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Controlled release silica sol gels are room temperature processed, porous, resorbable materials with
generally good compatibility. Many molecules including drugs, proteins and growth factors can be
released from sol gels and the quantity and duration of the release can vary widely. Processing
parameters render these release properties exquisitely versatile. The synthesis of controlled release sol
gels typically includes acid catalyzed hydrolysis to form a sol with the molecules included. This is then
followed by casting, aging and drying. Additional steps such as grinding and sieving are required to
produce sol gel granules of a desirable size. In this study, we focus on the synthesis of sol gel micro-
spheres by using a novel process with only two steps. The novelty is related to acid–base catalysis of the
sol prior to emulsification. Sol gel microspheres containing either vancomycin (antibiotic) or bupivacaine
(analgesic) were successfully synthesized using this method. Both drugs showed controlled, load
dependent and time dependent release from the microspheres. The in vitro release properties of sol gel
microspheres were remarkably different from those of sol gel granules produced by grinding and sieving.
In contrast to a fast, short-term release from granules, the release from microspheres was slower and of
longer duration. In addition, the degradation rate of microspheres was significantly slower than that of
the granules. Using various mathematical models, the data reveal that the release from sol gel powder is
governed by two distinct phases of release. In addition, the release from emulsified microspheres is
delayed, a finding that can be attributed to differences in surface properties of the particles produced by
emulsification and those produced by casting and grinding. The presented results represent an excellent
data set for designing and implementing preclinical studies.

� 2008 Published by Elsevier Ltd.
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Controlled release focuses on delivering biologically active
agents locally over extended periods of time [1–3]. The site speci-
ficity of the delivery reduces the potential side effects that can be
associated with general administration of drugs through oral or
parenteral therapy [1]. Prevalent mechanisms for the delivery of
biological agents by controlled release devices are resorption of the
drug carrier material and diffusion. The resorption of these devices
may, however, cause an inflammatory tissue response, which
interferes with the treatment sought for with the molecules [4,5].
Thus, excellent controlled release materials are ideally biodegrad-
able materials with generally good biocompatibility.

Room temperature processed, silica based sol gels are resorb-
able materials with a favorable tissue response [2,9]. They have
been studied for biomedical applications that include tissue, cell
: þ1 215 573 2071.
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and enzyme encapsulation and controlled release of drugs [2,3,6–
13]. Derived from a metal alkoxide precursor, the sol is produced
through a hydrolysis and polycondensation reaction [14]. Due to
the mild processing conditions, high concentrations of many types
of biologically active agents can be incorporated in the liquid sol.
The agents are embedded in the matrix of the gel, which after
condensation and drying becomes a porous, glassy solid [2,3,9–13].
Data show that controlled release of antibiotics, proteins, and
growth factors is possible from this porous material [2,9–13]. These
studies also demonstrate that the release is dependent on synthesis
parameters such as the molar ratio of silica precursor to water, type
of precursor and the concentration of bioactive drugs [2,10,11].

Controlled release sol gels are usually manufactured through an
acid catalyzed process followed by casting, aging and drying. This
leads to the synthesis of pellets, which can then be ground and
sieved to arrive at granules or powders [2,3,10–12].

Sol gel granules made by grinding down cast discs possess an
angular geometry. The sharp edges of this geometry may elicit
more of an inflammatory response than that expected from
microspheres. So far microspheres have mostly been made with
se of drugs from emulsified, sol gel processed silica microspheres,

mailto:radin@seas.upenn.edu
www.sciencedirect.com/science/journal/01429612
http://www.elsevier.com/locate/biomaterials
Original text:
Inserted Text
 - 



S. Radin et al. / Biomaterials xxx (2008) 1–92

ARTICLE IN PRESS JBMT6284_proof � 29 October 2008 � 2/9

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205
biodegradable polymers such as polylactic acid, polyglycolic acids
and polylactic-co-glycolic acid [15,16]. These microspheres,
however, are not ideal as their degradation products have been
observed to cause an inflammatory response [4,5]. This probably
would not be the case for sol gel microspheres, since it has been
shown previously that silica sol gel granules demonstrate a favor-
able tissue response and enhanced bone healing [2,9].

Sol gel microparticles have been synthesized using spray drying
[17] or emulsification [6,18]. The spray dried microspheres have
been used in controlled release studies, however, these particles do
not have excellent release properties as the spray drying caused
a major reduction of the surface area and resulted in transforming
highly porous sol gels into a dense material [17].

In this study, we focus on obtaining porous, controlled release
sol gel microspheres using emulsification as the synthesis route.
These microspheres were made both with and without biological
agents incorporated. Specifically, we incorporated the antibiotic
vancomycin and the analgesic bupivacaine. The selection of these
molecules was related to our parallel programs that focus on
osteomyelitis treatment [19] and surgical pain control [20]. Herein,
we report on the synthesis parameters of emulsified acid – base
catalyzed microspheres that affect optimal controlled release, with
optimization being related to achieving release kinetics of vanco-
mycin and bupivacaine with a desirable therapeutic profile. A novel
acid–base catalysis was selected in order to shorten the time to
gelation of the sol. A shorter time to gelation is essential to produce
sol gel microspheres by emulsification. Synthesis parameters of
interest were: pH and time to gelation of the acid–base catalyzed
sol, water to alkoxide ratio in the sol, drug concentration added to
the sol and rotational speed of emulsification.
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T2. Materials and methods

Sol gel derived silica microspheres were synthesized using an acid–base cata-
lyzed hydrolysis of tetraethoxysilane (TEOS, Strem Chemicals, Newburyport, MA)
followed by emulsification.
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E2.1. Typical sol synthesis

TEOS (10 ml) and 0.1 M HCl (2.4 ml), with and without the addition of de-ionized
water (DI), were mixed and stirred to form an acid catalyzed sol. The molar ratio, R,
of total water (including water in 0.1 M HCl) to TEOS varied from 2.5 to 10. Phar-
maceutical agents were then added to the sol. Sols with 20 mg/g and 30 mg/g of
vancomycin (drug to SiO2 ratio), and sols with 50 mg/g and 80 mg/g of bupivacaine
were made by adding corresponding amounts of the drugs. Prior to base addition,
the acid catalyzed sol was cooled down to 4 �C in an ice bath. Subsequently, 0.08 M

NH4OH was added dropwise to the sol, which was thoroughly stirred. This changed
the process to an acid–base catalyzed process. Depending on the amount of base
added (2.2–2.4 ml) the pH of the sol was between 4.5 and 6; under these conditions,
the time to gelation varied from immediate gelation to 1 h. To produce microspheres
with and without the drugs, the pH was ideally set to 5.5, which led to a time to
gelation between 15 and 40 min. Typically, 5 ml of the sol was applied dropwise
onto 100 ml of vegetable oil stirred at speeds between 220 and 880 rpm by using
a 2 inch� 3/8 inch magnetic stirrer. The stirring continued until microspheres
precipitated to the bottom of the beaker. The microspheres were filtered through
a 40 mm nylon filter, rinsed with DI water and left to dry overnight in a laminar flow
hood.
 U

Table 1
The effects of water/TEOS molar ratios (R) and vancomycin load (drug to SiO2 ratio in w
catalyzed (ABC) sols.

Vancomycin loading Water to TEOS molar ratio (R)

DI water-free 4 5

AC sol AC ABC A

16.7 mg/g Cloudy Clear Cloudy C
22.2 mg/g – – – C
28 mg/g – – – C
33 mg/g – – – –

Please cite this article in press as: Radin S et al., The controlled relea
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2.2. Addition of biological molecules – variation of the ratio R

Vancomycin (vancomycin–HCl; Abbott Labs, Chicago, IL), as a first molecule, was
dissolved in DI water at 100 mg/ml for incorporation into the sols. Bupivacaine
(Spectrum, New Brunswick, NJ), the other molecule, was dissolved in methanol at
70 mg/ml for incorporation into the sols. The vancomycin and bupivacaine solutions
were added to the acid catalyzed liquid sol to achieve calculated drug concentrations
(mg of drug per gram of dried silica) of 20 and 30 mg/g of vancomycin and 50 mg/g
of bupivacaine.

The water content of the sol was found to be critical in obtaining a clear sol
without the precipitation of the molecules. The effect of water content on the
incorporation of vancomycin into the sol was studied by using acid catalyzed sols
without any DI water added to the sol (taking into account the presence of H20 in the
acid, R is equal to 2.75) or sols with total water/TEOS molar ratios (R) of 5, 6, 8, and
10. As shown in Table 1, acid catalyzed sols without extra water added to the sol
became cloudy upon drug addition, indicating precipitation of the drug. When water
was added to reach R¼ 4, low doses of vancomycin (16.7 mg/g) could be added to
the acid catalyzed sol. However, precipitation of vancomycin was still seen when
base was added. At R equal to 5, low doses (doses up to 20 mg/g) were successfully
incorporated: no precipitation was observed after the addition of the drug and base.
It must be pointed out, though, that after incorporation of the base, vancomycin
precipitation was observed at higher doses such as 28 mg/g. Only at total water/
TEOS ratios of 8 and above was the higher load successfully incorporated. This
suggests that, in contrast to the sol gel synthesis with low water content as described
by others [6], incorporation of these drugs requires the presence of a sufficient
amount of water with R values greater than 5.

The addition of pharmaceutical agents and the variation in R also altered the pH
and time to gelation of the sol. The volume of base was modified to maintain the
time to gelation within the optimal range of 15–40 min.

2.3. Materials characterization

Morphology and size distribution of the microspheres were determined
microscopically using an image analysis system consisting of a high resolution video
camera and Image-Pro Plus 4.0 analysis software (Media Cybernetics, Silver Spring,
MD). Sieving was also used to determine the size distribution. Nylon microporous
filters of 70, 105, 210, 350, 500, and 710 mm were used. In addition, scanning electron
microscopy (SEM, JEOL-6400) was used for imaging the morphology of micro-
spheres in the size range below 100 mm.

Porosity of acid–base catalyzed ground granules and emulsified microspheres
was measured using gas (nitrogen) sorption analysis (Autosorb 1, Quantachrome).
Granules and microspheres of the same R8-30 V composition were used for the
analysis (they contained 30% vancomycin by weight and were synthesized with
water/TEOS ratio of 8). Prior to the analysis, the samples were outgassed at 50 �C for
24 h. Adsorption–desorption isotherms and multipoint BET [28] were used to
determine porosity characteristics such as the specific surface area, pore volume,
pore size distribution and the average pore size.

2.4. In vitro release and degradation study

In vitro release and degradation properties of microspheres were studied in
phosphate buffered saline (PBS, Gibco, pH¼ 7.4) at 37 �C in comparison to those of
granules. The size of particles was between 210 and 500 mm. As was the case for the
microspheres, the ground granules were also produced from acid–base catalyzed
sols. 1 ml of the sols was cast into vials, aged for 3 days and dried at room
temperature until there was no further weight loss. The resulting sol gel discs were
ground and then sieved to produce granules of the right size range.

For the release studies, 25 mg of particles were immersed in 5 ml of solution
(5 mg/ml) and the solutions were exchanged daily. The dissolution experiments
were conducted differently. In fact, in order to prevent solution saturation with
silicon, 5 mg of particles were immersed in 5 ml of solution (1 mg/ml) and the
solutions were exchanged at 6, 10, 24 and 48 h.

The concentration of drug released into solution was measured every 24 h. A
time zero measurement was not included, as desorption phenomena are not typi-
cally observed with sol gel particles.
eight %) on the incorporation of vancomycin into acid catalyzed (AC) and acid–base

8 10

C ABC AC ABC AC ABC

lear Clear – – – –
lear Clear Clear Clear Clear Clear
lear Cloudy – – – –

– Clear Clear – –
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Fig. 1. a and b. Optical and SEM micrographs of emulsified acid–base catalyzed silica
microspheres. The optical (original magnification: 60�) and SEM (original magnifica-
tion 600�) images show the appearance of microspheres in the size range of 100–300
and 10–40 mm in diameter, respectively.
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Fig. 2. Size distribution of drug-free microspheres produced at various stirring speeds,
as measured by sieving. The fractions dimensions are mm. With increase of stirring
speed, the size of microspheres decreased. At 440 rpm, about 30% of the microspheres
was in the size range 100–210 mm.
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OVancomycin and bupivacaine standards were prepared by dissolving appro-

priate amounts of the drug in PBS. Bupivacaine was dissolved in PBS through gradual
heating in a water bath to 55 �C. The release of vancomycin and bupivacaine was
measured spectrophotometrically (Ultraspec Plus, Pharmacia LKB, Piscataway, NJ) at
280 and 265 nm respectively.

The silicon concentration was measured using Atomic Absorption Spectropho-
tometry (AAS, 5100, Perkin Elmer, Norwalk, CT).

2.5. Modeling release and dissolution kinetics

Various models as described in the modeling section were applied to analyze the
release and dissolution profiles obtained using microspheres and granules made
from sols with R equal to 8 and 30 mg/g vancomycin load, or sols with R equal to 6
and a 50 mg/g bupivacaine load.
Table 2
Characteristics of porosity of acid–base catalyzed sol gel granules and emulsified
microspheres including surface area (SA), pore volume (PV), average pore diameter
(PD) and pore diameter distribution. Composition of both granules and micro-
spheres was similar (water/TEOS ratio of 8 and 30% vancomycin concentration).

Material SA, m2/g PV, cc/g PD ave, nm PD range, nm

R8-30VG 517 0.31 2.38 1.5–5
R8-30V MS 283 0.18 2.55 1.5–7
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3. Results

3.1. Microsphere characterization

3.1.1. Morphology and size distribution
Using the acid–base catalyzed synthesis and emulsification

process, silica sol gel microspheres with and without drugs were
successfully produced. As illustrated in Fig. 1a and b, the particles
Please cite this article in press as: Radin S et al., The controlled relea
Biomaterials (2008), doi:10.1016/j.biomaterials.2008.09.066
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Rappear as smooth microspheres. The appearance of vancomycin

containing microspheres is illustrated in Fig. 1a and b. Images of
microspheres in the range from 200 to 500 mm and of particles
below 100 mm are shown in the optical (Fig. 1a) and SEM (Fig. 1b)
micrographs, respectively.

The size distribution as a function of speed of stirring during
emulsification is shown in Fig. 2. These results reveal that the
size of the microspheres is mainly dependent on this speed. At
lower speeds (around 220 rpm) about 50% of spheres formed
were greater than 710 mm. Non-spherical particulates precipi-
tated along with the microspheres. When the speed of stirring
was increased, the size of the microspheres decreased and non-
spherical particulates were not observed. At 330 rpm, about 50%
of the microspheres were in the size range of 210–350 mm. At
440 rpm, the percentage of the microspheres in this size range
increased to almost 60%. The percentage of the microspheres in
the size range of 105–210 mm also increased substantially. This
percentage reached 28%, in contrast to less than 4% at the
emulsification speed of 330 rpm. With further increases of stir-
ring speed (to 660 rpm and beyond), most of microspheres were
below 100 mm. At 880 rpm, most of microspheres were in the
size range of 10–40 mm.

3.1.2. Porosity of acid–base catalyzed ground granules and
emulsified microspheres

The results of the absorption–desorption analysis including the
specific surface area (SA), total pore volume (PV), average pore
diameter (PD) and the PD distribution are shown in Table 2. The
data suggest that, although some micropores with a size below
2 nm (typical for microporous materials) were present in both
granules and emulsified microspheres, the average pore size was
characteristic for mesoporous materials. Most pores were in the
mesoporous range above 2 nm. The average pore diameter for
granules and spheres was 2.38 and 2.55 nm, respectively, and the
pore size distribution was 1.5–5 nm and 1.5–7 nm, respectively.
se of drugs from emulsified, sol gel processed silica microspheres,
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Fig. 4. Cumulative vancomycin release (mg/ml) from microspheres (MS) or ground
granules (G) as a function of immersion time in PBS. Although the microspheres and
granules were made from same sols (acid–base catalyzed, R equal to 8, 30 mg van-
comycin per gram of silica), the release profiles were different. In contrast to a fast
release from granules with 90% of the load released by 6 days, the release from
microspheres was slower and continued up to 14 days. The error bars represent the
standard deviation (n¼ 3).
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Although the average pore size and the pore size distribution of
granules and microspheres were not significantly different, the
surface area (SA) and pore volume (PV) were different. In contrast
to SA and PV values for granules of 517 m2/g and 0.31 cc/g, those of
microspheres were 283 m2/g and 0.18 cc/g. Thus, the microspheres
exhibited a reduction in surface area and pore volume by a factor
slightly less than 2.

3.1.3. Release of vancomycin and bupivacaine from microspheres
and granules

The cumulative release of vancomycin as a function of immer-
sion time, drug load and water/TEOS molar ratio (R) is shown in
Fig. 3. It was found that microspheres with vancomycin concen-
trations of 20 mg/g, which were synthesized from sols with R equal
to 5, released only 6% of the original load after 4 days. Increasing R
to 8, the rate and amount of release increased considerably: 36% of
the original load was released after 12 days. Using sols with R equal
to 8, but with a further increase of the load up to 30 mg/g, the rate
and amount of release are obviously larger; however, the
percentage release remains the same.

The data in Fig. 4 demonstrates a major difference in the release
profiles from emulsified microspheres and ground granules even
though both were produced from the same sols (R equal to 8 and
30 mg/g vancomycin). In contrast to a fast, short-term release from
granules, vancomycin release from microspheres was slower and of
longer duration. Obviously then, a higher percentage of the original
vancomycin load was released from sol gel granules at same
immersion times. Within the confines of the experiment, the
granules released 90% of the load over 7 days, whereas the
microspheres released only 36% of the load over 14 days.

As shown in Fig. 5, microspheres with bupivacaine also showed
a time dependent release. In addition, similarly to vancomycin
release, the release profiles of bupivacaine from microspheres and
granules produced from same sols (R equal to 6 and 50 mg/g
bupivacaine) were also largely different. The granules showed a
burst release of 50% of the bupivacaine load over 1 day. There
was a total release of 74% over 7 days. In contrast, microspheres
showed a more gradual release: only 41% of the original load was
released over 12 days.

3.1.4. In vitro dissolution properties of microspheres and granules
Dissolution behavior of the silica based particles was evaluated

by measuring changes in the silicon concentration as a function of
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Fig. 3. Cumulative vancomycin release (mg/ml) from microspheres (MS) as a function
of immersion time in PBS, load (20 or 30 mg/g), and water/TEOS molar ratio (R). At
R¼ 5, only a limited release of 6% was observed. At R¼ 8, load dependent release
continued up to 2 weeks. The error bars represent the standard deviation (n¼ 3).
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Rimmersion time. Fig. 6a and b show the cumulative silicon release

from (a): vancomycin containing, and (b): bupivacaine containing
microspheres or ground granules. Although the granules and
microspheres were made using sols of the same composition (R
equal to 8 and 30 mg/g vancomycin, or R equal to 6 and 50 mg/g
bupivacaine), the data in Fig. 6a and b show a major difference in
dissolution profiles. Dissolution profiles of granules loaded with
either drug were typical for dissolution of silica materials. The
initial silicon dissolution rates were 3.4 or 5.1 mg/mg/h for granules
with vancomycin or bupivacaine, respectively. In contrast, the
dissolution of microspheres with either drug was initially delayed
(up to 6 h). This initial stage was followed by dissolution at a rate of
0.81 or 1.5 mg/mg/h for microspheres with vancomycin or bupiva-
caine, respectively. Thus, the data reveal a major reduction of the
dissolution rate of the microspheres in comparison to that of
granules.
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4. Modeling of dissolution and release kinetics

4.1. Dissolution

When dissolution of silica in aqueous solutions is at a steady
state of silica dissolution–deposition, the dissolution is given by
a first order reaction (Eq. (1)) [21]. This equation indicates that the
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caine per gram of silica). In contrast to granules, microspheres showed a slower release
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(n¼ 3).
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Fig. 6. a and b. Dissolution profiles (measured as the cumulative Si-release versus
immersion time in PBS) of acid–base catalyzed microspheres (MS) and ground gran-
ules (G) loaded with: (a) vancomycin (V) or (b) bupivacaine (BP). The emulsified
microspheres and ground granules were derived from same sols (R equal to 8, 30 mg/g
vancomycin, or R equal to 6, 50 mg/g bupivacaine). The error bars represent the
standard deviation (n¼ 3).

Table 3
Dissolution rate constant for Si-release, k (h�1), and correlation coefficient Rc for sol
gel microspheres and ground granules containing vancomycin (R8-30V) or bupi-
vacaine (R6-50BP).

Composition Microspheres Granules

k Rc k Rc

R8-30V 0.018 0.97 0.049 0.99
R6-50BP 0.019 0.97 0.049 0.96
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solid–liquid solution interface.

dC
dt
¼ kSðCe � CÞ; (1)

where, C: concentration of silicon in solution, Ce: equilibrum
concentration or ‘‘solubility’’ of silicon, S: surface area of solid
phase, k: rate constant, t: time.

In solutions with a neutral pH and a considerable amount of
silicon, S is approximately constant and C¼ 0 at t¼ 0; the equation
then takes on the form:

ln
�

Ce � C
Ce

�
¼ kSt (2)

This equation was used to determine the dissolution rate
constant, k, for the dissolution of granules and microspheres. As
previously determined in our laboratory, the equilibrium silicon
concentration for sol gel silica particles in neutral solutions (pH 7.4)
is 2.5 mM [22]. Since both granules and microspheres used for the
dissolution study were in the same size range, 210–500 mm, we
assumed that the difference in the purely geometrical surface area
of these particles was minor. In fact, the data (see Table 2) show that
the order of magnitude of the specific surface area and the pore
volume is the same, with slight reduction caused by emulsification.
For this comparative analysis, we also assumed that the surface
area was approximately constant within the time frame of the
experiment (2 days). Although our previous studies showed that
the specific surface area and pore size of room temperature pro-
cessed acid catalyzed silica sol gels (xerogels) can change during
immersion in neutral solutions [22], we assume that the structures
of acid–base catalyzed sol gels used in this study are less prone to
immersion induced changes. This assumption is based on the fact
Please cite this article in press as: Radin S et al., The controlled relea
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that room temperature processed acid catalyzed sol gels are
microporous (pore size 1 nm), weakly branched and weakly
crosslinked structures [14]. In contrast, the acid–base catalyzed sol
gels are mesoporous (pore size 2–5 nm), highly branched and have
more globular structures [14].

The dissolution rate constants k given by Eq. (2) and the asso-
ciated correlation coefficients, Rc, are shown in Table 3. The results
of this regression analysis are characterized by high correlation
coefficient values (Rc> 0.96), and therefore, the dissolution data
can be well described by typical first order dissolution.

It is noteworthy that the k values for either microspheres or
granules were independent of the specific drug that was incor-
porated. For microspheres with vancomycin or bupivacaine the k
values were 0.018 and 0.019 h�1, respectively, and for granules
these values were 0.049 and 0.049 h�1, respectively. This finding
suggests that the type of drug present in the sol gel structure
does not noticeably affect the dissolution rate of silica sol gel
particles.

4.2. Release kinetics

Drug release from soluble matrices such as porous silica sol gels
can be either diffusion controlled or dissolution controlled or both.
In previous studies, the drug release from porous sol gel matrices
was described as a diffusion controlled process [2,3,10–12].

Herein we first interpret the results by fitting the data to rate
equations based on diffusion considerations. The Higuchi square
root of time model [23] has commonly been used for modeling
diffusion controlled processes of drug release. This model has been
applied for diffusion controlled release from a homogenous planar
matrix or from a porous matrix, from which a drug is leached by the
bathing fluid that penetrates the matrix through pores and capil-
laries [23]:

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D3

s
ð2A � 3CÞCt

r
(3)

with Q¼ amount of drug released after time t, D¼ diffusitivity
of the drug in the permeating fluid, s¼ the tortuosity factor of
the capillary system, A¼ the total amount of the drug present in the
matrix, C¼ the solubility of the drug in the permeating fluid, 3¼ the
porosity of the matrix.

The application of the Higuchi model to the release of vanco-
mycin and bupivacaine from microspheres and granules is shown
in Fig. 7a and b. The release data are presented as the fractional
release (Mt/MN, where Mt is the fraction of the original drug load
released at time t) and plotted against the square root of time
(expressed in hours). These plots revealed several stages for the
release from either microspheres or granules. The stages are listed
in Table 4.

The release of both drugs from granules occurs in two stages:
a fast release followed by a second stage of slower release
(terminal stage). The transition to the second stage occurs at 120
and 72 h for vancomycin and bupivacaine release, respectively.
This transition corresponds to a fractional release of 0.9 and 0.7
(90 and 70%) for vancomycin and bupivacaine, respectively. In
se of drugs from emulsified, sol gel processed silica microspheres,
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Fig. 7. a and b. Fractional release of (a): vancomycin and (b): bupivacaine from microspheres (MS) and ground granules (G) vs. the square root of time (hours 1/2). Vancomycin
release was measured from particles made from sols with R equal to 8 loaded with 30 mg/g; bupivacaine release was measured from particles made from sols with R equal to 6 and
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N
C
Ocontrast to granules, the release from microspheres with both

vancomycin and bupivacaine is preceded by a delay (stage 0).
The initiation of release did not occur until 72 and 96 h for
microspheres with bupivacaine and vancomycin, respectively. For
microspheres with vancomycin, the first actual release phase was
followed by a second stage of slower release and the transition
occurred at 192 h. Microspheres with bupivacaine did not tran-
sition to this stage of slower release within the duration of the
experiment.
 U

Table 4
Listing of the various stages of vancomycin (V) and bupivacaine (BP) release from
microspheres (MS) and ground granules (G) as follows applying the Higuchi model
to the data. This treatment is shown in Fig. 7a and b. Stage 0 reflects delayed release,
stage 1- faster release and stage 2- slower release subsequent to stage 1.

Material Stage 0 (h) Stage 1 (h) Stage 2 (h)

MS-V 0–96 96–192 192–312
G-V n/a 0–120 120–240
MS-BP 0–72 72–288 n/a
G-BP n/a 0–72 72–168

Please cite this article in press as: Radin S et al., The controlled relea
Biomaterials (2008), doi:10.1016/j.biomaterials.2008.09.066
Using the Higuchi equation, regression analyses were per-
formed for each stage of the release. Correlation coefficients for the
vancomycin and bupivacaine release data are given in Tables 5 and
6, respectively.

In addition to the Higuchi model, other models for release
have been proposed [24,25]. We analyzed the data using these
models as well. They include models assuming zero order and
first order release processes, as well as models that take into
Table 5
Correlation coefficient Rc for the relationship between vancomycin release from
microspheres (MS) and ground granules (G) and time as expressed by each of the
Eqs. (3)–(7).

Model/equation Microspheres: stages of release Granules: stages of
release

Stage 0 Stage 1 Stage 2 Stage 1 Stage 2

Highuchi (3) 0.89 0.99 0.96 0.98 0.91
Zero order (4) 0.98 0.98 0.89 0.93 0.85
First order (5) 0.98 0.98 0.92 0.98 0.88
Hixson and Crowell (6) 0.94 0.98 0.94 0.93 0.86
Baker-Lonsdale (7) 0.98 0.99 0.99 0.97 0.68
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Table 6
Correlation coefficient Rc for the relationship between bupivacaine release from
microspheres (MS) and ground granules (G) as expressed by each of the Eqs. (3)–(7).

Model/equation Microspheres: stages
of release

Granules: stages of
release

Stage 0 Stage 1 Stage 1 Stage 2

Highuchi (3) 0.92 1 0.98 0.97
Zero order (4) 1 1 0.81 0.96
First order (5) 1 1 0.96 0.91
Hixson and Crowell (6) 1 1 0.87 0.97
Baker-Lonsdale (7) 0.91 0.99 0.95 0.94
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account matrix dissolution and geometry of the matrices
[24,25]:

zero order release :
Mt

MN
¼ kt (4)

first order release : ln
�

1� Mt

MN

�
¼ �kt (5)

cube-root Hixson-Crowell model [24,25] for drug release from
systems with dissolution rate limitations:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� Mt

MN

�
3

s
¼ �kt (6)

Baker-Lonsdale model [24,25] for drug release from diffusion
rate limiting matrices of spherical shape:

3
2

"
1�

�
1� Mt

M0

�2
3

#
� Mt

M0
¼ kt (7)

When applying each of the equations to the data, correlation
coefficients Rc for vancomycin and bupivacaine release that were
obtained are listed in Tables 4 and 5, respectively. Although the
regression analysis was performed for all data over the full release
duration, the correlation coefficients of these analyses were low
(Rc< 0.91), underscoring that the release of both drugs from
granules or microspheres is very likely a process involving several
steps. As we discuss below, it probably also reflects the changing
pore properties as immersion extends to longer periods of time
(Table 7).

Regression analyses of the data of the separate phases showed
excellent correlation (Rc> 0.91), with stage 1 showing the best fit,
a logical and expected finding (Rc� 099).

The modeling of the first stage of the release of both drugs from
granules showed an excellent fit with the Higuchi model (Rc equal
to 0.98 and 0.98 for vancomycin and bupivacaine data) and with the
first order model (Rc equal to 0.98 and 0.96, respectively). These
results are in accordance with the commonly used description of
the diffusion controlled process as a first order process [23,26]. As
previously mentioned, the regression analyses also revealed that
Table 7
Release rate constants, k, for vancomycin and bupivacaine release from micro-
spheres (MS) and granules (G) (determined by using the Baker-Lonsdale model for
the 0.36 and 0.41 fractions of release for vancomycin (V) and bupivacaine (BP),
respectively).

Composition k� 10�3, h�1

MS G

R8-30V 0.1 2.1
R6-50BP 0.1 1.6
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the ‘‘quality of fit’’ is better for the first stage of release than for the
second, terminal stage. The present observation is in line with
knowledge that significant deviations are possible beyond 50%
release [23,25]. Others have reported previously that the ‘‘quality of
fit’’ of diffusion controlled processes is generally better for the
modeling of the initial stage of release than for the modeling of the
terminal phase [23,25].

Focusing on the release from microspheres, all stages of the
release of vancomycin fitted the Baker-Lonsdale model best (Table
5: Rc equal to 0.98, 0.99 and 0.99 for the delayed, first and second
stage, respectively). These results suggest that the Baker-Lonsdale
equation (Eq. (7)), which models diffusion controlled drug release
from matrices of spherical shape, is more suitable for describing
vancomycin release from sol gel microspheres than the more
general Higuchi model. As shown in Table 4, the release data also fit
the first order model well (Rc equal to 0.98, 0.98 and 0.92 for the
above stages, respectively). As described before, semilogarithmic
plots (Eq. (5) for the first order model) of diffusion controlled
release data show a linear relationship [23,26].

Bupivacaine release data from microspheres fit all models well
(R> 0.91), with the ‘‘quality of fit’’ being better for the first stage of
release (R> 0.99). Given excellent fit between data and models
across the board, mathematical data analysis was not successful to
elucidate the possible rate determining mechanism for the release
of bupivacaine from microspheres.

Previous studies that used various standard models for
modeling drug release indicated that it is difficult to discriminate
between competing models [24,25]. Herein, we did not encounter
this difficulty in that the analysis of vancomycin and bupivacaine
release data clearly showed the differences in the release behavior
of these drugs from granules and microspheres. In addition, the
release behavior of both drugs from granules can be described by
a diffusion control release model such as the Higuchi model. When
it comes to release from microspheres, it then appears that the
Baker-Lonsdale model expressing the diffusion controlled release
from matrices of spherical shape is more suitable for describing the
vancomycin release from microspheres. Only when we attempted
to model the release of bupivacaine from microspheres, could we
not identify a differentiating mathematical description.

Turning our attention to the determination of k values, we
reasoned as follows. The Baker-Lonsdale model is appropriate for
describing the release behavior of the drugs from microspheres.
Since this model also showed a very good fit for the release from
granules, it was used for determining k values for the drug release
from both microspheres and granules. With a total amount of
vancomycin and bupivacaine released from microspheres being 36
and 41% (or 0.36 and 0.41 expressed in fractional release), respec-
tively, the k values for the drug release from granules were deter-
mined for the similar fractional release. The release rate constants k
are shown in Table 6.

5. Discussion

Controlled release sol gel derived silica microspheres were
successfully synthesized using a new acid–base catalyzed sol gel
process followed by emulsification. By using base, the gelation is
short and, upon emulsification, small powder is obtained in an
efficient manner. The process involves only two steps: hydrolysis
and emulsification. The size of emulsified microspheres depends on
the speed of stirring during emulsification and can easily be varied
over a large range (from 10 to 500 mm) by changing the stirring
speed.

It is established that acid–base catalyzed sol gels are highly
porous, with large surface area and pore volume, and with a pore
size typically in a range of 5–10 nm [14]. Another benefit of
synthesizing sol gel microspheres using emulsification is that the
se of drugs from emulsified, sol gel processed silica microspheres,
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‘‘compartmentalization’’ of sol gel droplets during emulsification in
the immiscible medium prevents changes in the sol gel structures
[18]. Thus, as in Barbé et al. [18], and similarly to conventional sol
gels, both the acid–base catalyzed granules and the emulsified
microspheres were expected to be mesoporous. The sorption
analysis data obtained for the acid–base catalyzed ground granules
and emulsified microspheres (Table 2) confirmed that both parti-
cles were mostly mesoporous. In addition, the sorption analysis
showed that the emulsification of an acid–base catalyzed sol did
not significantly affect the average pore size and the pore size
distribution of the resulting spheres.

Two drugs were used in this study, namely, the antibiotic van-
comycin and the analgesic bupivacaine; both were successfully
incorporated in the acid–base catalyzed emulsified microspheres.
The release of both drugs from microspheres was time and load
dependent. The release kinetics from emulsified microspheres was
very different from those of ground granules. In contrast to a fast
and short-term release from granules, the microspheres showed
a slower and longer release of both vancomycin and bupivacaine.
Using various release models, the analyses suggest that the release
from both types of particles is mainly a diffusion controlled process.
The Higuchi square root model and the first order models are
suitable for describing the release profiles from granules, whereas
the Baker-Lonsdale model for the diffusion rate determining
release from matrices of spherical shape is more appropriate for the
description of the release from microspheres.

Reduced drug release rates from microspheres were associated
with reduced dissolution rates of microspheres in comparison to
those of granules. Modeling of the dissolution profiles by using
a first order model of diffusion rate limiting silica dissolution in
neutral aqueous solutions showed that the dissolution process of
both granules and microspheres can be described as a diffusion
controlled process.

Others have studied the release from spray dried sol gel particles
[27]. Spray drying drastically changes the properties of sol gels and
results in the production of nonporous microparticles [17]. In the
Czuryszkiewicz et al. study the spray-dried particles were also
nonporous (SA equal to 2 m2/g) [27]. In contrast to spray drying, an
emulsification process does not affect the porous structure of sol
gels due to the aforementioned ‘‘compartmentalization’’.

Modeling has its limitations. Few will argue that that the simple
release models invoked in this analysis and in many other studies
typically assume that the surface area and porosity of the substrate
remain virtually constant during the release experiment. It is
known that common release models, especially the models for the
diffusion controlled release do not consider the surface area effect
on the release kinetics, since such a release is not a surface
controlled process. However, silica dissolution models do consider
the surface effect on the dissolution rate. Actually, we demon-
strated such an effect of immersion induced changes in the surface
area on the dissolution behavior of porous xerogels [22].

In this previous study from our laboratory, microporous and
mesoporous sol gels were studied and BET measurements were
performed before and after different immersion durations [22]. In
contrast to the nonporous spray-dried particles [27] that showed an
increase of the surface area with immersion time, both micropo-
rous and mesoporous sol gels studied by us showed a significant
reduction of the surface area with immersion time [22]. This result
further underscores the lack of similarity between spray-dried
particles and their observed behavior, and actual microporous and
mesoporous particles.

The observed differences between the drug release kinetics and
the dissolution rates of emulsified microspheres and ground
granules are most likely related to the differences in the surface
area and the pore volume (Table 2). The emulsification reduced
these values by a factor slightly less than 2. This reduces solution
Please cite this article in press as: Radin S et al., The controlled relea
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penetration into porous sol-gel particles and causes a correspond-
ing reduction of the diffusion rates. An additional contribution may
have resulted from differences in surface morphology of the
particles produced by emulsification or casting and grinding.
Whereas ground granules have an irregular shape, angular geom-
etry and multiple cracks, the emulsified sol gel microspheres are
ideally smooth spheres and the surface was formed in contact with
the emulsifying bath.

A study demonstrating in vivo biocompatibility of resorbable,
acid catalyzed, controlled release sol gel ground granules was
previously reported [2,9]. This previous study showed resorption of
the granules. The present in vitro study reveals that microspheres
degrade more slowly than ground granules and the data suggest
improved surface properties for emulsified particles. Thus, a more
gradual resorption and an even more favorable in vivo tissue
response can be expected when emulsified powder rather than cast
and ground sol gel powder is administered in vivo.
P
R
O6. Conclusions

Controlled release sol gel microspheres were successfully
synthesized by using a simple and expedient two-step process:
acid–base catalyzed hydrolysis followed by emulsification. In
contrast to rapid, short-term release from ground granules, the
drugs incorporated in the microspheres (the antibiotic vancomycin
and the analgesic bupivacaine) showed a slower, long-term release.
In addition, the microspheres were characterized by longer in vitro
dissolution durations than those of the granules.
Acknowledgements

We gratefully acknowledge support from the Nanotechnology
Institute of Pennsylvania and participation of Jonathan Wang and
Ameya Phadke in some of the experiments and the data analysis.
References

[1] Langer R, Peppas NA. Advances in biomaterials, drug delivery, and biotech-
nology. Bioeng Food Nat Prod AIChE J 2003;49(12):2990–3006.

[2] Radin S, Ducheyne P. Nanostructural control of implantable xerogels for the
controlled release of biomolecules. In: Reis RL, Weiner S, editors. Learning
from nature how to design new implantable materials: from biomineraliza-
tion fundamentals to biomimetic materials and processing routes. Netherland:
Kluwer Academic Publishers; 2004. p. 59–74.

[3] Kortesuo P, Ahola M, Kangas M, Leino T, Laakso S, Vuorilehto L, et al. Alkyl-
substituted silica gel as a carrier in the controlled release of dexmedetomidine.
J Controlled Release 2001;76(3):227–38.

[4] Ibim SM, Uhrich KE, Bronson R, El-Amin SF, Langer RS, Laurencin CT. Poly-
(anhydride-co-imides): in vivo biocompatibility in a rat model. Biomaterials
1998;19:941–51.

[5] Gombotz WR, Pankey SC, Bouchard LS, Phan DH, Poulakkainen PA. Stimulation
of bone healing by transforming growth factor-beta1 released from polymeric
or ceramic implants. J Appl Biomater 1994;5:141–50.

[6] Peterson KP, Peterson CM, Pope EJA. Silica sol gel encapsulation of pancreatic
islets. Proc Soc Exp Biol Med 1998;218(4):365–9.

[7] Pope EJA. Microwave sintering of sol gel derived silica glass. Am Ceram Soc
Bull 1991;70:1777–8.

[8] Braun S, Rappoport S, Zusman R, Avnir D, Ottolenghi M. Biochemically active
sol gel glasses – the trapping of enzymes. Mater Lett 1990;10:1–5.

[9] Radin S, El Bassyouni G, Vresilovic EJ, Schepers E, Ducheyne P. In vivo tissue
response to resorbable silica xerogels as controlled release materials. Bioma-
terials 2005;26(9):1043–52.

[10] Radin S, Ducheyne P, Kamplain T, Tan BH. Silica sol gel for the controlled
release of antibiotics I. J Biomed Mater Res 2001;57:313–20.

[11] Aughenbaugh WB, Radin S, Ducheyne P. Silica sol gel for the controlled release
of antibiotics II. J Biomed Mater Res 2001;57:321–6.

[12] Santos EM, Radin S, Ducheyne P. Sol gel derived carrier for the controlled
release of proteins. Biomaterials 1999;20:1695–700.

[13] Nicoll SB, Radin S, Santos EM, Tuan RS, Ducheyne P. In vitro release kinetics of
biologically active transforming growth factor beta-1 from a novel xerogel
carrier. Biomaterials 1997;18:853–9.

[14] Brinker CJ, Scherer GW. Sol gel science: the physics and chemistry of sol gel
processing. Boston: Academic Press; 1990.
se of drugs from emulsified, sol gel processed silica microspheres,

Original text:
Inserted Text
 - 

Original text:
Inserted Text
-

Original text:
Inserted Text
-

Original text:
Inserted Text
 - 

Original text:
Inserted Text
-

Original text:
Inserted Text
spray dried

Original text:
Inserted Text
 - 



S. Radin et al. / Biomaterials xxx (2008) 1–9 9

ARTICLE IN PRESS JBMT6284_proof � 29 October 2008 � 9/9

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064
[15] Jalil R, Nixon JR. Microencapsulation using poly(L-lactic acid). I: microcapsule
properties affected by the preparative technique. J Microencapsul 1989;
6(4):473–84.

[16] Uchida T, Nagareya N, Sakakibara S, Konishi Y, Nakai A, Nishikata M, et al.
Preparation and characterization of polylactic acid microspheres containing
bovine insulin by a w/o/w emulsion solvent evaporation method. Chem Pharm
Bull (Tokyo) 1997;45(9):1539–43.

[17] Kortesuo P, Ahola M, Kangas M, Kangasniemi I, Yli-Urpo A, Kiesvaara J. In vitro
evaluation of sol gel processed spray dried silica gel microspheres as carrier in
controlled drug delivery. Int J Pharm 2000;200(2):223–9.
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