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ABSTRACT 
	
  

CELLULAR BASIS OF ANTIBODY MAINTENANCE:  

HETEROGENEITY OF THE BONE MARROW PLASMA CELL POOL 

Irene Chernova 

David M. Allman 

Plasma cells are the immune system cells responsible for producing antibodies, the key 

mediators of protective humoral immunity.  Long-lived plasma cells (PC) are thought to 

be responsible for maintaining antibody titers and are believed to populate unique 

survival niches in the bone marrow (BM). Current models predict that bone marrow 

plasma cells (BM PC) consist chiefly of long-lived, slowly renewing cells.  In chapter 2, 

we show the turnover rate of the BM PC pool to be much higher than predicted by these 

models; in fact, more than 50% of BM PC exhibit characteristics of recently formed PC. 

Intriguingly, these B220+ PC do not appear to be cycling and are depleted upon ablation 

of peripheral B cell pools.  In chapter 3, we extend our studies to antigen-induced 

responses.  We find that very long-term maintenance of the antigen-specific BM PC pool 

is dependent on a CD40-independent B cell precursor.  Despite the rapid turnover rate 

exhibited by B220+ BM PC, antigen-induced antibody secreting cells are found within 

this population for more than 100 days post-immunization.  These cells secrete 

exclusively low affinity, unswitched, κ type antibodies in sharp contrast to the high 

affinity, isotype switched cells found within the slowly renewing BM PC pool.  Finally, we 

identify a population of rapidly renewing memory B cells that appear to be the precursors 

of the B220+ BM PC. Together these data suggest that BM niches are continuously 

repopulated by newly generated plasma cells long after antigenic exposure and identify 

the memory B cell precursors of BM PC. 
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CHAPTER 1: INTRODUCTION 

I. The B cell in Adaptive Immunity 

	
  

A. Adaptive Immunity: A Summary 

The ability to avoid succumbing to disease prior to reproduction is critical to the 

evolutionary success of all organisms.   While many lower order organisms rely on innate 

immune mechanisms for protection, most vertebrates have evolved adaptive immune 

systems to better protect themselves from an onslaught of viruses, bacteria, and 

parasites that are ubiquitous on our planet. Cells of the adaptive immune system consist 

of two major types: T cells and B cells.  Both of these cell types share the four main 

attributes of adaptive immunity: inducibility, specificity, tolerance to self and memory.  

During their development, both B and T cells use rearrangement of DNA segments to 

generate an incredibly diverse array of cell surface receptors (B cell receptors (BCRs) 

and T cell receptors (TCRs)) capable of recognizing millions of antigenic determinants in 

a specific manner.   Further testing of these receptors at tolerance checkpoints results in 

the elimination of cells with specificities against self.  Mature, self-tolerant B and T cells 

then take up residence in secondary lymphoid organs where they are perfectly poised to 

encounter antigen. 

 

Upon antigen encounter, B and T cells are induced to proliferate and to carry out 

specific effector functions.  T cells expressing the molecule CD8 (CD8+ killer T cells) are 

capable of directly mediating killing of the pathogen.  T cells expressing CD4 (CD4+ 

helper T cells) will instead aid B cells in becoming better effectors.  Depending on the 
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nature of the antigen (see section I.C), B cells can assume one of a number of fates.  

Within days of antigen encounter, B cells whose BCR has a strong affinity for the antigen 

will differentiate into plasma cells (PC), antibody-secreting cells capable of secreting 

amounts of specific antibody that far exceed the weight of the cell (Conrad and Ingraham, 

1974; HELMREICH et al., 1961; 1962; Hibi and Dosch, 1986).  These cells provide the 

first wave of protective antibody early in the response and are thought to persist only on 

the order of days, though concrete evidence for this is scarce (see section II.A).  For 

antigens that require T cell help (thymus-dependent (TD) antigens), B cells will migrate 

toward the T cell zone of the secondary lymphoid organ and form a structure called a 

germinal center (GC).  Here the B cell receptor will be subjected to further processes in 

order to increase its affinity for antigen (see section II.B).  B cells with the highest affinity 

BCRs will be selected into the memory components of humoral immunity: memory B cells 

(Bmem) and long-lived plasma cells (LLPC) (Radbruch et al., 2006; Weiss and Rajewsky, 

1990).  Memory B cells are antigen-experienced cells that can persist long-term and 

mediate rapid secondary responses.  Upon a second encounter with the same antigen, 

memory B cells are ideally poised to respond with enhanced kinetics and differentiate into 

plasma cells producing high affinity antibodies (Toellner et al., 1996).  Long-lived plasma 

cells lose their BCR (Manz et al., 1998) and thus their ability to respond to antigen; 

instead, they migrate to the unique survival niche of the bone marrow (BM) where they 

are capable of persisting for the lifetime of the animal (Manz et al., 1997; McMillan et al., 

1972; Slifka et al., 1998).  This dissertation will focus on further characterizing the 

longevity of the bone marrow plasma cell pool.  

 

The ability to generate and maintain high titers of pathogen-specific antibodies is 

a major goal of the adaptive immune system.  While non-humoral components of the 
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immune system can also be protective, antibody induction is the mechanism by which 

almost all human vaccines work (Amanna and Slifka, 2011).  Moreover, many of the 

modern vaccines (such as polio, measles, diphtheria to name just a few) induce antibody 

protection that can last for decades (Amanna et al., 2007).  Humans (and mice) that are 

unable to produce antibodies for whatever reason are immunocompromised and 

succumb to many bacterial and some viral infections, occasionally with fatal 

consequences (Boes et al., 1998b; Ehrenstein and Notley, 2010; Hoernes et al., 2011; 

Luther et al., 1997).  For example, humans and mice that lack the kinase btk, a protein 

essential for B cell development (de Weers et al., 1993), are unable to generate 

antibodies and suffer from constant infections, requiring lifelong supportive care (de 

Weers et al., 1994; Khan et al., 1995).   The nature of the antibody produced is also 

critical for appropriate protection.  Antibodies of individuals who lack CD40L, a protein 

important for T cell – B cell interactions in the GC, are unable to undergo affinity 

maturation and class-switch recombination (Allen et al., 1993; Aruffo et al., 1993; DiSanto 

et al., 1993; Korthäuer et al., 1993).  These individuals produce only low-affinity IgM 

antibodies and are consequently compromised in their ability to efficiently clear many 

pathogens (Allen et al., 1993; Aruffo et al., 1993; DiSanto et al., 1993; Korthäuer et al., 

1993).  On the other hand, people with a pathogenic overabundance of B cells (B cell 

malignancies such as lymphomas) are also unable to mount adequate antibody 

responses (Ballester et al., 1981; Shildt et al., 1983).  While this seems paradoxical at 

first, the underlying mechanism is actually similar to people with B cell deficiencies.  The 

expansion of the pathogenic B cell clones decreases the diversity of the B cell receptor 

repertoire, limiting the person’s ability to respond to a wide variety of antigens (Ballester 

et al., 1981; Shildt et al., 1983).  As all of these scenarios illustrate, generation and 
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maintenance of antibody titers are crucial components of effective immunity and are 

worth understanding in-depth. 

 

B. B cell development and subsets   

       B cells are cells of the hematopoietic lineage and as such are derived from 

hematopoietic stem cells (HSCs) (Osawa et al., 1996a; 1996b).  Hematopoiesis occurs in 

the liver during fetal life and in the bone marrow throughout adulthood (Christensen et al., 

2004; Ema and Nakauchi, 2000; Ikuta and Weissman, 1992; Johnson and Moore, 1975; 

Moore and Metcalf, 1970; Weissman, 2000).  Unlike T cells, B cells do not require an 

exogenous organ (such as the thymus) to complete their maturation and undergo the vast 

majority of their development in the bone marrow.  On the road to becoming a B cell, 

HSCs gradually lose their pluripotency in favor of lineages with more restricted potential 

(Rieger et al., 2009).  Studies have identified multipotent common lymphoid progenitors 

(CLPs) as an intermediate stage in this process (Allman et al., 1999; Li et al., 1996).  

Adoptive transfer studies have shown that CLPs give rise to B and T cells and have 

limited myeloid potential (Inlay et al., 2009; Kondo et al., 1997; Rumfelt et al., 2006).  

Expression of canonical B cell transcription factors such as early B cell factor 1 (EBF1) 

and paired box protein 5 (Pax5) then further defines the cells destined for B cell 

greatness (Inlay et al., 2009). 

 

       One of the major developmental milestones in the life of a B cell is the generation 

of its unique B cell receptor for antigen.  To create the enormous diversity of BCRs found 

in the peripheral B cell pool, B cell precursors in the bone marrow undergo a DNA 

rearrangement process known as V(D)J recombination.  In some ingenious experiments 
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over 30 years ago Tonegawa and Alt demonstrated that the antigen receptors of 

lymphocytes were assembled via random recombination events of hundreds of different 

gene segments: V, D, and J segments (Alt et al., 1984; Tonegawa, 1983).  Recombinase 

activating genes (RAG1/2) that mediate this process were discovered a few years later 

(Oettinger et al., 1990; Schatz et al., 1989). Additional DNA diversification mechanisms 

increase the number of unique nucleotide sequences (and subsequent protein structures) 

to an even greater extent (Alt and Baltimore, 1982; Tonegawa, 1983).  Upon pairing with 

a surrogate light chain, these newly formed, VDJ-rearranged heavy chains are able to 

form a signaling pre-BCR at the cell surface of the B cell precursor and signal to inhibit 

further recombination at the other IgH allele (Shaffer and Schlissel, 1997).  Similar 

recombination events at either the kappa or lambda light chain loci yield functional light 

chains that can now pair with the rearranged IgH and form a functional BCR (Tonegawa, 

1983).  In addition to its role in antigen recognition, tonic BCR signaling has been shown 

to be indispensible for B cell survival (Lam et al., 1997); as such, all B cells which fail to 

make productive rearrangement or maintain BCR expression will be targeted for 

apoptosis (Lam et al., 1997).  Finally, the random nature of this rearrangement 

mechanism inevitably results in BCRs with specificities against self-antigens 

(Wardemann et al., 2003).  Through a number of mechanisms in the bone marrow and 

much-argued-over mechanisms at “tolerance checkpoints” in the periphery, these 

specificities are largely eliminated from the final mature B cell pool (Goodnow et al., 1988; 

Hartley et al., 1991; Nemazee and Weigert, 2000; Tiegs et al., 2011).  These 

mechanisms appear to be mostly successful as only a minority of the population (<10%) 

suffers from autoimmune diseases (Goodnow et al., 2005).  All of these finely tuned 

processes result in a population of IgM-bearing, non-self specific B cells ready to egress 

from the bone marrow and take up residency in peripheral lymphoid organs. 
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      In peripheral lymphoid organs, B cells further specialize into a number of B cell 

subsets.  While the life histories of these subsets are currently being debated (Martin and 

Kearney, 2001), differences in functionality are apparent.  B1 B cells are an “innate-like” 

subset predominating in the peritoneal cavity and found in small numbers (<5%) in the 

spleen (Haas et al., 2005; Hardy and Hayakawa, 2001; Kantor, 1991; Tung et al., 2006).  

Marginal zone (MZ) B cells are defined by their anatomic location at the marginal sinus of 

the spleen or lymph node (Kraal, 1992; Martin et al., 2001).  As blood first enters the 

organ at the marginal sinus, MZ B cells are de facto the first lymphocytes to encounter 

blood-borne antigens (Kraal, 1992; Martin et al., 2001).  The majority (~95%) of the 

splenic B cell pool is composed of slowly-renewed follicular (FO) B cells (Allman and 

Pillai, 2008; Förster and Rajewsky, 1990).  In comparison to their B1 and MZ 

counterparts, FO B cells respond to antigens (especially blood-borne antigens) with 

slower kinetics (Martin et al., 2001).  BCR specificities of MZ B cells in particular are 

enriched for recognizing blood-borne bacterial pathogens (Carey et al., 2008; Gu et al., 

1990).  MZ B cells are also thought to be transcriptionally “poised” to differentiate into 

plasma cells with enhanced kinetics (Genestier et al., 2007; Oliver et al., 1997).  While a 

spirited debate rages about the ability of B1 B cells to secrete antibody constitutively 

(without further differentiating into a plasma cell), transcriptional studies suggest that 

these cells are “poised” for activation similarly to MZ B cells (Fairfax et al., 2007; Savitsky 

and Calame, 2006; Tumang et al., 2005).  In consequence, the early wave of IgM is 

believed to derive largely from these small MZ and B1 B cell populations (Martin et al., 

2001).  In contrast, FO B cells are the major players in subsequent stages of the immune 

response, including the production of class-switched antibodies (Förster and Rajewsky, 

1987; Martin et al., 2001).  While the precise details of ontogeny and transcriptional 
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regulation of these subsets remain to be elucidated, their specialized functions are 

undisputed and are critical to the successful resolution of many infections (Alugupalli et 

al., 2004; Martin et al., 2001). 

 

C. B cell activation and the NP-system 

While there is limited evidence that B cells can get activated in the bone marrow 

(Benner and Van Oudenaren, 1975; Cariappa et al., 2005), conventional models 

conceive of B cell activation as taking place in the secondary lymphoid organs (Koch et 

al., 1981).   The nature of the antigen will dictate the specifics of the B cell response.  

Antigens can be grouped into two broad categories: thymus-dependent (TD) or thymus-

independent (TI) antigens.  TD antigens are often proteins capable of engaging the B cell 

receptor directly and activating T cells with antigen presented in the context of MHCII 

(MacLennan, 1994).  Clonal expansion and differentiation of the antigen-responsive B 

cells results in a large pool of extrafollicular plasma cells, which are responsible for the 

early wave of low affinity, IgM antibody (Jacob et al., 1991; Smith et al., 1996).  While the 

specific role of T cells during these early events is unclear, studies from our lab suggest 

that T cells are essential for a robust extrafollicular plasma cell response to TD antigens 

(Bortnick A, unpublished data).  In parallel, B cells migrate to the T cell border following 

antigen encounter (Liu et al., 1991; Okada and Cyster, 2006; Reif et al., 2002; Schwickert 

et al., 2011), eventually forming a structure known as the germinal center (GC) 

(MacLennan, 1994).  In the GC specialized T cells, known as follicular helper T cells 

(TFH), provide help to B cells in the form of cytokines and cell surface interaction signaling 

(e.g. IL-21 and CD40-CD40L interactions, respectively) (Kawabe et al., 1994; Linterman 

et al., 2010; Xu et al., 1994; Zotos et al., 2010).  These signals lead to the processes of 
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somatic hypermutation (SHM) and class-switch recombination (see section II.B) and 

ultimately result in the production of high affinity, class-switched B cells (MacLennan, 

1994; Tarlinton, 2008).  These B cells are subsequently selected into the memory B cell 

and long-lived plasma cell pools (Tarlinton, 2008).  In the last ten years, a number of 

groups, including ours, have shown that the memory B cell and long-lived plasma cell 

fates are not restricted to GC-derived progeny and can occur in a GC-independent and 

even T-cell-independent manner (Bortnick et al., 2012; Hosokawa et al., 1984; 

Obukhanych and Nussenzweig, 2006).    

    Antigens that do not utilize T cells are subdivided into two groups: TI-I and TI-II 

antigens.  TI-I antigens do not signal through the BCR and most often stimulate B cells 

through innate Toll-like receptors (TLRs) (Gronowicz et al., 1980).  TI-II antigens, in 

contrast, are large repetitive structures, reminiscent of polysaccharide chains on the 

surface of bacteria, which are capable of eliciting B cell activation through extensive BCR 

crosslinking.  Early characterization of responses to these antigens in athymic (nude) 

mice has firmly established their T cell independence (Feldmann et al., 1972).  In contrast 

to their TD counterparts, the early response to TI antigens engages many of the innate-

like B1 and MZ B cells, most likely due to the preponderance of BCR specificities 

recognizing common bacterial antigens amongst these B cell pools (Carey et al., 2008; 

Gu et al., 1990).  Furthermore, B cells responding to TI antigens can only form a nascent 

germinal center that is aborted without ever being able to support the processes of 

somatic hypermutation or class switch recombination (de Vinuesa et al., 2000; Goodlad 

and Macartney, 1995; Toellner et al., 2002).  This has been extended to mean that TI 

antigens are incapable of engendering immunological memory (memory B cells or long-

lived plasma cells) (McHeyzer-Williams and McHeyzer-Williams, 2005; Mond et al., 
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1995).  Together with early studies suggesting that TI-antigen-specific antibody titers did 

not persist long-term, TI responses were long thought to be limited to short-term low 

affinity IgM production by extrafollicular plasma cells (Fidler, 1975; Mond et al., 1995).  

Recently, a number of papers have defined protective, persisting IgM responses to a 

variety of antigens including spirochetes, intracellular bacteria and encapsulated bacteria 

(Alugupalli et al., 2004; 2003; Racine et al., 2011; Taillardet et al., 2009).  Shortly after, 

our lab defined the existence of IgM-secreting, T-cell-independent, long-lived bone 

marrow plasma cells in a model antigen system (Bortnick et al., 2012).  Another lab has 

described memory B cells generated in response to a TI-II antigen (Hosokawa et al., 

1984; Obukhanych and Nussenzweig, 2006); IgM-expressing memory B cells have 

recently come back into vogue, though it is unclear whether they are similarly generated 

in a GC-independent manner ((Dogan et al., 2009; Pape et al., 2011), see section II.C)  

While it remains a rapidly evolving field, recent insights into the nature of TI B cell 

responses have significantly updated the model that has predominated for decades and 

raised new questions about the cellular and signaling requirements of generating 

immunological memory.                                                                        

   The success of many of the early studies on B cell activation relied heavily on 

utilizing well-defined, controllable model systems.  In particular, tracking the response to 

haptenated antigens quickly became the standard that is still widely used today (including 

in this dissertation).  Haptens are small molecules that are incapable of eliciting an 

immune response without being attached to a “carrier”.  Varying the nature of the carrier 

will determine whether a TI-I, TI-II or TD response will be induced: haptenated LPS elicits 

a TI-I response via TLR4 signaling (Persson and Möller, 1975; Poltorak et al., 1998), 

haptenated Ficoll, a synthetic sucrose polymer, crosslinks the BCR in a TI-II response 
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(Mosier et al., 1974), haptenated proteins engage T cell help in a TD response (Mitchell 

and MILLER, 1968).  In addition to having the tools to track hapten-specific antibodies 

and antibody-secreting cells (Fidler, 1975), over the past 20 years a few groups have 

perfected the tools to track hapten-specific B cells using flow cytometry (Lalor et al., 

1992).  Importantly, these studies can be successfully performed in conventional 

C57BL/6 mice, without the need to resort to existing transgenic mouse models (Cascalho 

et al., 1996; Lalor et al., 1992; McHeyzer-Williams et al., 1993).  In C57BL/6 mice, 

immunization with the hapten (4-hydroxy-3-nitrophenyl)acetyl (NP) conjugated to a carrier 

has the additional surprising property of eliciting a primary B cell response dominated by 

antibodies utilizing the λ1 light chain (Jack et al., 1977).  The secondary response, in 

contrast, is said to contain many κ clones (Jack et al., 1977; Jacob et al., 1991).  In 

addition to providing an alternative means for tracking the hapten-specific cells, this 

peculiar feature of the NP response has perplexed immunologists for decades and will be 

further addressed in later chapters of this dissertation (chapter 3).   Finally, a big 

advantage of the NP system is the in-depth understanding we possess about the kinetics 

of the germinal center and plasma cell responses (Fidler, 1975; Jacob et al., 1991) as 

well as the molecular details of somatic hypermutation and subsequent affinity maturation 

of the NP-specific BCR (Takahashi et al., 1998).  For example, the tryptophan to leucine 

mutation at codon 33 of CDR1 results in a 10-fold increase of the BCR affinity for NP and 

clones bearing this mutation come to dominate late primary and secondary NP responses 

(Allen et al., 1988; Weiss and Rajewsky, 1990).  Altogether, these features of the NP-

carrier system have been integral to its success as a model approach and made it ideally 

suited for the studies described in Chapter 3. 
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II. Long-term Humoral Immunity 

A. Short-lived versus Long-lived Plasma Cells 

        Plasma cells are terminally differentiated cells of the B cell lineage that are uniquely 

adapted to produce large amount of antibodies without succumbing to ER-stress induced 

cell death (Oracki et al., 2010; Reimold et al., 2001).  Upon antigen encounter in the 

periphery, naïve B cells whose BCRs have the highest affinity for the antigen selectively 

differentiate into an early wave of plasma cells (Chan et al., 2009; O'Connor et al., 2006; 

Paus et al., 2006; Phan et al., 2006).  Antigen-specific B cells with a lower initial BCR 

affinity are recruited into GCs where they undergo multiple rounds of somatic 

hypermutation and selection, ultimately giving rise to progeny with BCR affinities several 

fold higher than those found in the naïve pool (Phan et al., 2006).  Conventionally, the 

early wave of plasma cells was believed to have a half-life of 3-5 days (Ho et al., 1986; 

Smith et al., 1996), while the burden of immunological memory fell entirely upon the 

memory B cell progeny of the GC reaction.  However, it had been noted that many 

antigens induced standing antibody titers after a single inoculation of antigen, without the 

apparent need for a bona fide memory response dependent upon reintroduction of 

antigen (Amanna and Slifka, 2010; Amanna et al., 2007).  This gave rise to a model 

whereupon memory B cells underwent continuous rounds of division and differentiation 

into short-lived plasma cells, which secreted antibody for 3-5 days before succumbing to 

death by apoptosis (Schittek and Rajewsky, 1990; Smith et al., 1996).  Whether this 

process was stochastic or driven by antigen persisting on follicular dendritic cells (FDCs) 

in the secondary lymphoid organs was a matter of much debate that has never been 

addressed to satisfaction (Amanna and Slifka, 2010; Bernasconi et al., 2002; Karrer et 

al., 2000; Liu et al., 1996; MacLennan, 1994; Tew and Mandel, 1979; Tew et al., 1990). 
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 Alternatively, persistence of antibody titers was consistent with a model where long-

lived plasma cells maintained antibody titers for the duration of the response.  Cleverly 

using BrDU labeling and irradiation studies, two seminal papers changed the notion that 

antibody titer maintenance was dependent on constant waves of antigen-induced plasma 

cell differentiation and showed that instead it depended on bone marrow plasma cells that 

could persist for the lifetime of the animal (Manz et al., 1997; Slifka et al., 1998).  Manz et 

al performed pulse-chase BrDU labeling studies on plasma cells generated in response 

to a TD antigen (ovalbumin) and demonstrated the persistence of antigen-specific plasma 

cells in the bone marrow for over 100 days (Manz et al., 1997).  In addition to defining the 

concept of a long-lived plasma cell, this report also reiterated the importance of the bone 

marrow as a key site of antibody production (Manz et al., 1997; McMillan et al., 1972; 

Slifka et al., 1995). The following year, Slifka et al extended these studies by taking 

advantage of the well-known radioresistance property of plasma cells (Lowenthal and 

Harris, 1985; Slifka et al., 1998).  Using irradiation to ablate all cells of the B lineage other 

than plasma cells, Slifka was able to show that the plasma cell response to LCMV 

persisted in the absence of a feeder B cell pool (Slifka et al., 1998).  Moreover, that same 

year, the original group of Manz and Radbruch was able to demonstrate the antigen 

independence of bone marrow plasma cell maintenance by using in vivo cell transfer 

studies (Manz et al., 1998).   I have personally evidenced the absence of a functional 

BCR on plasma cells by failing to detect the BCR signaling component Igβ flow 

cytometrically (Fig. 2-2 C).  Other studies from our lab have further expanded our 

conception of long-lived plasma cells by identifying a GC-independent pathway of long-

lived plasma cell formation by using both irradiation and BrDU labeling approaches 

(Bortnick et al., 2012). 
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 The proof that plasma cells can persist for very long periods of time has profoundly 

shaped our understanding of humoral immunity and has had significant medical 

implications.  On the one hand, generating long-lived plasma cells capable of secreting 

high affinity, protective antibody is the major goal of vaccine design; on the other, the 

ability to deplete pathogenic plasma cells is much sought after.  When B cell tolerance 

checkpoints are compromised and cells with self-reactive BCR specificities enter the 

effector pool, plasma cells (both short-lived and long-lived) secreting self-reactive 

antibodies become the culprit behind many manifestations of autoimmune disease (Hoyer 

et al., 2005; 2004; Martin and Chan, 2004).  The drug rituximab, an anti-CD20 antibody 

capable of effectively eliminating B cells in vivo, is now widely used in the context of 

autoimmune disease and B cell malignancies (Edwards and Cambridge, 2006; Edwards 

et al., 2004). Importantly, while rituximab effectively depletes all major cells of the B cell 

lineage (including memory B cell effectors), CD20 is not expressed on long-lived plasma 

cells at sufficient levels to mediate depletion upon rituximab treatment (DiLillo et al., 

2008).  In fact, it is believed that rituximab is most effective in autoimmune diseases 

whose autoantibody production is largely due to short-lived plasma cells (Edwards and 

Cambridge, 2006). Another group took advantage of the rituximab resistance of long-lived 

plasma cells to further define the maintenance of the bone marrow long-lived plasma cell 

pool as being independent of memory B cells by ablating all B cells with anti-CD20 

antibodies; however, their studies were limited as they examined only one timepoint post-

ablation (Ahuja et al., 2008).  Some studies in this dissertation will also take advantage of 

this discrepancy in CD20 expression between B cells and plasma cells to further examine 

the nature of the bone marrow plasma cell pool (Fig. 2-6 B).  While the inability of anti-

CD20 therapies to deplete plasma cells may be discouraging in the context of 

autoimmune disease, it has proven useful scientifically.  Patients undergoing rituximab 
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treatment maintain their antibody titers to previously encountered antigens, providing the 

best evidence for the existence of long-lived plasma cells in humans (Cambridge et al., 

2003). 

        With all the evidence for the importance of long-lived plasma cells in mice and 

humans, what is the role of short-lived plasma cells in immune responses?  Current 

thinking holds that the secretion of low affinity IgM by the early wave of plasma cells is 

crucial for immediate protection against a pathogen, de facto buying time for a GC 

reaction to occur and generate high affinity effectors (Jacob et al., 1991; MacLennan, 

1994; Nossal, 1992).  While recent work by our lab and others has shown that some 

plasma cells from this early, extrafollicular wave are capable of entering the long-lived 

plasma cell pool and persisting long-term (Bortnick et al., 2012; Taillardet et al., 2009), 

the vast majority of these cells will apoptose within 3-5 days of their generation, as 

predicted by early models (Bortnick et al., 2012; Fidler, 1975; Liu et al., 1991; Smith et al., 

1996).  These cells are most often termed “plasmablasts” implying that these are 

antibody-secreting cells that are capable of cell division.  The only direct evidence for the 

existence of these cells is one study that is over 40 years old (Claflin and Smithies, 

1967); subsequent studies that have claimed the existence of plasmablasts have been 

less than rigorous in their interpretation of BrDU labeling data or focused on malignant 

plasma cells (Drewinko et al., 1981; Jego et al., 1999; Sze et al., 2000; Yaccoby and 

Epstein, 1999).  More recent studies have shown that the plasma cell transcriptional 

program is necessarily incompatible with proliferation; in fact, the master regulator of the 

plasma cell lineage, Blimp-1, has been described as a director repressor of c-myc, a key 

player in cell cycle control (Lin et al., 1997).  Similarly, expression of CDK inhibitor 

p18(INK4c) has been found to be essential for the proper generation of antibody-
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secreting cells arrested in the G1 phase of the cell cycle (Bretz et al., 2011; Morse et al., 

1997; Tourigny et al., 2002).  While the term “plasmablast” persists in the literature it is 

now often used interchangeably with “short-lived plasma cell”, making no claims about 

the cell cycle status of the cell. 

        The question about the identity of the cell that will eventually colonize the plasma 

cell survival niches of the bone marrow (“plasmablast” or non-secreting precursor) is a 

hotly debated one (Jourdan et al., 2011; Medina et al., 2002; Moser et al., 2006; 

O'Connor et al., 2002; Tarte et al., 2003). One group has described a proliferating, non-

antibody-secreting cell that leaves the GC as the relevant plasma cell precursor 

(O'Connor et al., 2002). Another lab has histologically demonstrated the presence of 

Blimp-1+ cells in GCs and, because many of these cells are Ki67+, concluded that they 

are proliferating centroblasts (Angelin-Duclos et al., 2000).  At least one paper finds 

antigen-specific plasma cells in the blood to parallel the maturity of BM PC, raising the 

possibility that these cells seed the bone marrow directly without further need for 

maturation (Blink et al., 2005).  Despite these findings, most researchers seem to agree 

that phenotypically immature plasma cells are the population of cells that will exit 

secondary lymphoid organs and take up residence in the bone marrow (Medina et al., 

2002).  Using a Blimp1-GFP reporter system, Kallies et al (2004) describe the presence 

of low numbers of GFPint (newly formed) plasma cells in the bone marrow and the classic 

Manz et al (1997) report suggests a degree of bone marrow plasma cell heterogeneity 

even whilst describing the longevity of the pool (Kallies et al., 2004; Manz et al., 1997).  

More recently, Racine et al have described a population of IgM plasmablasts in the bone 

marrow that facilitated long-term protection against intracellular bacterial infection (Racine 

et al., 2011).  While these reports in the literature hint at the presence of newly formed 
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(short-lived) plasma cells in the bone marrow, to our knowledge a comprehensive study 

of the bone marrow plasma cell pool kinetics and dynamics has not been performed and 

will be the focus of Chapter 2 of this dissertation. 

 

B. Germinal Centers 

 According to the classic model of humoral immunity, humoral memory in the form of 

memory B cells and long-lived plasma cells is derived exclusively from germinal center 

(GC) structures.  While recent studies have challenged this notion ((Bortnick et al., 2012; 

Racine et al., 2011; Taillardet et al., 2009; Toyama et al., 2002), section II.A, C), the 

import of GCs to the production of high affinity, class-switched antibodies is undisputed 

(Tarlinton, 2008).  GCs are microanatomical structures enriched with antigen-stimulated 

B cells undergoing class switch recombination (CSR), somatic hypermutation (SHM), and 

affinity-based selection before generating memory B cells and plasma cells (Tarlinton, 

2008).  Class-switch recombination is a permanent DNA recombination event whereby 

the constant region of the antibody will be replaced from IgM to one of the other isotypes 

(IgG, IgA, IgE) without a concomitant change in specificity (Martinez-Alonso and 

Coutinho, 1982).  The nature and location of the antigen are key, albeit poorly 

understood, factors that determine which antibody class will be produced (Hasbold et al., 

2004; He et al., 2007; Snapper and Mond, 1993).   Somatic hypermutation is the 

mechanism responsible for affinity maturation, a process describing the increasing 

binding affinity antibodies acquire for the antigen during the course of the 

infection/immunization (EISEN and SISKIND, 1964).  The variable chain of the antibody 

accumulates random point mutations, in some cases resulting in a structure with a higher 

than starting affinity for antigen (Berek et al., 1985).  This process is known as somatic 
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hypermutation and is believed to occur almost exclusively in germinal centers (Berek et 

al., 1991; Jacob et al., 1993).  While SHM outside the GC has only been described in 

transgenic models of autoimmune mice (William et al., 2005; 2002), CSR occurring 

outside a GC is a well-recognized phenomenon and has been documented both in T-

independent and very early T-dependent responses (Mond et al., 1995; Pape et al., 2003; 

Snapper and Mond, 1993; Toellner et al., 1996).  Both processes have been shown to be 

dependent upon activation-induced deaminase (AID), with AID knockouts producing only 

low affinity, unswitched antibodies (Muramatsu et al., 2000; 1999). 

 While T-independent antigens are capable of forming nascent GC structures (de 

Vinuesa et al., 2000; Goodlad and Macartney, 1995; Toellner et al., 2002), CD4+ T cells 

are essential components of fully-fledged GC responses to T-dependent antigens 

(Thorbecke et al., 1994). Classically, access to both antigen and T cell help was believed 

to be limiting in the GC (Allen et al., 2007); however, recent studies tracking GC B cell 

migration have suggested that T cell help was the limiting factor (Victora et al., 2010).  In 

fact, B cell migration within the histologically distinguishable light and dark zones of the 

GC is largely construed as a selection event determined by the ability to receive the 

requisite T cell help (Allen et al., 2007; Victora et al., 2010).  T cells within the GC have 

been described as a unique helper T lineage defined by a transcriptional regulator: T 

follicular helper (TFH) cells controlled by Bcl-6 (Fazilleau et al., 2009; Johnston et al., 

2009; Nurieva et al., 2009).  Recently, the steps of TFH maturation have been elucidated, 

both in terms of location within a GC and the cell types involved (Baumjohann et al., 

2013; Choi et al., 2011; Goenka et al., 2011; Kerfoot et al., 2011; Kitano et al., 2011). 

Both B-T cell interactions and cytokine secretion by TFH have been identified as essential 

for a stable GC structure.  First, CD40L-CD40 interactions have long been known to be 
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important for T-B interactions and indeed a lack of either of those components results in 

abrogated GCs and lack of high affinity, switched antibodies (Kawabe et al., 1994; Xu et 

al., 1994).  In a human correlate, CD40L deficiency has long been known to be the cause 

of hyper-IgM syndrome, characterized by the inability of patients to undergo class-switch 

recombination (Allen et al., 1993; Aruffo et al., 1993; DiSanto et al., 1993; Korthäuer et 

al., 1993).  Moreover, an exogenous source of CD40 antibodies can induce protective, 

isotype switched antibodies to T-independent, polysaccharide antigens (Dullforce et al., 

1998), though too much of a CD40 agonist can short-circuit humoral immunity (Erickson 

et al., 2002). Secondly, lack of co-stimulator CD28 similarly resulted in a decrease of 

antibody titers (Shahinian et al., 1993), although those studies potentially warrant a 

reinterpretation in light of recent work suggesting that CD28 plays a direct role in 

controlling plasma cell survival and function (Nair et al., 2011; Njau et al., 2012; Rozanski 

et al., 2011).  Additionally, molecules such as SAP and PD-1 on T cells and PD-L2 on B 

cells have been shown to regulate the stability of the GC and the number of TFH and long-

lived plasma cells (Cannons et al., 2010; Good-Jacobson et al., 2010; Qi et al., 2008).  

Finally, the cytokine IL-21 secreted by TFH is critical for supporting GCs, in particular via 

maintaining Bcl-6 expression in GC B cells (Linterman et al., 2010; Zotos et al., 2010).  

 While many of the soluble and cell surface molecules controlling GC formation and 

maintenance are known, the regulation of GC output and dissolution is poorly 

understood.  Recent work has suggested that differential distribution of IL21R during 

asymmetric division determines the fate of the GC B cell, with the IL21R-retaining 

daughter cell reentering the GC while the other daughter cell was free to leave the GC as 

a plasma cell (Barnett et al., 2012).  Other work has suggested that plasma cells derived 

from a GC participate in a negative feedback loop, dampening TFH responses and 
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resulting in GC dissolution (Pelletier et al., 2010).  However these studies did not address 

the crucial role of affinity selection within the GC.  Since GCs put out memory B cells and 

long-lived plasma cells, there must be mechanisms for selecting the highly mutated, high 

affinity cells into these pools.  While B cells with a relatively low affinity for antigen are 

initially selected into the GC reaction (Chan et al., 2009; O'Connor et al., 2006; Paus et 

al., 2006), plasma cells exiting the GC have accumulated many mutations and are high 

affinity (Amanna and Slifka, 2010; Smith et al., 1997).  In fact, it appears that the 

selection events for long-lived plasma cells are quite stringent: while low affinity clones 

can be found in the memory B cell compartment, GC-derived plasma cells are exclusively 

high affinity (Phan et al., 2006; Smith et al., 1997; 2000; 1994).  Intriguingly, GC B cells 

appear to undergo a fixed mutational and proliferation program regardless of their initial 

BCR affinity; in other words, low affinity and high affinity cells undergo the same number 

of cell divisions and low affinity B cells accumulate more VH mutations than their high 

affinity counterparts, making the two pools indistinguishable (Anderson et al., 2009; Shih 

et al., 2002).  Instead, differential survival capacities appear to provide the selective force 

behind the memory B cell versus long-lived plasma cell fate decision.  Stringent affinity 

selection was relaxed in bcl-xL transgenic mice with low affinity PC persisting in the bone 

marrow (Takahashi et al., 1999).  Bcl-2 transgenic mice evidenced higher numbers of 

plasma cells and memory B cells, though without a change in the fraction of high-affinity 

plasma cells, perhaps suggesting that different pro- and anti-apoptotic molecules have 

distinct roles in this process (Smith et al., 1994; 2000).  In fact, both the pro-apoptotic 

molecule Bim and the anti-apoptotic Mcl-1 have been implicated in the process (Fischer 

et al., 2007; Peperzak et al., 2013; Vikstrom et al., 2010).  Overall, while many studies 

have been carried out to elucidate these processes, it is clear that many aspects remain 

poorly understood. 
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C. Memory B cells 

 Memory B cells (Bmem) are antigen-specific components of humoral memory 

generated during primary immune responses and capable of rapidly differentiating into 

antibody-secreting cells upon antigen re-encounter.  BrDU labeling studies have shown 

memory B cells to be long-lived (Schittek and Rajewsky, 1990); other work has 

demonstrated that memory B cells persist in the marginal zone of secondary lymphoid 

organs, perfectly positioned for antigen encounter soon after reinfection (Liu et al., 1988; 

Yates et al., 2013).  While many groups have failed to find evidence for memory B cells in 

the BM (Shepherd and Noelle, 1991; Slifka et al., 1998), some data suggest that memory 

B cells can differentiate into plasma cells in the bone marrow in mice lacking secondary 

lymphoid organs (Koch et al., 1981; Ochsenbein et al., 2000; Paramithiotis and Cooper, 

1997).   T cell help appears dispensable for memory B cell survival; however, the role of 

T cells in memory B cell activation upon antigen re-encounter is less clear (Vieira and 

Rajewsky, 1990).  Secondary immune responses did not occur when T cells were 

depleted using anti-CD4 antibodies (Ochsenbein et al., 2000; Vieira and Rajewsky, 

1990); however, more recent studies using genetic knockout models found that memory 

B cell responses were unimpaired in the absence of cognate or bystander T cell help 

(Hebeis et al., 2004).  Similarly, antigen presentation on FDCs was found to be 

dispensable for memory B cell maintenance in knockout models (Karrer et al., 2000).  A 

number of historical cell transfer studies conflicted with this observation, concluding that 

antigen persistence was requisite for memory B cell maintenance (Askonas et al., 1972; 

Gray and Skarvall, 1988).  The debate was elegantly ended by the lab of Klaus 

Rajewsky, who used a Cre recombinase based system to revise the BCR specificity away 
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from the immunizing antigen, demonstrating the antigen independence of memory B cells 

(Maruyama et al., 2000).  The role of antigen in memory B cell activation and 

differentiation into plasma cells is less clear (Zinkernagel, 2002), with some workers 

arguing that it can be achieved via polyclonal, antigen-independent stimuli (Bernasconi et 

al., 2002). 

 One facet of memory B cell biology that has been extensively studied in the last few 

years is the provenance and heterogeneity of the memory B cell pool.  Classically, 

memory B cells are thought to be high affinity emigrants from the GC (MacLennan, 1994; 

Weiss and Rajewsky, 1990); however, a number of recent papers have challenged this 

notion.  In T-dependent, GC-forming responses low affinity cells have been detected in 

the memory B cell compartment, with up to 35% of the memory B cell pool being made 

up of low affinity clones (Smith et al., 1997; 2000).  Another group found that memory B 

cells, unlike their long-lived plasma cell counterparts, represented a polyclonal cellular 

pool containing specificities for viral escape variants (Purtha et al., 2011).  The 

heterogeneous nature of the memory B cell pool is further demonstrated by the presence 

of both isotype switched and IgM-bearing cells, with the provenance of the IgM+ memory 

B cells being the matter of much debate.  Studies in both mice and humans have 

detected evidence of somatic hypermutation in IgM-bearing memory B cells, highly 

suggestive of a GC origin for these cells (Dogan et al., 2009; Seifert and Küppers, 2009; 

Yates et al., 2013); however, other work has indicated that IgM+ memory B cells were 

subject to a lesser degree of affinity maturation and differentiation than isotype switched 

memory B cells (Pape et al., 2011; Taylor et al., 2012).  Unexpectedly, two independent 

studies in mice have found IgM+ memory B cells to be longer-lived than IgG+ memory B 

cells and both groups have proposed a model whereupon IgG+ memory B cells 
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differentiate into plasma cells upon reinfection while IgM+ memory B cells reinitiate GCs 

(Dogan et al., 2009; Pape et al., 2011); no further studies have been done to corroborate 

these surprising findings.  It appears that IgM+ and IgG1+ memory B cells can also be 

generated in a GC-independent pathway from Bcl6-deficient B cells (Toyama et al., 

2002).  Generation of memory B cells to T-independent antigens and in a T cell-

independent manner in humanized mice serves as further proof toward the existence of a 

GC-independent memory B cell generation pathway (Obukhanych and Nussenzweig, 

2006; Scheeren et al., 2008).  Characterization of memory B cell heterogeneity using 

phenotypic surface markers has identified at least 5 subsets of memory B cells (Tomayko 

et al., 2010); the relationship of these markers to the mutational status of the cells and 

subsequently their provenance is just beginning to be understood (Anderson et al., 2007).  

Overall, the multi-layered, intricate nature of humoral memory has been increasingly 

appreciated in recent years; hopefully future insights will result in an integrated, 

comprehensive model of memory B cells fairly soon. 

 

D. Plasma cell transcriptional networks 

Acquisition of a plasma cell fate involves a series of finely tuned steps including 

suppression of the B cell transcriptional program and expansion of protein secretion 

machinery in order to handle the prodigious amounts of antibodies being made.  Blimp-1 

has been described as a master regulator of the plasma cell fate with roles in both 

generation and maintenance of short- and long-lived plasma cells (Angelin-Duclos et al., 

2000; Cattoretti et al., 2005; Messika et al., 1998; Sciammas and Davis, 2004; Shaffer et 

al., 2002; Shapiro-Shelef et al., 2003; 2005; Turner et al., 1994).  A transcriptional 

repressor, Blimp-1 suppresses the B cell transcriptional program through direct 
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downregulation of Pax-5, the master regulator of the B cell lineage, and c-myc, an 

important cell cycle regulator often dysregulated in malignant plasma cells (Chesi et al., 

2008; Delogu et al., 2006; Lin et al., 2002; 1997; Nera et al., 2006; Shou et al., 2000; 

Soro et al., 1999; Usui et al., 1997).  Repression of c-myc was found to be necessary, but 

not sufficient for the assumption of the plasma cell fate (Lin et al., 2000).  In contrast, 

Pax-5-/- B cells took on a secretory phenotype and evidenced increased expression of 

Blimp-1, establishing Pax-5 as a director repressor of Blimp-1 (Kallies et al., 2007; Nera 

et al., 2006; Usui et al., 1997).  Similarly, Blimp-1 and Bcl-6 were found to be directly 

antagonistic, implying a reciprocal regulatory loop of plasma cell versus GC B cell fates 

(Alinikula et al., 2011; Chevrier et al., 2009; Corcoran et al., 2005; Emslie et al., 2008; Lin 

et al., 2004; Muto et al., 2010; 2004; Ozaki et al., 2004; Reljic et al., 2000; Sciammas and 

Davis, 2004; Shaffer et al., 2002; 2000; Tunyaplin et al., 2004).  Largely as a 

consequence of Bcl-6 and Pax-5 repression, plasma cells downregulate many cell 

surface molecules associated with B cells, such as CD19, CD20, CIITA and BCR 

signaling components (Piskurich et al., 2000; Shaffer et al., 2002; Tai et al., 2012).  Some 

of these conclusions will be re-examined in this dissertation, particularly in the finding that 

retention of the classical B cell marker B220 marks a functional difference among plasma 

cell subsets (chapter 2).  

 XBP-1 is one of the few critical plasma cell factors that are induced (rather than 

repressed) by Blimp-1 (Reimold et al., 2001; Shaffer et al., 2004).  XBP-1 is critical for 

mediating efficient protein synthesis and secretion as well as the control of the unfolded 

protein response (UPR) in plasma cells and secreting B-1 cells (Goldfinger et al., 2011; 

Iwakoshi et al., 2003b; Savitsky and Calame, 2006; Shaffer et al., 2004); however, XBP-1 

is not sufficient as it cannot rescue plasmacytic differentiation in the absence of Blimp-1 
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(Shapiro-Shelef et al., 2003; Taubenheim et al., 2012).  It appears that, within the B cell 

lineage, XBP-1 function is restricted to plasma cell fates as other components of humoral 

memory are XBP-1-independent (Todd et al., 2009).  Additionally, XBP-1 may have a role 

in plasma cell colonization of the bone marrow niche (Hu et al., 2009).  IRF4 is the 3rd and 

final major player in plasma cell transcriptional networks whose early graded expression 

is thought to induce transcription of the prdm1, the Blimp-1 gene (Cattoretti et al., 2006; 

Hauser et al., 2009; Sciammas et al., 2006).  Other work has indicated that IRF4 and 

Blimp-1 are regulated independently or even suggested that IRF4 may be downstream of 

Blimp-1 (Kallies et al., 2007; Klein et al., 2006).  Additionally, IRF4-deficient B cells lack 

class-switch recombination, suggesting an independent role for IRF4 in this process 

(Klein et al., 2006; Sciammas et al., 2006).  Over the years additional transcriptional 

regulators of the plasma cell fate have been identified: Oct2, CD93 and OBF-1 have been 

shown to be positive regulators while Bach2 and Mitf act as negative regulators by 

repressing Prdm1 and Irf4, respectively (Alinikula et al., 2011; Chevrier et al., 2009; 

Corcoran et al., 2005; Emslie et al., 2008; Lin et al., 2004; Muto et al., 2004; 2010; Ochiai 

et al., 2006; 2008; Shen and Hendershot, 2007). 

The intricacy of the plasma cell transcriptional networks has important medical 

implications.  The majority of key transcriptional players are conserved between normal 

and malignant plasma cells; comparative microarray studies have identified ~250 genes 

that are differentially expressed, most of them not unique to malignant plasma cells (De 

Vos et al., 2002).  For example, XBP-1 levels have been found to be highest in multiple 

myeloma cells (Carrasco et al., 2007; Reimold et al., 1996).  A lot of work has focused on 

exploiting these differences in degree of expression.  XBP-1 knockdown in myeloma lines 

has resulted in smaller cells and subsequent cell death (Shaffer et al., 2004).  Although 
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IRF4 is not genetically altered in most myelomas, Shaffer et al showed that the malignant 

plasma cells were nevertheless “addicted” to the IRF4 regulatory network and suggested 

that a “therapeutic window” may exist where targeting IRF4 would kill myeloma cells while 

sparing healthy plasma cells (Shaffer et al., 2008).  Blimp-1 target and classic phenotypic 

marker of plasma cells, CD138 (syndecan-1), has also been validated as a viable multiple 

myeloma target (Shaffer et al., 2002; Wu et al., 2012; Yang et al., 2007).  Perhaps the 

most successful class of multiple myeloma drugs are the proteasome inhibitors.  Antibody 

secretion via the ER pathway has been identified as a major component of the plasma 

cell death mechanism (Pelletier et al., 2006; Pengo et al., 2013).  The accumulation of 

unfolded proteins due to extensive immunoglobulin production sensitizes normal plasma 

cells as well as myeloma cells to proteasome inhibition (Meister et al., 2007; Neubert et 

al., 2008).  In addition, proteasome inhibition renders myeloma cells functionally XBP1-

deficient, further exacerbating the effect (Lee et al., 2003).  In combination with survival 

factor modulation described in the next section, the molecular toolkit for plasma cell 

manipulation is prodigious and constantly growing. 

 

E. Plasma cell survival niches 

 The role of the bone marrow as a unique survival niche for long-lived plasma cells 

has been established since the longevity of the plasma cell population was first 

characterized (Manz et al., 1997; Slifka et al., 1995; 1998). When removed from this 

niche and placed in ex vivo cultures, bone marrow plasma cells remained viable for just a 

few hours, strongly suggesting that this plasma cell population depends on exogenous 

survival signals in the bone marrow (Minges Wols et al., 2002).  Subsequently, a number 

of cellular, cell surface and soluble factors have been described as playing key roles in 
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the maintenance of this exclusive survival niche.  The cytokine IL-6 (Bataille et al., 1989; 

Chauhan et al., 1997; Cheung and Van Ness, 2002; Hardin et al., 1994; Kawano et al., 

1988; Kopf et al., 1994), the B Lymphocyte stimulator family cytokines BLyS and APRIL 

(Benson et al., 2008; O'Connor et al., 2004), bone marrow stromal cells (Cassese et al., 

2003; Minges Wols et al., 2002), eosinophils (Chu and Berek, 2012; Chu et al., 2011) and 

megakaryocytes (Winter et al., 2010) and the CXCR4-CXCL12 chemokine axis 

(Hargreaves et al., 2001; Hauser et al., 2002; Tokoyoda et al., 2004) are some of the 

important factors that have been implicated in plasma cell and malignant (myeloma) 

plasma cell longevity.  Furthermore, the factors that control the entry requirements as well 

as the size and composition of the bone marrow plasma cell pool are of considerable 

clinical interest (Moser et al., 2006; Radbruch et al., 2006).  This section will review the 

current knowledge about all the various aspects of plasma cell survival in specialized 

niches. 

 It has been proposed that bone marrow stromal cells are central players in 

orchestrating bone marrow plasma cell survival, similar to their role in HSC survival 

niches (Shiozawa et al., 2008; Sugiyama et al., 2006). A number of groups have 

succeeded in culturing plasma cells in vitro in the presence of bone marrow stroma 

(Cassese et al., 2003; Minges Wols et al., 2002; Tokoyoda et al., 2010).  These groups 

concluded that it was the synergistic effects of the soluble factors secreted by bone 

marrow stromal cells that resulted in optimal plasma cell survival, with no one factor being 

able to recapitulate the in vivo phenotype (Cassese et al., 2003; Minges Wols et al., 

2002; 2007).  While many soluble factors, including TNFa, IL-4, IL-5 and IL-10, were all 

identified as plasma cell survival factors, the role of two factors (IL-6 and CXCL12) has 

engendered the most scrutiny (Cassese et al., 2003).  While a role in plasma cell survival 
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has been proposed for stromal cell-derived CXCL12, the majority of studies on CXCL12 

have focused on its role in plasma cell mobilization and will be reviewed later in this 

section (Tokoyoda et al., 2010).  On the other hand, the role of IL-6 in plasma cell 

differentiation and survival has been extensively studied (Bataille et al., 1989; Dedera et 

al., 1996; Kawano et al., 1988; Kishimoto, 1989; Kopf et al., 1994; Roldán and Brieva, 

1991; Skibinski et al., 1998).  Interestingly, IL-6 has been shown to induce XBP-1 in 

myeloma cell lines, suggesting one potential mechanism of action by which IL-6 mediates 

survival (Iwakoshi et al., 2003a; Wen et al., 1999).  However, while IL-6 had profound 

effects on plasma cell survival in vitro (Minges Wols et al., 2002), IL6-/- mice had a more 

mild defect in antibody titers and recovered their plasma cell numbers over time (Kopf et 

al., 1994).   

 Two cytokines with roles in B cell homeostasis have key roles in plasma cell 

survival: BLyS (B lymphocyte stimulator; also known as BAFF) and APRIL (A proliferation 

inducing ligand) (Ingold et al., 2005; Mackay and Schneider, 2009; Moreaux et al., 2004; 

2009; Novak et al., 2004; Scholz and Cancro, 2012).  These cytokines have differing 

binding affinities for 3 distinct receptors expressed on B-lineage cells: BR3 (also known 

as BAFF-R), TACI and BCMA.  Mature peripheral B cells are double positive for BR3 and 

TACI, while BCMA expression is thought to be restricted to memory B cells and long-lived 

PC (Darce et al., 2007; O'Connor et al., 2004; Rodig et al., 2005).  While BLyS is capable 

of binding all three receptors with differing affinities (BR3>TACI>BCMA), APRIL cannot 

bind to BR3 and instead has the highest affinity for BCMA (Bossen and Schneider, 2006; 

Day et al., 2005).  BLyS, through interactions with BR3, is thought to be the key molecule 

controlling the size of the naïve B cell pool (Scholz and Cancro, 2012; Woodland et al., 

2008). Genetically lacking functional BR3 expression and in vivo depletion of BLyS in 
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adult mice result in the same phenotype: a profound peripheral B cell depletion (Lentz et 

al., 1996; Scholz et al., 2008).  By contrast, excess BLyS is believed to result in less 

stringent selection of B cell clones, allowing autoreactive clones into the periphery and 

resulting in autoimmune disease (Cancro et al., 2009).  The role of TACI in the regulation 

of the naïve B cell pool is less clear: unexpectedly, TACI-/- show evidence of increased B 

cell numbers, hinting at a negative regulator role for this molecule (Bülow et al., 2001; 

Yan et al., 2001).  Interestingly, humoral immunity remains intact when BLyS is depleted 

in vivo, suggesting a functional redundancy of BLYS and APRIL in plasma cell survival 

(Scholz et al., 2008).  This deduction is, in fact, borne out by experiments demonstrating 

a significant reduction in the number of bone marrow plasma cells when BLyS is 

neutralized in APRIL-/- mice (Benson et al., 2008).  The same report demonstrates the 

complete independence of memory B cells on BLyS or APRIL, making memory B cells 

the only B2 lineage cells which do not rely on these two survival factors (Benson et al., 

2008).  Moreover, this group’s results are internally consistent with their previous finding 

that bone marrow long-lived plasma cells depend on the promiscuous BLyS/APRIL 

receptor, BCMA (O'Connor et al., 2004).   

 The cellular sources of pro-survival factors such as BLyS and APRIL constitute a 

further level of regulation in the formation of plasma cell survival niches.  Radioresistant 

bone marrow stromal cells are significant sources of BLyS and APRIL in both mice and 

humans (Gorelik et al., 2003; Moreaux et al., 2005; Schaumann et al., 2007).  Using a 

bone marrow chimera approach, one group established that other cellular sources of 

BLyS are insufficient to support normal B cell homeostasis (Gorelik et al., 2003).  For 

plasma cell survival in particular, neutrophils, monocytes, osteoclasts, eosinophils and 

megakaryocytes have all been implicated as important sources of APRIL (Chu et al., 
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2011; Huard et al., 2008; Moreaux et al., 2005; Winter et al., 2010).  Moreover, both 

eosinophils and megakaryocytes have also been described to secrete IL-6, making these 

cell populations important sources of two key plasma cell survival factors: IL-6 and APRIL 

(Chu and Berek, 2012; Chu et al., 2011; Winter et al., 2010).  The list of potential cellular 

sources of plasma cell survival factors is constantly expanding: recently, iNKT cells have 

been described as BLyS and APRIL secretors (Shah et al., 2013).  Survival niches in 

other organs are less well established but are thought to rely on similar survival 

mechanisms (Cassese et al., 2001; Ellyard et al., 2005; Mahévas et al., 2013).  

Interactions between plasmablasts in secondary lymphoid organs and dendritic cells (as 

well as monocytes/macrophages) are thought to be associated with plasmablast survival, 

most likely via APRIL and IL-6 (García de Vinuesa et al., 1999; Mohr et al., 2009).  

Basophils in both spleen and bone marrow appear to affect plasma cell survival in vitro 

and in vivo (Rodriguez Gomez et al., 2010).  B cell depletion studies in immune 

thrombocytopenia suggest that the spleen can provide a niche for long-lived plasma cells, 

not just plasmablasts; studies in an SLE mouse model establish inflamed kidneys as a 

site of plasma cell homeostasis (Cassese et al., 2001; Mahévas et al., 2013). 

 In addition to all the soluble factors described above, a whole slew of surface 

molecules are thought to play a role in plasma cell survival: CD28, CD44, CD54, FcγRIIb, 

integrin α4β1, VLA-4, LFA-1, S1P1, CXCR3 and CXCR4 (Bahlis et al., 2007; Cassese et 

al., 2003; DiLillo et al., 2008; Ellyard et al., 2005; Hamilton et al., 1991; Kabashima et al., 

2006; Nair et al., 2011; Reif et al., 2002; Tokoyoda et al., 2004; Underhill et al., 2003; 

Xiang et al., 2007).  Here the question of plasma cell survival quickly becomes 

intertwined with the issue of plasma cell migration and adherence in new niches 

(Radbruch et al., 2006).  It is hypothesized that the bone marrow plasma cell niche is of a 
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fixed size and thus subject to stringent entry requirements and competition (Radbruch et 

al., 2006).  It is believed that a “coordinated change in chemokine responsiveness” is 

responsible for the migration of plasma cells out of secondary lymphoid organs and 

lodgment in the bone marrow (Hargreaves et al., 2001).  This includes increased 

chemotactic activity toward CXCR4 ligand, CXCL12, and decreased responsiveness to B 

cell chemoattractants CXCL13, CCL19, and CCL21 (Hargreaves et al., 2001; Hauser et 

al., 2002).  

 CXCL12-secreting stromal cells are well-recognized as being essential to the 

formation of B lymphocyte niches in the bone marrow and some microscopy evidence 

exists for co-localization of bone marrow plasma cells with this subset of bone marrow 

stromal cells (Tokoyoda et al., 2004).   It has even been hypothesized that the B cell 

lymphopenia noted in multiple myeloma patients may result from malignant plasma cells 

overwhelming B cell precursor survival niches (Alsayed et al., 2007; Pilarski et al., 1984; 

Tokoyoda et al., 2004).  A similar competition mechanism has been proposed for new 

plasma cells entering the bone marrow, although it is based on a single human study 

(Odendahl et al., 2005; Radbruch et al., 2006).  After a second vaccination with tetanus 

toxoid, researchers noted an increase in both tetanus-specific plasmablasts and plasma 

cells of other specificities in the blood (Odendahl et al., 2005).  They concluded that 

newly formed plasma cells can only enter the long-lived pool by upregulating CXCR4, 

homing to the bone marrow and supplanting members of previously established cohorts 

(Hauser et al., 2002; Odendahl et al., 2005; Radbruch et al., 2006).  Another group noted 

a decrease in bone marrow plasma cell numbers after immunization with a model 

antigen; neither group controlled for the nature of the antigen or traced the fate of the 

“displaced” cells to determine whether they re-colonized long-lived plasma cell niches 
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(Odendahl et al., 2005; Xiang et al., 2007).  Based on the number of plasma cells 

necessary to maintain protective titers against a given antigen, Radbruch et al calculated 

that the competitive BM could support 1,000 PC specificities, arguably enough to 

preserve humoral memory against any encountered antigen for a lifetime (Radbruch et 

al., 2006).  The limitations of this view of the bone marrow plasma cell population – 

largely long-lived, with some new immigrants – will be explored in this dissertation. 

 

	
  Summary 

Plasma cells are B-lineage derived cells responsible for maintaining antibody 

titers (both protective and pathogenic) and are the source cell of the malignancy multiple 

myeloma.  Plasma cells are believed to populate unique survival niches in the bone 

marrow. Current models predict that bone marrow plasma cells consist chiefly of long-

lived, slowly renewing cells (Fig. 1-1).  However, we find the turnover rate of the bone 

marrow plasma cell pool to be much higher than predicted by these models; in fact, more 

than 50% of bone marrow plasma cells exhibit characteristics of recently formed plasma 

cells.  Studies in chapter 2 of this dissertation will focus on characterizing the bone 

marrow plasma cell turnover kinetics as well as the phenotypic characteristics of the 

different bone marrow plasma cell subsets.  Chapter 3 will extend these studies by 

focusing on a response to a model antigen and will define the distinct precursor 

populations that give rise to the various bone marrow plasma cell pools. 
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Figure 1-1.  Conventional (1997-2012) model of plasma cell fates and precursors. 
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CHAPTER 2 

THE BULK OF THE STEADY STATE BONE MARROW PLASMA CELL POOL IS 

MAINTAINED VIA CONTINUOUS GENERATION FROM A B CELL PRECURSOR 

Abstract 

Current models predict that bone marrow plasma cells (BM PC) consist chiefly of long-

lived, slowly renewing cells.  Here we find the turnover rate of the BM PC pool to be much 

higher than predicted by these models; in fact, more than 50% of BM PC exhibit 

characteristics of recently formed PC. These characteristics include surface expression of 

the canonical naïve B cell surface protein B220, and a 50% renewal rate of less than 3 

days.  Intriguingly, these PC do not appear to be cycling and are depleted upon ablation 

of peripheral B cell pools.  Together these data show that a large fraction of the BM PC 

pool is continuously repopulated by plasma cells newly generated from B cell precursors. 

The main findings are: 

• The bone marrow plasma cell pool is markedly heterogeneous: the bulk of 

bone marrow plasma cells are rapidly renewed. 

• Rapidly renewing plasma cells do not appear to be in cell cycle. 

• B cell precursors are needed to maintain the bone marrow plasma cell pool 

long-term. 
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I. RESULTS 

To explore the cellular dynamics with which cells enter and persist within the bone 

marrow plasma cell pool, we first employed continuous in vivo BrdU labeling in B6 mice 

that were not intentionally immunized.  We find that within 30 days of labeling, >40% of 

bone marrow plasma cells have incorporated BrDU, indicative of a renewal rate much 

higher than predicted by other models (Fig. 2-1 A).  To probe the bone marrow plasma 

cell heterogeneity suggested by this result, we further characterized the pool by 

examining the expression of the naïve B-cell signaling protein CD19 and the B-lineage 

marker B220 (CD45R) on the bone marrow of unimmunized adults.  These cells were 

readily resolved into B220+CD138low and B220+/-CD138high populations. The B220+ 

CD138low bone marrow fraction did not contain plasma cells, and likely corresponds to 

pre-B cells (Tung et al., 2006). By contrast, we resolved three subpopulations of 

CD138high subsets defined as B220+CD19+/-, B220- CD19+, and B220-CD19-. Notably, only 

a minority of all plasma cells corresponded to the classic B220-CD19- plasma cell 

phenotype (Fig. 2-1 B). All three subsets contained high frequencies of antibody 

secreting cells when sorted from B6 adults (Fig. 2-1 C), clearly distinguishing these cells 

from a proposed, non-secreting plasma cell precursor (O'Connor et al., 2002). Microarray 

data (not shown) and real-time PCR showed that all CD138high subsets had high levels of 

Blimp-1 and low levels of B-lineage master regulator Pax5, consistent with previously 

published data for plasma cells (Fig. 2-2 A, B) (Horcher et al., 2001; Shaffer et al., 2002).  

Interestingly, it appears that bone marrow plasma cells retain surface expression of CD19 

despite an absence of high levels of CD19 transcripts (Fig. 2-1 B, Fig. 2-2 B).  

Furthermore, cells within the CD138high B220+ fraction exhibited signs of relative 

immaturity, as they expressed lower levels of Blimp-1 as revealed with Blimp1-GFP 

reporter mice (Kallies et al., 2004). In sharp contrast, B220- plasma cells, including 
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CD138highCD19+ cells, consisted of mature cells as judged by their relatively high Blimp-1 

expression (Fig. 2-1 D).   Consistent with their relative immaturity, B220+ CD138high bone 

marrow cells labeled rapidly, indicating a 50% renewal rate of less than 3 days (Fig. 2-1 

E). By contrast, bone marrow B220- plasma cells including CD138high CD19+ cells 

exhibited protracted BrdU labeling kinetics indicative of pools of mature long-lived plasma 

cells. Indeed, the labeling kinetics for CD19+ and CD19- plasma cells within the CD138high 

B220- fraction were indistinguishable (Fig. 2-1 E, see Fig. 2-3 A for representative gates).  

Finally, we performed pulse-chase BrDU studies which revealed no evidence of 

interconversion between the bone marrow plasma cell subsets with disparate BrDU 

labeling kinetics (Fig. 2-3 B).  Altogether these data reveal a striking and previously 

unappreciated heterogeneity among bone marrow plasma cells. 
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Figure 2-1.   Adult bone marrow contains both rapidly and slowly renewing plasma 
cells.  (A) B6 mice were fed BrdU for the indicated days before determination of the % of 
Dump-IgD-CD138high cells that are BrdU+. Pre-B cells were used as a labeling control.  
Best-trend lines were drawn across the mean BrdU+ cells for each subset using 3-4 mice 
per timepoint; error bars represent SEM.  (B) BM cells from unimmunized B6 adults were 
analyzed by flow cytometry with the indicated antibodies (see chapter 5).  (C) Cells 
within the indicated gates were sorted directly into ELISPOT plates to determine 
frequencies of total antibody secreting cells in each CD138high subset in naïve B6 mice.  
(D) Relative Blimp1/GFP expression among the subsets identified and labeled in 2-1B 
was determined using B6.Blimp1+/Blimp1 mice.  (E) Determination of % BrDU+ cells within 
each gate, BrDU labeling as in 2-1A. 
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Figure 2-2. BM PC upregulate Blimp-1 and downregulate Pax5 and BCR 
components. (A) Relative Blimp-1 transcript expression in sorted BM plasma cell 
subsets was measured by qRT- PCR. Additional samples included cDNA prepared from 
the BM stromal cell line OP9, splenic FOL (CD23+) B cells, and FOL B cells stimulated for 
3 days with LPS and IL-4. Data are expressed relative to OP9 cells. Error bars indicate 
the relative quantity minimum and relative quantity maximum for each sample.  (B) 
Relative CD19 and Pax5 transcript expression from samples prepared as in part A.  Data 
are expressed relative to naïve FOL B cells.  (C) BM PC subsets were stained for the 
presence of Igβ.  Representative of n=3 mice.  (D) BM PC were assayed for the presence 
of a membrane BCR in B6 mice and mice lacking secretory, but not membrane IgM (Δµs) 
(Boes et al., 1998b; 1998a; Ehrenstein et al., 1998).  Representative of n=3 mice. 
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Figure 2-3.  BrDU labeling kinetics of BM PC subsets.  (A) Representative flow plots 
showing BrDU incorporation of the BM PC subsets defined in Fig. 2-1B and graphed in 
Fig. 2-1E at d18 post continuous BrDU labeling.  (B) B6 adult mice were given BrDU in 
the drinking water and sacrificed after 1, 2, 3, 4, or 6 days of continuous BrDU (negative 
numbers on the x-axis) or were chased on regular water after 6 days of continuous BrDU 
administration (positive numbers on the x-axis).  Average 3-4 mice per group; error bars 
represent SEM of individual animals. 
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While bone marrow plasma cells are classically believed to be post-mitotic 

(Radbruch et al., 2006), recent reports have described the presence of a proliferative 

plasmablast in the bone marrow (Racine et al., 2011), leading us to investigate whether 

the rapidly renewing B220+ fraction corresponded to such a cell. Employing two different 

methods for assessing cellular proliferation (Schittek et al., 1991; Wilson et al., 2008), we 

were unable to find evidence of a dividing plasma cell in the bone marrow (Fig. 2-4 A, B).  

Moreover, we found no evidence of high c-myc expression, a trans-membrane BCR or 

associated signaling components (Igβ), which are often used to define a “plasmablast” 

(Racine et al., 2011) (Fig. 2-4 C, Fig. 2-2 C, D).  The post-mitotic status of B220+ plasma 

cells coupled with their rapid BrDU turnover kinetics suggested constant replenishment 

from a proliferating B cell precursor pool.   

To probe this, we utilized two different approaches to deplete B cells and assess 

the effect on bone marrow plasma cell population frequency.  First, I lethally irradiated 

C57BL/6 hosts and reconstituted them with RAG-/- versus control bone marrow.  Since B 

cell development in RAG-/- arrests at the pro-B stage (Ceredig, 2002), there will be no 

mature B cell precursor available to continuously replenish the bone marrow plasma cell 

compartment in RAG-/- reconstituted mice.  At eleven weeks post-reconstitution, we see 

~40% of the bone marrow plasma cell pool persisting (Fig. 2-5 A, B).  This is consistent 

with our BrDU turnover kinetics data demonstrating that ~60% of the total bone marrow 

plasma cell pool is replaced every two months (Fig. 2-1 A).   

While a useful tool, irradiation has some serious downsides as an experimental 

approach including a potentially disruptive effect on bone marrow plasma cell survival 

niches (Moser et al., 2006; Zhang et al., 2010).  To more rigorously address our question, 

we took advantage of novel transgenic mice that allow us to inducibly delete B cells and 
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assess the effect on bone marrow plasma cell population frequency.  Specifically, we 

mated hCD20-TAMCre.C57BL/6 mice, where a B-cell specific Cre recombinase is 

activated upon tamoxifen treatment, to Gt(ROSA)26Sortm1(DTA)Jpmb/J mice, in which a 

floxed stop codon is placed before a diphtheria toxin cassette (from here on referred to as 

CD20Cre-DTA mice) (Ivanova et al., 2005; Khalil et al., 2012) (Fig. 2-6 A).  While the 

majority of peripheral B cells are hCD20+ (95%), only a minority of bone marrow plasma 

cells express low levels of hCD20, with no differences in expression detected between 

B220+ versus B220- plasma cells (Fig. 2-6 B).  We treated CD20Cre-DTA mice, as well 

as single transgene controls (CD20Cre and Rosa26-DTA), with tamoxifen for 3 days to 

induce B cell deletion and subsequently at 2 week intervals to deplete any newly 

maturing B cells.  While CD19+ B cell numbers were reduced 5-10 fold at all timepoints 

examined, the kinetics of decline in bone marrow plasma cells were more protracted (Fig. 

2-6 C, Fig. 2-7 A, B).  Early on (d17 post-tamoxifen induction) B220+ and B220- plasma 

cell frequencies in CD20Cre-DTa mice did not differ significantly from the frequencies in 

control CD20Cre animals (Fig. 2-7 A, B).  Consistent with their rapid turnover kinetics, 

B220+ plasma cells were significantly reduced at days 40 and 160 post- B cell ablation, 

while the slowly renewing B220- plasma cells were only affected months post- B cell 

ablation (Fig. 2-7 A, B).  These findings support our BrDU labeling studies and establish 

a role for a B cell feeder pool in the maintenance of polyclonal bone marrow plasma cell 

populations. 
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Figure 2-4.  Bone marrow plasma cell subsets are not actively cycling. (A) 
Intracellular DAPI staining was used to quantitate DNA content in the BM of adult B6 
mice (Wilson et al., 2008).  Cycling (large) pre-B cells were used as a positive control.  
Representative of n>3 individual mice.  (B) B6 mice were injected with BrDU i.p. for 1 
hour and analyzed by flow cytometry for BrDU incorporation .  Labeling with BrDU is 
indicative of proliferation (Schittek et al., 1991). Representative of n>3 individual mice.  
(C) Relative c-myc transcript expression in sorted BM plasma cell subsets was measured 
by qRT- PCR. Additional samples included cDNA prepared from unstimulated splenic 
FOL (CD23+) B cells and FOL B cells stimulated for 3 days with LPS. Data are expressed 
relative to unstimulated FOL B cells. Error bars indicate the relative quantity minimum 
and relative quantity maximum for each sample.   
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Figure 2-5. The BM PC pool is continuously replenished by a lymphoid precursor. 
(A) Representative BM PC flow plots from C57BL/6 and RAG-/- reconstituted mice. (B) 
The decay rate of B220+ and B220- PCs was illustrated by dividing the number of cells in 
each subset in RAG-/- reconstituted mice by the average number of cells in each subset in 
a C57BL/6 control as previously described by Slifka et al (Slifka et al., 1998). 
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Figure 2-6. Design and characteristics of hCD20Cre-DTA mice. (A) Mating strategy 
used to generate CD20Cre-DTA mice (see text for details) (B) Representative splenic B 
cell and BM PC flow plots from C57BL/6 and hCD20Cre mice assessing for expression of 
surface hCD20 on each population. (C) hCD20-TAMCre.C57BL/6 mice (CD20Cre) and 
hCD20-TAMCre.C57BL/6 x Gt(ROSA)26Sortm1(DTA)Jpmb/J mice (CD20Cre-DTA) were 
treated with three induction doses and subsequent fortnightly doses of tamoxifen and 
sacrificed on days 0, 17, 40 and 160 post-induction (Ivanova et al., 2005; Khalil et al., 
2012).  Numbers of CD19+ B cells were quantified using flow cytometry and total spleen 
counts.  Average 3-4 mice per group; error bars represent SEM of individual animals. 
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Figure 2-7. The BM PC pool is continuously replenished by a B cell precursor. (A) 
The decay rate of B220+ and B220- PCs was illustrated by dividing the number of cells in 
each subset in CD20Cre-DTA (ablated) mice by the average number of cells in each 
subset in 2-4 CD20Cre controls (unablated) for each indicated timepoint as previously 
described by Slifka et al (Slifka et al., 1998). (B) Representative BM PC flow plots from 
CD20Cre and CD20Cre-DTA mice at three different timepoints. 
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II. DISCUSSION 

  Since the description of long-lived plasma cells by Manz et al in 1997 (Manz et al., 

1997), the literature has focused on characterizing the bone marrow as a site of almost 

exclusively long-lived, high-affinity plasma cells.  A closer examination reveals hints of 

bone marrow plasma cell heterogeneity: newly formed GFPint plasma cells in the bone 

marrow of Blimp-1 reporter mice, kinetics of BrDU labeling in Manz et al, the presence of 

IgM-secreting plasma cells in the bone marrow (Bortnick et al., 2012; Kallies et al., 2004; 

Manz et al., 1997).  However, most of the published works suggest that newly formed 

plasma cells constitute a minority (~10% as per Kallies et al) of the bone marrow plasma 

cell pool.  Our results define the degree of turnover heterogeneity of bone marrow plasma 

cells and find that, surprisingly, roughly 50% of the bone marrow plasma cell pool is 

replaced every 60 days; a much higher number than predicted by previous models (Fig. 

2-1 A).  Moreover, we find that this unexpected extent of turnover represents the 

summation of two separate bone marrow plasma cell pools: a rapidly and a slowly 

renewing population.  Although it is tempting to posit a dividing bone marorw 

“plasmablast” as the mechanism of BrDU incorporation in the rapidly renewing bone 

marrow plasma cell pool (Racine et al., 2011), our data support a role for continuous 

recruitment of peripheral B cells into the bone marrow plasma cell pool (Fig. 2-4 and 2-

7).  Whereas the mechanisms of bone marrow colonization by new plasma cells are not 

fully understood, our findings suggest a continuous entry of new plasma cells that coexist 

with more established, long-lived plasma cells.  The issues surrounding the potential 

replacement of old specificities by newcomer plasma cells are of the utmost interest and 

will be further discussed in Chapter 4. 

 One of the areas where understanding the nature of the bone marrow plasma cell 
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pool is of particular importance is in the field of multiple myeloma.  While it is clear that 

acquisition of malignant potential involves a number of gene expression changes 

between normal plasma cells and myeloma cells (for example, c-myc upregulation), 

comparing the kinetics of healthy versus malignant bone marrow plasma cell pools 

should prove informative (Bergsagel and Kuehl, 2001; De Vos et al., 2002; Shou et al., 

2000). Models of the disease have long followed the classical cancer paradigm and 

postulated the existence of a rare myeloma stem cell.  The exact nature of this cell has 

been a matter of much debate.  For instance, Yaccoby et al reported that plasma cell-

depleted bone marrow could not transfer disease to a SCID-hu host in a humanized 

mouse system (Yaccoby and Epstein, 1999).  In contrast, later papers by Matsui et al 

utilizing NOD/SCID mice concluded that the myeloma stem cell was a CD138- B cell 

precursor (Matsui et al., 2004; 2008).  Our data demonstrating the dependence of bone 

marrow plasma cells on a B cell precursor seem to parallel the findings of Matsui et al 

(Matsui et al., 2004), though they do not definitively rule out the acquisition of malignant 

potential by a terminally differentiated plasma cell. 

  The multi-component nature of the bone marrow plasma cell compartment 

broaches many questions about its regulation and survival requirements.  While many 

factors have been identified as being important for the maintenance of bone marrow 

plasma cells (Belnoue et al., 2008; Benson et al., 2008; Chu et al., 2011; Kopf et al., 

1994; Radbruch et al., 2006; Winter et al., 2010), our new appreciation of the extent of 

bone marrow plasma cell heterogeneity raises the strong possibility that these factors 

have differential effects on the different bone marrow plasma cell subsets.  For instance, 

it has been proposed that plasma cells are located in proximity to CXCL12-producing 

stromal cells in the bone marrow (Tokoyoda et al., 2004).  It would be informative to 
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determine whether access to these survival niches differed between rapidly versus slowly 

renewing bone marrow plasma cells.  Alternatively, a re-examination of cell-intrinsic 

survival factors such as Mcl-1 could lead to an understanding of the observed survival 

differences (Peperzak et al., 2013).  Overall, we submit that in light of the new data, a 

thorough reexamination of the survival requirements of long-lived plasma cells is 

warranted. 

 In sum, we propose that the bone marrow plasma cell compartment is uniquely 

heterogeneous, both in regards to phenotypic markers and functional turnover rates.  The 

continuous replenishment of the bone marrow plasma cell pool from a B cell precursor 

and the resultant questions about plasma cell entry requirements and the niche size are 

some of the more interesting aspects of the work.  To that end, the mechanisms involved 

in the formation, migration and maintenance of the various bone marrow plasma cell 

subsets all merit further investigation. 
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CHAPTER 3 

SLOWLY VERSUS RAPIDLY RENEWING BONE MARROW PLASMA CELL SUBSETS 

ARE DERIVED FROM DISTINCT CELLULAR PRECURSORS 

Abstract 

T-dependent antigens are notorious for their ability to induce high affinity, long-lived PC.  

However, we find that very long-term maintenance of the antigen-specific BM PC pool is 

dependent on a CD40-independent B cell precursor.  Specifically we find that, despite the 

rapid turnover rate exhibited by B220+ BM PC (described in chapter 2), antigen-induced 

antibody secreting cells are found within this population for more than 100 days post-

immunization.  These cells secreted exclusively low affinity, unswitched, κ type 

antibodies, consistent with a germinal center (GC)-independent origin in sharp contrast to 

the GC-derived (high affinity, isotype switched) cells found within the slowly renewing BM 

PC pool.  Finally, we are able to identify κ versus λ-expressing antigen-specific B cell 

populations we believe represent the cellular precursors of the different BM PC pools. 

Together these data suggest that BM niches are continuously repopulated by newly 

generated plasma cells long after antigenic exposure and offer intriguing insights into the 

identity of the cellular precursors of BM PC.  

The main findings are: 

• High affinity, isotype switched, λ-secreting antigen-specific cells are 

restricted to the slowly renewing bone marrow plasma cell pool. 

• The long-term maintenance of the antigen-specific BM PC pool requires a 

CD40-independent, antigen-specific B cell precursor. 
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I. RESULTS 

  To further understand the import of the various bone marrow plasma cell 

populations, we decided to probe the relevance of these subpopulations to long-term 

induced immunity. To determine the kinetics with which plasma cells induced by the T-

dependent antigen NP-CGG enter and persist in each subpopulation, we quantified NP-

specific plasma cells in each subset at several times after a single inoculation with NP-

CGG (Fig. 3-1 A).  Remarkably, we could detect antigen-specific cells in both pools at all 

timepoints examined, with a greater proportion of NP-specific plasma cells localizing to 

the B220- bone marrow fraction later in the response (Fig. 3-1 A and Fig. 3-2 A).  

Furthermore, since recent reports (Bortnick et al., 2012; Racine et al., 2011) have 

indicated that plasma cells induced with a T-independent antigen are capable of forming 

a long-standing pool in the bone marrow (Bortnick et al., 2012), we explored the role of 

the bone marrow plasma cell subsets in a primary NP-LPS response.  While the kinetics 

differed from those seen with a T-dependent antigen, we were able to detect NP-specific 

cells in all subsets at different points of the response (Fig. 3-2 C).  Additionally, we 

confirmed the presence of all three subsets in B6.TCRβ-/-δ-/- mice, which have been 

genetically modified to lack T cells (Fig. 3-2 B).  Together these data suggest that bone 

marrow plasma cell subsets have important roles in both T-dependent and T-independent 

humoral immunity.  

  Our studies in naïve mice indicated that the B220+ plasma cell pool is rapidly 

renewing and largely dependent on continuous replenishment by B cells (Fig. 2-1 and 

Fig. 2-7); we wondered whether the fraction of the B220+ plasma cell pool specifically 

induced by a T-dependent antigen was similarly regulated.  The presence of antigen-

specific cells in the rapidly renewing B220+ bone marrow plasma cell subset for months 
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post-immunization suggested that some fraction of the long-standing bone marrow 

plasma cell pool is continuously replenished by antigen-specific, proliferative cells.  To 

probe this directly, we continuously administered BrDU for 7 days to mice that had been 

immunized with NP-CGG months earlier (127 days) and found evidence of NP+BrDU+ 

cells (Fig. 3-1 B).  Notably, we failed to observe robust evidence of cell division in the 

antigen-specific plasma cell pool (Fig. 3-1 C). These analyses demonstrated directly that 

antigen-specific plasma cells are found in the functionally rapidly renewing pool after the 

primary response has waned (Fig. 3-1 B) (Takahashi et al., 1998).  
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Figure 3-1. Antigen-specific plasma cells localize to the rapidly renewing BM PC 
pool for months post-immunization.  (A) B6 mice were immunized with NP-CGG/alum, 
and cells within each PC pool were sorted into NP26-BSA coated ELISPOT plates to 
determine frequencies of NP-specific PC within each population at the indicated time 
points post-immunization. Data from 3 pooled adult B6 mice; error bars represent SEM of 
triplicate ELISPOT wells.  Background has been subtracted out. p<0.05 at d130, N.S. at 
all other timepoints.  (B) B6 mice were immunized with NP-CGG/alum.  At d127 post-
immunization the mice were fed BrDU for 7 days and analyzed by flow cytometry for the 
presence of intracellular antigen (NP) and BrDU incorporation.  Data from 5 pooled mice 
are shown. (C) B6 mice were immunized with NP-CGG/alum.  At d57 post-immunization 
the mice were injected with BrDU i.p. for 1 hour and analyzed by flow cytometry for the 
presence of intracellular antigen (NP) and BrDU incorporation .  Labeling with BrDU is 
indicative of proliferation (Schittek et al., 1991). Representative of n>3 individual mice. 
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Figure 3-2.  Localization of antigen-specific cells into BM PC subsets defined by 
CD19 in T-dependent and T-independent responses. (A) B6 mice were immunized 
with NP-CGG/alum and cells within each PC pool were sorted into NP26-BSA coated 
ELISPOT plates to determine frequencies of κ+ λ+ NP-specific PC within each population 
at the indicated time points post-immunization. Data show BM from 3 pooled mice. (B) 
Bone marrow cells from unimmunized TcRβ-/-δ-/- mice were analyzed by flow cytometry. 
Cells were pre-gated on live singlets, IgD- Dump- (CD4, CD8, F4/80, Ter119, Gr-1) 
populations and further subdivided by the plasma cell marker CD138, B220 and CD19.  
(C) B6 mice were immunized with NP-LPS/PBS and cells within each PC pool were 
sorted into NP26-BSA coated ELISPOT plates to determine frequencies of κ+ λ+ NP-
specific PCs within each population at the indicated time points post-immunization. Data 
for day 15 represent means of 3 individual mice +SEM. Data from days 90 and 180 show 
BM from 3 pooled mice.  
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  The persistent extrafollicular phenotype of the antigen-induced B220+ bone marrow 

plasma cells (Hsu et al., 2006), combined with our data in Fig. 2-7 and Fig. 3-1, strongly 

suggested that the maintenance of long-standing Ag-induced bone marrow plasma cells 

depended, in part, on continuous replenishment by Ag-specific B cell precursors.  While 

NP+ memory B cells in the spleen incorporated BrDU at rates comparable to the NP+ 

bone marrow plasma cell pool (Fig. 3-3 A), I could not find evidence of robust cell division 

within this cell population (Fig. 3-3 B).  To more rigorously examine the contribution of 

splenic NP+ memory B cells to the NP+ bone marrow plasma cells, we decided to ablate 

the memory B cell population.   Other labs have attempted to address this question in the 

past, albeit without having insight into the turnover rates of different bone marrow plasma 

cell populations.  In Slifka et al, plasma cells were shown to persist for months after 

antigen-specific B cells were eliminated using radiation (Slifka et al., 1998).  However, 

radiation is a systemic treatment whose impact on stromal and lymphoid cell populations 

can obfuscate effects on the bone marrow plasma cells (Ochsenbein et al., 2000).  

Studies with anti-CD20 antibody as a method to deplete B cells circumvented the 

problem of systemic effects but examined only one timepoint, precluding the ability to 

accurately determine the decay rates of the bone marrow plasma cell pool (Ahuja et al., 

2008).  

  We decided to genetically ablate B cells using CD20Cre-DTA mice previously 

described in Fig. 2-6.  CD20Cre-DTA mice and single transgene controls were 

immunized with NP-CGG/alum and treated with tamoxifen on days 29-31 post-

immunization as well as every 2 weeks subsequently in order to preclude any possible 

contribution from newly emerging B cells.  NP+CD19+ cells were effectively depleted 

using this strategy and remained undetectable for the duration of the experiment (Fig. 3-4 
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A).  Antigen-specific bone marrow plasma cells were quantified using NP26- or NP4-BSA 

coated ELISPOT plates to detect total or high affinity NP secretors, respectively.  While 

we were unable to detect a decline in total or high-affinity antigen-specific plasma cells at 

earlier timepoints, by 140 days of continuous B cell ablation there was a significant 

decrease in the numbers of antigen-specific plasma cells (Fig. 3-4 B, C). Even when the 

antigen-specific pool was allowed a longer time to become established (tamoxifen 

treatment commenced at day 65 post-immunization as opposed to day 29), long-term B 

cell ablation resulted in a decline of the NP-specific secretors (Fig. 3-5). This result is 

largely consistent with previous published work on the long-lived nature of bone marrow 

plasma cells (Slifka et al., 1998), (Ahuja et al., 2008) and we believe that our data support 

the existence of bona fide long-lived bone marrow plasma cells (Fig. 2-1 E, Fig. 3-1 B, 

C).  However, we opine that B cell ablation experiments performed by us and others 

obscure the true heterogeneity of the bone marrow plasma cell pool, as the expected 

two-fold decrease resultant from the ablation of the B220+ bone marrow plasma cell 

fraction would be hardly detectable on an ELISPOT assay.  We propose that it is not until 

the slowly renewing pool begins to be depleted that a detectable drop in numbers is 

observed. Overall, these data definitively show the existence of long-lived bone marrow 

plasma cells, yet highlight the limitations of this longevity and the dependence, albeit 

limited, on a B cell precursor. 
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Figure 3-3.  Antigen-specific memory B cells incorporate BrDU during a week-long 
pulse, but do not show evidence of robust cell division.  (A) B6 mice were 
immunized with NP-CGG/alum.  At d127 post-immunization the mice were fed BrDU for 7 
days and analyzed by flow cytometry for the presence of surface antigen (NP) and BrDU 
incorporation.  Data from 5 pooled mice are shown. (B) B6 mice were immunized with 
NP-CGG/alum.  At d131 post-immunization the mice were injected with BrDU i.p. for 1 
hour and analyzed by flow cytometry for the presence of surface antigen (NP) and BrDU 
incorporation .  Labeling with BrDU is indicative of proliferation (Schittek et al., 1991).  
NP+CD19+ cells had phenotypic markers indicative of the memory B cell lineage (data not 
shown). Representative of n>3 individual mice. 
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Figure 3-4.  Antigen-specific BM PCs are affected by long-term B cell ablation at 
very late timepoints.  (A) CD20Cre and CD20Cre-DTA mice were immunized with NP-
CGG/alum, treated with three induction doses starting at d29 post-immunization and 
subsequent fortnightly doses of tamoxifen and sacrificed at multiple timepoints post-
induction.  Numbers of NP+CD19+ B cells were quantified using flow cytometry and total 
spleen counts.  Average 3-4 mice per group; error bars represent SEM of individual 
animals. p<0.05 at all timepoints after d0. (B) NP-specific BM PC from mice described in 
Fig. 3-4 A were quantitated using NP26-BSA ELISPOTs. p<0.05 by d160 post-induction.  
(C) High affinity NP-specific BM PC from mice described in Fig. 3-4 A were quantitated 
using NP4-BSA ELISPOTs. 
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Figure 3-5.  Antigen-specific BM PCs are affected by long-term B cell ablation at 
very late timepoints.  (A) CD20Cre and CD20Cre-DTA mice were immunized with NP-
CGG/alum, treated with three induction doses starting at d65 post-immunization and 
subsequent fortnightly doses of tamoxifen and sacrificed 160 days post-induction. 
Numbers of CD19+ B cells were quantified using flow cytometry and total spleen counts.  
Average 3-4 mice per group; red dashes represent averages.  (B) Numbers of NP+CD19+ 
B cells were quantified using flow cytometry and total spleen counts. (C) NP-specific BM 
PC from mice described in Fig. 3-5 A were quantitated using NP26-BSA ELISPOTs.  (D) 
High affinity NP-specific BM PC from mice described in Fig. 3-5 A were quantitated using 
NP4-BSA ELISPOTs.  

0!
10!
20!
30!
40!
50!

0!
10!
20!
30!
40!
50!

#N
P2

6-
sp

ec
ifi

c 
se

cr
et

or
s*

(1
0^

-3
)!

#N
P4

-s
pe

ci
fic

 s
ec

re
to

rs
*(

10
^-

3)
!

A!

C!
0!

500!

1000!

1500!

2000!

#N
P+

C
D

19
+  c

el
ls

/s
pl

ee
n!

       Unablated       Ablated!

       Unablated       Ablated!        Unablated       Ablated!

0.1!

1!

10!

100!
# 

C
D

19
+  c

el
ls

/s
pl

ee
n*

(1
0^

-6
)!

B!

Unablated     Ablated!
D!



	
  
	
  

58	
  

In our quest to better understand the nature of the B cell precursor seeding the 

bone marrow plasma cell pool, we first wondered whether CD40-dependent T-B 

interactions were critical for bone marrow plasma cell maintenance.  As it is known that 

CD40L-/- mice have extremely low numbers of plasma cells (perhaps implicating CD40-

CD40L interactions in early plasma cell differentiation events), we sought to disrupt the 

interaction, thereby ablating the GC, during an ongoing immune response (Kawabe et al., 

1994; Noelle et al., 1992; Renshaw et al., 1994).  While it is widely believed that GC 

reactions wane over time and are not detectable by 35 days post introduction of antigen 

(Liu et al., 1991; MacLennan, 1994), many groups have described GC persisting for 

much longer time periods (Gatto et al., 2007).  As our chief interest lies in the long-term 

maintenance and not the formation of the antigen-specific bone marrow plasma cell pool, 

we chose to mirror the design of our B cell ablation experiment (Fig. 3-4) and treat 

C57BL/6 mice with anti-CD154 (MR-1) antibodies starting at d29 post-immunization with 

NP-CGG/alum (Noelle et al., 1992; Takahashi et al., 1998).  MR-1 treatment effectively 

disrupted GC reactions early on (Fig. 3-6 A); only partial recovery of GC was seen 6 

weeks post-immunization (Fig. 3-6 B).  As previously shown by our lab, NP+ GC did not 

reemerge at any point post MR-1 treatment ((Bortnick et al., 2012) and data not shown); 

NP+CD19+ cells, most likely representative of memory B cells, were unaffected (Fig. 3-6 

C, D). 

To examine the effect of anti-CD154 treatment on bone marrow plasma cell 

populations, I first confirmed the absence of CD40 expression on both B220+ and B220- 

plasma cell subsets (Fig. 3-7 A).  Neither the total (polyclonal) bone marrow plasma cell 

subsets (Fig. 3-7 B, C) nor the antigen-specific bone marrow plasma cell pool (Fig. 3-7 

D) were affected by anti-CD154 treatment.  As expected, anti-CD154 treatment resulted 
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in a decrease in high-affinity antigen-specific IgG secretors (Fig. 3-7 E).  The moderate 

effect size seen in Fig. 3-7 E was not unexpected; as suggested by Takahashi et al, 

prolonging the GC reaction by delaying MR-1 administration “allowed proportionate 

recovery” of high affinity NP-specific secretors (Takahashi et al., 1998).  While it is well-

established that early disruption of the GC will result in significant effects on the bone 

marrow plasma cell pool, GC output into the bone marrow plasma cell or memory B cell 

pools is considered negligible after day 40 post-immunization (Gatto et al., 2007; 

Takahashi et al., 1998).  Our results support a limited (if any) role of CD40-CD40L 

dependent processes in the seeding of the bone marrow plasma cell pool later than d30 

post-immunization.  Thus, although our data clearly show a role for an antigen-specific 

precursor in the long-term maintenance of bone marrow plasma cells (Fig. 3-4), this 

precursor appears to CD40-independent (Fig. 3-7). 
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Figure 3-6.  Effect of disrupting CD40-CD40L interactions on peripheral B cell 
populations. C57BL/6 were immunized with NP-CGG/alum and treated i.p. with anti-
CD154 antibodies (MR-1) or control (Ham Ig) on days 29, 31, 33 post-immunization.  
Average 3-4 mice/group were analyzed using flow cytometry. (A) Representative flow 
plots of GC ablation at d12 post MR-1/Ham Ig administration.  DAPI-CD19+B220+ spleen 
cells are shown.  (B) Fraction of DAPI-CD19+B220+ spleen cells that are PNA+Fas+ is 
shown at d12 and d40 post MR-1/Ham Ig l administration.  Average 3-4 mice/group; error 
bars represent SEM. (C) Representative flow plots of the effect of GC ablation on 
NP+CD19+ memory B cells at d40 post MR-1/Ham Ig administration. NP+CD19- 
population likely represents antigen-laden macrophages as that population is CD11b+ 
(data not shown).   (D) Fraction of DAPI- splenocytes that are NP+CD19+ at d12 and d40 
post MR-1/Ham Ig administration.  Average 3-4 mice/group; error bars represent SEM.  
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Figure 3-7. CD40-CD40L interactions are dispensable for long-term antigen-specific 
BM PC maintenance. (A) Expression of CD40 on splenic B cells and BM PC subsets by 
flow cytometry.  Representative of n=3 mice. (B-E) C57BL/6 were immunized with NP-
CGG/alum and treated i.p. with anti-CD154 antibodies (MR-1) or control (Ham Ig) on 
days 29, 31, 33 post-immunization.  Average 4 mice/group; error bars represent SEM.  
(B) Representative flow plots of BM PC subsets on d40 post MR-1/Ham Ig administration.  
Gated on DAPI-Dump-IgD- cells.  (C) Fraction of DAPI-Dump-IgD- cells that are 
CD138highB220+/- on d40 post MR-1/Ham Ig administration. (D) NP-specific BM PC from 
mice treated as described above (B-E) were quantitated using NP26-BSA ELISPOTs.  
(E) High affinity NP-specific BM PC from mice treated as described above (B-E) were 
quantitated using NP4-BSA ELISPOTs.
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The continuous replenishment of the bone marrow plasma cell pool by a CD40-

independent precursor led us to wonder about the affinity and isotype profile of newly 

differentiated bone marrow plasma cell immigrants (largely represented by the B220+ 

plasma cell fraction).  Since CD40-CD40L interactions are crucial for affinity maturation of 

B cells (Takahashi et al., 1998), we hypothesized that the rapidly renewing B220+ bone 

marrow plasma cells would contain mostly low affinity clones.  This idea was further 

supported by multiple precedents in the literature stating that phenotypically immature 

plasma cells are often characterized by production of low affinity antibodies (Paus et al., 

2006; Phan et al., 2006).  We used the NP4- versus NP26-BSA ELISPOT system to 

examine the affinity of the different bone marrow plasma cell subsets at multiple times 

post-immunization with NP-CGG/alum.  We find that at all timepoints examined high 

affinity cells localize exclusively to the slowly renewing B220- plasma cell pool (Fig. 3-8 A, 

B).  Consistent with an extrafollicular phenotype, the B220+ fraction consists entirely of 

unswitched IgM-secreting plasma cells, while all high affinity NP-specific IgG secretors 

are found in the B220- pool (Fig. 3-8 B, C). Surprisingly, a large fraction of the slowly 

renewing B220- pool also consists of IgM secretors (Fig. 3-8 B, C).   

To confirm these surprising isotype findings with an independent approach, I took 

advantage of an observation recently made in our lab that plasma cells retain some 

surface expression of the Ig isotype secreted by those cells.  While it is unclear whether 

this expression represents low levels of bona fide transmembrane BCR or passive 

acquisition of secreted antibodies (Fig. 2-2 C, D), our lab has confirmed that sorted 

surface IgM+ plasma cells secrete only IgM antibodies in an ELISPOT assay, IgA+ plasma 

cells secrete IgA, while IgM-IgA- plasma cells secrete IgG isotype antibodies (Joel 
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Wilmore, unpublished data).  On day 133 post-immunization with NP-CGG/alum, I sorted 

bone marrow plasma cell subsets as indicated in Fig. 3-9 (B220+IgM+, B220+IgM-IgA-, 

B220-IgM+, B220-IgM-IgA-) and assayed for NP-specific antibody secretion via the NP26-

BSA ELISPOT assay.  Consistent with our results in Fig. 3-8, NP secretors within the 

B220+ bone marrow plasma cell pool were almost entirely of the IgM isotype, while the 

B220- plasma cell fraction contained both IgM and IgG secretors (Fig. 3-9).  Together 

with the data in Fig. 2-3 B, which demonstrate a lack of detectable conversion of B220+ 

into B220- plasma cells, the results in Fig. 3-8 and Fig. 3-9 suggest that the two bone 

marrow plasma cell lineages are distinct both functionally and with regard to their 

provenance.  Finally, the preponderance of IgM secretors is unexpected given the T-

dependent nature of this response and challenges our preconception of T-dependent 

bone marrow plasma cells as being a largely high-affinity, switched population. 
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Figure 3-8. High affinity antigen-specific plasma cells are restricted to the slowly 
renewing BM PC pool.  (A) BM PC subsets were assayed as described in Fig. 3-1 A, 
using NP4-BSA to detect exclusively high affinity cells. p<0.01 at all timepoints.  (B) 
Representative ELISPOT wells from d73 post-immunization. (C) BM PC subsets were 
assayed as described in Fig. 3-1 A, using anti-IgM and anti-IgG to detect secretors of the 
respective isotype. Background has been subtracted out. p<0.01 for all groups (IgM vs. 
IgG) except d73 B220- where the difference is N.S. 
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Figure 3-9. NP-specific IgG secretors are found almost exclusively within the B220- 
BM PC subset.  B6 mice were immunized with NP-CGG/alum, and cells within each PC 
pool were sorted into NP26-BSA coated ELISPOT plates to determine frequencies of NP-
specific PC within each population at day 133 post-immunization. Data from 3 pooled 
adult B6 mice; error bars represent SEM of triplicate ELISPOT wells.  Background has 
been subtracted out.  
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The differences in affinity and isotype usage among the bone marrow plasma cell 

subsets suggested that the two pools were derived from distinct precursors.  While the 

response to the NP hapten is classically thought to be dominated by cells bearing the λ1 

light chain, the memory response is believed to be more heterogeneous, containing many 

κ clones (Jack et al., 1977). As our data suggest that the bone marrow plasma cell pool is 

replenished from a memory B cell precursor (Fig. 3-4, 3-6, 3-7), we hypothesized that the 

NP-specific rapidly renewing B220+ plasma cell pool would consist mostly of κ secretors 

late after immunization.  As a corollary, plasma cells formed during the primary, λ-

dominated response would be found within the long-lived B220- pool.  

           Original studies suggesting preponderance of κ clones in secondary responses 

had been done decades earlier and had induced “memory” using a hyper-immunization 

strategy no longer considered standard (Jack et al., 1977).  Later studies have failed to 

find evidence of NP-specific κ antibodies during late responses, but these researchers 

restricted their analysis to IgG antibodies (Takahashi et al., 1998).  Thus, we first wanted 

to examine the light chain usage among the putative NP+ B cell precursors of the bone 

marrow plasma cell pool.  We find that, consistent with conventional wisdom, the early 

(day 20 post-immunization) response to NP-CGG is comprised largely of λ-bearing B 

cells (Fig. 3-10 A, B).  In contrast, NP+CD19+ cells late in the response are substantially 

more heterogeneous with roughly half the pool consisting of κ-bearing cells (Fig. 3-10 A, 

B). Among the bone marrow plasma cell subsets, we find that early on NP-specific λ 

secretors can be found in both pools, while at late timepoints the rapidly renewing B220+ 

plasma cell pool consists solely of κ secretors (Fig. 3-11).  Importantly, we are able to 

detect a subset of antigen-specific B cells that evidences rapid BrDU turnover kinetics 
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and consists of IgM- and κ-expressing cells, strongly suggesting that it serves as the 

precursor for the B220+ plasma cells (Fig. 3-10 C).   The selection events underlying the 

entry of κ versus λ clones into the different bone marrow plasma cell pools remain poorly 

understood and will be discussed further in chapter 4.  In sum, we believe that the 

differential light chain usage among the bone marrow plasma cell subsets further 

supports the notion that B220+ and B220- plasma cells represent two unique lineages 

derived from distinct precursors. 
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Figure 3-10. Light chain usage within the NP+ B cell pool varies over the course of 
the NP-CGG response.  Spleens from B6 mice were analyzed using flow cytometry on 
days 20 and 76 post immunization with NP-CGG/alum.  (A) Representative flow plots of 
DAPI-Dump-IgD-CD19+NP+/- splenic cells. (B) Fraction of DAPI-Dump-IgD-CD19+NP+ cells 
that are surface κ- versus surface λ-bearing on day 20 or day 76 post-immunization. 
Average 4 mice/group; error bars represent SEM. (C) B6 mice were immunized with NP-
CGG/alum and administered BrDU in the drinking water between days 52-59 post-
immunization.  Spleens were analyzed using flow cytometry; representative plot of n=3 
mice are shown.  
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Figure 3-11. NP-specific λ-secreting PC are restricted to the slowly renewing B220- 
BM PC subset late in an NP-CGG response.  (A) B6 mice were immunized with NP-
CGG/alum, and cells within each PC pool were sorted into NP26-BSA coated ELISPOT 
plates and detected with κ versus λ antibodies at multiple timepoints post-immunization. 
Data from 3 pooled adult B6 mice; error bars represent SEM of triplicate ELISPOT wells.  
Background has been subtracted out.  Differences between B220+, κ+ and B220+, λ+ are 
statistically significant at all timepoints with p<0.01.  (B) BM from mice described in Fig. 3-
11 A (d20 and d76 post-NPCGG) was analyzed by flow cytometry for the presence of 
intracellular antigen (NP) and intracellular κ and λ.  Fraction of κ versus λ-bearing DAPI-

Dump-IgD-NP+CD138highB220+/- cells is shown; average 4 mice/group.  
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II. DISCUSSION 

 While studies in unimmunized animals (chapter 2) allowed us to define some 

crucial aspects of the kinetics and dynamics of the bone marrow plasma cells, we turned 

to a more controlled immunization system to fully characterize the roles of the bone 

marrow plasma cell subsets in an antigen-induced T-dependent response.  Upon 

immunization with the T-dependent antigen NP-CGG/alum, we find that antigen-specific 

plasma cells continue to be generated and localize to the rapidly renewing plasma cell 

pool for months after the introduction of antigen (Fig. 3-1, 3-2).  Interestingly, we find 

these pools to be qualitatively distinct, with high-affinity cells localizing solely to the slowly 

renewing subset (Fig. 3-8).  These data are in marked contrast with the concept of bone 

marrow plasma cell replacement, where newly formed plasma cells replace the long-lived 

veterans in the bone marrow (Radbruch et al., 2006, Odendahl et al., 2005).  As data for 

the replacement theory are limited and based largely on difficult-to-interpret human 

experiments, our findings indicate that a reexamination of the question may be warranted 

(see chapter 4 for further discussion). 

 By using genetically manipulated mice and monoclonal antibody approaches, we 

were able to disrupt CD40-CD40L interactions and to ablate all B cells to demonstrate 

that the maintenance of the antigen-specific bone marrow plasma cell pool relies on a 

CD40-independent B cell precursor.  Previous reports in the literature have contradicted 

the notion that a CD20-expressing precursor is required for bone marrow plasma cell 

maintenance; however, one of the reports only examines one timepoint (Ahuja et al., 

2008) while another does not look later than 70 days B cell ablation (DiLillo et al., 2008).  

In fact these reports do not necessarily contradict the conclusion that plasma cells 

induced in response to T-dependent antigens have a half-life on the order of 80-100 days 
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(Gatto et al., 2007; Slifka et al., 1998); our data correspond well to this notion for only by 

examining timepoints well exceeding the projected half-life do we see evidence of CD20-

dependent replenishment of the plasma cell pool (Fig. 3-4).  The CD40-independent 

replenishment of the bone marrow plasma cell pool is further consistent with a putative 

memory B cell precursor as this population is known to not rely on T cell signals for 

maintenance (Vieira and Rajewsky, 1990). 

  Our characterization of the bone marrow plasma cell response to NP-CGG/alum led 

to a further surprise: the preponderance of IgM secretors, even at late stages of this T-

dependent response (Fig. 3-8, 3-9).  A number of researchers utilizing this very well-

characterized model antigen have reported a continuous increase in the affinity of the 

bone marrow plasma cell pool, culminating in 100% of the bone marrow NP-responders 

being high affinity by 28 days post-immunization (Smith et al., 1997) (Takahashi et al., 

1998).  However these researchers examined only the IgG1 part of the response, leading 

them to the conclusion that the majority of the NP-CGG response trended toward high 

affinity with time.  Indeed our data confirm that the vast majority of NP-specific IgG 

secretors are high affinity (Fig. 3-8 B).  It is only recently that work by a number of groups 

has identified IgM-secreting plasma cells in the bone marrow (Bortnick et al., 2012; 

Racine et al., 2011).  Work from our lab in particular has suggested that IgM-secreting 

plasma cells induced in a T-dependent response may be able to localize to the bone 

marrow (Bortnick et al., 2012); prior to these studies there was no precedent for 

examining the bone marrow for IgM responses.  Additionally, we have discovered 

profound differences in light chain usage among the antigen-specific secretors within the 

B220+ versus the B220- subsets (Fig. 3-11).  The NP-specific rapidly renewing subset 

contains exclusively IgMκ secretors (Fig. 3-8, 3-11) and we see evidence of renewing 
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NP-specific B cells that express markers consistent with a putative precursor for the 

rapidly renewing plasma cell pool (Fig. 3-10 C).  Consequently, we propose that the 

rapidly and slowly renewing bone marrow plasma cell pools derive from distinct cellular 

precursors at different points of an induced response. 

 In sum, we suggest that the heterogeneity of the bone marrow plasma cell pool 

plays a key role in humoral immune responses to both T-dependent and T-independent 

antigens and should be further evaluated in systems involving disease antigens.  We 

demonstrate that the maintenance of the antigen-specific bone marrow plasma cell pool 

is dependent on a CD40-independent B cell precursor and identify a putative B lineage 

precursor that shares certain key features with the plasma cells within the rapidly 

renewing B220+ bone marrow pool.   Together our data suggest a multi-layered 

organization of the key players in humoral immunity and raise interesting questions about 

the interrelationships among the participants of this structural framework. 
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CHAPTER 4: DISCUSSION 

	
  

Plasma cells are essential components of humoral immunity, responsible for 

secreting large amounts of protective antibodies.  The composition and longevity of the 

plasma cell pool has long been a matter of debate, with early models positing that all 

plasma cells were short-lived and dependent on constant replenishment from memory B 

cells and more current studies suggesting that the bone marrow provides a survival niche 

exclusively for high affinity, long-lived plasma cells.  Our data suggest that the true nature 

of the bone marrow plasma cell pool is a conglomeration of the two models (Fig. 4-1).  

First, we identify two populations of bone marrow plasma cells that differ with regard to 

their turnover kinetics, providing evidence that both short-lived and long-lived plasma 

cells coexist in the bone marrow.  Second, we can demonstrate that the long-standing 

bone marrow plasma cell pool appears to be non-dividing and relies on replenishment by 

a CD20-expressing cellular precursor.  We further show that the different bone marrow 

plasma cell subsets contain functionally distinct secretors throughout the course of a T-

dependent response.  Secretors within the precursor-dependent B220+ pool produce 

exclusively low affinity, IgM, κ antibodies.  The classic purveyors of humoral immunity – 

high affinity, IgG secretors – are only found within the slowly renewing B220- bone 

marrow plasma cell pool, although, surprisingly, this pool also contains many IgM 

secretors.  Finally, we present evidence for the putative cellular precursors of the different 

plasma cell subsets: rapidly renewing, IgM- and κ-bearing antigen-specific B cells which 

also express surface markers associated with memory B cells.  These findings 

characterize the multi-faceted nature of the bone marrow plasma cell pool and highlight 

many unanswered questions about the roles of B cell precursors and persisting antigen 
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on the maintenance of standing antibody titers.  We propose that our work has important 

implications for therapies aimed at eliminating cellular sources of pathogenic antibodies 

as well as for rational vaccine design.  

 

I. Nature of the Bone Marrow Plasma Cell 

Since the discovery of the plasma cell as the cellular source of antibody 

production, researchers have been trying to define the lifespan and survival requirements 

of these cells.  Early work demonstrated that plasma cells were terminally differentiated, 

non-dividing cells whose numbers contracted many fold shortly after their induction 

(SCHOOLEY, 1961).  This led to the notion that plasma cells were intrinsically short-lived 

and dependent on constant replenishment from a precursor (SCHOOLEY, 1961).  Later 

experiments identified the GC B cells as the precursors of the high affinity, IgG-secreting 

plasma cells and postulated memory B cells as the feeder pool for this plasma cell 

population later in the response (Schittek and Rajewsky, 1990; Tarlinton, 2008).  This 

model, whereby memory B cells turn over slowly and constantly differentiate into short-

lived plasma cells either stochastically or in response to persisting antigen/polyclonal 

stimulators, persisted for decades and, in my experience, still holds sway over the minds 

of many practicing physicians (Schittek and Rajewsky, 1990; Smith et al., 1996).  Two 

seminal papers in the late 1990s revolutionized our understanding of plasma cell 

longevity by demonstrating that these cells could persist for months in the absence of 

radioresistant precursors and even proposed that plasma cells can survive for the lifetime 

of the animal (Manz et al., 1997; Slifka et al., 1998).  While the evidence in these papers 

did not exclude (and even supported) the possibility that short-lived plasma cells 

coexisted with their long-lived counterparts in the bone marrow, the notion that the bone 
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marrow was a unique survival niche reserved for the “crème de la crème” of antibody-

secreting cells began to be perpetuated in the literature.  

  

 The models of the bone marrow plasma cell pool put forth over the last 15 years 

have had to reconcile the notion of the bone marrow as the repository of long-lived 

plasma cells with the manifest need of the bone marrow to accept new plasma cell 

specificities as the host encounters and battles new antigens.  A number of studies have 

focused on characterizing the plasma cell or plasma cell precursor that colonizes the 

bone marrow; most have put forth evidence of “graded stages of increasing maturity” as 

the (pre) plasma cell transits from peripheral lymphoid organs to the bone marrow 

(Jourdan et al., 2011; Medina et al., 2002; O'Connor et al., 2002).  In a 2004 report, 

Kallies et al demonstrate the presence of bone marrow plasma cells expressing 

intermediate levels of Blimp-1, a phenotype consistent with the splenic “plasmablast” 

stage, further supporting the notion that plasma cells undergo their final maturation 

stages in the bone marrow (Kallies et al., 2004).  As our data clearly indicate the 

presence of two populations of bone marrow plasma cells, we wondered whether these 

subsets comprised the same lineage, with one pool representing an intermediate stage in 

plasma cell development.  The immature phenotype of the B220+ plasma cell subset 

casts this pool as a likely candidate for the precursor to the B220- pool.  However, we fail 

to track the BrDU label from the B220+ into the B220- pool during BrDU pulse-chase 

experiments and preliminary mathematical modeling work suggests that there is no inter-

conversion between the two bone marrow plasma cell pools (Fig. 2-3 and data not 

shown).   
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Experiments in mice immunized with NP-CGG lend further support to this model, 

as the cells within the two pools differ with regard to their affinity as well as light chain and 

isotype usage (Fig. 3-8, 3-9, 3-11).  While it has been suggested that plasma cells 

undergo further affinity maturation in the bone marrow (Takahashi et al., 1998), we do not 

believe that those data can be explained by a maturation of B220+ PC into B220- plasma 

cells.  Those studies examined solely IgG-secreting plasma cells, while our data indicate 

that the NP-specific B220+ plasma cell pool is comprised entirely of IgM secretors (Fig. 3-

8).  As plasma cells lack the machinery to support class-switch recombination, it is 

extremely unlikely that B220+ IgM secretors are maturing into the high affinity, IgG 

secretors characteristic of the long-lived B220- bone marrow plasma cell pool (Marshall et 

al., 2011; Muto et al., 2010).  However, as both bone marrow plasma cell pools contain 

NP-specific IgM secretors we cannot rule out that B220+ plasma cells enter the IgM 

fraction of the B220- pool.  A mathematical analysis limited to the IgM-secreting bone 

marrow plasma cell fraction may help elucidate the interrelationships among these 

populations.  Nonetheless, the high affinity IgG-secreting phenotype of a portion of the 

B220- pool strongly suggests that these cells are derived from a B cell precursor distinct 

from the one postulated for the B220+ pool (Fig. 3-10). One group has reported that the 

maturation status of plasma cells found in the blood is indistinguishable from that of bone 

marrow plasma cells (Blink et al., 2005); a human study found two plasma cell subsets 

(low and high affinity) released into the circulation simultaneously following a tetanus 

booster (González-García et al., 2008).  It is thus possible that the B220- plasma cell (or 

some fraction of this pool) complete their maturation in the periphery and then migrate to 

the bone marrow.  It is important to note that there is no direct evidence of plasma cell 

maturation in the bone marrow and thus short-lived and long-lived plasma cells may exist 
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in parallel within this niche.  If so, what could be the advantages/consequences of 

maintaining two different pools of antibody secretors targeting the same antigen? 

 

II. The Role of the Precursor 

Given the functionally heterogeneous nature of the bone marrow plasma cell 

response to NP-CGG/alum, it is tempting to speculate as to the potential advantage of 

such a multi-component system.  It has been proposed that memory B cells are less 

mutated than bone marrow plasma cells and, as a result, are better able to respond to 

alternative epitope structures such as may be found in viral escape mutants (Purtha et 

al., 2011; Smith et al., 1997).  As new antigen-specific plasma cells enter the rapidly 

renewing bone marrow plasma cell pool even months post-immunization (Fig. 3-1 B) and 

appear to be dependent on a memory B cell precursor (Fig. 3-4, 3-10), it is possible that 

these cells represent the arm of the humoral immune response designed to deal with the 

alternative structures of viral escape variants (Purtha et al., 2011).  Two groups have 

reported functional heterogeneity of the long-lived memory B cell compartment (Dogan et 

al., 2009; Pape et al., 2011), making the existence of a parallel structure in the bone 

marrow plasma cell compartment an appealing one.  In particular, these groups have 

suggested that IgM+ memory B cells persist longer than their isotype switched 

counterparts (Dogan et al., 2009; Pape et al., 2011), raising the possibility that IgM 

secretors within the B220- slowly renewing bone marrow compartment share a similar 

fate.  In fact, the effects of B cell ablation appear to manifest earlier and to a greater 

extent in the high affinity IgG-secreting plasma cell pool when compared to the effects on 

the total antigen-specific plasma cell pool (Fig. 3-4 C versus Fig. 3-4 B).  These data 

could indicate that the IgM secretors within the B220- pool are constantly replenished 
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while the IgG responders wane over time, particularly if that pool is partially dependent on 

the shorter-lived IgG-bearing memory B cells.  Alternatively, the data could be indicative 

of the exceptionally long-lived nature of the IgM secretors within the B220- pool.  BrDU 

studies to better define the dynamics of the putative memory B cell precursors and IgM-

secreting plasma cells specifically, as well as BrDU studies performed following B cell 

ablation protocols, should help distinguish between these possibilities in the near future. 

By suggesting that the maintenance of the bone marrow plasma cell pool is 

(partially) precursor-dependent, our data raise many intriguing questions about the 

regulation of this process.  What are the signals driving memory B cells to differentiate 

into plasma cells?  Are certain memory B cell subsets more likely than others to gain 

entry into the bone marrow plasma cell pool?  There is limited evidence in the literature 

suggesting that the entry into the bone marrow plasma cell compartment is subject to 

“previously unappreciated selective regulation” (Scheid et al., 2011).  By sequencing IgG-

bearing memory B cells and IgG-producing bone marrow plasma cells from humans, 

Hedda Wardemann’s group was able to show a much higher frequency of self-reactive 

and polyreactive clones within the memory B cell pool as compared to the bone marrow 

plasma cell population.  As our data also note clonal disparities between the memory B 

cell and bone marrow plasma cell pools, it is tempting to speculate as to the nature of the 

regulatory mechanisms involved.  Specifically, while we can clearly identify antigen-

specific, λ-bearing memory B cells at late timepoints during the NPCGG/alum response, 

we see no evidence of NP-specific λ secretors within the rapidly renewing B220+ bone 

marrow plasma cell pool (Fig. 3-10, 3-11).  BrDU studies reveal that the renewing 

(BrDU+) portion of the NP+CD19+ splenic pool is not exclusively IgM+κ+, suggesting that 
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the turnover kinetics of λ- versus κ-bearing memory B cells are not the cause of the 

discrepancy (Fig. 3-10).   

One potential mechanism of regulation could be related to the affinity of the 

population, whereby the λ-bearing memory B cells represent the high affinity fraction of 

the pool.  Many models posit that affinity sensing is a key mechanism for egress from the 

GC (MacLennan, 1994); one report suggests that high affinity antibodies are  capable of 

dampening ongoing GC responses via a negative feedback loop (Pelletier et al., 2010).  

Furthermore, Mark Shlomchik’s group has reported a memory B cell subset that is 

enriched for the presence of high affinity-conferring mutations (Anderson et al., 2007).  

Thus affinity-based regulation for entry into the bone marrow plasma cell pool by memory 

B cells is a notion not without precedent.  Examining the sequences of many of these 

memory B cell and bone marrow plasma cell populations should yield some insights and 

determine whether the proposed model has merit.  Unfortunately, we have had trouble 

performing such analyses, largely because all protocols for sequencing NP-specific 

clones are restricted for use on λ-expressing cells (Lalor et al., 1992; Tomayko et al., 

2010).  As NP-specific B220+ plasma cell clones are entirely κ late in NP-CGG/alum 

responses, standardizing sequencing protocols not restricted to λ-bearing populations 

would be of great interest in the future.  In addition to resolving GC/memory B cell-bone 

marrow plasma cell interrelationships, such reagents would allow us to further define the 

affinities of the IgM-expressing populations of interest.  While ELISPOT reagents for the 

NP system allow us to distinguish antibodies that bind the antigen with high versus low 

affinity, the system is limited to recognizing high affinity antibodies of the IgG isotype, as 

the pentameric nature of the IgM isotype interferes with the integrity of the assay.  As the 

mechanisms for class-switch recombination and isotype switching are not always 
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coordinated (Toyama et al., 2002), and as hypermutated, GC-derived IgM clones have 

been previously described (Dogan et al., 2009; Seifert and Küppers, 2009; Yates et al., 

2013), it is of great interest to us to determine whether B220+ and/or B220- IgM secretors 

correspond to such a population.  Assaying for the presence of the canonical high affinity 

mutations combined with more functional biochemical binding studies would greatly 

enhance our understanding of the provenance and affinity properties of these 

populations. 

The question of the signals needed by memory B cells in order to differentiate into 

plasma cells remains a matter of much debate.  While one high profile report has 

concluded that memory B cells differentiate into plasma cells in response to polyclonal 

stimuli such as bystander T cell help and CpG DNA (Bernasconi et al., 2002), most 

reports have focused on the role of persisting antigen as the driving force behind 

continuous differentiation of memory B cells (Karrer et al., 2000; Ochsenbein et al., 2000).  

It is now well-accepted that memory B cells are maintained in the absence of antigen 

(Maruyama et al., 2000), yet a reintroduction of antigen elicits potent proliferative and 

plasma cell-differentiating responses.  Using cell transfer studies and mice deprived of 

secondary lymphoid organs, one group concluded that antigen stimulation of memory B 

cells was essential for the maintenance of antibody titers (Ochsenbein et al., 2000).  As 

antigen is known to persist on follicular dendritic cells (FDCs), another group used 

TNFR1-/- mice, known to lack mature FDCs, to study the effects of persisting antigen on 

maintaining antibody titers.  They found that, although memory B cells remained intact, 

antibody titers and bone marrow antibody-secreting cells declined 90-95% within 300 

days (Karrer et al., 2000).  These workers concluded that persisting antigen was essential 

for the maintenance of antibody titers and that only a minority of the bone marrow plasma 
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cell pool was long-lived; it is worth noting, however, that these studies were done in 

global knockout mice incapable of forming germinal centers and (much like the report by 

Ochsenbein et al) relied heavily on cell transfer studies, an infamously flawed technique 

in the field of antigen persistence.  It is notoriously difficult to perform cell transfer studies 

without accidentally transferring antigen into the host, especially as the dose of antigen 

required for BCR stimulation is not well-known and may be quite small.  Indeed, prior to 

the elegant studies by the group of Klaus Rajewsky who revised the B cell receptor 

specificity in order to circumvent the problem of antigen transfer (Maruyama et al., 2000), 

it was widely held that memory B cells were dependent on antigen for persistence (Gray 

and Skarvall, 1988).  Interestingly, our only evidence that plasma cell survival is 

independent of antigen also comes from work utilizing cell transfer studies (Manz et al., 

1998); while we do not believe that plasma cells have the requisite BCR signaling 

machinery to respond to antigen (Fig. 2-2 C), there may be merit to revisiting this 

question.  Overall, the role played by persisting antigen in the maintenance of humoral 

immunity has proven to be extremely difficult to elucidate.  To avoid issues inherent in cell 

transfer approaches, we are currently re-deriving the mice utilized by the Rajewsky group 

in their seminal paper (Maruyama et al., 2000).  By enabling us to revise the specificity of 

the BCR directly, this system will allow us to assay the effects on antibody titers directly 

within the immunized animal and (hopefully) provide definitive answers about the role of 

persisting antigen in the maintenance of humoral responses. 

	
  

III. Displacement and the Bone Marrow Niche 

As seen above, responses to one model antigen can be immensely complex 

when considering the regulation of and competition within the bone marrow plasma cell 
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pool.  When considering that the bone marrow has to accommodate large numbers of 

specificities generated throughout the lifetime of the individual, the problem intensifies.  

First, the nature of the bone marrow niche is scrutinized: can the niche support a 

fixed/limited number of plasma cell specificities, making it subject to competition between 

plasma cell clones, or is it expandable?  While direct evidence is scarce, it is widely held 

that the bone marrow plasma cell niche is of a limited size (Radbruch et al., 2006).  

Workers from Ian MacLennan’s group quantified numbers of plasma cells in the spleen 

during the first three weeks of the response to an experimental antigen and concluded 

that the spleen has “a finite capacity to sustain plasma cells produced” (Sze et al., 2000).  

Although studies in this work focused on extrafollicular splenic responses, the concept of 

a finite plasma cell niche has heavily influenced our thinking about the bone marrow’s 

ability to provide suitable survival niches for an unlimited number of plasma cells. 

Human studies have tended to support the notion of a non-expandable bone 

marrow plasma cell niche.  A tetanus toxoid booster was capable of expanding both 

specific and bystander T cell memory; however, a transient increase of tetanus-specific 

antibody titers was not accompanied by expansion of other pre-existing antibody titers (Di 

Genova et al., 2006).  In addition to highlighting the importance of antigen availability for 

memory B cell responses, these results suggest that inflammation alone is insufficient to 

expand pre-existing pools.  Calculations extrapolated from the number of plasma cells the 

bone marrow is believed to support (based on cell counts of bone marrow sections in 

both mice and humans), new plasma cells generated in the course of a response and the 

amount of antibody manufactured per cell led to an estimate of 1,000 distinct specificities 

being supported by the bone marrow (Haaijman et al., 1977; Radbruch et al., 2006; 

Schauer et al., 2003; Simonsen et al., 1984; 1986; Trepel, 1974).  The concept of 

displacement states that a fraction of each pool (as defined by a given specificity) will be 
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lost to allow space for new plasma cell immigrants during every immune response.  It has 

been estimated that humoral immunity for an established antigen will wane by ~0.1% for 

every new specificity to be accommodated (Bernasconi et al., 2002; Radbruch et al., 

2006).  At that rate, it would take roughly 700 immune challenges (~23 years in humans) 

to affect a 50% drop in the number of plasma cells of any given specificity (Radbruch et 

al., 2006).  Though the magnitude of the antibody response differs between antigens, for 

agents such as tetanus it has been estimated that less than 20% of plasma cells 

originally colonizing the bone marrow would be sufficient to maintain protective antibody 

titers (Radbruch et al., 2006; Schauer et al., 2003; Simonsen et al., 1986).  It is thus 

conceivable that, despite the competitive loss of plasma cells from the bone marrow pool, 

established humoral memory against a given pathogen could last a lifetime. 

While it may be comforting to think of humoral immunity as being long-lasting 

despite brutal competition for resources, the occurrence of displacement is far from 

certain.  Such indirect observations as human adolescents having two-fold higher titers of 

antibody against tetanus toxoid have been interpreted as being due to a larger bone 

marrow capacity for plasma cells resultant from lack of competition (Schauer et al., 2003).  

It is worth noting that studying humoral immune responses in subjects of different ages is 

fraught with complications as T cell helper quality and subsequently GC responses are 

known to wane with age (Eaton et al., 2004; Haynes et al., 2003).  Perhaps the best 

evidence comes from one human study which characterized the plasma cells found in the 

circulation following a tetanus booster (Odendahl et al., 2005).  This group described two 

antibody-secreting cell populations in the blood: a tetanus toxoid-specific population with 

the phenotype and chemotaxis properties consistent with plasmablasts and a 

phenotypically long-lived plasma cell population of unknown specificities, believed to 

correspond to the displaced residents of the bone marrow (Odendahl et al., 2005).  It has 
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been further proposed that newly generated “plasmablasts” physically compete for the 

requisite survival niches in the bone marrow, most likely by displacing bone marrow 

plasma cells from CXCL12-expressing bone marrow stromal cells (Radbruch et al., 

2006).  This conjecture is derived from data which indicates that bone marrow plasma 

cells co-localize with CXCL12-expressing cells and utilize CXCL12 as a survival factor, 

while CXCR4-expressing plasmablasts are capable of migrating toward a CXCL12 

gradient (Cyster, 2003; Hauser et al., 2002; Odendahl et al., 2005; Tokoyoda et al., 2004; 

Wehrli et al., 2001).  It is worth remembering that this work was unable to show directly 

that long-lived plasma cells were displaced from the bone marrow nor whether these cells 

returned to the bone marrow or took up residence in some other site capable of fostering 

plasma cell survival (Odendahl et al., 2005); as such the conclusions from this work 

remain tenuous. 

How does the characterization of B220+ versus B220- plasma cells fit into these 

complex paradigms?  Due to the immature phenotype of the B220+ plasma cells, it is 

tempting to characterize this pool as the plasmablasts that will displace the established, 

long-lived pool.  However, the extremely rapid turnover rate of this population suggests 

that these cells are not colonizing the desirable survival niches (such as proximity to 

CXCL12-expressing stromal cells).  On the other hand, the decline in antigen-specific 

plasma cells over time (Fig. 3-1 A) may be indicative of displacement by new plasma cell 

specificities (even in the specific pathogen-free conditions of the university mouse 

facility).  Exogenous survival factors are crucial to plasma cell longevity, so perhaps 

displacement from survival niches is a major mechanism that limits the duration of this 

famed longevity.  We hypothesize that B220+ and B220- plasma cells localize to different 

locations within the bone marrow and are planning microscopy imaging studies to further 

investigate the issue.  Finally, we remain intrigued by the concept of displacement 
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(independent of the B220+/- subsets discussed) and are interested in pursuing a 

sequential immunization strategy with various trackable antigens to more rigorously 

examine the displacement model. 

 

IV. Implications of Work 

  The work presented herein has extended our understanding of the bone marrow 

plasma cell pool, allowing us to modify the conventional model of plasma cell 

differentiation and maintenance in several important ways (summarized in Fig. 4-1). 

Although this dissertation has focused on characterizing plasma cell responses to a 

model antigen, we fully believe the work has broad implications for many other fields.  

Inducing enduring, high affinity antibody responses is a major goal of vaccine design.  

Understanding the multi-parameter nature of the plasma cell response should help with 

designing vaccine antigens capable of driving differentiation of high affinity, IgG-secreting 

B220- plasma cells at the expense of their B220+ counterparts.  Moreover, these data call 

for a re-examination of the role of antigen persistence in the maintenance of antibody 

titers.   

In the fields of autoimmunity and cancer, where plasma cells take on a pathogenic 

role, a deeper understanding of the different populations can provide new targets for drug 

development.  Though both short-lived and long-lived plasma cells have been implicated 

in the pathogenesis of autoimmune disease (O'Connor et al., 2002), a more in-depth 

understanding of which autoimmune disorders are predominantly short-lived plasma cell 

versus long-lived plasma cell driven will help determine the best therapies to utilize in 

each case.  Personally, I believe that the differential effects of rituximab in various 

autoimmune disorders may be explained by the relative preponderance of short-lived 



	
  
	
  

86	
  

versus long-lived plasma cells in any given disorder.  Finally, my data may provide further 

insights into the long-debated question of the myeloma stem cell.  Perhaps due to their 

less “mature” nature B220+ plasma cells are more susceptible to accumulating the 

mutations essential for malignant transformation.  Studies in mouse models of multiple 

myeloma are currently being planned in our lab to help address these questions.  I, thus, 

remain extremely excited about the future directions and implications of this work. 
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Figure 4-1.  Amended model of the bone marrow plasma cell pool at early and late 
timepoints of a T-dependent immune response.  Solid arrows indicate pathways 
strongly supported by the data, while dashed arrows represent conjectured, though 
formally unproven interrelationships.  
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CHAPTER 5: MATERIALS AND METHODS 

	
  

Mice. C57BL/6 (B6) and B6.TcRβ-/-δ-/- females (age 8-10 weeks) were obtained from 

Jackson Laboratories. B6.Blimp1+/GFP mice (Kallies et al., 2004) were kindly provided by 

the late Dr. Mark Pescovitz (Indiana University) with permission from Dr. Stephen Nutt 

(WEHI). Gt(ROSA)26Sortm1(DTA)Jpmb/J mice (Ivanova et al., 2005) were obtained from 

Dr. Taku Kambayashi (University of Pennsylvania) and maintained in our facility (JAX 

order # 00-6331).  hCD20-TAMCre.C57BL/6 (Khalil et al., 2012) were provided by Dr. 

Terri Laufer (University of Pennsylvania) with permission from Dr. Mark Shlomchik (Yale 

University). All animal procedures were approved by the University of Pennsylvania 

Office of Regulatory Affairs. 

 

Mouse genotyping.  The progeny of Gt(ROSA)26Sortm1(DTA)Jpmb/J and hCD20-

TAMCre.C57BL/6 mice were screened for the presence of GFP signal (indicative of the 

DTA transgene) and hCD20 expression (using APC-anti-hCD20, clone 2H7 from 

eBioscience) via flow cytometry.  The presence of wild-type and BlimpGFP alleles in B6. 

Blimp1+/GFP mice was determined by PCR purification of tail DNA with primer sequences 

provided by Dr. Stephen Nutt (bl-1: GGCAAGATCAAGTATGAGTGC, bl-2: 

TGAGTAGTCACAGAGTACCCA, bl-3: GCGGAATTCATTTAATCACCCA).  PCR 

products were resolved on a 2% agarose gel (expected band sizes: 611bp wild-type, 

531bp BlimpGFP). 

 

Cell preparation and staining. Spleen and BM cells were harvested and stained with 
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optimal dilutions of the indicated antibodies as described (Lindsley et al., 2007).  

Specifically, BM cells were flushed from tibias, femurs and iliacs and splenocytes 

prepared through perfusion of spleens with FACS buffer (PBS with 0.1% BSA and 1mM 

EDTA).  Following lysis of red blood cells with 0.165M NH4Cl, cells were washed and 

incubated with optimized dilutions of antibodies in 100µL final volume of FACS buffer.  

After 30 minutes of staining at 4°C, cells were washed and incubated with the relevant 

streptavidin antibodies as necessary (10-20 minutes at 4°C).  To determine frequencies 

of κ+ and λ+ cells, BM or spleen cells were first stained with the anti-κ or anti-λ alone.  

Cells were subsequently washed twice and stained with the remaining antibodies in the 

presence of 1% mouse and rat serum.  Total number of BM cells was estimated using the 

approach of Opstelten and Osmond (Opstelten and Osmond, 1983).  For cell sorting of 

plasma cell populations, BM preparations were depleted of granulocytes using biotin-anti-

Gr1, spleens were depleted of T cells using biotin-anti-CD3 and both organs were 

depleted of red blood cell lineage cells using biotin-anti-Ter119.  Depletions were carried 

out on LS depletion columns (Miltenyi Biotec) and using streptavidin microbeads (Miltenyi 

Biotec). 

 

Antibodies.  Unless noted otherwise all of the following reagents were purchased from 

eBiosciences: FITC-anti-IgM (R26-46, BD Biosciences), and PNA (Sigma); phycoerythrin 

(PE)-anti-CD138 (281-2, BD Biosciences); PE- TexasRed-anti-B220 (RA3-6B2); Dump 

channel was comprised of the following antibodies: PE-Cy7-anti-CD4 (RM4-5), anti-CD8α 

(53-6.7), anti-Gr-1 (RB6- 8C5), anti-F4/80 (BM8), and anti-TER119; allophycocyanin 

(APC)-Cy5.5-anti-CD19 (1D3); Alexa405 anti-IgD (11-26), FITC-anti-κ (BD Biosciences), 
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PE-anti-κ (Southern Biotechnology), FITC-anti-λ (BD Bioscinces), PE-anti-λ (Southern 

Biotechnology) and Biotin-anti-CD138 (281-2, BD Biosciences). Biotinylated antibodies 

were revealed with Streptavidin-APC-Cy7 (BD Biosciences), Streptavidin-PE-TexasRed 

or Streptavidin-BrilliantViolet421 (BioLegend). APC-NP was conjugated in our laboratory 

using standard methods. Nonviable cells were eliminated from all analyses with the UV-

excited DNA dye DAPI (Molecular Probes), and doublets were excluded from all analyses 

using the combined width parameter of the forward and side scatter parameters.  

 

Intracellular Flow Cytometry Staining.  For intracellular stains, live cells were identified 

by pre-incubation with AquaLIVE/DEAD fixable live/dead stain (Invitrogen): 1µL of 

AquaLIVE/DEAD/1mL PBS, 500µL per organ, 20 min at RT.  All washes after the fixing 

step were carried out at 1800rpm for 7 minutes.  After surface antibody staining as 

previously described, cells were fixed in 100µL of solution A (Caltag) for 15 min at RT, in 

the dark.  Cells were then washed and permebealized with 100µL solution B (Caltag) 

containing NP-APC, anti-κ-PE or anti-λ-PE for 30 min at RT, in the dark.  For staining 

with anti-BrDU-FITC, cells were further incubated with 1mL freshly prepared DNAse 

solution (17mL of dH2O, 2mL 1.5M NaCl, 40µL 1M MgCl2, 0.9mL of 5mg/mL DNAse 

prepared in dH2O (Sigma, DN25)).  After spinning and decanting the supernatant, cells 

were incubated with 50µL diluted BrDU-FITC (1:6.25 – 8µL BrDU-FITC into 42µL FACS 

buffer) and NP-APC (as needed) for 35 minutes at RT, in the dark.  After a final wash, 

cells were resuspended in 400µL FACS buffered and analyzed via flow cytometry. 
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Flow Cytometry and Cell Sorting.  Analyses were carried out on one of two 4-laser LSR 

II flow cytometers, or a 3-laser FACAria cell sorter (all from Becton Dickinson, San Jose, 

CA).  All flow cytometry data were analyzed by uploading file into FlowJo 8.8 (TreeStar, 

San Carlos, CA).  Data collected on the LSR II or Aria were subjected to the data 

transformation algorithm in FlowJo that allows negative cell populations to be viewed as 

symmetrical clusters (Herzenberg et al., 2006).  Multiple files per sample were often 

concatenated before analysis, allowing for the visualization of >107 cells per file.  For cell 

sorting, stained cells were applied to the FACAria at a sheath pressure of 70 psi and a 

drop delay frequency of approximately 98000 drops/s.  This resulted in sort trigger rates 

of 28000 to 30000 cells/s. 

 

cDNA preparation and RT-PCR.  BM or spleen cells were sorted directly into 200 µL 

RNeasy RLT buffer from the RNeasy kit (Qiagen) and RNA processed according to the 

manufacturer’s instructions.  cDNA was prepared using the First Strand cDNA Synthesis 

Kit (Roche).  Semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) 

was carried out using 5ng cDNA, Taqman reaction mix (Taqman) and inventoried 

Taqman probes for CD19, Pax5, Blimp1 and c-myc.  GAPDH rRNA served as an 

endogenous control for all samples.  Analyses were performed on an ABI Prism 7300 

system (Applied Biosystems).  Relative transcript abundance was determined with the 

ΔΔCT method.  

 

In vivo BrdU labelling.  Adult B6 mice were fed drinking water containing 0.5mg/ml BrdU 

(Sigma) and 1mg/ml sucrose.  For 1 hour BrDU pulses, mice were injected with 200µL 
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intraperitoneally with 0.5mg of BrDU in sterile PBS (2.5mg/mL BrDU).  Flow cytometric 

analysis of BrdU incorporation was accomplished as described above. 

 

BM chimeras.  Donor cells from RAG-/- were purified as described above; C57BL/6 hosts 

were lethally irradiated (900R) on the day of cell injection.  1x106 BM cells were retro-

orbitally injected into anesthetized hosts (anaesthesia: 200µL intraperitoneal injection of 

100mg/mL ketamine and 20mg/mL xylazine in PBS).  Hosts were maintained on water 

containing a Bactrim suspension (400 mg sulfamethoxazole and 80 mg trimethoprim/500 

mL water) for 4 weeks following lethal irradiation. 

 

Immunizations. 8-12 week old mice were immunized intraperitoneally (i.p.) with 50µg 

NP16-CGG in alum or 50µg NP0.6-LPS in PBS. 

 

Preparation of NP-CGG/alum.  Add 400µL, 2.5mg/ml NP-CGG (Biosearch Technologies 

N-5055-5, conjugation ratio ~16, diluted in 2mL sterile PBS) to 2mL sterile PBS (for final 

concentration of 0.5mg/ml).  Note: you may scale this protocol linearly to make larger 

amounts of the immunogen.  Next, add 4mL Aluminum Potassium Sulfate (Sigma A-

7167) 10% solution in sterile dH2O (Dilute Aluminum Potassium Sulfate in water and 

warm in 42°C water bath if it does not go into solution).  Adjust pH to 6.5 using 1M KOH 

dropwise (about 80 drops).  Use pH strips to confirm pH in a sterile manner.  Color will be 

yellowish white and cloudy like skim milk.  Once pH is adjusted, keep in dark at 4°C 

overnight.  Next day, spin at 2500rpm for 15 min.  Pour off supernatant and precipitate 
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with sterile PBS (it will be the consistency of Crisco).  Repeat steps 5 and 6 for a total of 3 

rinses.  Resuspend precipitant in 2mL sterile PBS for a total volume of 4mL.  This is 

enough for about 15 injections. 

 

CD40-CD154 blockade.  On days 29, 31, and 33 post-immunization with NP-CGG/alum, 

mice were given intraperitoneal inoculations (300mg/injection) of anti-CD154 (MR-1) or 

control hamster IgG (both from BioXcell) as described by Takahashi et al (Takahashi et 

al., 1998). 

 

Tamoxifen preparation and administration.  Tamoxifen (Sigma, T5648-1g) was 

reconstituted in corn oil (Sigma, C8267-500 mL) to a concentration of 20mg/ml.  

Tamoxifen was first reconstituted in 1mL 100% ethanol and vortexed extensively.  

Subsequently, 25 mL of corn oil was added and incubated at 37°C with frequent 

vortexing until solution was brought up to 50 mL of corn oil.  Note: it takes 2-8 hours for 

the tamoxifen to go into solution, depending on how often you vortex.  10 mL aliquots 

were stored at -20°C.   200mg/kg tamoxifen was administered via oral gavage on days 

29-31 post-NPCGG immunization and every 2 weeks subsequently.  

 

ELISPOT. Multiscreen HTS plates (Millipore) were coated with 10µg/well of either Goat 

anti-Mouse Ig(H+L) (Southern Biotech), or NP33-BSA, or NP4-BSA (BioSearch) in 

sodium bicarbonate buffer. Cells were serially diluted across the plate, and then 
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incubated for 8-16 hr at 37°C. Biotin-Goat anti-IgG, Goat-anti-IgM, Goat-anti-κ or Goat-

anti-λ (Southern Biotech) diluted in block buffer was added, followed by three washes 

with 0.1% Tween-20 detergent, and a secondary incubation with ExtrAvidin-alkaline 

phosphatase (Sigma). Spots were detected using BCIP/NBT (Sigma) and scanned and 

counted with an ImmunoSpot Analyzer (Cellular Technology Ltd.).  Number of antigen-

specific plasma cells per BM was calculated based on the estimate of 3x108 cells/mouse 

BM (Opstelten and Osmond, 1983; Osmond, 1986).  In NP-CGG/alum immunization 

studies, background quantified in unimmunized controls was subtracted from the 

immunized experimental samples; this was particularly important for studies done with 

anti-κ, anti-λ and anti-IgM antibodies which have a high level of background and was not 

necessary for NP4-BSA, anti-IgG studies. 

 

Statistical Analysis. Significances in differences in plasma cell frequencies between two 

experimental groups were evaluated with the unpaired two-tailed t-test using Excel 

software. 
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