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ABSTRACT

OPTIMAL NEURAL CODES FOR NATURAL STIMULI

Zhuo Wang

Daniel D. Lee

The efficient coding hypothesis assumes that biological sensory systems use neural codes

that are optimized to best possibly represent the stimuli that occur in their environment.

When formulating such optimization problem of neural codes, two key components must

be considered. The first is what types of constraints the neural codes must satisfy? The

second is the objective function itself – what is the goal of the neural codes? We seek to

provide a systematic framework to address these types of problem.

Previous work often assume one specific set of constraint and analytically or numerically

solve the optimization problem. Here we want to put everything in a unified framework

and show that these results can be understood from a much more generalized perspective.

In particular, we provide analytical solutions for a variety of neural noise models and two

types of constraint: a range constraint which specifies the max/min neural activity and a

metabolic constraint which upper bounds the mean neural activity.

In terms of objective functions, most common models rely on information theoretic mea-

sures, whereas alternative formulations propose incorporating downstream decoding per-

formance. We systematically evaluate different optimality criteria based upon the Lp re-

construction error of the maximum likelihood decoder. This parametric family of optimal

criteria includes special cases such as the information maximization criterion and the mean

squared loss minimization of decoding error. We analytically derive the optimal tuning

curve of a single neuron in terms of the reconstruction error norm p to encode natural

stimuli with an arbitrary input distribution.
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Under our framework, we can try to answer questions such as what is the objective function

the neural code is actually using? Under what constraints can the predicted results provide

a better fit for the actual data? Using different combination of objective function and

constraints, we tested our analytical predictions against previously measured characteristics

of some early visual systems found in biology. We find solutions under the metabolic

constraint and low values of p provides a better fit for physiology data on early visual

perception systems.
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CHAPTER 1 : Introduction

Animals interact with their surrounding world on a daily basis and they perceive stimulus

from the environment to ensure their survival. It is both appealing and crucial for the

brains to find good representations of these stimulus inputs for advantages in surviving. To

understand why the sensory information is encoded in particular ways is a fundamental task

in sensory neuroscience. It is generally believed that a well adapted neural representation

can unfold the statistical structure hidden within the stimulus input.

The efficient coding hypothesis was developed following the birth of information theory

(Shannon, 1948) and argues that biological sensory systems should maximize the informa-

tion transfer (Attneave, 1954; Barlow, 1961). This hypothesis has been very seccessful to

explain sensory representations (Maddess and Laughlin, 1985; Theunissen and Miller, 1991;

Fitzpatrick et al., 1997; Harper and McAlpine, 2004). Experimentally, many studies have

also demonstrated that sensory neural codes are indeed adapting to the input distribution

statistics for higher coding efficiencies (Brenner et al., 2000; Twer and MacLeod, 2001; Dean

et al., 2005; Ozuysal and Baccus, 2012).

There are two key components that need to be clarified before we can formulate an efficient

coding problem. The first component is a set of constraint the neural code is facing. Such

constraints are often chosen to reflect the natural limitations of a real neuron. From time to

time, some constraints may need to be relaxed or removed as a compromise for analytical

tractability of the coding problem. The second component is the objective function the

neural code is presumably optimizing. Although the mutual information has been the

most popular choice, other optimal criteria should not be neglected. In this thesis we aim

to extend the efficient coding hypothesis in these two directions and propose a general

framework to analytically solve the efficient coding problem.
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1.1. Efficient Coding Problem: Constraints

The first key component is the set of constraints that reflects the biological limitations a

neuron or the neural population is facing. The simplest and mostly used constraint is a gain

control, which limits the maximum output that can be generated by a neuron (Laughlin,

1981; Nadal and Parga, 1994; Brunel and Nadal, 1998; Zhang and Sejnowski, 1999; Pouget

et al., 1999; Nikitin et al., 2009; Ganguli and Simoncelli, 2010). A small number of studies

have investigated other types of constraint such as the mean firing rate from theoretical

perspectives (Nadal and Parga, 1994; Ganguli and Simoncelli, 2014). Despite the low at-

tention received from theoretical studies, the mean output constraint are often used as a

regularization term in numerical studies (Olshausen and Field, 1996; Karklin and Simon-

celli, 2011; Zhao and Zhaoping, 2011). Another important factor is the neural noise model.

The traditional noise model in information theory is the constant Gaussian noise (Laugh-

lin, 1981; Karklin and Simoncelli, 2011; Doi and Lewicki, 2011). In neuroscience however,

the canonical model is the Poisson spiking process (Chichilnisky, 2001; Bethge et al., 2002,

2003; Yaeli and Meir, 2010; Ganguli and Simoncelli, 2014). Recently, both sub-Poisson

and sup-Poisson spiking behavior are also receiving increasing attention (Churchland et al.,

2010; Goris et al., 2014).

1.2. Efficient Coding Problem: Objective Functions

Another component is the utility function that the neural codes is presumably optimized

for. A large fraction of previous work assumed that neural representations are tuned to

maximize the mutual information they are able to convey about the stimulus values given

some overall constraints on available metabolic costs (e.g. total number of spikes) (Laughlin,

1981; Seung and Sompolinsky, 1993; Nadal and Parga, 1994; Brunel and Nadal, 1998; Zhang

and Sejnowski, 1999; Pouget et al., 1999; Kang et al., 2004; Sharpee et al., 2006; McDonnell

and Stocks, 2008; Nikitin et al., 2009; Tkacik et al., 2010; Yarrow et al., 2012; Ganguli

and Simoncelli, 2014). This Infomax criterion has been a preferred choice because it does

not require making any further assumptions about potential downstream computations and
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tasks the encoded stimulus may be involved in. On the other hand, a few studies have

taken a downstream perspective and have argued for optimality criteria that consider how

well the stimulus information can actually be reconstructed from the neural representations.

They often use a metric criterion in terms of the mean squared reconstruction error (Bethge

et al., 2002, 2003; Berens et al., 2009; Yaeli and Meir, 2010; Doi and Lewicki, 2011; Ganguli

and Simoncelli, 2014). This reconstruction metric has been shown to optimize performance

in perceptual estimation and classification tasks (Salinas, 2006). A comparison of these two

approaches is summarized in Figure 1. However, a unified comparison and evaluation of

these different approaches is currently lacking.

s r

ŝ

encoding

decoding

estimation error
L(ŝ, s)

mutual information
MI(s, r)

Figure 1: Efficient coding hypothesis: information theoretic approach versus estimation
error metric approach.

1.3. Thesis Outline

In this thesis, we aim to have a thoroughly understanding of the optimal neural codes

that process natural stimuli and use that to enhance our understanding of the observed

neural behaviors. In Chapter 2, we establish the necessary assumptions and present a key

statistical tool that plays a central role when evaluating the performance of neural codes

and understanding various constraints. These assumptions and the preliminary results will

be useful in all of the following chapters.

In Chapter 3, we begin with the traditional efficient coding theory to consider neural codes

that maximize mutual information (infomax), yet under a much more general setting. In

particular, we propose a framework to derive the infomax neural codes under various com-
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bination of biological constraints, such as the distribution of neural noise, the types of

constraints on the tuning curves. Important examples of noise models being considered are

the Poisson noise model, constant Gaussian noise model. The constraints on the tuning

curves include a range constraint which limits the upper and lower bound of neural output

and a metabolic cost budget constraint which limits the mean output of a neuron, aver-

aged over the randomness of the input stimulus. Using results from our model, we show

that the biologically observed ON-OFF pathway splitting is optimal if a binding metabolic

constraint exists.

In Chapter 4, we switch our focus from the constraints on the neural output to the ob-

jective functions itself. We provide an initial comparison between different criteria such as

the mutual information maximization and decoding error minimization. We introduce a

parametric formulation of the efficient coding problem in terms of minimizing the overall

reconstruction error according to the Lp norm, as a function of the norm parameter p. We

assume reconstruction from a maximum likelihood estimate (MLE) decoder in the asymp-

totic time limit. Assuming certain noise model, we analytically derive the optimal tuning

curve to achieve minimal Lp mean reconstruction error for arbitrary stimulus distributions.

This framework includes both the infomax as well as mean-squared error optimal solutions

in the limit of p → 0 and p = 2 respectively. We first focus on solutions for the optimal

tuning curve h(s) of a single (sigmoidal) neuron encoding the stimulus. We then show how

the single neuron tuning curve solution can be naturally extended to populations of neurons.

Under certain assumptions, the optimal single neuron tuning curve h(s) can be related to

an optimal meta-tuning curve of the neural population, from which the individual tuning

characteristics of the population of neurons can be determined. Using this framework, we

investigate the possible underlying principles of various sensory modalities.

In Chapter 5, we further extend our results from Chapter 4 to incorporate multivariate input

stimulus. We first generalize the optimal criteria to multivariate case and analytically derive

the optimal neural codes for a neural population. Although some additional limitations

4



will inevitably arise compare to the one dimensional case, our results still offer a good

understanding of how are different optimal criteria are related to each other. This result

can help us to understand the encoding of pixel values of natural images and the optimal

codes for different criteria is compared.
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CHAPTER 2 : Models and Methods

In this chapter we present the basic assumptions on the neural encoding and decoding

models. Also we will present a few useful statistical tools that will play a key role in

evaluating various neural codes.

2.1. Neural Codes: Encoding and Decoding Processes

2.1.1. Encoding Process

We let s ∈ Rn be a n-dimensional stimulus input with prior density f(s). We use h(s)

to represent the neural code which maps the stimulus to m-dimensional output using a

population of m neurons. If the input stimulus s is one dimensional, such mapping is

a vector h(s) = (h1(s), . . . , hm(s)). If the input stimulus is multivariate, we extend the

definition using more variables: hk(s) = gk · ϕk(wT
k s) where Wn×m = (w1, . . . ,wm) is the

linear transformation, ϕk(·) is the specific activation function and gk is the gain for the

k-th neuron. Together with a certain noise model (see Section 2.1.2), this completes the

Linear-Nonlinear-Noise model.

In particular, we will consider the simplest scenario of encoding a one dimensional stimulus

(n = 1) using a single neuron (m = 1) or multiple neurons (m > 1). In these two cases, the

linear projection W is scaler w and the gain multiplier gk can be simultaneously incorporated

using a simpler notation hk(s) = gk · ϕk(w · s). In the most generic scenario, we consider

the harder problem of encoding a high dimensional stimulus (n > 1). To avoid decoding

ambiguity issues, we assume the neural population is complete (m = n) or over-complete

(m > n). In Figure 2 we compare between these three described cases.

2.1.2. Neural Noise Models

When generating their output, neurons in the brain are known to be noisy. The actual out-

put r is stochastic even if the same stimulus s is presented. Such stochasticity is determined

6



s

wT
1 s wT

ms· · ·

· · ·

g1 gm· · ·

r1 rm· · ·
ε1 εm

ŝ

s

· · ·

r1 rm· · ·
ε1 εm

ŝ

s

r
ε

ŝ

projection
WT

activation
ϕk(·)

gain gk

input s
prior f(s)

neural tuning
hk(·)

noisy response
P (r|h(s))

estimator
ŝ(r)

(a) (b) (c)

Figure 2: The encoding process of a Linear-Nonlinear-Noise model. We show (a) the simplest case
where a single neuron is encoding a one-dimensional stimulus (b) a neural population is encoding a
one-dimensional stimulus and the generic case (c) a complete or over complete neural population is
encoding a multivariate stimulus.

by a probabilistic model p(r|h(s)). There are a couple of assumptions that need to be made

about this probabilistic model. First of all, we assume the response is centralized around

the desired output h(s) and the mean is equal to the desired output 〈r〉 = h(s). Second,

we assume each dimension of the output is independent from each other, i.e.

p(r|h(s)) =

m∏
i=1

p(ri|hi(s)) (2.1)

In particular, different noise models have been proposed based on how the neural output is

defined. For example, the spike timing is often modeled as a Poisson process. As another

example, the membrane potential of a neuron is subject to noises from many independent

7



sources. This gives us two simple noise models to begin with

Poisson (P): Ni ∼ Poisson(h(s)T ) and ri = Ni/T (2.2)

constant Gaussian (cG): ri ∼ Normal(h(s), V0/T ), (2.3)

where T is the length of the time window for encoding. The first case corresponds to

a typical Poisson spiking model and complete the trio of the canonical Linear-Nonlinear-

Poisson cascade model (Chichilnisky, 2001). Over time T , the total number of spikes Ni

elicited from a neuron should follow a Poisson distribution and it is easy to verify that

〈Ni〉 = Var[Ni] = h(s)T which leads to 〈ri〉 = h(s) and Var[ri] = h(s)/T . Compare

this with the constant Gaussian noise case, we consider a more generalized noise model

parameterized by α

general Gaussian (gG): ri ∼ Normal(h(s), V0 · h(s)α/T ), (2.4)

With special choices of α, we retrieve good approximations of the constant Gaussian model

(cG, α = 0) or Poisson noise model (P, α = 1) respectively.

2.1.3. Decoding Process

Although it is not necessary to choose a decoder when using information theoretic metrics,

it is crucial to choose a proper decoder so that we can evaluate the performance of neural

codes defined by estimation error. For most part of the thesis, we assume the maximum

likelihood estimator (MLE) ŝ(r), maximizes the likelihood

ŝMLE(r) = arg max
s
p(r|s) (2.5)

The MLE has nice statistical properties e.g. asymptotically unbiased and efficient. More

discussion can be found in Section 2.2. Another competitive decoder is the Maximum A

8



Posteriori Estimator (MAPE), which also includes the prior distribution into the picture

ŝMAPE(r) = arg max
s
p(r|s)f(s) (2.6)

In the long time asymptotic, the optimal decoder naturally converges to the maximum

likelihood estimator because with sufficient evidence accumulation, the neural signal will

be much more reliable than the prior information. On the other hand, with short encoding

time, it is often the case that a Bayesian (and usually biased) decoder will perform better

(Wei and Stocker, 2015). Unfortunately it is very hard to analytically optimize the short

term neural code and we often need to rely on numerical tools and methods (Bethge et al.,

2003; Nikitin et al., 2009). In addition, the derivation of the optimal Bayesian decoder can

be intractable for arbitrary prior. For these reasons we will focus on using the MLE as an

ideal decoder to complete the encoding-decoding pipeline.

2.2. Fisher Information and Neural Codes

The concept of Fisher Information provides a statistical characterization of how well a

random variable r can be used to estimate an underlying parameter s under a stochastic

model p(r|s). For the purpose of generality, we will present all definitions and properties

in multivariate form and we assume s ∈ Rn and r ∈ Rm. Some important applications

including the one dimensional stimulus scenario is just a simple case of the general definition.

In statistics, the score function is defined as the n× 1 gradient vector of the log-likelihood

θ(s, r) = ∇s log p(r|s) =

(
∂

∂s1
log p(r|s), . . . ,

∂

∂sn
log p(r|s)

)T
(2.7)

Please note that we will omit the subscripting variable s in ∇s when obvious in the rest of

the thesis. Now the Fisher Information matrix has size n× n and is defined as (see Cover
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and Thomas (1991))

I(s) =
〈
θ(s, r) · θ(s, r)T

∣∣ s〉
p(r|s) (2.8)

The Fisher Information Matrix plays an key role in relating the neural codes and the

objective functions – from information theoretic quantities to error metrics. This will be

elaborated below.

2.2.1. Population of Neurons with Independent Noise

First we study how does each neuron in the population contribute to the Fisher Information

matrix. In our model, each neuron has an output ri that occupies one dimension of the

output vector r. Throughout this thesis we will mainly study the case when each neuron

has independent noise. In this case,

p(r|s) =
m∏
k=1

p(rk|s) ⇒ θ(s, r) = ∇s

(∑
k

log p(rk|s)

)
=
∑
k

θ(s, rk) (2.9)

To show this, we using the definition of Fisher Information Matrix

Itotal(s) =
〈
θ(s, r) · θ(s, r)T

∣∣ s〉 =

〈(∑
k

θ(s, rk)

)
·
(∑

l

θ(s, rl)

)T ∣∣∣∣∣∣ s
〉

(2.10)

Due to the independence between rk and rl for k 6= l when conditioned on any given s,

〈
θ(s, rk) · θ(s, rl)

T
∣∣ s〉 = 〈θ(s, rk)| s〉 · 〈θ(s, rl)| s〉T = 0 (2.11)

where the second inequality is because each index θi(s, rk) for any i, k is

〈
∂

∂si
log p(rk|s)

∣∣∣∣ s〉 =

∫ ∂
∂si
p(rk|s)

p(rk|s)
· p(rk|s)drk =

∂

∂si

(∫
p(rk|s) drk

)
= 0. (2.12)

As a conclusion, the total Fisher Information for a population of neurons with independent

Poisson/constant Gaussian noise is equal to the linear sum of the Fisher information of each

10



neuron:

Itotal(s) =
m∑
k=1

〈
θ(s, rk) · θ(s, rk)

T
∣∣ s〉 =

m∑
k=1

Ik(s) (2.13)

This conclusion allow us to calculate the Fisher information of a neural population by

simply calculating the Fisher information for each neuron one at a time. With this benefit,

we analyze how does the Fisher information depend on the neural noise model for a single

neuron

2.2.2. Fisher Information for Poisson Noise Model

The first model is the Poisson spiking model. If the neuron elicits a random number of

spikes r during a given time window T is a Poisson random variable with rate T · h(s)

P (r = N |s) =
1

N !
(T · h(s))N exp(−T · h(s)) (2.14)

logP (r = N |s) = − log(N !) +N log (T · h(s))− T · h(s) (2.15)

∇s logP (r = N |s) = ∇h(s)

(
N

h(s)
− T

)
(2.16)

For Poisson random variable N with rate T · h(s) we use some simple facts to calculate the

Fisher information matrix

〈N〉 = T · h(s),
〈
N2
〉

= T · h(s) + (T · h(s))2 (2.17)

I(s) = ∇h(s)∇h(s)T

〈(
N

h(s)
− T

)2
〉

= T · ∇h(s)∇h(s)T

h(s)
(2.18)

2.2.3. Fisher Information for Constant Gaussian Noise Model

In the second model, we relax the neural output range from non-negative integers to all real

values. In this general Gaussian noise case, the additive noise in each unit time window

is V0h(s)α therefore the output r over a time window of length T is a Gaussian random
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variable with mean µ(s) = T · h(s) and variance V (s) = T · V0h(s)α

p(r|s) =
1√

2πV (s)
exp

(
− 1

2V (s)
(r − µ(s))2

)
(2.19)

log p(r|s) = −1

2
log(2πV (s))− 1

2V (s)
(r − µ(s))2 (2.20)

∇s log p(r|s) = −1

2

∇V (s)

V (s)
+
∇V (s)

2V (s)2
(r − µ(s))2 +

∇µ(s)

V (s)
(r − µ(s)) (2.21)

Use some simple fact about the random variable r, we can calculate the Fisher information

for a neuron with Gaussian noise

〈r − h(s)〉 = 0,
〈
(r − h(s))2

〉
= V (s), (2.22)〈

(r − h(s))3
〉

= 0,
〈
(r − h(s))4

〉
= 3V (s)2 (2.23)

I(s) =
∇µ(s)∇µ(s)T

V (s)
+

1

2

∇V (s)∇V (s)T

V (s)2
= T · ∇h(s)∇h(s)

V0h(s)α
+O(1) (2.24)

In Eq. (2.18) and Eq. (2.24) we have derived the Fisher Information of a single neuron with

Poisson or constant Gaussian noise model. Generally speaking, each neuron contributes a

positive semidefinite matrix of rank one towards the total Fisher information matrix. In

order to have a non-degenerate Fisher information matrix (i.e. with rank n), it is necessary

for the neural population to be complete m = n or over complete m > n.

2.2.4. Fisher Information for Linear-Nonlinear Model

If we also incorporate the linear transformation phase of encoding, the tuning curve becomes

h(s) = g ·ϕ(wT s) where g controls the gain of the tuning curve and ϕ is a sigmoidal function

bounded between [0, 1]. If we use the Poisson noise model, the Fisher information of such

neuron is

∇h(s) = g · ϕ′(wT s)w ⇒ I(s) = T · g · ϕ
′(wT s)2

ϕ(wT s)
wwT (2.25)
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If we use the generalized Gaussian noise model, the Fisher information becomes

∇h(s) = g · ϕ′(wT s)w ⇒ I(s) = T · g
2−α

V0

ϕ′(wT s)2

ϕ(wT s)α
wwT +O(1) (2.26)

For general α < 2, the value of Fisher information can be further simplified

ϕ(t) = ϕ̃(t)2/(2−α) ⇒ I(s) ∝ T · g2−α · ϕ̃′(wT s)2wwT +O(1) (2.27)

Such trick is known as the Variance Stablization Transformation (Cover and Thomas, 1991).

The transformed functions ϕ̃ are still a sigmoidal function with saturation range 0 ≤ ϕ̃ ≤ 1,

yet the Fisher information has a much simpler form. Here we remark that the new form of

Fisher information rate is the same as the constant Gaussian noise case (α = 0) except the

part that depends on the neural gain g2−α.

2.3. Fisher Information and Objective Functions

2.3.1. Mutual Information

One possible measurement of neural coding quality is the mutual information. Let us as-

sume random variables s, r has density f(r, s) and marginal distributions f(r), f(s) respec-

tively. Mutual information is a concept of information theory which measures the mutual

dependence between two random variable r, s.

MI(r, s) =

∫∫
f(r, s) log

f(s, r)

f(r)f(s)
drds (2.28)

When evaluating neural codes, the biggest advantage to use mutual information is because it

does not require any assumptions on how the neural representation r is used in downstream

tasks. The link between mutual information MI(r, s) and the Fisher information matrix

was established by Brunel and Nadal (1998).

MI(r, s) =
1

2
〈log det I(s)〉s + const. (2.29)
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Here we will not repeat the careful and delicate derivation in their results but the main idea

is based on the fact that an efficient and unbiased estimator ŝ is approximately distributed

as a Gaussian with mean s and covariance I(s)−1. The conditional entropy of such Gaussian

random variable is locally 1/2·log det(I(s)−1)+const and by averaging the local conditional

entropy, we can get the mutual information. The mutual information objective (infomax

criterion) can be achieved by maximizing the right side of Eq. (2.29). For a more complete

work regarding the relationship between Fisher information and the mutual information,

the reader is referred to Wei and Stocker (2016)

2.3.2. Cramer-Rao Lower Bound

Another possible way to measure neural coding quality is to use the L2 norm of the error

vector ŝ − s. Such L2 norm is related to the Fisher information matrix via the Cramer-

Rao lower bound (Cover and Thomas, 1991). For any unbiased estimator ŝ(r), e.g. the

maximum likelihood estimator (MLE),

cov[ŝ(r)− s | s] ≥M I(s)−1 (2.30)

where the matrix inequality ≥M is defined in the sense that cov[ŝ−s | s]−I(s)−1 is positive

semidefinite. As a lower bound, the Cramer-Rao bound can be attained by the MLE ŝ(r)

due to is asymptotic efficiency (Cover and Thomas, 1991).

In order to calculate the mean L2 error, one can find the attainable lower bound both locally

at a given point s or globally averaged over all s, by taking the trace of the covariance matrix

〈‖ŝ− s‖2 | s〉r = tr [cov[ŝ(r)− s | s]] ≥ tr
[
I(s)−1

]
. (2.31)〈

‖ŝ− s‖2
〉
r,s
≥
〈
tr
[
I(s)−1

]〉
s

(2.32)

Compare this with Eq. (2.29), we now derive another way of evaluating the Fisher infor-

mation matrix. In order to minimize the mean L2 error, one should minimize the right
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side of Eq. (2.32). For a more complete work regarding the relationship between Fisher

information and the Cramer-Rao lower bound, the reader is referred to Pilarski and Pokora

(2015)

2.3.3. Asymptotic Lp Limit

To evaluate the decoding error ŝ − s, a natural generalization of L2 norm is the Lp norm

(or semi-norm when p < 1) for other values of p. However, a direct generalization to the

multivariate case would fail because the Lp norm is not rotational invariant unless p = 2.

In other words, the Lp norm of ŝ− s depends on the choice of coordinate system and makes

it impossible to fairly compare different neural codes.

To avoid this problem, we use a different definition of Lp error in a rotational invariant way.

For the random variable ŝ − s, asymptotically distributed as Gaussian with mean 0 and

variance I(s)−1. We denote the eigenvalue of I(s)−1 is λ1, . . . , λn, then we define

‖I(s)−1‖p =
∑
i

λ
p/2
i (2.33)

In one dimension, this automatically falls back to the ordinary Lp loss measurement

‖I(s)−1‖p = I(s)−p/2 (2.34)

Because the eigenvalues of the covariance matrix are invariant under rotations, this is indeed

a unitary invariance choice of Lp metric in high dimensional space. When p = 2, we can

retrieve

‖I(s)−1‖p =
∑
i

λi = tr
[
I(s)−1

]
(2.35)

which is identical to the Cramer-Rao lower bound discussed above. In order to obtain

the optimal Lp population code, one can minimize the mean Lp norm of the uncertainty
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covariance I(s)−1

〈‖ŝ(r)− s‖p〉r,s ≈ const(p) ·
〈
‖I(s)−1‖p

〉
(2.36)

This family of optimization problems with various value of p can provide a natural con-

nection between two traditional optimal criteria – the infomax and MMSE (L2-min). In

the limit of p → 0, we can use the replica trick to show that minimizing the right side of

Eq. (2.36) is equivalent to maximizing the mutual information term in Eq. (2.29).

lim
p→0

∑
i λ

p/2
i − 1

p
=

1

2

∑
i

log λi = −1

2
log det I(s) (2.37)
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CHAPTER 3 : Infomax Codes Under Energy Constraints

3.1. Introduction

The efficient coding hypothesis (Attneave, 1954; Barlow, 1961) plays a fundamental role

in understanding neural codes, particularly in early sensory processing. Going beyond

the original idea of redundancy reduction by Barlow (1961), efficient coding has become

a general conceptual framework for studying optimal neural coding (Linsker, 1988; Atick.

and Redlich, 1990; Atick, 1992; Rieke et al., 1995; Olshausen and Field, 1996; Bell and

Sejnowski, 1997; Simoncelli and Olshausen, 2001; Gottschalk, 2002; Harper and McAlpine,

2004; McDonnell and Stocks, 2008; Karklin and Simoncelli, 2011; Wei and Stocker, 2016).

Efficient coding hypothesizes that the neural code is such that it maximizes the information

conveyed about the stimulus variable. Any formulation of efficient coding necessarily relies

on a set of constraints. These constraints can come in various ways as reflected by the many

real world limitations neural systems are facing. For examples, noise, limited metabolic

energy budgets, constraints on the shape of tuning curves, the number of neurons in the

system etc. all limit the dynamic range and accuracy of the neural code.

Previous studies mainly considered only a small subset of these constraints. For example,

the original proposal of redundancy reduction by Barlow focused on utilizing the dynamical

range of the neurons efficiently (Barlow, 1961, 2001), but did not address the problem

of noise and energy consumption. Some studies explicitly dealt with the metabolic costs

of the system but did not consider the constraints imposed by the limited firing rates of

neurons as well as their detailed tuning properties (Levy and Baxter, 1996; Olshausen and

Field, 1996; Laughlin et al., 1998; Balasubramanian et al., 2001). Histogram equalization

has been proposed as the mechanism in determining the optimal tuning curve of a single

neuron with monotonic response characteristics (Laughlin, 1981). However, this result

relies on restrictive assumptions of the neural noise and does not take metabolic costs into

consideration. In terms of neural population coding, most previous studies have focused
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on bell-shaped tuning curves. Optimal neural coding for monotonic tuning curves have

received only little attention (Ganguli and Simoncelli, 2014; Kastner et al., 2015).

We developed a formulation of efficient coding that explicitly deals with multiple biologi-

cally relevant constraints, including neural noise, limited range of the neural output, and

metabolic constraints. We use our formulation to study neural codes based on monotonic

response characteristics that have been frequently observed in biological neural systems. We

were able to derive analytical solutions for a wide range of conditions in the small noise limit.

We present results for neural pools of different sizes, including the cases of a single neuron,

pairs of neurons, and larger neural populations. The results are in general agreements with

observed coding schemes for monotonic tuning curves. The results also provides various

quantitative predictions which are readily testable with targeted physiology experiments.

3.2. Model Assumptions

In this chapter, we start with the simple case where a scaler stimulus s with prior f(s) is

encoded by a single neuron. To model the neural response for stimulus s, we denote the

mean output level as h(s). As we have discussed (see Section 2.1.1), such value h(s) is

a deterministic mapping from s and could be the mean firing rate in the context of rate

coding or the just the mean membrane potential. The actual response r is noisy and follows

one of the possible noise models (see Section 2.1.2). Throughout this chapter, we constrain

ourself to neural codes with monotonic response functions.

We formulate the efficient coding problem as the neural code seeks to maximize the mu-

tual information between the stimulus and the response, e.g., MI(s, r) (Linsker, 1988). To

complete the formulation of this problem, it is crucial to choose a set of constraints which

characterizes the limited resource available to the neural system. One constraint is the finite

range of the neural output (Laughlin, 1981). Another plausible constraint is on the mean

metabolic cost (Levy and Baxter, 1996; Olshausen and Field, 1996; Laughlin et al., 1998;

Balasubramanian et al., 2001), which limits the mean activity level of neural output. Under
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these constraints, the efficient coding problem is mathematically formulated as following:

maximize MI(s, r)

subject to 0 ≤ h(s) ≤ rmax, h′(s) ≥ 0 (range constraint)

Es[K(h(s))] ≤ Ktotal (metabolic constraint)

We seek the optimal response function h(s) under various choices of the neural noise model

P (r|h(s)) and certain metabolic cost function K(h(s)), as discussed below.

Neural Noise Models: Neural noise in early sensory area can often be well characterized

by a Poisson distribution (Tomko and Crapper, 1974; Tolhurst et al., 1981). Under the

Poisson noise model, the number of spikes NT over a duration of T is a Poisson random

variable with mean h(s)T and variance h(s)T . In the long T limit, the mean response

r = NT /T approximately follows a Gaussian distribution

r ∼ N (h(s), h(s)/T ) (3.1)

Non-Poisson noise have also been observed where the variance of response NT can be greater

or smaller than the mean firing rate (Tomko and Crapper, 1974; Tolhurst et al., 1981;

Churchland et al., 2010; Goris et al., 2014). Therefore we consider a more generalized

family of noise models parametrized by α

r ∼ N (h(s), h(s)α/T ) (3.2)

This generalized family of noise model naturally includes the additive Gaussian noise case

(when α = 0), which is useful to describe the stochasticity of the membrane potential.

Metabolic Cost: We consider the metabolic cost K as a function of the neural output

K(h(s)) = h(s)β (3.3)
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where β > 0 is a parameter to model how does the energy cost scale up as the neural output

is increasing. For a single neuron we will demonstrate with the general energy cost function

but when we generalize to the case of multiple neurons, we will use a linear model suggested

by Attwell and Laughlin (2001) for clarity

K(h(s)) = K0 +K1h(s) (3.4)

In the context of rate coding, K0 = K(0) can be understood as the energy cost per unit

time to maintain a resting neuron and K1 is the energy cost for each extra spike per unit

time. Because the metabolic constraint is also linear in K(h(s)), this is equivalent to the

above cost function with β = 1 and properly adjusted Ktotal.

3.3. Optimal Code for a Single Neuron

3.3.1. Derivation of the Optimal h∗(s)

This optimization problem can be greatly simplified thanks to the fact that it is invariant

with respect to a re-parameterization of the stimulus variable u = F (s) for any invertible

transformation F . First of all, we can prove that the mutual information is indeed invariant

under parameter transformation by applying the information processing inequality twice

together with the fact that F (s) is invertible:

I(s, r) ≥ I(F (s), r) ≥ I(F−1(F (s)), r) = I(s, r). (3.5)

Second, we can show that the energy constraint is also invariant:

g(u)
def
= h(F−1(u)) = h(s), f(u) du = f(s) ds (3.6)

Eu[K(g(u))] =

∫ 1

0
K(g(u))f(u) du =

∫ ∞
−∞

K(h(s))f(s) ds = Es[K(h(s))] (3.7)

To take the most advantage out of this, we choose such transformation to be F (s) =∫ s
−∞ f(t) dt to be the cumulative distribution of the prior f(s). In this way, the transformed
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variable u = F (s) follows the uniform distribution U ∼ U [0, 1]. Now it suffices to solve the

following new problem which optimizes g(u) for the uniformly distributed input u. Once

the optimal form of g∗(u) is obtained, the optimal h∗(s) is naturally given by g∗(F (s))

maximize MI(u, r)

subject to 0 ≤ g(u) ≤ rmax, g′(u) ≥ 0

Eu[K(g(u))] ≤ Ktotal

To solve this simplified problem, first we express the objective function in terms of g(u). In

the small noise limit (large T ), the Fisher information I(u) for a neuron with generalized

Gaussian noise is calculated (see Chapter 2)

I(u) =
T

V0

g′(u)2

g(u)α
+O(1) (3.8)

MI(u, r) = H(U) +
1

2

∫
f(u) log I(u) du =

1

2

∫ 1

0
log

g′(u)2

g(u)α
du+ log(T/V0) +O(1/T )

(3.9)

where H(U) = 0 is the entropy and f(u) = 1{0≤u≤1} is the density of the uniform dis-

tribution. Furthermore, each constraints can be rewritten as integrals of g′(u) and g(u)

respectively:

g(1)− g(0) =

∫ 1

0
g′(u) du ≤ rmax (3.10)

Eu[K(g(u))] =

∫ 1

0
g(u)β du ≤ Ktotal (3.11)

By throwing away irrelevant constant terms and use Lagrangian multiplier method, the
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optimization problem is now simplified to

maximize

∫ 1

0
L(g(u), g′(u)) du (3.12)

where L(g(u), g′(u)) =
1

2
log

g′(u)2

g(u)α
− λ1g′(u)− λ2g(u)β (3.13)

This problem can be analytically solved by using the Euler-Lagrange equation. In particular,

because the Lagrangian L(g(u), g′(u)) does not have explicit u dependency, we can apply

Beltrami’s identity, which is a special form of the Euler-Lagrange equation

const = L− g′ · ∂L
∂g′

=

[
1

2
log

g′(u)2

g(u)α
− λ1g′(u)− λ2g(u)β

]
− g′(u) ·

[
1

g′(u)
− λ1

]
(3.14)

⇒ const =
1

2
log

g′(u)2

g(u)α
− λ2g(u)β (3.15)

We substite g(u) = g̃(u)1/β and derive an ordinary differential equation (ODE) on g̃(u)

which can be easily solved by separating variables.

const = log

(
dg̃

du
· g̃q−1

)
− λ̃g̃(u) ⇒ C du = g̃(u)q−1 exp (−g̃) dg̃ (3.16)

where q = (1− α/2)/β. The solution must take the form of

g̃∗(u) =
1

a
γ−1q (uγq(b)) , g∗(u) =

[
1

a
γ−1q (uγq(b))

]1/β
, h∗(s) = g∗(F (s)) (3.17)

where γq(x) =

∫ x

0
zq−1 exp(−z) dz. (3.18)

The function γq(x) is called the incomplete gamma function of parameter q and γ−1q is its

inverse function. The constants a, b can be determined by satisfying both the sigmoidal

and metabolic constraints. Next we present the more intuitive conclusions about a, b while

leaving the detailed proof in the appendix (see Section 3.7).
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3.3.2. Interpretation of the Optimal h∗(s)

Due to the relative difference of rmax and Ktotal, the sigmoidal constraint and the metabolic

constraint can be either binding or non-binding. Depending on the relative strength of each

constraint:

• Range constraint dominates: This is the case when there is more than sufficient

energy to achieve the optimal solution Ktotal ≥ Kthre . There is a threshold value Kthre

beyond which the metabolic constraint will become non-binding. The exact value of

Kthre depends on the model parameters rmax, α and β. As a loose estimation, if

Ktotal ≥ rβmax, the metabolic constraint is automatically satisfied for any α. In this

case:

b→ 0+, a = b/rβmax, g(u) = rmax · u1/q (3.19)

This is because when b is small (so x = uγq(b) is also small), we have an good

approximation of

γq(x) ≈
∫ x

0
zq−1 dz =

1

q
xq, γ−1q (y) ≈ q1/qy1/q (3.20)

• Both constraints: This is the general case when Ktotal is about the same magnitude

as rmax. We choose a = b/rβmax to satisfy the range constraint and b is set to the

minimum value for which the metabolic constraint is satisfied.

• Metabolic constraint dominates: This happens when Ktotal � rβmax. In this case

we choose a = b/rβmax and b is often very large.

3.3.3. Properties of the Optimal h(s)

We have predicted the optimal response function for arbitrary values of α (which constrain

the noise) and β (which quantifies the cost). Here we specifically focus on a few biologically
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Figure 3: The process of determining optimal tuning curves g(u) and corresponding h(s)
for different prior distributions and different noise models (top row: constant Gaussian
noise α = 0; bottom row: Poisson noise α = 1). (a) A segment of the inverse incomplete
gamma function is taken depending on the constraints. The higher the horizontal dash
lines, the more substantial the metabolic constraint is. (b) The optimal g(u) is determined
for uniformly distributed u. (c) The corresponding optimal h(s) for Gaussian prior. (d)
The corresponding optimal h(s) for Gamma distribution p(s) ∝ sq−1 exp(−s). Specifically,
in the absence of maximum response constraint and assuming the input follows this heavy
tail distribution, the optimal tuning curve is exactly linear. (e-h) Similar to (a-d), but for
Poisson noise.

most relevant situations.

Additive gaussian noise We begin with the simple additive Gaussian noise model, i.e.

α = 0. This model could provide a good characterization of the response mapping from the

input stimulus to the membrane potential of a neuron (Laughlin, 1981). With more than

sufficient metabolic supply, the optimal solution falls back to the principle of histogram

equalization (see Figure 3b, yellow straight line). With less and less available metabolic

budget, the optimal tuning curve bends downwards to satisfy this constraint. In general,

the optimal solution strikes a balance between these two constraints, resulting in a family

of optimal response functions in between of the two extrema mentioned above.
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Poisson noise For neural spiking activity, it is observed that the variability often varies

systematically with the mean firing rate (Tomko and Crapper, 1974; Tolhurst et al., 1981).

In the case of Poisson spiking, the theory predicts the optimal response function should bend

more downwards compared to the case of Gaussian noise (see Figure 3). In the extreme

case when the main resource constraint comes from the limit firing rate range, the model

predicts a square tuning curve g(u) ∝ u2 for uniform input (Figure 3f, yellow curve), which

is consistent with early studies (Bethge et al., 2002; Johnson and Ray, 2004).

3.3.4. Distribution of the response magnitude

We also investigate the distribution of the response magnitude for the special case of linear

metabolic costs (β = 1) and the result is summarized in Figure 4. In the case of Gaus-

sian noise and Ktotal is large, the response magnitude is equally distributed in the response

range. This is consistent with the histogram equalization solution which uses the response

range equally well. However, as the metabolic constraint plays an increasingly important

role when Ktotal is diminishing, the large response will be penalized more severely, resulting

in more density at small response magnitude. We also found that Poisson noise leads to

more penalization on large response magnitude compared to Gaussian noise, suggesting an

interplay between noise and metabolic cost in shaping the optimal neural response distri-

bution. Furthermore, in the case that Ktotal goes to 0, the response distribution converges

to a gamma distribution, with heavy tail. This phenomenon represents the sparse codes

(Olshausen and Field, 1996). It also gives a simple yet quantitative characterization of how

the energy budget may push the neural responses toward a sparse coding regime.

3.4. Optimal Code for a Pair of Neurons

We next study the optimal coding in the case of two neurons with monotonic response

functions. We denote the neural responses as r = (r1, r2). Therefore the efficient coding
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Figure 4: Distribution of the response based on the optimal response function of a single
neuron. (a) Gaussian noise. (b) Poisson noise. In the extreme case of Gaussian noise with
effectively no metabolic constraint, the distribution is uniformly distributed on the whole
range.

problem becomes:

maximize L(h) = MI(s, r)

subject to 0 ≤ hi(s) ≤ rmax, i = 1, 2. (range constraint)

Es [K(h1(s)) +K(h2(s))] ≤ 2Ktotal (metabolic constraint)

Note that we also double the available energy Ktotal so that on average, each neuron is still

limited by same mean metabolic cost of Ktotal as it is for the single neuron case. Assuming

the neural noise is independent across neurons, the system of two neurons has total Fisher

information just as the linear sum of Fisher information contributed from each neuron

IF (s) = I1(s) + I2(s).

3.4.1. Optimal response functions

Previous studies on neural coding with monotonic response functions have typically assumed

that hi(s) has sigmoidal shape. It is important to emphasize that we do not make any a

priori assumptions on the detailed shape of the tuning curve other than being monotonic and

smooth. We define each neuron’s active region Ai = A+
i ∪A−i where A±i = {s|±h′i(s) > 0}.

Without going into detailed proof (see Section 3.8), we list the main conclusions
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1. Neurons should have non-overlapping active regions Ai ∩Aj = ∅ if i 6= j.

2. If the metabolic constraint is binding, ON-OFF coding (A+
1 , A

−
2 are non-empty or vice

versa) is better than ON-ON coding (A+
i ’s are non-empty) or OFF-OFF coding (A−i ’s

are non-empty). Otherwise all three coding schemes can achieve the same mutual

information.

3. For ON-OFF coding, it is better to have ON regions on the right side: supA−i ≤

inf A+
j .

4. For ON-ON coding (or OFF-OFF), each neuron should have roughly the same tuning

curve hi(s) ≈ hj(s) while still have disjoint active regions. Within the ON-pool or

OFF-pool, the optimal tuning curve is same as the optimal solution from the single

neuron case.

In Figure 5 we illustrate how these conclusions can be used to determine the optimal pair of

neurons, assuming additive Gaussian noise α = 0 and linear metabolic cost β = 1 (for other

α, β, the process is similar). Crucially, our theory allows us to predict the precise shape

of the optimal response functions. This represents a significant advantage over previous

results on ON-OFF coding scheme using numerical methods (Karklin and Simoncelli, 2011)

or restrictive neural codes (Gjorgjieva et al., 2014).

3.4.2. Comparison between ON-OFF and ON-ON codes

From Figure 5e we can see that, the maximum possible mutual information is monotonically

increasing as a function of available energy Ktotal until they both saturate the limit at

KON-ON = 0.5rmax and KON-OFF = 0.25rmax respectively (see the yellow tuning curves in

Figure 5a-d). Note that these saturation limit is only valid for α = 0 and β = 1. In order

to encode exactly the same amount information, the most energy efficient ON-ON pair (or

OFF-OFF) always requires twice as much compared to the most energy efficient ON-OFF

pair.
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On the other hand, we can compare the ON-ON and ON-OFF by fixing a value of Ktotal <

0.5rmax (i.e. when metabolic constraint is binding for ON-ON pairs). The optimal mutual

information achieved by ON-ON neurons is always smaller than that achieved by ON-OFF

neurons and the difference is plotted. If in the mutual information we use logarithm of base

2, this difference will saturate at −1 when the available energy is very limited Ktotal � rmax.

In this extreme case, the ON-ON code is only half as efficient as the ON-OFF code. In

other words, it takes as much as twice amount of time T for the ON-ON code to achieve

same amount of mutual information as the ON-OFF code.
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Figure 5: The optimal response functions for a pair of neurons assuming Gaussian noise. (a)
The optimal response functions for a uniform input distribution assuming ON-OFF coding
scheme. Solid yellow curve and dash yellow curve represent the optimal solution with weak
metabolic constraint. Solid red and dash red curves are the optimal solution with sub-
stantial metabolic constraint. (b) Similar to panel a, but for input stimuli with heavy tail
distribution. (c) The optimal response functions for a uniform input distribution assuming
ON-ON coding scheme. Solid and dash yellow curves are for little metabolic constraint.
Notice that two curves appear to be identical but are actually different at finer scales (see
the inserted panel). Solid and dash red are for substantial metabolic constraint. (d) Similar
to panel c, but for input stimuli with heavy tail distribution. (e) A comparison between
the ON-ON scheme and ON-OFF scheme. The x-axis represents the relative importance
of metabolic constraint. The y-axis represents the corrected information, defined as the
amount of information actually transmitted minus the maximal information that can pos-
sibly be transmitted. The green dash line represent the difference between the information
transmitted by the two schemes. Negative difference indicates an advantage of ON-OFF
over ON-ON.
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Our analysis provides a quantitative characterization of the advantage of ON-OFF over

ON-ON and shows how it depends on the relative importance of the metabolic constraint.

The encoding efficiency of ON-OFF ranges from double (when the metabolic budget is very

limited) to equal amount of the ON-ON efficiency (when the metabolic budget exceeds

certain threshold). This wide range includes the previous results where a mild increase

(about 15%) is predicted in the efficiency when comparing ON-OFF to ON-ON under short

integration time limit (Gjorgjieva et al., 2014). It is well known that in the retina of many

animal species, there is a split of ON and OFF pathways (Schiller, 1992; Wässle, 2004).

The substantial increase of efficiency in the regime of strong metabolic constraint supports

the idea that strong metabolic constraint may be one of the main drives for such pathway

splitting in evolution.

In a recent study by Karklin and Simoncelli (2011), it is observed numerically that training

a simple linear-nonlinear network on natural images by maximizing mutual information

subject to metabolic constraint would lead to ON-OFF coding scheme in certain noise

regime. Our result may provide a theoretical bases for this observation, although we do not

directly model the natural image, rather the neurons can been seen as encoding the local

contrast in this context. Intriguingly, we found that in the case that the input distribution

is a heavy tail distribution (see Figure 5b), the optimal response functions are two rectified

non-linear functions who split the encoding range, which is similar to what has been observed

physiologically in retina.

3.5. Optimal coding of large neural population

The framework could be generalized to study a large population of neurons (N = 2k, k is

large). In this case, we consider the following problem:
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maximize MI(s, r)

subject to rmin ≤ hi(s) ≤ rmax (range constraint)

Es[
∑
i

K(hi(s))] ≤ NKtotal (metabolic constraint)

We can again solve this problem analytically by exploiting the Fisher information approx-

imation of mutual information (Brunel and Nadal, 1998; Wei and Stocker, 2016). Inter-

estingly, we found the optimal codes should be divided into two pools of neurons of equal

size k. One pool of neuron with monotonic increasing response function (ON-pool), and

the other with monotonic decreasing response function (OFF-pool). For neurons within the

same pool, the optimal response functions appear to be identical on the macro-scale but are

quite different when zoomed in. We have shown that the optimal code must have disjoint

active regions for each neuron. This is illustrated in the inset panel of Figure 5c, in which

we show the case for two ON seemingly identical tuning curves.

We ask how the energy should be allocated across different neurons. Assume that metabolic

cost is linear in terms of the response level and Poisson noise, each neuron across two

different pools should share the same maximum firing rate. This generalizes to other noise

type with considered (α > 0) and other metabolic cost function (β > 0).

We quantify the amount of the information increase by using optimal coding schemes com-

pared to using all ON neurons or all OFF neurons. Interestingly, the results we found in

the Figure 5e for the a pair of neurons generalize to the current case. Specifically, in the

case of strong metabolic constraint (i.e., Ktotal is small), the optimal 2k-ON neuron scheme

is close to half of the efficiency of the optimal k-ON/k-OFF scheme.

The optimal coding scheme is reminiscent of the opponent coding observed in some neural

systems, for example, the sound location system (Stecker et al., 2005). In our results the
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support of the response function of an ON-neuron does not overlap with that of an OFF-

neuron. We notice that in the physiological data (Stecker et al., 2005), there appears to

be some overlap between two neuron which belong to different pools. However, in the case

that there is noise in the input, it is possible that some amount of the overlap might be

beneficial.

3.6. Discussion

We presented a theoretical framework for studying optimal neural codes under biologically

relevant constraints. We emphasized the importance of two constraints – the noise charac-

teristics of the neural responses and the metabolic cost. Throughout the paper, we have

focused on neural codes with smooth monotonic response functions. We demonstrated that,

maybe surprisingly, analytical solutions exist for a wide family of noise characteristics and

metabolic cost functions.

An interesting venue for future research is to see whether the framework and techniques

developed here could be used to define the optimal neural codes based on bell-shape tuning

curves. Another interesting question is the optimal code in case of an odd number of

neurons. Presumably, the solution for the case of N = 2k + 1 is close to N = 2k for a

large pool of neurons. However, when k is small, the difference due to symmetry breaking

may substantially change the result. We have not addressed these results due to the lack

of biological relevance for this case. Also, we have only considered the case of maximizing

mutual information as the objective function; it will be interesting to see whether the results

generalized to other objective functions such as, e.g., minimizing decoding error (Twer and

MacLeod, 2001; Wang et al., 2012).

Due to the limited scope of the paper, we have ignored several important other factors

when formulating the efficient coding problem. First, we have not modeled the spontaneous

activity of neurons, i.e. their baseline firing rate. Second, we have not considered the noise

correlations between the responses of neurons. Third, we have ignored the noise in the
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input to the neurons. We speculate that the first two factors are unlikely to significantly

change our main results. However, incorporating the input noise may significantly change

the results. In particular, for the cases of multiple neurons, our current results suggest that

the response functions for ON and OFF neurons should not overlap. However, it is possible

that this prediction does not hold in the presence of the input noise. Intuitively, introducing

some redundancy by making the response functions partially overlap might be beneficial in

this case. Including these factors into the framework should allow us to make a detailed

and quantitative comparison to physiologically measured data in the future.

3.7. Appendix I: Determining constants a, b

In the main text we have showed that the optimal form of g∗(u) is

g∗(u) =

[
1

a
γ−1q (uγq(b))

] 1
β

(3.21)

where q = (1 − α/2)/β. The key part inside the bracket is a linearly scaled version of the

inverse-incomplete-gamma function with two parameters a, b. Now we only need to re-write

the constraints and the objective function in terms of a, b and find the optimal a, b that

satisfies both constraints

3.7.1. Objective function

First we evaluate the objective function for each a, b

F (a, b) =

∫ 1

0
log

[
g′(u)

g(u)α/2

]
du (3.22)
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where

g′(u) =
1

β

[
1

a
γ−1q (uγq(b))

] 1
β
−1 1

a

[
γ−1q (uγq(b))

]1−q
exp(γ−1q (uγq(b))) · γq(b)

=
γq(b)

β

(
1

a

) 1
β [
γ−1q (uγq(b))

] 1
β
−q

exp(γ−1q (uγq(b))) (3.23)

g(u)α/2 =

(
1

a

) α
2β [

γ−1q (uγq(b))
] α
2β (3.24)

Since q = (1− α/2)/β, we have

g′(u)

g(u)α/2
=
γq(b)

β
a−q exp(γ−1q (uγq(b))) (3.25)

F (a, b) = − log β + log γq(b)− q log a+

∫ 1

0
γ−1q (uγq(b)) du (3.26)

Here we calculate the integral term. We let

v(u) = γ−1q (uγq(b)), v(0) = 0, v(1) = b. (3.27)

uγq(b) = γq(v), γq(b) du = vq−1 exp(−v) dv (3.28)

Therefore

∫ 1

0
γ−1q (uγq(b)) du =

1

γq(b)

∫ v(1)

v(0)
vq exp(−v) dv (3.29)

=
1

γq(b)

[
q

∫ b

0
vq−1 exp(−v) dv − vq exp(−v)|b0

]
(3.30)

=
1

γq(b)
[qγq(b)− bq exp(−b)] = q − bq exp(−b)

γq(b)
(3.31)

Thus the objective function in terms of a, b is

F (a, b) = q − log β + log γq(b)− q log a− bq exp(−b)
γq(b)

(3.32)
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3.7.2. Optimal a for fixed value of b

We begin with rewriting the saturation constraint and the metabolic constraint in terms of

a, b. First the saturation constraint

rmax ≥ g∗(1) =

[
b

a

] 1
β

⇒ a ≥ r−βmax · b
def
= A1(b) (3.33)

Second the metabolic constraint

Kave ≥
∫ 1

0
K(g(u)) du =

1

a

∫ 1

0
γ−1q (uγq(b)) du =

1

a

[
q − bq exp(−b)

γq(b)

]
⇒ a ≥ K−1ave ·

[
q − bq exp(−b)

γq(b)

]
def
= A2(b) (3.34)

Based on the form of the objective function F (a, b), it is clear that a should be as small as

possible, given that the above two constraints are satisfied. Therefore for fixed value of b,

the smallest a that satisfies both constraints is

a∗(b) = max {A1(b), A2(b)} (3.35)
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Figure 6: (LEFT) the plot of A1(b), A2(b) and a∗(b) = max{A1(b), A2(b)} and corresponding
objective function value. As we have proven, F (A1(b)) is non-increasing and F (A2(b)) is
non-decreasing. The optimal value is achieved when A1(b) = A2(b) if such solution b exists.
(RIGHT) for fixed rmax, the metabolic constraint can be redundant if the constant Kave too
large. When α = 0, β = 1 (Gaussian noise, linear metabolic cost), the objective function
can no longer be improved once Ktotal exceeds 0.5.
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3.7.3. Optimal b

Here we discuss in cases. We consider two sets

B1 = {b ≥ 0|A1(b) ≥ A2(b)} (3.36)

B2 = {b ≥ 0|A2(b) ≥ A1(b)} (3.37)

Case I: For b ∈ B1, a ≥ A1(b) is the tighter constraint therefore a∗(b) = A1(b). Now we

have

a∗ = A1(b) = r−βmax · b (3.38)

F (b) = F (a∗, b) = const+ log γq(b)− q log b− bq exp(−b)
γq(b)

(3.39)

We will show that F (a∗, b) is non-increasing in b. To prove this, we define an auxiliary

function

Z(b)
def
=
bq exp(−b)
γq(b)

, logZ(b) = q log b− b− log γq(b) (3.40)

F (b) = const− logZ(b)− b− Z(b) (3.41)

We need to show

0 ≥ F ′(b) = −Z
′(b)

Z(b)
− Z ′(b)− 1 (3.42)

Here we calculate Z ′(b)

Z ′(b) =
qbq−1 exp(−b)− bq exp(−b)

γq(b)
− b2q−1 exp(−2b)

γq(b)2
(3.43)

=
bq−1 exp(−b)

γq(b)2
[(q − b) γq(b)− bq exp(−b)]︸ ︷︷ ︸

def
=Z2(b)

(3.44)
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The term Z2(b) has property

Z2(0) = 0, Z ′2(b) = −γq(b) ⇒ Z2(b) = −
∫ b

0
γq(t) dt (3.45)

Therefore

Z ′(b) = − b
q exp(−b)
γq(b)︸ ︷︷ ︸
=Z(b)

∫ b
0 γq(t) dt

bγq(b)︸ ︷︷ ︸
=M(b)

= −Z(b)M(b) (3.46)

Plug this into F ′(b)

F ′(b) = M(b)(1 + Z(b))− 1 (3.47)

First we can show F ′(0) = 0. Now for b > 0, we have

F2(b)
def
= F ′(b) · bγq(b) =

∫ b

0
γq(t) dt · (1 + Z(b))− 1 (3.48)

F ′2(b) = γq(b) (1 + Z(b)) +

∫ b

0
γq(t) dt · Z ′(b)− γq(b)− bq exp(−b) =

∫ b

0
γq(t) dt · Z ′(b) < 0

(3.49)

Therefore F ′(b) ≤ 0 and the function F (b) is non-increasing. This means that in the case

of b ∈ B1, the optimal solution is the smallest b∗ = infb∈B1 b.

Case II: For b ∈ B2, a ≥ A2(b) is the tighter constraint therefore a∗(b) = A2(b). Now we

have

a∗(b) = A2(b) = K−1ave

[
q − bq exp(−b)

γq(b)

]
= K−1ave [q − Z(b)] (3.50)

F (b) = F (a∗, b) = const+ log γq(b)− q log(q − Z(b))− Z(b) (3.51)
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Now we will show this F (b) is non-decreasing in b.

F ′(b) =
bq−1 exp(−b)

γq(b)
+

qZ ′(b)

q − Z(b)
− Z ′(b) (3.52)

=
Z(b)

b
+ Z ′(b)

Z(b)

q − Z(b)
=

Z(b)

b(q − Z(b))

[
q − Z(b) + bZ ′(b)

]
(3.53)

The term outside the bracket is positive when b > 0. Therefore we only need to show

Z3(b) = q − Z(b) + bZ ′(b) ≥ 0. (3.54)

Note that we have

logZ(b) = q log b− b− log γq(b) (3.55)

Z ′(b)

Z(b)
=
q

b
− 1− bq−1 exp(−b)

γq(b)
=
q

b
− 1− Z(b)

b
(3.56)

Therefore

q − Z(b) = b

(
1 +

Z ′(b)

Z(b)

)
(3.57)

Plug this into Eq(57) we have

Z3(b) = b

(
1 +

Z ′(b)

Z(b)
+ Z ′(b)

)
≥ 0 (3.58)

which share the proof of the inequality in [Eq(45)]. In this case, F (b) is non-decreasing.

This means that in the case of b ∈ B2, the optimal solution is the largest b∗ = supb∈B2
b.

Conclusion: Based on these two cases, we know that if both B1, B2 are non-empty, then

the optimal b∗ is both the infimum or B1 and supremum of B2, which means that b∗ is
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uniquely determined by

A1(b) =
1

rβmax

b =
1

Kave

[
q − bq exp(−b)

γq(b)

]
= A2(b) (3.59)

Since A1(b) grows linearly but A2(b) has an upper bound, therefore B1 cannot be empty.

However if B2 is empty, then the optimal b∗ = infb∈R+ b = 0 which means that the optimal

solution is attained by the limit b→ 0.

3.8. Appendix II: Technical Details for Multiple Neurons Case

First we define the active regions of the i-th neuron as

A±i = {s| ± h′i(s) > 0}, Ai = A−i ∪A+
i . (3.60)

Now we prove a couple of necessary conditions for these Ai to be optimal in terms of

maximum mutual information. Note that the tuning curves are assumed to be monotonic

so one of A+
i and A−i must be empty.

As a useful preliminary result, we recall that the total Fisher information of the population

is the linear sum of Fisher information contributed by each individual neuron

IF (s) =
N∑
i=1

Ii(s) where Ii(s) ∝
h′i(s)

2

hi(s)α
(3.61)

if the noise model parameter is α. It is clear that Ii(s) is greater than zero only if s ∈ Ai.

Lemma 3.8.1 (Non-overlapping active regions.). We consider the problem of optimizing

a neural population with neuron i = 1, . . . , N . We limit the stimulus to be on some subset

s ∈ [s0, s1] of the original range [0, 1]. Each neuron is monotonic (either h′i(s) ≥ 0 or
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h′i(s) ≤ 0 for s ∈ [s0, s1]) and has limited range of output Li ≤ hi(s) ≤ Hi.

maximize

∫ s1

s0

log IF (s) ds (3.62)

subject to Li ≤ hi(s) ≤ Hi, i = 1, . . . , N (3.63)

Then a necessary condition is the non-overlapping active regions, i.e. Ai ∩Aj = ∅ for

all i 6= j.

Proof. We begin with the proof of an upper bound on the integral of the square root of the

Fisher information:

∫ s1

s0

√
Ii(s) ds ≤ Imax

i (3.64)

For α 6= 2, for example, we have

√
Ii(s) ∝

|h′i(s)|
hi(s)α/2

∝ d

ds

[
hi(s)

1−α/2
]

(3.65)

Imax
i ∝ |H1−α/2

i − L1−α/2
i | (3.66)

For α = 2 the calculation is similar if we use log hi(s) as the anti-derivative. Next we write

down an upper bound of the objective function:

IF (s) =

N∑
i=1

Ii(s) =

(
N∑
i=1

√
Ii(s)

)2

− 2
∑
i<j

√
Ii(s) · Ij(s) ≤

(
N∑
i=1

√
Ii(s)

)2

def
= Q(s)2

(3.67)∫ s1

s0

log IF (s) ds ≤ 2

∫ s1

s0

logQ(s) ds = 2(s1 − s0)
∫ s1

s0

1

s1 − s0
logQ(s) ds (3.68)

≤ 2(s1 − s0) log

∫ s1

s0

Q(s)

s1 − s0
ds ≤ 2(s1 − s0) log

∑
i I

max
i

s1 − s0
. (3.69)

where we have used the Jensen’s inequality and the optimization constraints. To achieve this

attainable upper bound for the objective function, we need Q(s) = const for the Jensen’s
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inequality and also the equality in Eq. 3.67. Therefore a necessary condition for hi(s) to

be optimal is that Ii(s) · Ij(s) = 0 everywhere for i 6= j. This is equivalent as our claim

Ai ∩Aj = ∅ for all i 6= j.

In other words, different neurons should not have non-overlapping active region. However,

the above lemma does not take the energy constraints into consideration. If we add the

energy constraint

∫ 1

0

N∑
i=1

K(hi(s)) ds ≤ Ktotal (3.70)

does it break the necessity of the non-overlapping Fisher information condition? The answer

is no due to the following lemma.

Lemma 3.8.2 (Non-overlapping active regions with metabolic constraints). Assuming hi(s)

is the optimal solution to the following problem. Each neuron is monotonic (either hi(s) ≥ 0

or hi(s) ≤ 0 for s ∈ [0, 1]) and has limited range of output L ≤ hi(s) ≤ H.

maximize

∫ 1

0
log IF (s) ds (3.71)

subject to L ≤ hi(s) ≤ H, i = 1, . . . , N (3.72)∫ 1

0

N∑
i=1

K(hi(s)) ds ≤ Ktotal (3.73)

Then a necessary condition is the non-overlapping active regions, i.e. Ai ∩Aj = ∅ for

all i 6= j.

Proof. We show this lemma by contradiction – we assume hi(s) is optimal with Ii(s)·Ij(s) >

0 for some s (so s ∈ Ai ∩Aj) and show that there exists a better solution h̃i(s).

We divide the stimulus space s ∈ [0, 1] equally into M smaller intervals with endpoints
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sj = j/M for j = 0, . . .M . We define

Li,j = min
s∈[sj−1,sj ]

hi(s) (3.74)

Hi,j = max
s∈[sj−1,sj ]

hi(s) (3.75)

On each of these intervals [sj−1, sj ] and the above range, we apply Lemma 1 and obtain a

new solution h̃i(s) which satisfies the non-overlapping Fisher information condition. It is

easy to see that this new solution gives better objective function. Next we show that this

better solution costs similar amount of energy as hi(s). Using the upper and lower bound

of firing rate in each interval, we have

∫ 1

0
K(h̃i(s)) ds =

M∑
j=1

∫ sj

sj−1

K(h̃i(s)) ds ≤
M∑
j=1

(sj − sj−1)K(Hi,j) =
1

M

M∑
j=1

K(Hi,j) (3.76)

∫ 1

0
K(h̃i(s)) ds =

M∑
j=1

∫ sj

sj−1

K(h̃i(s)) ds ≥
M∑
j=1

(sj − sj−1)K(Li,j) =
1

M

M∑
j=1

K(Li,j) (3.77)

Similarly for the original solution hi(s) these two bounds also apply

1

M

M∑
j=1

K(Li,j) ≤
∫ 1

0
K(hi(s)) ds ≤

1

M

M∑
j=1

K(Hi,j) (3.78)

Therefore

|Kh̃ −Kh| =
∣∣∣∣∫ 1

0
K(h̃i(s)) ds−

∫ 1

0
K(hi(s)) ds

∣∣∣∣ (3.79)

≤ 1

M

M∑
j=1

(Hi,j − Li,j) =
1

M
(H − L) (3.80)

and the right side converges to zero as M goes to infinity. This means that the energy

consumption of this new solution h̃i(s) can be made as close to the original solution as

possible if we use a finer and finer grid (large M), while having a better objective function

value. This contradicts the optimality of hi(s).
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Using Lemma 1 and Lemma 2, we conclude that in the optimal population, the neurons

need to have non-overlapping Fisher information. This simplifies our further analysis. Here

we discuss another necessary condition that a pair of ON-OFF neurons must satisfies.

Lemma 3.8.3 (ON-OFF neurons). Under the assumption that the energy constraint is

binding, then for an ON-neuron with active region A+
i and an OFF-neuron with active

region A−j , we have supB−j ≤ inf A+
i . In other words, the active region of any ON neuron

is strictly on the right side of the active region of any OFF neuron.

Proof. We denote si = inf A+
i and sj = supA−j and prove the lemma by contradiction.

We assume si < sj . Due to the piecewise continuity of h′i(s), there exists ε > 0 such that

there exist small neighborhoods [si, si + ε] ∈ A+
i and [sj − ε, sj ] ∈ A−j . We can construct a

new tuning curve h̃i(s) and h̃j(s) by swapping their active regions (see Figure 7 below) in

these neighborhood. It is obvious that the new h̃i costs strictly less amount of energy. The

s

si si + ǫ sj − ǫ sj

h
(s
)

s

si si + ǫ sj − ǫ sj

h̃
(s
)

Figure 7: Tuning curve surgery for ON-OFF neuron pairs that reduces energy costs.

new tuning curves has equal performance in terms of objective function because the regions

being swapped has same size. The existence of such tuning curves contradicts the fact that

the energy constraint is binding.

One immediate corollary is that, in a large population of neurons with both ON and OFF

sub-populations, there exists a single s that divides the active regions for the ON sub-

population and the OFF sub-population.

Next we find the optimal condition for a population of only ON/OFF neurons. Without
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loss of generality, we assume the neural population consists of only ON neurons.

Lemma 3.8.4 (ON-ON neurons). Assuming the population has only ON neurons and the

metabolic cost function is linear
∑

iK(hi(s)) = K(
∑

i hi(s)), then the optimal hi(s) ≈

h(s)/N but with disjoint active regions A+
i . The function h(s) =

∑
i hi(s) is the single

neuron infomax solution of:

maximizeh(s) MI(s, r) (3.81)

subject to 0 ≤ h(s) ≤ N · rmax (3.82)

E[K(h(s))] ≤ N ·Ktotal (3.83)

Proof. We denote hi(s) = pi(s) · h(s) and it is clear that
∑
pi(s) = 1. Using Lemma 1

we know Ai’s are disjoint therefore we also have h′i(s) = h′(s) · 1Ai . Plug these into the

objective function, we know that

IF (s) ∝
N∑
i=1

h′i(s)
2

hi(s)α
=
h′(s)2

h(s)α
·
N∑
i=1

1Ai · pi(s)−α ⇒ (3.84)

∫ 1

0
log IF (s) ds =

∫ 1

0
log

h′(s)2

h(s)α
ds+

∫ 1

0
log

(
N∑
i=1

1Ai · pi(s)−α
)
ds (3.85)

Now the problem is divided into two independent part. The first part involves finding the

optimal h(s) under constraints stated in the lemma. This part is exactly the same as the

single neuron case.

The second part involves optimizing Ai and pi(s) for the following term

maximize

∫ 1

0
log

(
N∑
i=1

1Ai · pi(s)−α
)
ds = −α

∑
i

∫ 1

0
1Ai log pi(s) ds (3.86)

subject to
∑

pi(s) = 1. (3.87)
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Using Lagrange multiplier method we know the optimal condition for pi(s) is

−α 1Ai
pi(s)

− λ = 0 (3.88)

This shows that pi(s) = const for s ∈ Ai. However Ai is the active region of neuron i so

the function hi(s) is increasing and all other hj(s) remains the same. The only way for this

condition to holds is when Ai consists of infinite many small intervals so that the increase

in hi(s) is small. Also we know that all pi(s) → 1/N when s → 1. Therefore one possible

solution is given by hi(s) ≈ h(s)/N but on infinitesimal scales, each small interval is equally

divided into N disjoint set Ai’s.
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CHAPTER 4 : Lp Optimal Codes for One Dimensional Stimulus

4.1. Introduction

The efficient coding hypothesis states that biological sensory systems have limited coding

resources and therefore seek to employ coding strategies that are optimally adapted to

the statistical structure of their sensory environment (Attneave, 1954; Barlow, 1961; Mad-

dess and Laughlin, 1985; Theunissen and Miller, 1991; Fitzpatrick et al., 1997; Harper and

McAlpine, 2004). Several studies have experimentally demonstrated that sensory neural

codes seem to indeed follow input distribution statistics in order to reach higher coding

efficiency (Brenner et al., 2000; Twer and MacLeod, 2001; Dean et al., 2005; Ozuysal and

Baccus, 2012). A large fraction of previous work assumed that neural representations are

tuned to maximize the mutual information they are able to convey about the stimulus val-

ues given some overall constraints on available metabolic costs, e.g. total number of spikes

(Laughlin, 1981; Linsker, 1989; Atick. and Redlich, 1990; Van Hateren, 1993; Seung and

Sompolinsky, 1993; Nadal and Parga, 1994; Brunel and Nadal, 1998; Zhang and Sejnowski,

1999; Pouget et al., 1999; Kang et al., 2004; Sharpee et al., 2006; McDonnell and Stocks,

2008; Nikitin et al., 2009; Tkacik et al., 2010; Yarrow et al., 2012; Kastner et al., 2015).

This Infomax criterion has been a preferred choice because it does not require making

any further assumptions about potential downstream computations and tasks the encoded

stimulus may be involved in. On the other hand, a few studies have taken a downstream

perspective and have argued for optimality criteria that consider how well the stimulus

information can actually be reconstructed from the neural representations. They often use

a metric criterion in terms of the mean squared reconstruction error (Bethge et al., 2002,

2003; Berens et al., 2009; Yaeli and Meir, 2010; Doi and Lewicki, 2011). This reconstruction

metric has been shown to optimize performance in perceptual estimation and classification

tasks (Salinas, 2006). Recently there have been increasing interest in comparing the infor-

mation with the metric approach (Ganguli and Simoncelli, 2010; Gjorgjieva et al., 2014;

Grabska-Barwinska and Pillow, 2014). However, a unified comparison and evaluation of
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s r

encoding

P (r|h(s))

decoding

Lp loss |ŝ(r)− s|p

Figure 8: Efficient coding problem in terms of reconstruction error. A one-dimensional
stimulus s is encoded in a neural response pattern r. We define the optimal tuning curve
h(s) as the one that minimizes the overall Lp reconstruction error according to an MLE
decoder. We study how the optimal coding strategy is dependent on the norm parameter
p. The Infomax solution is equivalent to the optimal encoder for p→ 0.

these different approaches is currently lacking.

Here, we provide a unified framework to compare these optimal criteria. We introduce a

parametric formulation of the efficient coding problem in terms of minimizing the over-

all reconstruction error according to the Lp norm, as a function of the norm parameter

p. We assume reconstruction from a maximum likelihood estimate (MLE) decoder in the

asymptotic time limit. More specifically, we consider a one-dimensional stimulus s with

distribution f(s) that is encoded with tuning curve(s) h(s) for m neuron(s). While the

mapping h(s) is deterministic, we assume the neural response r to follow a distribution

P (r|h(s)) according to neural noise. For both Poisson and Gaussian noise, we analyti-

cally derive the optimal tuning curve h to achieve minimal Lp mean reconstruction error

for arbitrary stimulus distributions. This framework includes both the Infomax as well as

mean-squared error optimal solutions in the limit of p→ 0 and p = 2 respectively. We first

focus on solutions for the optimal tuning curve h(s) of a single (sigmoidal) neuron encoding

the stimulus. We then show how the single neuron tuning curve solution can be naturally

extended to populations of neurons. Under certain assumptions, the optimal single neuron

tuning curve h(s) can be related to an optimal meta-tuning curve of the neural popula-

tion, from which the individual tuning characteristics of the population of neurons can be

determined.
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In the context of this theoretical framework, we investigate how known tuning characteristics

of biological sensory systems can be explained. We compare the measured tuning character-

istics of early sensory representations in the fly, the cat, and the monkey for known stimulus

statistics with predictions from our framework. For the examples we tested, the biological

tuning characteristics are quite well predicted by our framework, and are best matched for

small values of the norm parameter p. We conclude that early sensory representations in

biological systems may be optimized to convey maximal information.

4.2. Optimal Neural Coding for a Single Neuron

We start with the case where a single neuron is encoding a one-dimensional stimulus vari-

able s. We assume that s follows a distribution density f(s). We also assume that the

neuron’s average firing rate is determined by a sigmoidal function h(s). The actual ob-

served firing rate r is subject to neural noise, whose variability is described by a stochastic

model P (r|h(s)).

We do not limit the noise to be defined by canonical Poisson spiking model. Rather, we only

assume that (a) the mean firing rate is equal to the output of the tuning curve 〈r〉 = h(s)

and (b) the spike generating process is independent from the neuron’s spiking history.

With sufficient encoding time or with independent observations of identical neurons, the

accumulated noise is asymptotically normal with zero mean and fixed variance according to

the Central Limit Theorem. In order to decode the input stimulus s, we take the maximum

likelihood estimator (MLE) ŝ(r), which is asymptotically unbiased and efficient (Cover and

Thomas, 1991).

In order to find the Lp optimal tuning curve for a one dimensional stimulus s, we need to

minimize the mean Lp loss of the maximum likelihood estimator. The only constraint for

the sigmoidal tuning curve is the saturation limits of the firing rates. Within the regime

of low noise limit, the maximum firing rate does not affect the optimality. Therefore we
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assume 0 ≤ h(s) ≤ 1 without loss of generality, which leads to the optimization problem

minimize 〈|ŝ(r)− s|p〉s,r (4.1)

subject to 0 ≤ h(s) ≤ 1. (4.2)

4.2.1. Objective Functions in terms of Fisher Information

In this chapter we need to use the concept of Fisher information intensively. The Fisher

information I(s) describes the precision of the best possible estimator for each specific

individual stimulus s. In case of a one dimensional input s, I(s) can be calculated according

to its definition

I(s) =

〈(
∂

∂s
log p(r|s)

)2
∣∣∣∣∣ s
〉
p(r|s)

(4.3)

where the conditional distribution p(r|s) describes the stochastic neural response for a given

stimulus and the average is taken over r but not s. It has been shown that in the asymptotic

limit of long encoding time, the total Fisher information characterizes the precision of the

estimator ŝ in reconstructing the stimulus s (see Chapter 2)

(ŝ(r)− s) ∼ Normal(0, I(s)−1) (4.4)

〈 |ŝ(r)− s|p| s〉r = const(p) · I(s)−p/2 (4.5)

It is clear from Eq. (4.5) that larger Fisher information leads to smaller Lp error. One

example is the Cramer-Rao lower bound when p = 2. The more general Eq. (4.5) establishes

the connection between Lp loss in Eq. (4.1) and the Fisher information. This leads to an

equivalent optimization in terms of Fisher information:

minimize
〈
I(s)−p/2

〉
s

(4.6)

48



In addition to the Lp-error minimization problem, we also consider the well-known Info-

max optimization which maximizes the mutual information between the response and the

stimulus. It has previously been shown that Fisher information can be related to mutual

information (Brunel and Nadal, 1998; Wei and Stocker, 2016). In our framework, Infomax

is equivalent to optimizing the logarithm of Fisher information:

MI(r, s) =
1

2
〈log I(s)〉s + const (4.7)

minimize −
〈

log
√
I(s)

〉
s

(4.8)

4.2.2. Constraints in terms of Fisher Information

Next we show how to incorporate constraints in Eq. (4.2) into the same framework. For a

one dimensional stimulus variable, the Fisher information of a neuron is fully determined by

the nonlinear tuning curve h(s) and the noise model. Here we show the results for Poisson

noise (P), constant Gaussian noise (cG) and generalized Gaussian noise (gG).

P: I(s) ∝ T · h
′(s)2

h(s)
(4.9)

cG: I(s) ∝ T · h′(s)2 +O(1) (4.10)

gG: I(s) ∝ T · h
′(s)2

h(s)α
+O(1) (4.11)

In the asymptotic long time limit T → ∞, these formulae can easily be inverted – for any

given Fisher information allocation I(s), the corresponding nonlinear tuning curve is

P: h(s) ∝
(∫ s

−∞

√
I(ξ) dξ

)2

(4.12)

cG: h(s) ∝
∫ s

−∞

√
I(ξ) dξ (4.13)

gG: h(s) ∝
(∫ s

−∞

√
I(ξ) dξ

)1/(1−α/2)
(4.14)
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Given bound constraints on the tuning curve in Eq. (4.2), we have

P:

∫ ∞
−∞

√
I(s) ds ∝

∫ ∞
−∞

h′(s)√
h(s)

ds = 2
√
h(s)

∣∣∣∞
−∞
≤ const (4.15)

cG:

∫ ∞
−∞

√
I(s) ds ∝

∫ ∞
−∞

h′(s) ds = h(s)|∞−∞ ≤ const (4.16)

gG:

∫ ∞
−∞

√
I(s) ds ∝

∫ ∞
−∞

h′(s)

h(s)α/2
ds =

1

1− α/2h(s)1−α/2
∣∣∣∣∞
−∞
≤ const (4.17)

Ignoring irrelevant constant scalar terms which do not affect the optimal form, these con-

straints can be unified as a single constraint on the integral of the square root of Fisher

information:

P, cG or gG: subject to

∫ ∞
−∞

√
I(s) ds ≤ const (4.18)

Since it is always better to have more Fisher information, equality in Eq. (4.18) must hold for

optimality. To summarize, the objective function in Eq. (4.6) attempts to optimally allocate

the Fisher information I(s) across the space of the stimulus variable s with distribution

f(s) under the integral constraint in Eq. (4.18). After determining the optimal allocation

I∗(s), the optimal nonlinearity h∗(s) can then be determined using Eq. (4.12), Eq. (4.13)

or Eq. (4.14), depending upon the neural noise model.

4.2.3. Single Neuron Results

According to the above analysis, solving the Lp reconstruction error minimization problem

is equivalent to solving the Fisher information allocation problem. For each p value in the

Lp-minimum decoding loss criterion, the optimization problem is

minimize
〈

(I(s))−p/2
〉
s

=

∫
f(s) (I(s))−p/2 ds (4.19)

subject to

∫ √
I(s) ds ≤ const (4.20)
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This variational problem can easily be solved and the optimal solution is

I∗(s) ∝ f(s)2/(1+p) (4.21)

P: h∗(s) =

(∫ s
−∞ f(ξ)1/(1+p) dξ∫∞
−∞ f(ξ)1/(1+p) dξ

)2

(4.22)

cG: h∗(s) =

∫ s
−∞ f(ξ)1/(1+p) dξ∫∞
−∞ f(ξ)1/(1+p) dξ

(4.23)

gG: h∗(s) =

(∫ s
−∞ f(ξ)1/(1+p) dξ∫∞
−∞ f(ξ)1/(1+p) dξ

)1/(1−α/2)

(4.24)

A simple comparison between the two noise models reveals that the optimal tuning curve

for a neuron with Poisson noise is exactly the square of the optimal tuning curve for a

neuron with constant Gaussian noise. This relationship was first reported by (Bethge et al.,

2002) and (Johnson and Ray, 2004). The squaring transformation shows that the optimal

coding under Poisson noise tends to utilize more reliable low firing rates rather than more

unreliable higher rates. Below we focus on the constant Gaussian noise solution and discuss

the link between our general formula and several results that have been previously reported

in the literature:

• When p = 0, the L0-minimum solution is given by the cumulative function of the

input distribution,

h∗(s) ∝
∫ s

−∞
f(ξ) dξ. (4.25)

• When p = 2, the L2-minimum solution is given by the cumulative function of the cube

root of the input distribution,

h∗(s) ∝
∫ s

−∞
f(ξ)1/3 dξ (4.26)

• When p→∞, the optimal tuning curve h∗(s) converges to a linear function because
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its derivative approaches a constant function of s and the prior p(s) is no longer

relevant. However this usually requires the stimulus to be bounded s ∈ [smin, smax]

otherwise the integral of f(s)1/(1+p) will diverge for sufficiently large p.

Note that optimizing the Lp-min problem Eq. (4.19) when p→ 0 leads to the same optimal

solution as the infomax problem in Eq. (4.8). This solution, first proposed in (Laughlin,

1981; Nadal and Parga, 1994), is known as the output equalization rule because the output

h∗(s) is uniformly distributed within its range limit. We will informally refer to both “L0-

min” and the infomax solution in the remainder of this paper. When p = 2, the optimal

solution in Eq. (4.26) minimizes the mean square error of the reconstructed stimulus. This

solutions was first proposed for optimal RGB color perception (Twer and MacLeod, 2001)

and discussed in (Wang et al., 2012).

To summarize, the solution in Eq. (4.23) provides a systematic understanding of the optimal

nonlinearities for the various criteria parametrized by p. In Figure 9 we illustrate different

Lp optimal tuning curves for a standard Gaussian stimulus prior. Intuitively, the efficient

coding problem can be understood as optimizing the allocation of neural descriptive power

across an inhomogeneous stimulus distribution. Depending upon the value of p, the optimal

allocation strategy balances between more frequently appearing stimuli with less frequent

ones. Strategies corresponding more with Infomax (p near 0) emphasize stimuli with higher

likelihood of appearing. On the other hand, Lp-optimal strategies with large p are more

conservative and need to spend more resources to encode more surprising stimuli since the

error penalty is larger.

4.2.4. Examples of Various Stimulus Prior Distributions

We applied our framework to various stimulus distributions (priors). For simplicity we

only show the optimal tuning curve under the constant Gaussian noise assumption. In

particular, we considered prior distributions that follow the generalized Gaussian model

with scale parameter c and shape parameter β. From Eq. (4.23), the Lp-optimal tuning
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Figure 9: The Lp optimal sigmoidal tuning curves for for p = 0, 2, 8 for both Poisson or
constant Gaussian noise models. (a) the Gaussian stimulus distribution (prior). (b) for
each p, the optimal Fisher Information I∗(s) is derived based on the prior distribution (c)
The optimal tuning curve for Poisson noise (blue lines) or constant Gaussian noise (red
lines).

curve is related to the input stimulus distribution:

f(s) ∝ exp
(
−c|s|β

)
(4.27)

h′(s) ∝ f(s)1/(1+p) ∝ exp

(
−c
( |s|

(1 + p)1/β

)β)
. (4.28)

Therefore for a certain value of p, the nonlinearity is simply a rescaled version of the

cumulative function of f(s). The scalar (1+p)1/β is a decreasing function of β. In Figure 10

we illustrate three different cases: in the extreme of uniform distribution case where β =∞,

the scalar remains a constant and there is no difference across all the Lp-optimal tuning

curve; for the Gaussian distribution case where β = 2, the scalar grows sub-linearly as

(1 + p)1/2; for the Laplacian distribution case where β = 1, the scalar grows linearly as

(1 + p).

Another important conclusion we would like to highlight is that all the Lp-optimal solutions

except L0 are not invariant under nonlinear stimulus transforms. For example, the L2-

optimal solution for a positive valued stimulus is not the same as the L2-optimal solution for
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Figure 10: The Lp optimal sigmoidal tuning curve of a single neuron with constant Gaussian
noise model. Here we compare the results for various form of prior distributions: uniform
distribution (a)-(b), Gaussian distirbution (c)-(d) and Laplacian (or double exponential)
distribution (e)-(f).

the log-stimulus. The L0 is the only solution that is invariant under any one-to-one stimulus

transformations. This fact again demonstrates the intuition that Lp-min strategies are

highly task-driven – the solution changes if the stimulus variable undergoes some nonlinear

transformation before being processed.

4.3. Generalization to Neural Populations

Here we show how to generalize the result of a single neuron to a neural population. The

optimal neural population has been extensively studied (Zhang and Sejnowski, 1999; Pouget

et al., 1999; Kang et al., 2004; McDonnell and Stocks, 2008; Nikitin et al., 2009; Ganguli

and Simoncelli, 2010; Yaeli and Meir, 2010). The conclusions from these studies largely

depend on the assumptions about the population being made.
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4.3.1. Neural Population Assumptions

We also need to make certain restrictive assumptions. Rather than allowing all neurons

in the population to independently exhibit arbitrary nonlinear tuning curves, we limit the

tuning curve of the k-th neuron to have the following form

hk(s) = h0(ψ(s)− ψ(sk)) (4.29)

where ψ(s) is the meta-tuning curve which transforms the stimulus s. For each neuron,

sk is the characteristic stimulus associated with that neuron. For example, sk can be the

preferred stimulus (at which the neuron elicits maximum neural response) for neurons with

unimodal tuning curves or the semi-saturation stimulus (at which the neuron elicits half of

maximum neural response) for neurons with sigmoidal tuning curves.

Below we denote s̃ = ψ(s) and s̃k = ψ(sk) resulting from the output of the meta-tuning

curve. We also assume the following:

(a) All neurons in the population share the same given nonlinearity h0(s̃− s̃k).

(b) The characteristic stimuli s̃k are uniformly distributed, in other words the spacing

∆s̃ = s̃k − s̃k−1 between adjacent neurons is a constant.

(c) h0 and h′0 are slowly varying when measured at the scale of ∆s̃, i.e. h0(s̃k) ≈ h0(s̃k +

∆s̃) and h′0(s̃k) ≈ h′0(s̃k + ∆s̃). When ∆s̃ is small, this constraint is equivalent to h0

and h′0 being continuous.

(d) The neurons have independent output noise so the total Fisher information of the

population is the linear sum of each individual ones Itotal(s) =
∑

k Ik(s) (see Sec-

tion 2.2).

These assumptions are sometimes referred to as the “uniform tiling” properties of a neural

population (Ganguli and Simoncelli, 2010; Grabska-Barwinska and Pillow, 2014). It is
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important to note that the assumptions (a) and (b) limit the solutions to a sub-space of all

possible population codes for which the mapped stimulus s̃ is encoded by a homogeneous

population (see Figure 11). In our model, the total Fisher information of the population with

either the Poisson noise or constant Gaussian noise (see Eq. (4.9) or Eq. (4.10)) becomes:

I0 ≈ Itotal(s̃) =
∑
k

Ik(s̃) =
∑
k

h′0(s̃− s̃k)2
h0(s̃− s̃k)

or
∑
k

h′0(s̃− s̃k)2 (4.30)

The form of h0(·) is fixed and often assumed but not limited to be either unimodal or

sigmoidal. In Figure 11 we illustrate how to determine the individual tuning curves of the

inhomogeneous neurons in the population.
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Figure 11: Under our assumptions, the inhomogeneous neural population tuning is derived
by mapping a homogenous tuning description through the meta-tuning curve. via the
sigmoidal meta-tuning curve ψ(s). Two representative choices of h0 are (a) unimodal and
(b) sigmoidal.

4.3.2. Optimal Meta-tuning Curve

For any meta-tuning curve s̃ = ψ(s), we can calculate the Fisher Information of the k-th

neuron and the total Fisher information for the population, with respect to the original

56



stimulus s as

P: Ik(s) ∝
h′0(ψ(s)− s̃k)2
h0(ψ(s)− s̃k)

· ψ′(s)2 (4.31)

cG: Ik(s) ∝ h′0(ψ(s)− s̃k)2 · ψ′(s)2 (4.32)

gG: Ik(s) ∝
h′0(ψ(s)− s̃k)2
h0(ψ(s)− s̃k)α

· ψ′(s)2 (4.33)

P, cG or gG: Itotal(s) =
∑
k

Ik(s) ≈ I0 · ψ′(s)2 (4.34)

In the population coding case, the mean Lp reconstruction error of s is related to the total

Fisher information and we need to minimize the following term

〈
(Itotal(s))−p/2

〉
s

=

∫
f(s) (Itotal(s))−p/2 ds (4.35)

where f(s) is the prior distribution of the stimulus s. We can limit the output of a non-

decreasing meta-tuning curve to the range 0 ≤ ψ(s) ≤ const. Then minimizing the Lp

reconstruction error is equivalent to the following optimization in terms of the meta-tuning

curve ψ(s):

minimize
〈

(Itotal(s))−p/2
〉
s
≈ I−p/20 ·

∫
f(s)ψ′(s)−p ds (4.36)

subject to

∫
ψ′(s) ds ≤ const. (4.37)

This optimization problem is the same as the constant Gaussian noise case we previously

discussed in Section 4.2.3. This leads to a solution for the optimal meta-tuning curve ψ∗(s)

with corresponding total Fisher information:

ψ∗′(s) ∝ f(s)1/(1+p), I∗total(s) ∝ f(s)2/(1+p) (4.38)

ψ∗(s) =

∫ s
−∞ f(ξ)1/(1+p) dξ∫∞
−∞ f(ξ)1/(1+p) dξ

(4.39)
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This result illustrates that under our model, the Fisher Information allocation for the pop-

ulation is entirely determined by the meta-tuning curve ψ(s), in the same fashion as the

Fisher information allocation is determined by the sigmoidal tuning curve h(s) of a single

neuron with constant Gaussian noise. In Figure 12 we show the L0, L2 and L8 optimal

neural populations to encode a Gaussian stimulus random variable. Compared to previous

work by Ganguli and Simoncelli (2010), our framework considers a more constrained class

of neural populations because it assumes a fixed gain across neurons. Our formulation, how-

ever, allows us to specify an entire family of Lp-optimal solutions that smoothly incorporate

the special cases of the Infomax and the MSE solutions.
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Figure 12: The Lp optimal neural populations for p = 0, 2, 8. Panels (a), (b) are replicated
from Figure 9 and the optimal meta-tuning curve for the population is identical to the
optimal tuning curve of a neuron with constant Gaussian noise. Here we show two different
kinds of optimal neural population, where each neuron has (c) unimodal tuning curves or
(d) sigmoidal tuning curves.
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4.4. Relaxing the Asymptotic Assumptions

For both the single neuron case and the neural population case, our results so far have relied

on several key assumptions. The most restrictive one is the assumption that neurons are

operating in the asymptotic long time limit. In this limit, the optimal decoder naturally

converges to the maximum likelihood estimator. In contrast, in a more realistic scenario

where encoding time is short, it is generally the case that a Bayesian (and usually biased)

decoder will perform better. Unfortunately it is difficult to derive analytic solutions in

this case yet numerical efforts have been made (Bethge et al., 2003; Nikitin et al., 2009).

Furthermore, the derivation of the optimal Bayesian decoder can be intractable for arbitrary

prior distributions.

In order to provide a sense of how well our derived analytic solutions hold for shorter encod-

ing times, we compared their predicted performance to the actual measured performance

obtained by numerical simulations. The decoding performance of our Lp optimized coding

solutions can be easily simulated for arbitrary encoding times. For reasons of simplicity, we

considered a standard Gaussian stimulus distribution p(s) in our simulations. The encoding

process is straightforward: stimuli are sampled and encoded by the Lp optimal code with

additional Poisson spiking noise. For the decoding process, we examined both the assumed

unbiased, maximum-likelihood estimator (MLE) and the maximum a posteriori estimator

(MAPE). In both cases, iterative gradient descent method (Newton’s method) was used to

find the stimulus with maximal likelihood (for MLE) or maximal posterior likelihood (for

MAPE). The mean Lp decoding error was then calculated over a large set of generated

stimuli and compared to the theoretical prediction.

For a neuron with maximum firing rate rmax and a fixed length of the time window T , the key

variable is the maximum allowed spike-count Nmax = rmaxT . For each value of Nmax we run

a total of 100 independent trials and in each trial, 100,000 stimuli were randomly generated.

This experiment was done for both a single neuron with sigmoidal tuning curve and for a

population of neurons with unimodal tuning curves. Results are shown in Figure 13. As
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expected, the theoretical predictions were more accurate when Nmax was large, with the

critical value for Nmax increasing as a function of p. For shorter encoding time, our result

shows that the MAPE is a better estimator despite the similar performance for larger Nmax.

The performance of the MLE seems to be lower bounded by our theoretical prediction (see

the solid line) but the MAPE benefits from the prior information and is upper bounded by

a constant related to that prior.

In the single neuron case, the critical spike-count Nmax ranges from approximately 102 (for

p = 0.01) to approximately 104 spikes (for p = 2). For some sensory neurons, such as the

H1 neuron of a blowfly (see Section 5.1), the maximal firing rate rmax can be as high as

100Hz which means that the critical time for the long encoding assumption to be valid is

around T ≥ 1 sec (for p = 0.01) to T ≥ 100 sec (for p = 2). In the neural population

case, we run simulations with K = 11 neurons with unimodal tuning curves. As expected,

the performance in terms of the Lp error is one order of magnitude better than for the

single neuron case. Correspondingly, the critical spike-count Nmax is much smaller: from

approximately 100.5 (for p = 0.01) to approximately 101.5 spikes (for p = 2). For small p

values, the performance matches the theoretical prediction for populations containing as

few as 11 neurons with Nmax ≥ 3 spikes per neuron. For larger p value such as p = 2, this

number may increase to Nmax ≥ 30 spikes per neuron.

In sum, we found that depending on the value of p the long time-limit assumptions can

be reasonably relaxed for short encoding times. In particular, we find that the critical

spike-count can be as low as Nmax = 3 ∼ 30 spikes per neuron which justifies the bio-

logical relevance of our result. Generally, the predictions of our framework are much less

constrained for smaller p values. We have also found that the performance of a Bayesian

decoder (the MAPE) tends to be better than the MLE decoder, which shows that the

optimality of our solution (MLE) strongly rely on the unbiased assumption. Fortunately,

this limitation is subordinated to the short encoding time limitation. The MAPE itself is

asymptotically unbiased and has similar performance as the MLE decoder once the critical
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Nmax is reached.
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Figure 13: The simulated Lp encoding error (MLE: red dot, MAPE: blue cross) versus the-
oretical prediction assuming unbiased estimator (solid lines) or using only prior information
(dashed lines). The markers indicates the median over 100 trials. (a) The performance of
a single neuron with sigmoidal tuning curve (see e.g. Figure 10d). (b) The performance
of a population with K = 11 neurons with unimodal tuning curves (see e.g. Figure 12c).
The vertical axis is the mean Lp loss 〈|ŝ− s|p〉1/p and the horizontal axis is Nmax, both in
logarithm space with base 10.

4.5. Efficiency Criteria Used in Early Visual Perception Systems

Our theoretical analysis raises the question of which efficiency criterion the brain actu-

ally uses to encode information. In this section, we considered several different modalities

in early visual perception: motion encoding, orientation encoding and contrast encoding.

In each case, we attempted to estimate the prior distribution of the input stimulus and

compared the tuning characteristics of the predicted efficient coding model with published

physiological data.
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4.5.1. Speed Perception by a Single Blowfly H1 Neuron

We first analyze data from the H1 neuron of blowfly, which encodes the speed s of a

horizontally moving bar. The analyzed dataset (de Ruyter van Steveninck et al., 1997)

was collected from a fly H1 neuron responding to a stochastically generated visual motion

stimulus. The data was taken for 20 minutes at a sampling rate of 500Hz. For our purposes,

we bin the dataset into 1200 bins with duration ∆t = 1 second and we calculate the average

stimulus si and the number of spikes Ni for i = 1, . . . , 1200 and the stimulus-response

relationship is plotted as dots in Figure 14a.

The natural speed prior for the blowfly is unknown. However, based on the investigation

of natural movie clips, previous research has proposed that the prior distribution for visual

speed should follow a power-law function of the form f(s) ∝ (1 + |s|/v0)−2, where v0 > 0

is a scale parameter (Van Hateren, 1993; Dong and Atick, 1995). For this particular form

of the prior, the optimal Lp tuning curve h∗p(s) for a neuron with Poisson noise can be

analytically computed.

h∗p
′(s) ∝ f(s)

1
1+p ⇒ h∗p(s) ∝

(
1 + sign(s)

(
1− 1

(1 + |s|/v0)
1−p
1+p

))2

(4.40)

It can be seen that for this parametric form of prior distribution, the Lp optimal solution

exists only for 0 ≤ p ≤ 1. In order to infer the prior distribution and the optimality

criterion, we optimize the parameters v0 and p to maximize the data likelihood. The result

in Figure 14b shows the predicted speed prior distribution to which the H1 neuron is most

likely adapted to. In Figure 14c-d we can see that v0 = 21.3 deg/sec and p = 0 achieves the

best data likelihood. However other pairs of (p, v0) for p < 0.8 also yield good likelihood

scores for this data.
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Figure 14: (a) the stimulus-response data collected from a fly H1 neuron (de Ruyter van
Steveninck et al., 1997) and we plot the best tuning curve using the parametric model in
Eq. (4.40). (b) the predicted prior distribution to which the fly H1 neuron is most likely
adapted. (c) the optimal parameter v0 and p is chosen to maximize the data likelihood.
Dash line shows the optimal parameter v0(p) as a function p. (d) The maximum data
likelihood for each pair (p, v0(p)) as a function of p.

4.5.2. Population Code in Orientation Encoding

We also applied our proposed framework to analyze biological neural populations that en-

code local visual orientation. We first estimated the prior distribution f(θ) of local visual

orientation θ from a natural image dataset (van Hateren and van der Schaaf, 1998) using

a filter analysis at a single spatial scale (detailed description in Appendix 4.7). The result-

ing prior distribution is shown in Figure 15c and is very similar to previously estimated

distributions (see e.g. Girshick et al. (2011)). Based on the estimated prior density, we

derived the optimal meta-tuning curves ψ(θ) for various values of the norm parameter p

(see Figure 15b). The unimodal tuning curves of the population (see Figure 15d) were then

determined as described in Section 3.2 assuming an homogeneous population of certain
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tuning width w̃ (see Figure 15a). Below we compare predictions of the model population

with measured biophysical characteristics of orientation tuned neurons.

The first prediction is with regard to neural density. De Valois and colleagues reported

that the ratio between neurons tuned for oblique vs. cardinal orientations is about 0.66

in area V1 of the macaque (Valois et al., 1982). In our framework the neural density as a

function of θ is directly related to the derivative of the meta-tuning curves (Figure 15f). In

order to compute the ratio between the number of neurons tuned for the oblique vs. the

cardinal orientations, we binned the neural population into two sub-populations shown as

blue/red regions in Figure 15f. The predicted ratio is a function of the norm parameter p

(Figure 15e); for p ≈ 0.37 the ratio of the model population matches the ratio found for

neurons in V1.

We can also predict how the tuning width depends on the preferred stimulus of the neurons.

Following the definition of Ringach et al. (2002), we defined the tuning width w as the

length of the orientation interval over which a neuron’s mean response is at least 1/
√

2 of

its peak firing rate. Figure 15h shows the predicted tuning width w(θ) as a function of

the preferred orientation θ of a neuron in the model population. Each curve shows the

tuning width w(θ) for a different assumed constant tuning width w̃ in the homogeneous

population (Figure 15a). From these continuous functions we calculated the first and third

quartiles w1Q, w3Q of the tuning widths across the inhomogeneous population. For each p

value, the possible values of w1Q(w̃) and w3Q(w̃) form a curve with parameter w̃ as shown in

Figure 15g. A comparison of the quartile predictions with physiological data from neurons

in area V1 of the macaque (Ringach et al., 2002) suggests that the model best matches the

data for a norm parameter of value p = 0.08.

Finally, we can make predictions about tuning curve asymmetries. Specifically, we compared

the predicted asymmetry index (Henry et al., 1974) of our model population with the values

found for biological neurons. Similar to the tuning width, the predicted asymmetry index is

also a function of the assumed tuning width w̃ of the neurons in the homogeneous population
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(see Figure 15j). We computed the predicted relationship between the mean asymmetry

index and the median tuning width for different p value and compared it with measurements

from simple cells in striate cortex of the cat (Henry et al., 1974). The reported median tuning

width (measured at 1/2 peak amplitude; we have rectified our predictions accordingly) of

34◦ and asymmetry index 1.26 matches our predictions for p ≈ 0.85 (see Figure 15i).

In summary, we found that the measured orientation tuning characteristics of neurons in

primary visual cortex of the macaque and the cat match those model predictions that

correspond to fairly low values of p.

4.5.3. Population Code in Contrast Perception

We also applied our framework to make predictions for the contrast gain characteristics of

neurons in early visual cortex. The contrast of natural images has been defined in multiple

ways in the literature. Two standard definitions of local contrast are the root-weighted-

mean-square contrast (Najemnik and Geisler, 2005; Mante et al., 2005) and the equivalent-

Michelson contrast (Brady and Field, 2000; Tadmor and Tolhurst, 2000; Clatworthy et al.,

2003). We use the equivalent-Michelson contrast in order to match our predictions with

recorded physiological data (Clatworthy et al., 2003). We gathered a total of 200,000 patches

of size 32x32, randomly sampled from natural images from the dataset (van Hateren and

van der Schaaf, 1998). The histogram of their equivalent-Michelson contrast is regarded as

the prior distribution of the environment (see Figure 16c). The detailed description of this

process is discussed Section 4.8.

In early visual perception systems, contrast information is encoded by a population of

neurons with contrast selectivity in a soft-thresholding manner. One traditional model

characterizes the neuron’s response as a function of the contrast c via the Naka-Rushton

equation (Naka and Rushton, 1966),

h(c) = hmax ·
cq

cq50 + cq
(4.41)
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where hmax is the maximum possible firing rate, c50 is the semi-saturation contrast so that

h(c50) = 0.5 ·hmax and q is an exponent parameter characterizing the steepness of the curve

near c50. Using our framework, we can predict the distribution of semi-saturation constant

c50 within a population and compare that to physiology data (Clatworthy et al., 2003) (see

Figure 16e). Our prediction suggests that the monkey V1 neurons are roughly performing

infomax (p ≈ 0.15) strategy while the cat striate cortex neurons are using a larger value of

p (p ≈ 0.75). As we can see from Figure 16e, the fit for c50 distribution of cat striate cortex

is worse than the fit for c50 distribution of monkey’s V1. The neural population in cat V1

seems to be adapted to smaller contrast values. This may be due to the mismatch between

the natural image dataset and the true visual environment of the animal.

4.6. Discussion

In this paper we have proposed a family of efficiency criteria for neural coding. Each

efficiency criterion uniquely determines an optimal way of encoding a scalar stimulus with

an arbitrary prior distribution. The efficiency criteria are parametrized by a parameter

p ≥ 0 associated with the underlying goal of minimizing the Lp reconstruction error when

using a maximum likelihood decoder. These efficiency criteria naturally generalize several

special cases that have received much attention in the literature, e.g. the Infomax case

(p→ 0) or the minimal mean squared error (MMSE) case (p = 2).

For each optimality criterion and a stimulus with known prior, we analytically derived the

optimal tuning curve for a single neuron. To extend this result to determine optimal neural

populations, we proposed to use the meta-tuning curve and showed that the optimal meta-

tuning curve is identical to the optimal tuning curve for a single neuron with Gaussian noise.

These predictions based upon different optimality criteria are tested against previously

measured characteristics of several early visual systems for different animals. Predictions

corresponding to low values of p provides the best match, which suggests that the optimality

criterion is near Infomax for the neural representations being considered.
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In our model and analysis, we have made the key assumption that the decoder is asymp-

totically unbiased. This implies that the results are strictly valid only in the low noise

regime, e.g. when there is sufficient encoding time and/or a sufficient number of neurons.

However, based on numerical simulations we found that it is reasonably safe to relax the

long encoding time assumption in particular if the neural population size is large and/or

the optimal criterion parameter p is small.

Many behavioral studies also suggest that human and other animals make decisions that are

often biased due to the effects of prior beliefs (Knill and Richards, 1996; Wei and Stocker,

2015). With numerical simulations we showed that at short encoding times, the Bayesian

MAPE decoder is indeed performing better than the unbiased MLE decoder, and slightly

better than our analytic predictions. In fact, the performance of the MLE is lower bounded

by our theoretical predictions (solid lines in Figure 13) while the performance of the MAPE

benefits from the prior information. Thus our results are strictly valid only when assuming

an MLE decoder.

In Section 4.2.2, we analyzed the Poisson noise model and the constant Gaussian noise

model. Similar analysis can be applied to other noise models where the output variance

depends upon the output mean. For neural populations, we assumed that the output noise

of an individual neuron is independent from the others, thus simplifying the computation

of the total Fisher information of the population. If the output noise has a correlated

structure, then the total Fisher information is no longer the linear sum of the individual

Fisher informations. Analysis of neural populations described by a meta-tuning curve with

correlated noise is a subject for further investigation.

In conclusion, we believe that our model shows the utility of exploring different reconstruc-

tion error criterion for analyzing neural responses in perceptual systems. The parameter p

describes whether the neural system is adapted to more or less robust error statistics, and

we have obtained some estimates of this parameter from data on early visual processing

neurons in a number of different animals. It will be interesting to explore how the parameter
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p changes as information propagates through various stages of the perceptual system. We

are also currently investigating how this analysis can be extended to higher-dimensional

stimuli and to more complex noise models.

4.7. Appendix I: Estimating the Distribution over Local Orientation

We extracted orientation statistics for natural images from a standard image database (van

Hateren and van der Schaaf, 1998). First we randomly sampled 200,000 square patches

(16pix-by-16pix) across the entire database. We then created a set of sinewave grating filters

with a fixed spatial frequency that was close to the human peak sensitivity (approximately

4 cycle per visual degree or 8 pixels/cycle) but various phase and 360 different orientations

(0◦ to 179.5◦ with 0.5◦ spacing). The dominant orientation of each patch was determined by

the maximum response across all these filters. To mitigate the effect of pixel-wise noise or

quantization effects, we only used those patches with high filter response levels (top 50%).

The resulting prior distribution is very similar to previously measured distributions (e.g.

Girshick et al. (2011)) and is shown in Figure 15c. We used a spline function to fit the

cumulative of the empirical histogram in order to obtain a smooth version of the density

f(θ).

4.8. Appendix II: Equivalent-Michelson Contrast

Originally, the Michelson contrast is defined for sinusoid gratings based on its max/min

luminance

c =
Lmax − Lmin

Lmax + Lmin
(4.42)

It is clear the the Michelson contrast has a value between 0 and 1. For any patches of

non-sinusoid gratings, we determine its equivalent-Michelson contrast in the following way.

For each image patch, we use a set of 64 odd-Gabor filters ggabor(x, y) of different orientation

θ and wavelength λ to convolute with natural image patches to obtain local responses.
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Specifically, the Gabor filters are

ggabor(x, y) = gnormal(x, y) · gsinusoid(x, y) (4.43)

gnormal(x, y) = exp

(
−x
′2 + y′2

2σ2

)
, gsinusoid(x, y) = sin

(
2π
x′

λ

)
(4.44)

x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ, σ =
1

π

√
ln 2

2

2b + 1

2b − 1
λ (4.45)

where the orientation θ takes 8 values uniformly sampled from the range [0, π], the wave-

length λ takes 8 values uniformly sampled in the logarithm space from 4 to 85.3 pixels per

cycle. The size of Gaussian filter σ is automatically determined by the wavelength λ and

a fixed octave value b = 1.5 in order to best match the properties of simple cells in the

primary visual cortex.

With such a filter bank of 64 Gabor filters, we calculate the equivalent-Michelson contrast

for each image patches. For each Gabor filters, we use the corresponding Gaussian filters

gnormal(x, y) to compute the local mean luminance to model luminance adaptation. We also

use the corresponding sinusoid filter gsinusoid(x, y) to construct a testing sinusoid grating

Lave + Lamp · gsinusoid(x, y). By properly choosing the parameters Lave and Lamp, we can

match both the Gabor-filter response and the Gaussian-filter response. The equivalent-

Michelson contrast is then determined by the Michelson contrast of this testing grating:

Lmax = Lave + |Lamp|, Lmin = Lave − |Lamp| ⇒ c =
|Lamp|
Lave

(4.46)

The above process is summarized in Figure 17. The local contrast value of each image

patches is then determined by taking the maximum among the 64 equivalent-Michelson

contrast values calculated using the Gabor filter bank. This max operation is taken in

order to match the normalization computation taken place in the visual perception pathway

(Carandini and Heeger, 2012). Neurons that are responding to a low contrast value often

appear to be silent (normalized out) when there is a neighbor neuron responding to a

significantly larger contrast.
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Figure 15: Comparison between theoretically predicted and physiologically measured tuning
characteristics of orientation tuned neural populations. (a)-(d) cartoon examples of Lp-
optimal neural population derived based on a homogeneous neural population and the
optimal meta-tuning curve, which is determined by the prior distribution extracted from
natural images. The p values are 0, 0.5 and 1. (e)-(f) the oblique versus cardinal ratio
prediction is compared with previous results (Valois et al., 1982) on macaque V1 foveal
neurons, which suggests p ≈ 0.37. (g)-(h) the 1st and 3rd quartile tuning width prediction
is compared with previous results (Ringach et al., 2002) on macaque V1, which suggests
p ≈ 0.08. (i)-(j) the asymmetry index and median tuning width(*) prediction is compared
with previous results (Henry et al., 1974) on cat’s striate cortex, which suggests p ≈ 0.85. (*
the tuning width here is measured at half amplitude to be consistent with previous study.)
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Figure 16: The analysis of optimal Lp optimal neural population to encode contrast value
in natural images. (a)-(d) cartoon examples of Lp-optimal neural population are derived
based on a homogeneous neural population and the optimal meta-tuning curve, which is
determined by the prior distribution of equivalent-Michelson contrast extracted from natural
images. The p values are 0,1,2. (e)-(f) the predicted of c50 distribution for the entire
population is compared with physiology data reproduced from (Clatworthy et al., 2003) on
cat’s striate cortex and monkey’s V1, which suggests p ≈ 0.15 for the monkey and p ≈ 0.75
for the cat.
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CHAPTER 5 : Lp Optimal Codes for High Dimensional Stimulus

5.1. Introduction

In this section we aim to further generalize results from Chapter 4 to multivariate stimulus

s. Here we present the result for the general Lp optimal criteria, non-Gaussian stimulus

prior and possibly an over-complete neural population. As a special case, the optimal

L2 complete population for high-dimensional Gaussian stimulus has been discussed in our

previous paper (Wang et al., 2013).

First we need to extend some notions to their high dimensional analogies because both

the stimulus s and the its estimator ŝ are n-dimensional. We need to consider the high

dimensional Lp-error of an n-dimensional vector ŝ− s.

‖ŝ− s‖p =

(
n∑
i=1

|ŝi − si|p
)1/p

. (5.1)

This notion defines a norm only if p ≥ 1 and a semi-norm if 0 < p < 1. Now we wish to

optimize the overall Lp loss under a similar set of constraints on the population

minimize 〈‖ŝ− s‖p〉ε,s (5.2)

subject to rank(Wn×m) = n,
m∑
k=1

gk ≤ gtotal (5.3)

0 ≤ hk(t) ≤ 1 for k = 1, . . . ,m. (5.4)

Here the filter W is assumed to be full rank so it must be either complete or over-complete.

The total gain of the population is given by gtotal which describes a constraint which limits

the output range of each neuron.
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5.1.1. Objective Functions in terms of Fisher Information

The idea of Fisher information can also be extended to its matrix form for multivariate

case. For each location of s, the k-th neuron contributes a rank one matrix to the overall

Fisher information matrix

Ik(s)n×n =
〈
∇s log p(rk|s) · ∇s log p(rk|s)T

〉
rk

(5.5)

The total Fisher information is the linear sum of these rank one matrices I(s) =
∑m

k=1 Ik(s)

and it still holds true that the error vector ŝ−s is asymptotically a Gaussian random variable

with mean 0 and covariance matrix I(s)−1.

ŝ− s ∼ Normal(0, I(s)−1) (5.6)

However, the Lp loss for vectors defined in Eq. (5.1) does not have a simple relationship with

the Fisher information matrix except when p = 2. This is because the Lp error depends on

the choice of the coordinate system and is not rotationally invariant in general. To resolve

this issue, we choose a different way to define the Lp error in high dimensional spaces by

using the eigenvalues of the Fisher information matrix, which is coordinate system free.

Let us denote I(s) = U(s)TΛ(s)U(s) as the eigenvalue decomposition of I(s). We also

denote Λ(s) = diag(λ1(s), . . . , λn(s)). For an asymptotically Gaussian random variable we

can show that

‖ŝ− s‖pp ≈ tr
[
I(s)−p/2

]
= tr

[
Λ(s)−p/2

]
=

n∑
i=1

λi(s)−p/2 (5.7)

Using this result, one can show that the high-dimensional Lp-min and infomax problem is

just Eq. (5.8) (see Section 2.3 for detailed derivation).

minimize
〈

tr
[
I(s)−p/2

]〉
s

(5.8)

75



Similar to the 1D case, p parametrically connects various criteria to measure the neural

coding quality. As a special example, the above problem is equivalent to the minimum

mean squared error (MMSE) problem when p = 2

minimize
〈
tr
[
I(s)−1

]〉
(5.9)

In the limit of p → 0+, denote M = I(s)−1 and one can use matrix exponential of a

positive-definite matrix

Mp/2 = exp
(p

2
log M

)
= I +

p

2
log M +O(p2) (5.10)

⇒ tr
[
Mp/2

]
= tr [I] +

p

2
tr [log M] +O(p2) = n+

p

2
log det M +O(p2) (5.11)

As p goes to zero, the leading order optimization problem is equivalent to the infomax

problem (compare to Eq. (4.6) for the 1D case; see (Brunel and Nadal, 1998) for derivation

of multivariate case)

minimize − 1

2
〈log det I(s)〉s = −1

2
〈tr [log I(s)]〉 (5.12)

5.1.2. Constraints in terms of Fisher Information

The optimal nonlinearities of a neuron with Poisson noise, constant Gaussian noise or

generalized Gaussian noise (see Eq. (4.12) - Eq. (4.14)) are equal to each other after raising

to a proper power. For example, the optimal nonlinearities for Poisson neurons can be

exactly derived by applying the square operation on optimal nonlinearities for Gaussian

neurons. For the purpose of clarity, we will focus on the constant Gaussian noise case for

the rest of the paper.

For a population of neuron with constant Gaussian noise, the individual Fisher information

for each neuron and the total Fisher information for the population are given by (see
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Section 2.2 for detailed derivation)

Ik(s) = g2k · h′k(wT
k s)2 ·wkw

T
k (5.13)

I(s) =

m∑
k=1

Ik(s) = WGH(s)2GWT (5.14)

where W is the linear filter, G and H(s) are diagonal matrices indicating the gain and the

sensitivity at s for the population

Wn×m =

(
w1, . . . ,wm

)
(5.15)

Gm×m =


g1 0

. . .

0 gm

 (5.16)

H(s)m×m =


h′1(w

T
1 s) 0

. . .

0 h′m(wT
1 s)

 (5.17)

5.1.3. Full Optimization Problem and Its Variant

As we have discussed above, the objective function for Lp error minimization is

minimize
〈

tr
[
(I(s))−p/2

]〉
=
〈

tr
[(

WGH(s)2GWT
)−p/2]〉

(5.18)

subject to rank(W) = n, tr
[
G2
]
≤ gtotal (5.19)

0 ≤ hk(·) ≤ 1, k = 1, . . . ,m, (5.20)

This problem can be analytically solved for special cases when p = 2 or the limit of p→ 0.

For general value of p, this optimization problem is intractable because of the nonlinear

entanglement between the expectation and the fractional matrix power in Eq. (5.18).

To resolve this issue, we consider an alternative form of the optimization problem. Instead
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of assuming the best possible decoder P∗(s), we assume a fixed, unbiased decoder ŝ = PT t̂

where P is one particular right-inverse of W (there could be many) which satisfies WP = In

and t̂k = h−1k (g−1k rk). We measure the asymptotic Lp loss of such decoder ŝ and the best

possible P∗ should attain the lower bounds provided by the Fisher information

min
P

〈
tr
[(

PTG−1H(s)−2G−1P
)p/2]〉

=
〈

tr
[(

WGH(s)2GWT
)−p/2]〉

(5.21)

P∗(s) = GH(s)2GWT
(
WGH(s)2GWT

)−1
(5.22)

As we have shown above, the optimal P∗(s) is a function of s, which makes the problem

intractable. However the optimal P∗(s) may become trivial under two circumstances: (1)

if GH(s)2G = λI is a constant matrix or (2) if W is invertible.

In the first case, we will show that the optimal P∗ is the pseudo inverse WT (WWT )−1 and

more discussion will be presented in Section 5.2. Under the second condition, the matrix

W is n × n which indicates that the population is complete and P∗ can be reduced to

the ordinary matrix inverse W−1. This case is dealt with in Section 5.3. When neither of

these two conditions is satisfied, we have to sacrifice the optimality of P if we want to solve

the problem analytically. In particular, we fix a reasonable P and optimize the left side of

Eq. (5.21) instead of the true objective function in Eq. (5.18).

5.2. Results for Linear Neurons

In this section, we consider a closely related but very important variant of the original

problem. Instead of nonlinear transfer functions gkhk(w
T
k s), we assume the activation

function is linear hk(x) = hk · x. Under such assumption, all neurons are linear and can

generate real valued outputs, the multiplicative factor gk and hk can be omitted because

they can be represented in the linear projection wk. As a consequence, each linear neuron

in the population simply calculates the linear projections wT
k s of the original variable and

is subject to a constant Gaussian noise with equal variance ε ∼ Normal(0, I). In particular,
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the response of each neuron in the population is given by

rk = wT
k s + εk or matrix form r = WT s + ε (5.23)

where W is a full rank projection matrix to be optimized. Let P = WT (WWT )−1 be

the pseudo inverse matrix. In this case, the unbiased estimator in Eq. (5.22) is simply

ŝ = PT r. The error vector ŝ − s = PT ε is a Gaussian random variable with covariance

cov(ŝ − s) = PTP because the noise ε is a standard Gaussian. It is clear that the Fisher

information matrix given in Eq. (5.14) is indeed the inverse of the constant covariance

matrix I(s) = WWT = (PTP)−1 for this projection matrix P.

For arbitrary prior distribution f(s), the decoding error ŝ − s is independent of s and has

identical Gaussian distribution no matter what the value of s is. Here, as usual, we want

to minimize the Lp loss of this decoding error by choosing the optimal filters W. Because

there is no saturation constraints on hk(s) anymore, here we optimize the problem under

the total power constraint, which assumes the total variance of all neuronal channels cannot

exceed a certain amount

total power = tr [cov(r)] = tr
[
WTCW + I

]
= const. (5.24)

where C = cov(s) is the covariance of the stimulus variable. The objective function depends

only on the linear filter W

minimize
W

tr
[
I(s)−p/2

]
= tr

[
(WWT )−p/2

]
(5.25)

subject to tr
[
WTCW

]
= ctotal. (5.26)

To solve the above problem, one can use the Singular Value Decomposition (SVD) of

Wn×m = Un×nDn×mVm×m and optimize these matrices. In the SVD, U,V are unitary

matrices and D is a rectangular matrix with singular values (d1, . . . , dn) along the diagonal
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and zero at all other off-diagonal entries. With some calculation one can show that

(WWT )−p/2 = (UDDTUT )−p/2 = U(DDT )−p/2UT (5.27)

WTCW = VTDTUTCUDV (5.28)

We can take the trace, rearrange the terms and denote zi = (UTCU)ii. This would lead to

an equivalent optimization problem

minimize
U,D,V

tr
[
(DDT )−p/2

]
=

n∑
i=1

(d2i )
−p/2 (5.29)

subject to tr
[
(DDT ) ·UTCU

]
=

n∑
i=1

d2i zi = ctotal. (5.30)

The optimization problem is now free of V therefore the optimal V can be any unitary

matrix. On the other hand, for any fixed unitary matrix U (and fixed zi), the optimal

condition for d2i is

(d2i )
−p/2−1 − λzi = 0 ⇒ d2i = λ0 · z−2/(p+2)

i (5.31)

If we plug this into the constraint

n∑
i=1

d2i zi = λ0 ·
∑
i

z
p/(p+2)
i = ctotal ⇒ λ0 = ctotal ·

(∑
i

z
p/(p+2)
i

)−1
(5.32)

Plug the optimal d2i and λ0 back into the original optimization problem, we eventually get

the final form of the optimization

minimize
U

φ−1

(
n∑
i=1

φ(zi)

)
(5.33)

where φ(z) = zp/(p+2) is a positive and concave function for any p > 0. Note that we also

have the implicit constraint
∑

i zi = tr
[
UTCU

]
= tr [C] = const. Therefore to minimize

the above problem, we need to make the diagonal terms zi to be different from each other
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as much as possible. The extreme case is achieved when UTCU = Λ is diagonal and zi’s

are exactly the eigenvalues up to any permutation. Therefore we can conclude that the

optimal U∗ has to diagonalize the input covariance C. For formal proof see Section 5.6.1.

Here we summarize the result for a complete or overcomplete linear population. Let C =

UΛUT be the eigenvalue decomposition of the stimulus covariance C. Then optimal filter

W∗ is

W∗ ∝ Un×n

[
(Λn×n)−1/(p+2) ,0n×(m−n)

]
Vm×m (5.34)

and the constant scalar is determined by the total energy budget. The linear encoding

procedure t = WT
∗ s can be summarized as the following. First of all, the input stimulus s

is projected to obtain eigen-components UT s. Then depending on the value of p, each eigen-

component is renormalized by the matrix Λ−1/(p+2). Next, additional zeros were added to

embed this n-dimensional signal into a m-dimensional space to obtain the partially whitened

stimulus s̃p

s̃p =

Λ−1/(p+2)UT s

0

 . (5.35)

At last, a random projection matrix V is selected to complete the linear filter t = VT s̃p.

The actual response is subject to some noise r = t + ε. This process is illustrated in [figure

x]. This result provides us some insight on how the optimal encoding strategy varies with

the optimal criteria, using a simple linear population codes. For example when p = 0, we

revisit the infomax solution where the renormalization matrix Λ−1/2 is exactly the whitening

matrix. Similarly for other values of p, the renormalization will only partially whiten the

input stimulus. For example, the L2 optimal code uses orthogonal filters to process half-

whitened data instead of fully whitened the data and the L∞ optimal code uses orthogonal

filters in the original space without any preprocessing. See Figure 18 for an summary of

the optimal linear encoding process. In Figure 19 we show the solutions W∗ = (w1,w2) for
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the special case where m = n = 2 for p = 0, 2, 8.

From the information theoretical perspective, this entire problem for linear neural popula-

tion can also be understood as a robust coding problem for Gaussian channels. The study

of optimal infomax coding has been studied in (Atick. and Redlich, 1990; Guo et al., 2005).

A special case for L2 optimal code in (Doi et al., 2005; Doi and Lewicki, 2011), where the

Gaussian prior distribution allows a maximum a posteriori estimator. In this specific case,

our L2 solution is a special case when the signal-noise-ratio (SNR) is large. On the other

hand, our solution is valid for all value of p and does not require the prior distribution to

be Gaussian.
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ŝ3

v2v3

vT
1 ŝ vT
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Figure 18: The optimal linear encoder for arbitrary prior distributed stimulus variable.
The input stimulus s is (1) mapped to its eigenspace UT s; (2) partially whitened as
Λ−1/(2+p)UT s to a degree depending on p; (3) embedded in a higher dimensional space
by adding additional zeros s̃ = [Λ−1/(2+p)UT s; 0]; (4) projected by an orthogonal basis to
generate the overcomplete representation t = VT s̃.
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Figure 19: The Lp-optimal filters W to encode a two-dimensional stimulus variable with
certain covariance. In each plot, we show one specific solution W∗ so that w1,w2 are
symmetric about y-axis. The aspect ration of the prior distributions betwee eigen-directions
varies from 1:1, 4:1 to 9:1. The value of p is 0,2,8 from left to right. Smaller value of p lead
to solutions with higher sensitivity to changes in input variance.

5.3. Results for Linear-nonlinear neurons

Now we move on to the general case of using a population of m linear-nonlinear neurons

to encode an n-dimensional stimulus variable. The noise model is assumed to be constant

Gaussian. As we have discussed, the optimal population with Poisson noise can be eas-

ily derived using the optimal population with Gaussian noise. However, we assume the

metabolic constraint is imposed on the underlying population of Poisson neurons. In this

case, if the gain of each corresponding Gaussian neuron is gi (for optimization simplicity),

then the actual energy constraint should be

tr
[
G2
]
≤ gtotal (5.36)
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5.3.1. The Optimization Problem

In order to optimize the left side of Eq. (5.21), the objective function for Lp error minimiza-

tion is

minimize Lp(W,P,G,H) =
〈

tr
[(

PTG−1H(s)−2G−1P
)p/2]〉

(5.37)

subject to rank(W) = n, WP = In, tr
[
G2
]
≤ gtotal (5.38)

0 ≤ hk(·) ≤ 1, k = 1, . . . ,m, (5.39)

where W,P,G,H are defined in Section 5.1. The objective function Lp(W,P,G,H) still

cannot be optimized analytically. However, if we artificially limit P to be not s dependent,

then there are two sharp bounds for the objective function which allow us to obtain a good

characterization of near optimal solutions:

tr

[(
PTG−1

〈
H(s)−p

〉2/p
G−1P

)p/2]
(5.40)

≤Lp(W,P,G,H) (5.41)

≤ tr
[(

PTG−1
〈
H(s)−2

〉
G−1P

)p/2]
(5.42)

which is valid for 0 < p ≤ 2. For p ≥ 2, these inequalities are reversed (see Section 5.6.3 for

detailed derivation). It is clear that when p = 2, these inequalities hold exactly because the

left and right sides are equal. Although we lose the flexibility to choose the optimal P in

Eq. (5.22), but we have derived two bounds which nicely isolate the optimization process

of H from other linear parts. One can analytically minimize either of these two bounds in

the general problem described as below

minimize tr

[(
PTG−1

〈
H(s)−p

〉2/p
G−1P

)p/2]
(5.43)

subject to rank(W) = n, WP = In, tr
[
G2
]
≤ gtotal (5.44)

0 ≤ hk(·) ≤ 1, k = 1, . . . ,m, (5.45)
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The above problem can be analytically optimized in two sequential stages. The first stage

in Section ?? is to choose the nonlinearity hk(·) to optimize the matrix 〈H−p〉 for any given

W,P,G. To do this, one can simply minimize each diagonal entry
〈
h′k(w

T
k s)−p

〉
because

(a) each diagonal element of 〈H−p〉 only depends on h′k(·) and can be minimized individually

and (b) for any two positive definite diagonal matrix D1, D2 with (D1 − D2)ii ≥ 0, the

order of the trace power function is preserved:

tr
[(

PTG−1D1G
−1P

)p/2] ≥ tr
[(

PTG−1D2G
−1P

)p/2]
(5.46)

for any full rank matrix P, positive definite G and some p > 0. The second stage in

Section 5.3.3 involves the optimization of the energy budget G and the linear filter W

by assuming the optimal H derived from the first stage and certain form of P to avoid

intractability.

5.3.2. Minimizing 〈H−p〉

The first step is to explicitly calculate the expectation term which would reduce optimization

problem to the one we have dealt with in Section 5.2. Here we minimize each diagonal entry

of the matrix 〈H−p〉 in Eq. (5.43), assuming some fixed linear filter W and energy allocation

G. We can maximize those diagonal entries one at a time. For each index k, we solve

minimize
hk

〈
h′k(w

T
k s)−p

〉
=

∫
f(s)h′k(w

T
k s)−p ds (5.47)

subject to 0 ≤ hk(·) ≤ 1 (5.48)

This problem is equivalent to the one dimensional problem which we have solved in Chap-

ter 4. Here the input of the k-th neuron is the activity generator tk = wT
k s with some

marginal density fk(tk). Using the results from Chapter 4, the optimal solution is given by

h′k(tk) ∝ fk(tk)1/(1+p) ⇒ hk(tk) =

∫ tk
−∞ fk(ξ)

1/(1+p) dξ∫∞
−∞ fk(ξ)

1/(1+p) dξ
(5.49)
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Once we plug this optimal nonlinearity into the original objective function, it is easy to

show that the objective function has the same unit as the variance of its input tk = wT
k s.

The minimum value is

〈
h′k(w

T
k s)−p

〉2/p
=

(∫
fk(tk)

1/(1+p) dtk

)(1+p)·2/p
(5.50)

= cp(fk) ·Var[tk] = cp(fk) · (WTCW)kk (5.51)

where the multiplier cp(fk) determined by both the marginal distribution fk and also the

optimal criteria p.

Remark 1. For arbitrary prior distribution f(s), it is impossible to derive analytical result

because the form of the marginal density fk(tk) depends on the filter wk in a non-tractable

way. However, under certain conditions the problem can still be analytically solved. One

such condition is that the prior distribution f(s) is an elliptical distribution. In this case, all

one dimensional marginal distribution fk(tk) are characterized by a shared template density

f0(t) with unit sample variance and a scaler variable σk. In other words,

fk(tk) =
1

σk
· f0

(
tk
σk

)
(5.52)

In this case, the coefficients cp(fk) are all equal to cp(f0) since all 1D projections have exactly

the same marginal distribution once the variance has been normalized out. The matrix

〈H−p〉2/p is proportional to a diagonal matrix with diagonal entries being the variance

(WTCW)kk of each 1D projection.

Remark 2. Although there exists an optimal nonlinearity h∗k(·), it is unclear whether

real neurons are capable of achieving this optimality. As in the literature, the emphasis is

often put on finding the optimal linear filter W instead of finding the optimal nonlinearity

itself. A generic choice of h0 is often assumed, such as logistic, error function, fractions of

polynomials etc.. If the nonlinearity for each neuron is generated by a fixed nonlinearity h0
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and the rescaling factor σk, i.e.

hk(tk) =
1

σk
· h0

(
tk
σk

)
(5.53)

With this alternative choice of nonlinearity h0, it is obvious that Eq. (5.51) will also hold

with a suboptimal factor cp(f0, h0) ≥ cp(f0, h∗).

Remark 3. For different values of p, we have seen that two different optimal solutions

of the nonlinearities are derived, each minimize the lower or upper bound of the original

objective function, respectively. For general value of p, although it remains unclear where

the global optimal solution is, we can still assert that our upper/lower bound minimizer

(W∗,G∗,H∗) is near-optimal. And the gap only depends on the parameter p and the one

dimensional marginal distribution.

5.3.3. Optimization of G and W

From now on, we assume that the input prior distribution is elliptical (see Remark 1 in

Section ??). By plugging in the optimal value from Eq. (5.51) and dropping the constant,

the new optimization problem is

minimize
W,P,G

tr
[(

PTG−1K(W)G−1P
)p/2]

(5.54)

subject to rank(W) = n, WP = In, tr
[
G2
]
≤ gtotal (5.55)

where K(W) is proportional to 〈H−p〉2/p∗

K(W) =


(WTCW)11 0

. . .

0 (WTCW)mm

 (5.56)

We will show that the remaining problem is almost exactly the same as the problem in

Section 5.2. First, we rescale the column of W by denoting W = W̃D and we force
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(W̃TCW̃)kk = G2
kk. In this way, we have G−1K(W)G−1 = D2. In order to make the

objective function free of the scaling matrix D, here we pose the additional constraint

P = D−1W̃(W̃W̃T )−1. With this sub-optimal decoder P, the original problem is equivalent

to

minimize
W̃,G

tr

[(
W̃W̃T

)−p/2]
(5.57)

subject to rank(W̃) = n, tr
[
G2
]
≤ gtotal (5.58)

(W̃TCW̃)ii = G2
ii, i = 1, . . . , n. (5.59)

The choice of G is completely determined by W̃ and the problem is now exactly what we

have solved in Section 5.2!. The total output power is now limited by G2
total. The optimal

W̃ is exactly the same as in Eq. (5.26) and each individual Gii can be calculated thereafter.

With this choice of P, the scalar D only affects intermediate processing steps in a trivial

way but does not affect the neural code quality. For this reason we let D = I and replace

W̃ by W.

5.4. Application to Natural Images

Our results can also be applied to higher dimensional stimulus. In this section, we dis-

cuss how to build Lp-optimal encoders for natural images. Much work has been done to

understand natural images and their impact on the formation of the visual system. For

nice and complete review articles, the readers are refer to Simoncelli and Olshausen (2001);

Olshausen and Field (2005).

We choose van Hateren’s dataset (van Hateren and van der Schaaf, 1998) as the source to

generate smaller patches of natural images. Each images in the dataset has 1536x1024 pixels

and we shrink its width and height to half (768x512). We apply logarithmic transformation

on the raw intensity of each pixel. A total of 50,000 patches of size 8x8 were sampled from

random locations of these images and the local mean is removed. Then we stack the 64 pixel

values into a 64 dimensional vector which is the high dimensional stimulus to be encoded.
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Since all patches are of zero mean, the effective dimension of the stimulus is 63. A few

examples of these small patches can be found in Fig.20(a).

5.4.1. Near-Elliptical Prior Distribution

Before we apply any results derived in Section 5.3, we need to confirm that the elliptical

assumption of the prior distribution is satisfied for our dataset. The topic of natural images

prior distribution has received much attention in the literature and many models have been

proposed (Lee et al., 2003; Teh et al., 2003; Sinz and Bethge, 2010; Zoran and Weiss, 2012).

Among all the models, the independent component analysis (ICA) model (Comon, 1994) is

most closely related to our paper. Traditional ICA model assumes that the high dimensional

data is a linear sum of several unknown independent sources. Based on this assumption,

structures like localized edges can be recovered as independent sources of natural images

(Bell and Sejnowski, 1997). Despite the great similarity between such edge structures and

actual neural filters in the primary visual cortex, it has been criticized that the recovered

components are not independent (Sinz and Bethge, 2008). To resolve this issue, many

efforts have been made to better characterize the prior distribution of natural images. In

particular, elliptical distributions seem to be an attractive choice to model the wavelet

coefficients for filter pairs close to each other (Wainwright and Simoncelli, 1999; Lyu et al.,

2009; Sra et al., 2015).

To confirm the near-elliptical nature of our dataset, we calculate random projections of our

image patches by linearly passing these patches through random filters. If a random variable

s follows an elliptical distribution, then marginal distributions of the linear projections

t = wT s can only differ from one aother by a scale parameter. In Fig. 20(b) we illustrate

the joint distribution of the output t1, t2 of two uncorrelated random filters w1,w2. The

conditional distribution f(t2|t1) is t1 dependent, as illustrated in Fig. 20(c).
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Figure 20: (a) 64 out of 50,000 stimulus patches s randomly sampled from van Hateren’s
dataset. (b) The logarithm of joint 2D-histogram (locally smoothed for clarity) of coeffi-
cients t1 and t2 where tk = wT

k s and wk’s are random filters orthonormal to each other. The
joint distribution has spherical contours but is clearly different from 2D Gaussian densities
whose log-likelihood are always paraboloidal. (c) The conditional distribution p(t2|t1) has
the ”bow-tie” structure. (d) Each 1D marginals can be modeled by various parametric
models.

5.4.2. Choices of Nonlinearity

For an elliptical distributed stimulus and a fixed (not necessarily the optimal) nonlinearity,

we have analytically derived the optimal filters W∗ = U∗[Λ−1/(2+p),0]V up to an arbitrary

unitary matrix V (see Section 5.3.3). However, the dataset is usually not perfectly sym-

metric and the one dimensional marginals are slightly different from each other therefore

Eq. (5.51) is no longer valid. Since the dataset is still near-elliptical, we still want to assume

the new solution does not change much from the original solutions. As the first order per-

turbation, we assume the optimal solution still takes the form W∗ = U∗[Λ−1/(2+p),0]V∗

but now certain V∗ are superior to other unitary matrices due to the asymmetry. In this

section, we study how to find the optimal V∗ based on the dataset.

For the L0 (infomax) case, the stimulus is first fully whitened and padded with additional

zeros to obtain s̃0 (see Eq. (5.35)). Then the infomax projection V∗ can be learned by using

ICA algorithms (Bell and Sejnowski, 1995; Hyvärinen and Oja, 1997). In this process, it

is important to use the correct form of nonlinearity which relies on knowing whether each

source has sub-Gaussian or super-Gaussian distributions (Lee et al., 1999a). For the general

Lp case, the situation is quite similar. The stimulus variable is first partially-whitened and

padded with additional zeros to get s̃p (see Eq. (5.35)). Then we find the best projection
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V, which minimizes the total Lp loss on these directions. How such symmetry between V’s

breaks down also depends on the form of the assumed nonlinearity.

For any fixed nonlinearity hk(·), the average Lp loss associated with that single neuron is

〈Chk〉 =

∫
fk(tk)Chk(tk) dtk (5.60)

For brevity, we denote Chk as the loss function which can be either − log h′k(t) when p = 0 or

h′k(t)
−p when p > 0. In Table 1 we illustrate how a single parameter β in the nonlinearities

differentiates the sparsity preference for the marginal distributions. In particular, for both

criteria when β = 2, the corresponding nonlinearities are sparsity-neutral. For the infomax

(p = 0) case, this sparsity-neutral nonlinearity is the error function with derivative pro-

portional to the density of certain Gaussian distribution. Nonlinearities with sub-Gaussian

tail (when β < 2, e.g. logistic function h′(s) ∼ exp(−|s/γ|) when s is large) are sparsity-

seeking. For the general Lp-min (p > 0) case, the sparsity-neutral nonlinearity has derivative

h′(t) ∝ (a0 + a2|t|2)−1/p, which is the density function of a Student-t’s distribution.

Infomax (p = 0)

nonlinearity cost function key term sparsity
h′(t) Ch = − log h′ in 〈Ch〉 preference

seeking (β < 2)
exp(−aβ|t|β) aβ|t|β

〈
|t|β
〉

neutral (β = 2)
adverse (β > 2)

Lp-min (p > 0)

nonlinearity cost function key term sparsity
h′(t) Ch = (h′)−p in 〈Ch〉 preference

seeking (β < 2)(
a0 + a1|t|2 + aβ|t|β

)−1/p
a0 + a1|t|2 + aβ|t|β

〈
|t|β
〉

neutral (β = 2)
adverse (β > 2)

Table 1: Examples of nonlinearities where the coefficients a0, a1, aβ > 0. The power β > 0
determines the preferred filters for each nonlinearity. For the infomax (or the Lp-min) cri-
terion, the derivative of the sparsity-neutral nonlinearity corresponds to a Gaussian density
function (or Student-t’s density function).

Now we go back to analyze the dataset and need to choose the appropriate nonlinearity

to encode the marginal distributions. There are several reasonable choices of parametric
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models to describe the marginal distributions. In the infomax scenario, the most widely

used model is the Generalized Gaussian (GG) model,

GG : f0(t) ∝ exp(−aβ|t|β) (5.61)

h′(t) ∝ f0(t) ∝ exp(−aβ|t|β) (5.62)

⇒ Ch(t) = − log h′ ∝ |t|β (5.63)

The nonlinearities in Eq. (5.62) are well understood as sub/super-Gaussian densities de-

pending on the value of β. These nonlinearities can also greatly simplify the computation

to calculate the cost. However, such benefit does not extend to other Lp loss function in

general. For Lp-min purpose, it is more natural to use the fractional powers of polynomials

(FPoP) model below

FPoP : f0(t) ∝ (a0 + a1|t|2 + aβ|t|β)−(1+p)/p (5.64)

h′(t) ∝ f0(t)1/(1+p) ∝ (a0 + a1|t|2 + aβ|t|β)−1/p (5.65)

⇒ Ch(t) = (h′)−p ∝ a0 + a1|t|2 + aβ|t|β (5.66)

In the FPoP model with β < 2, the associated nonlinearity prefers sparser marginal distri-

butions and the symmetry between unitary matrices V will break down in a similar way

as previous studies on ICA. When applied to the image patches, both GG and FPoP mod-

els can achieve comparable data likelihood once the parameters are properly chosen (see

Figure 20(d)).

As a remark, we note that the derivative h′(t) in Eq. (5.65) tails off slower than |t|−1 when

p ≥ 2. Thus h′(t) does not integrate up to a finite value, which violates the saturation

assumption 0 ≤ h ≤ 1 for the corresponding nonlinearity h(t). This issue can be partially

resolved by setting a cutoff value tmax and let h′(t) = 0 for |t| > tmax. But for the purpose

of evaluating the Lp loss, we will ignore this and just calculate the sample average to

approximate the expectation of Eq. (5.66).
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5.4.3. Symmetry Breaking for Lp-min Problem

Now we try to find the optimal V∗ to optimize Eq. (5.54) for the proposed nonlinearity

h0(t) and let hk(t) = h0(t/σk) where the scaler σ2k = wT
k Cwk renormalizes each tk = wT

k s

to have unit variance. Now we can calculate that for any V and the corresponding W, the

new expectation in 〈H−p〉2/p slightly deviates from the variance (see Eq. (5.51), Eq. (5.53))

by a term related to
〈
|tk/σk|β

〉
.

〈
h′k(tk)

−p〉2/p = σ2k ·
(
a0 + a1

〈
|tk/σk|2

〉
+ aβ

〈
|tk/σk|β

〉)2/p
(5.67)

≈ σ2k (a0 + a1)
2/p ·

(
1 + (2/p)

aβ
a0 + a1

〈
|tk|β

〉
σβk

)
(5.68)

where the expansion is valid when the coefficient aβ → 0+ and the nonlinearity just shifts

away from being sparsity-neutral. In order to compensate for this change, the gain of each

neuron should also be updated as well g2k ∝ 〈h′k(tk)−p〉
2/p

. Because the total gain is limited

tr
[
G2
]
≤ gtotal, it is sufficient to minimize

min
m∑
k=1

〈
h′k(tk)

−p〉2/p = (a0 + a1)
p/2

(
m∑
k=1

σ2k + (2/p)
aβ

a0 + a1

m∑
k=1

σ2−βk

〈
|tk|β

〉)
(5.69)

Becase
∑
σ2k = tr

[
WTCW

]
= const, it is equivalent to just minimize

min

m∑
k=1

σ2−βk

〈
|tk|β

〉
⇔ min

m∑
k=1

(wT
k Cwk)

2−β ·
〈
|wT

k s|β
〉

(5.70)

by finding the proper directions wk. If we further use the notation in the partially-whitened

space: s̃p = [Λ−1/(2+p)UT s; 0] and C̃ = cov[s̃p], then an equivalent problem on the unitary

matrix V = (v1, . . . ,vm) is

m∑
k=1

(vTk C̃vk)
2−β ·

〈
|vTk s̃p|β

〉
(5.71)
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Notice that the symmetry breaking problem for the unitary matrix V shares the same

format for all values of p. The only difference is how ”whitened” the processed stimulus s̃p

is. In the canonical infomax case, the data is fully whitened so that the whitened stimulus

s̃p=0 has identity covariance C̃. Therefore the first term vTk C̃vk is a constant for any unit

vector vk. The symmetry breaking problem matches exactly with its previous description in

the ICA literature (Hyvärinen and Oja, 1997) and the expectation
〈
|wT

k s|
〉

is often replaced

by a differentiable function, e.g.
〈
log cosh(wT

k s)
〉
. Similarly, our generalized problem can

also be solved efficiently using gradient descent method.

Using the above method we can train the optimal unitary matrix V for each value of p.

The value β is set to be 1 for simplicity. In Figure 21 we compare the optimal over-

complete populations for various value of p, where we optimized 100 neurons to encode the

63 dimensional variables of pixel values in the image patches. Assuming sparsity-seeking

nonlinearities, the optimal linear components are also edge-like filters, just as the traditional

ICA algorithm for the p = 0 case. Due to the edge-like nature of these filters, each of these

components can be well described by a Gabor function of certain center (x0, y0), edge

orientation θ, frequency f , phase φ and a Gaussian mask described by σx and σy:

g(x, y|θ, σx, σy, f, φ) = exp

(
− x

′2

2σ2x
− y′2

2σ2y

)
cos(2πfx′ + φ) (5.72)

where x′ = (x− x0) cos θ + (y − y0) sin θ, y′ = −(x− x0) sin θ + (y − y0) cos θ. (5.73)

Next we compare each Lp-optimal population via the statistics of edge orientation θ, edge

wavelength 1/f and filter area σxσy. For all values of p, these populations are concentrated

on vertical or near vertical edges (θ ≈ 90◦). We also do not observe a significant differ-

ence for the filter size statistics of different population with different value of p. For the

wavelength, however, there is a clear shift in the concentration from low frequency edges

towards high frequency edges as we increase p. We speculate that this is because that

Lp-optimal population with larger p places stronger emphasis on encoding stimulus with

smaller variation but infomax population tends to filter these component out with linear
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projections.
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Figure 21: (a) 100 Linear components trained for p = 0, 2, 8. Each component is fitted
by a Gabor function. (b) The histograms of orientation parameter θ, filter size σxσy and
wavelength (inverse frequency) 1/f for all neurons in each population.

5.5. Conclusion

Here we summarize the results on optimal population of linear-nonlienar neurons to encode

random stimulus which follows an elliptical distribution. The optimal solution consists of

successive linear filter part and nonlinear activation part. Under certain limitation, the

linear part is given exactly as the linear population case (see Section 5.2) and the nonlinear

activation function for each neuron follows the same principle as the one dimensional case

(see Chapter 4).

For the complete population case, the optimal linear filter is W∗ = UΛ−1/(p+2)V. In the

above equation, C = UΛUT is the eigen-decomposition of the data covariance C = cov(s)

and V is some arbitrary unitary matrix. For the over-complete population case, the optimal

linear filter W∗ = U[Λ−1/(p+2),0]V is derived by assuming a sub-optimal decoder P.

In both cases, the optimal gain for each neuron is G∗kk ∝ (WTCW)
1/2
kk . The optimal

nonlinear activation function hk is determined in the same way as the single neuron case
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(see Section 4.2). The only difference is that now the input for each neuron is the activity

generator tk = wT
k s and the Lp-optimal tuning curves are chosen to optimally encode the

marginal distribution fk(tk).

Again, we remind the reader that the above analytic result is only a near-optimal solution of

the Lp-loss minimization problem described in Eq. (5.39), unless p = 0 or 2. This situation

is summarized in the following table and the gap between the bounds and the actual Lp

loss depends on the 1D marginals of the prior distribution (see Remark.3 in Section 5.3.2).

Furthermore, for over-complete cases, the decoder is forced to take a sub-optimal choice to

obtain this result.

p value type of optimality our solution is minimizing

p = 0 global optimal overall L0-loss (infomax)

0 < p < 2 near-optimal a lower bound of the Lp loss (see Eq. (5.42))

p = 2 global optimal overall L2-loss (MMSE)

p > 2 near-optimal an upper bound of the Lp loss (see Eq. (5.42))

Table 2: Types of optimality depending on the value of p.

Our results include a unitary symmetry because the prior distribution is assumed to be

perfectly elliptical. If we apply the result to datasets with near elliptical prior distribution,

we can expect the optimal form of the solution remains the same but the symmetry breaks

down. In Section 5.4 we show an application on natural images. Once the symmetry breaks

down and the optimal unitary V∗ is found, our result is comparable to many previous

results in the literature, in particular the ICA results for complete representation (Bell

and Sejnowski, 1995, 1997) or overcomplete representation (Lee et al., 1999b; Lewicki and

Sejnowski, 2000). Alternatively, similar results can be obtained by posing sparsity constraint

(Olshausen and Field, 1996; Lee et al., 2007) or metabolic cost (Karklin and Simoncelli,

2011).
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5.6. Appendix

5.6.1. Proof for Optimization Problem in Eq. (5.33)

Lemma 5.6.1. Let K be an n-by-n positive definite matrix and φ(z) be a strictly concave

function. Then the optimal unitary matrix U should diagonalize K to minimize

n∑
i=1

φ
(
(UTKU)ii

)
(5.74)

Proof. First we prove this for n = 2. For 2-by-2 matrix K, let the two eigenvalues be

0 < λ1 < λ2. It is obvious that for any unitary matrix U,

λ1 ≤ (UTKU)ii ≤ λ2 (5.75)

(UTKU)11 + (UTKU)22 = λ1 + λ2 (5.76)

Therefore one can write (UTKU)ii as linear combination of λ1, λ2 as

(UTKU)11 = αλ1 + (1− α)λ2 (5.77)

(UTKU)22 = (1− α)λ1 + αλ2 (5.78)

for some 0 ≤ α ≤ 1. For concave function φ(z), it follows from Jensen’s inequality that

φ(αλ1 + (1− α)λ2) ≥ αφ(λ1) + (1− α)λ2 (5.79)

φ((1− α)λ1 + αλ2) ≥ (1− α)φ(λ1) + αλ2 (5.80)

⇒
∑
i=1,2

φ
(
(UTKU)ii

)
≥ φ(λ1) + φ(λ2). (5.81)

The equality is attained only if α = 0, 1 for strictly concave function φ. Therefore to

minimize the objective function, U should be chosen to diagonalize the positive definite

matrix K.
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In general for the case of n > 2, we prove by contradiction. Assume some solution U∗

optimizes the objective function but (UT
∗KU∗)ij 6= 0 for some i 6= j. Now we consider

the two dimensional subspace generated by the i-th and j-th row/column. An additional

U′ can be chosen which only diagonalize this 2-by-2 submatrix. For such U′, it does not

affect other diagonal entries (UT
∗KU∗)kk for k 6= i, j. However it changes (UT

∗KU∗)ii and

(UT
∗KU∗)jj but can still improve the objective function (as discussed in the n = 2 case),

which contradicts the earlier assumption.

5.6.2. Preliminary Results on Matrices

Lemma 5.6.2. Let K be any positive definite matrix. Then for any orthogonal matrix U

and any real power p, we have

tr
[
(UKUT )p

]
= tr

[
UKpUT

]
= tr [Kp] (5.82)

Proof. Obvious as stated in the lemma.

Lemma 5.6.3. Let An×m be any matrix. Then for any positive power p,

tr
[
(AAT )p

]
= tr

[
(ATA)p

]
(5.83)

Proof. Consider the singular value decomposition An×m = Un×nDn×mVm×m. Plug this in

both sides of the equation we get

tr
[
(AAT )p

]
= tr

[
(UDDTUT )p

]
= tr

[
(DDT )p

]
(5.84)

=

min{m,n}∑
i=1

((Dii)
2)p = tr

[
(DTD)p

]
= tr

[
(VTDTDV)p

]
= tr

[
(ATA)p

]
(5.85)

Theorem 5.6.4 (Araki-Lieb-Thirring Ineqaulity). Let K, M be any two positive semidef-
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inite matrices. Then

tr [(KMK)p] ≥ tr [KpMpKp] when 0 < p ≤ 1 (5.86)

tr [(KMK)p] ≤ tr [KpMpKp] when p ≥ 1 (5.87)

Proof. See (Lieb and Thirring, 1976; Araki, 1990).

5.6.3. Proof of Bounds in Section 5.3

Here we prove the bounds in Eq. (5.42). We seek reasonable upper and lower bounds for

the following quantity

〈
tr
[(

PG−1H(s)−2G−1PT
)p/2]〉

(5.88)

where we assume P is a projection matrix which does not depend on s.

Case I (0 < q ≤ 2) Lower Bound:

First we derive a lower bound for the objective function. We can show that

〈
tr
[(

PG−1H(s)−2G−1PT
)p/2]〉

(5.89)

=
〈

tr
[(

H(s)−1G−1PTPG−1H(s)−1
)p/2]〉

(5.90)

=
〈

tr
[(

H(s)−1D−1 ·DG−1PTPG−1D ·D−1H(s)−1
)p/2]〉

(5.91)

≥
〈

tr
[
H(s)−pD−p · (DG−1PTPG−1D)p/2

]〉
(5.92)

= tr
[〈

H(s)−p
〉
D−p · (DG−1PTPG−1D)p/2

]
(5.93)

where D is an arbitrary positive definite diagonal matrix which does not depend on s. The

first equation is due to Lemma 5.6.3 ; the second equation is by inserting D−1D which is

an identity matrix; the third inequality follows from Theorem 5.6.4 . Because this lower

bound works for any D, we can choose D = 〈H(s)−p〉1/p so that the first term inside the
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trace operator is reduced to identity and the lower bounds is

〈
tr
[(

PG−1H(s)−2G−1PT
)p/2]〉

(5.94)

≥ tr
[
(
〈
H(s)−p

〉1/p
G−1PTPG−1

〈
H(s)−p

〉1/p
)p/2

]
(5.95)

= tr

[(
PG−1

〈
H(s)−p

〉2/p
G−1PT

)p/2]
(5.96)

where we applied Lemma 5.6.3 again.

Case I (0 < q ≤ 2) Upper Bound:

On the other hand, consider the concave operator [cite: theorem 2.10 Eric Carlen ] on

positive definite matrices f(M) = tr
[
Mp/2

]
for 0 < p ≤ 2. Apply Jensen’s inequality

〈f(M)〉 ≤ f(〈M〉) and plug in M = PG−1H(s)−2G−1PT , we have

〈
tr
[(

PG−1H(s)−2G−1PT
)p/2]〉 ≤ tr

[(
PG−1

〈
H(s)−2

〉
G−1PT

)p/2]
(5.97)

Case II (q > 2):

Same as case I, except that all inequalities that have been used are reversed.

5.6.4. The Optimal Non-lienarity and Renyi Entropy

In Section 4.2, we provided the optimal solution h∗(s) for the nonlinearity of a single neuron

for given p value, to encode a stimulus with prior density f(s). If we plug this value into

the objective function, we can calculate the optimal value

〈
h′∗(s)

−p〉 =

(∫
f(s)1/(1+p) ds

)1+p

(5.98)

This value is related to the nature of the density function f(s). If we consider the Renyi-α

entropy Hα(s) of a distribution f(s) (see Renyi (1961)) and let α = 1/(1 + p), then we
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immediately have

Hα(f) =
1

1− α log

(∫
f(s)α ds

)
=

1

p
log
〈
h′∗(s)

−p〉 (5.99)

In particular, when we calculate certain power of the optimal value, we have

〈
h′∗(s)

−p〉2/p = exp (2Hα(f)) = cp(f, h∗) · cov[s] (5.100)

Such value is known as the exponential entropy which has been used to characterize the

extent of a distribution (Campbell, 1966). If the distribution f ’s are from the same family

parametrized by a single scale, then the above value is simply proportional to the variance

of the distribution.

In equation Eq. (5.99), if we let p→ 0 and α→ 1, then the optimal solution h∗(s) converges

to the (Shannon) infomax rule h′∗(s) = f(s). Correspondingly, it is well known that the

Renyi-1 entropy is exactly the canonical Shannon entropy (Renyi, 1961)

H1(f) = lim
α→1

Hα(f) = −
∫
f(s) log f(s) ds (5.101)

It has also been proved that the Renyi-α entropy is decreasing as a function of α therefore

the Renyi-α entropy may diverge for small enough α (large enough p), especially for prior

distribution f(s) with polynomially decaying tails. In this case, all possible nonlinearities

h′(s) will produce infinite Lp loss and the optimization problem cannot be solved.
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CHAPTER 6 : Conclusion

Understanding how neural codes adapt to the sensory stimulus statistics has been a funda-

mental goal in sensory neuroscience. As one of the best known and most successful theories,

the efficient coding hypothesis assumes that biological sensory systems should maximize the

information being transferred from the stimulus to the neural output. In this thesis, we

have followed, investigated and extended this approach in multiple but systematic ways –

we have analytically derived the optimal codes for stimuli with an arbitrary prior, in most

cases.

When formulating an efficient coding problem, two key components must be considered:

the constraints and the objective function. Previous works often choose a specific way to

set up and solve the problem. Here we have presented a unified framework and show that

these results can be understood from a much more generalized perspective. Compared to

a canonical work by Laughlin (1981), we consider multiple directions to extend the current

model. In Chapter 3, we consider the inclusion of a new biologically plausible constraint,

which limits the mean activity of neural output. In Chapter 4, we use the traditional range

constraint but the Lp metric instead of the mutual information criterion to measure the

quality of neural codes. In Chapter 5, we further extend the idea of Lp optimal code to

multivariate input. This is summarized in Table 3 and more detailed discussion on each

chapter can be found below.

constraint
objective dimension of stimulus s (n)
function number of neurons (m)

Laughlin (1981) range infomax
n = 1
m = 1

Chapter 3
range

infomax
n = 1

metabolic m ≥ 1

Chapter 4 range
infomax n = 1
Lp-optimal m ≥ 1

Chapter 5 range
infomax n > 1
Lp-optimal m ≥ n

Table 3: Summary of our contribution in this thesis.
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In Chapter 3, we presented a theoretical framework for studying optimal neural codes

under biologically relevant constraints. Especially, we emphasized the importance of two

constraints – the noise characteristics of the neural responses and the metabolic cost. We

demonstrated that, maybe surprisingly, analytical solutions exist for a wide family of noise

characteristics and metabolic cost functions. This result helps us to determine the optimal

tuning curves for multiple neurons and suggests that ON-OFF pathway splitting is superior

than ON-ON code only if the metabolic constraint is included in the picture. In our anal-

ysis, we have ignored several important other factors when formulating the efficient coding

problem. First, we have not modeled the spontaneous activity (baseline firing rate) of neu-

rons. Second, we have only considered the zero noise correlations between the responses of

neurons. Third, we have ignored the noise in the input to the neurons. Including these fac-

tors should allow us to make a more detailed and quantitative comparison to physiologically

measured data in the future.

In Chapter 4, we switched to a framework that generalizes both the mutual information

criterion and the square decoding error criterion. We systematically evaluate different opti-

mality criteria based upon the Lp reconstruction error of the maximum likelihood decoder.

This parametric family of optimal criteria includes two aforementioned special cases – p→ 0

corresponds to the information criterion and p = 2 corresponds to the square decoding error

criterion. We analytically derived the optimal codes that minimizes the Lp reconstruction

error of an ideal observer. Our framework offers greater flexibility when used to explain

physiology data. After all, maximizing mutual information may not (and should not) be

the only goal of neural codes. Assuming different combination of objective function and

constraints, we tested our analytical predictions against previously measured characteristics

of some early visual systems found in biology. We find low values of p provides a better fit

for physiology data on early visual perception systems.

In Chapter 5, we further extended our previous results by generalizing to multivariate input

stimulus. We also considered the neural codes that minimize the Lp reconstruction error
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of the stimulus and derived analytical solutions under a few extra assumptions. Similar to

before, this framework unifies the formerly well known information maximization criterion

(p→ 0) and the square decoding loss criterion (p = 2). Within our framework, we obtained

Lp optimal neural codes for natural image stimuli and found similar edge-like filters as re-

ported in previous results which took the information criterion. Compared to easier setups,

the results on multivariate input stimulus has several limitations. To optimize a linear

population, we require the prior distribution has finite variance. For a linear-nonlinear pop-

ulation, analytical solutions exist when the prior distribution is elliptical or near-elliptical.

Furthermore, if the population is overcomplete m > n or p 6= 0, 2, only the near-optimal

solution can be obtained because the objective function has to be approximately evaluated.

There are also generic limitations for all chapters. First we did not consider a grand unifica-

tion of different aspects – the combination of Lp optimal criteria and metabolic constraints.

This seems intractable but is an interesting open question for future study. Second, we

have derived all results under the low noise assumption which may not be the case in the

real world. This limitation can partially be compensated by having sufficient encoding time

and/or sufficient replicated neurons performing the same task with independent noise. We

also investigated what would happen if some of these key assumptions were removed in

Section 4.4. Third, the Lp optimal nonlinearity may diverge for those priors (or one dimen-

sional marginals in multivariate case) with heavy tails. This cannot be resolved because

any tuning curve with finite range will all have infinite Lp loss.

Despite these limitations, our analysis is useful in many ways. We simultaneously considered

the biologically plausible range constraint and the metabolic constraint, and derive an

analytical optimal solution. Most importantly, we proposed a framework which smoothly

interpolates the information criterion and the square decoding loss criterion to provide a full

family of optimal criteria that can possibly be employed by neural populations in actual

perceptual system. Our result provides predictions that can potentially be examined by

physiology experiments.
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