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Abstract

We introduce the notion of co-saliency for image match-
ing. Our matching algorithm combines the discrimina-
tive power of feature correspondences with the descriptive
power of matching segments. Co-saliency matching score
favors correspondences that are consistent with ’soft’ im-
age segmentation as well as with local point feature match-
ing. We express the matching model via a joint image
graph (JIG) whose edge weights represent intra- as well as
inter-image relations. The dominant spectral components of
this graph lead to simultaneous pixel-wise alignment of the
images and saliency-based synchronization of ’soft’ image
segmentation. The co-saliency score function, which char-
acterizes these spectral components, can be directly used
as a similarity metric as well as a positive feedback for
updating and establishing new point correspondences. We
present experiments showing the extraction of matching re-
gions and pointwise correspondences, and the utility of the
global image similarity in the context of place recognition.

1. Introduction
Correspondence estimation is one of the fundamental

challenges in computer vision lying in the core of many
problems, from stereo and motion analysis to object recog-
nition. The predominant paradigm in such cases has been
the correspondence of interest points, whose power is in the
ability to robustly capture discriminative image structures.
Feature-based approaches, however, suffer from the ambi-
guity of local feature descriptors and therefore are often
augmented with global models which are in many cases do-
main dependent. One way to address matching ambiguities
related to local features is to provide grouping constraints
via segmentation, which has the disadvantage of changing
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drastically even for small deformation of the scene (see up-
per diagram in fig. 1).

In this work we introduce a perceptual framework to
matching by modeling in one score function both the co-
herence of regions within images as well as similarities of
features across images. We will refer to such a pair of corre-
sponding regions as co-salient and define them as follows:

1. Each region in the pair should exhibit strong internal
coherence with respect to the background in the image;

independent matching and segmentation

joint matching and segmentation via JIG

Figure 1. Independently computed correspondences and segments
(upper diagram) for a pair of images can be made consistent with
each other via the joint image graph and thus improved (lower
diagram).
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2. The correspondence between the regions from the two
images should be supported by high similarity of fea-
tures extracted from these regions (see fig. 1).

To formalize the above model we introduce the joint-
image graph (JIG) which contains as vertices the pixels of
both images and has edges representing intra-image similar-
ities and inter-image feature matches. The matching prob-
lem is cast as a spectral segmentation problem in the JIG.
A good cluster in the JIG consists of a pair of coherent seg-
ments describing corresponding scene parts from the two
images. The eigenvectors of the JIG weight matrix rep-
resent ’soft’ joint segmentation modes and capture the co-
salient regions.

The resulting score function can be optimized with re-
spect to both the joint segmentation and feature correspon-
dences. In fact we employ a two step iteration with opti-
mization of the joint segmentation eigenvectors in the first
step. In the second step we improve the feature correspon-
dences by identifying those correspondences which support
the region matches indicated by the joint eigenvectors and
suppressing the ones which disagree with it. Furthermore,
we can use the co-salient regions to induce new feature cor-
respondences by extracting additional features not used by
the initial estimation and checking their compatibility with
the region matches.

Spectral approaches for weighted graph matching have
been extensively studied, some of the notable works being
[11, 8]. Such approaches characterize the graphs by their
dominant eigenvectors. However, these eigenvectors are
computed independently for each graph and thus often do
not capture co-salient structures as the eigenvectors of the
JIG. Reasoning in the JIG helps to extract representations
from two images which contain relevant information for the
matching of the particular pair of images.

Our approach has also been inspired by the work on
simultaneous object recognition and segmentation [13],
which uses spectral clustering in a graph capturing the rela-
tionship between image pixels and object parts. Our work
has parallels in machine learning [3], where based on cor-
rect partial correspondences between manifolds the goal is
to infer their complete alignment using regularization based
on similarities between points on the manifolds.

The only approach we have come across applying seg-
mentation simultaneously in both images is the work of
Rother et al. [5]. The authors use a generative graphi-
cal model, which consists of a prior for segmentation and
histogram-based image similarity. Joint image representa-
tion is also used by Boiman and Irani [1], who define a sim-
ilarity between images as the composability of one of the
images from large segments of the other image. Indepen-
dently extracted regions have been used already for wide-
baseline stereo [7] and object recognition [6]. In the latter
work the authors deal with the variability in the segmenta-

tion by using multiple segmentations of each image.
In the next section we proceed with the introduction of

the model. The solution to the problem is presented in sec. 3
and sec. 4. In sec. 5 implementation issues are explained.
We conclude with experimental results in sec. 6.

2. Joint-Image Graph (JIG) Matching Model
The JIG is a representation of two images, which incor-

porates both intra- and inter-image information. It is con-
structed as a weighted graph G = (I1 ∪ I2, E, W ), whose
vertex set consists of the pixels of both images I1 and I2.
Denote the number of pixels in Ii by ni. The weights W of
the edges represent similarities between pixels:

W =
(

W1 C
CT W2

)
(1)

Wi ∈ [0, 1]ni×ni is weight matrix of the edges connect-
ing vertices in Ii with entries measuring how well pixels
group together in a single image. The other component
C ∈ [0, 1]n1×n2 is a correspondence matrix, which con-
tains weights of the edges connecting vertices from I1 and
I2, i. e. the similarities between local features across the two
images.

In order to combine the robustness of matching via local
features with the descriptive power of salient segments we
detect clusters in JIG. Each such cluster S represents a pair
of co-salient regions S = S1 ∪ S2, Si ⊆ Ii, i ∈ {1, 2}, and
contains pixels from both images, which (i) form coherent
and perceptually salient regions in the images (called intra-
image similarity criterion) and (ii) match well according to
the feature descriptors (inter-image similarity criterion). We
formalize the two criteria as follows (see also fig. 2):

Intra-image similarity The image segmentation
score is the Normalized Cut criterion applied to both
segments IntraIS(S) = (

∑
x∈S1,y∈S1

(W1)x,y +∑
x∈S2,y∈S2

(W2)x,y)/N(S) with normalization
N(S) =

∑
x∈S1,y∈I1

(W1)x,y +
∑

x∈S2,y∈I2
(W2)x,y .

If we express each region Si with an indicator vector
vi ∈ {0, 1}ni : (vi)x = 1 iff pixel x lies in the region, the
criterion can be written as

IntraIS(v) =
vT
1 W1v1 + vT

2 W2v2

vT Dv
(2)

where Di = Wi1ni
is the degree matrix of Wi; 1ni

is an ni

dimensional vector with all elements equal to one.

Inter-image similarity The matching score can be ex-
pressed as InterIS(S) = (

∑
x∈S1,y∈S2

Cx,y)/N(S) with
the same normalization as above. This function measures
the strength of the connections between the regions S1 and
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Figure 2. Diagram of the matching score function. The final score function consists of the sum of two components from eq. (2) and eq. (3).
The joint optimization results in ’soft’ eigenvectors, which can be further discretized, and a correct set of feature matches.

S2. The normalization favors correspondences between
pixels which are weakly connected with their neighboring
pixels – exactly at places where the above segmentation cri-
terion is uncertain. If we use the same indicator vector as
above, then it can be shown that

InterIS(v, C) =
vT
1 Cv2

vT Dv
(3)

where v =
(

v1

v2

)
. The correspondence matrix C is

defined in terms of feature correspondences encoded in a
n1×n2 matrix M (detailed definition of M is given in sec-
tion 5) – C normalized as above should select from M pixel
matches which connect each pixel of one of the images with
at most one pixel of the other image. This can be written as
D
−1/2
1 CD

−1/2
2 = P ◦M with Px,y ∈ {0, 1},

∑
x Px,y ≤ 1,

and
∑

y Px,y ≤ 1 (◦ is the elementwise matrix multiplica-
tion).

Matching score function Because we want to match co-
salient regions, we should maximize the sum of the scores
in eq. (2) and eq. (3) simultaneously. In the case of k pairs
of co-salient regions we can introduce k indicator vectors
packed in (n1 +n2)×k matrix V = (v(1), . . . , v(k)). Then
we need to maximize

F (V,C) =
k∑

c=1

IntraIS(v(c)) + InterIS(v(c), C)

=
k∑

c=1

(v(c))T Wv(c)

(v(c))T Dv(c)
= tr

(
V T WV (V T DV )−1

)
subject to V ∈ {0, 1}(n1+n2)×k and C as above.

The score IntraIS is related closely to the Normalized
Cuts image segmentation function [12] – its maximization
amounts to obtaining ’soft’ segmentation, represented by
the eigenvectors of W1 and W2 with large eigenvalues. In
our case, however, the estimation of v1 and v2 is related

via the score function InterIS. Therefore, this process syn-
chronizes the segmentations of both images and retrieves
matches of segments, which are supported by the feature
matches.

The above optimization problem is NP-hard even for
fixed C. Therefore, we relax the indicator vectors V to real
numbers. Following [12] it can be shown that the problem
is equivalent to

max
V,C

FM (V,C) = tr
(

V T

(
W1 C
CT W2

)
V

)
(4)

subject to V T DV = I,D
−1/2
1 CD

−1/2
2 = P ◦M

with Px,y ∈ {0, 1},
∑

x

Px,y ≤ 1,
∑

y

Px,y ≤ 1

where M is a matrix containing feature similarities across
the images. The constraints enforce C to select for each
pixel x in one of the images at most one pixel y in the other
image to which it can be mapped.

Further theoretical justifications for the above score
functions are given in the appendix.

3. Optimization in the JIG
In order to optimize matching score function we adopt

an iterative two-step approach. In the first step we maxi-
mize FM (V,C) with respect to V for given C. This step
amounts to synchronization of the ’soft’ segmentations of
two images based on C as shown in the next section. In a
second step, we find an optimal correspondence matrix C
given the joint segmentation V .

Segmentation synchronization For fixed C the opti-
mization problem from eq. (4) can be solved in a closed
form – the maximum is attained for V eigenvectors of the
generalized eigenvalue problem (W,D). However, due to
clutter in C this may lead to erroneous solutions. As a rem-
edy we assume that the joint ’soft’ segmentation V lies in
the subspace spanned by the the ’soft’ segmentations S1
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Figure 3. Image view of segmentation synchronization. Top left:
an image pair with outlined matches. Below: the image segmen-
tation subspaces S1 and S2 (each eigenvector is reshaped and dis-
played as an image) can be linearly combined to obtain clear cor-
responding regions (awning, front wall), which can be discretized,
as displayed in the upper right corner of this figure.

and S2 of the separate images, where Si are eigenvectors
of the corresponding generalized eigenvalue problems for
each of the images WiSi = DiSiΛi. Hence we can write:

V = SVsub, where S =
(

S1 0
0 S2

)
is the joint image

segmentation subspace basis and Vsub are the coordinates
of the joint ’soft’ segmentation in this subspace.

With this subspace restriction for V the score function
can be written as

F (Vsub, C) = tr
(
V T

subST WSVsub

)
(5)

and will be maximized subject to V T
subVsub = I . ST WS is

the original JIG weight matrix restricted to the segmentation

subspaces. If we write Vsub =

(
V

(s)
1

V
(s)
2

)
in terms of the

subspace basis coordinates V
(s)
1 and V

(s)
2 for both images,

then the score function can be decomposed as follows:

F (Vsub, C) = tr
(
(V (s)

1 )T Λ1V
(s)
1 + (V (s)

2 )T Λ2V
(s)
2

)
+2tr

(
(V (s)

1 )T ST
1 CS2V

(s)
2

)
(6)

The second term is a correlation between the segmentations
of both images weighted by the correspondences in C and,
thus, it measures the quality of the match. The first term
serves as a regularizer, which emphasizes eigenvectors in
the subspaces with larger eigenvalues and, therefore, de-
scribing clearer segments.

The optimal Vsub in eq. (5) is attained for the k eigen-
vectors of ST WSVsub = VsubΛs, corresponding to the
largest eigenvalues written as a diagonal matrix Λs. Note
that ST WS is a k × k matrix, for k ≤ 100, while the
eigenvalue problem in eq. (4) has much higher dimension
(n1 + n2) × (n1 + n2). Therefore, the subspace restric-
tion speeds up the problem and makes it tractable for pairs

Y

X Y

S1 S2

×V
(s)
1 ×V

(s)
2

SVsub

Figure 4. Subspace view of the segmentation synchronization. Be-
low each of the images in the first row, the embedding of the pix-
els of the image in the segmentation space spanned by the top 3
eigenvectors is displayed. The pixels coming from different ob-
jects in the image are encoded with the same color. In the third
row, both embeddings transformed by the optimal Vsub (eq. (6))
are presented, given the matches selected as shown in the first row.
Both embeddings were synchronized such that all pixels from both
rectangles form a well grouped cluster (the red points). In this way
the matches were correctly extended over the whole object, even
in presence of an occlusion (green vertical line in right image).

of large images. The resulting SVsub represents a linear
combination of the original ’soft’ segmentation such that
matching regions are enhanced. The initial and synchro-
nized segmentation spaces for an image pair are shown in
fig. 3.

A different view of the above process can be obtained by
representing the eigenvectors by their rows: denote by bs

the sth row of SVsub. Then we can assign to each pixel x
in the image a k-dimensional vector bx which we will call
the embedding vector of this pixel. Then the segmentation
synchronization can be viewed as a rotation of the segmen-
tation embeddings of both images such that corresponding
pixels are close in the embedding (see fig. 4).

Obtaining discrete co-salient regions From the synchro-
nized segmentation eigenvectors we can extract regions.
Suppose bT

x = (bx,1 . . . bx,k) ∈ Rk is the embedding vec-
tor of a particular pixel x. Then, we label this pixel with



the eigenvector, for which the corresponding element in the
embedding vector has its highest value. The binary mask
V̂m, which describes the mth segment, written as a column
vector, can be defined as (V̂m)i = 1 iff argmaxs bi,s = m.
Note that V̂m describes a segment in the JIG and therefore
represents a pair of corresponding segments in the images.
Since V = SVsub is a relaxation in the formulation of the
score function, V̂m can be interpreted as a discrete solution
to the matching score function. Therefore, the matching
score between segments can be defined as F (V̂m, C).

Optimizing the correspondence matrix C After we
have obtained V we seek C = D

1/2
1 (P ◦ M)D1/2

2 which
maximizes FM (V,C) subject to Px,y ∈ {0, 1},

∑
y Px,y ≤

1,
∑

x Px,y ≤ 1 (see eq. (4)). In order to obtain fast solution
we relax the problem by removing the last inequality con-
straint. In this case if we denote cx,y = Mx,yD

1/2
1,x D

1/2
2,y ,

then the optimum is attained for

Cx,y =

 cx,y if cx,ybT
x by > 0 and

y = arg maxy′{cx,y′b
T
x by′}

0 otherwise
(7)

where bx is the embedding vector for pixel x.
The optimization algorithm is outlined in algorithm 1.

Algorithm 1 FM (V,C)
1: Initialize Wi, M , and C as in section 2. Compute W .
2: Compute segmentation subspaces Si as the eigenvec-

tors to the k largest eigenvalues of Wi.
3: Find optimal segmentation subspace alignment by com-

puting the eigenvectors of ST WSVsub: ST WSVsub =
VsubΛs, where Λs are the eigenvalues.

4: Compute optimal C as in eq. (7).
5: If C different from previous iteration go to step 3.
6: Obtain pairs of corresponding segments V̂m: (V̂m)i =

1 iff argmaxs bi,s = m, otherwise 0. F (V̂m, C) is the
match score for the mth co-salient regions.

4. Estimation of Dense Correspondences
Initially we choose a sparse set of feature matches M

extracted using a feature detector. In order to obtain
denser set of correspondences we use a larger set M ′ of
matches between features extracted everywhere in the im-
age (see sec. 5). Since this set can potentially contain
many more wrong matches than M , running algorithm 1
directly on M ′ does not give always satisfactory results.
Therefore, we prune M ′ based on the solution (V ∗, C∗) =
maxV,C FM (V,C) by combining

• Similarity between co-salient regions obtained for old
feature set M . Using the embedding view of the seg-
mentation synchronization from fig. 4 this translates

to euclidean distances in the joint segmentation space
weighted by the eigenvalues Λs of ST WS;

• Feature similarity from new M ′.

Suppose, two pixels x ∈ I1 and y ∈ I2 have embed-
ding coordinates b∗x ∈ Rk and b∗y ∈ Rk obtained from
V ∗. Then following feature similarities embody both re-
quirements from above: M ′′

x,y = M ′
x,y(b∗x)T Λsb

∗
y , iff

M ′
x,y(b∗x)T Λsb

∗
y ≥ tc, otherwise 0. Finally, the entries

in M ′′ are scaled such that the largest value in M ′′ is 1.
The new co-salient regions are obtained as a solution of
FM ′′(V,C).

The final matching algorithm is outlined in algorithm 2.

Algorithm 2 Matching algorithm
1: Extract M conservatively using a feature detector (see

sec. 5).
2: Solve (V ∗, C∗) = maxV,C FM (V,C) using alg. 1.
3: Extract M ′ using features extracted everywhere in the

image (see sec. 5).
4: Compute M ′′: M ′′

x,y = M ′
x,y(b∗x)T Λsb

∗
y , iff

M ′
x,y(b∗x)T Λsb

∗
y ≥ tc; b∗y and b∗x are the rows of V ∗.

Scale M ′′ such that maximal element in M ′′ is 1.
5: Solve (Vdense, Cdense) = maxV,C FM ′′(V,C) using

alg. 1.

5. Implementation Details
Inter-image similarities The feature correspondence ma-
trix M ∈ [0, 1]n1×n2 is based on affine covariant region
detector. Each detected point p has an elliptical region Rp

associated with it and is characterized by an affine transfor-
mation Hp(x) = Apx + Tp, which maps Rp onto the unit
disk D(1). For comparison, each feature is represented by
a descriptor dp extracted from Hp(Rp). These descriptors
can be used to evaluate the appearance similarity between
two interest points p and q, and thus, to define a similarity
between pixels x ∈ Rp and and y ∈ Rq lying in the interest
point regions:

mx,y(p, q) = e−‖dp−dq‖2/σ2
i e−‖Hp(x)−Hq(y)‖2/σ2

p

Hp ◦ H−1
q

p
q

x y

Rp

Rq

image contour

mx,y

image contour

Figure 5. For a match between features p and q their similarity gets
extended to pixel pairs, e. g. x and y.



The first term measures the appearance similarity between
the regions in which x and y lie, while the second term mea-
sures their geometric compatibility with respect to the affine
transformation of Rp to Rq. Provided, we have extracted
two feature sets P from I1 and Q from I2 as described
above, the final match score Mx,y for a pair of pixels equals
the largest match score supported by a pair of feature points:

Mx,y = max{mx,y(p, q)|p ∈ P, q ∈ Q, x ∈ Rp, y ∈ Rq}

In this way, pixels on different sides of corresponding im-
age contours in both images get connected and thus shape
information is encoded in M (see fig. 5). The final M is
obtained by pruning: retain Mx,y for Mx,y ≥ tc, other-
wise 0, where tc is a threshold. For feature extraction we
use the MSER detector [10] combined with SIFT descrip-
tor [4]. The choice of the detector is motivated by MSER’s
large support. For the computation of the dense correspon-
dences M ′ in sec. 4 we use features extracted on a dense
grid in the image and use the same descriptor.

Intra-image similarities The matrices Wi ∈ [0, 1]ni×ni ,
for each image are based on intervening contours. Two pix-
els x and y from the same image are considered to belong
to the same segment, if there are no edges with large mag-
nitude, which spatially separate them:

(Wi)x,y = e−max{‖edge(z)‖2|z∈line(x,y)}/σ2
e , i ∈ {1, 2}

Algorithm settings The optimal dimension of the seg-
mentation subspaces in step 2 depends on the area of the
segments in the images - to capture small detailed regions
we need more eigenvectors. For the experiments we used
k = 50. The threshold tc from is determined so that ini-
tially we obtain approx. 200− 400 matches and for our ex-
periments it is tc = 3.2.

Time complexity If we denote by n = max{n1, n2},
then the time complexity of step 1 and 2 in algorithm 1 cor-
responds to the complexity of the Ncut segmentation which
is O(n3/2k) [12]. The complexity of line 3 is the one for
computing the full SVD of a dense matrix of size k × k,
which is O(k3), and for the matrix multiplications, which
can be computed in time linear to the number of matches
between interest points, which we will denote by m. Fur-
ther, line 4 takes O(m) and line 6 is O(nk). In algorithm 2
we use algorithm 1 twice, and step 4 is O(m). Hence the to-
tal complexity of algorithm 1 is O(n3/2k + k3 + m + nk),
which is dominated by the segmentation spaces S. How-
ever, we can precompute S for an image and use it every
time we match this image. In this case the complexity is
O(k3 + m + nk), dominated by O(nk).

6. Experiments
We conduct two experiments: (i) detection of matching

regions and (ii) place recognition. For both experiments
we use two datasets from the ICCV2005 Computer Vision
Contest[9]: Test4 and Final5, containing each 38 and 29 im-
ages of buildings. Each building is shown in several images
under different viewpoints.

6.1. Detection of Matching Regions

In this experiment we detect matching regions, enhance
the feature matches, and segment common objects in man-
ually selected image pairs (see fig. 6). The 30 matches with
highest score in Cdense of the output of the matching algo-
rithm and the top 6 matching regions according to step 6 of
algorithm 1 are displayed in fig. 6.

Finding the correct match for a given point may fail usu-
ally because (i) the appearance similarity to the matching
point is not as high as the score of the best matches and
therefore it is not ranked high in the initial C; or (ii) there
are several matches with high scores due to similar or re-
peating structure. The segment-based reranking in step 4
of the matching algorithm helps on one side to boost the
match score of similar features lying in corresponding seg-
ments and thus to find more correct matches (darker regions
in row 1 in fig. 6). On the other side the reranking elimi-
nates matches connecting points in different segments and
in this way resolves ambiguous correspondences (repeating
structures in row 3).

To compare quantitatively the difference between the ini-
tial and the improved set of feature matches we count how
many of the top 30, 60, and 90 best matches are correct.
We rank them using the score from the initial and improved
C respectively and show the table (1). The number of the
correct matches in all sets is around 4 times higher than the
number of the correct matches in the initial feature set.

6.2. Place Recognition

As in ICCV2005 Computer Vision Contest each of the
two datasets Test4 and Final5 has been split into two sub-
sets: exemplar set and query set. The query set contains for
Test4 19 and for Final5 22 images, while the exemplar set
contains 9 and 16 images respectively. Each query image
is compared with all exemplars images and the matches are
ranked according to the value of the match score function
from eq. (4). For each query there are usually several (2
up to 5) exemplars, which display the same scene viewed
from different viewpoint. For all queries, which have at
least k similar exemplars in the dataset, we compute how
many of them are among the top k matches. Accuracy rates
are presented in fig. 7 for Final5 (k = 1 . . . 4) and Test4
(k = 1 . . . 4). With a few exceptions the match score func-
tion ranks most of the similar exemplars as top matches.



Figure 6. Matching results for manually selected pairs of images from [9]. For each pair, the top 30 matches are displayed in the left
column, while the top 6 matched segments according to the match score function are presented in the right column.

matches initial C improved C

1 - 30 19% 75%
31 - 60 12% 52%
60 - 90 15% 44%

Table 1. Percentage of correct matches among the first 90 matches
ranked with the initial and improved C. The top 90 matches are
separated into 3 groups: top 30 matches, top 60 matches without
the top 30, and top 90 matches without the top 60.

7. Conclusion

In this work we have presented an algorithm, which de-
tects co-salient regions. These regions are obtained through
synchronization of the segmentations of both images using
local feature matches. As a result dense correspondence
between coherent segments are obtained. The approach has

shown promising results for correspondence detection in the
context of place recognition.

Appendix

We analyse the case of image matching based purely on
segmentation. Assuming that both images have the same
number of pixels and that they are related by a permutation
D
−1/2
1 CD

−1/2
2 ∈ P(n) we show in the following proposi-

tion that matching score function from eq. (4) will find the
correct co-salient regions. This assumption corresponds to
M having all entries one in eq. (4).

Proposition 1. Suppose that the normalized graphs Ŵi =
D
−1/2
i WiD

−1/2
i of the two images are related by T ∈

P (n): Ŵ2 = TT Ŵ1T . Then the values of C and V at



Figure 7. Accuracy rate in percentage for datasets Test4 and Fi-
nal5.

which the maximum of F (V,C) is attained:

{Vopt, Copt} = argmax
D
−1/2
1 CD

−1/2
2 ∈P(n);V T DV =I

F (V,C)

fulfill the following properties:

(a) For v
(i)
opt being the ith column of Vopt holds: v

(i)
opt =(

v
(i)
1

v
(i)
2

)
, where v

(i)
j is the ith eigenvector of the gen-

eralized eigenvalue problem (Wj , Dj), j ∈ {1, 2}.

(b) Copt = D
1/2
1 TD

1/2
2 .

Proof If denote Y = D1/2V , Ŵ = D−1/2WD−1/2,

K = D−1/2CD−1/2, Ŵ [L] =

(
Ŵ1 L

L Ŵ1

)
, then

we can write F (Y,K) = tr
(
Y T Ŵ [KTT ]Y

)
, subject to

K ∈ P(n) and Y T Y = I . Further, we will use the triv-
ial lemma that kth eigenvector uk of Ŵ [I] has the form

uk =
(

vk

vk

)
and eigenvalue (1 + λk), where vk is the

eigenvector of Ŵ1 with eigenvalue λk.
Proof of prop. 1(a): Since for Y the score F reaches

a maximum, Y should have as columns the top k eigen-
vectors of Ŵ [12]. Suppose y is one such column. Us-
ing the fact KT K = I , Ŵy = λy can be written as
(y1,Ky2)Ŵ [I] = λ(y1,Ky2). From the above lemma and
the substitutions follows that W1v1 = (1 + λ)D1v1 and
W2v2 = (1 + λ)D2v2.

Proof of prop. 1(b): F (Y,K) is equal to the sum of the k

largest eigenvalues of Ŵ [KTT ], provided Y has k columns.
Denote the ith eigenvalue of Ŵ [L] by λi(L). To show the
proposition it suffices to prove that λi(I) ≥ λi(L) for ev-
ery orthogonal matrix L, since from KTT = I follows

C = D
1/2
1 TD

1/2
2 . Let Ŝ =

〈(
y1

y1

)
. . .

(
yk−1

yk−1

)〉
is the (k − 1)-dimensional space spanned by the top k − 1

eigenvectors of Ŵ [I], written in terms of the eigenvectors
yi with eigenvalues λi of Ŵ1 as stated in the above lemma.
We use this space in the Courant-Fischer Minmax theorem
[2], which states:

λk(M) = min
S,dim(S)=k−1

max
(aT bT )T⊥S

aT Ŵ1a + bT Ŵ1b + 2aT Mb

aT a + bT b

where S is a (k − 1)-dimensional space. Then λk(M) can
be bound from above by instantiating S = Ŝ. Then x and y
can be expressed a =

∑n
i=k αiyi; b =

∑n
i=k βiyi. Further-

more, the last term from above can be bound 2aT Mb
aT a+bT b

≤
aT a+bMT Mb

aT a+bT b
= 1. If we use the above subspace represen-

tation for the first 2 terms in the nominator and the denomi-
nator for λk(M), and the above bound for the last term, we
obtain

λk(M) ≤ max
αi,βi

∑n
i=k (α2

i + β2
i )λi∑n

i=k (α2
i + β2

i )
+ 1 = λk + 1

From the above lemma follows that λi(I) = λi + 1 and,
hence, λk(M) ≤ λk(I), which completes the proof.
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