of an immunosuppressive environment, while part of the light blue community may 

be more involved with the presence of cytolytic immune response. More detailed examination of 

these communities may yield additional insights to the specific immune-cytokine relationships 

governing these cytokine networks.  

 

Influential immune populations differ in hot and cold cytokine networks.  

 To quantify the relative influence of each immune population in a network, the normalized 

degree and eigenvector centrality for each node was calculated in the overall, hot, and cold 

networks of each bootstrapped population (Csardi and Nepusz, 2006; Perra and Fortunato, 

2008). Degree centrality measures the influence of each immune population by the number of 

cytokines it is correlated to and the strength of those correlations. On the other hand, the 

eigenvector centrality measures influence based on the concept that connections with well-

connected nodes should weigh more than connections with less connected nodes. Therefore, a 

connection with a well-connected cytokine would increase the eigenvector centrality of a node 

more than a connection with a less connected cytokine. Because these inferred cytokine 

networks are non-directional, high centrality values may imply that a node is either highly 

influential or influenced. For the sake of brevity, we will use the terms “influence” or “influential” to 

refer to both of these possibilities. Hierarchal clustering of immune cells by their degree and 

eigenvector centrality revealed groups of immune populations that have similar patterns of 

influence in hot and cold tumors (Figures 58A-B). For instance, the influence of M0 macrophages 

decreased significantly from cold to hot tumors according to both centrality measures. On the 
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other hand, the influence of CD8
+
 T cells, Tfh cells, and B cells increased dramatically from cold 

to hot tumors.  

To find immune cell types with significantly altered influence, we compared the degree 

and eigenvector centralities of each immune population in hot and cold networks. Considering 

only degree centrality, we found that 14 (30%) of the 47 immune populations have significantly 

altered influence in hot compared to cold tumors (Figure 59A). Variable selection using random 

forest analyses showed that the decrease in macrophage degree centrality from cold to hot 

tumors was the most distinguishing between hot and cold cytokine networks (Figures 59B-C). M0 

macrophages also have the highest degree and eigenvector centrality in the cold cytokine 

network (Figures 58A-B). The other top variables consisted of increases in the centralities of B 

cells, CD8
+
 T cells, and memory CD4

+
 T cells (CD4m-act and CD4m-rest) in hot networks. 

Importantly, these five immune populations were significantly more important than the others in 

the random forest model in distinguishing hot from cold networks.   

Similar analyses considering only eigenvector centrality showed that 24 (51%) immune 

populations have significantly altered influence in hot and cold tumors (Figure 60A). Random 

forest analysis of these 24 immune populations selected the increases in the eigenvector 

centralities of CD4m-rest, generic B cells, Bm cells, and Tfh cells as the top variables (Figures 

60B-C). M0 macrophages were again selected as the only population among the top variables 

with decreased centrality from cold to hot tumors. Altogether, this analysis showed a significant 

decrease in the influence of M0 macrophages and increase in the influence of CD8
+
 T cells, Tfh 

cells, memory CD4 cells, and B cells in hot compared to cold cytokine networks.  

 

Cytokine influence differs in hot and cold cytokine networks.  

 The degree and eigenvector centralities were also calculated for each cytokine in the 

overall, hot, and cold cytokine network. The degree and eigenvector centralities of cytokines 

quantified the influence of cytokines by their connections with immune populations as described 

above. Similar to immune populations, hierarchal clustering of cytokines by their degree and 
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eigenvector centralities showed that groups of cytokines with similar changes between hot and 

cold networks (Figures 61A-B). Different groups of cytokines were important in hot and cold 

tumors, which suggested again that these tumors have very different cytokine milieu.  

 To determine which of the cytokines were most significantly altered in their influence, we 

compared the distribution of the degree and eigenvector centralities of each cytokine in hot and 

cold networks.  We found that 53 of 255 (21%) cytokines were significantly altered in degree 

centrality and 89 (35%) cytokines in eigenvector centrality (Figures 62A and 63A). The majority of 

them, 48 cytokines, were significantly changed by both measures. The cytokines with the most 

increased centrality in hot tumors included CCL21, CCL19, CXCL13, and LTB, which again 

suggested the presence of lymphoid structures (Rennert et al., 1998; Andrian and Mempel, 

2003). In addition, the increase in the centralities of TNFSF14 (LIGHT) and CD40LG were 

indicative of T cell activation (Bennett et al., 1998; Tamada et al., 2002a). To identify the most 

distinguishing features of hot and cold networks, two random forest models were constructed to 

classify hot and cold networks based on significantly changed degree and eigenvector centralities 

respectively (Figures 62B-C and 63B-C). The top two variables in the model were the centralities 

of CLEC11A and CCL13, both of which had higher centralities in the cold cytokine network. 

Furthermore, both of these cytokines were found in the likely immunosuppressive orange 

community. The next two variables were the centralities of IL24 and TNFSF14/LIGHT, both of 

which had higher centralities in the hot cytokine network and belong to the lymphoid structure-

like, light blue community. 

     

DISCUSSION AND CONCLUSIONS 

Infiltration of cytotoxic immune cells, particularly of CD8
+
 T cells, has been associated 

with improved survival in many cancers, including PDA (Pagès et al., 2010; Gentles et al., 2015; 

Wang et al., 2016; Carstens et al., 2017). Using gene expression data from TCGA, we have 

previously shown that a subset of PDA has increased infiltration of CD8
+
 T cells and cytolytic 

activity (Balli et al., 2016). Unlike melanoma, high cytolytic activity did not correlate with increased 
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mutational burden in PDA (Rooney et al., 2015; Balli et al., 2016). This result suggested that 

other factors in the tumor microenvironment are likely involved. The immune infiltration and 

cytokine milieu are important aspects of the tumor microenvironment that could regulate the 

development and activity of effector immune cells. Here we aimed to characterize the cytokine 

networks underlying high and low cytolytic activity in PDA. We report: (1) PDA patients with 

cytolytically hot tumors have a survival advantage; (2) The CD4
+
 Tem and Tfh signatures have 

the highest protective ratios, while Th2 and CD4m-act signatures have the most negative; (3) 

Expression of CD4m-act signature, NK-CD56bright signature, TFF1, GDF15/MIC-1, ADM, and 

MIF were significantly higher in cold tumors and also negatively correlated with many immune 

signatures, including CD8
+
 T cells; (4) Strong correlations between NK cells-CCL5, Bm-CCL21, 

and Bm-CXCL13 in hot tumors were among the most distinguishing relationships of hot and cold 

tumors; (5) Macrophages constitute the most influential population in the cytokine network of cold 

tumors, while CD8, memory CD4, Tfh, and B cells were among the most influential populations in 

hot tumors; (6) TNFSF14/LIGHT and IL24 were the most influential cytokines in hot tumors, while 

CLEC11A was the most influential in cold tumors. Altogether, our analysis confirmed many 

previous reports, a reassuring “positive control” for our methodology, and simultaneously 

revealed a number of novel targets that may be regulating cytolytic activity in PDA. 

Expression of cytolytic genes in the tumor has been largely attributed to effector CD8
+
 T 

cells (Rooney et al., 2015). Using a combination of IHC and flow cytometry, Carstens et al. 

showed that infiltration of CD8
+
 T cells and effector CD4

+
 T cells were both significant indicators 

of prolonged survival in PDA (Carstens et al., 2017). An independent analysis of TCGA data by 

Charoentong et al. demonstrated that infiltration of activated CD8
+
 T cells and CD4

+
 Tem cells 

were both independently linked to lower hazard ratios in PDA (Charoentong et al., 2017). Similar 

to these reports, our results showed that PDA tumors with increased expression of cytolytic 

activity also have improved survival, along with enrichment of CD8
+
 T cell and CD4

+
 Tem cells. In 

fact, CD4
+
 Tem cells have the highest protective ratio among all the immune signatures. 

However, very little is known about CD4
+
 Tem cells in the context of cancer. Compared to primary 
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effector cells, memory effector CD4
+
 cells respond to lower levels of antigens, express stimulatory 

cytokines without need for APCs, and are highly resistant to tolerance induction (London et al., 

2000). Furthermore, an early study showed that a persistent CD4
+
 T cell population (likely 

consisting of CD4
+
 Tem cells) was required for the maintenance of cytotoxic CD8

+
 T cell-

mediated control of chronic lymphocytic choriomeningitis virus (LCMV) infection in mice 

(Matloubian et al., 1994). While much focus has been laid on CD8
+
 T cells, the potential roles of 

CD4
+
 Tem populations in cancer remain unclear. Our results support the hypothesis that CD4

+
 

Tem cells may be an important population in promoting cytolytic activity and survival in PDA.  

The Th2 and CD4m-act signatures were both associated with negative protective ratios. 

In fact, the CD4m-act signature was negatively associated with survival in all three PDA cohorts, 

significantly enriched in cytolytically cold PDA tumors, and negatively correlated with CD8
+
 cells. 

This was in congruence with results from the study by Charoentong et al. where higher 

expression of Th2, activated CD4, and central memory CD4 signatures were associated with 

positive hazard ratios (Charoentong et al., 2017). While the identity of the CD4m-act population 

remained uncertain, we note that it was positively correlated with the Th2 signature in the overall 

and in the cold groups, and negatively correlated with many other T cell signatures including 

Tregs in the same groups. Therefore, the CD4m-act and Th2 populations may represent similar, if 

not the same, populations. Cytokines, such as IL-4, that can induce and then be secreted by 

CD4
+
 Th2 cells can antagonize the polarization of Th1 cells and the development of cellular 

immunity (Parronchi et al., 1992). In fact, the selective inhibition of Th2 CD4
+
 T cells (via IL-4 

neutralization) was recently shown to improve responses to radiotherapy in a model of mammary 

cancer (Shaio et al., 2015). Polarization of Th2 CD4
+
 cells has been shown to depend on a 

combination of various factors: the source and processing of the antigen, TLR4 activation, 

cytokines (TSLP, IL25, and IL33), and relatively weak TCR stimulation (Oliphant et al., 2011). In 

support of the hypothesis that Th2 cells may be present, our results showed that IL33 was highly 

expressed in all PDA tumors. Whether Th2 polarization is favored in the context of PDA remains 
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to be determined.  Altogether, these results suggest that at least a subset of CD4
+
 T cells, likely 

of Th2 polarization, in the tumor microenvironment was detrimental to survival. 

Similar to CD4m-act cells, NK-CD56bright cells was also enriched in cytolytically cold 

tumors, negatively correlated with survival in hot tumors, and also negatively correlated with 

many other immune populations including CD8
+
 T cells. Although they constitute only a minority 

in circulation, CD56-bright NK cells constitute a major component of NK cells found in tissues and 

lymphoid organs (Cooper et al., 2001a). Upon activation, these cells become potent secretors of 

a variety of cytokines, particularly of type I interferons (IFN-α/β) (Cooper et al., 2001b). In the 

context of autoimmune diseases and chronic viral infections, activated CD56-bright NK cells were 

shown to be suppressive or even cytotoxic toward proliferating CD4
+
 T cells, which served to 

protect tissues against excessive T cell-mediated damage (Nielsen et al., 2012; Morandi et al., 

2015). In fact, CD56-bright NK cells were the primary mediators of the therapeutic effect of 

daclizumab (anti-IL2R) in multiple sclerosis (Bielekova et al., 2006). In the context of cancer, 

however, the regulatory function of these NK cells could be detrimental to the development of 

anti-tumor T cells. Therefore, a subset of NK cells could be contributing to the 

immunosuppressive environment in human PDA.    

Multiple studies have now detailed the different genomic landscapes and molecular 

pathways associated with PDA tumors with high and low CD8
+
 T cells infiltration (Bailey et al., 

2016; Balli et al., 2016; Charoentong et al., 2017). Here our analysis showed that there are also 

substantial differences in the cytokine networks underlying cytolytically hot and cold tumors. Most 

immune cell populations, particularly CD8
+
 T cells and various populations of DCs, were 

significantly enriched in cytolytically hot tumors. This was accompanied by the enrichment of 

many cytokines, including those associated with activated DC such as CXCL9, CXCL10, and 

XCL2 (Padovan et al., 2002; Brewitz et al., 2017). The three most significantly enriched cytokines 

in hot tumors, CXCL13, CCL19, and CCL21, are known for their ability to recruit either B cells or 

CCR7
+
 T cells and APCs to lymphoid structures (Okada et al., 2002; Andrian and Mempel, 2003). 

This suggested that intratumoral or peritumoral lymphoid structures are more likely to be found in 
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cytolytically hot tumors and may be important in orchestrating the development of anti-tumor 

immunity. In support of this hypothesis, presence of intratumoral tertiary lymphoid structures 

(TLS) have been associated with increased infiltration of effector lymphocytes and improved 

survival in an independent cohort of human PDA patients (Hiraoka et al., 2015). In addition, 

intratumoral or peritumoral TLSs were significantly enriched in patients who responded to 

vaccine-based immunotherapies in PDA (Lutz et al., 2014; Le et al., 2015; Byrne and 

Vonderheide, 2016). Accumulating evidence such as these have led to the hypothesis that TLSs 

are important for orchestrating anti-tumor immunity (Dieu-Nosjean et al., 2014). Although tumor 

samples could be contaminated by lymph nodes, this would imply that cytolytically hot tumors 

were preferentially contaminated or overlooked in quality checks by TCGA pathologists. Future 

histological studies are required to confirm the enrichment of TLSs and distinguish them from 

lymph node contamination. In contrast, only four cytokines, TFF1, GDF15/MIC-1, MIF, and ADM, 

were significantly enriched in cold tumors by more than two fold. Interestingly, all four of these 

cytokines have been reported to be either a prognostic marker or directly pro-tumorigenic in 

pancreatic cancer (Ramachandran et al., 2007; Arumugam et al., 2011; Aggarwal et al., 2012; 

Funamizu et al., 2013; Wang et al., 2014; Yang et al., 2016a). In fact, anti- MIF therapy even 

displayed anti-tumor activity in an early phase clinical trial (Mahalingam et al., 2016). However, 

rather less is known about their role in regulating tumor-associated immune cells.  

Given their vastly different immune infiltration, we next hypothesized that the immune-

immune and immune-cytokine relationships should also be significantly altered in cytolytically hot 

and cold tumors. Using correlations to quantify the strength of relationships among immune 

populations and cytokines, we found that a substantial percentage of correlations (~20-30%) 

were indeed significantly altered between the two groups. Increased correlations of a NK cell 

signature with other immune populations and cytokines in hot tumors emerged as the most 

altered relationships. In particular, the increased strength of correlations between NK cells-CCL5 

and NK cells-CCL4 suggested that some NK cells have augmented cytotoxic activity in 

cytolytically hot tumors (Robertson, 2002). NK cells are increasingly recognized as important 
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mediators of anti-tumor cytotoxicity (Guillerey et al., 2016). A recent study even showed that NK 

cells and antigen-specific CD4
+
 T cells were critical for mediating TLR7/8 agonist-induced in vivo 

regression of MHC-I
low

 melanomas, while CD8
+
 T cells were dispensable (Doorduijn et al., 2017). 

Given the paucity of neoepitopes and dysfunctional antigen presentation typical of certain 

cancers, augmenting NK-mediated immunity may be a promising therapeutic approach. Besides 

NK-related correlations, the next most significantly increased correlations were that of the Bm 

signature with CCL21 and CXCL13, both of which are known to recruit B cells (Okada et al., 

2002). Based on these examples and many others found in the correlation matrices, we propose 

that such correlations could be useful for identifying potential immune-cytokine relationships. In 

addition, differential correlation analyses could even provide evidence for altered recruitment or 

activation of specific immune populations.   

Although useful in revealing potential changes in pair-wise relationships, differential 

correlation analysis could not account for simultaneous, multiple relationships. Indeed, most 

immune cells secrete multiple cytokines, which in turn could have pleiotropic effects on multiple 

cell types. Therefore, significant enrichment of immune populations and cytokines may not be the 

most appropriate measures of importance. Here, we first showed that cytokine networks could be 

extracted from pair-wise immune cytokine correlations. Social network theory then provides 

quantitative measures of importance for each node in a network. Using this approach, we found 

that macrophages consisted of the most influential/influenced immune population in the cold 

network. Indeed, depleting or altering the function of macrophages have proven to be particularly 

effective in inducing anti-tumor immunity and suppressing tumor growth (Clark et al., 2007; Zhu et 

al., 2014; Beatty et al., 2015; Nywening et al., 2016). Therefore, our findings support the growing 

consensus that tumor-associated macrophages (TAMs) represent a promising target to effectively 

disrupt immunosuppressive networks in PDA. 

Among cytokines with significantly higher influence in the cytolytically cold network, 

CLEC11A and CCL13 were consistently ranked as the top two cytokines with the most 

distinguishing differences in their influence between hot and cold networks in the random forest 
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models. CLEC11A, also known as stem cell growth factor (SCGF), encodes a secreted 

glycoprotein that functions as a potent growth factor for erythroid and myeloid progenitors 

(Hiraoka et al., 2001). CLEC11A has recently been shown to be required for multiple myeloma 

growth (Laganà et al., 2017). CCL13, which has no mouse counterpart, is a chemokine that can 

attract CCR2
+
 or CCR3

+
 monocytes, eosinophils, and basophils (Godiska et al., 1997; Uguccioni 

et al., 1997). A number of other cytokines also have significantly higher influence in the 

cytolytically cold network, some of which, such as CTGF and GDF15/MIC-1, are already known 

targets in pancreatic cancer (Dornhöfer et al., 2006; Neesse et al., 2013; Wang et al., 2014). 

However, whether any of these cytokines play a role in promoting immunosuppressive networks 

in PDA remains to be demonstrated.  

As expected, several T cell populations, including memory CD4
+
 and CD8

+
 T cells, have 

significantly higher influence in cytolytically hot cytokine network, which reflected their enhanced 

recruitment and activation. The increased influence of Tfh and B cells also ranked among the 

most distinguishing features of hot compared to cold networks. Because they are typically found 

inside lymphoid structures, our analysis led us to conclude again that TLS may be enriched in 

cytolytically hot tumors. Among all DC populations, only the centrality of plasmacytoid DCs 

(pDCs) increased significantly in cytolytically hot tumors. Unlike immature pDCs which are poor 

APCs and can even induce Tregs, TLR-stimulated pDCs are capable of cross-priming and 

inducing both antigen-specific effector CD4
+
 and CD8

+
 T cells (Di Pucchio et al., 2008; Goubier et 

al., 2008; Mouriès et al., 2008). Upon activation, pDCs also become potent secretors of Th1, 

CD8
+
 T cell, and NK cell-activating cytokines such as type 1 IFNs, CXCL10, CCL4, and IL12 

(Swiecki and Colonna, 2015). Expression of CCR7 further allows pDCs to traffic toward CCL19 

and CCL20 high regions typical of lymphoid structures (Umemoto et al., 2012). Type I IFNs 

production by recruited pDCs were recently shown to be critical for optimizing the maturation of 

and cross-presentation by local XCR1
+
 classical DCs in response to viral infections (Brewitz et 

al., 2017). In another study, pDCs were reported to be part of the systemic immune activation 

required for immunotherapy-induced tumor regressions (Spitzer et al., 2017). Altogether, our 
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analysis suggested that mature pDCs could be linked to TLS within the tumor and associated with 

the development of cytotoxic immune response. Furthermore, Tfh cells have the second highest 

protective ratio, which indirectly links the presence of lymphoid structures with survival. Whether 

these immune populations or the presence of TLSs contribute to the development of anti-tumor 

cytolytic activity remains to be determined.       

Among cytokines with significantly increased influence in hot networks, only IL24 and 

TNFSF14/LIGHT consistently ranked among cytokines with most distinguishing differences 

between hot and cold networks. Both cytokines were also significantly enriched in cytolytically hot 

tumors. Furthermore, the increased positive correlations between LIGHT and T-helper and Tcm 

CD4
+
 cells ranked among the most altered relationships comparing hot and cold tumors. IL24, an 

IL-10 family protein also known as melanoma differentiation-associated 7 (MDA-7), can potently 

induce cancer cell apoptosis (Sauane et al., 2003). In fact, intratumoral administration of an 

adenoviral construct expressing the IL24 transgene transiently increased systemic Th1 cytokine 

production, increased intratumoral CD8
+
 T cell infiltration, and showed some efficacy in a Phase I 

trial (Cunningham et al., 2005; Tong et al., 2005). On the other hand, LIGHT is a member of the 

TNF family that could bind both lymphotoxin-β receptor (LTβR) on stromal cells and 

TNFRSF14/HVEM on immune cells (del Rio et al., 2010). Upon binding to TNFRSF14, LIGHT 

acts as a co-stimulatory cytokine that can enhance T cell, NK cell, and DC activation (Tamada et 

al., 2000; 2002a; 2002b; Morel et al., 2001; Fan et al., 2006). LIGHT-activated NK cells could 

further facilitate anti-tumor CD8
+
 T cell activation via IFN-γ secretion (Fan et al., 2006). Several 

other studies have shown that tumor cells transduced to express LIGHT potently promote T cell 

recruitment and their anti-tumor activity (Yu et al., 2004; Qiao et al., 2017). Therefore, enhancing 

IL24 and LIGHT signaling might be promising directions for the treatment of PDA.  

Altogether, we showed that cytolytically cold tumors have significantly enrichment of 

CD4m-act cells, CD56bright-NK cells, TFF1, GDF15/MIC-1, ADM, and MIF. Meanwhile, 

cytolytically hot tumors were most significantly enriched in CD8
+
 T cells, DCs, CXCL13, CCL19, 

and CCL21. Differential network analysis offered a slightly different perspective. In cytolytically 
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cold tumors, the most influenced/influential players were macrophages, CLEC11A, and CCL13. 

On the other hand, cytolytically hot tumors were characterized by NK cell activation, B cell 

recruitment, and the increased influence of memory CD4
+
 T cells, CD8

+
 T cells, Tfh, B cells, 

pDCs, IL24, and LIGHT. This pattern is highly suggestive of the enriched presence of TLSs in 

cytolytically hot tumors. 

In summary, we devised a novel network-level computational methodology to reconstruct 

and compare tumor-associated cytokine networks from gene expression data. We conclude that 

cytolytic activity correlates with survival in PDA. We then showed that cytolytically hot and cold 

tumors are enriched with different immune populations and cytokines. Furthermore, a substantial 

portion of immune-cytokine correlations is altered in hot and cold tumors, reflecting the differential 

recruitment, activation, and function of specific immune populations. Finally, we showed that the 

most influential immune populations and cytokines differ between hot and cold tumors. Therefore, 

our analysis identified many existing targets and also highlighted novel candidates that may 

effectively disrupt immunosuppressive networks and promote cytolytic activity in PDA. 
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Figure 34. Stratification of human PDA samples by cytolytic activity and cytotoxic gene 

expression signatures. 

 (A) Hierarchal clustering of 134 human PDA samples by the log-average of the cytolytic activity 

(PRF1 and GZMA) and cytotoxic gene signatures into cytolytically “hot” (n = 30) and “cold” (n = 

71) groups. (B) Kaplan Meier plot and the corresponding risk table of hot and cold samples. Log-

rank p-value is shown. Marks indicate censored data points. 
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Figure 35. Cox multiple regression shows significant reduction in hazard ratio in 

cytolytically hot vs cold tumors. 

(A) Patient sample characteristics grouped by cytolytically hot or cold designations. (B) Cox 

multiple regression survival analysis for all the variables and their respective hazard ratios and p-

values. Cytolytically hot or cold classification is represented by the variable “group”. 
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Figure 36. Immune GSVA scores in human PDA. 

Hierarchal clustering of 134 PDA samples (x-axis) by 52 immune GSVA scores (y-axis). 

Cytolytically hot and cold samples are marked with red and blue columns respectively.  
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Figure 37. Immune populations differentially enriched and correlated with survival in hot 

and cold PDA. 

(A) Boxplots of 46 immune GSVA scores with significant differences between hot and cold 

samples (FDR-adjusted p-value ≤ 0.05, Wilcox test). Immune scores are ordered by decreasing 

difference in the mean GSVA scores of hot and cold samples. (B) Heatmap showing the log of 

the protective ratio (1/HR) from univariate Cox regression of individual immune GSVA scores in 

all, hot, or cold tumors. Only the 20 immune GSVA scores with significant Cox regressions are 

shown (Wald test, p-value ≤ 0.05).  
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Figure 38. Immune GSVA scores cluster differently in cytolytically hot and cold tumors. 

Correlograms of the immune GSVA scores with each other in all (A), hot (B), and cold (C) PDA 

tumors. Graph shows averaged Spearman’s rho from 1000 bootstrapped populations (empirical 

p-value ≤ 0.05).  
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Figure 39. Immune GSVA score correlations with the largest changes between cytolytically 

hot and cold tumors. 

(A) Boxplot of the indicated immune-immune correlations with significant differences in hot and 

cold tumors (delta Spearman’s rho ≥ 0.7 and FDR-adjusted empirical p-value ≤ 0.05). Graph 

shows the distribution of Spearman’s rho in 1000 bootstrapped sample populations grouped by 

hot or cold tumors. (B) Barplot of the variable importance (vimp) scores in hot, cold, and all 

samples using only the top correlations in a random forest model (ntree = 1000) to classify the 

cytolytic status of each tumor. (C) Plot of the minimal depth of the top correlations in a random 

forest model (ntree = 1000) to classify the cytolytic status of each tumor. The dotted line shows 

the “high” conservative cutoff for a variable to be considered more significantly important than 

others in the model. 
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Figure 40. Cytokine differential expression in human PDA. 

(A) Hierarchal clustering of 134 PDA tumors (x-axis) by the expression of 255 cytokines (y-axis) 

that are expressed in over 20% of the samples (row z-score of log TPM). Cytolytically hot and 

cold samples are marked with red and blue columns respectively. (B) Boxplots of 40 cytokines 

with more than 2 fold gene expression difference between hot and cold tumors (FDR-adjusted p-

value ≤ 0.05, Wilcox test). Cytokines are ordered by decreasing difference in mean expression.  
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Figure 41. Cytokines correlation with immune GSVA scores in PDA. 

Correlations of the 255 expressed cytokines (y-axis) and selected immune populations (x-axis, n 

= 47) in all (A), hot (B), and cold (C) PDA tumors. Graph shows averaged Spearman’s rho from 

1000 bootstrapped populations (empirical p-value ≤ 0.05). 
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Figure 42. Significantly altered immune-cytokine correlations in hot and cold tumors. 

(A) Boxplot of the 26 indicated immune-cytokine correlations with significant differences in hot 

and cold tumors (delta Spearman’s rho ≥ 0.7 and FDR-adjusted empirical p-value ≤ 0.05). Graph 

shows the distribution of Spearman’s rho in 1000 bootstrapped sample populations grouped by 

hot or cold tumors. (B) Barplot of the variable importance (vimp) scores in hot, cold, and all 

samples using only the top immune-cytokine correlations in a random forest model (ntree = 1000) 

to classify the cytolytic status of each tumor. (C) Plot of the minimal depth of the top immune-

cytokine correlations in a random forest model (ntree = 1000) to classify the cytolytic status of 

each tumor. The dotted line shows the conservative cutoff for a variable to be considered 

significantly more important than others in the model. 
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Figure 43. The overall cytokine network in PDA. 

Immune GSVA score-cytokine correlation network using all 134 PDA samples depicting only 

significant Spearman’s rho ≥ 0.4 as edges (FDR-adjusted empirical p-value ≤ 0.05). Positive and 

negative correlations are represented by red and blue edges respectively. Edge thickness is 

proportional to rho. The size of each node is proportional its degree centrality. Nodes are 

clustered into 6 non-overlapping communities using the fast-greedy algorithm and colored 

accordingly (shown in Figures 44-46).  
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Figure 44. Community 1 in the overall cytokine network. 

Community 1 (orange community) in the immune-cytokine correlation network (most complex 

community) using all 134 PDA samples in Figure 43 as detected by the fast-greedy algorithm.  
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Figure 45. Community 2 in the overall cytokine network. 

Community 2 (light blue community) in the immune-cytokine correlation network (2
nd

 most 

complex community) using all 134 PDA samples in Figure 43 as detected by the fast-greedy 

algorithm.  
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Figure 46. Communities 3-6 in the overall cytokine network. 

Communities 3-6 (A-D, respectively) in the immune-cytokine correlation network using all 134 

PDA samples in Figure 43 as detected by the fast-greedy algorithm.  
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Figure 47. Cytokine network in cytolytic hot PDAs. 

Immune GSVA score-cytokine correlation network in the 30 cytolytically hot PDA samples 

depicting only significant Spearman’s rho ≥ 0.4 as edges (FDR-adjusted empirical p-value ≤ 

0.05). Positive and negative correlations are represented by red and blue edges respectively. 

Edge thickness is proportional to rho. The size of each node is proportional its degree centrality. 

Each node is colored by the community it belonged to in Figure 43. Fast-greedy algorithm 

detected 5 communities within this network (shown in Figures 48-51).   
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Figure 48. Community 1 in the cytolytically hot cytokine network. 

Community 1 in the cytolytically hot network (most complex community) in Figure 47 as detected 

by the fast-greedy algorithm. Each node is colored by the community in the overall network that it 

belonged to in Figure 43. 
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Figure 49. Community 2 in the cytolytically hot cytokine network. 

Community 2 in the cytolytically hot network (2
nd

 most complex community) in Figure 47 as 

detected by the fast-greedy algorithm. Each node is colored by the community in the overall 

network that it belonged to in Figure 43. 
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Figure 50. Community 3 in the cytolytically hot cytokine network. 

Community 3 in the cytolytically hot network (3
rd

 most complex community) in Figure 47 as 

detected by the fast-greedy algorithm. Each node is colored by the community in the overall 

network that it belonged to in Figure 43. 
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Figure 51. Communities 4 and 5 in the cytolytically hot cytokine network. 

Communities 4 and 5 (A and B, respectively) in the cytolytically hot network in Figure 47 as 

detected by the fast-greedy algorithm. Each node is colored by the community in the overall 

network that it belonged to in Figure 43. 
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Figure 52. Cytokine network in cytolytic cold PDAs. 

Immune GSVA score-cytokine correlation network in the 71 cytolytically cold PDA samples 

depicting only significant Spearman’s rho ≥ 0.4 as edges (FDR-adjusted empirical p-value ≤ 

0.05). Positive and negative correlations are represented by red and blue edges respectively. 

Edge thickness is proportional to rho. The size of each node is proportional its degree centrality. 

Each node is colored by the community it belonged to in Figure 43.  Eight immune-cytokine non-

overlapping communities in the cold immune-cytokine network as detected by the fast-greedy 

algorithm (shown in Figures 53-57). 
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Figure 53. Community 1 in the cytolytically cold cytokine network. 

Community 1 in the cytolytically cold network (most complex community) in Figure 52 as detected 

by the fast-greedy algorithm. Each node is colored by the community in the overall network that it 

belonged to in Figure 43. 
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Figure 54. Community 2 in the cytolytically cold cytokine network. 

Community 2 in the cytolytically cold network (2
nd

 most complex community) in Figure 52 as 

detected by the fast-greedy algorithm. Each node is colored by the community in the overall 

network that it belonged to in Figure 43. 
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Figure 55. Community 3 in the cytolytically cold cytokine network. 

Community 3 in the cytolytically cold network (3
rd

 most complex community) in Figure 52 as 

detected by the fast-greedy algorithm. Each node is colored by the community in the overall 

network that it belonged to in Figure 43. 
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Figure 56. Community 4 in the cytolytically cold cytokine network. 

Community 4 in the cytolytically cold network (4
th
 most complex community) in Figure 52 as 

detected by the fast-greedy algorithm. Each node is colored by the community in the overall 

network that it belonged to in Figure 43. 
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Figure 57. Communities 5-8 in the cytolytically cold cytokine network.  

Communities 5-8 (A-D, respectively) in the cytolytically hot network in Figure 52 as detected by 

the fast-greedy algorithm. Each node is colored by the community in the overall network that it 

belonged to in Figure 43. 
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Figure 58. Centrality of immune populations in hot and cold immune-cytokine networks. 

Heatmap of the normalized degree centrality (A) and eigencentrality (B) of immune populations in 

the immune-cytokine networks constructed using all, hot, or cold PDA samples. 
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Figure 59. Immune populations with significantly altered degree centralities. 

(A) Boxplot of the immune populations with significant differences in their degree centrality in hot 

and cold tumors (empirical p-value ≤ 0.05). Graph shows the distribution of degree centrality in 

1000 bootstrapped sample populations grouped by hot or cold tumors. (B) Barplot of the variable 

importance (vimp) scores in hot, cold, and all samples using the degree centralities of only the top 

immune populations in a random forest model (ntree = 1000) to classify the cytolytic status of 

each tumor. (C) Plot of the minimal depth of the top immune populations in a random forest 

model using the degree centralities (ntree = 1000) to classify the cytolytic status of each tumor. 

The dotted line shows the “high” conservative cutoff for a variable to be considered more 

significantly important than others in the model. 
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Figure 60. Immune populations with significantly altered eigenvector centralities. 

(A) Boxplot of the immune populations with significant differences in their eigencentrality in hot 

and cold tumors (empirical p-value ≤ 0.05). Graph shows the distribution of eigencentrality in 

1000 bootstrapped sample populations grouped by hot or cold tumors. (B) Barplot of the variable 

importance (vimp) scores in hot, cold, and all samples using the eigencentrality of only the top 

immune populations in a random forest model (ntree = 1000) to classify the cytolytic status of 

each tumor. (C) Plot of the minimal depth of the top immune populations in a random forest 

model using eigenvector centrality (ntree = 1000) to classify the cytolytic status of each tumor. 

The dotted line shows the conservative cutoff for a variable to be considered significantly more 

important than the others in the model. 
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Figure 61. Centrality of cytokines in hot and cold immune-cytokine networks. 

Heatmap of the normalized degree centrality (A) and eigencentrality (B) of cytokines in the 

immune-cytokine networks constructed using all, hot, or cold PDA tumors. Cytokines are only 

included if their centrality value is in the top quartile in at least one of the sample populations. 
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Figure 62. Cytokines with significantly altered degree centrality in hot and cold tumors. 

(A) Boxplot of the cytokines with significant differences in their degree centrality in hot and cold 

tumors (empirical p-value ≤ 0.05). Graph shows the distribution of degree centrality in 1000 

bootstrapped sample populations grouped by hot or cold tumors. (B) Barplot of the variable 

importance (vimp) scores in hot, cold, and all samples using the degree centralities of only the top 

cytokines in a random forest model (ntree = 1000) to classify the cytolytic status of each tumor. 

(C) Plot of the minimal depth of the top cytokines in a random forest model using the degree 

centralities (ntree = 1000) to classify the cytolytic status of each tumor. The dotted line shows the 

conservative cutoff for a variable to be considered significantly more important than the others. 
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Figure 63. Cytokines with altered eigencentrality in hot and cold tumors. 

(A) Boxplot of the cytokines with significant differences in their eigencentrality in hot and cold 

tumors (empirical p-value ≤ 0.05). Graph shows the distribution of eigencentrality in 1000 

bootstrapped sample populations grouped by hot or cold tumors. (B) Barplot of the variable 

importance (vimp) scores in hot, cold, and all samples using the eigencentrality of only the top 

cytokines in a random forest model (ntree = 1000) to classify the cytolytic status of each tumor. 

(C) Plot of the minimal depth of the top cytokines in a random forest model using eigencentrality 

(ntree = 1000) to classify the cytolytic status of each tumor. The dotted line shows the 

conservative cutoff for a variable to be considered significantly more important than the others.  
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CHAPTER 5: DISCUSSION AND FUTURE DIRECTIONS 

 

The immune response is critical in regulating tumor development, progression, and 

response to therapy (Chen and Mellman, 2013). This response is determined in a large part by a 

complex network of immune and cytokine interactions in the tumor microenvironment. 

Understanding these “cytokine networks” is crucial for the development of effective strategies to 

promote anti-tumor immune responses, particularly in tumors naturally void of adaptive immunity 

such as pancreatic cancer. The findings of this thesis project highlight components of the cytokine 

network that may be important in regulating anti-tumor immunity in PDA. In Chapter 3, we used 

gene expression data from human PDA to infer the existence of the CXCR2 ligand-CXCR2-

neutrophil network and demonstrated that inhibiting this axis leads to anti-tumor T cell activity in 

the KPC model (Figure 33). Expression of CXCR2 ligands, particularly CXCL5, by cancer cells 

themselves show that they are active contributors to the cytokine network and can therefore 

modulate the immune response. This work adds to the mounting evidence showing that inhibition 

of the CXCR2 ligand-CXCR2-neutrophil network can unveil anti-tumor T cell immunity. However, 

inhibition of this axis only resulted in a modest increase in effector T cell infiltration and survival. 

Therefore, other components are likely to also play substantial roles.  

In Chapter 4, we devised a novel analysis pipeline to infer and discover other potentially 

important cytokine networks using gene expression data from human PDA samples. Our analysis 

confirmed many already known cytokine networks in PDA, including the CXCL5/CXCL8-

neutrophil network. Furthermore, we showed that it is possible to infer the recruitment, activation, 

or functional status of immune populations using the relative strength of their correlations with 

specific cytokines. Finally, we demonstrated the utility of network-based approach to complement 

traditional differential expression analysis to discover biologically relevant targets. Our results 

showed that cytokine networks involving CD8
+
 T cells, NK cells, memory CD4 T cells, T follicular 

helper cells, and memory B cells are particularly important in tumors with high cytolytic activity. In 

contrast, macrophages are the most important in tumors with low cytolytic activity. Our analysis 
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further highlights the cytokines most likely to be involved in these networks, some of which are 

already under active clinical investigation for their therapeutic potential. By using expression data 

to characterize the cytokine networks underlying cytolytic activity in PDA, we aim to use a data-

driven approach to accelerate the process of candidate discovery and validation. 

 

The CXCR2-CXCR2 ligand axis in cancer 

 CXCR2 is a G-protein-coupled receptor (GPCR) that binds to human CXCL1, CXCL2, 

CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8 (Zlotnik and Yoshie, 2012). In addition, CXCR2 

can also bind to two non-traditional ligands: N-acetyl Pro-Gly-Pro (acPGP), which is a neutrophil 

protease-mediated degradation product of extracellular matrix, and macrophage migration 

inhibitory factor (MIF). In neutrophils, ligand binding to CXCR2 trigger its coupling to a G-protein 

of the Gi family (Stadtmann and Zarbock, 2012). Coupling of CXCR2 triggers the Gαi subunit to 

exchange a guanosine diphosphate (GDP) for a guanosine triphosphate (GTP). GTP binding 

induces a conformational change that ultimately results in the dissociation of the Gαi and Gβγ 

subunits. The dissociated Gβγ subunit can directly activate phosphatidylinositol 3-kinase γ (PI3K-

γ), an isoform of PI3K that is preferentially found in immune cells (Hirsch et al., 2000; Xu et al., 

2015). Activated PI3K-γ catalyzes the formation of phosphatidylinositol 3,4,5-trisphosphate 

(PIP3), which leads to protein kinase B (PKB/AKT) and mechanistic target of rapamycin complex 

(mTOR) phosphorylation. In neutrophils, activated mTOR phosphorylates PKCβII, which in turn 

activates type 9 adenylyl cyclase (AC9) and the accumulation of cyclic adenosine 

monophosphate (cAMP) (Liu et al., 2014). Gβγ can also activate the phospholipase C (PLC) and 

mitogen-activated protein kinase (MAPK) pathways (Nasser et al., 2007). All these signaling 

cascades cumulate in actin polarization and the formation of leading edges in neutrophils. In 

contrast, relatively little is known about the function of the Gαi-GTP subunit. Recently, Surve et al. 

demonstrated that Gαi-GTP inhibition of AC9 is required to counteract excessive adhesion to 

maintain neutrophil polarity and motility (Surve et al., 2016). Therefore, CXCR2 is an important 

receptor for the regulation of neutrophil chemotaxis. 
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CXCR2 signaling is crucial for normal neutrophil egression, extravasation, and migration 

into inflamed tissues (Sadik et al., 2011). Our work in Chapter 3 and others have now 

demonstrated that CXCR2 is also required for trafficking of granulocytic myeloid cells into the 

tumor microenvironment (Jamieson et al., 2012; Highfill et al., 2014; Chao et al., 2016; Steele et 

al., 2016). Expansion of systemic granulocytes in tumor-bearing CXCR2
-/-

 mice suggests that 

CXCR2 signaling is specifically required for neutrophil extravasation and infiltration into the tumor 

microenvironment, but not for their differentiation and proliferation. Consistent with recent reports, 

we showed that CXCR2 inhibition did not significantly affect the accumulation of other immune 

populations, including monocytes (Highfill et al., 2014; Steele et al., 2016). The absolute 

requirement of CXCR2 specifically for the trafficking of neutrophils is important because CXCR2 

have occasionally been found on endothelial cells, monocytes, mast cells, and some NK cells 

(Griffith et al., 2014). For instance, CXCR2 inhibition has been shown to impede angiogenesis 

and delay growth of breast cancer cells in immune-compromised mice (Sparmann and Bar-Sagi, 

2004). However, CXCR2 is not absolutely necessary for angiogenesis because other, more 

potent angiogenic factors, such as VEGFA, are often found in the tumor microenvironment.  On 

the other hand, the CCL2-CCR2 axis has been shown to be important for monocyte trafficking to 

the tumor microenvironment, without affecting granulocyte accumulation (Chang et al., 2016). 

Together, these results support a model where monocytic and granulocytic myeloid cells have 

committed to their lineage prior to trafficking to the tumor. In contrast, Youn et al. have shown that 

monocytes isolated from the spleen or bone marrow of tumor-bearing mice or humans are 

capable of acquiring granulocytic phenotypes via epigenetic silencing of the retinoblastoma (Rb) 

gene when cultured in vitro in the presence of GM-CSF alone (Youn et al., 2013). Whether this 

phenomenon also occurs within the tumor microenvironment in vivo remains unclear. Regardless, 

potential differentiation of monocytic cells failed to appreciably reconstitute the tumor-infiltrating 

granulocyte population in our study. Therefore, our work adds to the mounting evidence that 

tumor-associated neutrophils (TANs) consisted of mostly granulocyte lineage-committed cells that 

then trafficked into the tumor microenvironment in a CXCR2-dependent manner. 
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Although not observed in our cell lines, CXCR2 can sometimes be found on the surface 

of tumor cells themselves (Hussain et al., 2010; Jamieson et al., 2012; Pinnacle et al., 2013; 

Lesina et al., 2016). The precise intracellular signaling cascades triggered by CXCR2 activation 

remain to be explored in tumor cells. Despite incomplete knowledge of the signaling pathways 

involved, the general function of CXCR2 has nonetheless been demonstrated in tumor cells. 

Forced oncogene expression can up-regulate surface CXCR2 in normal fibroblasts, where it 

mediates oncogene-induced senescence (OIS) in a p53-dependent manner (Acosta et al., 2008; 

Guo et al., 2013). Expression of CXCR2 in these cells was further shown to be dependent on the 

activation of the transcription factors NF-κB and C/EBPβ. A role for CXCR2 in mediating OIS has 

recently been demonstrated in vivo in the LSL-Kras
G12D

; Ptf1a-Cre (KC) mouse model of 

pancreatic cancer (Lesina et al., 2016). Here, constitutive activation of NF-κB/RelA in KRAS
G12D

 

expressing pancreatic cells drives the expression of CXCL1, which activates CXCR2 in an 

autocrine manner and induces senescence. Pancreas specific inhibition of either RelA or CXCR2 

is sufficient to completely eliminate OIS and accelerate carcinogenesis. In contrast, pancreas-

specific inhibition of RelA in the absence of either p53 or p16 actually slowed tumor growth and 

prolonged survival. In an independent study, CXCR2 expression in fully transformed human 

pancreatic cancer cells also associated with increased proliferation and invasive potential 

(Hussain et al., 2010; Maeda et al., 2017). Therefore, CXCR2 expression in transformed cells 

plays contrasting roles at different stages of disease. Early in carcinogenesis, CXCR2 activation 

can drive p53-dependent OIS and delay disease progression. However, after cells have evolved 

to bypass p53-dependent senescence, CXCR2 activation in tumor cells now serves to promote 

their growth and invasiveness.       

CXCR2 ligands, especially CXCL8, are almost universally elevated in cancer patients 

(MD and Lippitz, 2013). Although they are generally considered to be redundant, recent evidence 

suggests that CXCR2 ligands can have different functions depending on the context. For 

instance, infection-induced pathological elevation of serum CXCL5 competitively displaces 

CXCL1 and CXCL2 from the erythrocyte Duffy antigen receptor for chemokines (DARC), which 



137 
 

acts as a natural chemokine sink (Mei et al., 2010). The resulting systemic elevation of CXCL1 

and CXCL2 destroys the sensitivity of neutrophils toward chemokine gradients at the site of 

infection, which ultimately serves to prolong the infection. This raises the intriguing possibility that 

CXCR2 ligands can have different functions and even regulate each other. The source of CXCR2 

ligands in the tumor microenvironment is largely attributed to cancer cells themselves. Our results 

show that CXCL5 is the most highly expressed CXCR2 ligand in PDA, which is followed closely 

by CXCL8 in humans and CXCL1 in mice. CXCR2 ligand expression, especially CXCL1 and 

CXCL8, is part of the senescence-associated secretory phenotype (SASP) induced by oncogene 

expression (Chien et al., 2011). Furthermore, our work and others have demonstrated that 

activation of the classical NF-κB pathway can prominently increase CXCR2 ligand expression in 

tumor cells (Acharyya et al., 2012; Chao et al., 2016; Lesina et al., 2016). Constitutive NF-κB 

signaling is often presumed to be the cause of elevated baseline CXCR2 ligand expression in 

tumor cells. However, simultaneous pharmacological inhibition of both classical and alternative 

NF-κB pathways failed to suppress baseline CXCR2 ligand expression in our KPC cell lines. This 

suggests that other mechanisms may be involved. In a study using 52 human lung cancer cell 

lines, baseline CXCL1 and CXCL5 expression were inversely correlated with promoter 

methylation (Pinnacle et al., 2013). Another group reported that TGFβ1-treated mouse breast 

cancer cells have reduced CXCL1 and CXCL5 expression compared to controls (Novitskiy et al., 

2014). More recently, Seifert et al. showed that baseline CXCL1 expression in mouse pancreatic 

cancer cells was suppressed by inhibition of RIP3, a component of the necrosome (Seifert et al., 

2016). Ongoing work in our lab has found that baseline expression of CXCL1 differs significantly 

among different KPC-derived clonal cell lines. Investigation of their epigenome, chromatin 

structure, and activated signaling pathways will hopefully reveal the mechanisms regulating 

baseline CXCR2 ligand expression in cancer cells.  

Because cancer cells often secrete copious amounts of them, CXCR2 ligand expression 

by non-cancer cells is often not reported or ignored. However, stromal and immune populations 

can express CXCR2 ligands upon activation. In the bone marrow, G-CSF-induced CXCL2 
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expression in endothelial cells is responsible for neutrophil egression (Eash et al., 2010). 

Furthermore, successful neutrophil extravasation and infiltration into inflamed tissues is regulated 

by CXCL2 secretion from activated tissue-resident sentinel macrophages (Schiwon et al., 2014). 

Once activated inside inflamed tissues, neutrophil secrete IL-1 which further stimulate tissue 

resident cells to release CXCL1 and CXCL2 to attract even more neutrophils (Chou et al., 2010). 

Using our unique PDA model with lineage tracing, we showed that CXCL2 is primarily expressed 

by non-tumor cells in the tumor microenvironment. This result suggests that similar mechanisms 

to attract neutrophils may be at play in infected tissues and tumors. Importantly, the findings in 

this thesis show that tumor and stromal cells cooperate together to recruit TANs. Future studies 

must be done to determine the precise cellular sources of CXCR2 ligands and their individual 

function in the tumor microenvironment.  

 

Tumor-associated neutrophils 

Because of their relatively short lifespan, neutrophils are long presumed to have 

negligible roles in the tumor microenvironment. However, the findings in this thesis and other 

recent studies demonstrate that TANs can be potent regulators of tumor initiation, growth, 

metastasis, and response to therapy. Neutrophils are the most abundant immune population in 

humans, consisting of 50-70% of all peripheral leukocytes (Coffelt et al., 2016). In various mouse 

models, a rapid rise in systemic myeloid cells, consisting of mostly neutrophils, usually 

accompanies tumor development (Clark et al., 2007; Bayne et al., 2012; Pylayeva-Gupta et al., 

2012; Casbon et al., 2015; Coffelt et al., 2015; Chao et al., 2016; Steele et al., 2016). To support 

their rapid rise and turnover in the context of cancer, neutrophils can be produced in 

extramedullary organs such as the spleen as well as in the bone marrow in a process akin to 

emergency granulopoiesis observed in acute infections (Manz and Boettcher, 2014). Tumor-

induced systemic elevation of cytokines such as granulocyte-colony stimulating factor (G-CSF), 

granulocyte macrophage-colony stimulating factor (GM-CSF), and interleukin 17 (IL-17) have 

been shown to cause this overactive granulopoiesis (Bayne et al., 2012; Pylayeva-Gupta et al., 
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2012; Casbon et al., 2015; Coffelt et al., 2015). Indeed, G-CSF and IL-17 were both elevated in 

the serum of our tumor-bearing KPC mouse model of PDA. Although not absolutely required, G-

CSF is the dominant regulator of neutrophil generation, proliferation, and differentiation under 

homeostasis. In fact, compensation with the other factors can only produce about a quarter of the 

normal number of neutrophils in the absence of G-CSF receptor (Liu et al., 1996). Neutrophils 

without G-CSFR were also more prone to apoptosis. Binding of G-CSF to the G-CSF receptor (G-

CSFR) induces signal-transducer and activator of transcription 3 (STAT3) signaling and RAR-

related orphan receptor γ1 (RORC1)-dependent translation of granulocyte-lineage genes, 

including CXCR2 (Panopoulos et al., 2006; Strauss et al., 2015). As neutrophils mature, the 

expression of CXCR2 increases, while expression of CXCR4 decreases. Egression of neutrophils 

is tightly regulated under homeostatic conditions by a balance of CXCR4-mediated retention and 

CXCR2-mediated egression (Eash et al., 2010). Under physiological conditions, only mature 

neutrophils egress from the bone marrow. However in the context of cancer, crowding in the bone 

marrow niche and elevated systemic factors can encourage the egression of both mature and 

immature granulocytes (Manz and Boettcher, 2014). The half-life of circulating neutrophils in 

healthy humans is around 7 hours (Tak et al., 2013). However, half-life of circulating neutrophils 

is dramatically increased to approximately 17 hours in cancer patients. In addition, non-circulating 

neutrophils in tissues and in the tumor microenvironment can survive for several days. On the 

other hand, recent evidence suggests that TANs are more prone to TNF-related apoptosis–

induced ligand receptor (TRAIL-R)-mediated apoptosis than normal neutrophils because of their 

upregulated endoplasmic reticulum (ER) stress response (Condamine et al., 2014). Therefore, 

contrary to the assumption that TANs are limited to only their acute functions, emerging evidence 

suggests that they survive long enough to synthesize new proteins and acquire additional effector 

functions. Indeed, transcriptomic analyses of TANs, splenic neutrophils, and bone marrow 

granulocytes showed significant differences in the gene expression profile of TANs compared to 

splenic and circulating granulocytes (Fridlender et al., 2012; Youn et al., 2012).   
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Studies using spontaneous mouse models of various cancers have led to the conclusion 

that neutrophils generally promote tumor initiation. The pro-tumorigenic effect of neutrophils is 

generally attributed to their “normal” pro-inflammatory effector functions, such as degranulation, 

production of reactive oxygen species (ROS), and secretion of pro-inflammatory cytokines 

(Coffelt et al., 2016). Furthermore, G-CSF-induced expression of prokineticin (Bv8) in neutrophils 

has been shown to promote angiogenesis (Shojaei et al., 2007; 2008). Neutrophil-derived 

elastase (ELANE) can even directly promote the growth of transformed cells through degrading 

their intracellular insulin receptor substrate-1 (IRS1) and unleashing PI3K signaling (Houghton et 

al., 2010). The pro-tumorigenic effect of neutrophils is particularly evident in inflammation-induced 

spontaneous cancer models such as the chemically-induced skin cancer and colitis-associated 

colon cancer (Jamieson et al., 2012; Katoh et al., 2013). Neutrophils also promote tumor 

formation in several genetically engineered mouse models (GEMMs), including colon and KRAS-

driven lung cancer (Jamieson et al., 2012; Chang et al., 2014). In contrast, global CXCR2 

knockout in the KPC pancreatic cancer model impeded TAN accumulation, but it did not slow 

tumor formation (Steele et al., 2016). However, this may be the result of a balancing act between 

elimination of CXCR2-induced OIS in transformed cells and inhibition of the infiltration of 

neutrophils. Future studies with lineage-specific CXCR2 knockdown or targeted depletion of 

neutrophils in KPC mice during tumorigenesis will be required to resolve these conflicting effects.  

The role of TANs during tumor progression is currently a subject of much debate in the 

field.  Experiments in the early 1990’s first demonstrated the anti-tumor potential of neutrophils by 

showing that they can eliminate implanted G-CSF producing colon cancer cells (Stoppacciaro et 

al., 1993). More recently, TANs isolated from early stage human and murine lung cancers have 

been shown to be capable of stimulating the proliferation and activation of anti-tumor T cells 

(Eruslanov et al., 2014). A subset of TANs isolated from stage I-II human non-small cell lung 

cancers (NSCLCs) was even demonstrated to be capable of cross-presentation in an IFN-γ and 

GM-CSF dependent manner (Singhal et al., 2016). In contrast, depletion of neutrophils starting 2 

weeks in an implantable murine lung cancer model resulted in significantly reduced tumor growth 
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(Mishalian et al., 2013). This suggested that TANs found in more established tumors tend to have 

pro-tumor phenotypes. Acquisition of pro-tumor phenotypes in neutrophils depends largely on the 

cytokine milieu. Prolonged exposure to elevated levels of cytokines such as TGF-β, GM-CSF, 

and G-CSF can induce pro-tumor phenotypes in TANs (Fridlender et al., 2009; Bayne et al., 

2012; Pylayeva-Gupta et al., 2012; Casbon et al., 2015). Inhibition of TGF-β was further shown to 

be able to convert TANs from a pro-tumor to an anti-tumor phenotype in an implantable mouse 

NSCLC model (Fridlender et al., 2009). These results suggest that TANs could evolve from being 

anti-tumor to being pro-tumor as disease progresses.  

A much larger number of studies, however, have now unequivocally demonstrated that 

TANs tend to promote tumor progression. The presence of TANs in many human cancers was 

found to be associated with worst prognosis (Gentles et al., 2015). Besides their pro-tumorigenic 

inflammatory functions, TANs can also be highly immunosuppressive. Multiple studies have 

reported that inhibition of TANs can unleash anti-tumor T cell immunity and sensitize tumors to 

immunotherapy (Highfill et al., 2014; Steele et al., 2016). The findings in this thesis and the 

results in Steele et al.’s study both show that this is the case in our KPC model of PDA (Chao et 

al., 2016; Steele et al., 2016). In addition, we concluded in Chapter 3 that suppression of anti-

tumor T cell activity is the predominant pro-tumor function of TANs in our model of PDA. The 

development of an immunosuppressive phenotype in TANs can be induced by cytokines such as 

TGF-β and GM-CSF in the tumor microenvironment (Fridlender et al., 2009; Bayne et al., 2012; 

Pylayeva-Gupta et al., 2012). TANs can directly suppress T cells through their elevated 

production of reactive oxygen species (ROS) and expression of arginase 1 (ARG1) (Rodriguez et 

al., 2004; Zea et al., 2005; Movahedi et al., 2008; Youn et al., 2008). TANs can also cause the 

nitration of CD8 or T cell receptor (TCR), which may disrupt the ability for T cells to bind to their 

cognate antigens on MHC-I (Nagaraj et al., 2007). TANs could further recruit immunosuppressive 

macrophages and T regulatory cells to the tumor microenvironment via secretion of CCL2 and 

CCL17 respectively (Zhou et al., 2016). In addition, phagocytosis of apoptotic neutrophils at sites 

of infections is known to induce a type-2 phenotype in macrophages, which suggests that TANs 
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may be able to modulate polarity of macrophages (Filardy et al., 2010). TANs could also present 

to CD8
+
 T cells and sequester them away from antigen presenting cells or cancer cells. Given 

that a subset of them could potentially even cross-present antigens, whether TANs could also 

affect the development of antigen-specific T cells remains to be determined (Singhal et al., 2016). 

To highlight their ability to suppress T cells, these immunosuppressive neutrophils are commonly 

labeled as granulocytic myeloid-derived suppressor cells (G-MDSCs) (Bronte et al., 2016). It is 

likely that G-MDSCs represent a major subset of neutrophils in tumor-bearing hosts. Because 

they share the same surface markers and functionalities, however, it has been very difficult to 

decipher the relationship between G-MDSCs and neutrophils. Using Ficoll gradients, Sagiv et al. 

have recently showed in a murine breast cancer model that low-density neutrophils (LDNs) could 

suppress T cells whereas high-density neutrophils (HDNs) could not (Sagiv et al., 2015). They 

further demonstrated that LDNs consist of a heterogeneous mixture of immature neutrophils and 

HDNs that have converted to LDNs in a TGFβ-dependent manner. However, more work must be 

done to confirm these findings in other models and in human cancers. Understanding the 

difference between G-MDSCs and other TANs will potentially allow us to target these cells 

specifically without affecting the crucial function of normal, mature neutrophils.   

TANs also play an important role in tumor metastases. One major mechanism by which 

TANs promote metastasis is their ability to suppress cytotoxic T cells as discussed above. As in 

the primary tumor, neutrophils in the metastatic niche can also secrete pro-invasion, pro-

angiogenic, and pro-survival factors. For example, expression of alarmins S100A8 and S100A9 

by TANs can promote metastatic breast cancer growth and resistance to chemotherapy 

(Acharyya et al., 2012). Neutrophils can also act as a bridge between circulating tumor cells 

(CTCs) and tissue-resident cells, effectively trapping and allowing them to colonize distal organs 

(Spicer et al., 2012; Cools-Lartigue et al., 2013). TANs have recently been shown to be required 

for the formation of liver and lung metastases in the KPC pancreatic cancer model (Steele et al., 

2016). The reasons why TANs are required for the formation of the pre-metastatic niche remain 

an active area of investigation. Furthermore, whether TANs play a role in metastases to other 
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distal organs is unclear. Altogether, emerging evidence shows that TANs play important roles 

during tumor initiation, progression, and metastasis. Understanding the regulation of their 

expansion, trafficking, and activation is, therefore, necessary to effectively target TANs.    

 

In silico profiling of tumor immune infiltration  

 Investigation of tumor immune infiltration has traditionally relied on variations of flow 

cytometry and immunohistochemistry (IHC). Although their capabilities are increasing, high-

dimensional resolution of immune populations remains difficult to achieve using these techniques. 

In contrast, advances in next-generation sequencing (NGS) and computational methods have 

recently supported the investigation of tumor infiltrating leukocytes (TILs) with increasingly high 

dimensionality in silico. Such approaches will undoubtedly allow even more detailed resolution of 

TILs as computational power and techniques continue to develop at an exponential pace. Large 

coordinated efforts such as The Cancer Genome Analysis (TCGA) and the International Cancer 

Genome Consortium (ICGC) further provide biologically relevant data for the application of such 

analytical pipelines. Integrative analyses with genomic, epigenomic, transcriptomic, and clinical 

metadata have already resulted in unprecedented characterizations of many human cancers, 

including in pancreatic cancer (Bailey et al., 2016). Therefore, in silico dissection of immune 

infiltration using gene expression data may similarly provide us with novel, data-driven insights 

into tumor immunobiology.                

In silico techniques to profile TILs usually employ either the enrichment of immune 

population-specific gene sets or the direct deconvolution of whole tumor transcriptomes. Both of 

these techniques are based on gene expression profiles of individual immune population. Early 

efforts to profile TILs often relied on the enrichment of known immune cell type-specific genes in 

a list of differentially expressed genes to infer differential immune infiltration. In these studies, a 

list of genes of interest is acquired before applying techniques such as gene set enrichment 

analysis (GSEA) to find pre-defined immune-related gene signatures that are preferentially 

enriched (Subramanian et al., 2005). A gene signature can either be derived from prior biological 
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knowledge or from differentially expressed genes in purified immune subsets. For instance, Choi 

et al. used this technique to find that the “immune infiltration” gene signature is enriched in the list 

of up-regulated, differentially expressed genes in chemo-sensitive compared to chemo-resistant 

muscle-invasive bladder cancers (MIBC) (Choi et al., 2014). Results such as this can easily 

provide a basis for additional studies, i.e. investigating the role of immune infiltrates in enhancing 

the response to chemotherapy. Although straightforward to implement, this analysis pipeline is 

highly sensitive to data platforms and noise in gene-expression levels. Furthermore, it can neither 

resolve individual immune population nor provide a sample-by-sample measure of TILs.  

To resolve individual immune populations in gene expression data, Bindea et al. used 

microarray transcriptomic data of 28 purified immune populations to define immune cell-type 

specific gene signatures after filtering out genes that are also expressed by cancer and stromal 

cell lines – the “immunome” (Bindea et al., 2013). After clustering colorectal cancer (CRC) 

samples into two groups based on differentially expressed genes, the authors then proceeded to 

find that Th1, Tγδ, CD8
+
 T cells, macrophages, and mast cells were all significantly enriched in 

the group with prolonged survival. To compare TILs between individual samples, Rooney et al. 

used gene set variation analysis (GSVA) to calculate single sample GSEA (ssGSEA) enrichment 

scores for several immune signatures derived from the FANTOM 5 Consortium in samples across 

18 cancer types (Rooney et al., 2015). Because this sample-by-sample, rank-based method is 

robust against biological and technical noise, it can be used to compare the relative abundance of 

immune populations across different samples and data types. However, the authors noted that 

ssGSEA or GSVA enrichment scores should not be used for determining the relative proportion of 

immune cells within the same sample. Furthermore, this method may have difficulty distinguishing 

similar cell types with significant overlap of marker genes. Despite these important caveats, our 

lab has previously found this method to be particularly useful in inferring the relative abundance 

of immune populations and their associations with cytolytic activity in PDA samples available in 

TCGA (Balli et al., 2016). Using the same technique in Chapter 3, we found that only neutrophils 

associated significantly with CXCR2 ligand expression out of the 28 immunome populations 
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(Chao et al., 2016). In Chapter 4, we expanded our ssGSEA pipeline to incorporate 52 previously 

defined immune signatures and characterized their interactions with each other and with 

cytokines in human PDA (Bindea et al., 2013; Newman et al., 2015; Rooney et al., 2015). To help 

distinguish similar immune populations, the signatures were pre-filtered to contain only genes that 

are uniquely expressed. Although derived from different sources and usually containing different 

combinations of marker genes, our analysis showed that signatures of the same immune 

population tend to cluster together and correlate with others in a similar fashion. The similarity of 

these signatures validates not only that they are representative of the indicated immune 

population, but also that ssGSEA is robust to noise of individual gene expression across samples.  

Taking advantage of its robustness, Yoshihara et al. employed ssGSEA in their 

“Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data” 

(ESTIMATE) analysis pipeline to infer relative stromal, immune, and tumor cellularity in all the 

samples available in TCGA (Yoshihara et al., 2013). More recently, Charoentong et al. 

incorporated the 28 immunome ssGSEA enrichment scores for 20 solid TCGA tumor types in 

their web-accessible database The Cancer Immunome Atlas (TCIA) (Charoentong et al., 2017). 

The authors then used a random forest approach to identify important determinants of 

intratumoral cytolytic activity based on TIL composition, tumor genetic characteristics, and other 

immune-related gene expression. These determinants, when aggregated together in an 

“immunophenoscore,” were significantly correlated with responsiveness to checkpoint blockade 

therapy in a cohort of melanoma patients. Therefore, despite its limitations, enrichment of 

immune gene sets has proven to be effective at profiling TILs and highly robust to platform-

specific or sample-specific noise. However, this method has yet to be validated with high-

dimensional flow cytometry or IHC. Because human samples are often difficult to analyze with 

these techniques retrospectively, future studies should consider allotting human samples or using 

animal models to confirm the accuracy of this method. 

Emerging computational techniques have allowed the deconvolution of whole tumor 

expression data to directly infer TIL proportions within a sample. Fundamentally, the expression 
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profile of a biological mixture (M) can be modeled by the set of linear equations M = F x B, where 

B denotes a matrix of the expression profile of purified immune cells and F is a vector containing 

the fraction of each immune population found in M (Shen-Orr and Gaujoux, 2013). The gene 

expression profile of purified immune populations (B) can be found in publically available datasets 

or derived from isolated populations. Similarly, the expression profile of whole tumors (M) can be 

acquired from public databases such as TCGA or from new experiments. Given M and B, solving 

for F then becomes the goal of these deconvolution techniques. Unlike enrichment methods, 

deconvolution techniques do not rely heavily on the uniqueness of the genes in an immune 

population, a trait that would theoretically allow them to better distinguish closely related cell 

types. In addition, deconvolution methods have the potential to identify novel markers of immune 

populations by comparing the relative contribution of genes in B to solving for F. The earliest 

application of deconvolution techniques focused on calculating the immune fractions from gene 

expression data of peripheral blood samples, which mainly consists of immune populations found 

in B. For instance, Abbas et al. used an iterative linear least square algorithm to solve for the 

relative proportions of 18 different immune cell types in the blood of systemic lupus 

erythematosus (SLE) patients and normal controls (Abbas et al., 2009). Importantly, the predicted 

immune proportions are essentially identical to the results obtained by flow cytometry. However, 

general linear models cannot account for unknown cellular populations in a mixture typical of 

complex tissues. Furthermore, distinguishing immune cell types with highly similar expression 

profiles is also problematic.  

To address these issues, Newman et al. introduced the “Cell-type Identification By 

Estimating Relative Subsets of RNA Transcripts” (CIBERSORT) analysis pipeline (Newman et al., 

2015). Here, the authors derived B, which they termed the LM22 matrix, from the gene 

expression profile of 22 immune populations found in the HGU133A platform and then filtering out 

genes that are highly expressed by non-hematopoietic cells. CIBERSORT then employs a 

variation of support vector regression (SVR), a machine learning algorithm that is robust to 

unknown mixture contents and highly correlated reference profiles, to solve for F. Comparison 
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with flow cytometric results confirmed the accuracy of CIBERSORT-predicted immune fractions 

even in complex tissues like solid tumors. CIBERSORT has since been used to deconvolute the 

TIL profiles of thousands of tumor samples across 25 different cancer types (Gentles et al., 

2015). The predicted immune fractions in colorectal and lung adenocarcinomas were further 

demonstrated to be similar to the results obtained from IHC and flow cytometry respectively. 

However, because the LM22 matrix is based on microarray expression data, direct applicability of 

CIBERSORT to RNA sequencing data is currently unclear. Despite this, CIBERSORT has 

already been used to estimate immune proportions from RNA sequencing data in multiple tumors, 

including in pancreatic cancer (Sivakumar et al., 2017).  

Deconvolution of expression data to profile TILs will undoubtedly achieve even higher 

levels of accuracy as computational techniques become increasingly sophisticated and capable 

of handling larger datasets. However, this method is reliant on the reference gene expression 

profile matrix (B), most of which are currently derived from normal peripheral immune cells or 

cultured bone marrow-derived cells. Unlike enrichment methods where gene signatures could be 

defined from existing biological knowledge, deconvolution methods require high dimensional 

expression data to be available from purified immune cell types. In addition, immune cell types 

often have differential activation or polarization status, which makes them even more difficult to 

isolate or culture. Therefore, future work must also focus on the generation of relevant reference 

expression profiles in order to expand the utility of deconvolution techniques. Altogether, in silico 

profiling of TILs has become a powerful technique to investigate tumor immunobiology.    

 

In silico reconstruction and analysis of tumor cytokine networks 

 The proliferation, differentiation, function, and survival of TILs are all regulated by the 

cytokine milieu in the tumor microenvironment. TILs, in turn, contribute significantly to the tumor 

cytokine milieu in response to various stimuli. This complicated network of immune-cytokine 

interactions plays an important role in regulating the tumor immune response. To investigate this 

complex network, a reductionist approach is traditionally used to study a few of its components at 
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a time using in vitro and in vivo experimental models. For instance, our work in Chapter 3 used 

the KPC and CXCR2
-/-

 models to study the CXCR2-ligand axis in PDA (Chao et al., 2016). 

Currently, our knowledge of the overall tumor cytokine network relies on manually aggregating 

the conclusions of these reductionist studies in the occasional reviews on the topic (Balkwill, 

2004; MD and Lippitz, 2013; Schett et al., 2013; Vonderheide and Bayne, 2013; West et al., 

2015). While they remain the gold standard to verify the function of specific components, these 

reductionist approaches cannot characterize and compare entire networks. Furthermore, it is 

difficult to compare the relative influence of individual components in a network or across multiple 

networks. Finally, there is often little evidence a priori to suggest that the candidate component is 

important to the system. Therefore, a more complete understanding of the complex interactions 

between cytokines and TILs will require a network-level understanding to complement 

reductionist experiments. Inspired by the recent success of in silico gene network analyses to 

detect disease-associated pathways, we devised a novel analysis pipeline in Chapter 4 to 

construct and analyze PDA-associated cytokine networks using immune GSVA enrichment 

scores and cytokine expression data. 

 Gene network models typically consist of genes as nodes and their interactions as edges 

in a graph. The earliest and most common method to computationally infer edges relies on the 

“guilt by association” concept, which assumes that genes with highly similar expression profiles 

are more likely to be co-regulated or functionally related (Wolfe et al., 2005). Commonly used 

methods to infer gene relatedness include correlation coefficients, regression models, and, more 

recently, mutual information (Butte and Kohane, 2000; Stuart et al., 2003; van Someren et al., 

2006). A major study comparing these inference methods found that no one method is generally 

superior and that their performance varied depending on the context (Marbach et al., 2012). 

Although they can only capture the strength of linear relationships, correlation coefficients are 

more readily interpretable in terms of their biological relevance. Furthermore, correlation 

coefficients are invariant to the linear normalization required of most expression data. Unlike 

Pearson’s correlations, rank-based correlations such as Spearman’s are nonparametric, more 
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general, and highly robust to strong outliers (Mukaka, 2012). A comparison of correlation 

methods further showed that Spearman’s significantly outperformed Pearson’s correlation to 

correctly identify real co-expressed pathways and genes (Kumari et al., 2012). In this work, we 

showed that the relative strength of specific Spearman’s immune-cytokine correlations could be 

used to indicate the functional status of immune populations. Once the correlations are 

calculated, they are usually either filtered using “hard” thresholding or modified using “soft” 

thresholding techniques (Zhang and Horvath, 2005). Hard thresholding simply involves removing 

all correlations that are less than a specific acceptable value. The remaining correlations are then 

interpreted as equal, resulting in a binary network where nodes are either related or not. 

However, this method ignores the relative strength of correlation coefficients. To address this 

issue, Zhang et al. introduced the soft thresholding method to generate a weighted network 

(Zhang and Horvath, 2005). Here, correlation coefficients are raised to a positive power in order 

to approximate a scale-free topology. This method simultaneously preserves the value of all 

correlation coefficients and exaggerates the importance of strong correlations at the expense of 

weaker correlations. Multiple studies have now successfully implemented this soft thresholding 

method to explore cancer-associated genes and pathways (Zhao et al., 2010; Jia et al., 2014; 

Yang et al., 2014; Bailey et al., 2016). However, it is still unclear whether all biological networks 

should be modeled as having scale-free topologies (Barabási, 2009). Furthermore, highly unlikely 

and weak correlations are retained in the network, which may negatively impact subsequent 

analyses. In Chapter 4, we introduced a hybrid method using a modified form of hard thresholding 

that only retains edges that are both empirically significant and have moderately strong 

correlation values. This hybrid method preserves the information from correlation coefficients and 

also eliminates highly unlikely interactions from subsequent analyses. In addition, empirical 

significance bypasses the poorly asymptotic behavior of correlations and allows for more 

accurate statistical comparisons. Despite these advantages, more work must be done to compare 

this hybrid method with traditional hard or soft thresholding methods in their abilities to detect real 

biological interactions.    
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 Once a gene network is constructed, identification of groups of genes with similar 

behaviors usually relies on pattern recognition techniques. Clustering, either through K-means or 

hierarchal clustering, is the most widely used technique to detect patterns in gene correlation 

networks (Jain, 2010). K-means clustering assigns each gene to exactly one module, while 

hierarchal clustering allows for more flexibility.  However, derivation of gene clusters from these 

techniques is an ambiguous process requiring the specification of a number of parameters, such 

as the number of desired clusters or the choice of clustering algorithms. Another approach utilizes 

community detection techniques from network theory to automatically detect and assign clusters 

(Dyer and Nason, 2004; Garroway et al., 2008). These techniques generally detect communities 

by finding groups of nodes where the intra-connectedness is greater than connectedness with 

outside nodes. In an early effort, Ben-Dor et al. developed an algorithm that constructs one 

community at a time by iteratively adding or dropping a gene (Ben-Dor et al., 1999). Numerous 

algorithms have since been developed to detect communities, including using probabilistic 

models and neural networks (Fortunato, 2010). However, many of these algorithms are often 

computationally intensive and have limited utility in larger networks. To improve community 

detection in large networks, Clauset et al. developed the “fast-greedy” community detection 

algorithm that iteratively maximizes local modularity, which is the ratio of observed intra-

connectedness over the expected connectedness in a random network (Clauset et al., 2004). 

Using artificially generated networks, Yang et al. have recently demonstrated that a variation of 

this algorithm produced highly accurate results while being orders of magnitude faster than many 

other methods (Yang et al., 2016b). In Chapter 4, we showed that both hierarchal clustering and 

the fast greedy community detection algorithm yielded similar immune-cytokine clusters. We 

further discussed that many of these clusters reflect known interactions among immune cells and 

cytokines. However, the biological relevance of these inferred communities in PDA-associated 

cytokine networks remains unclear.  

 Nearly every study to date ends their bioinformatics analysis pipelines at the detection 

and functional assignment of gene modules. For example, Bailey et al. identified 26 coordinately 
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expressed gene clusters representing different biological processes and associated them with 

four distinct human pancreatic cancer subtypes (Bailey et al., 2016). Although such analyses 

qualitatively compare the importance of gene clusters to certain groups, they neither 

quantitatively measure importance nor provide a means to compare the importance of individual 

genes. To quantitatively measure the importance of gene clusters, Zhang et al. have previously 

introduced the use of “gene module importance scores,” which are derived from correlating the 

principal component of a gene cluster with a biological characteristic of interest (Zhang and 

Horvath, 2005). In the study by Bailey et al., this technique was used to quantify the relative 

importance of the 26 gene clusters in regards to survival (Bailey et al., 2016). However, this 

method does not quantify importance in terms of the influence of a node within a network. 

Instead, network-intrinsic importance of a node can be measured by its “centrality,” a concept 

from social network theory (Garroway et al., 2008; Friedkin, 2015). Two commonly used 

measures of node importance are degree and eigenvector centralities. Degree centrality 

measures importance in terms of the number of direct connections to a node. Meanwhile, 

eigenvector centrality measures importance of a node by its connectedness with other well-

connected nodes. Importantly, the gene centralities in expression networks have been shown to 

reflect the importance of driver genes in various cancers, including retinoblastoma and breast 

cancer (Wang et al., 2011; 2015).  

In Chapter 4, we used degree and eigenvector centralities to measure the importance of 

immune populations and cytokines in PDA-associated cytokine networks. In this context, degree 

centrality reflects the number of cytokines that are strongly associated with an immune 

population. Given that activated immune cells generally express or are receptive to more 

cytokines than when they are at rest, the degree centrality of an immune population could act as 

a rough indication of its activation status. On the other hand, the eigenvector centrality gives an 

indication of the number of influential cytokines that are associated with a certain immune 

population. Therefore, eigenvector centrality measures how influential or influenced an immune 

population is in the network. Here, we demonstrated that both measures of importance could 
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reveal immune populations and cytokines that are known to play key roles in PDA. Furthermore, 

we showed that it is possible to compare the relative importance of components in different 

networks. Given these observations, we propose that these measures could provide quantitative 

indications of a candidate’s potential importance a priori to experimental validation.   

 To our knowledge, our work in Chapter 4 is the first to describe an analytical pipeline to 

infer and compare cytokine networks from whole tumor expression data. Here, we combined 

techniques from gene co-expression network and network graph analyses not only to infer 

immune-cytokine interactions, but also to compare these interactions across different networks. 

Furthermore, this pipeline provides a statistical measure of the importance of components in the 

cytokine network, which might guide candidate selection for experimental validation. However, 

much work remains in order to demonstrate the accuracy of these predictions. It may also be 

interesting to compare and contrast these cytokine networks across different cancers and 

databases. As large-scale genomic datasets become more and more common, analyses such as 

this can be used to complement reductionist approaches and accelerate our understanding of the 

cytokine networks underlying tumor immune responses.   

  

Summary and closing statements 

 In summary, this thesis aims to highlight that cytokine networks can play an important 

role in regulating the tumor immune responses. Using mouse models of pancreatic cancer, I 

demonstrated the importance of the CXCR2-CXCR2 ligand axis in recruiting immunosuppressive 

tumor-associated neutrophils to the PDA microenvironment. Both tumor and stromal cells secrete 

CXCR2 ligands to recruit TANs to the microenvironment, where they primarily promote tumor 

growth by suppressing T cell immunity. Therefore, this work adds to the mounting evidence that 

cytokine networks represent a major mechanism by which tumors evade immunosurveillance. To 

accelerate their discovery, I devised a novel analysis pipeline to identify other potentially 

important cytokine networks from whole tumor gene expression data. I showed that this pipeline 

could highlight cytokine networks that are statistically important in cytolytically hot and cold PDA 
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tumors. Future investigations of the relevance of these candidate cytokine networks will hopefully 

reveal novel targets to effectively disrupt immunosuppressive networks and enhance 

immunosurveillance in PDA. 
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