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ABSTRACT'
 

IMAGING AND UNDERSTANDING ATOMIC-SCALE ADHESION AND WEAR: 

QUANTITATIVE INVESTIGATIONS USING IN SITU TEM  

Tevis D. B. Jacobs 

Robert W. Carpick 

The underlying physics governing tribological interactions – adhesion, friction, 

lubrication, and wear - are poorly understood. Significant progress has been enabled by 

nanoscale studies using the atomic force microscope (AFM).  However, AFM lacks direct 

access to the contact geometry and structure.  In this thesis, nanoscale adhesion and wear 

tests were performed inside of a transmission electron microscope (TEM), enabling real-

time in situ interrogation of the contact in vacuum. Quantitative data was extracted using 

custom analysis routines to resolve tip shape, volume changes, and adhesive forces with 

unprecedented resolution.  

From in situ adhesion tests, a novel method was developed to extract the work of 

adhesion (0.66±0.14 J/m2) and range of adhesion (0.25±0.06 nm) between silicon and 

diamond.  The latter quantity has not previously been measured experimentally.  TEM 

adhesion tests and complementary atomistic simulations reveal an order-of-magnitude 

reduction in apparent work of adhesion as tip roughness increased from atomic-scale to a 

root-mean-square value of 1 nm.  Using an existing analytical model, an empirically 

derived roughness-independent adhesion parameter was extracted.  In situ wear tests of 

silicon on diamond at low load revealed the mechanism of wear to be consistent with 

atom-by-atom processes. The rate of atomic removal varied exponentially with average 
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normal stress, consistent with stress-mediated chemical reaction kinetics. This yields a 

physically reasonable activation energy (0.85±0.06 eV), and activation volume 

(6.7±0.3 Å).  This framework can be generalized to understand and potentially predict 

wear in many materials undergoing atom-by-atom removal. 

Together, these investigations advance the scientific understanding of nanoscale 

adhesion and wear and help bridge the gap between experiments and atomistic 

simulations.  Three examples are demonstrated where nanometer-scale trends can be 

predicted using continuum approaches: nanoscale adhesive forces can be calculated using 

an interaction potential; apparent work of adhesion depends on nanoscale root-mean-

square roughness; and the rate of atomic-scale wear reactions is determined by the 

average normal contact stress.  These examples, while only demonstrated in the specific 

systems studied, suggest strategies and future research directions for understanding, 

predicting, and controlling tribological phenomena.  
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CHAPTER'1:'The'importance'of'nanotribology'

Tribology is the study of sliding surfaces and related phenomena including 

friction, adhesion, lubrication, and wear.  The study of tribology draws insights from a 

broad range of disciplines, from physics and chemistry to materials science and 

mechanical engineering.  The lessons learned apply equally broadly: to other scientific 

fields, such as geology and biology, and to industries from manufacturing and 

transportation to medical devices and food processing technology.  The study of 

tribological topics can be traced back at least 500 years, with diagrams in Leonardo da 

Vinci’s notebooks (1).  The use of tribological concepts dates back much further; wall 

paintings show ancient Egyptians using greased or rolling contacts to move heavy objects 

almost 4000 years ago (2).  Evolution has been “using” these concepts even longer – 85 

million year-old fossils of the hadrosaurid dinosaur show evidence that differentially 

wearing dental structures created self-sharpening teeth (3). 

The field of tribology was named and its importance fully recognized after a 1966 

United Kingdom government report (described in Ref. (4)) estimated that a sum of 

money equal to 4% of gross national product was wasted annually due to friction and 

wear, and one fourth of that sum could be recovered through greater attention to 

tribology: friction, adhesion, lubrication and wear.  Subsequently, more comprehensive 

studies have shown it to be true across many countries and have increased the 

recoverable estimate to roughly 1.5% of GNP (5) or more than 100 billion dollars 

annually in the US alone. These reports motivated significant research activity, and entire 

scientific journals, professional societies, and annual national and international meetings 
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are devoted to research in the field.  Enormous progress has been made in the 

measurement and control of systems with sliding interfaces; an example success story is 

the automobile industry, where improvements in material selection, component design, 

and engine operating conditions resulted in a 25% increase in average fuel economy 

between 1980 and 2005, despite an almost 100% increase in average horsepower over the 

same period (6). 

 

101:& Motivation&for&the&study&of&nanotribology&

Much of the aforementioned progress, however, has been enabled through trial-

and-error, empiricism, and the creation and use of phenomenological laws.  The 

interaction of two bodies making contact and/or sliding will be governed by the complex 

interaction of a large number of physical parameters: the composition, material 

properties, and bulk shape of the two bodies forming the contact; the topography, 

chemistry, crystallinity and even identity (if oxidized, contaminated, or passivated) of the 

surfaces of those bodies; the sliding conditions (speed, normal load, direction); and the 

environment (air, vacuum, lubricant).  Further, the interface is evolving dynamically, as 

bonds can form across the interface, deformation and wear can change the geometry of 

the bodies, and material removal or the formation of “tribo-layers” can even change the 

identity of the materials in contact.  While significant advances in models and 

experiments were made during the 1930s and 1940s by Bowden and Tabor (7) (for 

instance, the realization that friction can be modeled as scaling with the true area of 

contact), the field of tribology has suffered from a lack of fundamental, physics-based 
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models in tribology.  To this day, there are no models that can predict friction coefficients 

or wear rates from first principles (8) – despite considerable economic motivation and 

scientific effort.   

One promising path to create fundamental models for tribology is to study contact 

at the nanometer-scale.  It has long been known that nearly all real macroscopic surfaces 

are rough, and so the contact of two apparently flat bodies occurs at only a relatively 

small number of local high points, or asperities.  To further complicate the contact, 

roughness occurs over many length scales, with “protuberances on protuberances on 

protuberances” (9) or fractal-like structures; thus, the actual geometries of contact may be 

orders of magnitude smaller than the apparent dimensions of the bodies.  This fractal-like 

behavior is limited in the small wavelength by the discrete nature of atoms.  Therefore, 

the fundamental behavior of even micro- and macro-scale contacts is typically governed 

by nanoscale asperity contacts, and by atomic-scale processes that occur at these contact 

points. 

Recent scientific and industrial progress at the nanoscale has enabled direct 

experimental studies of nanoscale single asperities.  Most significantly for tribology is the 

development, proliferation, and diversification of atomic force microscopy – which 

measures the interaction between a sharp nanoscale asperity and nearly any surface of 

interest.  The atomic force microscope (AFM) can easily measure forces with piconewton 

resolutions and can resolve topography on the picometer scale (10) – in some modes 

resolving the atomic lattice (11) or even single molecules (12).  Further, it can be 

performed with precisely controlled sliding velocity, well-characterized surfaces, and 

controlled environments such as dry nitrogen, liquid, or ultra-high vacuum.  This has 
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enabled unprecedented resolution of and control over all of the many variables associated 

with a sliding contact.  This allowed the careful variation of a small number of variables 

to determine their action, and has facilitated numerous breakthrough investigations in 

single-asperity friction, adhesion, and wear (as reviewed, for example, in Ref. (13)).   

Examples of scientific breakthroughs enabled by the AFM include (among many 

others): the demonstration (14) of Bowden and Tabor’s concept of friction scaling with 

true area of contact (discussed above); the direct measurement of intramolecular and 

intermolecular forces in organic proteins (15); and the determination of the effect of 

atomic corrugation on friction and the demonstration of “superlubricity” (16).  Examples 

of commercial successes include the hard disk industry, where AFM-based studies led to 

precisely designed surface roughness and improved materials selection to enable 

exponential progress in areal storage density (6), and also microelectronic mechanical 

systems (MEMS), where AFM-based insights enabled the solution of adhesion and 

release problems with microfabricated accelerometers, gyroscopes, and active-mirror 

projectors (6).  

At the same time, advances in computing power and the development of atomistic 

simulation techniques have enabled similar problems of nanometer-scale asperities 

making contact and sliding to be studied using simulations (as reviewed, for example, in 

Ref. (17).  Experiments performed at the nanoscale have the additional benefit of being 

able to be directly compared against these simulations for complementary studies that 

yield even more accurate, generalizable, and physically realistic data than either can in 

isolation.  
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In summary, the investigation of a single, sliding contact at the nanoscale presents 

one of the most promising pathways to fundamental, predictive, scientific models of 

adhesion, friction, and wear at all length scales.  However, while the atomic force 

microscope has enabled unprecedented resolution and control of all variables associated 

with sliding contact, it does not enable direct visualization or investigation of the contact 

itself.  This problem is common to tribological testing at all length scales, and requires 

additional complementary analysis techniques to provide a fuller understanding of the 

nature of contact.  

  

102:& Motivation&for&in#situ#investigations&into&tribology&at&the&nanoscale&

In addition to all the complexities of tribological contacts that were discussed in 

Sect. 1-1, the contacting interface is – by definition – buried between two bodies, which 

further complicates observation and investigation.  As will be discussed in Chapters 2 and 

3, this problem is often solved by performing a contact or sliding test using one apparatus 

(a pin-on-disk tribometer or an AFM, for example) then removing one or both surfaces 

from the apparatus and taking them to an external microscope or spectroscope for 

analysis, typically exposing them to air or some alternate environment in the process.  

Investigations using this ex situ investigation approach have yielded very useful 

information, but are fundamentally limited by not knowing which phenomena were 

caused by sliding, and which others occurred during the removal, transfer, and insertion 

into the subsequent characterization tool.  Additionally, once removed from the 

tribological test apparatus, it can be quite difficult to find the exact location of sliding, 
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and it is nearly impossible to remount the surfaces in the same positions and orientations 

for continuation of the test after examination without a disruptive effect.  More recently, 

various researchers have incorporated a microscopy or spectroscopy technique into the 

tribological testing apparatus (8).  These in situ investigations evaluate the surfaces in 

real time either by collecting data when the surfaces are not in contact (but without 

interruption of the test or change of environment) (for example, Refs. (18, 19)) or while 

the two surfaces are in direct contact (for example, Refs. (20, 21)). 

The investigations presented in this thesis use both types of in situ investigations.  

As will be discussed in Chapter 3, the tribological test apparatus used here is similar in 

function to an atomic force microscope, but the surfaces are mounted inside of a 

transmission electron microscope.  In this way, real-time video can be captured of the 

surfaces in contact, to monitor contact forces, observe dynamic events such as snap-in 

and pull-off, and to directly observe mechanisms of wear, such as fracture, the formation 

of debris, or plastic deformation.  Yet this real-time video must be low-enough 

magnification to observe the full range of motion, and also the motion of sliding and 

vibration of the apparatus reduce the resolution that is possible.  Therefore, in addition, 

the contact can be separated without breaking the vacuum or changing the test conditions 

to take higher resolution images in which the sub-surface atomic lattice of crystalline 

materials is easily visible.  Once out of contact, the characterization tools of analytical 

electron microscopy can be used to probe the identity, structure, and bonding state of 

materials.   

The materials chosen for investigation in the present investigations are silicon, 

diamond-like carbon (DLC), and ultrananocrystalline diamond (UNCD).  Silicon was 
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chosen because of its technological relevance and extensive prior study.  As the 

foundational material for the semiconductor industry, it has been extensively 

characterized: including its material and mechanical properties and its deformation 

mechanisms.  Additionally, it is the most common material used in micro- and 

nanoelectronic mechanical systems (MEMS/NEMS) and other devices such as atomic 

force microscopy probe tips.  Diamond-like carbon coatings were chosen for study 

because they have gained extensive use as hard, wear resistant materials in devices such 

as hard disks (6).  They are also being used or considered for use in a wide variety of 

applications as protective coatings (22) from car engines to razor blades.  

Ultrananocrystalline diamond was chosen because it is a promising coating material that 

has properties such as stiffness, hardness, and inertness that approach those of single 

crystal diamond, yet can be conformally coated onto components (23).  While its use is 

not as widespread as DLC, it is considered to be a promising material for use in a variety 

of applications such as MEMS devices with sliding contacts and scanning probe 

microscopy probes (24, 25). 

 

103:& Structure&of&the&present&thesis&

This thesis begins by describing in Chapter 2 relevant prior literature on adhesion 

and wear at the nanoscale, highlighting key results from numerical and experimental 

investigations – both in situ and ex situ.  The experimental tools and analysis techniques 

used to investigate adhesion and wear are described in Chapter 3, including details of the 

in situ test apparatus, and a description of the models used and calculations performed. 
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Chapters 4 and 5 describe in situ TEM adhesion testing and its analysis to uncover the 

fundamental physics governing adhesion at the nanoscale.  Specifically, in Chapter 4, a 

novel analysis method is applied to adhesion tests performed with detailed tip 

characterization to uncover fundamental parameters governing adhesion, which had not 

previously been experimentally accessible.  In Chapter 4, similar adhesion tests are 

analyzed in the context of tip topography to demonstrate the effect of nanometer- and 

sub-nanometer-scale roughness on the adhesion of sharp tips, such as those used for 

probe-based microscopy and manufacturing.  Chapters 6 and 7 describe advances in the 

modeling and prediction of gradual, atom-by-atom wear at the nanoscale.  Chapter 6 

reframes a previously proposed model of wear based on reaction rate kinetics; a case 

study of reaction rate theory is reviewed in detail, then insights from this case study are 

directly applied to nanoscale wear.  Then, building on insights from the previous chapter, 

Chapter 7 describes the application of reaction rate theory to wear tests performed and 

characterized inside the TEM, and the extraction of the fundamental parameters 

governing wear of silicon.  Finally, conclusions drawn from the previous chapters are 

discussed in Chapter 8, along with suggested future lines of inquiry. 

! &
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CHAPTER'2:'Adhesion'and'Wear'at'the'Nanoscale'–'A'Review'

Despite hundreds of years of study on adhesion, friction, and wear, the field of 

tribology is undergoing rapid and fundamental expansion; as discussed, this is made 

possible by the convergence of nanotechnology, increases in microscopy (and 

particularly in situ techniques), and expanding computational and simulation capability.  

For example, while Leonardo da Vinci uncovered the basic trends of friction in the 

fifteenth century (1), it is only in the last two decades that we have made the nanoscale 

observations to prove why this behavior should hold (see, for example, Ref. (2).  

Likewise, the last few decades have brought major advances in the fields of adhesion and 

wear, with very significant results arising from simulations and experiments of nanoscale 

contacts.  Therefore these recent advances will be reviewed here, both as context for the 

present investigations and also as standards by which the present results can be 

compared.   

 

201:& Structure&of&the&present&chapter&

While this thesis focuses on adhesion and wear at the nanoscale, Sect. 2-2 

presents a very brief review of the models from traditional continuum contact mechanics, 

starting with simple models of two spheres in contact, then moving to continuum models 

of more complex geometry.  This section on continuum results is included for two 

reasons: first, because there are certain cases where trends and prediction from continuum 

mechanics do hold true at the nanoscale; and second, because even in cases where 

continuum trends breakdown, there exist no other well-established models to compare 
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against.  Section 2-3 presents literature on rough surfaces and the effect of roughness on 

adhesion.  Section 2-4 briefly reviews significant results from macro-scale wear, then 

goes on to discuss in detail nanoscale wear studies performed using the atomic force 

microscope.  Finally, Sect. 2-5 presents prior investigations into nanoscale wear that have 

used complementary ex situ and in situ techniques to directly image the contacting 

bodies. 

&

202:& Relevant&results&from&continuum&contact&mechanics&&

20201:& The&importance&of&continuum&results&in&a&discussion&of&nanoscale&contacts&

There is no reason to assume that continuum models should apply at the 

nanometer length scale.  These models assume that bodies can be treated as continuous 

media with smooth surfaces, in which stresses and strains are well defined and smoothly 

varying.  As contacting bodies scale down to nanometer dimensions, atomic-scale detail 

becomes relevant and these underlying assumptions almost certainly break down.  

Indeed, nanoscale experiments and simulations into the application of continuum 

predictions have yielded mixed results.  Luan and Robbins (3, 4) have shown, using 

atomistic simulations of bodies in contact, that continuum trends may or may not apply 

depending on the atomic arrangement at the surface.  For instance, regarding the normal 

pressure inside the contact as a function of radius (shown in Fig. 2.1), they show that 

continuum predictions do the following: apply nearly perfectly for a bent crystal in 

commensurate contact; accurately describe average behavior for a bent crystal in 
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incommensurate contact or an amorphous surface; and are categorically incorrect for a 

stepped crystal.  Likewise, Mo et al. (5, 6) used atomistic simulations to show that 

friction of nanoscale contacts is well-described by continuum contact mechanics 

predictions in cases of high adhesion, where as the agreement is poor for non-adhesive 

contacts.  Finally, Carpick et al. (7) showed that an atomic force microscope tip sliding 

on mica obeys the continuum contact mechanics prediction of the real contact area (the 

matching continuum model is discussed more fully in Ref. (8)).  In summary, the trends 

predicted by continuum models may or may not hold in nanoscale contacts, but cannot be 

automatically assumed to do so.   

 
Figure 2.1: Pressure distributions in nanoscale contacts obey predictions of continuum 
contact mechanics in some cases, and deviate significantly in others; the difference appears 
to arise due to atomic-scale surface detail.  These results represent atomistic simulations 
performed on four different cases of nanoscale contacts.  The pressure distribution with position 
in the contact is shown for contact between the crystal shown (a-d) and a flat crystal substrate of 
the same material; two different loads are shown for each case.  Pressure distributions are shown 
for: (i), a bent crystal (a) brought into incommensurate contact; (ii), a bent crystal (b) brought into 
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commensurate contact; (iii), an amorphous crystal; and (iv) a stepped crystal.  In this figure only, 
P represents local surface pressure, x represents position in the contact, which is normalized by σ, 
the atomic diameter.  Figure reproduced with permission from Ref. (4). 

Unfortunately, however, no firmly established, generally agreed-upon 

replacement models exist for adhesion, friction, or wear at the nanoscale.  This represents 

a general problem: except in limited cases of first-principle atomistic simulations, some 

model is needed either to compare results against or to compute the values of needed 

intermediate parameters (stress, contact area, deformation, etc.).  Therefore, in many 

investigations that are on the frontier of research into nanoscale phenomena (such as 

those reviewed in Ref. (9), and also the present thesis), continuum predictions are used as 

a first approximation.  It is understood that they may be in error.  In cases where 

measured results do not agree, this demonstrates where novel models are needed.  In 

cases where physically reasonable results are calculated using continuum predictions, 

then further work is required to determine why those predictions hold and to determine 

their range of applicability.   In conclusion, continuum mechanics is used at various 

points in this thesis, either for calculation of values or for comparison; as shown in the 

ensuing chapters, in some cases it works well, in other cases it does not.  
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20202:& Relevant&results&from&sphere0on0sphere&continuum&contact&mechanics1&

The contact mechanics of two bodies being pressed together and pulled apart, and 

the corresponding behavior of the contact area, contact stiffness, deformations, stresses, 

and strains, have been actively investigated at least since 1881 (10).  The details of these 

models are beyond the scope of this thesis and can be found in Ref. (11), with a concise 

review presented in Ref. (12).  Thus, only the most salient results are presented here.   

Based on geometric considerations and the theory of elasticity, the Hertz analysis 

(10) showed that when two non-adhesive spheres of radii R1 and R2 are pressed into 

contact with a loading force Fapplied (as shown in Fig. 2.2), the region around the contact 

deforms, with the center displacing by an amount δ in the normal direction, and forming a 

circular contact area Acontact having radius acontact, as given by (11):  

acontact =
3FappliedReff
4E*
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The effective radius Reff and the effective modulus E* are defined as 

,
      (2.3) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Portions of this section appear in print.  Adapted with permission from Jacobs, T. D. B.; 
Mate, C. M.; Turner, K. T.; Carpick, R. W. Understanding the tip-sample contact: An 
overview of contact mechanics at the nanoscale. Invited chapter for the book Scanning 
Probe Microscopy for Industrial Applications: Nanomechanical Characterization. D. G. 
Yablon, Ed. Wiley, New York, NY. IN PRESS. (Expected, 2013.). 
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,
     (2.4) 

where E is Young’s modulus, ν is the Poisson ratio, and subscripts 1, 2 designate the 

different spheres.  It should be noted that the mathematics of Hertz’s famous equations 

(and subsequent models described in this chapter) describe a paraboloid of revolution 

rather than a sphere, but these shapes are approximately equivalent in the limit where the 

body radius is large relative to the contact radius (as discussed explicitly in Ref. (13)).  

For the remainder of the chapter, they will be referred to as “spheres” in accordance with 

the original models.  
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Figure 2.2: The Hertz model describes non-adhesive contact between two spheres using 
continuum contact mechanics.  Two spherical protrusions are shown in side view when they are 
just touching (a).  In (b), the two protrusions are pressed together with a vertical loading force 

Fapplied to generate a circular contact area with radius acontact and area Acontact = πacontact
2  due to 

elastic deformation.  The total elastic deformation normal to the contact area is δ.  The axes r, z 
(used in subsequent equations) are indicated, with an origin at the center of the contact.  The 
dashed lines show the undeformed profiles of the protrusions.  Note that the extent of 
compression has been significantly exaggerated in this figure for clarity, see Sect. 2.1 for limits of 
applicability of the Hertz model.  A sphere-on-flat geometry (c), in which the sphere has radius 
Reff (defined in Eq. 2.3), has identical stress and displacement profiles to the case shown in (b).   

Initial results for adhesive spheres came from Bradley (14) for rigid spheres, and 

for elastic spheres from two separate groups: Derjaguin, Müller and Toporov (DMT) (15) 

and Johnson, Kendall and Roberts (JKR) (16).  Derjaguin et al. used a standard Hertzian 

solution with the adhesive load arising from a uniformly distributed adhesive stress, 
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which effectively acts only to increase the total contact load beyond the applied value.  

Thus, Eqs.  2.1-2.4 still apply, with Fapplied replaced by Ftotal = Fapplied + Fadhesive.  Johnson 

et al. (16) used an energy balance approach to model pull-off as a crack-like separation of 

the two materials.  This results in a new set of equations, related to but different from 

those of Hertz.  Both models make well-defined predictions for the spatial distribution of 

stresses, and for the total load and contact area as a function of deformation, as shown in 

Fig. 2.3.   
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Figure 2.3: Continuum mechanics models have been developed to describe contact in the 
presence of adhesion.  (a) Three different deformed profiles of a spherical tip are shown in 
black, as predicted by the Hertz, DMT, and JKR models.  The corresponding stress profiles under 
the tip are shown in red for each case.  (b) Normalized load is shown as a function of 
displacement for the non-adhesive (Hertz) case, as well as for both limits of the adhesive case 
(JKR and DMT).  All loads are normalized by the JKR pull-off force; displacements are 
normalized by the displacement at the pull-off point in the JKR model.  (c) The contact area is 
shown as a function of load for all three models, as well as for an example contact from the 
intermediate region between JKR and DMT.  It is assumed that Reff = 1 nm, E = 0.75 GPa, and 
Wadh = 0.318 J/m2.  The image in (c) is reproduced with permission from Ref. (17).   
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There are several key differences between the DMT and JKR models.  The DMT 

model assumes that the normal stress inside the contact is everywhere compressive, that 

the additional deformation of the body due to adhesion is small and delocalized, and that 

the contact area goes smoothly to zero during pull-off.  In contrast, the JKR model 

assumes that the stress towards the outside of the contact is highly tensile (with a 

singularity at the outermost edge), that the deformation caused by adhesion is non-

uniform and most significant towards the edge of contact, and that the contact area is still 

finite immediately prior to contact separation.  Another difference is the specific 

predicted value of the adhesive force Fadhesive where: 

,   
    (2.5; 2.6) 

where the work of adhesion Wadh represents the energy per unit are required to separate 

two flat surfaces from contact to infinite separation. 

While the DMT and JKR models were initially believed to be in conflict, Tabor 

(18) recognized that the differences in behavior could be described as two ends of a 

continuum.  He defined a transition parameter µT, later designated the Tabor parameter:    

.
      (2.7) 

The parameter z0 is the equilibrium separation between the two materials.  For the 

remainder of this thesis, the parameter z0 will be called – in accordance with J. A.  

Greenwood (13) – the “range of adhesion”; this is because for realistic models of 

adhesion between surfaces (such as the Lennard-Jones interatomic potential (19), 

discussed in Sect. 2-2-3), the equilibrium separation determines the length scale of the 
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adhesion interaction.  Tabor’s parameter compares the elastic deformation caused by 

adhesion against the range of action of adhesion.  For soft, highly adhesive materials, the 

former term dominates (large values of µT) and the JKR model applies.  For stiff, low-

adhesion materials, the latter term dominates (small µT) and the DMT model applies.  

Maugis (20) later proved Tabor’s conclusions analytically and demonstrated a spectrum 

of behavior for intermediate conditions.  The Maugis parameter (equal to 1.16µT) can be 

used to determine approximate limits of applicability, with values below 0.1 

corresponding to the DMT regime, values above 5 corresponding to the JKR regime, and 

all other values falling into the “intermediate” regime. 

&

20203:& Modeling&adhesion&for&non0spherical&geometries&&

It is common in adhesive contact mechanics to integrate a general adhesion 

interaction law (defining surface forces as a function of separation distance) over the 

geometry of the surfaces in contact.  In his analytical study, Maugis (20) described the 

adhesion of two contacting spheres (modeled mathematically as paraboloids).  He used 

principles from fracture mechanics, but with the addition of adhesion between parts of the 

spheres that were near to contact, but not in contact.  To determine the adhesive stress 

acting at any point, he defined an interaction potential, a function that determines the 

force per unit area acting between two opposing differential elements of surface for any 

value of separation distance between those elements.  He used the simplest possible 

interaction potential: the square well or “Dugdale” potential, shown in Fig. 2.4(a), where 

the adhesive stress has a constant value below a critical separation and is zero otherwise.  
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As Maugis describes, the Dugdale potential was used to simplify the mathematics, 

whereas the actual adhesive interaction potential is better described by a Lennard-Jones 

interaction potential (21) (shown in Fig. 2.4(c)).   

 
Figure 2.4: An interaction potential defines the adhesive force between two bodies as a 
function of separation distance.  A simple square-well potential is shown in (a), equivalent to 
the one used by Maugis (20).  A more realistic surface interaction potential is based on the 
Lennard-Jones 6-12 interatomic surface potential (shown in (b)).  The interatomic potential can 
be integrated to yield the functional form of the Lennard-Jones 3-9 surface potential (c).  Either 
(a) or (c) can be integrated element-by-element over the surface of two bodies that are in or near 
contact, this yields the total force acting between the two bodies.   

The physical form of the Lennard-Jones 3-9 surface potential is motivated by the 

Lennard-Jones interatomic potential, defined as: 

,
   (2.8) 

where C and D are empirical parameters used to scale the strength (C) and length scale 

(D) of the interaction that describes the force between atoms separated by a distance r, as 

shown in Fig. 2.4(b).  While the first term ( ) was physically derived based on van 

der Waals interactions, the second term ( ) arose from choosing a convenient 

mathematical expression for the repulsive energy.  The net Lennard-Jones energy or force 

between two bodies can then be calculated by integrating Eq. 2.8 over the volumes of the 
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two bodies.  For two parallel surfaces separated by a distance z, the normal stress σnormal 

acting between the two surfaces can be integrated straightforwardly (as was done in 

Ref. (22)).  The result is commonly written in the following form (13): 

!! ,   (2.9) 

and is plotted in Fig. 2.4(c).  Equation 2.9 demonstrates the point made in Sect. 2-2-1 that 

the length scale of the adhesive interaction is a function of the equilibrium separation z0 

and, for this reason, z0 is referred to in this thesis as the “range of adhesion”.  Note that 

the Lennard-Jones 3-9 surface potential (Eq. 2.9) is not typically written in terms of the 

constants C and D from Eq. 2.8.  In accordance with the approach used by Maugis, many 

authors (12, 13, 22-26) have integrated the Lennard-Jones 3-9 surface potential over a 

wide variety of geometries (spheres, paraboloids, power-law shapes, etc.) to determine 

the total force of attraction acting between two bodies. 

The approach of using a surface potential (defined for two infinite flat surfaces) 

and integrating it, element by element, over an arbitrary geometry relies on the so-called 

Derjaguin approximation (as discussed in Ref. (21)).  This assumes that the local 

contribution of body forces can be approximated by a local contribution of surface 

stresses.  This is mathematically exact for infinite flat planes, but becomes less clear as 

the in-plane size of a differential element of surface shrinks to the size scale of the 

separation distance.  Further, it neglects any tangential component of surface stress, thus 

assuming that two curved or angled surfaces have equivalent interaction to two flat, co-

planar surfaces at the same value of separation.  These assumptions have been shown to 

be inexact but reasonable as long as one of the bodies is flat (27).  Moreover, this 

σ normal (z) =
Fsurfaces
Asurfaces

= − 8Wadh
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integration approach has been very widely used in prior investigations and models at the 

macroscale (see, for example, Chapters 13-17 of Ref. (21)) and microscale (see, for 

example, Ref. (28)).  Therefore, it will be used in the present thesis (Chapter 4) and, as 

with all other continuum concepts, will be used with caution.    

&

20204:& The&generality&of&measurements&of&work&of&adhesion&and&range&of&adhesion,&and&the&

difficulty&of&their&measurement&&

The calculated values obtained by integrating a surface potential over the shape of 

a body have been shown to be relatively insensitive to the precise form of the assumed 

potential. Various authors have generalized Maugis’ results using different potentials 

including van der Waals (or exponentially shaped) adhesion with hard-wall repulsion 

(29), a Lennard-Jones 3-9 surface potential (12, 26), and an artificial triangular potential 

(26).  The results (on spheres and also on other shapes) show a strong dependence on the 

length scale and integrated area of the potential, but a relatively small effect on the exact 

form of the potential.  Therefore, in modeling and testing adhesive contacts, the chosen 

values of the adhesion parameters (Wadh, z0) are more important than the assumed shape 

of the underlying potential.   

The advantage of this insight is that results calculated using these methods are 

generalizable and relatively insensitive to errors in approximating the correct form of the 

underlying potential.  The disadvantage of this insight is that it is not clear what values  

of (Wadh, z0) should be used as inputs into the potential.  For the strict Lennard-Jones case 

(van der Waals attraction, Pauli repulsion), the parameters (Wadh, z0) can be 
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mathematically defined in terms of (C, D) in Eq. 2.8 (as is done in Ref. (30)).  However, 

in the general case, there are additional components of attraction and repulsion that will 

cause deviations away from these values.  

The difficulty of measurement and estimation of Wadh and z0 represents a 

significant limitation of this interaction potential approach.  Pull-off forces can be 

measured experimentally, but for any shape other than a perfect paraboloid, the pull-off 

force varies with both work of adhesion Wadh and range of adhesive z0.   So, while many 

analytical models (for example, Refs. (25, 31)) can predict the equation for pull-off force 

as a function of these two variables, it is common to assume a value for one (usually z0) 

and then calculate a value for the other based on the experimental measurement.  As 

discussed further in Chapter 4, it is common to approximate z0 based on intuition and 

order of magnitude arguments.  As of yet, there are no demonstrated methods for reliably 

measuring this parameter experimentally.  

 

20205:& Concluding&remarks&about&continuum&contact&mechanics&and&the&use&of&adhesion&

potentials&

As shown in this section, there is a rich body of literature describing all aspects of 

contact between continuum bodies.  Well-established, experimentally validated models 

make specific predictions for the contact area, contact stiffness, deformations, stresses, 

and strains for spheres in contact.  The generalization of these models to contacts 

between bodies of arbitrary geometries is on equally firm footing.  Less well established 

is the range of applicability of these models, and the modifications (if any) to 
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assumptions or parameters that are required as contacts shrink to the nanoscale.  Another 

shortcoming of these models is the difficulty of experimentally determining the input 

parameters that should be used.  This is the topic of Chapter 4.  Finally, another topic not 

covered by these models is the effect of surface roughness on contact and adhesion 

(discussed in the next section).   

 

203:& Relevant&prior&work&on&adhesion&as&a&function&of&roughness2&

As discussed in Sect. 2-2, the work of adhesion, Wadh, between two surfaces is an 

important property of an interface that governs adhesion forces and contact stresses, and 

can strongly influence friction and wear between two bodies (21).  As mentioned, 

continuum mechanics models assume a single, constant value of Wadh, which represents 

the energy per unit area to separate two perfectly flat surfaces from equilibrium contact to 

infinite separation.  Knowledge of Wadh is important for research and applications in 

many areas, including thin film coatings (32), biological and biomimetic adhesion (33), 

composites (34), and micro/nanoelectronic mechanical systems (MEMS/NEMS) (35).  A 

common method to characterize the work of adhesion between two surfaces is to use an 

atomic force microscope (AFM) to measure the force, Fadhesive, required to separate a 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Much of this section appears in print: Adapted with permission from Jacobs, T. D. B.; 
Ryan, K. E.; Keating, P. L.; Grierson, D. S.; Lefever, J. A.; Turner, K. T.; Harrison, J. A.; 
Carpick, R. W. The Effect of Atomic-Scale Roughness on the Adhesion of Nanoscale 
Asperities: A Combined Simulation and Experimental Investigation. Tribol. Lett. 2013, 
50, 81–93.  Copyright 2013 Springer. 
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nanoscale tip of radius Rtip from a nominally flat sample, using Eq. 2.5 or 2.6.  This 

method assumes small strains, that the materials are homogeneous, isotropic, and linearly 

elastic, and that the tips are perfectly smooth with a paraboloidal geometry (i.e. a three-

dimensional revolution of a parabola).   

 

20301:& Relevant&models&of&roughness&and&adhesion&based&on&contact&mechanics&or&van&der&

Waals&adhesion&

Previous experimental and theoretical work has demonstrated that pull-off forces 

are highly sensitive to surface roughness.  For example, Fuller and Tabor examined 

adhesion between rubber spheres with radii from 7 to 53 mm and (nominally planar) 

roughened stiff surfaces (36).  They found a 90% drop in the apparent work of adhesion 

as the average roughness Ra, of the flat surface increased from 0.12 µm to 1.4 µm, as 

shown in Fig. 2.5(a).  Separate studies on micromachined surfaces showed a four-fold 

reduction in adhesion as the root mean square (RMS) roughness (designated Rq) 

increased from 3 to 10 nm (37) and a ten-fold reduction for surfaces where RMS 

roughness increased from 10 to 40 nm (38).  When adhesion studies were performed 

using micron-scale colloidal beads (39, 40) (radii 2 - 10 µm) or intentionally flattened 

AFM probes (41) (flattened areas 600 - 47,000 nm2) on surfaces of varying roughness, all 

showed more than an order of magnitude reduction in pull-off force with increasing 

roughness (RMS roughness ranging from approximately 1 nm to 10 nm in both studies).   

However, there have been very few experimental investigations into the effect of 

roughness on contacts where one body is a nanoscale tip, as is the case in tip-based 
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microscopy and manufacturing.  In one such study, adhesion tests using AFM probes 

with tip radii of 200 nm showed a roughly four-fold reduction in adhesion force as the 

RMS roughness of the surface increased from 5 - 15 nm, but there was a significant 

degree of scatter in the data (42).   

 
Figure 2.5: Roughness has been experimentally demonstrated to dramatically reduce 
adhesion; various analytical equations have been proposed for a wide variety of model 
systems.  Fuller and Tabor (36) demonstrated a reduction in pull-off force (a) for millimeter-scale 
smooth rubber spheres in contact with Perspex flats of varying roughness on the sub-micrometer-
scale.  Different sets of points represent different radii of the spheres, but in all cases, an order of 
magnitude reduction in pull-off force is observed as roughness increases.  Greenwood and 
Williamson’s (43) model rough surface (b) is used by Fuller and Tabor along with continuum 
contact mechanics models to describe the data shown in (a).  Subsequent models, also based on 
contact mechanics, have been proposed for self-affine surfaces with multi-scale roughness (c).  
Finally, another avenue of roughness modeling uses simplified geometries (d) combined with van 
der Waals adhesion.  The images in (a), (b), (c), and (d) are reproduced with permission from 
Refs. (36), (44), (45), and (46), respectively.   



!
!

29!

Numerous models have been constructed that examine the effect of roughness on 

the contact mechanics of nominally planar surfaces.  Greenwood and Williamson’s 

seminal work (43) described the effect of roughness on the contact area and deformation 

under load of two non-adhesive half spaces.  The roughness was represented by a set of 

non-interacting asperities with identical radii and a Gaussian distribution of heights, as 

shown in Fig. 2.5(b).  Hertzian mechanics was then applied to determine the forces and 

deformations of the resulting multi-asperity contact.  A key finding was that, even for 

small levels of roughness, the true contact area is a small fraction of the apparent area.  

The adhesion of rough surfaces with an assumed geometry similar to that used by 

Greenwood and Williamson was later examined by Fuller and Tabor (36) (for the JKR 

limit of adhesion) and Maugis (47) (for the DMT limit).  In all cases, the authors 

demonstrate that results of these models agree qualitatively with experiments.  However, 

describing the rough surface as a number of identical asperities with a Gaussian 

distribution of asperity heights fails to capture both the multiscale nature of roughness 

that many real surfaces possess and the significant effect of elastic coupling between 

asperities.  An approach that overcomes these limitations is the work of Persson, in which 

a rough surface is treated as an elastic body with self-affine fractal topography containing 

roughness on many length scales (44) (Fig. 2.5(c)).  This model is thought to be more 

realistic than those reviewed above, and proposes that there is no direct, universally 

applicable relationship between root-mean-square roughness and adhesion.  Nevertheless, 

in the experimental testing of this model (48), the experimental and model data display an 

order of magnitude (though not-quite-monotonic) drop in adhesion as root-mean-square 

roughness increases from 40 - 200 nm .   Whether roughness is modeled at one or 
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multiple scales, all models predict a rapid decrease in adhesion force with increasing 

roughness because the real contact area is reduced. 

Recent experimental work indicates that it is not sufficient to consider only the 

asperities that are in intimate contact (as is done in the models discussed above), 

especially for stiff materials.  DelRio et al. (37) used adhesion experiments on 

micromachined cantilevers as well as numerical simulations to show that up to 65% of 

the total adhesive force arises due to the van der Waals attraction from portions of the 

surfaces that are near to contact, but not in contact.  This study represents an extreme 

case of microfabricated and highly planarized surfaces, but nevertheless demonstrates 

that the attractive force between near-to-contact regions should not be neglected.  

Therefore, in another avenue of roughness modeling, the van der Waals attraction is 

integrated between model interfaces to calculate the total adhesive force between them 

(41, 46, 49).  In this approach, a smooth sphere (radius Rtip) in contact with a rough 

surface is approximated as the same sphere in contact with a single small asperity (of 

radius Rmodel-roughness) situated on a perfectly smooth surface (as shown in Fig. 2.5(d)).  In 

the latter configuration, the attractive force between the surfaces can be derived 

analytically by assuming van der Waals adhesion (21, 49).  There are multiple 

approaches discussed in Refs. (41, 46) for determining how the real roughness of a 

surface should be distilled into the single parameter Rmodel-roughness.  The simplest of these 

approaches is the modified Rumpf model (discussed in detail in Ref. (46)), in which 

Rmodel-roughness depends only on the RMS roughness Rq of the surface.  (The value is 

determined as the hemispherical radius needed such that a densely packed network of 
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hemispherical features would have an equivalent value of Rq to the real, rough surface.)  

The adhesion force is then given by: 

Fadhesive =
A1:2Rtip
6D0

2 1+
Rtip

1.48Rq
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 ,

   (2.10) 

where A1:2 is the Hamaker constant between the two materials, and D0 is the equilibrium 

spacing of the materials in contact in a van der Waals model (discussed in much more 

detail in Sect. 4-3-2).  Thus, for a given set of materials (constant Rtip, A1:2, D0), the effect 

of surface roughness is captured completely by Rq.  Subsequent models (41, 46) refine the 

definition of Rmodel-roughness slightly, but use the same general approach. These models also 

predict a precipitous drop in adhesion force with increasing roughness because roughness 

increases the average separation between the two bodies.    

Taken together, all of the above models represent significant progress on this 

topic; however, none of them systematically characterizes adhesion on the sub-nanometer 

scale, and all of them assume that the rough surface has an overall shape (excluding the 

roughness) that is nominally planar.  Therefore, none are well suited for understanding 

the effect of roughness of a highly curved tip such as an asperity with nanometer-scale 

dimensions.  While it may seem that there is little mathematical difference between a 

smooth nanoscale tip on a rough surface and a rough nanoscale tip on a smooth surface, 

in fact, there two important considerations that come up in the latter case.  First, it is not 

trivial to characterize the roughness on a highly curved surface.  It is difficult to measure 

the topography of a sharp tip in detail and, once measured, the topography cannot be 

easily reduced to a single parameter such as root-mean-square roughness.  Second, if 
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measurements of rough planar surfaces are being made using a nanoscale tip that is 

assumed to be perfectly smooth, then systematic errors are being introduced into those 

measurements – and the magnitude of those errors are not easily quantified since the 

roughness of the tip is unknown.   

There has been some initial progress on ultra-small-scale roughness and curved 

tips.  Using MD simulations of a larger curved surface (Rtip = 441 nm), Mulakaluri and 

Persson (50) applied the self-affine fractal model to show an order of magnitude drop in 

adhesion as roughness increased from 0.1 to 1.2 nm.  Luan and Robbins (3) used 

atomistic simulations on tips that are closer to AFM dimensions (Rtip approximately 

30 nm) to examine the effect of surface topography.  They demonstrated a factor of 2 - 4 

change in adhesion of amorphous surfaces as compared to bent or cut crystalline surfaces.  

Finally, a recent MD study using flat surfaces showed that the adhesion of a model 

diamond nanocomposite (on a diamond counter-surface) decreased four-fold when RMS 

roughness increased from 1.2 to 1.5 Å (51).  While these studies have clearly shown the 

significance of sub-nanometer-scale roughness on adhesion, none systematically 

examined this effect, and none contained experimental data demonstrating the effect of 

sub-nanometer-scale roughness on the effective work of adhesion between a tip and a 

substrate.  In Chapter 5, in situ adhesion tests are reported which allow the concurrent 

measurement of tip geometry and adhesive force to enable this type of comparison.   
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20302:& Concluding&remarks&about&roughness&and&its&effect&on&adhesion&

Much progress has been made in determining the variation of adhesion with 

roughness on nominally planar surfaces.  However, two primary questions that remain are 

the effect of sub-nanometer-scale roughness on adhesion, and also the effect of such 

roughness on highly curved probe tips such as those used in probe-based microscopy and 

nanomanufacturing.  The first question concerns fundamental limits of how small 

roughness can be and what effect it has when it reaches those limits.  Even a multi-scale 

self-affine model of roughness must have a short wavelength cut-off at which it can no 

longer hold.  The second question is of scientific relevance as important quantities are 

routinely measured using rough nanoscale AFM probes, and of practical relevance as 

adhesion represents a significant limitation in the commercialization of nanoscale devices 

and manufacturing.  These questions will be addressed in part in Chapter 5.  

 

204:& A&review&of&nanoscale&wear&tests&performed&using&the&atomic&force&

microscope&and&their&comparison&to&macro0scale&wear&

20401:& A&brief&review&of&relevant&results&from&wear&at&macroscopic&length&scales&

While there are many different wear mechanisms that apply for different 

conditions and material systems, the most broadly applicable to macro-scale systems is 

the Archard equation.  As famously cataloged by Meng and Ludema (52), there are at 

least 16 distinct wear mechanisms used in prior literature (such as adhesive wear, 

abrasive wear, fretting, scuffing) – most of which are not rigorously or consistently 

defined – and there are at least 182 different equations that have been proposed to 
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describe different types of wear.  The authors describe how the vast majority of these are 

empirical, and many seem to apply to one particular system or even just to one particular 

scientific manuscript.  The most widely used of these many equations to characterize the 

kinetics of a particular wear process is the Archard equation (53) or some closely-related 

variant.  The Archard equation assumes that the volume removed Vlost is proportional to 

the product of applied load Fapplied and sliding distance dslide and is commonly expressed 

as: 

,     (2.11) 

where KArchard is the dimensionless wear coefficient, and H is the hardness of the softer 

material.  While this form of the Archard wear law was derived using simple arguments 

based on fully plastic material removal (54), the equation is frequently generalized to a 

wide variety of materials, and is expressed more generally (for instance, in Ref. (55)) as: 

,     (2.12) 

where kArchard represents the dimensional wear coefficient, and is often quoted in units of 

[mm3/(Nm)].  As Rabinowicz (56) discusses in the celebratory 100th volume of the 

journal Wear, the Archard equation applies directly to the most common wear 

mechanisms (adhesive and abrasive wear, in his description), and can be used to 

characterize wear in other wear mechanisms even if its physical interpretation in those 

cases is not as clear.   

The Archard equation is extremely useful for characterizing wear in practical 

settings and empirically predicting the service life of engineering components (55, 57).  

There are numerous examples of Archard-like behavior on the macro-scale (for example, 

Vlost = KArcharddslide
Ftotal
H

Vlost = kArcharddslideFtotal
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Ref. (58)) and even the micro-scale (for example, Ref. (59)).  However, these are often 

composed of multi-asperity contacts and their behavior should be expected to differ from 

that of a single asperity.  Additionally, the atomic-scale details and interactions of the 

surfaces in contact are likely to dominate the kinetics of wear of a single asperity.  

Therefore, there is no reason a priori to assume that the Archard wear equation should 

describe wear at the nanoscale.  However, just like with continuum contact mechanics in 

Sect. 2-2, Archard’s equation represents a standard for comparison in measurements of 

nanoscale wear – either to demonstrate agreement or deviation and regimes where 

different models are required. 

Even in cases where Archard’s law does apply, however, the equation remains 

fundamentally empirical and the wear coefficient is an experimentally measured 

parameter that cannot be predicted ahead of time.  More generally, a fundamental, 

predictive understanding of wear remains elusive at all length scales remains elusive.  

Therefore, just as nanoscale studies are providing a clearer picture of friction at all length 

scales (see Chapter 1), it is hoped that nanoscale wear studies will provide a clearer 

picture of the scientifically based mechanisms underlying material removal and of the 

kinetics that govern those.   

   

20402:& Nanoscale&wear&tests&using&the&atomic&force&microscope&and&deviations&from&the&

Archard&equation&

As discussed, the atomic force microscope (AFM) has become a standard tool for 

studying nanoscale contact phenomena by sliding a single asperity across a well-defined 
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surface.  It therefore has been widely used to induce and detect wear on a surface of 

interest.  Early studies using these techniques (for example, Refs. (60-62)), typically used 

very high loads (in the range of 1 μN to 1 mN) and observed catastrophic wear processes 

such as deep scratches and plowing – akin to those seen on the macro-scale.  They 

demonstrated a damage threshold, below which the large-scale wear could be prevented; 

this result is also in accordance with macro-scale behavior (63).  However, in the last 

decade, a large number of detailed experimental studies have investigated nanoscale 

contacts under nanoscale loads (1 nN – 1 μN) using standard contact-mode AFM 

techniques.  These have characterized the wear that occurs below this damage threshold.  

A number of experimental studies have characterized wear progression in sharp 

tips or flat surfaces composed of a variety of materials (including silicon and silicon 

nitride (64-66), diamond and related materials (67-69), and minerals such as sodium 

chloride (70), mica (71, 72), and calcite (73)) under various loads, velocities, and 

environments.  The first trend that emerged from many of these studies is that Archard’s 

equation is inadequate for describing wear in nanoscale single asperity sliding contacts.  

Most significantly, the dimensional wear rate kArchard is typically not constant with sliding 

distance (65, 66, 74) – neither for wearing surfaces (Fig. 2.6(a)) nor for wearing probes 

(Fig. 2.6(b)).  Not only does kArchard consistently decrease over the course of the test, but 

also the measured quantity is of limited utility since its value depends on the length of the 

interval over which it is being measured.  Further, a non-linear dependence of wear rate 

on applied load has been observed for both single asperity wear (i.e. tip wear) (66) and 

for surface wear (73).  Finally, while there are limited studies of the effect of sliding 
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speeds, the nanoscale wear rates do not appear to be independent of velocity (75, 76).  As 

a consequence new models have been put forth to explain the progression of wear in 

these experiments (73, 77, 78).  The most widely supported of these assume that wear is 

occurring in an atom-by-atom fashion. 

 
Figure 2.6: Nanoscale wear tests performed in the AFM demonstrate varying wear rates 
with sliding distance, in contrast to the macroscale Archard equation.  Substrate wear was 
measured (a) during sliding of a diamond-coated AFM tip over flat surfaces of various materials 
(legend) (64).  The sliding was performed at 500 nN; while not directly specified, one “cycle” 
appears to correspond to 4 µm of sliding.  In separate experiments, tip wear was measured (b) 
during sliding of AFM tips of various materials (legend) on flat substrates of ultrananocrystalline 
diamond (79).  The latter experiment was conducted under 0 nN of applied load, i.e. under the 
action of adhesion.  The images in (a) and (b) are reproduced with permission from Refs. (64) 
and (79), respectively. 

 

20403:& Nanoscale&wear&laws&based&conceptually&on&reaction&rate&theory&

Some of these AFM-based wear tests have allowed observations which suggest 

that atom-by-atom wear is occurring (65, 69, 76, 79, 80).  In other words, that surface 

modification is occurring by the removal of individual atoms or, at most, extremely small 
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clusters of atoms rather than by larger-scale modification such as fracture or plastic 

deformation.  There has not been direct experimental evidence for this claim, but three 

observations suggest that is may be accurate: (1) the rate of wear in the low-load regime 

is very low – in some cases calculated to be as small as one atom per millimeter of 

sliding (65, 68); (2) there has been crystalline structure observed in the redeposited wear 

debris (80) (indicating small enough debris particles that ordering is possible); and (3) the 

smoothness of the profiles of worn probes indicates a very small unit of wear events (69, 

79).  Many equations have been proposed to describe wear in this regime, for example 

Refs. (65, 70, 71, 73, 77, 81); they are all based (at least conceptually) on formalisms 

developed for thermally activated processes (for example, atomic diffusion in a crystal).  

Each model is briefly described below; in some cases, the models disagree with one 

another or even inaccurately represent the underlying thermally activated model.  This 

will be discussed more rigorously in Chapter 6, where a review is presented of the 

kinetics of stress-mediated thermally activated processes and implications for nanoscale 

wear are discussed.   

In an early study by Park et al. (73), a silicon nitride probe tip was raster-scanned 

across a surface step of calcite in an aqueous environment.  Scanning increased the rate of 

dissolution of ions at the step edge and, in particular, induced nucleation of a double-

kink.  Simultaneous topographic images showed that, as these double kinks nucleated on 

the step edge and grew laterally, the step receded by one lattice spacing l per dissolution 

(or wear) event.  Thus, the velocity of growth of the wear track, vtrack (the distance the 

step recedes in nanometers per second), is proportional to the time-rate of wear, Γatom-loss.  
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When the rate vtrack is plotted against the applied normal contact force FN, there is an 

exponential dependence, as shown in Fig. 2.7(a).  These authors were the first to model 

wear behavior using Arrhenius kinetics and transition state theory. 

In their model, Park et al. describe a form for the rate of growth of the wear track 

vtrack due to kink nucleation that is based on reaction rate theory: 

vtrack
m
s

⎡
⎣⎢

⎤
⎦⎥
= vtrack ,0 exp − ΔUact −σ rrΔVact

kBT
⎛
⎝⎜

⎞
⎠⎟

,    (2.13) 

where vtrack,0 represents a constant, ΔUact and ΔVact represent the activation energy and 

activation volume of kink nucleation, kB is Boltzmann’s constant, T is absolute 

temperature, and σrr is the Hertzian radial stress, evaluated at the edge of the contact – the 

largest tensile stress predicted by the Hertz model.  In this picture, vtrack varies 

exponentially with changes in the stress and, by fitting the experimental data, an 

activation volume can be directly extracted.  Since temperature was not varied, the 

activation energy cannot be directly measured.  Instead, the authors estimate values for 

all non-measurable quantities in Eq. 2.13 and then solve the equation for ΔUact.   

 

!  
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Figure 2.7: Several AFM-based investigations into nanoscale wear of surfaces and tips have 
been analyzed assuming an exponential dependence of wear rate on load or stress in the 
contact.  Park (73) calculated the growth rate of wear pits (a) on a calcite surface during sliding 
with a silicon nitride tip in an aqueous solution. Sheehan (70) measured the wear rate (b) of a 
sodium chloride substrate during sliding with a silicon nitride tip at two different temperatures in 
an environment of dry nitrogen.  Gotsmann and Lantz (65) calculated the change in tip radius 
with sliding (c).  In all cases, points represent experimental data and the solid line represents a fit 
to that data using a model in which the wear rate varies exponentially with contact stress.  The 
images in (a), (b), and (c) are reproduced with permission from Refs. (73), (70), and (65), 
respectively. 

 

Similar experiments were performed by Sheehan (70) on NaCl in nitrogen 

environments at different relative humidities and at two different temperatures (32 °C and 

60 °C), as shown in Fig. 2.7(b)).  In this study, step edge recession was also monitored, 

and the rate of volume loss [nm/cycle] from the surface was calculated.  The 

author’s analysis built on that of Park et al. (73), but instead of using the radial Hertzian 

stress σrr, he proposed that the sub-surface Hertzian shear stress τHertz would have the 

most significant effect on atomic-scale wear.  This stress was evaluated at a depth of one 

monoatomic step of the NaCl.  Thus, Sheehan fit the measured data using the following 

equation, based on a slightly different interpretation of reaction rate theory: 

 
Vwear
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Vlost

nm
cycle

⎡
⎣⎢

⎤
⎦⎥
= Vlost ,0 exp −

ΔUact −τ HertzΔVact
kBT

⎛
⎝⎜

⎞
⎠⎟

,    (2.14) 

As with the Park study, the measurements of wear rate versus stress are fitted and a value 

for the activation volume is extracted from the best-fit curve.  Additionally, by 

introducing temperature variation, Sheehan’s data is the first to measure changes in wear 

rate with temperature and thus is the first set of data where the stress-free activation 

energy barrier could be directly accessed.  However, having only two temperature data 

points over a limited temperature range leads to large uncertainty in this value.   

Gotsmann and Lantz (65) applied Arrhenius kinetics to the wear of the scanning 

tip rather than the scanned surface, as had been done previously.  In this investigation, the 

radius change of silicon probe tips was monitored in situ during extremely long-distance 

scanning at a variety of applied loads over a polymer (polyaryletherketone) surface.  

Sharp, conical tips with initial radii of 3-5 nm were scanned for hundreds of meters.  An 

in situ force-displacement test was performed at regular intervals to measure pull-off 

force Fadhesive, which was used to calculate the tip radius.  During sliding, the tip radius 

changes as shown in Fig. 2.7(c).  By assuming that the tip is wearing away as a truncated 

cone, the authors model the change in height of the conical tip using a modified version 

of the reaction rate law: 

∂h
dtslide

nm
s

⎡
⎣⎢

⎤
⎦⎥
= lfatt exp − ΔUact

kBT
+
τ frictionΔVact

kBT
⎛
⎝⎜

⎞
⎠⎟ ,

   (2.15)  

where l is the lattice constant of the material, assumed equal to thickness of one atomic 

layer of material.  The authors modify the above equation by using the geometry of a 
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cone (with opening angle θcone) and by assuming a form for the frictional shear stress 

τfriction adapted from the work of Briscoe and Evans (82), which is empirically derived, 

but can be motivated using a thermally activated model of friction (83): 

,
    (2.16) 

where σnormal,mean is the average normal stress in the contact, kB is Boltzmann’s constant, T 

is the absolute temperature, v is the sliding velocity and ΔVact,friction is the activation 

volume of the friction process (not the activation volume of the wear process ΔVact,wear, 

designated in elsewhere in this document as ΔVact).  The parameters ξ, τ0, and v0 are 

experimentally measured constants defining: the pressure dependence of shear stress, the 

value of the shear stress extrapolated to zero pressure, and a characteristic velocity, 

respectively.  The authors then make some simplifying assumptions specifically: (1) that 

the activation volumes associated with friction and wear are identical; (2) that the cone 

truncates in a flat plateau of radius aflat, such that 

σnormal,mean = (Fadhesive + Fadhesive)/(πaflat
2); and (3) that the adhesive force scales linearly 

with radius aflat of the flat tip apex (i.e.  Fadhesive = c ×aflat, where c is a constant).  Under 

these assumptions, the result is a differential equation relating the apex radius aflat to the 

sliding distance dslide: 

∂aflat dslide( )
∂dslide

= tan θcone( )exp − ΔUact

kBT
+ ΔVact
kBT

τ 0 + ξ
Fapplied + caflat

πaflat
2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.  (2.17) 

Equation 2.17 is numerically solved for aflat and fit to the experimental tip wear data 

using an effective activation energy (ΔUact - ΔVactτ0) and an effective activation volume 

τ friction = τ 0 + ξσ normal ,mean +
kBT

ΔVact , friction
ln v

v0

⎛
⎝⎜

⎞
⎠⎟
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(ξΔVact) as fitting parameters.  Note that while the rate of wear exhibits the familiar 

exponential dependence on stress in this model, the shape of the curve in Fig. 2.7(c) 

reflects the fact that the contact stresses change as wear progresses and the tip gets 

blunter.  Bhaskaran et al. (68) used the same model to analyze data from a related study 

of a silicon-containing diamond like carbon (DLC) tip over a silica surface.   

Additional thermally activated models of atomic-scale wear have been proposed, 

though other studies did not directly measure or calculate values for activation 

parameters.  Kopta and Salmeron (71) examined wear of muscovite mica samples during 

AFM scanning in humid air.  Specifically, the authors observed that 2 Å-deep wear scars 

appeared in the mica after a certain number of scans, indicating detachment of the top 

layer of SiO4 tetrahedra.  Significantly, wear pits only developed after a characteristic 

number of scans, which depended on the total applied load Fapplied.  The authors modeled 

this behavior as thermally activated cleavage of Si-O bonds, detaching single SiO4 

tetrahedra and leaving behind point defects not observable in the AFM images.  The rate 

of creation of point defects as a function of applied load was modeled as: 

   (2.18)  

where ρsurf is the surface density of atoms, and δ(ΔUact) represents a load-dependent 

reduction in activation barrier that the authors estimate using scaling arguments.  When 

the density of defects reaches a critical level, a large section of the top layer detaches, 

creating a detectable wear pit.  While the authors are able to accurately fit their data using 

 
Ndef Fapplied( )

 

Ndef Fapplied( ) = ρsurf Acontact fatt exp
ΔUact −δ ΔUact( )

kBT
⎡

⎣
⎢

⎤

⎦
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a form of Eq. 2.18, they did not directly extract the activation parameters.  Further 

evidence for their description of wear progression in mica (individual bond scission 

events leading to larger-scale displacement of mica layers) was later validated directly 

using lattice-resolved friction images of the evolving mica surface (72).  The latter 

authors also investigate the effect of solution pH on wear progression and find further 

support for this argument based on thermally activated bond-breaking.!

A theoretical model of thermally activated sample wear has been developed by 

D’Acunto (77, 81), in which the transitioning atoms undergo a diffusion-like hopping 

process.  This model considers wear of sample atoms in two ways: (1) the atom can be 

pulled onto the tip due to van der Waals attraction; or (2) it can be dragged along the 

surface by shear forces.  In this model, the two processes are modeled using Arrhenius 

rate laws with independent activation barriers.  This model usefully considers the 

question of what happens to the atoms after they are worn away, which is not considered 

in the other models.  The barrier for jumping between the tip and sample is taken as the 

attractive term in the equation for the van der Waals force, and is thus dependent on 

tip/sample separation.  The barrier for jumping laterally is taken as the height of the 

corrugations of the sample’s potential energy surface.  According to the assumptions in 

the paper, the barrier for lateral jumps is significantly lower and therefore this is taken as 

the primary wear mechanism.  While this model is also based on an Arrhenius rate law, 

results cannot be compared directly with Refs. (65, 70, 73) since the activation barrier 

(taken as the energy surface corrugation) is independent of normal or frictional forces.   
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20404:& Concluding&remarks&about&AFM0based&nanoscale&wear&tests&

In summary, many nanoscale wear experiments have been performed using the 

atomic force microscope.  While the Archard equation has previously been shown to 

describe wear in a wide variety of systems and conditions on the macroscale, it does not 

adequately describe the wear of nanoscale contacts.  For several systems under a variety 

of low-load sliding conditions, wear at the nanoscale appears to occur in an atom-by-

atom fashion.  Further, experimental data in many of these studies can be well fit with an 

exponential dependence on load or stress in the contact.  However, various authors fit 

their experimental data using different equations; some of these are mutually 

contradictory, others lack a solid foundation in chemical kinetics.  In Chapter 6, a more 

rigorous framing is presented of wear via stress-mediated thermally activated reactions, 

and the interpretation of various activation parameters is more thoroughly discussed. 

 

205:& Investigations&into&nanoscale&wear&using&ex#situ#and#in#situ#imaging;&

demonstrated&nanoscale&wear&mechanisms&

20501:& Imaging&a&wearing&probe&using&ex#situ#electron&microscopy&

In addition to the AFM-based wear experiments discussed above, there have been 

many excellent wear investigations using periodic ex situ imaging of the scanning probes 

to measure changes in geometry of the wearing materials.  The most thorough of these 

were performed by Chung and co-workers (64, 67, 74) and by Liu and co-workers (69, 

79).  These allowed the identification of material removal mechanisms and, in some 

cases, allowed the measurement of volume lost during sliding.   
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Chung and Kim imaged silicon probes after AFM scanning on silicon and 

diamond-like carbon (DLC) surfaces (74).  Very impressive, high resolution images were 

taken of the tips, as is shown in Fig. 2.8(i-ii); however, oxidation upon exposure to air, 

contamination during scanning and irreproducible mounting in the TEM (see Sect. 3-1) 

precluded direct comparison of the nanoscale tip shape before and after sliding.  Instead, 

wear mechanisms are inferred from characteristics of tip appearance after sliding.  The 

authors conclude that fracture of the ultra-sharp silicon probes was common upon initial 

contact in AFM, but that this can be avoided with slow, careful approach.   In cases 

where fracture was avoided, TEM images of tips after scanning showed flattening in a 

manner that might be consistent with gradual modification of the amorphous oxide layer 

and, for sufficiently long scans, the underlying silicon.  Another investigation using 

nanocrystalline diamond-coated silicon AFM probes sliding under 1 - 5 µN of load 

showed some probes that appeared to have been flattened gradually, and others that 

showed evidence of a sudden, large fracture event (74).  More recently, Liu et al. used 

periodic TEM of AFM probes to image silicon, silicon nitride, and ultrananocrystalline 

diamond probes at regular intervals during sliding (69, 79).  In contrast to prior work, the 

authors were systematic about imaging at regular intervals using similar orientation in the 

TEM, to allow direct analysis of tip shape evolution, as shown in Fig. 2.8(a-f).  In 

agreement with Chung and Kim, Liu et al. saw fracture in the silicon tip and also wear 

that appeared to be gradual.  Volume removal in silicon nitride and UNCD probes was 

more consistently gradual.  Further, the study by Liu et al. used quantities measured in 

the TEM (such as tip radius) to improve the accuracy of assumptions and input 

parameters for calculating quantities such as work of adhesion in the AFM.   
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Figure 2.8: Using ex situ TEM imaging at intervals during an AFM-based wear test allows 
visualization of the tip geometry and provides some evidence of wear mechanisms.  Chung 
and Kim (64) imaged a silicon tip after sliding on a (100) silicon surface in air under a load of 
10 nN.  After 32 µm of sliding (i), the authors assert that wear occurred only in the “amorphous 
layer” (of unspecified composition); by contrast, in after 320 µm of sliding, they believe that wear 
progressed into the crystalline silicon, then a thin oxide has developed over the worn surface after 
the wear test, but prior to insertion into the TEM.  In a separate investigation, Liu et al. (79) 
investigated wear in silicon probes (a-c) and similar probes coated with silicon nitride (d-f).  The 
silicon probe shows evidence of both fracture (as demonstrated by the broken piece adhered to 
the side in (b)) and gradual wear (as evidenced by rounded tip profiles in (b) and (c)).  By 
contrast, the silicon nitride-coated probe appears to have worn gradually throughout testing. The 
images in (i-ii) and (a-f) are reproduced with permission from Refs. (74) and (79), respectively. 
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 In some of the above-mentioned investigations, the amount of removed material 

was quantified.  In Ref. (64), the authors made a “quantitative estimate of wear” (pg. 138) 

of silicon and silicon nitride probes from SEM images of the AFM tip, as shown in 

Fig. 2.9(a).  The resolution of the measurement was limited by the resolution of the 

imaging, measuring typical minimum volumes of 107 nm3 removed.  The measurements 

appear to deviate significantly from Archard’s wear law, as volume lost does not scale 

linearly with load or with sliding distance.  However, the authors still quote values for the 

wear coefficient, kArchard.  In Ref. (67), the authors report wear rates of 4.3-5.8×10-

6 mm3/(Nm) for the first 300 µm of sliding and 3.9-5.0×10-7 mm3/(Nm) after 1500 µm of 

sliding, implying that wear slows down as sliding continues.  The authors attribute this to 

the decreasing contact pressure due to the flattening of the probe.  Additionally, in both 

of their investigations Liu and coworkers (69, 79) carefully measured the volume lost in 

their studies with the highest volume resolution yet demonstrated using direct 

visualization.  An example of such a measurement is included in Fig. 2.9(b), and can 

measure minimum volume loss of approximately 105 nm3.   
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Figure 2.9: Periodic ex situ TEM images have been used to calculate the amount of volume 
lost from the wearing tips; removed quantities as small as 105 nm3 have been observed.  
Worn volume has been measured (a) for a silicon tip sliding on a (100) silicon substrate at various 
applied loads (legend).  In a separate study, wear was quantified (b) for tips of various materials 
(legend) sliding without applied load over ultrananocrystalline diamond.  The images in (a) and 
(b) are reproduced with permission from Refs. (64) and (79), respectively. 

Taken together, these ex situ investigations have advanced the field by 

significantly improving the volume resolution of tip wear, and demonstrating certain 

mechanisms by which nanoscale wear can occur.  The limitation of these studies is the 

interruption of the wear test and the difficulty associated with transferring the AFM probe 

back and forth to another apparatus.  Thus, high-resolution snap-shots of the probes are 

only available at widely spaced intervals and it is not possible to tell under which 

conditions wear occurred.  For instance, fracture occurred during the first 20 mm of 

sliding of the tip shown in Fig. 2.8(b), but it is unclear under what conditions it occurred 

and how much gradual wearing took place before and after.  Also, there is surface 

contamination and oxide visible in Fig. 2.8(i-ii) and other figures from that investigation, 

but it is impossible to know whether these were present during the sliding, or formed 
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afterwards. To address these latter questions, fully in situ wear investigations are 

required. 

 

20502:& Fully&in#situ&investigations&into&nanoscale&wear&

There have been several investigations involving contact and lateral sliding 

conducted using in situ testing inside of TEM, dating back to 1996 (84-86).  Several 

recent examples of this are shown in Fig. 2.10.  For example, many different material 

pairs have been slid relative to one another, with observation of the resulting deformation 

and material removal.  In work sliding a gold-coated diamond indenter across a silicon 

surface, fracture and the formation of wear debris in the silicon is clearly visible (87) 

(Fig. 2.10(a-b)).  When a tungsten asperity is slid over gold, sliding induces the build-up 

of sub-surface dislocations and plastic deformation, which is clearly visible in the 

TEM (88) (Fig. 2.10 (c-d)).  In contrast, if both sides of the contact are gold, then a pillar-

like neck forms (88) (as has been shown previously (in Ref. (85) and elsewhere), bridging 

the contact and accommodating all lateral motion in liquid-like fashion (Fig. 2.10(e-g)).  

Finally, scoop out of wear particles from an aluminum alloy has been observed, along 

with their subsequent agglomeration (89) (Fig. 2.10(h-i). Other fully in situ studies have 

resolved changes in bonding configurations of diamond-like carbon surfaces (90) and 

visualized rolling and deformation of onion-like particles composed layered solid 

lubricant materials (91, 92). 
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Figure 2.10: Several fully in situ wear studies have directly visualized wear processes in real 
time.  In (a-b) (87), a gold-coated indenter tip (darker, bottom left) was slid against a thin silicon 
wedge (lighter, upper right).  Initially, semi-circular contrast fringes are visible (a) due to lattice 
strain; then fracture in the silicon (b) relieves the strain (leaving only linear fringes that arise due 
to thickness variations).  The magnification is only reported as “12 kX”; the images shown in (a) 
and (b) are estimated (by the present author) to be roughly 1 µm in width.  In (c-d) (88), a sharp 
tungsten tip (right side) is slid against a thin gold sample (left).  A segment of the surface region 
in the gold sample initially has a lighter appearance (c), then becomes darker after the tip is slid 
across it (d).  Since this contrast change remains after separation of the contact, it is attributed to 



!
!

52!

the creation and pile-up of dislocations and sub-surface damage to the lattice.  In (e-g) (88), a 
gold-coated tungsten probe (left) is brought into contact with a gold surface feature (top, right).  
An elongated neck forms and all lateral motion is accommodated plastically in this necked 
region.  Finally, in (h-i) (89), a diamond “pin” is slid across a “sample” composed of an 
aluminum alloy.  On various passes (denoted n) different behavior is apparent, including “scoop 
out” of material from the aluminum alloy (h) and later agglomeration of worn material into larger 
wear particles (i).  The images in (a-b), (c-g), and (h-i) are reproduced with permission from 
Refs. (87), (88), and (89), respectively.  

These impressive studies demonstrate some of the deformation mechanisms that 

are active at the nanoscale, for instance: fracture; sub-surface plastic deformation; neck-

formation and deformation; and exfoliation of layered materials.  Any and all of these can 

contribute to the volume loss during sliding that is described as “wear.”  However, none 

of these direct, fully in situ studies suggests a deformation mechanism that is compatible 

with the gradual, progressive material removal seen in Sect. 2-2-1.  Further, none of the 

prior in situ work has carefully measured nor controlled the conditions of sliding, such as 

the sliding distance, the normal load, and the geometry at contact.  So while these studies 

depict the way in which material was deformed and removed in specific cases, they 

cannot shed light on the kinetics of wear, nor the conditions (i.e. stress) under which 

different mechanisms are active.  

 

20503:& Concluding&remarks&about&ex#situ&and&fully&in#situ&nanoscale&wear&tests&

Impressive nanotribological studies have been performed using complementary ex 

situ and in situ microscopy to characterize nanoscale wear.   The investigations with ex 

situ imaging involved sliding under well-controlled conditions (using the AFM), enabled 

improved resolution of tip wear, and suggested possible wear mechanisms, but suffered 
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from large intervals of sliding between imaging and lacked the ability to correlate TEM 

observations with sliding events.  In contrast, the fully in situ wear tests enabled short 

sliding times and unparalleled real-time visualization of the mechanisms of material 

deformation and removal, but suffered an almost total lack of quantification of the sliding 

conditions (distance, load, velocity).  The apparatus, methodology, and analysis 

techniques described in the following chapter have been devised to enable future wear 

testing that combines the advantages of AFM testing with the advantages of fully in situ 

visualization.    
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CHAPTER'3:'Methodology'–'Using'TEM'to'investigate'nanoscale'

contact'phenomena'

The present chapter describes novel apparatuses and methodologies developed for 

investigating contact phenomena using a TEM.  First, a novel fixture is described for ex 

situ imaging of AFM probes, including the improvements of the novel fixture beyond 

other fixtures for similar application that were used in prior investigations.  Second, the 

apparatus and methodology are described for performing in situ adhesion and wear 

testing inside the TEM.  Finally, the methodology and computational routines for data 

processing are described.  These include methods for: assessing and comparing tip 

geometry; quantifying tip roughness; measuring dynamic events in videos; calculating 

relevant adhesion parameters; and quantifying volume change. 

 

301:& Examining&AFM&tips&in&the&TEM&(for#ex#situ#testing)&

For initial evaluation of AFM tip quality, and for ex situ imaging of AFM tips 

before and after testing in an AFM, it is useful to have a fixture for mounting AFM 

probes inside a TEM.  A novel fixture was developed3 for static imaging of AFM probes 

in a TEM that improved upon the previous state of the art.   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 This fixture was developed in collaboration with Graham Wabiszewski (PhD Candidate, 
Department of Mechanical Engineering and Applied Mechanics, University of 
Pennsylvania) and Alex Goodman (then a senior at The Haverford School, Haverford, 
PA). 
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Figure 3.1: A novel fixture was developed to increase the throughput and reproducibility of 
AFM tip imaging.  The novel fixture is shown in perspective (schematically in (a)) and in top 
view (optical photograph in (b)).  The side-view dimensions are indicated in (c).  Figure courtesy 
of Graham Wabiszewski (PhD Candidate, Department of Mechanical Engineering and Applied 
Mechanics, University of Pennsylvania). 

&

30101:&Limitations&of&previous&fixture&designs&for&imaging&of&AFM&probes&using&TEM&

As discussed in Chapter 2, several authors (such as in Refs. (1-6)) have used TEM 

to image AFM probes.  These authors do not describe the fixturing used; however, it is 

clear from the images in published articles and from personal communication (with 

authors from Ref. (5, 6)) that reproducibility of probe alignment hampered the direct and 

meaningful comparison of TEM images taken before and after use of the probe.  Typical 

approaches used double-sided carbon tape to mount the AFM chip onto a flexible metal 

strip, which was then inserted into a holding slot in an aluminum plate.  The metal strip 

was secured to the plate with more carbon tape.   
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This earlier fixturing suffered three primary disadvantages.  First, the mounting of 

the probes was largely irreproducible from one mounting to the next, hampering the 

ability to compare probes before and after testing in another apparatus.  Specifically, the 

position of the sharp tip was able to deviate typically by several millimeters in all three 

spatial axes; and the orientation of the conical tip was able to rotate by several degrees 

about all three axes of rotation.  Significant user skill was required to mount the probes in 

a similar position and orientation before and after testing; it was impossible to achieve 

identical (or even near-identical) position and orientation.  Second, the use of carbon tape 

caused drift of the probes in the TEM and, in some cases, introduced additional 

contamination into the TEM chamber.  Carbon tape is a double-sided conductive 

adhesive tape, which is a widely-used and highly flexible mounting tool for electron 

microscopy applications.  However, the adhesive tape exhibits a time-dependent 

viscoelastic response causing positional drift with time, and also exhibits significant 

thermal expansion/contraction with small temperature changes.  Thus, if the tape is 

stretched during mounting, or if the temperature inside the TEM chamber is different than 

that of the room, the tape will exhibit shape fluctuations and the mounted probe will 

translate with time, as is directly observable in the TEM.  Additionally, uncovered 

portions of the adhesive tape can collect carbonaceous contamination and other ambient 

room debris prior to insertion into the TEM chamber.  Contamination can then be 

introduced into TEM chamber when the electron beam irradiates the carbon tape (as it 

commonly does during initial low-magnification imaging of the probes) and decomposes 

the adhesive material into hydrocarbon contamination inside the chamber.  Finally, the 

third primary disadvantage of previous mounting schemes is low throughput and 
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significant wasted user and instrument time.  Only one probe can be inserted into the 

TEM at a time, so probes must be imaged sequentially with removal/re-insertion of the 

specimen transfer arm between each.  Also, since no calibration grid or standard sample 

may be simultaneously mounted, then any beam alignment issues also require sample 

exchange.   

 

30102:&Description&of&the&novel&fixture&design&for&imaging&of&AFM&probes&using&TEM&

The newly designed fixture (shown in Fig. 3.1(a-c)) addresses each of the 

aforementioned problems.  As is most apparent from Fig. 3.1(b), the new fixture allows 

for three probes to be mounted concurrently, along with a standard 3-mm calibration grid.  

This represents a roughly three-fold reduction in time spent on mounting and specimen 

exchange.  Further, the probes are mounted, using setscrews, inside of a slot of well-

defined width, length, and depth.  The setscrew firmly positions the probe chip flush 

against the sidewall of the slot, which fixes the position probe tip with respect translation 

along the y-axis (vertical direction in Fig. 3(b)) and fixes the orientation of the probe tip 

with respect to rotation about the x-axis (horizontal direction in Fig. 3(b)) and the z-axis 

(normal to the image plane). The back wall and bottom surface of the slot serve to grossly 

position the probe with respect to the remaining degrees of freedom (translation along the 

x- and z-axis, rotation about the y-axis), such that the probe will always be accessible 

within the travel of the TEM goniometer.   

There are several additional advantages of the new fixture.  The slot geometries 

were designed to accommodate a wide range of commercial and custom AFM probes, 
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which can vary greatly in geometries and cantilever lengths/arrangements.  The new 

fixture eliminates the use of carbon tape, and includes a mounting for a 3-mm calibration 

grid for rapid beam re-alignment.  Finally, a separate mounting block was designed and 

created that securely holds the fixture in place while the user is mounting or removing 

probes.   

 

30103:&An&improvement&in&mounting&reproducibility&enabled&by&the&novel&fixture&

The new fixture enables a significant improvement in reproducibility of probe 

mounting and therefore the fidelity of comparisons before and after remounting.  As 

shown in Fig. 3.1(b), the probe is mounted such that the long axis of the conical probe tip 

lies parallel to y-axis, which is the axis about which the single-tilt specimen transfer arm 

can rotate.  This enables rotation about the axis of the probe tip using the TEM’s 

goniometer controls.  Thus, for AFM probes made from single-crystal materials, TEM 

diffraction pattern imaging can be used to identify a specific high-symmetry orientation 

and all imaging can be performed at this specific orientation.  Then, after the probe is 

removed, tested, and re-mounted, goniometer tilt can be used to return to the exact same 

orientation – as confirmed by the diffraction image.  For non-crystalline or 

polycrystalline samples, a similar procedure can be used, but with apparent tip shape 

(observed by TEM imaging) as the metric for alignment.  The latter method is far less 

reliably than the former method, but can be useful in cases where imperfections or small 

pieces of contamination on the shank of the tip break the rotational symmetry of the cone. 
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30104:&Examples&of&use&of&the&novel&fixture,&and&suggested&applications&beyond&the&present&

investigation.&

Using this apparatus, a wide variety of commercial AFM probes as well as probes 

under development by collaborators have been imaged.  The new fixture was used in 

initial probe selection (for the testing described in Chapters 4, 5 and 7) to evaluate the 

shape, sharpness, and presence of contamination on probes as received from the 

manufacturer.  This fixture was also used in the ex situ UHV testing described in 

Chapter 4.  Beyond the present applications, this fixture could potentially be useful in a 

wide array of AFM applications where knowledge of the tip shape is required.  Many 

scanning probe microscopy techniques such as friction force microscopy, force 

spectroscopy, conductive AFM, and AFM nanoindentation, require knowledge of tip 

shape and size.  Additionally, probe-based devices and manufacturing techniques require 

characterization of tip evolution and robustness.  All of these could benefit from a simple, 

reproducible and reliable way to periodically and non-destructively image scanning 

probes.  
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Figure 3.2: The novel fixture allows imaging of AFM probes with reproducible orientations.  
A typical AFM probes is shown at medium magnification (a) and high magnification (b).  The 
advance of the current fixture is the ability to reproducibly mount the probe in the same imaging 
orientation following removal for characterization or testing in another apparatus.  The diffraction 
pattern (inset in (b)) was used to accurately realign the tilt using the TEM’s goniometer. 

302:&& Apparatus&and&calibration&for&in#situ&adhesion&and&wear&tests&inside&the&

TEM&

30201:& Instrumentation&&

As discussed, while periodic ex situ imaging of AFM probes using the apparatus 

described in Sect. 3-1 is useful, significant insight about adhesion and wear can be gained 

from direct observation of a nanoscale asperity in real-time as it makes and breaks 

contact and/or slides across a surface.  In order to accomplish this in the present work, 

adhesion and wear tests were conducted inside of a TEM, using an in-situ 

nanoindentation tool.  Unless otherwise noted, the TEM was a JEOL 2010F with a field-
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emission source and a Gatan Image Filter (GIF) for analytical techniques.  It operates at 

an accelerating voltage of 200 keV, under a typical vacuum of 10-6 – 10-5 Pa (10-8 – 10-7 

Torr).  A point-to-point resolution of 0.23 nm has been measured on this instrument.  

Occasionally, a JEOL 2010 was also used; this microscope is similar in all respects to the 

2010F previously described except that it contains a LaB6 thermionic filament rather than 

a field emission source which results in lower spatial resolution (not characterized), and 

lacks the analytical capabilities. 

The in situ indenter used in the present investigation was a Hysitron PI 95 TEM 

Picoindenter, which uses spring-loaded, three-plate capacitor drives for fine-scale, 

closed-loop actuation along the indentation axis (7, 8) and a piezo-actuator for three-

dimensional coarser positioning of the tip.  Vibration of the indenter tip is controlled 

(though not eliminated) through a closed-loop feedback system, which actively cancels 

the resonance frequency of the transducer (119.8 Hz).   Note that this is a particularly 

unfortunate frequency as it is a harmonic of the line frequency (60 Hz) that is used in the 

USA.  This means that electrical noise at this frequency is common and, since the 

indenter controller used active damping to reduce vibration, this electrical noise is 

converted into mechanical noise.  Since vibration adds uncertainty to the exact indenter 

position, it is characterized before every set of experiments using at least three separate 

ten-second noise tests, in which the input displacement is set to zero and the transducer 

measures the displacement caused by noise (e.g. ambient mechanical vibration, electrical 

noise in the feedback loop, etc.). 

It should be noted that the original tool that was received from Hysitron had 

problems with vacuum leaks and extraordinarily slow pump down and was quickly 
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returned to Hysitron.  The replacement tool solved these problems and was used for all 

testing in the present thesis.  A newer model of the in situ indenter (Hysitron PI 95 

Picoindenter with nanoECR upgrade) was subsequently purchased, which enabled 

electrical contact resistance measurements and the addition of electrical feed-throughs 

into the test region.  However, this latter tool had unacceptably high levels of vibration, 

which were extensively investigated and potentially linked to coupling of electrical noise 

from the TEM goniometer into the transducer position measurement.  Because of this 

vibration, the nanoECR tool was never used for scientific testing, and was eventually sent 

back to Hysitron for troubleshooting and replacement. 

&

30202:& Modification&for&increasing&the&resolution&of&contact&force&measurement'

While the nanometer-scale displacement control of the Hysitron tool is 

appropriate for investigating nanoscale contact phenomena, its minimum force resolution 

(hundreds of nanonewtons) is not.  Typical adhesive and applied loads in the AFM range 

from 1-100 nN, which are well below the noise floor of the indenter.   Therefore, in 

present work the force is not measured using the indenter, but rather by bringing the 

indenter tip into contact with a commercial AFM probe, itself a sensitive force 

measurement device.  To achieve this, the AFM chip is mounted rigidly on the sample 

mount of the indenter, as shown in Fig. 3.3.  Thus, the nanoscale tip, which is at the end 

of a long flexible cantilever, is accessible to the Hysitron indenter tip.  The indenter tip 

(which is considerably flatter than the AFM tip) mimics the flat substrate that is inserted 

into a traditional atomic force microscope.  Further, as with a traditional AFM, the force 
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in the contact is monitored by detecting the deflection of the cantilever – which has been 

calibrated prior to testing, see Sect. 3-2-4.  

 
Figure 3.3: A modified in situ indentation apparatus is used for adhesion and sliding tests.  
The AFM probe is mounted on the sample surface such that the tip is accessible by the 
nanoindenter tip, as shown schematically in (a) and in an optical photograph in (b).  Once inside 
the TEM (shown in (c)) the flat punch indenter (left, dark) is brought into adhesive or sliding 
contact with the nanoscale asperity (right, lighter grey).  Figure reproduced with permission from 
Ref. (1-6, 9). 

&

30203:& Calibration&of&the&indenter&motion&and&the&cantilever&spring&constant&prior&to&testing'

The three-dimensional piezoelectric positioning system was used for the vast 

majority of the testing described in later chapters since the transducer system is limited to 

motion along the indentation axis.  Unlike the transducer, the piezoelectric stage is not 

“closed loop”; therefore it was calibrated using the TEM to measure the actual motion in 

each of the three dimensions as compared to the input value.  Through an iterative 

process of parameter adjustment and motion measurement, the three independent 

conversion factors [V/nm] can be optimized.  Additionally, the Hysitron control software 

permits active compensation to minimize motion in axes other than the desired axis of 

motion (e.g. when the user inputs a motion of 100 nm along the x-axis and the tip moves 
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by 100 nm in x and by 5 nm in y). Additional conversion factors [V/V] determine the 

amount of concurrent actuation of each “off-axis” piezo that is required during motion 

along each axis.  These conversion factors are also optimized through an iterative process 

of adjustment and measurement.  

To calibrate the spring constant of the cantilever (i.e. the force measurement 

device), the Sader method (5, 6, 10, 11) was used.  The plan-view dimensions of the 

cantilevers are measured using a white-light interferometer (NewView 6000, Zygo) or an 

SEM (FEI Strata Dual Beam 235 FIB/SEM), then the cantilever resonance curves are 

measured using an AFM (Asylum Research MFP-3D).  Through extraction of the natural 

resonance frequency of the cantilever and also its quality factor, the cantilever’s normal 

spring constant can be calculated (7, 8, 10, 11). 

 

303:&& Test&methodology&for&in#situ&adhesion&and&wear&tests&inside&the&TEM&
!

30301:& Mounting&of&AFM&chips&for&testing&

Prior to mounting, many commercial AFM probes are imaged using the technique 

described in Sect. 3-1; probes are selected for desired initial geometry and size.  

Following calibration (Sect. 3-2-3), the body of the 3 mm-long AFM chip is cleaved at 

roughly the midpoint to reduce the length dimension such that it will fit inside the sample 

mount of the nanoindenter.  To prepare the chip for cleaving, surface flaws are introduced 

on the tip-side surface of the AFM chip using a diamond scribe. Then, the AFM chip is 

carefully broken using a three-point bend loading configuration that is introduced using 

two pairs of tweezers – one with a tine underneath the center of the AFM chip, the other 
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pair pushing down on the edges.  It is easiest to do this cleaving on a lightly adhesive 

surface (such as “Post-It Note” tape, 3M Model 658, 3M), which has been mounted 

adhesive-side-up on top of double-sided tape.  This lightly-adhesive surface assists in 

holding the chip in place during cleavage and minimizes the loss of the freshly cleaved 

pieces, yet is not so adhesive as to transfer adhesive material to the surfaces of the chips. 

The cleaved AFM chip is then bonded to the sample mount using a TEM-

compatible adhesive (Pelco Crystalbond 555).  The chosen adhesive is solid at room 

temperature – thus providing a robust and rigid mounting of the base of the AFM chip – 

but flows like a liquid at temperatures exceeding 150° C.  Therefore, the mounting is 

done on a hot plate that is mounted in the field of view of a binocular microscope.  This is 

most easily done using a mounting fixture (such as a pair of self-closing tweezers) to 

securely hold the sample mount in place on the surface of the hot plate.  The procedure is 

as follows: 

1. An extremely small chip of adhesive is placed (at room temperature) on the sample 

mount. 

2. The temperature of the hot plate is slowly increased (under observation) until the 

adhesive flows with a low apparent viscosity (as assessed qualitatively using 

tweezers to displace it).  Care must be taken not to overheat the adhesive or it will 

decompose.  

While the hot plate is heated and the adhesive is liquid-like, steps 3-7 are carried out: 

3. Tweezers or a razor blade can be used to remove excess adhesive, such that a very 

thin film (with a small plan-view) remains on the sample mount.  (The adhesive 
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should appear two-dimensional on the surface of the sample mount; if a “droplet” 

shape is observed, there is too much adhesive present.)  

4. Tweezers are used to place the cleaved AFM chip on top of the adhesive.   

5. Tweezers are used to apply pressure to the top surface of the cleaved AFM chip to 

ensure that it is flush against the top surface of the sample mount.   

6. Tweezers are used to push the cleaved AFM chip around in the plane of view of the 

microscope to ensure that the sharp tip (located at the end of the cantilever) is 

located in the center of the sample mount.   

7. Steps 5 and 6 are iterated until the AFM chip is satisfactorily mounted. 

8. The hot plate is turned off and the sample mount allowed to cool until the adhesive 

becomes solid.  (The cooling can be accelerated by removing the whole mounting 

apparatus (sample mount plus self-closing tweezers (or mounting clip)) from the hot 

plate onto a separate (heat-resistant) surface.)   

As mentioned, care must be taken in mounting the AFM probe such that the sharp 

tip is centered on the sample mount so that it is accessible by the indenter tip.  Also, the 

least possible amount of adhesive must be used (while still maintaining a secure bond).  

This ensures that the adhesive layer is extremely thin, such that the bottom surface of 

AFM chip is flat on the sample mount.  (This ensures reproducible orientation of the 

AFM chip in the TEM, and ensures that the long axis of the conical tip is parallel to the 

axis of goniometer tilt (to enable the orientation method described in Sect. 3-1-3).   

Finally, to ensure conductivity between the silicon probe (which is n-type doped 

to have low electrical resistance) and the brass sample mount, a conductive path should 

be painted using quick-drying carbon paint. 
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30302:& Materials&selection&and&surface&preparation&for&adhesion&and&wear&testing&

While the nanoindenter tips are interchangeable, the probe used for the majority 

of testing was a diamond flat punch tip with a diameter of 1 μm, which serves as the 

counter-surface for contact and/or sliding.  As mentioned, a commercial AFM probe is 

rigidly mounted in place of a traditional indentation sample, such that its sharp (R = 2-

100 nm) tip serves as a single-asperity contact.  Various types of probes were used in the 

present investigation: wear and adhesion testing was conducted using silicon probes 

(Nanosensors PPP-CONT); adhesion testing was conducted using the same silicon AFM 

chips coated with either 20 nm of diamond-like carbon (DLC) using a plasma immersion 

ion deposition technique (as described in Ref. (12)) or with 100 nm of 

ultrananocrystalline diamond (UNCD) using hot-filament chemical vapor deposition (as 

described in Ref. (13).  A single crystal diamond indenter tip was chosen, which has a 

truncated conical shape with a nominally-flat, (100)-oriented plateau apex approximately 

1 µm in diameter.  The topography of the diamond punch has characterized4 using an 

AFM (MFP-3D, Asylum Research, Santa Barbara, CA); the RMS roughness was 

0.091 nm, as measured over several 100x100 nm2 areas.  The diamond has been Boron-

doped to impart conductivity and prevent the build-up of static charge in the TEM.  

Diamond was chosen as the counter-surface for adhesion and wear tests for its inertness, 

hardness, and wear resistance; since the indenter tip is too thick to be electron 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 Topography measurements on the diamond punch was performed by Graham 
Wabiszewski (PhD Candidate, Department of Mechanical Engineering and Applied 
Mechanics, University of Pennsylvania) 



!
!

72!

transparent, then any deformation that occurs in the indenter tip will be mostly 

unobservable.  Instead, the material selection is designed so that deformation, material 

removal, and wear will be primarily localized in the AFM tip – and thus clearly visible in 

the TEM. 

Before testing, the diamond punch was cleaned using the following procedure (a 

minor modification of the manufacturer’s recommendations): 

1. The indenter tip is carefully removed from the nanoindenter (according to the 

manufacturer’s instructions for tip removal) and mounted onto the threaded nut of 

the “cleaning puck” provided with the nanoindenter. 

2. The cotton material on the end of a cotton swab is loosened (using a pair of tweezers 

to progressively clamp and pull) to achieve an expanded and significantly softer 

material. 

3. This softened cotton swab is saturated with high-purity acetone and swiped 

repeatedly over the sharp apex of the indenter tip, moving in the direction from the 

threaded base of the tip towards the sharp apex.  This step is intended to 

mechanically remove any loosely bonded debris. 

4. The previous step is followed immediately by spraying the tip with high-purity 

methanol. 

5. Then the tip (on the cleaning puck) is ultrasonicated for 15 minutes in each of three 

high-purity organic solvents (acetone, iso-propanol, methanol).  While obvious, it 

must be noted that significant care must be taken during transfer of the cleaning puck 

from one beaker to another to prevent the cleaning puck from turning upside down 

and landing on the indenter tip apex.   
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6. Finally, the tip is replaced on the nanoindenter, and either the SEM (top-down) or 

the TEM (side-view) can be used to assess the cleanliness of the tip. 

7. In cases where contamination was persistent and not removed by these steps, a 

focused ion beam (FEI Strata Dual Beam 235 FIB/SEM) was used to remove surface 

material (tens of nm of depth).  Care was taken to minimize beam damage to the 

remaining diamond surface material (i.e., using a high incidence angle for the cut, 

and repeating the procedure with decreasing beam current to reduce the damage 

induced by the previous cut.) 

8. Finally, while mounted on the indenter, a five-minute hydrogen treatment in a 

plasma cleaner (Gatan Solarus 950) is used to remove surface contamination.  This 

last step ideally occurs immediately prior to insertion into the TEM to minimize re-

adsorption of surface contamination.  

 

30303:& Methodology&for&in#situ#adhesion&testing&

Once samples are mounted and cleaned (discussed above), the indenter is inserted 

into the TEM and adhesion and wear tests were conducted between nanoscale AFM tips 

and the 1-µm plateau of the nanoindenter tip.  

Prior to testing, the AFM tip is imaged in its out-of-contact state using a variety of 

magnifications ranging from 19,100 – 573,000 times magnification, and periodically 

higher (up to 1,130,000 times magnification).  These images are used to characterize the 

shape of the tip in detail before testing, and permit much higher magnification images 

than are achievable during testing (when the surfaces are moving).  Then, to conduct an 
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adhesion test, the diamond punch was brought toward the AFM probe at a rate of 1 nm/s. 

As the AFM tip and sample near each other, there is a “snap-in” event where the 

cantilever suddenly deflects to allow the tip and sample to come into contact.  This snap-

in event is well known in AFM, and occurs when the gradient of the interaction force 

between the two surfaces exceeds the spring constant of the cantilever (14).  At 

separation distances larger than this point, any instantaneous fluctuations in separation 

are damped out by the restoring force of the cantilever – this represents stable 

equilibrium.  The snap-in point represents the transition to unstable equilibrium, where 

slight perturbations in separation lead to a reduction in system energy and cause the tip to 

accelerate irreversibly towards the surface (14).  The indenter tip plateau is then retracted 

from the AFM chip at a rate of 1 nm/s.  The tip/sample contact is held together by 

adhesion, which causes the cantilever to elastically deflect toward the contact during 

retraction of the sample.  At all points in the test, this elastic deflection, Δ, of the 

cantilever can be measured in the TEM and multiplied by the spring constant of the 

cantilever, klever, in order to calculate the total interaction force (Ftotal = klever·Δ).  This is 

identical to the evaluation of forces in AFM testing.  Eventually, the force due to elastic 

bending of the cantilever exceeds the force of adhesion between the tip and sample, and 

there is a “pull-off” event where the tip suddenly detaches from the sample and returns to 

the initial rest position, where there is no load on the cantilever.  

At this point, the video is stopped and another set of high resolution out-of-

contact images of the tip is taken.  Alternatively, in some cases, multiple adhesion events 

were conducted in one video prior to the capture of the high-resolution out-of-contact 

images.  The majority of testing was recorded using a video-rate camera at approximately 
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30 frames per second, and captured using a commercially available digital video recorder.  

The remainder of the tests were recorded with lower frame rate (1-2 fps), but better 

contrast and resolution, using the Digital Streaming Video module of Digital Micrograph 

(Gatan, Inc., Pleasanton, CA) and captured using VirtualDub 

(http://www.virtualdub.org/).  For all tests, high-resolution lattice-resolved images 

(573 kX or higher) were captured immediately before and after testing (as mentioned 

above); however the videos were recorded at lower magnification (typically ranging from 

19.1 kX to 95.5 kX) so that the larger field of view of the video could capture a wider 

range of motion.  Example videos of typical adhesion and wear tests can be found in the 

Supplemental Information of associated with Refs. (9) and (15), respectively.   

 

30304:& Methodology&for&in#situ#wear&testing&

To conduct wear testing, the plateau of the indenter tip was slowly advanced as 

above until contact with the AFM tip was achieved, then it was advanced further until the 

tip reaches the out-of-contact equilibrium point of the AFM probe.  This last step ensures 

that the contact experiences only an adhesive load, with no additional tensile or 

compressive load applied.  The majority of wear tests with only the adhesive load 

applied; however additional applied load can be imparted by additional advancement of 

the indenter tip.  Then the indenter tip is translated laterally relative to the AFM tip at a 

specified rate (typically 20 nm/s, occasionally 4 nm/s) by any arbitrary distance – most 

commonly in reciprocal strokes of 100 nm each.  Finally, when the desired amount of 

sliding has been reached, the indenter tip is retracted from the AFM probe, until the 
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contact separates (i.e. pull-off occurs, as described above).  The sliding distance interval 

between high-resolution out-of-contact images (from which volume loss was calculated) 

was most commonly 100 or 200 nm, but in some tests was shortened initially to be more 

sensitive to the early stages of wear, and lengthened later in the tests to achieve longer 

total sliding distances.  

!

304:&& Data&processing:&Analyzing&and&quantifying&the&images&and&video&

30401:& Direct&observation&of&tip&shape&and&modification&in&the&TEM&images&and&video&

In accordance with prior investigations in which ex situ imaging was used to 

study wearing asperities, the TEM images and video can be directly analyzed to yield 

information about how the tip shape had been deformed.  Different deformation 

mechanisms observed  include: 

• Fracture – In some cases, material removal occurs suddenly and along a well-defined 

crystallographic plane that is not typically parallel to the flat surface.  In some cases 

of fracture, the broken piece sticks to the tip or the counter-surface and remains 

clearly visible. 

• Plastic deformation – In cases of high load, plastic deformation and nucleation of 

dislocations shows contrast changes in the single crystal material that indicate 

residual plastic strain.   

• Homogeneous deformation – In some cases, the tip deformed plastically and even 

flowed homogeneously, resulting in gross changes in the tip shape and sometimes 

droplet-like shapes of transferred material on the counter-surface.  In this 
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investigation, this deformation mechanism occurred most commonly in electron 

beam-sensitive materials such as silicon nitride. 

    

30402:& Algorithms&for&extracting&the&outer&profile&of&the&AFM&tips&

While the observations and comparisons described in Sect. 3-4-1 are useful, 

quantitative analysis is crucial.  Therefore, computational analysis routines were 

developed to extract the contour of the tip in a specific image (i.e. at a specific point in 

the adhesion or wear testing) and to more rigorously compare the shape evolution of the 

tip over the course of testing.  Specifically, a MATLAB program (script name: 

profileTracer_v2.m) was developed5 to take in a TEM image (in .tif format) and allow the 

user to manually select sequential points on the image that define the outer profile of the 

AFM tip.  Using contrast changes apparent in the image, the user is able to trace the tip; 

the resultant set of (x,y) coordinates define a two-dimensional real-space contour, as 

shown in Fig. 3.4.  This contour is saved and can be further analyzed, as discussed below.  

An additional MATLAB program (script name: edgeFindingProfileTracer_v2.m) 

was developed6 that used the edge finding algorithms that are built into MATLAB to 

define the contour automatically and nearly instantly.  It was found that the automatic 

algorithms accurately defined tip contours in cases of high contrast, and worked 

especially well for SEM images, lower-magnification (<25 kX) TEM images, or 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 This MATLAB script was developed in collaboration with Dr. David S. Grierson (then 
a post-doc in the Turner Research Group, Univ. of Wisconsin; currently CTO, 
systeMECH LLC.) 
6 This MATLAB script was developed in collaboration with Joel A. Lefever (PhD 
candidate, Department of Materials Science & Engineering, University of Pennsylvania) 
!
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materials that appeared dark due to thick geometries or high-atomic-number component 

materials.  However, for typical high-resolution TEM images with electron transparent 

materials and thin or variable-thickness geometries, the automatic edge-finding routines 

were easily fooled by artificial contrast (e.g. thickness fringes) and TEM artifacts.  In 

typical analysis of a set of data, the automatic routine is attempted first, but if the 

contours are inaccurate (as judged by eye), then the manual selection routine is used.  

Note that the same point-selection routine (manual or automatic) must be used for all 

elements in a single set of data so that meaningful comparisons can be made without the 

introduction of artifacts due to differences in tracing method.  

 
Figure 3.4: Algorithms were created to trace the contours of the probe at various points 
throughout a wear test.  
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30403:& Algorithms&for&fitting&the&overall&tip&shape,&and&computing&its&surface&roughness&

A MATLAB program (script name: roughnessMeasurement_v2.m) was created7 

for finding the mathematical function that best approximates the overall tip shape.  As 

discussed in Chapter 2, standard contact mechanics models (Sect. 2-2-2) assume that the 

contacting bodies are spherical but with contact radii far below the sphere radius, thus, 

they approximate the bodies mathematically describe as paraboloids, i.e. their three-

dimensional shape is defined by (16):  

,
    (3.1) 

where r and z are the cylindrical polar spatial coordinates, and Rtip defines the radius of 

the overall parabolic shape.  The quantity Rtip is then used as in input to the 

aforementioned models to calculate such quantities as contact area.  In cases where the 

tip cannot be well-fit to a parabola, the algorithm allows the user to choose to fit with a 

more complex shape, such as a higher-order power-law shape.  Continuum models (such 

as in Ref. (17)) have been developed to calculate contact parameters for geometries with 

such power-law shapes defined by Eq. 2 of Ref. (17), which, for ‘S’ parameter set to 1, 

reduces to: 

.
    (3.2) 

This equation corresponds to a tip shape with a flatter end, which is a reasonable 

description of a tip that has been worn against a smooth surface. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 This MATLAB script was developed in collaboration with Dr. David S. Grierson (then 
a post-doc in the Turner Research Group, Univ. of Wisconsin; currently CTO, 
systeMECH LLC.) 

ztip (r) = zparaboloid (r) =
r2

2Rtip

ztip (r) = zpower−law (r) =
rn

nRtip
n−1
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Finally, a MATLAB program (script name: roughnessMeasurement_v2.m) was 

also developed8 for characterizing the roughness of AFM tips imaged in the TEM.  After 

the outermost contour of the high-magnification side view of the tip is traced, as 

discussed above, a parabola is fit to contour.  This parabola captures the overall shape 

(ignoring surface roughness) of the asperity and allows the best-fit radius Rtip to be 

extracted; this quantity is needed for comparison with continuum mechanics models such 

as the DMT model (discussed in Chapter 2).  The tip contour is compared to the best-fit 

parabola, and each traced point was characterized by the magnitude of its distance away 

from that best-fit parabola.  Intuitively, this can be understood as subtracting the overall 

(parabolic) shape from the actual shape to yield a roughness profile similar to what would 

be measured on an equivalently rough planar surface.  Once this equivalent profile was 

obtained, typical roughness characterizations could be performed on it, such as 

calculation of root-mean-square (RMS) roughness value Rq, average roughness, standard 

deviation of asperity heights, and other quantities (all defined, for example, in Ref. (18)). 

 

30404:& Algorithm&for&extracting&the&snap0in&distance&and&pull0off&force&from&videos&of&tests&

All adhesion and wear testing is recorded using real-time video, and the deflection 

distance Δ of the cantilever provides a measure of the total force Ftotal applied to the 

contact.  Thus, a MATLAB program (script name: videoAnalysis_v2.m) was developed9 

for to allow the user to specify relevant frames, extract the cantilever deflection from 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8 This MATLAB script was developed in collaboration with Joel A. Lefever (PhD 
candidate, Department of Materials Science & Engineering, University of Pennsylvania) 
9 This MATLAB script was developed in collaboration with Joel A. Lefever (PhD 
candidate, Department of Materials Science & Engineering, University of Pennsylvania) 
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those frames, and thus compute contact forces.  The code allows the user to do the 

following: (1) input a video file of an adhesion or wear test; (2) trace the tip profile (as 

discussed in Sect. 3-2-2) or input a previously saved trace; (3) find the relevant 

comparison frames (for instance, the frames immediately before and after a pull-off 

event); (4) move the profile trace around manually until it is correctly located on the tip 

in each of the relevant frames; (5) compute the distance of motion between frames – 

either the total distance, or the resolved distance along a particular axis (e.g. the 

cantilever deflection axis).   Further, an optional component of the code was developed 

for cases where the tip position is hard to resolve due to indenter vibration or poor video 

contrast.  In this, the user can specify a range of possible tip positions that are compatible 

with the current frame, and the algorithm will yield a propagated uncertainty in the 

calculation of total cantilever deflection. 

 

30405:& Algorithms&for&integrating&the&interaction&potential&and&computing&relevant&quantities&

As discussed in Sect. 2-2-1, many continuum models (such as Refs. (19, 20)) 

assume a tip shape or use of an analytical expression to define it, then integrate an 

interaction potential over this assumed shape.  An improvement upon this method is 

presented here, where the integration is done over the actual traced tip profile.  To create 

a three-dimensional shape from a two-dimensional contour the tip is assumed to have a 

circular profile at any height.  Note that this does not assume global axisymmetry about a 

single axis of rotation (as is true for a right cone), but assume local axisymmetry, with the 

potential for different axes of rotation at different locations along the height (z-axis) of 

the tip. This assumes that the surface of the probe is free of localized contamination or 
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wear debris, and that the axis of the probe is pointing downward (the image was rotated 

prior to analysis to optimize this).  TEM images taken at a variety of tilt angles inside the 

TEM demonstrate that the assumption of circular cross-section is reasonable – except 

where clearly localized material is visible or immediately after a large fracture event has 

occurred along a defined crystallographic plane.  In the case of multiple protrusions on 

the end of the tip, this assumption of local axisymmetry is assumed to apply separately to 

each.   

A MATLAB program (script name: forceVsSeparation_integration_v2.m) has 

been developed to perform this integration and calculate the effective total tip/surface 

interaction potential.  The force of interaction Finteraction between the tip and the sample is 

calculated as the integral of an interaction potential between vertically aligned differential 

elements of the two bodies.  The specific interaction potential used was the Lennard-

Jones 3-9 surface potential (see Chapter 2), such that Finteraction is defined as: 

   

 ,

   (3.3) 

where σnormal is the stress acting between two vertically aligned differential elements of 

area separated by zsep, and z0 is the equilibrium separation between flat surfaces.  In this 

case, zsep = ztip + d, where d is the distance of closest approach between tip and sample.  

Note that the code is currently written to allow the user to choose between the Lennard-

Jones 3-9 potential and a Dugdale square well potential; it could be readily expanded to 

( ) ( ) === ∫ ∫∫
∞π

θθσσ
2

0 0
),( rdrdrzdAzF sepnormal

Area
sepnormal

∫
∞

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0

9

0

3

0

0

2
)()(3

8
rdr

rz
z

rz
z

z
W

sepsep

adh π



!
!

83!

use any arbitrary potential.  This code allows the user to calculate the force-vs-separation 

curve for any arbitrary tip shape.  From that curve, the distance at which “snap-in” occurs 

and the force at which “pull-off” occurs can be readily calculated.   

 The previously described code allows the user to specify a work of adhesion Wadh 

and a value for the adhesive range z0, and calculates the pull-off force and the snap-in 

distance for a given tip geometry.  However, as discussed in Chapter 2, these values 

(particularly z0) are not typically known a priori and are not easy to measure 

experimentally.  By contrast, the pull-off force and snap-in distance for a given tip are 

easily measured using the present test methodology.  Therefore, an additional MATLAB 

program (script name: forceVsSeparation_varyZ0varyGamma_v5.m) has been written to 

solve the reverse problem from that described in the previous paragraph; the user inputs 

the measured snap-in distance and pull-off force and the algorithm computes the values 

of work of adhesion and adhesive range that would produce these values.  

The routines described in the previous paragraphs are used to calculate relevant 

parameters in Chapters 3 and 4. 

 

30406:& Algorithms&for&aligning&pre0/post0wear&contours&and&calculating&volume&lost&

The high-resolution out-of-contact still images of the TEM taken before and after 

a sliding wear test can be used to trace tip contours with high precision.  A MATLAB 

program (script name: optimizeProfileAlignment_v2.m) was developed to align these 

traces and compute their volume change.  Specifically, different contours of a single tip 

were taken at various points throughout a wear test, and these could be aligned based on 
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the shapes of the unworn shanks.  Thus, a trace from a tip (example shown in Fig. 3.5(a)) 

is compared to a trace from the same tip that was taken earlier in the wear test.  The 

profiles’ upper (unworn) portions were then aligned spatially using an optimization 

algorithm that minimizes the “mismatch parameter,” defined as the average lateral 

displacement of the unworn portions of the profiles (Fig. 3.5(b)).  Once aligned, the 

profiles were integrated using a method of disks (Fig. 3.5(c)) to calculate a three-

dimensional volume (Fig. 3.5(d)).    The volume lost was then calculated by comparing 

the volumes of the asperity at various points in the wear test.   

 
Figure 3.5: Lattice-resolved out-of-contact images of the tip were used to calculate the 
instantaneous volume lost at various points throughout the wear test.  The high-resolution 
TEM images were traced (a) to extract the profile of the asperity at various intervals throughout 
the wear test. Profiles of the same asperity after different amounts of wear were aligned using an 
optimization routine (b).  Here a reference profile (solid, red) is compared to a worn profile, 
which is shown both in good alignment (dotted, black) and in poor alignment (dashed, blue).  
Horizontal green lines schematically indicate the measured displacement between the two 
profiles, which is used to calculate the “mismatch parameter” used for optimization.  Once 
aligned, the two-dimensional profiles were integrated using a method of disks (c) to create a 
three-dimensional shape (d), from which the volume and volume lost were measured.  Figure 
reproduced with permission from Ref. (15). 

There were three assumptions in the present method.  First, the profiles are 

assumed to be perfectly aligned.  While the optimization routine described is effective, 

the geometry of any particular tip will determine the sensitivity of the “mismatch 
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parameter” to deviations in alignment.  In particular, tips that are rougher and have lower 

aspect ratio will be very sensitive to displacement (as shown in Fig. 3.5(b)) and will be 

easier to align, while the alignment will be more inaccurate for tips that are featureless 

and higher-aspect ratio.  To quantify the effect of this factor, an uncertainty value was 

quantified by re-computing volume loss at deviations +/-5% away from the optimum 

value of the mismatch parameter.  An additional assumption arose from the integration 

using the method of disks, which assumes local (not global) axi-symmetry (i.e., the 

asperity has a circular cross-section at every height), as discussed in Sect. 3-2-4.  As 

mentioned, tilting in the TEM about the axis of the asperity prior to testing was used to 

confirm that this approximation is reasonable.  While this effect is more difficult to 

quantify, it is predicted to be a smaller source of error than the alignment uncertainty 

discussed above.  Finally, a third assumption inherent in this analysis is that the volume 

change is due only to wear and not due to changes induced by the electron beam.  The 

most common beam effects are deposition of carbonaceous films (21, 22) and electron 

beam-induced damage or changes to the materials under study (23, 24).  To reduce the 

impact of these processes, beam exposure is minimized as much as possible (imaging 

quickly and with minimum possible brightness during active testing and deflecting the 

beam to a safe location far from the test sample at all other times).  The effect of these 

processes was tested using mocks wear test (tests conducted using identical imaging and 

beam conditions, with no actual tip/surface contact taking place), and the “volume loss” 

in these was found to be within the noise level of the wear measurements.  

! &
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CHAPTER'4:'Nanoscale'adhesion:'Part'I'A'Quantifying'adhesive'

interaction'parameters'

In Sect. 3-4-5, a novel method was described for combining measurements of the 

detailed geometry of a sharp tip with results from adhesion tests in order to measure 

fundamental adhesion parameters that previously were not experimentally accessible; 

specifically the work of adhesion Wadh and the range of adhesion z0 between two surfaces.  

The present chapter begins by applying this method to artificial data – “probe tips” with 

standard shapes and arbitrarily chosen adhesion data.  This allows for identification of the 

relevant trends that emerge, as well as validation of the proposed algorithms through 

comparison to previously published results.  Later in the chapter, the method is applied to 

real data – nanoscale silicon atomic force microscopy probes in adhesive contact with a 

diamond substrate.  The calculated work of adhesion compares favorably to other 

methods of measurement; more significantly, the range of adhesion is measured 

experimentally for the first time, and agrees with theoretical values. 

 

401:& Using&an&interaction&potential&to&calculate&expected&adhesion&values&for&

model&shapes&&

An adhesion potential provides a description of the stress acting between two 

opposing elements at any separation distance between those elements.  This potential can 

be integrated over an arbitrary contact geometry to yield the net force acting between the 

two bodies at any separation distance between those bodies.  Two related algorithms are 

described in Sect 3-4-5: one uses the tip shape and the adhesion parameters (work of 
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adhesion Wadh and range of adhesion z0) as inputs, then calculates expected values for 

pull-off force Fadhesive and snap-in distance zsi as outputs; the other uses the tip shape, 

pull-off force, and snap-in distance as inputs, then calculates the adhesion parameters 

(Wadh, z0) as outputs.  To minimize confusion, the former algorithm (Wadh, z0 ! Fadhesive, 

zsi) is referred to periodically as the forward calculation (since it can be integrated 

directly) and the latter algorithm (Fadhesive, zsi ! Wadh, z0) is referred to periodically as the 

reverse calculation (since it cannot be directly integrated, but rather relies on the 

integration of a large number of (Wadh, z0) pairs, then uses a search routine to find the best 

one).  In this section, results are presented from applying both algorithms to model 

“probes” of standard shapes are presented.  The purpose of this section is not only to 

validate the functionality of the code, but also to point out relevant trends of behavior for 

different geometries; these trends will be referenced in the analysis of the real data.  

&

40101:& Calculating&tip0sample&force0separation&curves&using&probes&with&standardized&shapes:&

the&forward&calculation&&

To review, the tip-sample interaction force (at any separation distance) can be 

calculated by applying a Lennard-Jones 3-9 surface potential to each differential area 

element, then integrating over the entire contact geometry.  This approach and its 

assumptions are discussed in Sect. 2-2-3.  As discussed, the underlying Lennard-Jones 

surface potential has two empirically-determined free parameters: the range of adhesion 

z0, which scales the length over which the potential acts; and the work of adhesion Wadh, 

which is equal to the area of the attractive portion of the curve (as shown in Fig. 2.4).  
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To validate the approach and algorithms used in the present investigation, force-

separation curves have been computed (using the forward calculation) for three different 

reference tips with shapes described by three simple analytical functions: a cylindrical 

flat punch; a paraboloid (i.e. a two-dimensional parabola that has been revolved about its 

central axis), and a right cone.  These shapes were chosen as they represent extremes of 

tip shape, and they illustrate trends of behavior, as follows: 

• Flat punch – This represents the bluntest possible tip and the closest approximation of 

two infinite flat surfaces coming into contact.  The force-vs-separation curve for this 

tip represents the form of the underlying Lennard-Jones surface potential (differing 

only by a constant).   

• Paraboloid – This shape was chosen as it is used in many contact mechanics models 

(see Sect. 2-2-2) as an approximation for a sphere (accurate when the contact radius is 

significantly smaller than the tip radius).  It represents an intermediate sharpness 

between the flat punch and the cone.  As discussed later, it represents a special case of 

adhesion.  

• Right cone – This shape represents the extreme of the sharpest possible probe, 

converging to a single point at the apex.  This unphysically sharp analytical shape is 

useful for demonstrating trends, and also a limitation of the present model. 

 

The three shapes are shown in Fig. 4.1.  Their specific geometries were chosen to 

achieve similar values of minimum interaction force (i.e. maximum value of attractive 

force, Fadhesive) for physically reasonable values of Wadh = 0.30 J/m2 and z0 = 0.1 nm (in 
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the range proposed by Ref. (1).  This yielded a flat punch of end radius 0.4 nm; a 

paraboloid defined by Eq. 3.1 and an input radius Rtip of 0.8 nm; and a right cone with a 

circular base of diameter of 100 nm and a height of 20 nm (for an opening half-angle of 

70°).  Figure 4.1 shows the force-separation curves for each shape, calculated using the 

parameters given above (Wadh = 0.30 and 0.60 J/m2, z0 = 0.1 and 0.3 nm). These plots are 

included to show the effects of Wadh and z0, and the differences in behavior for each 

shape.  

!

Figure 4.1: Force-separation curves were calculated for standardized shapes to establish 
trends of behavior and to allow for comparison with previously published results.  
Preliminary tests were performed of the adhesion model using three artificially shaped probes: a 
flat punch (shown in (a)), a paraboloid (b), and a right cone (c).  Shapes are not shown on the 
same scale, each is 20 nm tall - see text for full geometric details.  Here, the tip/sample interaction 
force is calculated over a range of tip positions, with the flat substrate at z = 0.  These force-
separation curves are shown (a-c) for two different values of the work of adhesion (Wadh = 0.3, 
0.6 J/m2) at a constant value of range of adhesion (z0 = 0.1 nm). Similarly, in (d-f), force curves 
are compared for two different ranges of adhesion (z0 = 0.1, 0.3 nm) and a constant work of 
adhesion (Wadh = 0.3, 0.6 J/m2).  The points on the curves corresponding to pull-off and snap-in 
are labeled in each plot with circular points; values of pull-off force (Fpo) and snap-in distance 
(dsi) are explicitly indicated in (a).  The effect of range of adhesion on pull-off force varies for 
different shapes.  The spring constant of the cantilever is assumed to be 0.1 N/m in all cases. 
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For all probe shapes, a larger value of work of adhesion results in interaction 

forces that are uniformly larger; therefore both the pull-off force and the snap-in distance 

increase monotonically with Wadh.  Note that the pull-off force scales linearly with Wadh 

in all cases; in contrast, while the snap-in distance increases with Wadh, it does not obey a 

simple functional dependence.  

The dependence of pull-off and snap-in on the range of adhesion z0 is more 

complex, and depends strongly on the geometry of the tip.  For a flat punch (and for the 

underlying Lennard-Jones surface potential), the pull-off force decreases as z0 is 

increased.  All trends shown here can be compared with recent papers (2, 3) discussing 

adhesion of power-law shapes of the form  where z and r represent cylindrical 

polar coordinates, and n is the so-called power exponent.  A flat punch tip like the one 

used here is equivalent to a power-law shape with a very large power exponent (n ! ∞).  

The trend of decreasing adhesive force with increasing z0 directly agrees with the trend 

shown in Grierson et al. (2) for all shapes with power law exponent n > 2.  By contrast, 

for the parabolic tip (a power-law shape where the power exponent n = 2), the pull-off 

force is unaffected by the choice of z0.  This is in agreement not only with trends from 

Refs. (2, 3), but also with the Maugis-Dugdale model (4) (Sect. 2-2-3).  The pull-off force 

agrees exactly with the prediction of the Bradley limit for rigid spheres and that of the 

DMT model (Sect. 2-2-2): namely, that pull-off force is equal to 2πRtipWadh.  Finally, for 

the conical shape, the pull-off force increases as z0 is increased for a constant Wadh.   This 

trend for a conical shape (a power-law shape where the power exponent n = 1) is in direct 

agreement with the so-called DMT-n limit described by Zheng and Yu (3).    

z ∝ rn
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In summary, for the probe shapes shown in Fig. 4.1 and others shapes tested (not 

shown), consistent trends of behavior hold:  

• for shapes blunter than a paraboloid (n > 2), the pull-off force decreases as z0 

increases;  

• for shapes sharper than a paraboloid (n < 2), the pull-off force increases with z0; 

and for a paraboloid (n = 2), the pull-off force is unaffected by changes in z0.  (Note 

that, for rigid tips, the JKR limit (with its modified pull-off force) is not reached.) 

The dependence of pull-off force on adhesive range can be understood as a 

competition between two factors: as the range of adhesion is increased, a larger section of 

the probe contributes to the adhesive interaction, but the adhesive stress on a given 

element at a given separation is decreased (to maintain a constant work of adhesion in the 

underlying Lennard-Jones potential).   The “winner” of this competition is determined by 

the geometry of the body.  A parabola represents the shape where these competing effects 

exactly balance, and furthermore, this holds regardless of the chosen interaction 

potential (5) – in this case, the pull-off force depends only on the work of adhesion Wadh.  

For sharper shapes, the geometric effect dominates, and for blunter shapes the weakening 

of the adhesive stress dominates. 

 

40102:& Restricting&the&minimum&tip0sample&separation&distance&to&the&value&of&the&adhesive&

range&

Another important result emerges from Fig. 4.1: without some modification, a 

simple integration of the Lennard-Jones surface potential leads to an unphysical result 
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when the finite rigidity and strength of the materials are considered.  Specifically, for any 

shapes that are sharper than a parabola, the separation distance corresponding to the 

minimum force (Fpo) will be smaller than the equilibrium flat-on-flat separation z0.  To be 

explicit, z0 rigorously designates the equilibrium separation of surfaces, but is not the 

same as the equilibrium separation of the bodies once integrated over the tip/sample 

contact.  This is illustrated more specifically in Fig. 4.2.  Since the Lennard-Jones surface 

potential rapidly increases at separation distances below z0, this can result in unphysically 

high local compressive stresses on the closest elements.  Since the model assumes rigid 

tips, the elements that are closest have to support infinitely large stresses without 

deformation or fracture.  This is unrealistic for two reasons: first, the interaction of the 

two surfaces is not solely mitigated by surface-surface interactions, but instead includes 

the mechanical stiffness of the bodies themselves, which will provide an additional 

restoring force that is not accounted for by the present model; second, wherever the local 

stress does get extremely high, the shape of the bodies will deform (elastically or 

plastically) away from their out-of-contact shapes, thus reducing the local stress.   

 

!  
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Figure 4.2: A minor modification to the model must be made to prevent extremely sharp tip 
apexes from developing unphysically high stresses.  Force-separation curves are shown for the 
same three standard shapes shown in Fig. 4.1.  Here, the value of z0 is explicitly indicated with a 
black line and a black circle on the curve.  For shapes such as the flat punch (a) and the 
paraboloid (b), the pull-off force (labeled with a green circle) occurs at separations larger or 
approximately equal to the range of adhesion z0.  However, the curve for the cone shape (c) 
shows that the minimum of the curve can occur at separations less than z0.  This leads to 
unphysically high local stresses at the tip apex.  To prevent this, the minimum allowed separation 
is set to z0.  For many real tips, this change has little or no effect. 

To eliminate the unphysically large Lennard-Jones stresses on the apex, an 

additional constraint was added to the present model: the tip-sample minimum separation 

distance cannot fall below the value of z0 chosen for that simulation (i.e. zsep ≥ z0).  This 

constraint mimics the restoring force due to elasticity, by effectively assuming that the 

strain caused by repulsive contact between the bodies corresponds to an infinitely high 

elastic stress.  In other words, hard-wall repulsion has been artificially introduced when 

the minimum separation of the bodies is z0.  For high-modulus materials and light loads 

(where the deformation due to strain is small), this assumption is expected to be 

reasonable.  In particular, in the present use of the model on silicon and diamond where 

the net tip-sample interaction forces are all in the adhesive regime, this is expected to be a 

good approximation of reality.  For comparison, one tip profile was tested using an 
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adhesion potential applied to an elastic tip as calculated using a finite element package10.  

For Wadh = 0.1 J/m2, z0 = 0.5 nm, the calculated pull-off force agreed with the present 

model within 2%.    

 

40103:& Calculating&adhesion&parameters&for&the&same&standardized&shapes:&the&reverse&

calculation&

The calculations performed in the previous sections validated the underlying 

approach through comparison to previously published results, and also demonstrated 

trends of behavior with tip shape.  There, values of pull-off force and snap-in distance 

were calculated for standard shapes and known adhesion parameters (Wadh, z0).  This 

section performs the reverse calculation: the specific calculated values of pull-off force 

and snap-in distance from the forward calculation are used as inputs and, along with 

probe shape, are used to extract adhesion parameters (Wadh, z0).  This is done purely for 

purposes of illustration and validation of the approach.   

To clearly illustrate the method, a sample adhesion test is analyzed step-by-step as 

shown in Fig. 4.3.  First, the shape of a real tip was traced using the procedure described 

in Sect. 3-4-2.  The measured pull-off force for this tip was 84 nN and the measured 

snap-in distance was 6.9 nm.  Pull-off forces corresponding to a wide range of (Wadh, z0) 

pairs are calculated and plotted in Fig. 4.2(a).  It is apparent that several different pairs of 

values can accurately describe the measured pull-off force.  Therefore the solution using 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
10 This test was performed by Dr. David S. Grierson, then a post-doc in the Turner 
Research Group, Univ. of Wisconsin; currently CTO, systeMECH LLC. The test was 
performed with Abaqus (Dassault Systèmes, Vélizy-Villacoublay, France), as described 
in Ref. (2).    
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pull-off force alone is not unique.  However, a second independent measure is provided 

by the snap-in distance (Fig. 4.2(b)) that would be calculated for each corresponding pair 

of (Wadh, z0).  As shown in these figures, there is only one (Wadh, z0) pair that accurately 

describes both pull-off force and snap-in distance.  Note that Fig. 4.3 is intended to 

illustrate the method and only shows a coarse meshing of Wadh and z0; the programs 

described in Sect. 3-4-5 use a far smaller spacing of tested values for Wadh and z0 and a 

search algorithm is employed to find the best-fit values.  

 
Figure 4.3: The approach is demonstrated for calculation of work of adhesion Wadh and 
range of adhesion z0 based on quantities measured using in situ adhesion tests.  Tests on a 
particular tip shape (not shown) yield example values of pull-off force and snap-in distance.  The 
algorithms calculate possible pull-off forces for a wide range of (Wadh, z0) pairs (colored data in 
(a)) – these are compared against the true pull-off force (black, dashed line).  It is apparent that 
the solution is not unique – the four circles indicate four possible pairs of (Wadh, z0) that accurately 
describe this pull-off force.  The novel aspect of the present work is that the snap-in distance is 
used as an independent measure of adhesion.  In (b), circles of corresponding color are calculated 
for the same four pairs of (Wadh, z0) that were identified in (a).  Three of the four do not match the 
snap-in distance, while the fourth does.  Thus, the physically-reasonable values in this example 
are Wadh = 0.5 J/m2 and z0 = 0.6 nm. 
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To validate the reverse calculation, values from the previous section were tested.  

The goal was to see if the code could accurately extract the values of Wadh and z0 that 

were chosen as inputs in the previous section (i.e. Wadh = 0.3 or 0.6 J/m2 and z0 = 0.1 or 

0.3 nm.  In all cases, the extracted pair of (Wadh, z0) matched the originally chosen pair 

within 2%; in most cases, the agreement was within 1%.  The same validation (Wadh, z0 

! Fadhesive, zsi, then Fadhesive, zsi ! Wadh, z0) was repeated for a trace of a real AFM tip, 

and a range of values of Wadh and z0; in all cases, the input and extracted values agreed 

within 1%. 

The primary conclusion from Sect. 4-1 is simply that the present approach works 

well for a wide range of shapes and inputs.  The two algorithms calculate and back-

calculate consistent values; and the trends in results agree with previously published 

reports investigating adhesion of probes with standard shapes defined by analytical 

functions.  These trends demonstrate the dependence of pull-off force and snap-in 

distance on work of adhesion and range of adhesion for different classes of tip shape.   

 

402:& Measuring&adhesive&interaction&parameters&in&real&materials&&

Section 4-1 described the overall approach for the present analysis of nanoscale 

adhesion and demonstrated its success with artificial data.  The same approach is applied 

in this section to real data taken from in situ adhesion tests.  However, the previous 

analysis did not consider the fact that the indenter apparatus is subject to vibrations along 

the loading direction upon approach.  This is important because these vibrations cause 

temporary reductions in the minimum separation distance below the average value 



!
!

99!

observed in the TEM.  Therefore, Sect. 4-2-1 describes a method for accounting for these 

vibrations; then Sect. 4-2-2 describes the analysis. 

 

40201:& Modification&of&the&technique&to&account&for&vibration&

As mentioned in Sect. 3-2-1, the spring-mounted indenter tool exhibits constant 

vibration at the natural resonance frequency of the force transducer, which for the present 

apparatus is 119.8 Hz.  Therefore, the apparent position of the indenter tip in the video 

(which is captured at 30 frames per second) is the time-averaged position; the actual 

position of the spring-mounted indenter varies approximately sinusoidally around this 

average.  Immediately prior to every set of experiments, several at-rest displacement 

measurements were taken to characterize the standard deviation of the vibration at that 

specific time and day.  Typical vibration amplitudes varied from less than 0.75 nm of 

standard deviation up to more than 3 nm, depending on the time of day, which other 

equipment was active, and other external variables.   

Since the spring constants of the cantilevers are low (k ≈ 0.1 N/m), then this level 

of vibration has little effect on the measurement of applied load or of pull-off force – 

leading to variations of considerably less than 1 nN.  However, as shown in Fig. 4.1, the 

tip-surface interaction force is exquisitely sensitive to variations in separation distance – 

down to the Ångström level.  Further, the time scale needed for snap-in to occur is on the 

order of a single period of vibration of the AFM cantilever, which – for a typical 

resonance frequency of 10 kHz – is 0.1 ms.  This is two orders of magnitude faster than 

the period of vibration of the nanoindenter tip.  Therefore, the relevant distance for snap-
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in is the smallest instantaneous distance between the AFM tip and the vibrating surface of 

the nanoindenter right before snap-in.  This distance is smaller than the measured (time-

averaged) distance dsnap-in,meas. by the amplitude of vibration Avib and, if the vibration is 

assumed to be perfectly sinusoidal, then the adjusted snap-in distance dsnap-in,true is given 

by: 

,   (4.1) 

where σvib is the standard deviation of vibration that is measured before each set of tests. 

 

40202:& Measurement&of&adhesion&parameters&for&a&silicon&tip&on&a&diamond&surface&&

Three different nanoscale tips were used in adhesion tests inside the TEM 

(Sect. 3-3-3).  High-magnification images were taken before and after testing, as shown 

in Fig. 4.4.  Real-time video was used to capture the dynamic snap-in and pull-off events, 

the values of which are recorded in Table 4.1.   

 
Figure 4.2: In situ adhesion tests were performed on three tips of varying sharpness and 
geometry.  The three tips are shown at a common magnification. 

!  

dsnap−in,true = dsnap−in,meas. − Avib = dsnap−in,meas. − 2σ vib
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Table 4.1: Measured and calculated values for the three probes shown in Fig. 4.4.   

 

The results obtained using the present method are shown in Fig. 4.5.  There were 

thirteen distinct adhesion tests performed using three different tips.  These represent the 

cases where high-resolution profiles could be combined with adhesion tests performed in 

the absence of sliding, and with sufficient resolution of the snap-in and pull-off events.  

For the first two probes (labeled Probe 1 and Probe 2), two adhesion tests were performed 

between each high-resolution image.  For the Probe 3, high-resolution images were taken 

before and after each pull-off event.  The averaged values for the calculated parameters 

are Wadh = 0.66±0.14 J/m2 and z0 = 0.25±0.06 nm.   

!  

Tip 
image

Measured
Fpo

Measured 
dsi

St. dev. of 
vibration

Amplitude 
of vibration

Vibration-
adjusted dsi

Calculated 
Wadh

Calculated 
z0

[nN] [nm] [nm] [nm] [nm] [J/m2] [nm]

Fig,4.4(a) 26.55 5.37 1.21 1.71 3.66 0.898 0.28

41.80 5.16 1.21 1.71 3.45 0.693 0.23

Fig,4.4(b) 14.45 6.11 2.67 3.77 2.34 0.616 0.23

15.74 7.01 2.67 3.77 3.24 0.667 0.31

22.17 5.91 2.67 3.77 2.14 0.565 0.16

57.32 5.90 1.34 1.90 4.00 0.433 0.20

Fig,4.4(c) 66.42 7.60 1.34 1.90 5.70 0.623 0.33

69.66 6.90 1.34 1.90 5.00 0.795 0.22
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Figure 4.5: Using the novel algorithm values of work of adhesion and range of adhesion are 
extracted simultaneously from in situ adhesion tests.  The calculated data for each of the three 
probes is shown: work of adhesion (a) and range of adhesion (b).  There is scatter in the data 
corresponding to a standard deviation of 20%, but the average values are physically reasonable as 
compared to other techniques for estimation or measurement.  

 

403:& Assessing&the&reliability&of&the&measured&parameters&

First, it must be determined whether these results are even physically possible.  

An upper bound on the work of adhesion is the cleavage energy of a perfect crystal.  This 

value ranges over 1.5 – 1.9 J/m2 for silicon (6) and over 11.1 – 19.9 J/m2 for diamond (7) 

(values can vary depending on crystallographic plane and method of 

measurement/calculation).  Since the range of adhesion z0 is also the flat-surface 

equilibrium separation, then an upper bound can be identified because no clear gap was 

observed between the bodies while in contact.  For instance, if z0 = 2 nm, then the 

separation between the two bodies would be easily resolvable in the TEM.  Because of 

the vibration of the instrument and the lower magnification of the real-time videos, a gap 

of 0.5 nm or even larger could go unnoticed, but an equilibrium separation larger than 
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1 nm can be expressly ruled out.  Such a large gap would be visible.  Both of the 

measured values fall within the absolute limits of what is physically reasonable.  

 

40301:& Comparing&the&range&of&adhesion&with&previously&proposed&values&

To assess how correctness of the measured value of z0, there are two different 

bodies of literature that can be consulted: values used in continuum contact mechanics 

investigations; and values calculated from atomistic simulations – converting the 

empirical parameters from a well-established interatomic potential into those for the 

resulting surface potential.  The present result (z0 = 0.25 nm) compares favorably against 

most estimates used in continuum mechanics investigations.  Various values were 

proposed in at least twelve previously published reports ranging from purely theoretical 

calculations to fits to experimental data (as shown in Table 4.2).  Ten of the twelve 

propose that z0 is either equal to the interatomic spacing of the materials (0.154 nm in 

diamond and 0.234 nm in silicon) or some similar absolute value, such as 0.2 nm or 

0.3 nm.  The other two reports (Refs. (8) and (2)) estimate the adhesive range h (the 

width of the Dugdale potential – slightly different in physical meaning from z0, but 

typically assumed to be of equal magnitude (see, for example, Ref. (8)) as 1 nm and 4-

5 nm, respectively.  Value of z0 of these magnitudes can be ruled out in the present study 

as such a gap would be readily visible.  It should be noted that there could be other 

adhesive interactions not captured by the Lennard-Jones potential which could act at this 

distance (such as capillarity or electrostatic attraction), but these are not likely to be 



!
!

104!

active in the present investigation since the contact is in high vacuum and the bodies are 

doped to impart high conductivity.  

 

Table 4.2: Values of z0 that have been proposed in previously published investigations.  

 

 

A second avenue of comparison involves starting with empirically-derived 

constants from well-established molecular dynamics potentials, some of which use a 

Lennard-Jones interatomic potential to describe the longer-range interactions between 

atoms or molecules.  These values (designated C and D, in Eq. 2.8) can be used to 

calculate Wadh and z0 in the surface potential by integration (as explicitly described in 

Ref. (17)).  The length-scale for the C-C Lennard-Jones interatomic potential used in the 

AIREBO molecular dynamics potential (18) is 0.340 nm.  Using the method of Ref. (17), 

this corresponds to z0,C-C,LJ = 0.243 nm for a carbon-carbon interface.  The corresponding 

Proposed z0 (nm) Estimated or fit to data Materials (if applicable) Ref.

0.15%&%0.23%a Estimated (5)

0.15%&%0.23%a Estimated (4)

0.15%&%0.23%a Estimated (9)

0.15%&%0.23%a Estimated (10)

0.15%&%0.23%a Estimated (11)

0.3 Estimated (12)

1 Estimated (8)

0.15 Used%to%fit%data tungsten%carbide%/%diamond (1)

0.2 Used%to%fit%data platinum%/%mica (13)

0.2 Used%to%fit%data tungsten%carbide%/%diamond (14)

0.3 Used%to%fit%data %%%%%%%%%%%%%%%%%%%%%glass%/%platinum (15)

0.3 Used%to%fit%data %%%%%%%%%%%%%%%%%%%silicon%/%TiO2 (16)

4%&%5 Used%to%fit%data %%%%%%%%%%%%%%%%%%%%%%%DLC%/%DLC (2)

a%These%investigations%suggest%z0%equal%to%interatomic%spacing;%for%silicon%on%diamond:%0.15%&%0.23%nm
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parameter for silicon do not seem to be as firmly agreed upon with values ranging from 

0.220 nm (19) to 0.380 nm (20).  These correspond to a range of z0,Si-Si,LJ = [0.157–

0.272] nm.  The present values agree well with these ranges.   

 

40302:& Comparing&the&work&of&adhesion&with&previously&proposed&values&

To assess how correctness of the measured value of Wadh, there are once again 

two different bodies of literature that can be consulted: first, values used in continuum 

contact mechanics investigations; and second, by comparing against the very well 

established literature on solids with van der Waals bonding between them.   

While few investigations have directly measured the work of adhesion between a 

silicon tip and a diamond surface, there have been many prior reports of work of adhesion 

of related contact pairs: a silicon tip on DLC or UNCD; a diamond tip on silicon; or any 

of those materials in a self-mated configuration.  Relevant measured results are shown for 

experimental investigations in Table 4.3 and for simulated investigations in Table 4.4. 

Measured values range widely from 0.01 J/m2 (a hydrogen-terminated, self-mated UNCD 

pair) to 0.83 J/m2 (a self-mated silicon contact pair).  While the present result 

(Wadh = 0.66 J/m2) lies in that range, it is significantly larger than most reported values 

from similar materials.  This is expected as most (but not all) of the AFM studies were 

performed in air, where contamination and water desorption can passivate the surface, 

and also because none of the studies took account of the surface roughness on the tip or 

the sample, which can cause up to an order of magnitude drop in adhesion (as discussed 

in Chapter 5).  
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Table 4.3: Values of Wadh that have been measured in previously published experimental 
investigations of relevant contact pairs. 

 

 

!  

Tip/Substrate Materials Measured Wadh (J/m2) Comment Ref.
!!!!!!!!!!!!!!!!!!silicon!/!ta+C 0.10!+!0.35 AFM,!in!air;!well+characterized!tip!radius (21)

!!!!!!!!!!!!!!!!!!silicon!/!DLC 0.08 AFM,!in!air;!well+characterized!tip!radius (2)

!!!!!!!!!!!!!!!!!!!!!!!DLC!/!DLC 0.05

!!!!!!!!!!!!!!diamond!/!silicon!(111) 0.20!+!0.45!a Interfacial!force!microscope (22)

!!!!!!!!!!!!!!diamond!/!UNCD 0.06 AFM,!in!air (23)

!!!!!!!!!!!!!!diamond!/!UNCD+H!b 0.01 AFM,!in!air

!!!!!!amorphous!C!/!diamond!(111)+H 0.10 AFM,!UHV!c,!Rtip!=!45!nm (24)

!!!!!!amorphous!C!/!diamond!(111)+H 0.03 AFM,!UHV,!Rtip!=!150!nm
!!!!!!amorphous!C!/!diamond!(111)+H 0.19 AFM,!UHV,!Rtip!=!45!nm
!!!!!!amorphous!C!/!diamond!(111)+H 0.05 AFM,!UHV,!Rtip!=!150!nm

tungsten!carbide!/!silicon 0.12 AFM,!in!air (25)

tungsten!carbide!/!diamond!(111) 0.06 AFM,!in!air

tungsten!carbide!/!diamond!(111)+H 0.04 AFM,!in!air

tungsten!carbide!/!UNCD 0.06 AFM,!in!air

tungsten!carbide!/!UNCD+H 0.03 AFM,!in!air

!!!!!!!!!!!!!!!!!!silicon!/!silicon 0.83 AFM,!in!air

a
!Radius!not!well!characterized;!quoted!as!"<10!nm".!!Also!value!decreased!with!time!elapsed.!

b
!An!appended!"+H"!indicates!that!the!surface!was!intentionally!hydrogen+terminated

c
!"UHV"!designates!an!environment!of!ultra+high!vacuum
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Table 4.4: Values of Wadh that have been measured in previously published simulation 
investigations of relevant contact pairs. 

 

 

To assess the measured value of Wadh with more precision, it is useful to compare 

against the very well-established literature (see, for example, Ref. (27)) on solids with 

van der Waals bonding between them.  The van der Waals theory and the more rigorous 

Lifshitz theory assume atomic interaction mechanisms (dispersion, Debye, and Keasom 

interactions, specifically) and are derived based on the physics of those.  In describing 

Tip/Substrate Materials Measured Wadh (J/m2) Comment Ref.

!!!!!!!!!diamond!(111)!flat!a!/!diamond!(111) 0.20!2!0.30 Depends!on!H!coverage (24)
!!!!!!!!!!high2sp3!carbon!flat!/!diamond!(111) 0.15!2!0.23

!!!!!!!!!!!low2sp3!carbon!flat!/!diamond!(111) 0.15!2!0.25

!!!!!!!!!!!!!!!!!!!!!!!!!!MDN!b!flat!/!diamond!(111) 0.03!2!0.15 Depends!on!roughness

!!!!!!!!!!!!diamond!(001)!flat!/!diamond!(001) 0.15!2!0.25 Depends!on!H!coverage

!!!!!!!!!!!low2sp3!carbon!flat!/!diamond!(001) ~0.10!c

!!!!!!!!!!!!!!!!!!!!!!!!!!UNCD!tip!d!/!diamond!(111)!!!!!! ~0.60 Simulated!AFM2like!tests (26)

!!!!!!!!!!!!!UNCD!tip!/!diamond!(111)2H ~0.35

!!!!!!!!!!!!!!!!!!!!!!!!!!!!UNCD!tip!/!UNCD ~0.40

!!!!!!!!!!!!!!!!!!!!!!!!!!!!UNCD!tip!/!UNCD2H ~0.20

!!!!!!!!!!!!!!!!!!!!!!!!!!!!UNCD!tip!/!DLC2H ~0.10

!!!!!!!!!!!!!!!!!!!!!!!!UNCD2H!tip!/!diamond!(111) ~0.24

!!!!!!!!!!!!!!!!!!!!!!!!UNCD2H!tip!/!diamond!(111)2H!!! ~0.28

!!!!!!!!!!!!!!!!!!!!!!!!UNCD2H!tip!/!UNCD ~0.26

!!!!!!!!!!!!!!!!!!!!!!!UNCD2H!tip!/!UNCD2H ~0.18

!!!!!!!!!!!!!!!!!!!!!!!UNCD2H!tip!/!DLC2H ~0.10

!!!!!!!!!!!!!!!!!!!!!!!!!!!DLC2H!tip!/!diamond!(111) ~0.12

!!!!!!!!!!!!!!!!!!!!!!!!!!!!DLC2H!tip!/!diamond!(111)2H!!! ~0.12

!!!!!!!!!!!!!!!!!!!!!!!!!!!!DLC2H!tip!/!UNCD ~0.12

!!!!!!!!!!!!!!!!!!!!!!!!!!!!DLC2H!tip!/!UNCD2H ~0.10

!!!!!!!!!!!!!!!!!!!!!!!!!!!!DLC2H!tip!/!DLC2H ~0.08

b!MDN!stands!for!"model!diamond!nanocomposite"

c!The!symbol!"~"!designates!that!these!values!were!read!off!of!plots!and!are!accurate!within!±0.05

d!Similar!to!AFM,!contact!involved!a!2.52nm!tip!on!a!flat!surface.!!Wadh!calculated!using!DMT!model!(Eq.!2.5)

a!Unlike!AFM,!contact!involved!two!flat!surfaces.!Wadh!calculated!by!integrating!the!force!during!separation
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van der Waals bonding, the Hamaker constant A1:2 conveniently describes the strength of 

interaction between materials (designated 1 and 2) interacting across a vacuum and is a 

function of the density and polarizability of the interacting materials.   

In his classic text on interaction forces, Israelachvili (27) provides the needed 

values and conversions to compare the present results to this literature.  The values of 

AC:C and ASi:Si have been theoretically calculated and measured to be approximately 

30×10-20 and 20×10-20 J, respectively.  Using a combining rule , the value 

for silicon and diamond interacting across a vacuum is AC:Si = 24.5×10-20 J.  Finally, the 

work of adhesion between two planar surfaces experiencing van der Waals attraction is 

given by: 

Wadh =
A1:2

12πD0
2  ,       (4.2) 

where D0 represents the separation distance at contact.  It is tempting to insert the 

measured value for z0 into this equation for D0.  However, it is not clear that this is the 

correct approach.  Figure 4.5 demonstrates the fundamentally different meanings of D0 

using a van der Waals approach and z0 using a Lennard-Jones approach.  In the van der 

Waals approach, an artificial hard-wall cut-off must be imposed in order to prevent the 

interaction going to infinity, the adhesive stress gets monotonically larger until D0 is 

reached.  Unfortunately, the exact value of this cut-off is somewhat arbitrary; it may or 

may not have a relationship to a physical spatial distance in the contact.  Israelachvili 

discusses choosing a value of D0 with the sole purpose of calculating physically 

reasonable values for Wadh (assuming cleavage of a material with known bond energy and 

areal density of bonds on the surface).  In other words, the value of D0 and the shape of 

A1:2 = A1:1A2:2
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the potential are fundamentally unrelated in the van der Waals picture.  By contrast, in 

the Lennard-Jones potential, z0 represents a parameter of the potential.  In the general 

treatment of planes, no artificial cut-off distance is needed11 because the repulsive part of 

the potential balances the attractive potential and keeps it from increasing without bound.  

Thus, there is no reason that D0 and z0 should have the same value.   

 
Figure 4.6: The van der Waals adhesion potential is compared with the Lennard-Jones 
potential to show the different meanings of D0 and z0.  The van der Waals potential (a) is 
purely adhesive, therefore an arbitrary cut-off value must be chosen for D0 such as the bounded 
region (labeled Wadh) agrees with measured values (27).  In contrast, the Lennard-Jones potential 
has a repulsive part incorporated and so requires no such artificial cut-off for the interaction of 
two planar surfaces.   

Given that z0 cannot simply be inserted into Eq. 4.2, then what value should be 

used?  According to Israelachvili, while “it is not at all obvious what value to use, […] 

for calculating surface energies we must use a ‘cut off’ distance D0 that is substantially 

less than the interatomic or inter-molecular center-to-center distance” (page 277, 3rd Ed. 

of Ref. (27)).  He goes on to suggest the use of the interatomic distance divided by 2.5 as 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 Section 4-1-2 discusses the addition of a constraint of hard-wall repulsion at z0 for 
certain shapes.  This is required due to the simplifying assumptions of the integration 
method used in the present investigation.  In the treatment of the adhesion of flat 
surfaces, no such hard-wall cut-off is required since the repulsive part of the potential 
balances the attractive part.    
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an empirical rule that applies to a wide variety of compounds.  Given the interatomic 

distances discussed above, the values are calculated as D0Si:Si = 0.094 nm and 

D0C:C = 0.062 nm.  If an average value is used in Eq. 4.2, along with the appropriate value 

of ASi:C (see above), the Wadh,vdW  is equal to 1.08 J/m2.  This is larger than the measured 

value, but it also likely represents an over-estimate for this material pair because the 

method for calculation of surface energies in Ref. (27) assumes perfect commensurate 

surfaces of a single crystal, rather than two different surfaces coming into contact. 

&

40303:& Origins&of&the&large&amounts&of&scatter&in&the&data&

There was significant scatter in the data, with Wadh and z0 each having 

approximately 20% uncertainty in the measured values.  This is likely arising either due 

to real fluctuations in changes in the tip and/or sample surfaces with time, or due to 

approximations and limitations of the analysis routine – both of which are difficult to 

quantify.  The first source could be due to slight fluctuations in contact location (due to 

drift in the system), which lead to differences in local topography or structure 

(passivation, relaxation, etc.) of the surfaces in contact.  Additionally, there could be 

bond formation/breaking across the interface, which would lead to deviations in the pull-

off force and could lead to local atomic topographical rearrangements (that may or may 

not be visible given the resolution of the TEM).  The uncertainty could also arise due to 

the significant assumptions in the model.  For instance, the assumption of local 

axinsymmetry (i.e. a circular cross-section at every height) is almost certainly not strictly 

correct and may be more or less accurate for different probe tips.  Also, the high-
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resolution images cannot resolve atomic structure.  The tracing routine is a best guess of 

location of the tip apex and assumes that the surface is smooth in between traced points.  

Finally, vibration in the tool was characterized and explicitly included in the analysis, but 

this assumes that the vibration is constant with time and does not change significantly 

with tool use (e.g. motion of the piezoelectric stage) nor with external factors (e.g. foot 

traffic outside the room).  To study and address these factors in more detail, a larger 

number of measurements is desired, ideally in a variety of conditions (different probes, 

different times of day, even different in situ indenters, if possible). 

 

40304:& Impact&of&the&present&technique&for&adhesion&characterization&

Despite the large uncertainty in the measured values, they represent the 

characterization of the length-scale and the strength of adhesion between two 

technologically relevant materials.  Knowledge of these parameters is required for 

predicting what the forces at work in nanoscale contacts and for designing strategies and 

geometries to maximize or minimize these forces in nanoscale devices or applications. 

While the present analysis assumes a Lennard-Jones type interaction – likely a gross 

simplification of the real adhesive interactions – Barthel (28) and others showed that 

calculated results are relatively insensitive to the exact form of the potential (Sect. 2-2-4).  

The length-scale and the strength of the adhesion are quite significant, but if these values 

are kept constant, the exact shape of underlying curve (square, triangle, Lennard-Jones, 

etc.) has a second-order effect.  This implies that the values measured here may provide a 
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very accurate description of adhesion between these two materials, despite the 

simplifications made in the analysis.  

 

404:& Conclusions&regarding&the&measurement&of&adhesion&parameters&&

As discussed in Sect. 2-2-3, a limitation of adhesion integration methods is the 

lack of reliable data for work of adhesion Wadh, and particularly for the adhesive range z0 

for a given pair of surfaces.  The advancement of the present method, containing direct 

visualization of the tip shape and its behavior during the adhesion test, is that the pull-off 

force and snap-in are used to provide two independent equations – each of which depends 

on both variables, Wadh and z0.  Therefore, both variables can be extracted through 

simultaneous fitting of the experimental data.  The measured values do not exceed 

bounds of what is physically reasonable, and they agree approximately with most 

previously published estimates and with most values calculated based on related 

techniques.  The values measured here, and the technique demonstrated, provide a basis 

for more accurate and predictive models of adhesion in real nanoscale devices and 

applications. 

!  
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CHAPTER'5:'Nanoscale'adhesion,'Part'II:'The'effect'of'atomicAscale'

roughness12'

As discussed before, while it is well established that adhesion energies and forces, 

including forces of separation, depend strongly on the geometry of the contacting bodies, 

there is little understanding and almost no direct measurements of such phenomena at the 

nanometer scale.  Even nanoengineered surfaces like molded or sculpted AFM tips can 

have random nano- and atomic-scale features, and these are difficult to model and even 

more difficult to measure.  The previous chapter presented analysis applicable to cases 

where the tip’s geometry is known with sub-nanometer-scale detail.  A more 

generalizable question regards the effect of tip roughness on adhesion; i.e., characterizing 

the impact of measured roughness parameters, rather than characterizing individual tips. 

In situ microscopy provides an opportunity to address this question in ways that were 

previously impossible.  This chapter presents adhesion tests performed inside the TEM, 

which enable concurrent characterization of the sub-nanometer tip roughness and the 

force required to pull the tip off of the surface.  The in situ imaging capability is 

leveraged by comparing against atomistic simulations; this enables the identification of 

trends of adhesion over a wide range of roughness values. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
12 Much of this chapter appears in print: Adapted Turner with permission from Jacobs, T. 
D. B.; Ryan, K. E.; Keating, P. L.; Grierson, D. S.; Lefever, J. A.;, K. T.; Harrison, J. A.; 
Carpick, R. W. The Effect of Atomic-Scale Roughness on the Adhesion of Nanoscale 
Asperities: A Combined Simulation and Experimental Investigation. Tribol. Lett. 2013, 
50, 81–93.  Copyright 2013 Springer. 
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501:& Analytical&results:&A&simple&numerical&model&of&roughness&

As discussed in Sect. 2-1-1, there are no established models that predict the 

adhesive force between a rough, curved tip and a flat surface.  While the method 

presented in Chapter 4 can be used for this purpose, it requires prior knowledge of the 

detailed contour of the tip.  It is impractical to characterize the shape of each tip of 

interest, and further, Chapter 4 does not demonstrate trends of behavior such as those 

found in the significant body of literature regarding the effect on adhesion of roughness 

of planar surfaces (see Sect. 2-3).  Therefore, before any in situ adhesion tests are 

presented, this section presents the expected trends of adhesion on tip roughness by using 

the adhesion integration method (described in Sect. 3-4-5) on model, axisymmetric tips of 

varying roughness. 

Model tips were defined by superposing a paraboloid (for the overall tip shape) 

and a sine wave (representing the roughness) as follows: 

,
  (5.1) 

where r and z are cylindrical polar spatial coordinates, Rtip defines the radius of the 

overall parabolic shape, and A, λ are the amplitude and wavelength of the sine wave, 

respectively.  The resulting tip (inset in Fig. 5.1) is treated as rigid and is paired with a 

rigid flat surface.  The pull-off force was calculated (see Sect. 3-4-5) for varying inputs of 

A and λ.  Values of Wadh,max = 0.15 J/m2, z0 = 0.154 nm, and Rtip = 10 nm were chosen as 

physically reasonable values as input parameters for the Lennard-Jones surface potential 

(Eq. 2.9); the exact values are unimportant as the qualitative trends would be similar for 

other common experimental values.  The roughness of the tip is changed by varying the 

ztip (r) = zparaboloid (r)+ zroughness (r) =
r2

2Rtip
− Acos 2πr

λ
⎛
⎝⎜

⎞
⎠⎟
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amplitude and the wavelength of zroughness over the range 0 - Rtip/10 (i.e., 0 - 1 nm for 

Rtip = 10 nm), and the RMS roughness of the tip is calculated from the profile of zroughness. 

Once Fadhesive is calculated for each value of RMS roughness, Eq. 2.5 is used to calculate 

the effective work of adhesion, Wadh,eff; since the tips are rigid, then µT ! 0, so the DMT-

limit (or, more accurately, the Bradley limit) applies.  This quantity represents the work 

of adhesion that would be calculated if the roughness of the tip was ignored, i.e., if only 

the overall paraboloidal tip shape was considered.  In fact, that is how the vast majority of 

experimental studies calculate the work of adhesion since, as stated earlier, the atomic-

scale details of the tip are usually not measureable  
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Figure 5.1: By applying a Lennard-Jones surface potential to a model tip composed of a 
sinusoid superimposed on a paraboloid, the essential trends of adhesion as a function of 
roughness are demonstrated.  A smooth paraboloidal tip (a) has a sinusoidal roughness (b) 
superimposed on it to create a roughened tip (c).  Using a similar approach to that described in 
Sect. 4-1-1, simulated pull-off force tests as a function of roughness yield values for Fadhesive.  
Then the DMT model (Eq. 2.5) is used to calculate an effective work of adhesion, Wadh,eff.  This 
Wadh,eff  value has been divided by the input value Wadh,max to determine the deviation due to RMS 
roughness Rq, as shown in (d) for various values of roughness wavelength.  Results for all four 
values of λ overlap, with a maximum deviation of just 2% at any value of roughness. Insets in (d) 
indicate the roughness as compared to the overall shape (thin grey lines show the best-fit 
parabolic profiles) for three values of roughness.  Note that for the tips and data shown in (d), 
Rtip = 10 nm and z0 = 0.154 nm.  Figure reproduced with permission from Ref. (1). 

The results of this simplified rigid model are shown in Fig. 5.1(d).  The effective 

work of adhesion is normalized by Wadh,max (i.e., the input value for work of adhesion in 
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the interaction potential).  This is shown as a function of the RMS roughness Rq, which, 

for any sine wave, is defined as Rq =
2
2
A .  While the model and its assumptions are 

quite simplistic, there are three key implications that provide insights for what to expect 

for real adhesion tests of hard materials: 

1. The effective work of adhesion decreases significantly and rapidly with 

increasing roughness.  Even with an RMS roughness of just 0.1 nm, the 

effective work of adhesion is reduced to almost 50% of its maximum 

value.  

2. The results agree qualitatively with findings of the more sophisticated 

models discussed in Sect. 2-1-2.  Larger roughness (i.e., larger Rq) 

increases the average separation between the two surfaces and thus 

decreases the adhesive stress acting between them.  Because the results 

have been normalized to the maximum (smooth-tip) work of adhesion, 

these trends are expected to be material independent.    

3. The results show almost no dependence on the wavelength of the 

roughness, when the wavelength is kept significantly smaller than the tip 

radius.  Over the range shown in Fig. 1(d) (0.025 ≤ λ/R ≤ 0.1), there is 

only a 2% change in normalized work of adhesion due to changes in 

wavelength.    

The quantitative reduction of Wadh,eff  with increasing roughness is sensitive to the 

chosen value of the equilibrium separation, z0; however, the sharply decreasing trend of 

Wadh,eff  as a function of roughness will occur for any reasonable value chosen. 



!
!

120!

502:& Measuring&adhesion&with&direct,&concurrent&measurements&of&tip&

topography&

50201:& Experimental&in#situ&TEM&measurements 

Adhesion tests were performed inside the TEM to enable concurrent 

measurements of the sub-nanometer tip roughness and the force required to pull the tip 

off of the surface.  Using the methods described in Sect. 3-2, adhesion tests were 

performed for multiple DLC and UNCD tips making contact with a single-crystal 

diamond substrate using the TEM-based PicoIndentor.  An example video of a typical 

adhesion test can be found in the Supplemental Information of associated with Ref. (1).  

At least 9 adhesion tests were performed on each probe; histograms are provided in Fig. 

5.2(i-vi).  The average of the measured values was reported as Fadhesive, with the standard 

deviation of the measurements reported as the uncertainty in that value.  There is 

significant scatter in the data, consistent with results from prior investigations (such as 

Ref. (2)).  This scatter is thought to be attributable to vibration or drift in the instrument.  

Vibration and ambient mechanical noise could result in slightly premature pull-offs; drift 

could result in small changes in contact location – with resulting changes in local 

topography and roughness.  Even small changes in registry/distregistry of atomic 

corrugation between opposing surfaces have been shown to have a significant effect on 

pull-off force (3).  The roughness of the tip was characterized before testing, as described 

in Sect. 3-3-1, as is shown for each tip in Fig. 5.3.  High-resolution images taken after the 

adhesion testing confirmed that the tip shape and roughness did not change during 

testing.  
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Figure 5.2: In situ adhesion tests were used to measure adhesive forces on asperities of 
diamond-like carbon and ultrananocrystalline diamond against a single crystal diamond 
substrate.  Three DLC-coated silicon asperities (a-c) and three UNCD-coated silicon asperities 
(d-f) were used in this study.  For the probe shown in (a), an irregularity in the coating process 
produced an almost perfect hollow sphere on the end of the probe.  Each probe was used for at 
least 9 pull-off tests; histograms of the measured adhesion force Fadhesive are shown in (i-vi).  The 
dashed boxes indicate the regions of the tips that were imaged at higher resolution; the 
corresponding images are shown in Fig. 5.3.  Figure reproduced with permission from Ref. (1). 

Combining the measured adhesion force Fadhesive and the best-fit parabolic radius 

Rtip, the effective work of adhesion Wadh,eff was calculated using Eq. 2.5, the standard 

technique for AFM-based measurements of work of adhesion.  All measured and 

calculated values are shown in Table 5.1 along with the tip radii and roughness values.  
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For the DLC tips, there is an 80% reduction in measured work of adhesion between the 

smoother tip (Rq roughly 0.2 nm) and the rougher tips (Rq roughly 0.5 nm).  Likewise, the 

UNCD tips show a 50% reduction over the interval of 0.5 – 1.6 nm of RMS roughness. 

These results clearly demonstrate a steep downward trend of effective work of adhesion 

with increasing roughness on the sub-nanometer to nanometer length scale.  More 

generally, these results demonstrate that the standard experimental technique for 

measuring work of adhesion produces results that depend very sensitively on tip 

roughness, a parameter that is not measured in a typical test.  This investigation further 

shows that the work of adhesion, a parameter that is typically treated as a constant for a 

given tip/sample material pair (4), is highly geometry-dependent.   
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Figure 5.3: The roughness of each tested tip has been characterized with sub-nanometer 
resolution.  The outer profiles of two-dimensional side views are traced (blue) and fit to a 
parabola (red).  The subtraction of the two curves yields the equivalent roughness that would be 
measured on a flat surface; these profiles are shown in (i-vi).  For ease of direct visual 
comparison, the axes of (i-vi) have been standardized among the various tips of a single material; 
in some cases, the profile that was measured and analyzed extends beyond the representative 
region shown.  Figure reproduced with permission from Ref. (1). 
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Table 5.1: All data from the experimental and simulated adhesion tests.  For each tip/sample 
combination, the tip radius is extracted using a parabolic fit to the measured profile and the pull-
off force is measured directly.  From these values, the effective work of adhesion is calculated 
using Eq. 2.5.  The RMS roughness is extracted as described in Sect. 3-3-1. 

 
 

It should be noted that RMS roughness is ideally measured over a constant 

sampling area.  Unfortunately due to deviations in tip size (between different coated TEM 

probes, and especially between simulated tips in the subsequent section), different 

sampling widths were unavoidable in this study.  While this will add some additional 

degree of uncertainty to the results, the increasing roughness of the tips demonstrated by 

changes in the RMS roughness reported in Tables 5.1 can clearly be verified by visual 

inspection of the profiles shown in Figs. 5.3(i-iv) and 5.6(i-vi). 

 

50202:& Complementary&simulated&adhesion&tests&performed&by&collaborators&

Since the roughness of the coated tips cannot be controlled nor systematically 

varied, complementary simulated adhesion tests were performed by collaborators at the 

US Naval Academy.  Test conditions (materials, geometry, environment) were as closely-

matched as possible to those of the experiments. The specific details of the creation of the 

Tip�material Sample Method Tip�radius�(nm) Adhesion�Force�(nN) RMS�Roughness�(nm) Eff.�Work�of�Adhesion�(J/m2)

DLC�Probes

�����DLC�(Fig.�2a)� Diamond(111)ͲH� MD 2.33 2.02�±�0.10 0.033 0.138�±�0.007�

�����DLC�(Fig.�2b)� Diamond(111)ͲH� MD 2.67 1.08�±�0.24� 0.098 0.064�±�0.014�

�����DLC�(Fig�5a)� Diamond�punch TEM 45.72 17.1�±�6.9� 0.182 0.060�±�0.024

�����DLC�(Fig�5b)� Diamond�punch TEM 21.55 1.0�±�0.4� 0.456 0.007�±�0.003�

�����DLC�(Fig�5c)� Diamond�punch TEM 17.40 1.1�±�0.4� 0.548 0.010�±�0.004�

UNCD�Probes

�����UNCD�(Fig.�2c)� Diamond(111)ͲH� MD 2.74 4.56�±�0.33� 0.031 0.265�±�0.019�

�����UNCD�(Fig.�2d)� Diamond(111)ͲH� MD 2.56 2.02�±�0.08� 0.121 0.125�±�0.005�

�����UNCD�(Fig�5d)� Diamond�punch TEM 37.83 2.1�±�0.6� 0.514 0.009�±�0.003�

�����UNCD�(Fig�5e)� Diamond�punch TEM 70.23 2.6�±�0.9� 0.644 0.006�±�0.002�

�����UNCD�(Fig�5f)� Diamond�punch TEM 115.51 3.2�±�1.4 1.576 0.004�±�0.002�
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simulation tips can be found elsewhere (5).  In short, axisymmetric paraboloidal tips were 

cut from bulk DLC or UNCD according to the equation: 

,
     (5.2) 

where Rtip (the radius of curvature) was set at 2.5 nm and the height of the tip along the z-

axis was set at 3.5 nm. The radius of curvature of the tips was selected to be as large as 

was computationally feasible.  After equilibration in hydrogen to passivate dangling 

bonds, the tips (shown in Fig. 5.4(a,c)) were brought into contact with the hydrogen-

terminated (111) face of diamond (shown in Fig. 5.4(a)).  Additional tips were made and 

tested with intentionally roughened surfaces, as shown in Fig 5.4(b,d).  These were 

created by taking the equilibrated tips described above, randomly removing 25% of the 

carbon atoms from the outer 3-5 Å of the tip, and re-equilibrating in hydrogen.  All 

adhesion simulations were performed using the adaptive intermolecular reactive 

empirical bond-order potential (AIREBO) (6).  While this potential is based on the 2nd 

generation REBO (7), it additionally captures intermolecular interactions by allowing for 

longer-range (so called “non-bonded”) interactions using a Lennard-Jones term (Eq. 2.8) 

and also by including a term to account for torsional energies of bond rotation.  It was 

developed for hydrocarbons and is well-suited for capturing interactions between surfaces 

of carbon-hydrogen systems.  The potential was coded into the Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS) (8).   

z(r) = r2

2Rtip
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Figure 5.4: Simulated adhesion tests were performed by collaborators using molecular 
dynamics, conditions were matched as closely as possible to the TEM adhesion tests.  
Simulation tips made from DLC and UNCD (a, c, respectively) are shown with carbon atoms 
colored grey and hydrogen atoms colored yellow; red atoms represent those that are held rigid 
during testing.  Replicas of these tips were roughened intentionally (b, d).  Adhesion tests were 
performed against a hydrogen-terminated diamond substrate (included in (a)) to calculate the 
interaction force as a function of z-displacement, as shown in (i-iv).  Data points from five tests 
performed with slightly different impact locations are shown overlapped (each with a different 
color, online) to indicate the degree of scatter in repeated tests.  For both materials, the rougher 
tips demonstrate reduced pull-off forces and larger variability in force curves.  Figure reproduced 
with permission from Ref. (1). 

The pull-off force was identified as the minimum value of force as a function of 

displacement, as shown in Fig. 5.4(i-iv). To account for crystalline alignment effects, 

multiple contact points were chosen by shifting the tip by one half or one full length of 

the unit cell of diamond in each lateral direction in a manner similar to (3). The tip radius 

and roughness of the equilibrated tips was measured as described in Sect. 3-3-1, as shown 

in Fig. 5.5.  



!
!

127!

'
Figure 5.5: The roughness of the simulated tips was characterized using the same approach 
as was used on the experimental tips.  Using The roughness of the MD probes is characterized 
using side-view renderings of all probes (a-d) using VMD software (9) and the van der Waals 
radius of each atom.  The outer profiles are traced (blue) and fit to a parabola (red).  While the 
entire profile of the tip was traced and analyzed (approximately 8 nm in arc length), these images 
of the tip traces have been expanded to show detail.  The subtraction of the two curves (measured 
and fit) yields the equivalent roughness (shown in i-iv) that would be measured on a flat surface.  
The original parabolic tips of DLC (a) and UNCD (c) are significantly smoother than the 
intentionally roughened versions of the same tips (b, d, respectively).  Figure reproduced with 
permission from Ref. (1). 

Finally, the effective work of adhesion was calculated using Eq. 2.5.  All 

measured and calculated parameters for the simulated tips are shown in Table 5.1.  Only 

data for the approach portion of the curve was analyzed, but in all cases, the approach and 

retract portions were symmetrical and post-test examination showed no chemical bond 

formation.  The trends seen in the experimental data were reproduced in the simulated 

data, with precipitous drops in effective work of adhesion with increasing roughness.  

&
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Results from both the experimental and simulated data sets are plotted together in 

Fig. 5.6.  It is clear that the simulated data form a consistent trend with the experimental 

data.  This is particularly clear for the DLC tips where the roughest simulated tip 

approaches the roughness value of the smoothest experimental tip. Taken together, the 

two data sets show that for both DLC and UNCD, there is more than an order of 

magnitude drop in effective work of adhesion as roughness increased from 0.03 nm 

(atomically smooth) to approximately 0.5 nm.  The magnitude of this decrease in Wadh,eff  

due to Ångström-level and nanoscale roughness highlights the degree to which measured 

values of work of adhesion depend on roughness, even when the roughness is at the 

atomic scale.   
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Figure 5.6: The experimental and simulated tests show a consistent trend of adhesion with 
roughness; this trend is well-fit using a previously proposed roughness model.  The work of 
adhesion decreases by more than an order of magnitude as roughness increases from the sub-
Ångström level (atomic corrugation only) to the nanometer scale.  Results from MD simulations 
(filled data points) and from experimental testing (hollow data points) are shown (a) for sharp tips 
made of UNCD (red) and of DLC (black).  The modified Rumpf model (Eq. 5.3) was fit 
separately to each material (indicated by ‘-’s and ‘x’s of corresponding color) using either the 
upper bound (b) or lower bound of D0.  Best-fit values of Hamaker constant for each material 
from fitting the model are given in the legend.  Figure reproduced with permission from Ref. (1). 

Fit to UNCD (Eq. 5.3)
AHamaker = 13×10-20 J
R2 = 0.99

Fit to DLC (Eq. 5.3)
AHamaker = 5.9×10-20 J
R2 = 0.82

Fit to UNCD (Eq. 5.3)
AHamaker = 55×10-20 J
R2 = 0.99

Fit to DLC (Eq. 5.3)
AHamaker = 27×10-20 J
R2 = 0.93

(a)

(c)(b) Fit using upper bound D0 = 0.185 nm Fit using lower bound D0 = 0.064 nm 

Experimental (TEM) and simulation (MD) data



!
!

130!

50203:& Fitting&experimental&and&simulation&results&with&a&simple&literature&model&

To put these results in context, they were compared to predictions from all models 

discussed in Sect. 2-1-1, even though these contacts explicitly violate assumptions made 

by many of these models (for example, the assumption that asperity radii Rasperity are 

identical (10-14)).  Note that the self-affine fractal model (15) was not tested because the 

two-dimensional measured profiles provided insufficient data to accurately calculate the 

power spectra of the surfaces.  The most readily applicable models are those in which a 

sphere (radius Rtip) in contact with a rough surface is approximated as the same sphere in 

contact with a single small asperity (of radius Rmodel-roughness) situated on a perfectly 

smooth surface (as described in Sect. 2-3 and pictured in Fig. 2.1(c)) The adhesion force 

calculated using the simplest of these models (the modified Rumpf model, Eq. 2.10) can 

be combined with Eq. 2.5 to calculate the dependence of measured work of adhesion 

Wadh,eff on roughness Rq as follows: 

Wadh,eff =
Fadhesive
2πRtip

= AHamaker

12πD0
2 1+

Rtip
1.48Rq

⎛

⎝⎜
⎞

⎠⎟

−1

+ 1+
1.48Rq
D0

⎛
⎝⎜

⎞
⎠⎟

−2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.  (5.3) 

(The DMT model (Eq. 2.5) is used rather than the JKR model (Eq. 2.6), based on 

calculated Maugis parameters (Sect. 2-2-2) in the range of 0.012 to 0.108 for the present 

tests.) 

The present data has been fit using Eq. 5.3 with input parameters calculated as 

follows: the measured pull-off force Fadhesive; the asperity radii Rtip extracted from 

parabolic fits; and the RMS roughness Rq values extracted from the flattened profiles (as 

described in Sect. 3-3-1).  Unfortunately, choosing a value for D0 is not straightforward 
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(as discussed in Sect. 4-3-2).   For fitting the present data, two limiting cases were 

chosen: the lower bound of D0 = 0.062 nm corresponds to 40% of the interatomic spacing 

(4); the upper bound of D0 = 0.185 nm corresponds to a physically reasonable value for 

separation of the surfaces in contact, calculated using the method described in Ref. (16) 

and using the value of the interatomic equilibrium spacing taken from the AIREBO 

potential used in the simulations.  The data for the DLC and UNCD tips were fit 

separately, each with the Hamaker constant as the only free parameter.  The fits to the 

data using the upper bound of D0 were quite good, with adjusted R2 values of 0.99 

(UNCD) and 0.93 (DLC).  The fits using the lower bound of D0 were also good, with 

adjusted R2 values of 0.99 (UNCD) and 0.82 (DLC).   Values for the Hamaker constant 

were extracted from all fits: for D0 = 0.185 nm, ADLC:Diamond = 27×10-20 J and 

AUNCD:Diamond = 55×10-20 J; for D0 = 0.062 nm, ADLC:Diamond = 5.9×10-20 J and AUNCD:Diamond 

= 13×10-20 J.  Since the appropriate choice of D0 is uncertain, these can be considered 

upper and lower bounds for each material.  (When this data was previously published (1), 

the only the value of 0.185 nm was used.  In the present thesis, both values are used to 

demonstrate the ambiguity in this value and its effect on measured parameters.)  While 

specific reference values for these material pairs do not exist, the order of magnitude of 

these values compares favorably against the reference value of AHamaker = 30×10-20 J 

calculated for diamond surfaces in a vacuum (4).  The much-lower value of Hamaker 

constant for DLC as compared to UNCD is partially explained by the lower density of the 

former (2.0 g/cm3, measured using x-ray reflectivity) as compared to the latter (3.5 g/cm3 

(17)), however, van der Waals interactions are also affected by the electronic properties 

of the materials in contact.  
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One factor that was not considered in the above analysis was the roughness of the 

(nominally flat) counter-surface.  However, in all cases the counter-surfaces had a lower 

RMS roughness than the contacting asperities, as discussed in Sect. 3-2-3 for the 

experimental tips.  In the simulated contacts, the only topographical variations in the 

hydrogen-terminated (111) face of diamond are due to the atomic corrugation.  Thus 

these surfaces can be considered to be ideally smooth. Therefore, in all cases, the 

roughness of the substrate is predicted to have only a secondary effect on adhesion.  

Regardless of the details of the chosen fitting parameters, Fig. 5.6 clearly 

demonstrates several characteristics of the data and the model fit, which can be compared 

to those of the simplified rigid model presented in Sect. 5-1:  

1. There is a significant and rapid decrease in effective work of adhesion with 

increasing roughness.  The TEM and MD results show that for an RMS roughness 

of just 0.15 nm, the effective work of adhesion is already reduced by 

approximately 50% from its smooth-tip value.  This trend compares very 

favorably to the rigid model shown in Fig. 5.1(d), where the same ~50% decrease 

was observed for an RMS roughness of 0.1 nm. 

2. The observed dependence not only agrees qualitatively with predictions of 

published models (Sect. 2-3), but also can be fit quantitatively using the modified 

Rumpf model.     

3. Finally, it may seem surprising that the modified Rumpf model fits well, 

especially given that it depends only on RMS roughness and does not take into 

account the spatial extent of the roughness.  However, this finding is in agreement 

with the trend of the simplified rigid model (Fig. 5.1), which showed almost no 
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dependence of Wadh,eff on the wavelength λ. The absence of dependence on 

wavelength is, in part, due to the fact that the elastic deformation is very small in 

these contacts due to the high modulus and relatively low values of adhesion.      

&

503:& Suggestion&of&a&roughness0independent&adhesion&parameter&

The atomically smooth MD tips (RMS roughness of roughly 0.03 nm for both 

smooth DLC and UNCD tips) with nearly perfect parabolic profiles approach the limit of 

smoothness that can be physically realized. Therefore, the work of adhesion determined 

from Eq. 2.5 for the contact between these tips and the C(111)-H substrate was 

considered to correspond to a maximum work of adhesion that is realistically attainable, 

Wadh,max, for the given material pairs (0.138 J/m2 for DLC on C(111)-H, and 0.265 J/m2 

for UNCD on C(111)-H).  If true, then while all values of effective work of adhesion, 

Wadh,eff, will be roughness dependent, this maximum value, Wadh,max, should not be. 

Because the modified Rumpf model fits the data well, Eq. 5.3 can be used to suggest an 

equation for extracting the smooth-tip work of adhesion, Wadh,max, from measurements of 

the effective work of adhesion, Wadh,eff, if the tip radius and roughness are known.  As 

mentioned, Wadh,max is taken as the value that would be measured with a tip containing 

atomic corrugation (Rq = 0.03 nm).  In other words, from Eq. 5.3, Wadh,max = Wadh,eff 

(Rq = 0.03 nm) and Wadh,measured = Wadh,eff (Rq  = Rq,measured). These two quantities can be 

divided, resulting in the following equation: 
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Wadh,max =
Fpull−off
2πRtip
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  (5.4)

 

In principle, this is a general equation which allows for the calculation of the 

work of adhesion that would be measured using an atomically-smooth tip (i.e., Wadh,max). 

This value should be a fundamental property of the tip and sample materials and should 

be independent of probe roughness.  For instance, in the present study Wadh,max was 

measured as 0.138 J/m2 and 0.265 J/m2 (DLC and UNCD, respectively) using the 

atomically smooth simulated tip; in principle, these values could have been calculated 

from measurements taken with tips that have finite roughness.   

To test this method of calculation, all the data from rough tips (i.e., all data from 

Tables 5.1, excluding the atomically smooth simulated tips) can be processed together.  

Following the traditional method of measurement of work of adhesion (which accounts 

for tip radius, but not roughness), all measurements are averaged yielding 

Wadh,eff = 0.035±0.031 J/m2 for DLC and 0.036±0.060 J/m2 for UNCD.  These values are 

significantly different from the smooth-tip values reported in the previous paragraph and 

have standard deviations that are larger or roughly equal to the measured value.  By 

contrast, when Eq. 5.4 is used to calculate a Wadh,max from each measurement (with 

D0 = 0.185 nm), the resulting values can be averaged to yield Wadh,max = 0.121±0.071 J/m2 

for DLC and 0.140±0.078 J/m2 for UNCD.  These values agree within 50% with the 

smooth-tip values, and the standard deviation has been reduced to approximately half of 

the measured value.  The remaining uncertainty and error may be attributed to a relatively 
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small sample size, but the principle is demonstrated.  Further work is required to verify 

the reliability of this approach and the limits of its applicability. 

The good agreement between the experimental and simulation data with a simple 

analytical model holds promise for addressing the challenge of extracting meaningful 

work of adhesion values from AFM measurements. In general, it is impractical, if not 

impossible, to characterize the details of the sub-nanometer-scale roughness of a tip every 

time a pull-off test is performed.  However, the present results indicate that a reasonable 

estimate can be made of the effect on work of adhesion with knowledge only of the 

radius and RMS roughness of the tip material. If a set of tips are fabricated using the 

same method, TEM characterization of the roughness of a small set could be used to 

obtain a representative value of RMS roughness Rq, which can then be used with Eq. 5.4 

to extract improved estimates of the smooth-tip work of adhesion, with meaningful 

uncertainty bounds.   

   

504:& Conclusions&

Both the simple numerical model and the measured adhesion results demonstrate 

the extreme effect that atomic-scale roughness of nanoscale tips has on the measured 

value of work of adhesion. This work represents the first time that sub-nanometer-scale 

roughness of asperities has been measured and related to measured changes in adhesion. 

Adhesion forces are extremely sensitive to atomic-scale roughness in this range.  If the 

atomic-scale roughness is not measured and explicitly accounted for (something that is 

difficult with nanoscale tips), then the true work of adhesion can be greatly 
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underestimated, and a wide range of values can be obtained for the same material pair.  

However, the simple modified Rumpf model is shown to fit the measured data 

remarkably well, and is thus used to suggest a roughness-independent measurement of 

adhesion. 

Significant scientific questions remain open for future study.  Most critically, the 

present analysis distills the surface topography to a single parameter and does not account 

for the multi-scale nature of surface roughness.  Further experimental investigation is 

required to relate the present results to well-established models of nominally flat self-

affine surfaces.  An additional practical challenge lies in the difficulty of measuring tip 

roughness on typical AFM probes.  Thus, even though this parameter has been shown to 

be critically important for interpreting AFM results, it remains unattainable to most AFM 

users since a TEM is required to obtain the needed information (and even with TEM, 

only a two-dimensional tip profile is obtained; the full three-dimensional topography 

remains unknown).  This challenge could be addressed in the short term by the generation 

of statistics on the surface roughness of typical AFM probes processed using standard 

fabrication techniques, such that a typical range of Rq values can be quoted, allowing the 

calculation of a range of Wadh,max values within which one can be confident the correct 

value lies.  In the longer term, techniques would ideally be developed for assessing tip 

roughness – for instance, either using standardized surfaces and reconstruction algorithms 

(akin to current techniques for measuring tip radii) or else using pull-off tests from 

extremely robust and well-characterized surfaces (such as clean, atomically flat surfaces 

in ultra-high vacuum).   
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CHAPTER'6:'Nanoscale'Wear,'Part'I:'The'Application'of'Reaction'

Rate'Theory'to'Nanoscale'Wear13'

This chapter discusses the application of reaction rate theory to nanoscale wear.  

As discussed below, previous authors have analyzed wear data assuming an exponential 

dependence on stress; however, this approach has not been rigorously justified and 

analysis approaches have varied from author to author.  To remedy this, in the present 

chapter, a specific thermally activated mechanism of wear is proposed, along with a 

description of the system in its initial, activated, and final states and the required 

assumptions.  Then specific methods are discussed to extract the relevant activation 

parameters, along with the challenges of interpretation of those parameters.  Finally, 

future investigation approaches are suggested for further exploring the fundamentals of 

nanoscale wear – some of which are employed in the subsequent chapter.  The present 

chapter begins with a review of reaction rate theory and its assumptions, along with a 

case study of its application to dislocation glide.  This serves to demonstrate themes that 

will be referred to later in the chapter. 

 

601:& Review&of&reaction&rate&theory&

Reaction rate theory (also called absolute rate theory or transition state theory) 

originated as a framework for describing the kinetics of thermally activated chemical 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13 Much of this chapter appears in print: Adapted with permission from Jacobs, T. D. B.; 
Gotsmann, B.; Lantz, M. A.; Carpick, R.W.  On the application of transition state theory 
to atomic-scale wear Tribol. Lett. 2010, 39, 257-271. Copyright 2010 Springer. 
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reactions.  The topics are very well covered elsewhere, for example by J. W. Christian (1) 

and by P. Hanggi et al. (2); therefore only the essential points are covered here.  The 

classic formulation of reaction rate theory describes a set of reactants that undergo a 

process which moves them from one stable equilibrium point (the initial state) to another 

(the final state).  The degree of progress is measured as the reaction coordinate.  Stable 

equilibrium demands that the two terminal points lie at local energy minima and therefore 

at least one local maximum must exist at an intermediate position along the reaction 

coordinate.  In the simplest picture, shown in Fig. 6.1, there is one maximum and the 

state of the system at this point is called the activated complex.  The energy difference 

between the initial and activated states is known as the activation energy, (ΔGact).  For a 

large number of identical systems, Eyring used statistical mechanics to describe the 

overall rate of forward reaction k for a thermally activated process (1): 

k = fatt exp − ΔGact

kBT
⎛
⎝⎜

⎞
⎠⎟  ,

      (6.1)  

where fatt is an effective attempt frequency, ΔGact is the Gibbs free energy of activation, 

kB the Boltzmann constant and T the absolute temperature. 
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Figure 6.1: Reaction rate theory describes the kinetics of thermally activated processes. This 
schematic diagram shows the energy as a function of reaction coordinate for a system as it 
undergoes a thermally activated process.  Figure reproduced with permission from Ref. (3).  

!

As J. W. Christian (1) explains in his thorough text on the subject, there are five 

assumptions inherent in Eyring’s analysis:  

1) there is a continuous change along the reaction coordinate linking the stable 

initial and final states and the intermediate, unstable activated state;  

2) the reaction will proceed along the lowest-energy path, thus the activated state 

will lie at a saddle point in energy;  

3) once the system has reached the activated state, there is a high probability that 

it will proceed to the final state;  

4) the initial state and activated state are at thermal equilibrium, such that 

Boltzmann statistics can be applied; and  
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5) the activated state possesses all degrees of freedom except vibrational motion 

along the reaction coordinate (which causes decomposition to the initial or final states).  

 The last assumption indicates that even the activated state is a point of stable 

equilibrium with respect to all other variables – it is only in the reaction coordinate that 

there is an energy maximum. 

While this rigorous theoretical basis applies well to chemical reactions, its 

extension to reactions in solids (such as the movement of defects) is more complex as a 

crystal of N atoms contains 3N degrees of freedom and therefore the potential energy 

landscape is a 3N-dimensional hypervolume.  Vineyard was able to formulate the general, 

many-body problem and solve it rigorously in the context of reaction rate theory by 

approximating all vibrations as harmonic (4).  His treatment described chemical diffusion 

by atomic hops, building on the work of other authors (5) to explain the temperature 

dependence of diffusion coefficients.  In the absence of an external force, there is no 

work done on or by the system; therefore Vineyard used the Helmholtz free energy of 

activation ΔFact = ΔUact – TΔSact, where ΔUact and ΔSact are the differences in potential 

energy and entropy, respectively, between the initial and activated states (the activation 

energy and activation entropy).  By describing the potential energy landscapes around the 

initial and activated states as those of simple harmonic oscillators, the following 

Arrhenius-type rate equation can be derived (4):   

k = fatt exp − ΔFact
kBT

⎛
⎝⎜

⎞
⎠⎟
=

f j
j=1

3N

∏

f j
'

j=1

3N

∏

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

− ΔUact

kBT
⎛
⎝⎜

⎞
⎠⎟

,

    (6.2)
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where f is an effective vibration frequency, and fj and fj’ are the normal frequencies of 

oscillation about the initial state and the activated state, respectively, in the jth degree of 

freedom.  In accordance with assumption (5) of the Eyring treatment, the system has the 

full 3N degrees of freedom at its initial state, but only 3N-1 at the activated state since, in 

that state, any vibration along the reaction coordinate causes decomposition to one of the 

terminal states.  In many cases, the effective frequency factor is assumed to be in the 

range of 1012-1013 Hz based on either of two assumptions: the vibrational modes of the 

initial and activated state can be assumed very similar such that the pre-factor shown in 

curly braces in Eq. 6.2 simplifies to the vibration frequency at the well bottom (Eq. 3.5 of 

Ref. (2)); alternatively, with appropriate substitution for the partition functions of the 

activated and initial states and under the assumption of negligible reactive volume, it can 

be shown that the other pre-factor takes the form fatt = kBT/hP (where hP is Planck’s 

constant), which is equal to fatt = 6.2×1012 Hz at room temperature (Eq. 3.19 of Ref. (2)). 

 

6"1"1:% Case%study%on%reaction%rate%theory:%Plastic%flow%by%dislocation%glide%

In the 1950s and ‘60s, substantial research was dedicated to plastic flow in 

crystalline metals in which deformation occurs by the motion of line defects 

(dislocations), which facilitates the relative motion of adjacent planes of atoms.  

Experimentally, many studies (such as Refs. (6, 7)) demonstrated a logarithmic 

dependence of both strain rate (the time rate of change of the strain of the crystal) and 

dislocation velocity on the applied shear stress and on the inverse temperature. This 

behavior was explained using the formalism of transition state theory.   
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Articles by Gibbs (8), Hirth and Nix (9) and others describe a detailed model 

whereby the macroscopic behavior was characterized as the aggregate of a very large 

number dislocations, each of which has its motion pinned at various points by obstacles 

(such as crystal defects).  In the initial state, the local dislocation segments are in 

mechanical equilibrium due to the opposing forces of the external applied stress and the 

local resistance to motion, which is increased by the obstacle, as shown in Fig. 6-2(a).  

The mechanical energy provided by the applied stress is insufficient to overcome the 

energy barriers represented by the pinning points.  Therefore, the system must rely on 

thermal fluctuations to allow the dislocation segments to reach the unstable activated 

state (Fig. 6.2(b)), where the forces just balance and any perturbation causes 

decomposition either back into the initial state or forward into the final state.  In the final 

state (Fig. 6.2(c)), the dislocation has reached a new stable equilibrium state due to some 

other obstacle.  All activation parameters describe the transition between the initial and 

activated states.  

!  
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Figure 6.2: Reaction rate theory was successfully applied to plasticity and the movement of 
dislocations under stress; this earlier case study provides insights into the present 
application to nanoscale wear.  In this schematic model, a plane shown in perspective view 
contains a dislocation segment (thicker, blue line) that is undergoing thermally activated 
advancement.  In the initial state (a), the dislocation is in stable equilibrium.  The black dots 
represent stable equilibrium points along the reaction coordinate (which is a spatial axis 
designated, for the central pinning point, by x); the dots do not represent the obstacles themselves.  
In (b), the central region of the dislocation has accessed the activated state (designated by a red 
dot along the reaction coordinate).  In (c), this section of the dislocation has advanced to a new 
stable equilibrium point (shown in green), where its motion is impeded by some other obstacle. 
Figure reproduced with permission from Ref. (3). 

!

For a very large number of these pinned dislocations, Boltzmann statistics apply 

and the process can be modeled with an analysis similar to that of Vineyard’s.  In this 

picture, work is done during the transition and therefore the Gibbs free energy of 

activation (ΔGact = ΔHact – TΔSact ) is used, where the activation enthalpy is 

ΔHact = ΔUact – ΔWact  and ΔWact is the work done during the transition from initial to 

activated state (10, 11).  In this formulation, the overall strain rate  can be described 

with an Arrhenius form (12):  

,!! ! ! (6.3)!

ε

 
ε = ε0 exp − ΔGact

kBT
⎛
⎝⎜

⎞
⎠⎟
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where is an appropriate pre-exponential factor.  Therefore, using thermodynamics and 

rearranging Eq. 6.3, the rigorous definitions of activation volume ΔVact and activation 

enthalpy can be determined as follows (8, 12): 

 ,      (6.4)  

  ,            (6.5) 

where σ* is the resolved shear stress acting on the dislocation.  It is important to note that 

activation volume does not by definition describe an actual physical volume, but, as will 

be discussed later, it is sometimes associated with one. 

In principle, these quantities should be directly measurable by experiment.  In 

practice, it remains difficult to interpret experimentally measured values of activation 

volume and enthalpy, as is clearly elucidated by Hirth and Nix (9).  The first problem 

comprises the accurate determination of the stress.  The exact state of stress acting at the 

local area where the reaction is taking place is often complex and difficult to accurately 

specify.  Additionally, the measured, macroscopic rate involves the action of many 

microscopic processes, which may not all experience the same state of stress.  Second, 

the stress acting locally may change over the course of a test, even if the macroscopic 

applied stress is constant.  Third, the pre-exponential factor (  in Eq. 6.3) cannot be 

measured independently, so it must be assumed constant with respect to stress and 

temperature.  Finally, at low stress levels, the reverse dislocation jump rate is no longer 

0ε
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negligible and the rate equation needs to be modified to include a reverse term.  As will 

be shown, each of these difficulties has an analog in the analysis of atomic-scale wear. 

Despite all of these difficulties, measured values are useful as a signature for a 

given process and have been fruitfully compared across different experiments with 

significant success.  In many cases, they can even be related to physical quantities.  For 

example, the work done ΔWact is often further defined as σ*ΔVact = σ*bΔAact where b is the 

Burgers vector of the dislocation and ΔAact is the area swept out by the dislocation as it 

moves from the initial to the activated state (10, 11).  This relation allows the dislocation 

behavior to be associated with the distribution of obstacles, enabling understanding and 

predictions for the behavior of materials undergoing plastic flow.  

However, dislocation-mediated plastic flow also provides examples where 

reaction rate theory cannot be applied.  For instance, dislocation motion is opposed not 

only by the short range forces described above, but also by long range forces such as 

elastic interactions with other dislocations (13).  The energy barriers from the latter forces 

can be too large to be overcome by thermal activation.  Therefore, the thermally activated 

description will only apply up to some critical temperature where the flow stress reaches 

the athermal limit.  As temperature increases further, the flow stress will continue to 

decrease, but now due to the variation of shear modulus G with temperature.  Thermal 

softening is an entirely different effect and any attempts to model flow stress in this 

regime using a thermally activated model would yield meaningless values of activation 

parameters.  There are countless examples of other processes, some of which might even 

be highly temperature-dependent, where the macroscopic behavior is not described by an 

aggregate of a large number of local processes, where the energy barrier is too small 
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(relative to kBT) for Boltzmann statistics to apply, or where for some other reason the 

formalism of transition state theory cannot be applied.   

Reviewing the well-established literature on thermally activated plastic flow 

provides useful insights, which will be applied in the following sections to the developing 

theory of thermally activated atomic-scale wear.  In particular, this example demonstrates 

the usefulness of a clear description of the microscopic mechanism underlying the larger 

behavior, including a picture of the transitioning system in its initial and activated states.  

The example also demonstrates the challenges of analyzing the model and interpreting 

experimentally measured parameters.  

 

602:& Formalizing&the&application&of&reaction&rate&theory&to&wear&

As discussed in Sect. 2-2, several recent notable investigations have applied 

reaction rate theory to the analysis of atomic-scale wear.  In particular, recent work by 

Park et al. (14), Sheehan (15), Gotsmann and Lantz (16), and Bhaskaran et al. (17) 

experimentally measured wear of nanoscale contacts and analyzed results using an 

Arrhenius analysis.  The analysis of all four papers is built on the assumption that the 

fundamental rate of atom loss (atoms removed per second) due to wear can be described 

as: 

katom−loss = k0 exp − ΔGact

kBT
⎛
⎝⎜

⎞
⎠⎟

= k0
' exp − ΔUact

kBT
⎛
⎝⎜

⎞
⎠⎟
exp σΔVact

kBT
⎛
⎝⎜

⎞
⎠⎟ ,

     (6.6)  
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where k0 is some pre-factor analogous to in plastic flow, and σ represents the stress 

component that lowers the activation barrier – though the various authors disagree about 

which stress component this should be.  (Note that in Eq. 6.6 and subsequent equations, 

the term containing the entropy of activation has been subsumed into the pre-factor k0
’.) 

The following section probes the analysis and assumptions of this approach in light of the 

discussion in Sect. 6-1. 

While the many difficulties of accurately extracting and interpreting values of 

experimentally measured parameters will be discussed below, it is interesting to compare 

values as they are reported in the various studies, as shown in Table 6.1.  First of all, the 

order of magnitude of all measured parameters is consistent with a highly localized 

activation reaction involving a small number of atoms and the rupture of a small number 

of bonds.  Second, the reported activation energies for wear of the covalently bonded 

solids (silicon and silicon-containing DLC probes) are quite similar in the range of 1 eV, 

while energies of the ionically bonded solids (sodium chloride and calcite) are lower.  It 

should be noted that due to the form of the shear stress, the model used in the Gotsmann 

and Lantz study only allows effective activation parameters to be extracted since, 

mathematically, the effective activation barrier  and the effective 

activation energy ξΔVact cannot be further broken down.  Through separate studies of the 

pressure-dependence of velocity, the authors were able to measure ξ = 0.5 for a silicon 

probe on polyaryletherketone (18), therefore an effective activation volume of 55 Å3 

corresponds to an activation volume of 110 Å3.  For reference, typical values of 

activation parameters for some other common thermally activated processes are included 

0ε

ΔUact −τ 0ΔVact
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in Table 6.1.  As mentioned, the measured values for a thermally activated picture of 

wear are consistent with the order of magnitude of these other highly localized processes. 

 

Table 6.1: Experimentally-determined values of activation energy and volume for earlier 
atomic-scale wear studies, and also for other processes that are known to be thermally 
activated.  Activation volumes for the latter processes are typically given in units of the Burgers 
vector that is typically 2.5-6 Å, and therefore b3~10-200 Å3. The ranges of numbers given are for 
very different materials and typically scale with the degree of covalent bonding between 
neighboring atoms.  Table reproduced with permission from Ref. (3).  

 

 

60201:& Expanding&on&the&model&of&atomic0scale&wear&as&a&thermally&activated&process&

While a transition state analysis does appear to fit the data quite accurately for the 

different types of wear studies mentioned, it is still important to ask the question of 

whether a thermally activated model can be meaningfully applied.  The primary test for 

whether a process obeys Boltzmann statistics, and thus can be considered thermally 

activated, is a study of the variation in the rate of the process with temperature.  Such 

studies have been conclusively carried out for plastic flow, as discussed in Sect. 6-1.  

System Activation energy Activation volume Ref.
atomic'scale+wear+of+calcite+sample 0.80±0.20+eV 37±3+Å (14)

atomic'scale+wear+of+NaCl+sample 0.34±0.17+eV 86±6+Å (15)

atomic'scale+wear+of+Si+tips 0.98±0.04+eV 55±35+Å+(110±70Å+a) (16)

atomic'scale+wear+of+Si'containing+DLC+tips 0.34±0.17+eV 86±6+Å (17)

dislocation+nucleation+(forest)+in+bulk 100+'+1000+b3

dislocation+nucleation+at+surfaces 0.1+'+0.6+eV 1+'+10+b3 (20)

atomic+vacancy+creation+(Schottky+defect) 0.1+'+7+eV (21)

atomic+vacancy+hopping 0.05+'+0.5+eV 0.02+'+0.2+b3 (22)

a+Assume+ξ+~+0.5+(Cannara,+R.;+Gotsmann,+B.;+Lantz,+M.+A.+Unpublished+results)

(Typical2values2for2other2thermally2activated2processes)
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This temperature dependence has not yet been demonstrated for atomic-scale wear, 

though there has been some experimental work showing Arrhenius behavior of 

macroscale wear (23).  While the one atomic-scale study where temperature was 

varied (15) was consistent with a thermally activated process, only two similar 

temperatures could be accessed experimentally.  There has not yet been a systematic 

study examining atomic-scale wear over a wide range of temperatures.  The thermally 

activated formalism provides one potentially powerful way to analyze the data.  

However, without experimental demonstration of the temperature dependence, it must be 

applied with caution. 

Further, if atomic-scale wear is a thermally activated process, one must describe 

the specific atomic-scale mechanism by which it progresses, including a picture of the 

system in its initial, activated, and final states.  The aforementioned studies implicitly 

propose that the underlying local process is one of atom-by-atom attrition, analogous to 

dissolution or desorption of atoms from a surface.  This is appealing since dissolution and 

desorption are commonly modeled as thermally activated processes and it is intuitively 

reasonable to model atomic-scale wear as a stress-assisted version of the same 

mechanism.  It is useful to take this one step further by creating a schematic picture 

similar to that shown in Fig. 6.2.  An example of such a model is shown and described in 

Fig. 6.3.  
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Figure 6.3: A potential reaction pathway for nanoscale wear has been proposed in which the 
rate-limiting reaction is the initial formation of a chemical bond across the interface.  A 
proposed reaction is shown schematically, where a silicon tip slides slowly (with respect to lattice 
vibrations) over a diamond substrate (a), with atomic-scale detail in (b).  The entire system is in 
quasi-static equilibrium. In (c), a single tip atom has undergone thermally-activated bond 
formation with an atom from the substrate.  Thus, in the language of reaction rate theory, (b) 
represents the initial state for this reaction, (c) represents the lower energy final state; the 
intermediate, maximum energy activated state is not shown.  In some cases, the newly formed 
bond will break (not shown), but in other cases, additional reactions will result in more bond-
formation to the substrate and the breaking of bonds to the tip (d).  In this case, an atom is 
transferred to the surface (e) and the tip has undergone wear by one atom.  The tip continues 
sliding as before (f) and can start the process over again.       

 
In Fig. 6.3(a), a sharp silicon tip is shown sliding across a flat diamond substrate.  

In principle, the tip could slide like this for long periods without any reactions across the 

interface and without any wear.   Fig. 6.3(b) shows an atomic-scale view of the 

tip/sample interface; this represents the system in which the thermally activated process 

(described by reaction rate theory and Arrhenius kinetics) occurs.  It is assumed that the 

tip is sliding slowly enough to consider the system to be in quasi-static equilibrium.  
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Given typical sliding speeds (roughly 1 nm – 1 µm per second), and given typical atomic 

vibration frequencies (roughly 1012 – 1014 /s), the tip moves less than 10-18 m/vibration 

and thus there are 106 vibrations before the tip has moved by 1 pm.  Therefore, the 

assumption of quasi-static equilibrium is reasonable.  This is a critical assumption 

because reaction rate theory relies on Boltzmann statistics, which describes equilibrium 

systems – further, the initial, activated and final states must be in equilibrium with one 

another.  Thus, Fig. 6.3(b) represents the system in its initial state (before any bonds are 

formed across the interface) and Fig. 6.3(c), where one bond has formed across the 

interface, represents the same system in its final state with respect to a thermally 

activated bond formation process.  The activated state is some intermediate state (not 

shown) between (b) and (c), where the system’s free energy is maximized.  The state 

shown in Fig. 6.3(c) is assumed to be lower energy than the one shown in Fig. 6.3(b) 

since the new bonds make one of the tip atoms more highly coordinated.  Thus, the 

activation barrier of the reverse reaction is higher than that of the forward reaction (as is 

the case in Fig. 6.1), and the reverse rate of reaction will be much slower than the forward 

rate.   

The point shown in Fig. 6.3(c) might be quite stable were the tip not sliding; 

however, the motion of the tip (induced by cantilever forces that are far stronger than 

single atom bonds) will require bonds rearrangement.  If the newly-formed bond (green) 

were to break, then the tip would slide on unaffected and no wear would occur.  

However, it is also possible that additional bonds will form to the substrate and in some 

cases, the bonds that previously held this atom to the tip will break instead (as is the case 

shown in Fig. 6.3(d), then the atom is left behind on the surface and the tip has 
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experienced wear.  Thus the bond-breaking step represents a competition between two 

possible sub-processes; one of which causes wear, one of which does not.  It is possible 

that one of these sub-processes is more likely than the other.  For instance, since the 

surface atom was low-coordinated on the sharp tip and would often find a deep energy 

minimum on the surface, it is possible that the tip atoms are typically the ones that break.  

Alternatively, since the surface atom will usually have multiple bonds to the tip and only 

form one bond to the surface (at least initially), then it might be more likely that the 

newly-formed tip/sample bonds will break.  It is even possible that the process of bond 

breaking is also thermally activated, complicating the kinetics further.   

This wear process is analogous to wear that has been observed in molecular 

dynamics simulations of diamond-like carbon sliding over diamond (24).  It is further 

postulated here that the first process, bond formation, will be the rate limiting step and 

will have the greatest dependence on stress.  This is supported by literature regarding 

molecular dynamics potentials, which define an energy barrier between the “non-bonded” 

and “bonded” states of two adjacent atoms (25).   However, the specific atomic-scale 

processes that lead to wear are unknown, and thus this remains an important open 

question.   

 

60202:& The&extraction&of&activation&parameters&for&wear 

While the measurement of activation parameters is conceptually simple, the actual 

process of extracting reliable values is quite difficult.  The difficulties enumerated by 
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Hirth and Nix with regard to dislocation motion (discussed in Sect. 6.1) have even more 

significant analogues in the studies of atomic-scale wear.   

The first significant challenge is the correct identification of the stress state.  In 

atomic-scale wear studies, the applied load is controlled as an input variable; the applied 

stress cannot be varied directly.  Therefore, one must determine the location and values of 

the stress components that have the primary effect and then find a model for calculating 

this stress from known variables.  Park et al. (14)and Sheehan (15) both assumed that 

interfacial contact stresses are the most relevant and rely on Hertzian contact mechanics 

to calculate values (though Sheehan includes an added adhesion force in the manner of 

the DMT model).  Alternatively, the Gotsmann and Bhaskaran studies (16, 17) propose 

that the interfacial shear stress has the most significant effect, yet these still must rely on 

models to calculate this stress from experimentally controllable parameters. 

Adding to this first challenge of quantifying the stress state is the problem of the 

uniformity of stress throughout the contact interface.  In the analysis of thermally 

activated processes, the system is treated as if it were comprised of a very large number 

of identical microscopic systems attempting the same transition.  For a sliding tip, there 

are a large number of atoms that comprise the tip-sample contact and for realistic sliding 

times, there will be a very large number of “attempts”.  However, not all atoms 

experience the same energy landscape nor the identical stress state.  With regard to 

energy landscape, consider the case of a single crystal tip with stepped edges (Fig. 2.1(d)) 

sliding on a surface: atoms with a lower coordination number such as those at a step edge 

experience a very different energy landscape than atoms on the bottom surface of the tip 

with a higher coordination.  This implies that wear of such a hypothetical single crystal 
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tip would occur by loss of atoms from the step edges which recede.  A similar topic is 

specifically discussed in the work of Maw et al. (26), where measurable wear is confined 

exclusively to the step edge.  In this case, an analysis of the wear rate would probe the 

activation parameters of the dissolution of atoms at the step edges.  Alternatively, in 

experiments where the wearing surface is expected to be amorphous (e.g. a native silicon 

oxide), there is likely to be a distribution of coordination environments of surface atoms.  

Wear then would occur by the removal of atoms in the lowest coordination states and the 

wear process would result in a continuous change in the coordination state of any given 

surface atom until it is removed by wear.  As such, an analysis of the wear rate would 

probe the activation parameters of the process of removing the most weakly bound atoms. 

The distribution of stress in the contact zone is also an important consideration.  

The simplest assumption is that the constant stress equals the average value across the 

contact.  A more accurate treatment would be to apply contact mechanics models to 

estimate the stress distribution within the contact.  For example, for a Hertzian contact, 

the maximum value of the compressive stress is 1.5 times the average value.  Similar 

deviations from the results of contact mechanics models can be expected for the radial 

and shear stress components.  It is important to note that, due to the nonlinearity of the 

relation between stress and wear rate (Eq. 6.6), this modest variation in stress could result 

in a much larger variation in wear rate.  For the case of tip wear, one could argue (as in 

Gotsmann and Lantz (16)) that the progression of tip-shape as it is continuously worn 

will level out differences in stress.  This, of course, only applies to the variation in a 

classical continuum-theory contact model.  Such a treatment is not sufficient to describe 

variations at the atomic level, which are clearly relevant for atomic scale wear.  For 



!
!

156!

example, using molecular dynamics simulations, of the contact between an amorphous 

spherical tip and an atomically flat single crystal surface, Luan and Robbins (27) have 

shown that the peak pressure acting on an individual atom in the tip can be up to 5-6 

times the average value, depending on atomistic surface detail.  Whatever assumptions 

are made about the state of stress under the tip, these variations in stress should be 

accounted for in any analysis based on transition state theory. 

The second difficulty discussed in Sect. 6.1 is the changing local stress over the 

course of a test – even for a constant applied load.  In Hirth and Nix (9), this referred to 

the fact that plastic flow altered the structure of the material and thus changed the local 

stress acting on the dislocation.  In atomic-scale wear, even as the applied load is held 

constant, the modification that occurs due to wear of either the tip or surface means that 

the contact geometry is constantly changing, and thus the surface stresses are constantly 

changing.  Of the three models described above, only Gotsmann and Lantz (16) attempt 

to address this issue with in-situ pull-off tests to get a measure of tip radius in real time as 

the wear test is progressing.   

The third difficulty discussed in Hirth and Nix is the assumptions about quantities 

that are not directly accessible.  In plastic flow, this involves assuming that the pre-factor 

(  in Eq. 6.3) is constant with respect to stress and temperature.  The present studies on 

wear make similar assumptions about the pre-factor k0 and, in addition, make even 

stronger assumptions about the form of the rate equation.  In plastic flow studies, the 

activation volume is measured by plotting the logarithm of the rate of the process against 

the applied stress.  As shown in Eq. 6.4, the slope of the plotted curve is a direct 

0ε
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measurement of the activation volume.  In contrast, the atomic-scale wear models assume 

a specific form of the work term (ΔWact = σΔVact ) and further assume that the activation 

volume is a constant with respect to stress (which it need not be, as discussed in 

Refs. (28) and (1, 19)).  Once these assumptions are made, the authors extract an 

activation volume by choosing the parameter that allows the best fit to the experimental 

data.  If the assumptions are valid, then curve fitting should be an acceptable way to 

ascertain these values.  However, these assumptions are not required if the activation 

volume is measured in the traditional, direct fashion. 

 The final difficulty involved in extracting activation parameters arises from the 

attempt to calculate activation energies (and thus enthalpies) with limited or no 

temperature variation performed in the experiment.  The activation enthalpy ΔHact can be 

directly extracted by measuring the rate of wear at a variety of temperatures, as shown in 

Eq. 6.5.  Sheehan’s study (2, 15) varied temperature and reported an activation energy 

ΔUact of 0.34 eV with a reported error of 50% due to the limited temperature variation.  

In Park et al. (1, 14), Gotsmann and Lantz (3, 16), and Bhaskaran et al. (1, 17), an 

attempt is made to calculate the activation energy ΔUact by assuming values for all other 

parameters in the wear rate equation and then solving for ΔUact.  However, values 

calculated in this fashion can depend strongly on the choice of parameters.  The pre-

factor k0 is often assumed to be a lattice vibration frequency and is estimated as 1013/s in 

Park et al. (4, 14) and 1012/s in Gotsmann and Lantz (5, 16).  In Gotsmann and Lantz, 

there are additional constants: the reference velocity v0 is taken as the sliding velocity of 

1.5 mm/s (4, 18), the dimensionless pressure-dependence ξ was subsequently measured 

as 0.5 (2, 18), and τ0 does not need to be directly estimated as it is wrapped into the 



!
!

158!

effective activation energy.  Finally, and most significantly, a choice must be made for 

the form of ΔWact – in particular, which stress does work on the system during the 

thermally activated event (Park et al. (2, 14), Sheehan (6, 7, 15), and the papers by 

Bhaskaran et al. (8, 17) and Gotsmann and Lantz (9, 16) do not agree on the relevant 

stress component, as discussed in the previous sub-section).  Once this relevant stress is 

chosen, its value must be calculated as a function of controllable or measurable variables 

(applied load, material parameters, tip radius, etc.).  This calculation depends on the 

model chosen to describe the contact (Hertz, one that includes adhesion, or a non-

continuum simulation).  Due to its presence in the exponential, errors in the calculation of 

the work term will be even more impactful than errors in the pre-factor.  A direct 

measurement of the activation enthalpy according to Eq. 6.5 avoids the need for these 

assumptions. 

Despite all of the aforementioned difficulties, four studies managed to extract 

activation parameters.  And, as discussed earlier, it is impressive that the activation 

parameters all fall within reasonable bounds for atomic bond-breaking events. 

 

60203:& The&interpretation&of&activation&parameters&

The interpretation of these experimentally measured values of activation 

parameters also differs among the various authors.  In Park et al. (3, 14), the authors 

assert that the activation volume is nearly equal to the volume of an ion in the calcite 

lattice and that the activation energy is comparable to the energy required for vacancy 

formation on a step edge.  Such broad comparisons can be useful to ensure that measured 
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values are of the right order of magnitude; however, in Sheehan’s article (10, 11, 15), the 

activation volume is explicitly described as the volume removed per pass of the scanning 

probe.  This interpretation is not consistent with transition state theory; in the context of 

the prototypical model shown in Fig. 6.3, the total worn volume describes the difference 

between state (a) and state (e), while the activation volume describes only the transition 

from state (b) to state (c).  This demonstrates the utility of clearly describing the proposed 

thermally activated process, including the specification of the system in its initial, 

activated, and final state.  The Gotsmann study (12, 16) does not attribute the activation 

volume to any real space quantity, but compares the order of magnitude of activation 

parameters to quantities associated with bond breaking.    

From a transition state theory perspective, the primary utility of activation 

parameters is as a signature of the underlying atomic-scale mechanism that underlies the 

macroscopic phenomenon.  They allow for comparison among different sets of 

experiments and against theoretical values for the proposed underlying thermally 

activated reaction.  Once a concrete picture of the atomic-mechanism of wear is proposed 

(along the lines of Fig. 6.6), then atomistic simulations of the process can be created to 

calculate expected values of the activation energy and activation volume.  These expected 

values can be compared directly against measured values to provide further support for a 

thermally activated picture. 
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603:&& Suggested&future&investigations&to&interrogate&the&fundamentals&of&wear&

on&the&atomic&scale&using&a&model&based&on&reaction&rate&theory&

To address some of the remaining questions explored in Sect. 6.2, the present 

section outlines future studies that would allow an even deeper investigation of the 

fundamental origins of atomic-scale wear.  Specifically, further experimental 

investigation is suggested into the effect of temperature on wear, stress and velocity on 

atomic-scale wear.  Also, a brief treatment of atomistic simulations of wear is presented 

along with past and future contributions to a better understanding of the science of atomic 

scale wear.  

 

60301:& Experimentally&demonstrating&wear&mechanisms&and&wear&kinetics&in&high&resolution&&

The discussion in Sect. 6-2-1 laid out a potential wear mechanism that was 

thermally activated and could obey stress-mediated Arrhenius kinetics.  However, there 

are many other wear mechanisms that may be competing or even concurrent with atom-

by-atom transfer.  High resolution in situ studies could be used to determine the 

mechanism(s) of wear that are occurring in a given set of conditions.  The same high-

resolution studies could be used to measure relevant forces and volume losses with high 

enough precision to test the proposed kinetics of a wear model based on reaction rate 

theory.  These in situ studies are the topic of Chapter 7 of the present dissertation. 
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60302:& Experimentally&demonstrating&the&effect&of&temperature&on&atomic0scale&wear&

As discussed, thermal activation is just one of many possible frameworks for 

describing wear at the atomic scale.  One way to clearly demonstrate that the kinetics are 

governed by such a framework would be to demonstrate an exponential dependence of 

the rate of atom transfer on inverse temperature (as predicted by the Arrhenius rate 

equation, Eq. 6.6.  Ideally a wear study of this kind would vary temperature over several 

orders of magnitude as has been done with plastic flow as described in Sect. 1.  

Unfortunately, a detailed temperature study is challenging for a variety of reasons.  

Aside from the experimental difficulty of heating or cooling the tip-sample contact, the 

analysis will be complicated by the temperature dependence of other parameters, 

especially friction.  The temperature dependence of friction can be substantial in some 

cases (8, 12, 29, 30) and even non-monotonic (9, 31, 32) and thus might alter the shear 

stresses acting at the interface.  Additionally, a large enough increase in temperature will 

cause softening of the mechanical properties of the tip/sample materials, thus altering the 

geometry and stresses of the contact.  Therefore, such a temperature study would ideally 

measure friction and wear concurrently, or be performed on a system where the 

temperature dependence of friction and mechanical properties is not strong, or has been 

determined previously such as for a silicon tip sliding over Si, SiO2, SiC, or NaCl (10, 11, 

29-33). 

Furthermore, there is no guarantee that the activation volume itself is constant 

with temperature (as discussed in (13, 28)), so it would be useful to have a 

comprehensive analysis that performs a study similar to Park et al. (14) or Gotsmann and 

Lantz (15, 16) at each temperature.  Finally, the pre-factor (f in Eq. 6.1 or k0 in Eq. 6.6, 
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designated the attempt frequency above) may vary with temperature.  Depending on 

dissipative processes active when the system moves along the lowest energy path 

(Fig. 6.1), f can increase or decrease with increasing temperature (2, 16). 

It would be difficult for all of the above effects to be addressed in a single study 

of atomic scale wear.  Rather, these points are suggested as guidelines for the design of 

new experiments, and for the analysis of the body of wear data as it develops, especially 

with regard to temperature. 

 

60303:& Determining&which&is&the&primary&“activating&stress”&for&atomic0scale&wear&

The free energy of activation, ΔGact, is reduced when an applied stress does work 

during the thermally activated transition.  However, each of the above models assumes 

that a different stress does work during the transition: the Park et al. study uses the 

Hertzian radial stress in its calculation; Sheehan uses the Hertzian shear stress at the 

interface; and Gotsmann and Lantz use the interfacial shear stress induced by sliding 

friction.  It is crucial to determine which of these stresses is primarily involved in wear 

for accurate data analysis.  As discussed in Sect. 6-2, it remains unclear which stress 

component is the most relevant for reducing the activation barrier for wear.  Intuitively, it 

seems that the compressive stress would be most relevant for bond formation, while 

tensile or shear stresses would be most relevant for bond breaking.  

In principle, it should be possible to distinguish which stress does work (and thus 

which is the activating stress) through further study of the dependence of wear on the 

applied load Fapplied.  However, in many models of contact (such as Hertz (17, 34) and 
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DMT (18, 35)) the maximum values of compressive, shear, and tensile stress have the 

same dependence on applied load.  For instance, in Park et al. and in Sheehan, Hertzian 

stresses, which are present in static contact and depend only on mechanical properties of 

the materials and the shape of the tip, have a dependence of Fapplied
1/3 (23, 36).  Even the 

interfacial shear stress τfriction is often approximated (as in Gotsmann and Lantz) with a 

linear dependence on pressure – equivalent to Eq. 2.16 for a single value of velocity. 

Thus it would be predicted to have a similar functional dependence on load as the other 

stress components.  The only case that should be readily distinguishable is if interfacial 

shear stress is the dominant value and a material pair is studied where the pressure 

dependence in Eq. 2.16 ξ = 0.  In this case, there should be no distinguishable dependence 

of wear rate on applied load.  More generally, simulation techniques such as atomistic, 

molecular dynamics, or other modeling may prove useful in simulating proposed 

reactions and determining the impact of different stress components, as discussed below.  

 

60304:& Disentangling&the&effect&of&velocity&on&atomic0scale&wear&

The underlying equation of a thermally activated picture of atomic-scale wear 

(Eq. 6.6) is independent of velocity.  Therefore, if the shear stress does not enter into the 

free energy of activation (as assumed by Park et al., Sheehan, and Kopta and Salmeron) 

or the shear stress does not depend on velocity (as in the description from Ref. (15, 37)) 

then the rate of wear is independent of tip velocity.  The only predicted effect of sliding 

speed in these models is to change the amount of time in contact for a given sliding 

distance.  Thus the rate of successful atom transfers per second will be unchanged, but 
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the amount of wear observed for a given sliding distance will scale linearly with contact 

time and so inversely with sliding velocity. 

If the primary dependence of rate of atom loss is assumed to be on interfacial 

shear stress (as in Gotsmann and Lantz), then the picture is somewhat more complicated 

interfacial shear stress is assumed to depend on sliding velocity.  This frictional shear 

stress has itself been described as a thermally activated process in models of single-

asperity interfacial friction whereby the tip slides in quasi-static equilibrium along the 

corrugated energy surface representing the sample (25, 38).  The latter is captured in the 

Briscoe and Evans equation expressing the shear stress applied to an interface due to 

sliding friction (Eq. 2.16).  As mentioned, although this equation was originally derived 

for organic thin films (14, 39), it has been shown to be applicable to a variety of tip-

sample systems and to stick-slip motion as derived from the Prandtl-Tomlinson 

model (15, 40-43).  Alternatively, for smaller scanning speeds, a different limit of 

velocity-dependent friction has been proposed of the form (16, 17, 44):  

τ friction ∝ const + ln v
v0

⎛
⎝⎜

⎞
⎠⎟

2
3

.    
 (6.9) 

Each of the above scenarios will predict different dependences of wear rate on sliding 

velocity.  Therefore a combined, systematic study of the velocity dependence of friction 

and wear could shed light on this question.  Concurrent measurements of the frictional 

force, combined with knowledge of tip shape, would permit the direct calculation of the 

shear strength, circumventing the need for an assumed form of τ and allowing an 

evaluation of previous assumptions.   
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It should be noted, however, that varying the time or velocity scale in experiments 

to uncover the underlying kinetics ideally requires variation over several orders of 

magnitude.  Especially with exponential equations, false trends can be easily detected 

with insufficient variation.  However, experimentally this may be difficult to accomplish 

with many AFM systems.  For the case of atomic-scale wear, the wear rates can be so 

low that high scanning speeds and long duration experiments are required to accurately 

measure the wear rate.  For example, in the work of Gotsmann and Lantz (16, 26), a 

sliding velocity of 1.5 mm/s in combination with sliding times of up to one week were 

required to quantify low-load wear.  Acquiring the same amount of data at a significantly 

lower sliding velocity is unfeasible. 

 

60305:& Using&atomistic&simulations&to&elucidate&atomic0scale&wear&

A key complement to the above-mentioned experimental work will be computer 

simulations based on molecular dynamics (MD) and ab initio techniques.  Already, there 

is a developing body of literature where these techniques are used to characterize the 

contact area and stresses (normal and frictional) of a nanoscale contact (for example, 

Refs. (16, 27, 45, 46).  Some of these models have even been extended to model certain 

aspects of wear.  For instance, in a study on the adhesive loads associated with 

atomically-sharp diamond tips, Jarvis et al. (27, 47)slide the tip along the surface and find 

that the contacting atom is removed from the tip after just 1.6 Å of sliding.  Further, 

Harrison and Brenner (9, 48) use MD models to slide two diamond surfaces past one 

another and find that wear initiates by the removal of hydrogen from the H-terminated 
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surfaces and continues by radical recombination, transient surface adhesion and debris 

formation.  Other studies use MD to model the sliding of atomically flat surfaces in 

intimate contact and demonstrate plastic deformation and mechanical mixing of the 

surface material (16, 49, 50).   

There has not yet been an atomistic simulation of wear in the context of transition 

state theory.  A full treatment of the details of such a simulation is beyond the scope of 

this paper.  Yet it can be imagined to follow the style of earlier work modeling the stress-

dependent hydrolysis of silica in water (22, 28).  In this work, Zhu et al. use molecular 

orbital theory and the nudged elastic band (NEB) technique to find the minimum energy 

path along the potential energy surface, giving a direct measurement of the predicted 

activation energy for the proposed reaction.  Not only are the authors able to predict the 

dependence of activation barrier on stress, but they go even further to show that different 

reaction pathways can be thermodynamically favorable at different stresses and that, 

when the stress is high enough, a given pathway may no longer require thermal activation 

to overcome the barrier.    

Overall, simulation techniques make possible: the elimination of certain 

assumptions, such as the applicability of continuum mechanics; the study of wear under 

conditions that are difficult or impossible to access experimentally; and the creation of 

testable predictions that can be directly compared with experimental results.  It is likely 

that atomistic simulations will be critical to solving many of the questions raised in this 

article. 
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604:& Conclusions&

This chapter has reviewed recent atomic-scale wear studies in light of formal 

transition state theory.  There are several primary conclusions. First, substantial 

experimental evidence demonstrates that atom-by-atom wear occurs at single-asperity 

contacts for a variety of materials, highlighting the need to understand this process more 

deeply.  Second, many of the previous analyses of these experiments used equations 

taken from reaction rate theory, but did not fully address the physics behind such a 

model.  Specifically, any such analysis should specify the following: the atomic-scale 

transition which is proposed to be thermally activated; the configuration of the system in 

its initial, activated, and final states; and the assumptions made about the tip-sample 

system such that the requirements of transition state theory are satisfied and Boltzmann 

statistics can be applied.  Third, the method of measurement and the physical 

interpretation of activation parameters were shown to vary widely from author to author.  

In particular, while various studies measured activation volumes directly, the values 

obtained depended on which stress component was chosen as the activating stress and 

how this component was calculated.  Additionally, various authors offer differing 

interpretations of the physical meaning of measured values – some of which are 

demonstrably incorrect.  Finally, further experimental work is required to confirm and 

interrogate models based on transition state theory.   

The concepts discussed in this chapter provide new insights into the analysis of 

nanoscale wear, and provide a roadmap for characterizing a wide array of materials in a 

robust, fundamental way that might even have predictive potential.  However, significant 
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questions remain.  For instance, for specific materials and conditions, is wear caused (or 

rate-limited by) a tribochemical reaction (as opposed to fracture, plastic deformation, or 

some other mechanical effect)?  If the wear is confirmed as tribochemical, can it be 

confirmed that Arrhenius kinetics can be applied?  (Are the extensive set of assumptions 

(discussed succinctly in Sect. 6-1) satisfied for the nanoscale wear reaction?)  If 

Arrhenius kinetics can be applied, what is the stress state acting on the contacting atoms 

and which stress in particular will serve as the “activating stress” σ in Eq. 6.6?  In reality, 

the forces acting on individual atoms will vary significantly across the contact; should 

this stress represent some average?  In the next chapter, experimental results using an in 

situ TEM methodology will be presented which will address some of these questions. 

!
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CHAPTER'7:'Nanoscale'wear,'Part'II:'Experimentally'

demonstrating'wear'of'silicon'as'a'stressAassisted'chemical'

reaction14'

The present chapter describes in situ wear tests performed in the TEM.  In this 

investigation, nanoscale silicon tips of varying geometries were worn by sliding them 

against a flat diamond substrate.  The loading configuration was chosen so that only the 

adhesive force was acting; no additional external load was applied. As described in 

Chapter 3, sliding tests were interrupted at specific intervals to assess the instantaneous 

tip geometry, worn volume, and adhesion force.  TEM images and videos were used to 

ascertain that silicon was removed gradually, in accordance with the atom-by-atom wear 

mechanism discussed in Sect. 2-4-3, first applied to the wear of tips by Gotsmann and 

Lantz (1).  Then, quantitative analysis of loads and volume lost was used to demonstrate 

that the wear kinetics obeyed the predictions of a wear model based on reaction rate 

theory.  

 

701:& Observing&and&distinguishing&wear&mechanisms&in&silicon&and&its&oxide&

As discussed in Chapter 6, a physically-based wear model requires specific 

identification of the process by which material is being removed.  In this study, the 

removal mechanism was identified by using the high-resolution out-of-contact images 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14 Much of this chapter appears in print: Adapted with permission from Jacobs, T. D. B.; 
Carpick, R. W. Nature Nanotech. 2013, 8, 108-112. Copyright 2013 Nature Publishing 
Group. 
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taken at various points throughout the wear test.  Figure 7.1 shows the four probes in their 

initial states, final states and also mid-way through sliding. The probe manufacturing 

process induces a variable, and occasionally very thick oxide layer that is clearly visible 

in Fig. 7.1(d).  In contrast, some probes (such as is shown in Fig. 7.1(g,j)) had previously 

undergone a fracture event or other uncontrolled contact prior to testing, so only a thin 

native oxide is present on the surface of the probe.  Therefore, the four process have 

different, but non-zero, amounts of oxide on their apexes.  An example video of a typical 

wear test performed on these probes can be found in the Supplemental Information of 

associated with Ref. (2).  
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Figure 7.1: In situ sliding wear tests were performed on four silicon tips of varying 
geometries.   TEM images of four silicon asperities are shown immediately prior to wear testing 
(left), at the approximate mid-point of testing (center), and after the conclusion of the test (right).  
Total sliding distances of each probe are: (a) 700 nm; (d) 3200 nm; (g) 4900 nm; (j) 200 nm.  
Images for each probe are approximately vertically aligned so surface recession can be estimated.  
Quantitative alignment to calculate volume loss is done on traced contours (Sect. 3-4-6). 
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To supplement the direct visual inspection of tip images, the outer profiles of the 

tips were traced at every separation point throughout the wear test, as shown in Fig. 7.2.  

These profiles are aligned and overlaid (as discussed in Chapter 3) to examine and 

quantify the changes in geometry with sliding.  In the present testing, sliding was used to 

wear through the outermost oxide, and then to continue wearing into the single crystal 

silicon.  Clear differences were observed in the wear behavior of these two materials. The 

single crystal silicon wore gradually.  There was no evidence of fracture, as evident from 

the solid traces of Fig. 7.2. In all cases involving wear of pure silicon, the change from 

one profile to the next is gradual and relatively uniform, without evidence of fracture.  

The distance of profile recession varied for different scan lengths, but in many cases was 

1 nm or less.  Even allowing for the possibility of fracture events that were undetected, 

the total distance of recession puts an upper bound on the size of fractured pieces of 

typically 1 nm and often less.   
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Figure 7.2: Overlaid traces show that silicon wear is gradual. Initial profiles (red) and 
subsequent (black) profiles have been overlain to show the evolution of the tip over the course of 
testing.  Solid lines indicate that the wearing material is crystalline silicon (as determined through 
TEM imaging); dotted lines indicate wear of the initially-present oxide.  For tips shown in (a) and 
(c) the oxide was removed in the TEM during tip alignment, before images and videos were 
saved.  Sliding intervals for the silicon correspond to the spacing of points on the x-axis in 
Fig. 7.4 (silicon) and 7.6 (silicon oxide).  In only one case (during wear of oxide) is there clear 
evidence of fracture (in (b), orange arrow), demonstrated by sudden removal of a larger amount 
of material with evidence of a preferred crystallographic plane different from the sliding plane.  
Figure reproduced with permission from Ref. (2). 

Further, the perfect silicon crystalline lattice arrangement was often observed to 

extend to within a nanometer of the surface, even in highly worn regions, as shown in the 

lattice-resolved images of several different worn tips shown in Fig. 7.3.  (Note that the 

structure of the outermost atomic layers is not accessible in the TEM; due to the 

curvature and small size of the tip, there is very little material being imaged and there is 
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insufficient contrast to distinguish between amorphous material (i.e. due to surface 

reconstruction or wear-induced disordering) and imaging artifacts (such as focusing 

fringes and edge effects).  The thickness of this unknown region can vary depending on 

focus and beam conditions.)  Overall, these results demonstrate that, under the selected 

conditions, significant wear of silicon occurs gradually and progressively without 

requiring fracture or plastic deformation; this material removal is directly consistent with 

the atomic attrition wear model (Chapter 6).  
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Figure 7.3: After three sliding intervals, each of 200 nm, the recession of the surface of the 
tip is approximately 1 nm, and the underlying lattice is undamaged.  The wear was observed 
to be gradual and progressive, not showing sudden removal or preferred surface orientations.  
Additionally, a representative lattice-resolved image of the same asperity shows no 
evidence of dislocations or defects in the sub-surface silicon lattice, even in highly worn 
areas. 
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The one case where fracture clearly does occur is marked with an arrow in 

Fig. 7.2(b), and demonstrates sudden removal of a portion of the tip corresponding to 

roughly 7 nm of recession along the tip axis, together with a preferred crystallographic 

orientation of the fracture plane that is distinct from the sliding plane. This event 

occurred while a significant amount of oxide was still present on the tip and does not 

influence the analysis of subsequent wear of crystalline silicon for this tip.  

In contrast to the crystalline silicon, the oxide behaved irregularly. Most 

frequently, it receded gradually like the silicon, as shown in Fig. 7.2(a,c-d). However, 

sometimes fracture occurred, as shown in Fig. 7.2(b), and other times it exhibited 

homogeneous deformation (plasticity).  The latter behavior was most commonly 

observed at high beam currents – either in the 300 kV FEI microscope used at CINT or in 

the highest resolution images/videos taken on the 200 kV JOEL microscope at Penn.  

These results can be explained in the context of other previous results of the change in 

deformation behavior of silica under the electron beam (3).  While silica is brittle under 

ambient conditions and fails by fracture, ductile behavior has been demonstrated under a 

sufficiently high-energy electron beam.  This “superplastic deformation” is attributed not 

to heating, but to the generation of structural defects that allow bond reorganization and 

atomic-scale healing of incipient voids before they grow to a critical size for crack 

initiation (3).  This explains the range of behaviors observed in silicon oxide.  The now-

ductile silica can simply flow plastically in an almost liquid-like fashion.  Or, it can form 

a relatively tough bond at the interface with the diamond (or with additional silica 

material that has previously been transferred to the counter-surface) such that, as the 

cantilever is slid laterally, significant bending stresses can develop further up the high-
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aspect ratio shank of the tip.  These bending stresses can cause fracture in the silicon, 

which was never observed to become ductile by electron beam exposure.  Such an event 

is shown in Fig. 7.2(b), where the apex of the tip was composed of oxide, while the 

location of fracture was located in the single crystal silicon.  Finally, there were also 

many cases where the silicon oxide appeared to wear gradually (as shown in Fig. 7.2(c) 

and 7.2(b) (before fracture occurred), in accordance with an atom-by-atom mechanism.  

While it is possible that wear of the oxide also obeyed reaction rate theory in some cases, 

this analysis must be performed with caution since it is possible that multiple wear 

mechanisms were active simultaneously.  This is discussed in more detail in Sect. 7-3 

 

702:& Quantifying&the&rate&of&wear&of&silicon&and&testing&predictions&based&on&

reaction&rate&theory&&

In accordance with ex situ studies on silicon (4), wear progressed through the 

oxide and then through the underlying single crystal silicon.  A principal advantage of 

performing wear tests with in situ imaging is the ability to distinguish between the 

wearing materials, and between different wear mechanisms.  Therefore, only the wear of 

silicon is included in the quantitative reaction rate analysis in this section – any sliding 

involved in removing the oxide was excluded, and is analyzed in Sect. 7-3. There was no 

observable contamination on the surfaces of the tips; any contamination initially present 

would have been removed along with the oxide. 

The volume lost for all four AFM probes was quantified by direct TEM imaging 

throughout the wear tests, as described in Chapter 3.  Since it is expected that the 
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behavior and the kinetics of wear of silicon will be different from that of silicon oxide, 

then the two materials are analyzed separately.  In the present section, the measurements 

and analysis are confined to the cases where the wearing material was single crystal 

silicon, as confirmed by direct observation in the TEM.  Results are plotted against the 

cumulative sliding distance, as shown in Fig. 7.4(a).  The volume removal rate (local 

slope of the data points) varied widely both for a given asperity and also amongst the four 

asperities.  Traditionally, following the Archard law, the volume lost in a single sliding 

interval of a wear test is plotted vs. the product of sliding distance for that interval and the 

total normal load (in this case, adhesive force). While Archard’s law is macroscopic in 

nature, for illustration purposes the data is presented in this way in Fig. 7.4(b).  The 

individual datasets are clearly nonlinear with a large degree of scatter; the Archard 

equation cannot be used to describe the behavior.  Further, widely divergent wear 

volumes are seen between the four asperities, thus no fundamental insight about wear is 

gained through an Archard-like presentation of the data.   

!  
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Figure 7.4: The volume of silicon lost due to wear has been quantified and is well described 
using a chemical kinetics framework. The cumulative volume lost due to wear is shown (a) for 
tests from four AFM probes for the first 1 µm of sliding (data beyond 1 µm is excluded for 
clarity). The distinct initial (pre-wear) geometries of the four different AFM tips are shown in 
TEM images (i–iv). These images are all displayed at a common magnification, and the shape 
and color of the corresponding data point are indicated in the image. The outer oxide layer is 
removed by sliding before this analysis and is not included in the measure of volume lost. To 
conform with the Archard equation, the data from a can be represented (b) as the volume lost in a 
single scan as a function of the product of the distance and load for that scan. This plot 
demonstrates that there is neither a linear relationship between these quantities (as predicted by 
the Archard equation), nor is there consistent behavior between tips. When the data for the wear 
of pure silicon are plotted (c) in accordance with stress-assisted chemical reaction kinetics, the 
four data sets collapse to a single curve that is fit well by an exponential relationship (Eq. 6.6), 
dashed line). Inset: the same data collapsing to a straight line on a log-linear plot. (Note that all 
data are included in c, not just the first 1 µm of sliding.) 

Next, the data is analyzed in the context of reaction rate theory, which was 

presented in Chapter 6.  To do this, the existing measurable quantities (geometry, volume 

loss, normal force, sliding velocity) must be converted into the reaction rate katom-loss [s-1] 

(the number of atoms removed per unit time in sliding contact, normalized by the number 

of atoms in contact) and a contact stress σ [Pa], in accordance with Eq. 6.6.   The value of 

k0 is assumed to be a typical lattice vibration frequency of 1013 s-1.  When this data was 
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previously published (2), a value of 1014 s-1 was used as an input value; however, since 

the typical phonon frequency in diamond is 3-4×1013 s-1 (5), then a lower value is 

considered more realistic and is used in the present work.  Since the attempt frequency is 

outside of the exponential, extracted results are relatively insensitive to changes in input 

value. 

 

70201:& Calculation&of&mean&normal&stress&

It is not known a priori which stress component has the largest effect on the 

energy barrier.  The mean normal stress σnormal is hypothesized here to be the controlling 

value for this analysis based on the proposed reaction pathway presented in Fig. 6.3 

where the compressive normal stress facilitates bonding across the interface.  As 

discussed previously, the atomic wear process could be affected by other stress 

components, such as the local shear stress arising from interfacial friction, as proposed 

previously (1, 6).  In those prior analyses, the interfacial shear stress was assumed to 

possess a linear dependence on the normal stress (7, 8); in such a case, a model based on 

σnormal would describe the data equally well.  Thus, although we propose a pathway 

depending on compressive normal stress, our analysis is general and applies to all 

mechanisms in which the energy barrier is modified by a stress component that is equal 

or proportional to the compressive normal stress.  Further, while continuum contact 

mechanics models predict that normal stresses are spatially inhomogeneous, all 

compressive stresses in hard materials (DMT-limit, see Sect. 2-2-2) including the peak 
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value scale with the mean value.  This further justifies the use of the mean normal stress 

for the analysis.   

To calculate the mean normal contact stress and other contact parameters, a 

continuum contact mechanics model (Sect. 2-2-2) was used (specifically, the DMT 

model, as justified further below).  It has been discussed previously (Sect. 2-2), that these 

contact mechanics models assume smooth surfaces with well-defined analytical shapes; 

further, it has been shown (Chapters 4-5) that these assumptions can lead to significant 

errors – at least in the analysis of pure adhesion tests.  Therefore a brief comment is 

required on the rationale for using a continuum model (DMT) when analyzing wear.  

There are two distinct differences between wear testing and adhesion testing, which 

require this shift in analysis.  First, it is likely that initial sub-nanometer-scale geometric 

fluctuations are less important in wear tests than in adhesion tests: in adhesion tests, a 

small local asperity may be sufficient to increase the overall separation of the bodies and 

thus decrease the pull-off force, whereas in a wear test, small local asperities will likely 

be quickly worn away, causing the whole profile to tend to smoothen during sliding 

contact.  Second, unlike an adhesion test – where the profile is typically relatively 

unchanged – a wear test explicitly changes the surface profile as material is removed.  

Therefore, the exact instantaneous contour of the tip apex during testing is fundamentally 

unknowable, and the best approximation of it is given by the overall geometry of the tip, 

excluding local fluctuations.  For these reasons, the overall tip shape is assumed to 

govern its behavior with respect to wear, even while instantaneous surface roughness and 

local fluctuations govern its adhesion (Chapters 4-5).   
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As discussed, the contact mechanics models require knowledge of the tip radius 

Rtip; this was measured from out-of-contact images using the manual tracing procedure 

described in Sect. 3-4-2, followed by the parabolic fitting described in Sect. 3-4-3.  

Profiles were traced up to a vertical height of roughly 5 nm, since tip/sample interaction 

stresses are predicted to be extremely small by this separation (see Chapter 4). 

Additionally, every profile was traced at least five separate times to ensure that the 

manual tracing routine was not introducing too much subjectivity into the measured 

radius. The average value of Rtip from these multiple traces was used in analysis, with the 

standard deviation as a measure of the uncertainty.  Naturally, there were deviations away 

from the fitted parabolic shape due both to local fluctuations and due to overall tip shapes 

that were not perfectly paraboloidal; however these were always less than 1 nm in extent 

and often much less.  The overall tip shapes were very well approximated by parabolas at 

all intervals throughout the wear tests, as shown in Fig. 7.5.  Asperity shapes that remain 

parabolic despite large volumes of wear have also been observed in Ref. (9).  

!  
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Figure 7.5: Parabolic profiles were fit to the near-tip geometry of the probe at every stage in 
the wear test.  Tip profiles were extracted from high-resolution still images taken periodically 
throughout the sliding, and each profile was fit with a parabola.  Two probes are shown here in 
their initial, pre-test states (a, c), and then the same probes are shown at the end of testing (b, d, 
respectively).  It is clear from these representative images that the probes are well approximated 
by a parabola throughout the wear test.  

As discussed in Sect. 2-2-2, in the DMT model, the total compressive force in the 

contact Ftotal is the sum of the applied load Fapplied (zero in this case) and the adhesive load 

Fadhesive.  The mean normal stress is thus calculated as: 

σ normal =
Fadhesive
Acontact ,                (7.2)

 

where Acontact is the area of contact and is straightforwardly from the contact radius acontact 

(Eq. 2.1), and is therefore given by: 

Acontact = πacontact
2 = π

3RtipFadhesive
4E*

⎛
⎝⎜

⎞
⎠⎟

2
3

 
.
   (7.3) 
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The use of DMT contact mechanics is justified as the Maugis parameter (10) (1.16µT, 

where µT is described in Eq. 2.7) is found to be approximately 0.3.  This was calculated in 

a manner similar to Ref. (11) using literature values for elastic constants of diamond (12) 

and silicon (13) (specifically, Ediamond[100] = 1050 GPa and νdiamond[100] = 0.1, and 

Esilicon[100] = 130 GPa and νsilicon[100] = 0.28), a tip radius of 22 nm (the mean value 

throughout all testing), a work of adhesion of 0.66 J/m2 and an equilibrium separation of 

0.25 nm (as measured in Chapter 4).  While 0.34 falls outside of the limit for DMT 

behavior of less than 0.1, the deviation in calculated parameters between λ=0.1 and λ=0.3 

is only approximately 6% (14). 

   

70202:& Calculation&of&the&reaction&rate&

As discussed in Chapter 6, if wear is occurring in an atom-by-atom fashion, then 

the reaction rate katom-loss [s-1] can be calculated, and should have an exponential 

dependence on stress.  Since the reaction rate is the time-rate of reaction for a single 

atom, it is determined by dividing the number of atoms removed by wear in a given 

measurement interval (Nlost) by the product of the number of atoms that were in contact 

(Ncontact) and the sliding time of that interval (tslide) as follows: 

katom−loss =
Nlost

Ncontacttslide
= VlostρSi

Acontactρsurf ,Si(100)( )tslide = c
Vlost

Acontacttslide ,
   (7.4) 

where Nlost is expanded as the product of the volume lost (Vlost) and the atomic density of 

silicon (ρSi), and likewise Ncontact is expanded as the product of the contact area (Acontact) 

and the areal atomic density of the silicon (100) surface (ρsurf,Si(100)) (the tip’s orientation 
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is verified by diffraction measurements in the TEM).  For clarity, the density terms are 

collected as a pre-factor and replaced by the constant c [m-1].   

Equation 7.4 assumes that the rate of reaction is constant over one sliding interval.  

Since the radius of the tip, and thus its adhesion force and stress state, is evolving as wear 

occurs, this is not strictly correct. However, the sliding intervals were kept short – as low 

as 50 nm of sliding distance in the initial stages of wear when the tip is evolving the 

fastest – to minimize the error in this assumption.  

This approach (calculating a rate of tip change that depends on time) thus predicts 

that for a fixed sliding distance, the volume removed will be inversely proportional to the 

sliding speed.  To examine this, two sliding speeds were used (4 and 20 nm/s); both are 

included in the present analysis.   

This approach is equivalent to that of Gotsmann and Lantz (Eq. 2.15) in every 

respect but one: Gotsmann and Lantz identified the frictional shear stress as the activating 

stress for wear, whereas in the present work, compressive stress is used for the reasons 

discussed previously.  Furthermore, the shear stress can exhibit a dependence on 

speed (Sect. 6-3-4), and if so, that will add an additional dependence of wear on sliding 

speed.  However, Gotsmann and Lantz’s experiments were at constant speed, and thus the 

predicted speed dependence was not verified. There are only a few investigations into the 

effect of sliding speed on nanoscale wear.  A speed dependence was seen experimentally 

for wear of a platinum tip sliding against diamond-like carbon by Bhushan and 

Kwak (15), whereby the worn volume increased roughly logarithmically with speed at 

low sliding speeds, then leveled off.  This is in contrast with the present model and with 

our experimental results obtained at two speeds.  However, in that work, the authors 



!
!

189!

mention that wear consists of adhesive, abrasive, and tribochemical wear, and they 

explicitly state that asperity fracture and particle generation occurs in their experiments, 

which are carried out at higher loads (50-100 nN) than the present work.  Therefore, it is 

not surprising that a different speed dependence of wear is observed. 

  

70203:& Results&and&discussion&of&reaction&rate&as&a&function&of&normal&stress&

Figure 7.4 also shows all data for the wear of silicon plotted in the context of 

reaction rate theory, as discussed in Sect. 6.  The analysis demonstrates that an 

exponential dependence of reaction rate on the compressive stress clearly fits the data, 

consistent with the stress-assisted chemical kinetics model (Eq. 6.6).  The data for all four 

silicon asperities, despite their widely varying geometries, collapse consistently onto a 

single curve, which is nearly linear when on a log-linear plot (inset in Fig. 7.4(c)).  The 

data are extremely well-fit by Eq. 6.6 (correlation coefficient of 0.90) using ΔVact and 

ΔUact as fit parameters.  Accounting for experimental uncertainty and reasonable attempt 

frequencies corresponding to atomic vibrations (1013±1 s-1), the fit yields 

ΔUact=0.85±0.06 eV and ΔVact  = 6.7±0.3 Å3.  The activation volume corresponds to a 

barrier reduction of approximately 0.04 eV/GPa.  These values are consistent with single 

atom dimensions and bond energies, and agree well with quantum mechanical predictions 

for stress-assisted chemical reactions in silicon – activation energy of 0.70 eV, with a 

stress-dependent reduction of 0.05 eV/GPa (Eq. 3 of Ref. (16), in the range of stress 

relevant to this investigation).   
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In comparing to previous work on tip wear, the energy barrier compares favorably 

to the value previously measured by Gotsmann and Lantz, 0.98 eV (1).  However, our 

measurement of activation volume cannot be directly compared in a meaningful way to 

that study.  In that work, the interfacial shear stress was assumed to be rate-controlling 

and to scale linearly with compressive stress (with proportionality constant ξ, as specified 

in Eq. 3 of Ref. (1)).  The best-fit value extracted was ξΔVact, shear stress=55±35 Å3.  

Comparing that activation volume to the present one is complicated by the fact that ξ is 

unknown and the silicon-polymer shear stress occurring in dry air or nitrogen for the 

experiments in Ref. (1) will be far different than the diamond-silicon shear stress in 

vacuum in the present tests.  Several other differences, including assumptions about the 

tip geometry as it evolves, the assumption of direct proportionality between the pull-off 

force and the radius of the flattened tip, and different sliding speeds, render it 

uninformative to directly compare these activation volumes.  Further experimental and 

simulation work is needed to identify the specific stress components responsible for 

reducing the relevant energy barrier in a particular set of conditions. 

The specific unit process(es) leading to wear remain undetermined as the present 

in situ methodology does not resolve the behavior of individual atoms.  One feasible 

process is a one illustrated in Fig. 6.3, whereby the rate-limited step is the formation of an 

atomic bond across the interface.  As mentioned, this is supported by molecular dynamics 

simulations of diamond-like carbon sliding over diamond (17).  The rate-limiting reaction 

for wear is further hypothesized to be the formation of the bond across the interface, and 

thus the extracted activation parameters describe the kinetics of this reaction.  The values 

of the kinetic parameters obtained (energy barrier, activation volume) are consistent with 
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this picture.  There are certainly many secondary events that will occur, including re-

transfer of material back to the tip, surface reconstruction, diffusion, removal of groups of 

atoms, and so on, but the clear single-exponential behavior seen in Fig. 7.4 suggests that 

one mechanism dominates and controls the rate of wear.  

 

703:& Quantifying&the&rate&of&wear&of&silicon&oxide&&

The kinetics of wear of the oxide must be analyzed with significantly more 

caution than was used when analyzing the wear of the silicon (Sect. 7-2).  Not only has 

the deformation behavior of silicon oxide been demonstrated to be affected by the 

electron beam, but also there is clear evidence of both fracture and plastic deformation 

occurring (Sect. 7.1).  For the present analysis, clear cases of fracture and gross shape 

change were excluded from the data and only cases that appeared to be consistent with 

gradual atom-by-atom removal were calculated.  

Using the same analysis described in Sect. 7-2, the wear behavior of silicon oxide 

was analyzed in the context of reaction rate theory, as shown in Fig. 7.6.   The results 

show a consistent super-linear dependence of reaction rate on stress, and may be 

consistent with exponential behavior.  A fit to the data yields an activation energy 

ΔUact = 1.38±0.16 eV and an activation volume ΔVact = 27±5.6 Å3.  However, compared 

to the data for silicon, there is significantly more scatter in the data, fewer data points 

because there is a limited amount of oxide to wear through, and a narrower range of 

stress was explored.  For these reasons, the exponential trend is not as clear and the 

uncertainty of extracted activation parameters is much larger.   
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Figure 7.6: The wear data for silicon oxide can also be analyzed for those intervals where it 
appeared to be gradual.  The measured wear data was analyzed using the method described in 
Sect. 7-2 and is shown in red above.  The data from silicon (Fig. 7.4) is presented in black for 
comparison.  

Despite the concerns mentioned above regarding the range of measurements for 

silicon oxide wear, the comparison between the silicon and silicon oxide behavior 

demonstrates the importance of understanding the underlying kinetics of wear and of 

measuring the activation parameters for a given system.  The rate of wear of the oxide is 

lower than for Si at low mean contact stresses, but crosses over to a higher rate at 

approximately 3.6 GPa. From fitting the data, the calculated stress-free activation barrier 

is higher than for Si. This may naively seem to indicate that silicon oxide is a more wear-

resistant material than silicon.  However, the activation volume is larger, indicating that 

the energy barrier (and thus the wear rate) is much more sensitive to stress than for 

silicon.  This is why there is a stress at which the two data sets cross, and at all higher 

stresses, the wear of the oxide is significantly faster.  The knowledge of the activation 
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parameters allows the calculation of this behavior and the selection of the more 

appropriate material given the design stresses.  

 

704:& Conclusions&&

This chapter described a set of experiments in which the wear was carefully 

measured and analyzed in the context of reaction rate theory.  There are two major 

advances provided by the present investigation.  First, the in situ nature of this testing 

provides direct experimental evidence that significant nanoscale wear can occur in the 

absence of fracture or plastic deformation. This implies that atomic attrition can be quite 

significant in nanoscale contacts, and potentially a substantial wear mechanism at the 

micro-/macro-scale, even in brittle or ductile materials that fail by other means at higher 

stresses. Second, the atomic reaction rate has been directly calculated and plotted versus 

contact stress, explicitly demonstrating an exponential dependence over decades of 

reaction rate.  This provides direct experimental validation for an atom-by-atom wear 

mechanism, and justifies the application of reaction rate kinetics in the analysis and 

prediction of some types of nanoscale wear.  More broadly, when wear is being studied 

for a new set of materials or conditions, Figs. 7.4 and 7.6 provide examples of the 

analysis that can be performed to determine whether reaction rate theory is appropriate. 

Reliable values for the kinetic parameters from that analysis could then be used to predict 

wear for different loads and tip geometries.  

! &
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CHAPTER'8:'Conclusions'and'future'work!

The present set of investigations used studies performed inside of a transmission 

electron microscope to add previously inaccessible information – real-time, in situ 

measurement of the tip geometry – to the analysis of adhesion and wear.  Although the 

apparatus used cannot resolve the behavior of individual atoms, visualization of the sub-

nanometer-scale contact geometries and observation of the sub-surface atomic lattice 

enables novel, atomic-level insights into adhesion and wear to be gained.  In this final 

chapter, the most relevant results regarding adhesion and wear will be briefly reviewed in 

Sect. 8-1, along with the perceived impact of the work in those specific fields.   

Section 8-2 presents larger conclusions that emerge from the work as a whole regarding 

the relevance of atomic-scale detail to all of nanotribology, and potentially to other areas 

of surface science.  Finally, Sect. 8-3 presents significant questions opened or left open 

by the present work, followed by suggested future investigations into these. 

 

801:& Summary&of&results&from&nanoscale&adhesion&and&wear,&and&broader&

impacts&on&those&fields&

80101:& The&measurement&of&fundamental&parameters&governing&adhesion&

Significant prior work had demonstrated models for adhesion of continuum 

bodies and characterized the effect of roughness on adhesion for planar surfaces; the 

objective of the present investigations was to provide insight on nanoscale contacts – 

including the applicability of models, and the identification and measurement of relevant 
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parameters.  Adhesion tests were performed with in situ high-resolution visualization of 

both sides of the contact.  While the adhesion parameters (i.e. pull-off force and snap-in 

distance) could have been measured using a traditional atomic force microscope, the 

concurrent measurement of the detailed contact geometry allowed a previously 

unattainable analysis of adhesion in these contacts.   

First, in Chapter 4, a method for integrating a surface interaction potential over 

measured sub-nanometer-scale topography was presented.  This allowed the simultaneous 

computation of the strength and the length-scale of the adhesive interaction in one 

particular system (silicon in contact with diamond); this has not previously been 

experimentally possible for any system.  Results validated previous estimates of the range 

of adhesion, while showing that previous measurements significantly underestimated the 

work of adhesion between silicon and diamond by failing to account for nanoscale 

roughness.  Second, Chapter 5 described generalizing results beyond the measured 

geometries of a few probes to understand how adhesion is affected by atomic-scale 

surface roughness.  Using adhesion tests between a diamond surface and probes of either 

diamond-like carbon or ultrananocrystalline diamond, this work demonstrated that even 

sub-nanometer-scale roughness on a curved asperity is sufficient to reduce measured 

values of work of adhesion by an order of magnitude below those of atomically smooth 

asperity surfaces.  It further suggested a simple functional form to obtain a reasonable 

estimate of dependence of this reduction on the amplitude of the roughness.  In sum, 

these results demonstrate methodology for the measurement of adhesion parameters for 

technologically relevant materials, and demonstrate how the strength of adhesion is 
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affected by nanoscale physical properties: adhesion range, tip shape, and surface 

roughness.   

More broadly, these investigations demonstrate not only significant weaknesses in 

the typical treatment of nanoscale adhesion, but also enable pathways towards better 

understanding and even control of adhesion in the future.  This investigation has shown 

that the present state-of-the-art method for measuring the work of adhesion – 

measurement of the pull-off force using an atomic force microscope probe of known 

radius, followed by calculation of work of adhesion using continuum contact mechanics 

(Eq. 2.5 or 2.6) – can be in error by a factor of ten because it fails to account for probe 

roughness.  This extends prior continuum level studies (1, 2) to the nanoscale, and 

demonstrates how theory from flat-flat contacts can be modified to apply to contacts 

using a nanoscale asperity.  This presents an opportunity: the nanometer- and sub-

nanometer-scale roughness on sharp asperities can be designed in to NEMS devices or 

probe-based nanomanufacturing techniques in order to minimize adhesion in cases where 

it is undesirable.  Potential recipes are demonstrated for rationally choosing a surface 

topography – either by integrating a surface potential to predict adhesive forces, or by 

using the empirically supported equation for adhesion as a function of root-mean-square 

roughness (Eq. 5.4).  Finally, while the integration of a surface potential to predict 

adhesive forces has only been demonstrated here for single asperity contacts, there is no 

fundamental reason preventing this method from being generalized to planar nanoscale 

contacts as well. 
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80102:& Concluding&remarks&on&nanoscale&wear&

Significant prior work on nanoscale wear using the atomic force microscope had 

suggested atom-by-atom material removal and an exponential dependence on load or 

stress in the contact; however, these relied on significant assumptions about the 

mechanism and kinetics of material removal and lacked sufficient resolution to prove 

these.  To address these, wear tests were performed in the present investigation using 

direct in situ visualization to concurrently characterize the detailed conditions under 

which sliding occurred and the evolution of the surfaces during that sliding.  First, 

Chapter 6 presents the application of reaction rate theory to nanoscale wear, along with 

the basic assumptions, considerations, and interpretation of parameters.  Based on this, a 

variety of investigations are suggested to establish the theory more firmly and extract 

useful quantities – one of these suggested investigations has been performed in the 

present work and is presented in Chapter 7.  Here, nanoscale wear is characterized for 

silicon sliding against diamond in vacuum at low loads.  The shape-evolution and kinetics 

of wear are well described using this framework of stress-assisted chemical reactions.  

Therefore, the fundamental parameters governing wear of silicon under these conditions 

were measured.  These measurements have direct relevance for predicting lifetimes of 

silicon components in contact microscopy, such as AFM, and in certain device 

applications, such as probe-based data storage or probe-based nanomanufacturing.  

More broadly, this work demonstrates a framework for predicting and controlling 

wear more generally.  The reaction-rate analysis leads to specific considerations for 

selection or design of wear-resistant materials: not only must they possess high activation 

energies for atomic removal (ΔUact), but equally important is a low activation volume 
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(ΔVact) so that the barrier is not easily overcome in loaded conditions.   In principle, the 

measurement of these two parameters enables the prediction of wear, at least in 

conditions where the underlying mechanism is unchanged, and the rational design of 

nanoscale devices, components, and sliding conditions to minimize wear.  While the 

present work only investigates the behavior of a single nanoscale asperity, in many cases 

larger-scale contact is composed of such asperities, as discussed in Chapter 1.  The 

equations and frameworks governing nanoscale wear in dry sliding contacts are not 

expected to apply directly to describe wear in micro- and macro-scale contacts, which are 

often rough and sometimes lubricated.  However, these laws could be used as inputs into 

larger-scale models, such as those describing multi-asperity surfaces or the “boundary 

lubrication” regime, to describe the behavior of those portions of the surfaces that are in 

intimate contact during sliding. 

   

802:& Emergent&conclusions&from&the&work&as&a&whole:&Capturing&the&effect&of&

atomic0scale&detail&

In addition to the conclusions that apply to the topics of adhesion and wear that 

were described above, there are two broad conclusions with potential application to all of 

nanotribology, and possibly to the wider topic of surface science at the nanoscale.   

The first broad conclusion, drawn from these adhesion investigations, is that 

atomic-scale topography and atomic-scale reactions can have a significant effect on the 

behavior of the bodies in contact.  For instance, the common assumption that a nanoscale 

AFM tip can be approximated by an analytical function has been shown to cause 
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significant errors in the measurement of adhesion parameters.  Also, significant material 

removal and even shape change of nanoscale components can result from the action of 

individual atomic-scale bond-rearrangement.  This conclusion of the importance of 

nanoscale structure and behavior has already been established using molecular dynamics 

simulations (Sect. 2-2-1); however, it has not been as clearly characterized in 

experimental investigations.  The present work leverages real-time visualization of the 

contact to bridge the gap between nanotribological investigations performed using 

atomistic simulations and those performed using traditional experimental techniques 

(such as the atomic force microscope or the surface forces apparatus).   

The second broad conclusion is that, while atomic-scale details cannot be ignored, 

there are generalizations that provide guidance in cases where the omniscience of 

atomistic simulations is not possible.  For example, as mentioned, the modeling of an 

AFM tip as a smooth paraboloid will yield errors in the measurement of adhesion 

parameters.  However, realistic measurement of the same adhesion parameters can be 

achieved using a hybrid continuum-scale/nanoscale approach, in which a surface 

interaction potential was integrated over the measured sub-nanometer-scale geometry of a 

real tip.  The use of a surface interaction potential is a continuum concept that relies on 

significant assumptions (see Sect. 2-2-3), yet in this thesis is applied to measured 

nanoscale contacts and enables the accurate prediction of adhesive forces.  This approach 

– the integration of stresses between contours – is a blunt instrument compared to the 

summation of forces between atoms that is commonplace in computer simulations.  Yet 

excellent agreement between these techniques is achieved in two different sets of testing: 

in the comparison of the experimentally-determined range of adhesion (z0) against the 
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value calculated based on constants from a well-established molecular dynamics potential 

(using the method discussed in Sect. 4-3-1); and in comparing observed trends of 

adhesion and roughness between numerical models (Fig. 5.1) and experiment/MD 

simulations (Fig. 5.6).  It must be noted that, in all cases, the experimentally measured 

values yielded much higher degrees of scatter as compared to the atomistic approaches – 

it is left to further investigations to determine whether this is due to real changes in 

contact surfaces (with time or contact location), or whether this is caused by inaccuracies 

in the analysis approach.  

Another example of generalizations of trends in adhesion that do not require full 

atomic-scale knowledge of the contact geometry is the demonstrated utility of root-mean-

square probe roughness in predicting adhesion between silicon probes and a diamond 

surface.  The root-mean-square (RMS) roughness is a calculated quantity that depends on 

the statistics of an entire surface; it is does not accurately describe the detailed geometry 

at the very apex of the probe (the only region that actually comes into direct contact).  

Mathematically, it can be shown that a wide variety of surfaces can share a single RMS 

roughness value.  For these and other reasons, there is no reason a priori to assume that 

RMS roughness should be a useful metric for nanometer-sale probes. Yet, the 

combination of in situ experiments and atomistic simulations demonstrate consistent and 

monotonic changes in pull-off force (and thus measured work of adhesion) as a function 

of this parameter.  Similar to the approach described in the previous paragraph, using 

RMS roughness to describe adhesion represents a hybrid continuum-scale/nanoscale 

approach – a nanoscale contour is used as an input, but the detailed geometry is averaged 
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out using the equation for RMS roughness, which fundamentally assumes a continuous, 

well-defined surface.  

In summary, there are certain cases of contact – e.g. freshly cleaved, single-

crystal, experimental surfaces in vacuum; or a fully-equilibrated contact pair created 

using a robust atomistic simulation – in which perfect knowledge of atomic positions is 

enjoyed.  However, in a far larger number of cases – e.g. an atomic force microscope tip 

on a surface in dry air, or a finite element model of a MEMS component – in which 

atomic-scale knowledge is unattainable.  The present work attempts to bridge the gap 

between these two sets of cases, and demonstrates three specific examples of how 

nanoscale and atomic-scale details might be incorporated: (1) a surface potential can be 

integrated over known (or estimated) surface geometry to calculate total adhesion forces; 

(2) the reduction in adhesion with surface roughness can be estimated based on known or 

estimated values of root-mean-square surface roughness; (3) atom-by-atom wear in 

regions of intimate contact, which can be the dominant mode at low loads and may still 

persist at high loads when plasticity and fracture also occur, can be predicted using the 

formalisms of reaction rate theory and known or estimated values of activation 

parameters.     

 

803:& Open&questions&and&suggested&future&work&

80301:&& Open&questions&from&the&present&investigation&&

A major question left open by the present analysis is the limits of the applicability 

of continuum concepts to nanoscale surfaces.  There were several cases where 
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continuum-level concepts were applied – e.g.: the use of a surface potential to calculate 

stresses in Chapter 4; the calculation of root-mean-square roughness in Chapter 5; the 

computation of contact area using a continuum model in Chapter 7 – and in all of these 

cases, the computed results agreed well with theory or molecular dynamics simulations.  

However, previous atomistic simulations have discussed deviations from continuum 

predictions (3), and the complication of even calculating a reliable value for contact 

area (4).  Thus, continuous concepts likely cannot be applied in all cases, and therefore 

future study is required to define the limits of applicability, including size and shape of 

the bodies, load and deformation of the contact, materials, environment, etc.  Further, in 

cases of nanoscale contacts where continuum-level predictions do apply, an important 

question is why do they apply so well, given that many assumptions of continuum-based 

theory are violated.  

More focused questions involve the general limits of applicability of particular 

equations for adhesion and wear that were discussed in this thesis.  Specifically, 

Chapter 5 demonstrates the applicability of a previously proposed model of effective 

work of adhesion as function of tip roughness (Eq. 5.3).  However, this model assumes 

that the roughness is on the surface (not the tip), that only van der Waals adhesion is 

acting, that all bodies are rigid, and that the actual roughness can be distilled to a single 

parameter: RMS roughness.  This approach should not apply, for example, to soft 

materials outside of the Bradley or DMT limit, and should not accurately capture 

multiscale roughness.  These limits must be explored further.  Additionally, Chapter 7 

demonstrates that the rate of wear varies exponentially with average normal contact 

stress.  However, as discussed in Chapter 6, there remain significant questions about 
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which specific stress component(s) governs the wear event, and why it scales with 

average normal contact stress.  In particular, the continuum model used to interpret that 

data predicts that stress is non-uniform inside the contact.  One therefore expects that 

regions of high stress should contribute significantly more to overall wear than regions of 

low stress.  However, this is not easily captured in an analytical model: the faster wear of 

these high-stress regions reduces the local stress, shifting the load to other regions, thus 

increasing the stress elsewhere and causing those regions to wear more quickly.  The 

result is a dynamically evolving system that requires numerical modeling.  Therefore, 

further experimental investigations is suggested, especially in conjunction with atomistic, 

finite element, and/or other simulation techniques as discussed in Sect. 6-3. 

 

80302:& Suggested&future&work&

Due to experimental constraints of the TEM, this work was focused on the 

adhesion and wear of single-asperity contacts of a relatively small number of materials.  

While the specific conclusions about those materials are well-supported, the applicability 

of the broad conclusions and application to more complex geometries and to other 

material systems must be extensively studied and demonstrated.   

A straightforward extension of this work would be to investigate single asperity 

contacts of other materials.  Atomic force microscope probes are inexpensive and easily 

obtained; they can be purchased commercially with a wide variety of coatings and they 

can also be easily coated with any conformal thin film.  This renders the present 

technique ideal for investigation of a wide range of scientifically-relevant or 
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technologically-relevant films.  However, a significant limitation arises due to the use of 

the transmission electron microscope, which requires probes to be conductive, non-

magnetic, robust to electron-irradiation, and electron transparent (i.e. thin in the 

transverse dimension).  This eliminates entire classes of materials including most 

polymers (non-conductive, beam-sensitive), many steels (magnetic), many amorphous 

oxides (at least somewhat beam-sensitive), and any films that cannot be deposited with 

less than ~100 nm thickness.  Fortunately, rapid advancement of TEMs and the 

development of novel imaging conditions are constantly advancing the frontier of 

materials that can be imaged.  For instance, using ultra-low-dose techniques, it is 

becoming feasible to image many polymers and even some biological materials.    

A useful extension of the present investigation would involve combination with 

other in situ capabilities.  For instance, a logical extension of the wear testing involves 

heating and/or cooling the contact to explore changes in the reaction kinetics.  The stress-

assisted thermally activated wear process should have a characteristic (Arrhenius) 

dependence on temperature, and performing measurements as a function of temperature 

should enable more robust and accurate determination of stress-free energy barriers.  

Additionally, adhesion could be explored in combination with electrical current passing 

through the contact.  This would serve both to simulate typical mechanical switching 

elements used in NEMS/MEMS devices and would provide a second, independent 

measure of contact area.  Finally, environmental species could be introduced into the 

TEM (using environmental TEM techniques) to simulate more realistic conditions than 

ultra-high vacuum and to determine the effect of ambient species such as oxygen or water 

on the chemical reaction process.  
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The most exciting extension of the present techniques explores the fundamental 

behavior of contact mechanics at the nanoscale.  As reviewed in Sect. 2-2-2, there are 

clearly defined predictions from continuum contact mechanics for the contact stress, 

contact area, and body deformation as a function of load.  As discussed in the same 

chapter, these predictions have been shown to break down for the very smallest contacts, 

particularly with certain surface structures.  These represent limiting cases of behavior 

under extremes of contact size. However, there is also a wide range of intermediate cases 

where continuum contact mechanics may apply accurately, or where it applies with slight 

modifications – such as generalizations of behavior of atomistic surfaces (gleaned from 

simulations or experimental investigations such as the present one).  The advancements 

in nanoscale and in situ experiments in parallel with the rapid expansion of computing 

power and the accuracy of large-scale atomistic simulations are finally making it possible 

to explore the basic questions of how to define contact at the atomic-scale and how to 

describe the physics that governs it.   
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