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Abstract. The traditional use of LIBOR futures prices to obtain surrogates
for the Eurodollar forward rates is proved to yield a systematic bias in the
pricing of Eurodollar swaps when one assumes that the yield curve is well
described by the Heath-Jarrow-Morton model. The resulting theoretical in-
equality is consistent with the empirical observations of Burghardt and Hoskins
(1995), and it provide a theoretical basis for price anomalies that are suggested
by more recent empirical data.

1. Introduction

The prices of Eurodollar swaps are uniquely determined by the value of the Eu-
rodollar forward rates, and the main problem in pricing a Eurodollar swap comes
from the unfortunate fact that the Eurodollar forward rates are not directly ob-
servable. This has led to the uneasy custom among market practitioners to use
LIBOR futures prices in order to calculate surrogates for the missing forward rates.
It has long been understood that the daily settlement of futures contracts implies
that these surrogates are imperfect, yet much remains to be discovered about the
true nature of the biases that may be introduced when these surrogates are used
to price Eurodollar swaps.

The main goal here is to show that under a reasonably general model for the
term structure of interest rates, one can prove that there is a systematic bias in the
customary process for pricing interest rate swaps. Our result provides a theoretical
confirmation of the empirical observations of Burghardt and Hoskins (1995), and
it also provides a basis for the more precise analysis of swap prices.

The principal results are developed in Section 4, but, before those results can be
derived, we need to introduce some notation and to recall some familiar properties
of the Heath-Jarrow-Morton term structure model. We then develop a technical
result that implies the HJM framework typically generates a term structure model
where futures rates are systematically higher than the corresponding forward rates.
Section 4 then uses this technical result to obtain results on the biases that are
produced from using futures rates as surrogates for forward rates in the pricing of
zero-coupon bonds and swaps.

Finally, Section 5 provides a brief analysis of the recent empirical behavior of
swap rates and their relationship to the a priori bounds obtained here. The data
suggest several engaging anomalies, and, in particular, one finds that there is at

1991 Mathematics Subject Classification. Primary: 91B28; Secondary: 60H05, 60G44.
Key words and phrases. Heath-Jarrow-Morton model, HJM model, interest rates, LIBOR,

futures prices, arbitrage pricing, swap, equivalent martingale measures.

1



2 VLADIMIR POZDNYAKOV AND J. MICHAEL STEELE

least modest evidence that the arbitrage opportunities suggested by Burghardt and
Hoskins may still survive.

2. Background on the HJM Model

Our analysis is based on a term structure model of Heath, Jarrow, and Morton
(1992) that has become one of the standard tools for the theoretical analysis of fixed
income securities and their associated derivatives. This model is well discussed in
several recent books, such as Baxter and Rennie (1996), Duffie (1996), and Musiela
and Rutkowski (1997)), but some review of the HJM model seems useful here in
order to set notation and to keep our derivation of the pricing inequality reasonably
self-contained.

If P (t, T ) denotes the price at time t of a bond that pays one dollar at the
maturity date T ≤ τ , then the first step in the construction of an HJM model is
the assumption that P (t, T ) has an integral representation,

(1) P (t, T ) = exp

(
−

∫ T

t

f(t, u) du

)
0 ≤ t ≤ T ≤ τ,

where the processes {f(t, T ) : 0 ≤ t ≤ T ≤ τ} model the instantaneous forward rate
that should reflect the interest rate available at time t for a riskless loan that begins
at date T and which is paid back “an instant” later. Moreover, under the HJM
model, one further assumes that f(t, T ) may be written as a stochastic integral

(2) f(t, T ) = f(0, T ) +
∫ t

0

α(u, T ) du +
∫ t

0

σ(u, T )⊥dBu,

where Bt denotes an n-dimensional Brownian motion and the two processes

{α(u, T ) : 0 ≤ u ≤ T ≤ τ} and {σ(u, T ) : 0 ≤ u ≤ T ≤ τ}
are respectively R and R

n valued and adapted to the standard filtration Ft of {Bt}.
Also, one should note that the symbol ⊥ in the second integral of (2) denotes the
vector transpose, and both of the processes Bt and σ(u, T ) are viewed as column
vectors.

The representation (1) imposes almost no real constraint on P (t, T ) except non-
negativity and the normalization P (T, T ) = 1. In fact, the essential nature of the
HJM model only becomes evident once one restricts attention to a subclass of in-
stantaneous forward rates f(t, T ) for which one can guarantee that there are no
arbitrage opportunities between bonds of differing maturities.

The Forward Rate Drift Restriction

An essential feature of the HJM model is that in almost any economically mean-
ingful context, the coefficient processes α(t, T ) and σ(t, T ) of the SDE for f(t, T )
must satisfy a certain simple analytical relationship. Specifically, one knows that
α(t, T ) may be assumed to be of the form

(3) α(t, T ) = σ(t, T )⊥
[
γ(t) +

∫ T

t

σ(t, u) du
]
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where γ(t) is an adapted n-dimensional process such that

(4) E exp
(
−

∫ τ

0

γ(u)⊥dBu − 1
2

∫ τ

0

|γ(u)|2 du

)
= 1.

When this identity holds, we say that f(t, T ) satisfies the forward rate drift restric-
tion, and we call the process γ(t) that appears in this formula the market price
for risk. The economic motivation from this condition comes from the fact that it
implies several useful properties of the probability measure P̃ defined on Fτ by

(5) P̃ (A) = E

[
1A exp

(
−

∫ τ

0

γ(u)⊥dBu − 1
2

∫ τ

0

|γ(u)|2 du

)]
.

Specifically, if we set

(6) r(t) = f(t, t) and β(t) = exp
( ∫ t

0

r(u) du
)
,

then for each T the discounted process {P (t, T )/β(t) : 0 ≤ t ≤ T} is a P̃ -martingale
with respect to the filtration Ft. The process r(t) = f(t, t) is called the spot rate r(t)
and β(t) is called the accumulation factor (or discount factor), and β(t) is simply
the value of a deposit that begins with a balance of one dollar at time zero and
that accrues interest according to the stochastic spot rate r(u) during the period
0 ≤ u ≤ t.

The measure P̃ is commonly called the equivalent martingale measure since P̃
has the same null sets as P and since the process {P (t, T )/β(t) : 0 ≤ t ≤ T} is
a P̃ -martingale for each T ∈ [0, τ ]. The importance of P̃ comes from the classic
results of Harrison and Kreps (1979) and Harrison and Pliska (1981) that tell us
that existence of such a measure is enough to guarantee that there are no arbitrage
opportunities between the bonds of differing maturities.

A Basic Representation

By Girsanov’s theorem and the definition (5) of P̃ , one sees that vector process
defined by

(7) B̃t = Bt +
∫ t

0

γ(u) du

is a standard P̃ -Brownian motion, and Heath, Jarrow, and Morton (1992) observed
that the SDE for {f(t, T )} leads one to a particularly useful SDE for {P (t, T )}
Specifically, {P (t, T )} satisfies the B̃t SDE

(8) dP (t, T ) = P (t, T )[ r(t) dt + a(t, T )⊥dB̃t ],

where a(t, T ) is the n-dimensional column vector of integrated volatilities defined
by

(9) a(t, T ) = −
∫ T

t

σ(t, u) du.

The SDE (8) and the definition of β(t) then permit one to show that for any initial
yield curve P (0, T ) one has

(10) P (t, T ) = P (0, T )β(t) exp
[∫ t

0

a(s, T )⊥dB̃s − 1
2

∫ t

0

|a(s, T )|2 ds

]
.
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A price process {P (t, T )} that satisfies equations (1) through (10) is called an HJM
yield curve model. Here we will find that the integral representation (10) gives one
easy access to some basic qualitative features of the price process {P (t, T )}.

3. The Futures Rates — Forward Rates Inequality

Next, we need to recall some of the conventions and introduce some notation
for LIBOR rates, specifically the “λ-LIBOR rate” that is offered at time t for a
Eurodollar deposit for a maturity of λ360 days. This rate is also called the spot
λ-LIBOR rate when one needs to emphasize its distinction from the corresponding
forward or futures rates and it is denoted by Lλ(t).

By convention LIBOR rates are quote as add-on yields, and our first task here
is to work out the relation between λ-LIBOR rates and the prices of the implied
zero-coupon bonds. If Lλ(t) denotes the λ-LIBOR rate at time t, then, in terms
of a corresponding zero coupon bond, the arithmetic of add-on yields one finds the
representation,

(11) Lλ(t) =
1
λ

(
1

P (t, t + λ)
− 1

)
0 < t < τ,

and, in the same way, if Lλ(t, T ) denotes the forward λ-LIBOR rate for the future
time period [T, T + λ] one has the representation

(12) Lλ(t, T ) =
1
λ

(
P (t, T )

P (t, T + λ)
− 1

)
0 < t < T < τ.

The rate Lλ(t, T ) reflects the (add-on) interest rate available at time t for a riskless
loan that begins at date T and which is paid back at time T + λ. The instanta-
neous forward rate f(t, T ) can be written in terms of the forward λ-LIBOR rate as
f(t, T ) = limλ↓0 Lλ(t, T ).

Now, if Ẽ denotes the expectation with respect to the equivalent martingale mea-
sure P̃ , then the conditional expectation under Ẽ can be used to provide a formula
for the λ-LIBOR futures rate Fλ(t, T ). Specifically, we have the representation

(13) Fλ(t, T ) = Ẽ

[
1
λ

(
1

P (T, T + λ)
− 1

) ∣∣∣Ft

]
= Ẽ [Lλ(T )|Ft] 0 < t < T < τ.

From the perspective of pure theory, one can take the formula (13) simply as the
definition of the futures rate. Nevertheless, this formula is also widely considered
to provide a sensible representation of real world futures prices, and there is a long
history of modelling futures prices by such martingales. In particular, Karatzas
and Shreve (1998, p. 43) provide a useful discussion of the economic motivation
behind this definition.

Main Result: The Futures Rate-Forward Rate Inequality

Our main result is an inequality which asserts that the typical HJM framework
yields a term structure that forces the λ-LIBOR futures rates Fλ(t, T ) to be higher
than the associated forward λ-LIBOR rates Lλ(t, T ) with probability one. This
bound is analogous to Theorem 1 of Pozdnyakov and Steele (2002), but here one
meets two differences. First, we now deal with a more general volatility structure.
Second, our analysis makes better used of the fact that the forward λ-LIBOR rate
process Lλ(·, T ) is a submartingale under the equivalent martingale measure.
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Theorem 1 (Futures Rate-Forward Rate Inequality). For all 0 < t < T < τ , the
futures rate Fλ(t, T ) and the forward rate Lλ(t, T ) satisfy the inequality

(14) Fλ(t, T ) ≥ Lλ(t, T )

with probability one, provided that the underlying HJM family of bond prices
{P (t, T ) : 0 ≤ t ≤ T ≤ τ} satisfies the constant sign condition which asserts that
for any t and i = 1, 2, .., n the volatility coefficient σi(t, ·) has the same sign.

Proof. To begin, we will show that for any t, U , and T such that 0 ≤ t ≤ U ≤ T ≤ τ
we have a simple three-term product representation of the ratio P (t, T )/P (t, U) any
two bond prices :

(15)
P (t, T )
P (t, U)

=
P (0, T )
P (0, U)

η(t, T, U)ξ(t, T, U),

where the second factor η(t, T, U) is given by

η(t, T, U) = exp
[∫ t

0

[a(s, T ) − a(s, U)]⊥ dB̃s − 1
2

∫ t

0

|a(s, T ) − a(s, U)|2 ds

]
,

and the third factor ξ(t, T, U) is given by

ξ(t, T, U) = exp
[
−

∫ t

0

a(s, U)⊥[a(s, T ) − a(s, U)] ds

]
.

To check this representation we just note that the basic bond formula (10) gives us

P (t, T )
P (t, U)

=
P (0, T )β(t) exp

[∫ t

0
a(s, T )⊥dB̃s − 1

2

∫ t

0
|a(s, T )|2 ds

]
P (0, U)β(t) exp

[∫ t

0
a(s, U)⊥dB̃s − 1

2

∫ t

0
|a(s, U)|2 ds

]
=

P (0, T )
P (0, U)

×

× exp
[∫ t

0

[a(s, T ) − a(s, U)]⊥ dB̃s − 1
2

∫ t

0

[|a(s, T )|2 − |a(s, U)|2] ds

]
=

P (0, T )
P (0, U)

η(t, T, U)ξ(t, T, U).

The main benefit of this representation comes from the analytic properties of the
last two factors.

The essential property of the third factor is that the process {ξ(s, T, U)} is
monotone decreasing as a function of s. To check this fact, we first note that by
definition, the integrated volatility vector a(t, T ) has components

ai(t, T ) = −
∫ T

t

σi(t, u) du,

so the constant sign condition for the values of σ(t, u), t ≤ u ≤ U tells us that for
each s ∈ [0, U ] and all i = 1, 2, ..., n, we have with probability one that

ai(s, T ) ≤ ai(s, U) ≤ 0 or 0 ≤ ai(s, U) ≤ ai(s, T ).

As a consequence, one finds that

−a(s, U)⊥[a(s, T ) − a(s, U)] ≤ 0, a.s.,

so by the integral representation of ξ(s, T, U) one finds that it must be a decreasing
function of s.
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The essential property of the second factor {η(·, T, U)} is that it is a positive
local P̃ -martingale, and, thus, by Fatou’s lemma {η(·, T, U)} must also be a pos-
itive P̃ -supermartingale. Next, for any 0 ≤ U ≤ T ≤ τ one then finds that the
bond price ratio P (·, T )/P (·, U) is the product of a positive P̃ -supermartingale
η(·, T, U), a decreasing positive process ξ(·, T, U), and a nonnegative constant, so
P (·, T )/P (·, U) must itself be a positive P̃ -supermartingale.

Now, by Jensen’s inequality, the convexity of x �→ 1/x on (0,∞), and the su-
permartingale property of the bond price ratio P (·, T )/P (·, U) for any choice of
0 ≤ t ≤ s ≤ U ≤ T ≤ τ , we have

Ẽ

(
P (s, U)
P (s, T )

∣∣∣Ft

)
≥ 1

Ẽ[P (s, T )/P (s, U)|Ft]
≥ 1

P (t, T )/P (t, U)
=

P (t, U)
P (t, T )

.

The bottom line is that the reciprocal P (·, U)/P (·, T ) is a P̃ -submartingale.
Since the forward λ-LIBOR rate Lλ(t, T ) is a nonnegative affine function of the

ratio process P (·, T )/P (·, T + λ), we see that {Lλ(·, T )} is also a submartingale
under the equivalent martingale measure P̃ . Finally, the λ-LIBOR futures rate
Fλ(·, T ) is a P̃ -martingale for which one has

Fλ(T, T ) = Lλ(T ) = Lλ(T, T ),

so the submartingale property of the forward λ-LIBOR rate and the martingale
property of λ-LIBOR futures rate together imply that

Lλ(t, T ) ≤ Ẽ[Lλ(T, T )|Ft] = Ẽ[Lλ(T )|Ft] = Fλ(t, T ) a.s.,

just as we intended to show. �

One should note that there are several methods that lead to a proof that the bond
ratio Mt = P (t, T )/P (t, U) is a P̃ -submartingale. The most immediate benefit of
the present method may simply be that it is direct and self-contained, but there may
also be benefits to be found in our introduction of the three term factorization (15).
Certainly, the factorization provides more information than just the knowledge that
Mt = P (t, T )/P (t, U) is a P̃ -submartingale, although so far no specific use has been
found for this additional information. Nevertheless, over time, one may expect that
the factorization (15) will find a further role.

The Sign Condition

The only non-standard condition that one needs in order to obtain the futures
rates-forward rates inequality is the constant sign condition, and one should note
that this condition is met by most — but not all — of the specific HJM models that
have been used in practice. For example, all of the examples in Heath, Jarrow, and
Morton (1992) satisfy the constant sign condition, and in most cases the condition is
trivial to check. In the continuous Ho–Lee model one has σ(ω, t, T ) = σ where σ > 0
is constant, and in the Vasicek model one has σ(ω, t, T ) = σ exp(−δ(T − t)) > 0;
moreover, the two-factor combinations of these models considered by Musiela and
Rutkowski (1998, p. 324) satisfy the constant sign condition. One can also check
that most of the models considered by Amin and Morton (1994) satisfy the constant
sign condition, but some do not; for example, their “Linear Absolute” model with
σ(ω, t, T ) = σ0 + σ1(T − t) will not satisfy the constant sign condition for if σ0 and
σ1 have opposite signs and T is sufficiently large.
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4. The Swap Inequality

The most immediately useful consequence of the futures rate-forward rate in-
equality is that it quickly leads one to a theoretical upper bound for the swap rate.
Moreover, this bound has the interesting and potentially important feature that it
holds uniformly over a large class of the HJM models.

Before proving the swap rate inequality, we need to introduce some notation and
recall some standard definitions. If T0 ≥ 0 and κ are given and we set

T1 = T0 + λ, T2 = T0 + 2λ, ..., TN = T0 + Nλ,

then the forward start payer swap settled in arrears (or, in short, the swap) is a
series of payments λ

[
Lλ(Tk) − κ] that are made at the successive times Tk+1 with

k = 0, ..., N − 1. In this payment formula, the constant κ is called the pre-assigned
fixed rate of interest, and N is called the length of the swap. The time T0 is
called the start date, and, for the forward start payer swap settled in arrears, the
times T0, ..., TN−1 are called the reset dates and the times T1, ..., TN are called the
settlement dates.

The time T0 arbitrage price π(κ) of the cash flows of a swap is given by

π(κ) =
N−1∑
k=0

Ẽ

[
β(T0)

β(Tk+1)
λ
(
Lλ(Tk) − κ

)∣∣FT0

]
,

and one can easily check that π(κ) has the representation

π(κ) = 1 − λκ[P (T0, T1) + · · · + P (T0, TN )] − P (T0, TN ),

a formula that is also derived and discussed in Musiela and Rutkowski (1997, p.
388). Finally, the swap rate κ0 is such value of the preassigned fixed rate of interest
κ that the time T0 arbitrage price of the cash flows associated with the swap contract
is zero, i.e.

(16) κ0 =
1 − P (T0, TN )

λ(P (T0, T1) + · · · + P (T0, TN ))
.

Now we are ready to present the main result of this section. This proof requires
little more than seeing how the definition of the swap rate fits together with the
futures rate inequality, but the resulting inequality still serves nicely when one tries
to sort out the theoretical basis of the empirical observations of Burghardt and
Hoskins (1995).

Theorem 2 (Swap Rate Inequality). Suppose {P (t, T ) : 0 ≤ t ≤ T ≤ τ} denotes
an HJM family of bond prices for which the constant sign condition of Theorem 1
holds. The swap rate κ0 then satisfies the following swap rate inequality:

(17) κ0 ≤ 1 + λLλ(T0) −
∏N−1

k=1 (1 + λFλ(T0, Tk))−1

λ
[
1 + (1 + λFλ(T0, T1))−1 + · · · + ∏N−1

k=1 (1 + λFλ(T0, Tk))−1
] .

Proof. First we need to develop a lower bound for the price of zero-coupon bond
P (T0, Tk) with k = 1, 2, ..., N . Using the telescopic product and the formulas for
the forward and spot LIBOR we have that

P (T0, Tk) = P (T0, T1)
P (T0, T2)
P (T0, T1)

· · · P (T0, Tk)
P (T0, Tk−1)

=
1

1 + λLλ(T0)
1

1 + λLλ(T0, T1)
· · · 1

1 + λLλ(T0, Tk−1)
.(18)
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Now, if we replace the forward λ-LIBOR rates in this identity by the correspond-
ing λ-LIBOR futures rates, then Theorem 1 tells us that the identity becomes an
inequality,

(19) P (T0, Tk) ≥ 1
1 + λLλ(T0)

1
1 + λFλ(T0, T1)

· · · 1
1 + λFλ(T0, Tk−1)

.

Finally, to obtain the swap rate inequality (17), we just need to substitute all
the bond prices P (T0, TN ) in the formula for the swap rate (16) by their lower
bounds from the bond inequality (19). When we the divide both the numerator
and denominator of the resulting estimate by (1+λLλ(T0))−1, we see that the proof
of the Swap Rate Inequality (17) is complete. �

Surely the most interesting features of the Swap Rate Inequality is the fact
that the expression on the right-hand side of (17) has often been used as an ap-
proximation to the true value of the swap rate κ0. For example, the use of this
approximation is expressly recommended in Trading and Capital-Markets Activi-
ties Manual, Interest-Rate Swaps.1 Nevertheless, Theorem 2 suggests us that this
widely used procedure may be subject to systematic biases. Specifically, in a world
where the yield curve is well modelled by an HJM model that satisfies the constant
volatility condition, we see from the Swap Rate Inequality (17) that the suggested
approximation is almost surely an overestimate of the true swap rate. In a com-
pletely parallel way, the bond inequality (19) also shows that one faces an almost
sure downward bias when one uses the expression on the right-hand side of (19) as
an approximation for the price of zero-coupon bond. Nevertheless, as in Burghardt
and Hoskins (1995) note (p. 63), such bond price approximations are also widely
used.

5. Empirical Observations

One does not know a priori if the swap rate inequality (17) reflects a law of
economic reality or if it is an artifact of the HJM model. One naturally wants to
know if swap rate inequality (17) is evident in real-world swap rates. Fortunately,
since July 3, 2000 the Federal Reserve Board has included the U.S. dollar par
swap rates in the H.15 Daily Update,2 so an empirical analysis of the swap rate
inequality (17) can at least be begun.

In Figure 1, we provide a box plot of the value of the traditional swap rate
approximation minus the observed swap rate (as derived from the FRB H.15 Daily
Update). For example, in the first column of Figure 1, the top of the box marks the
third quartile Q3, the bottom marks the first quartile Q1, the line interior to the box
marks the median, and the value of the “upper fence” U = Q3 + 1.5(Q3 −Q1) and
“lower fence” L = Q1−1.5(Q3−Q1) are indicated by the square brackets. Observed
differences beyond these fences are plotted individually as horizontal bars. Thus,
if the 1-year swap rate on July 3, 2000 is 7.10% and the corresponding theoretical
bound is ≈7.146%, then the plotted difference is .046%. Column one of Figure
1 summarizes the observed differences for the 1-year swap rates for each of the
247 trading days in the study period, and the remaining columns summarize the
observed differences for the swap rates with maturities of 2,3,4,5 and 7 years.

1This document is publicly available on the website of the Board of Governors of the Federal
Reserve System www.bog.frb.fed.us/boarddocs/SupManual/ (see, e.g. p.7)

2see www.federalreserve.gov/releases/H15
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Figure 1. Box plots of the observed difference between the the-
oretical upper bounds and the observed swap rates for all trading
days of the period July 2000 - June 2001

Observations on Maturities of 1 to 7 Years

The data summarized by Figure 1 suggest several plausible inferences.
• For swaps rate with a relatively long time-to-maturity (4,5 and 7 years), one

finds that the gap between the theoretical upper bound and the observed
swap rate is by-and-large positive, just as theory would suggest.

• One also sees that the longer time-to-maturity the wider observed gap, and
again this finding is consistent with our deductions under the HJM model.

• In contrast, one finds that for swaps with short maturities there are many
days when the observed difference is negative, and this is at variance with
the swap rate inequality (17) which predicts all of the observed differences
should be positive. Ominously, the swaps with maturity of one year have
a negative empirical gap almost 75% of the time.

Clearly the one-year swap rates deserve closer scrutiny, and in Figure 2 we pro-
vide for one-year swaps a month-by-month box plot for the gap between the theo-
retical upper bound on the swap rates and the observed swap rates.

Observations over All Maturities

The picture one draws from the data summarized in Figure 2 is much less com-
patible with the theoretical consequences of the HJM model. In particular, one
finds:

• The violation of the theoretical upper bound are common for one-year
swaps. In fact, for six of the months in the study period one finds that more
than 75% of the observed differences were negative, while theory would pre-
dict that there would be no negative differences.
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Figure 2. Box plots of the observed difference between the the-
oretical upper bounds and the observed 1-year swap rates month
by month for the period July 2000 - June 2001

• The month of November 2000 was particularly extreme, and virtually all
the observed differences are negative.

• The predominant gap size less than 5 basis points, but for the negative gaps
one finds gap sizes that are a bit smaller. The violations of the theoretical
bounds were typically less than 3 basis points.

One is hard pressed to say if gaps of the size observed here are economically
significant, although the discussion of Burghardt and Hoskins (1995, p. 69) suggests
that they may be. The more conservative conclusion that one might draw is that
a constant sign volatility HJM model for futures rates may not be appropriate
when the end goal is the pricing swap rates with short maturities. Even here one
needs to be alert to possibility that the observed deficiencies may be remedied by
more detailed models which take into account features such as transaction costs,
counter party risk, or the fact that real-world futures are not continuously marked
to market.

Data Resources and Computational Details

The Swap Rate Inequality (17) has three inputs: the swap rate κ0, the spot
LIBOR quote Lλ(T0), and the LIBOR futures rates Fλ(T0, Tk). Here T0 denotes
the current time and N is the length of the swap; so, for the 1-year swap linked to
the 3-month LIBOR, one has λ = .25 and N = 4.

The only quantities in the Swap Rate Inequality that are not directly observed
are the futures rates. Specifically, the Chicago Mercantile Exchange quotes the
Eurodollar futures prices, not the futures rates, so one must make the obvious
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conversion (futures rate =1-futures price/100), but, unfortunately, there are two
further problems with the CME data. The first is that one needs futures rates
with the maturities that are not directly quoted, and the second is the more subtle
problem that the rate quotes are not pegged to precisely the same times.

The swap rates published in the FRB H.15 Daily Update are based on informa-
tion 3 obtained from acknowledged market makers as of 11:00 a.m. local time in
New York, and one would surely like to have futures price quotes as of the same time
as the swap rate survey. Unfortunately, the publicly available 4 data on Chicago
Mercantile Exchange Eurodollar futures prices only cover the daily open, closing,
highest and lowest futures prices. Rather than choosing to ignore the possible dif-
ference between Chicago opening prices and NYC 11:00 a.m. prices, we decided to
report the observed gaps based on the highest futures rates. This choice was moti-
vated by the desire to provide the most conservative estimate of the upper bound;
since the right-hand side of the Swap Rate Inequality is an increasing function of
the futures rates fλ(T0, Tk), our use of the reported CME highest futures rate leads
to a value that we can be sure to be an honest upper bound.

There were no further computational decisions of substance, but perhaps some
small points should be recorded. We followed the tradition of using cubic splines to
interpolate the term structure (as, for example, in Grinblatt and Jegadeesh (1996)),
and we also used cubic splines to interpolate the term structure of the futures rates.
For each day one has about 40 futures prices with maturities up to 10 years that
can be used in order to construct an interpolated term structure of futures rates,
so the interpolated rates should be rather reliable. The cubic spline interpolation
was performed with the standard S-Plus function spline. The swap rate quotes
provided in H.15 are stated on semiannual basis so the upper bounds were converted
to annual rates by the usual transformation x �→ (1 + x/2)2 − 1 after they were
computed.

6. Concluding Remarks

The Futures Rate - Forward Rate Inequality (14) and the Swap Rate Inequality
(17) were proved here under the assumption that the stochastic behavior of the
yield curve can be specified by an HJM Model that satisfies the constant sign
condition. Nevertheless, the phenomenon suggested by these inequalities is not
necessarily restricted to such a model. The inequalities (14) and (17) can probably
be stressed passed the breaking point if the constant sign condition is brutally
violated, but we conjecture that for any economically feasible HJM model one
will find that both inequalities will hold. Naturally, one difficult element of this
conjecture is the embedded project of explaining just which of the HJM models are
indeed economically realistic.

In fact, a richer question is whether there might be useful analogs to the Futures
Rate - Forward Rate Inequality (14) or the Swap Rate Inequality (17) that hold
in much greater generality, perhaps even for yield curve models that are outside of
the HJM class of models. If the Futures Rate - Forward Rate Inequality (14) and
the and the Swap Rate Inequality (17) do indeed reflect bona fide market realities,

3see press release of ISDA http://www.isda.org/press/a50398 1.html
4These can be obtained from www.barchart.com/cme/cmedta.htm, as and other locations, and

LIBOR quotes are most easily obtained from the British Bankers’ Association www.bba.org.uk.
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then one may well conjecture that there are analogs for these inequalities for a very
wide range of yield curve models.

Acknowledgements: We are pleased to thank a referee for a suggestion that
allowed us to remove an unnecessary regularity condition from Theorem 1 and to
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