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Abstract

Embedded systems are complex as a whole but consist of smaller independent modules interacting
with each other. This structure makes embedded systems amenable to compositional design. Real-time
embedded systems consist of real-time workloads having temporal deadlines. Compositional design of
real-time embedded systems can be done using systems consisting of real-time components arranged in
a scheduling hierarchy. Each component consists of some real-time workload and a scheduling policy for
the workload. To simplify schedulability analysis for such systems, analysis can be done compositionally
using interfaces that abstract the timing requirements of components. To facilitate analysis of dynam-
ically changing real-time systems, the framework must support incremental analysis. In this paper, we
summarize our work [19, 6] on schedulability analysis for hierarchical real-time systems. We describe
a compositional analysis technique that abstracts resource requirements of components using periodic
resource models. To support incremental analysis and resource bandwidth minimization, we describe an
extension to this interface model. Each extended interface consists of multiple periodic resource models
for different periods. This allows the selection of a periodic model that can schedule the system using
minimum bandwidth. We also account for context switch overheads in these interfaces. We then describe
an associative composition technique for such interfaces that supports incremental analysis.

1 Introduction

The increasing complexity of real-time embedded systems demands advanced design and analysis methods

for the assurance of timing requirements. Component-based design has been widely accepted as an approach

to facilitate the design of complex systems. It provides means for decomposing a complex system into simpler

components and for composing the components using interfaces that abstract component complexities. To

take advantage of component-based design for real-time embedded systems, schedulability analysis should

be addressed for component-based real-time systems. It is desirable to achieve schedulability analysis com-

positionally, i.e., to achieve the system-level schedulability analysis by combining component interfaces that

abstract component-level timing requirements. These abstractions must satisfy the timing requirements of

components using minimum resource supply. Incremental analysis is also highly desirable for systems that
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can be modified on the fly. Frameworks that support incremental analysis allow reuse of existing component

interfaces for analysis of the modified system.

Component-based real-time systems often involve hierarchical scheduling frameworks for supporting hier-

archical resource sharing among components under different scheduling policies. The hierarchical framework

can be generally represented as a tree of nodes, where each node represents a component consisting of some

real-time workload and a scheduling policy. In this framework, resources are allocated from a parent node to

its children. Many studies have been proposed on compositional schedulability analysis for component-based

hierarchical scheduling frameworks [18, 12, 1, 2]. However, their approaches do not support incremental

schedulability analysis. There have been recent studies [21, 22, 9, 20] that support incremental schedulabil-

ity analysis using the interface theory [3, 4]. Assume-guarantee interface theories for real-time components

with a generic real-time interface model [21, 22, 20] and with a bounded-delay resource partition interface

model [9] have been proposed. However, they did not consider the problem of generating interfaces that use

minimum resource supply to schedule components, taking into account context switch overheads. Also, when

components use RM scheduler, the bounded-delay model based technique [9] does not support incremental

analysis and the generic interface model based technique [21, 22, 20] does not support compositional analysis

for dynamically changing systems.

In this paper we summarize our work [19, 6] on schedulability analysis of hierarchical real-time systems.

Our interface model will be based on the periodic resource model [19, 12, 6], which can characterize the

periodic behavior of resource allocations. This choice is implementation-oriented because many existing

real-time schedulers support the periodic model. We describe our component interface model [19] that

abstracts the resource demand of components in the form of a periodic resource model for a fixed period

value. We develop schedulability conditions for the generation of such interfaces, when components comprise

of periodic, independent tasks scheduled using RM or EDF schedulers. We then describe an interface

composition technique that facilitates compositional analysis for such interfaces. However, this framework

neither supports incremental analysis nor can it minimize the resource bandwidth required to schedule the

system, taking into account context switch overheads. We then describe an extended interface model [6]

2



that allows component interfaces to consist of multiple periodic resource models for different periods. This

interface allows the framework to select a resource model that can schedule the system using minimum

bandwidth. We also describe how this model can account for context switch overheads. Finally, we describe

a composition technique for such interfaces that is associative and hence can support incremental analysis.

Related Work. For real-time systems, there has been a growing attention to hierarchical scheduling

frameworks [5, 10, 11, 7, 17, 18, 12, 1, 2, 15, 22, 20] that support hierarchical resource sharing under different

scheduling algorithms.

Deng and Liu [5] proposed a two-level real-time scheduling framework for open systems, where the

system-level scheduler schedules independently developed application components and each component has

its own component-level scheduler for its internal tasks. Kuo and Li [10] presented an exact schedulability

condition for such a two-level framework with the RM system scheduler and Lipari and Baruah [11, 13]

presented similar conditions with the EDF system scheduler. The common assumption shared by these

previous approaches is that the system scheduler has a (schedulable) utilization bound of 100%. In open

systems, however, it is desirable to be more general since there could be more than two-levels and different

schedulers may be used at different levels.

Mok and Feng proposed the bounded-delay resource partition model for a hierarchical scheduling frame-

work [16, 7]. In their framework, a parent component and its children are separated such that they interact

with each other only through their resource partition model. However, they did not consider the compo-

nent abstraction problem. The periodic resource model has been introduced to specify the periodic resource

allocation guarantees provided to a component from its parent component [19, 12]. There have been stud-

ies [18, 12, 1, 2] on the component abstraction problem with periodic resource models. For a component with

RM scheduler and a periodic resource model abstraction, Saewong et al. [18] introduced an exact schedu-

lability condition based on worst-case response time analysis, and Lipari and Bini [12] presented a similar

condition based on time demand calculations. Pedreira [1] and Davis and Burns [2] introduced worst-case

response time analysis techniques under RM component-level scheduling, which enhance the previous work.

All these techniques, however, do not support incremental analysis.
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Matic and Henzinger [15] considered the issue of addressing the component abstraction problem in the

presence of interacting tasks within a component. They considered two approaches, the RTW (Real-Time

Workshop) [14] and the LET (Logical Execution Time) [8] semantics, for supporting tasks with intra-

component and inter-component data dependencies. This technique also does not support incremental

schedulability analysis.

There have been studies on the development of interface theory for supporting incremental design of

component-based real-time systems, applying the interface theories [3, 4] into real-time context. These

studies have proposed assume-guarantee interface theories for real-time components with a generic real-time

interface model [21, 22, 20] and with a bounded-delay resource partition interface model [9]. For dynamically

changing systems with RM scheduler based components, these frameworks do not support incremental and

compositional analysis. The generic interface model theory [21, 22, 20] can be applied to periodic resource

models if the periods of the resource models are fixed a priori for all the components in the system to one

value. In our methodology, the value for the resource period can be chosen after the interfaces for all the

components are generated. Hence the framework can select a period that minimizes the resource bandwidth

required to schedule the system taking into account context switch overheads. This is not possible if the

period values are fixed a priori.

The rest of the paper is organized as follows: Section 2 defines the incremental schedulability analysis

problem that we address. Section 3 gives schedulability conditions for components scheduled using periodic

resource models. Section 4 describes our work on compositional schedulability analysis for hierarchical

real-time systems. Section 5 describes an extended framework that supports incremental analysis and also

minimizes resource bandwidths. Section 6 concludes the paper and discusses future work.

2 System Model and Problem Statement

In this paper we assume that each real-time task is an independent periodic task with deadline equal to the

period. For schedulability analysis using our approach, the component must export its worst case resource
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demand which depends on the task model and the scheduler. Any task model for which the component

can compute its resource demand can be used in our framework. A real-time component consists of a real-

time workload and a scheduling policy for the workload. The workload of a simple component comprises

of periodic real-time tasks only. Whereas the workload of a complex component comprises of other simple

and/or complex real-time components.

Definition 1 (Simple Component) A simple real-time component C is specified as,

C = 〈{T1, · · · , Tn}, RM/EDF 〉 where Ti = (pi, ei) is a real-time task with period pi and worst case

execution time ei. Deadline of Ti is assumed to be same as pi. The tasks in the component are scheduled

using either RM or EDF scheduling policy.

Definition 2 (Complex Component) A complex real-time component C is specified as,

C = 〈{C1, · · · , Cn}, RM/EDF 〉 where each Ci is a simple or complex component.

The term component will be used to refer to both simple as well as complex components. The context

should make the meaning clear and we will explicitly make a distinction wherever necessary. In this paper

we address the schedulability analysis problem for a hierarchical real-time system. Figure 1 shows such a

hierarchical system, where CC1 is a complex component composed from components C1 and C2, and CC2 is

a complex component consisting of components C3 and CC1. In order to support compositional analysis, the

resource demand of each simple component will be abstracted into an interface such that if the interface is

schedulable then the component will also be schedulable. Interface for a complex component will be generated

by composing the interfaces of components that form its workload. This composed interface must satisfy the

property of compositionality for hierarchical real-time systems. Compositionality guarantees schedulability

of component workload under the component scheduler, provided the composed interface of the component

is schedulable. This property is given in Definition 3 where a dedicated uniprocessor means a processor that

can supply t units of computational resource every t units of time. Also, in the definition by “interfaces

I1, . . . , In are schedulable under A on a dedicated uniprocessor” we mean that resource requirements of the

interfaces are met when they are scheduled under A on a dedicated uniprocessor.
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Definition 3 (Compositionality of Interface) Let C = 〈{C1, . . . , Cn}, A〉 denote a complex component

having interface I. Let I be generated by composing interfaces I1, . . . , In of components C1, . . . , Cn, re-

spectively. I satisfies the compositionality property if and only if whenever I is schedulable on a dedicated

uniprocessor, interfaces I1, . . . , In are schedulable under A on a dedicated uniprocessor.

Since components in a hierarchical system can change dynamically, it is also desirable to support incre-

mental analysis. One way to modify a hierarchical system is to add new components to it. In this paper

we assume that this is the only modification that can be done to the system. In an incremental framework,

the interface generated for a complex component will be independent of the order in which components that

form its workload are added to the system. Hence the same interface will be generated for a component

irrespective of the order in which its workload interfaces are composed.

Definition 4 (Incremental Analysis) Let C = 〈{C1, . . . , Cn}, A〉 denote a component and I1, . . . , In de-

note interfaces of components C1, . . . , Cn, respectively. Let P denote the set of all possible permutations

of the set [n]. Also, let Iσ denote an interface for C generated by composing interfaces I1, . . . , In where

the order of composition is given by σ ∈ P. Then, an analysis framework is incremental if and only if

∀(σ1, σ2 ∈ P) Iσ1
= Iσ2

.

Context switches play an important role in schedulability analysis because they consume real-time re-

sources. In a hierarchical system, context switches can occur at each level of the hierarchy. Since our focus

in this work is on the component abstraction and composition problem, we ignore the context switch over-

heads incurred as a result of scheduling tasks within a simple component. We only consider context switch

overheads incurred by components when they are scheduled among themselves. For example, in Figure 1 we

will consider context switch overheads incurred when components C1 and C2 or CC1 and C3 are scheduled

together. However, we will ignore context switch overheads incurred by tasks within components C1, C2 and

C3. The schedulability analysis problem that we address in this paper can be stated as follows.

Definition 5 Given a hierarchical real-time system,

1. Generate interface for each simple real-time component such that
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Figure 1: Hierarchical Real-Time System

• if interface is schedulable then the component is also schedulable

• interface accounts for context switch overheads incurred by the component

2. Generate interface for each composed component by composing workload interfaces such that

• composed interface satisfies compositionality property

• composition supports incremental analysis

• composed interface accounts for context switch overheads incurred by the complex component

3. Minimize the resource bandwidth that will be required to schedule the hierarchical system, when analysis

is done using this interface model.

In this paper we will use δ to denote the execution overhead incurred by the system for each context

switch and LCMC to denote the least common multiple of periods of all the periodic tasks in a simple

component C.
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3 Schedulability Conditions for Periodic Resource Models

A real-time task consists of a set of real-time jobs that are required to meet temporal deadlines. The resource

demand bound function (dbf : � → �) of a real-time task upper bounds the amount of computational

resource required to meet all its temporal deadlines. For a time interval length t, demand bound function

gives the largest resource demand of the task in any time interval of length t. For example, Figure 2(a)

shows the demand bound function dbfT of a periodic task T = (p, e). As shown in the figure, the task

requires e units of computational resource every p units of time in order to meet all its temporal deadlines.

The demand bound function of a simple component is the worst-case resource requirements of tasks in the

component. Given a component C and time interval length t, dbfC(t) gives the largest resource demand

of tasks in C in any time interval of length t, when the tasks are scheduled using the scheduler in C. In

our earlier work [19], we gave demand bound functions for simple components that use either RM or EDF

scheduling policy. We reproduce these functions here for easy reference. Equation (1) gives the demand

bound function for a component C = 〈{T1 = (p1, e1), · · · , Tn = (pn, en)}, EDF 〉. Similarly, Equation (2)

gives the demand bound function for a task Ti in a component C = 〈{T1 = (p1, e1), · · · , Tn = (pn, en)}, RM〉

where HP (Ti) denotes a set of tasks in C having priority higher than Ti.

dbfC(t) =

n∑
i=1

(�t/pi	ei) (1)

dbfC,i(t) =
∑

Tk∈HP (Ti)

(
t/pk�ek) + ei (2)

To satisfy the resource requirements of a real-time task or component, the system must supply sufficient

computational resources. A resource model is a model for specifying the timing properties of this resource

supply provided by the system. For example, a periodic resource supply that provides Θ units of resource

every Π units of time can be represented using the periodic resource model R(Π, Θ/Π). Here Θ/Π represents

the resource bandwidth for model R. The supply bound function sbf : � → � of a resource model lower

bounds the amount of resource that the model supplies. Given a resource model R and interval length t,

sbfR(t) gives the minimum amount of resource that model R is guaranteed to supply in any time interval of

length t. For a periodic resource model R = (Π, Θ/Π), Equations (3) and (4), first proposed by Shin and
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Figure 2: Demand and Supply Bound Functions

Lee [19], give the supply bound function sbfR and its linear lower bound lsbfR, respectively. In Equation (3),

k is equal to max(1, 
(t − (Π − Θ))/Π�). Figure 2(b) shows the supply bound function sbfR and its linear

lower bound lsbfR for model R.

sbfR(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

t− (k + 1)(Π−Θ) If t ∈ [(k + 1)Π− 2Θ,

(k + 1)Π−Θ]

(k − 1)Θ Otherwise

(3)

lsbfR(t) = Θ/Π[t− 2(Π−Θ)] (4)

In this paper we will abstract the resource requirements of components using periodic resource models.

For this purpose, schedulability conditions must be defined for simple components over the resource models.

A periodic resource model R will satisfy the resource demand of a simple component C if the maximum

resource demand of C is smaller than the minimum resource supply of R in any time interval. Demand and

supply bound functions of C and R, respectively, can then be used to define these schedulability conditions.

Theorems 1 and 2, proposed by Shin and Lee [19], gives schedulability conditions under EDF and RM

schedulers, respectively.
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Figure 3: Schedulable region of periodic resource model R(Π, Θ/Π) in Example 1: (a) under EDF scheduling

and (b) under RM scheduling.

Theorem 1 A component C = 〈{T1 = (p1, e1), · · · , Tn = (pn, en)}, EDF 〉 is schedulable over the worst-case

resource supply of a periodic resource model R, if and only if

∀0 < t ≤ LCMC dbfC(t) ≤ lsbfR(t) (5)

Theorem 2 A component C = 〈{T1 = (p1, e1), · · · , Tn = (pn, en)}, RM〉 is schedulable over the worst-case

resource supply of a periodic resource model R, if and only if

∀Ti ∃ti ∈ [0, pi] dbfC,i(ti) ≤ lsbfR(ti). (6)

Interface generation algorithms described in this paper will use Equations (5) and (6) to compute resource

models that guarantee component schedulability. These equations use linear supply bound functions instead

of supply bound functions in order to make the algorithms tractable. If we used supply bound functions, the

algorithms will be required to iterate over different values of resource bandwidth, making them intractable.

4 Compositional Schedulability Analysis

In our paper [19], we proposed an interface R for a component C = 〈{W}, A〉 that abstracts the collective

resource requirements of workload W under scheduler A. This interface abstracts the resource requirements

of the component as a periodic resource model R = (Π, Θ/Π), where Π is user defined. The interface
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does not reveal the internal information of the component such as the number of elements in its workload

or its scheduling algorithm. Definition 6 gives the condition for a periodic resource model interface to be

schedulable on a dedicated uniprocessor.

Definition 6 (Periodic Resource Model Interface Schedulability) A periodic resource model inter-

face, R = (Π, Θ/Π), is schedulable on a dedicated uniprocessor if and only if Θ/Π ≤ 1.

We define the (periodic) component abstraction problem as the problem of deriving a periodic resource

model interface for a real-time component. We formulate this problem as follows: given a component

C = 〈{W}, A〉 and period Π, find an interface as an “optimal” periodic resource model R = (Π, Θ/Π) that

can schedule C. Here optimality is with respect to minimizing the bandwidth of R.

Example 1 Let us consider a workload set {T1 = (50, 7), T2 = (75, 9)} and a scheduling algorithm A =

EDF/RM. We now consider the problem of finding a periodic resource model R = (Π, Θ/Π) that can schedule

component C = 〈{T1 = (50, 7), T2 = (75, 9)}, A〉. We can obtain a solution space to this problem by simulating

Equation (5) under EDF scheduler or Equation (6) under RM scheduler. For any given resource period Π,

we can find the smallest Θ/Π such that component C is schedulable according to Theorem 1 or Theorem 2.

Figure 3 shows such a solution space for EDF and RM schedulers, as the gray area, for resource periods

in the range 1 to 75. For instance, when Π = 10, the minimum resource bandwidth that guarantees the

schedulability of C is 0.28 under EDF scheduling or 0.35 under RM scheduling.

We define the (periodic) component composition problem as the problem of generating an interface for

a complex component. This involves composing interfaces that abstract the component’s workload. We

formulate the component composition problem as follows: given a complex component C = 〈{C1, · · · , Cn}, A〉

and period Π, find an interface as an “optimal” periodic resource model R = (Π, Θ/Π) that can schedule

C. Our approach is to develop “optimal” periodic resource model interfaces R1, . . . , Rn that can schedule

components C1, . . . , Cn, respectively, and to consider C as consisting of n periodic tasks, i.e., C = 〈{T1 =

(p1, e1), · · · , Tn = (pn, en)}, A〉, where ∀i 1 ≤ i ≤ n, Ri = (Πi, Θi/Πi) ⇒ (pi = Πi, ei = Θi). We can

now address the component composition problem because it is equivalent to the component abstraction
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problem. Theorem 3 shows that this composition satisfies the property of compositionality of interfaces. In

the theorem, by “interfaces R1, . . . , Rn are schedulable under A” we mean that resource requirements of the

interfaces, given by their linear supply bound functions, are met when they are scheduled under A.

Theorem 3 (Compositionality of Periodic Resource Model Interface) Let R = (Π, Θ/Π) denote

an interface of a complex component C = 〈{C1, · · · , Cn}, A〉. Let this interface be generated by compos-

ing interfaces R1 = (Π1, Θ1, Π1), . . . , Rn = (Πn, Θn/Πn) of components C1, . . . , Cn, respectively. For this

composition, we assume that each interface Ri = (Πi, Θi/Πi) is mapped to a periodic task Ti = (Πi, Θi). If

Θ/Π ≤ 1, then interfaces R1, . . . , Rn are schedulable under A on a dedicated uniprocessor.

5 Incremental Schedulability Analysis

In this section we will extend the framework described in Section 4 to support incremental analysis and also

to minimize resource bandwidths of interfaces. We will allow component interfaces to comprise of multiple

periodic resource models for different period values. Context switch overheads incurred by components will

also be abstracted in these interfaces. The framework can then select a resource model that will minimize the

overall resource bandwidth required to schedule the hierarchical system. To support incremental analysis,

we also describe an associative technique for composition of such interfaces.

5.1 Component Interface Extension

Component interfaces described in Section 4 abstract the resource requirements of components using a single

periodic resource model. The resource period for this model is fixed a priori and hence the framework is

unable to select a period value that will minimize the resource bandwidth of the model taking into account

context switch overheads. We will modify component interfaces by allowing them to abstract components

using multiple periodic resource models [6]. Each interface will consist of a set of periodic resource models

for different periods. For each period, a component interface will store the minimum bandwidth required

from a resource model, having that period, to schedule the component.
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Definition 7 (Extended Component Interface) An extended interface for a real-time component C is

defined as,

I ={(Π, Θ/Π)|1 ≤ Π ≤ P ∗}

such that ∀(R = (Π, Θ/Π)) ∈ I lsbfR() satisfies Equation (5) if C uses EDF scheduling policy and Equa-

tion (6) if C uses RM scheduling policy. P ∗ is an user defined upper bound for the period.

Schedulability of an extended interface can be defined using periodic resource model schedulability given

in Definition 6.

Definition 8 (Extended Interface Schedulability) On a dedicated uniprocessor system, interface I is

schedulable for period value Π (denoted as I
S

≡ Π) if and only if ((Π, Θ/Π) ∈ I) ∧ (Θ/Π ≤ 1). Interface I is

then schedulable on a dedicated uniprocessor if and only if ∃Π ∈ [P ∗] I
S

≡ Π.

5.2 Compact Interface

Assuming each resource model uses a constant amount of storage, size of an extended interface given by

Definition 7 is O(P ∗). In order to reduce this storage space, we will use a compact representation for these

interfaces. Let Ri represent the minimum bandwidth resource model, having period value i, that can schedule

a component C. Then the compact interface for C will store the time instant at which lsbfRi
() intersects

dbfC() along with the value of dbfC() at that time instant. The compact interface will store such value

pairs for each period in the range 1 to P ∗. Whenever the intersection between supply and demand functions

occurs at the same time instant for different periods, compact interfaces will require reduced storage space.

We show using examples that, in practice, the storage requirements of a compact interface is much smaller

than O(P ∗).

Definition 9 (Compact Interface) Compact interface representation for a component C is given as,

CI = {CIj = 〈jmin, jmax, tj , dbf(tj)〉|∀j 1 ≤ j ≤ k, jmin ≤ jmax, jmin = (j−1)max+1, 1min = 1, kmax = P ∗}
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Converting a compact interface CI to a regular interface I involves computing the resource bandwidths

for periods ranging from 1 to P ∗. For example, consider an element 〈jmin, jmax, tj , dbf(tj)〉 of the compact

interface for a component C. Periodic resource models R = (i, Θi/i), where i ranges from jmin to jmax, can

then be obtained using either Equation (5) if C uses EDF scheduler or Equation (6) if C uses RM scheduler.

5.3 Interface Generation for Components that use EDF Scheduler

Algorithm 5.1 generates a compact interface CIk for a simple component Ck that uses EDF scheduling policy.

The algorithm uses schedulability conditions given in Equation (5) to generate the interface. It computes

minimum bandwidth bi, that a resource model with period i must have in order to schedule component

Ck. To generate interface CIk, the algorithm computes minimum bandwidths for all resource models with

periods in the range 1 to P ∗. Let relevant time instants denote a set of time instants at which some task in

the workload of Ck has a deadline. Then, dbfCk
changes its value only at these time instants. Also, the linear

supply bound function of any resource model that schedules component Ck using minimum bandwidth must

intersect dbfCk
at one of the relevant time instants. Since there are O(LCMCk

) relevant time instants in the

time interval between 0 and LCMCk
, minimum bandwidth resource model for any period can be computed

in time O(LCMCk
) using Equation (5). Algorithm 5.1 hence computes interface CIk in time O(P ∗LCMCk

).

In our earlier work [6] we have given a more efficient algorithm that will generate the compact interface in

time O(P ∗ + LCMCk
ln LCMCk

).

Algorithm to generate compact interfaces for simple components that use RM scheduling policy can be

derived from Algorithm 5.1. Schedulability conditions in Algorithm 5.1 must use the conditions given in

Equation (6). Given a simple component Ck = 〈{T1, · · · , Tn}, RM〉, these conditions check for schedulability

of each task Tl using demand function dbfCk,l. Condition in Line 7 of Algorithm 5.1 must then be modified

to (t �= ti)||(dbf �= dbfCk,li(ti)). At any time instant, there can be multiple values for resource demand (one

for each task in the component). dbfCk,li(ti) denotes the current value for demand obtained from Line 6

in the algorithm. For any task Tl in Ck there are O(pl) relevant time instants in dbfCk,l. Hence for each

period, the minimum bandwidth resource model that can schedule task Tl can be computed in time O(pl).
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Figure 4: Extended Component Interface Model

Algorithm 5.1 Interface Generation under EDF Scheduling Policy

Input: Component Ck that uses EDF scheduling policy
Output: Compact interface CIk

1: Solve Equation (5) with Π = 1 to compute minimum bandwidth b1

2: Let lsbfR1
(t1) = dbfCk

(t1) in Equation (5) where R1 = (1, b1)
3: Initialize t = t1, dbf = dbfCk

(t1), min = 1, max = 1, j = 1
4: for i = 2 to P ∗ do
5: Solve Equation (5) with Π = i to compute minimum bandwidth bi

6: Let lsbfRi
(ti) = dbfCk

(ti) in Equation (5) where Ri = (i, bi)
7: if t �= ti then
8: Update jmin = min, jmax = max
9: Update CIk = CIk

⋃
{〈jmin, jmax, t, dbf〉}

10: Update min = max = max + 1, j = j + 1, t = ti, dbf = dbfCk
(ti)

11: else
12: max = max + 1
13: end if
14: end for
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Figure 5: Interface Plots: Period vs. Bandwidth

Then the minimum bandwidth model with that period, which can schedule component Ck can be computed

in time O(n maxi{pi}) using Equation (6). Hence the interface generation algorithm for components that

use RM scheduler can generate a compact interface in time O(P ∗n maxi{pi}).

Example 2 Let component C1 in Figure 4 consist of three tasks T1 = (45, 2), T2 = (65, 3) and T3 = (85, 4),

C2 consist of three tasks T1 = {35000, 2000}, T2 = {55000, 3000} and T3 = {75000, 4000}, and C3 consist of

two tasks T1 = (45, 1) and T2 = (75, 2). Interfaces I1, I2 and I3 are plotted in Figure 5(a) for period values

in the range 1 to 30. Compact interfaces CI1, CI2 and CI3 are given in Table 1 that assumes P ∗ = 100000.

It is clear from Table 1 that the sizes of these compact interfaces are much smaller than O(P ∗). Given a

period value, say Π = 10, the minimum bandwidths for the interfaces can be computed using Table 1 and

Equations (5) and (6). For interface I1, substituting Π = 10, t = 90 and dbf(t) = 11 in Equation (5) gives

b10 = 0.151. Similarly, for interface I2, substituting Π = 10, t = 70000 and dbf(t) = 14000 in Equation (6)

gives b10 = 0.20004.

5.4 Extended Interface Composition and Bandwidth Minimization

Extended interface for a complex component can be generated by composing the extended interfaces of

components that form its workload. Interfaces generated using the algorithms given in Section 5.3 do not

account for context switch overheads incurred by components. Context switch overhead for a component
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Interface CI1 Interface CI2 Interface CI3

jmin jmax t dbf jmin jmax t dbf jmin jmax t dbf

1 1 9945 1369 1 22192 70000 14000 1 6 225 11
2 4 2210 304 22193 100000 35000 2000 7 16 90 4
5 5 855 117 17 100000 45 1
6 6 270 36
7 21 90 11
22 100000 45 2

Table 1: Compact Interfaces CI1, CI2 and CI3

depends on the period of the resource model that will be used to schedule its workload. A smaller period

will, in general, result in a larger number of context switches. In our framework once an interface for the root

component is generated, the framework will select a value for resource period such that the corresponding

resource model in the root interface has the least bandwidth among all the models in that interface. Further,

all the components in the system will use resource models, having the same period value, from their respective

interfaces. All the components in the workload of any component will then have the same priority under

RM and EDF scheduling policies. Since within each period components will be assigned arbitrary but fixed

priorities, each component will be context switched exactly once per period. The component will then incur

a context switch overhead of δ in every period. Given a resource model R = (Π, Θ/Π) to schedule the

component’s workload, the actual bandwidth available for scheduling its workload will then be (Θ−δ)/Π. In

other words, given a resource model R = (Π, Θ/Π) that schedules a component using minimum bandwidth,

the resource model that can actually schedule the component taking into account context switch overheads

is R = (Π, (Θ + δ)/Π).

For each value of resource period, the resource model in the interface of a complex component can then

be generated by adding the resource bandwidths of interfaces in its workload. Since addition is associative,

this composition will support incremental analysis. Resource models of interfaces used in the composition

will be modified to account for context switch overheads. For every resource model being composed we will

add overhead δ/Π to its bandwidth, where Π denotes the period of the model. For example, in Figure 4

interface I4 for component CC1 will be generated by adding the resource bandwidths of interfaces I1 and I2

along with appropriate context switch overheads.
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Definition 10 (Interface Composition) Let I denote a component interface generated by composing in-

terfaces I1, · · · , In. Then,

I = {(Π,

n∑
i=1

(Θi + δ)/Π)|∀Π 1 ≤ Π ≤ P ∗, (Π, Θi/Π) ∈ Ii}

Any interface generated using Definition 10 will satisfy compositionality under resource period restriction,

i.e., if the composed interface is schedulable using a resource model having some period value, then each of

the interfaces that were used in the composition will also be schedulable as long as they use resource models

with the same period value. We formalize this property in Theorem 4. This restriction forces the framework

to use resource models, with identical periods, for all the interfaces in the system.

Theorem 4 (Compositionality of Extended Interface) Let I denote an extended interface, of a com-

ponent with scheduler A, generated by composing extended interfaces I1, · · · , In using Definition 10. If I
S

≡ Π,

then resource models (Π, Θ1/Π), . . . , (Π, Θn/Π) are schedulable under A on a dedicated uniprocessor where

∀i 1 ≤ i ≤ n, (Π, Θi/Π) ∈ Ii.

Interface composition can be applied iteratively at each level in the hierarchical system until an interface

Ir for the root component is generated. Then, the system is schedulable if there exists some period Π in the

range 1 to P ∗ such that Ir

S
≡ Π. Also, the framework will pick a value i for resource period such that the

corresponding resource model in Ir has the least bandwidth among all resource models in Ir. For any other

component in the system, resource model with period i in the component’s interface will then guarantee its

schedulability (Theorem 4). For example, from Figure 5(b) which assumes δ = 0.1, we get that the minimum

resource bandwidth for interface I5 is 0.447 and the corresponding period is 9.

6 Conclusion

In this paper we have summarized our work [19, 6] on schedulability analysis of hierarchical real-time sys-

tems. We abstracted components using periodic resource models and also defined composition for such
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abstractions. To support incremental analysis and to minimize resource bandwidths in the presence of con-

text switches, we extended component abstractions. Extended component interface comprised of a set of

periodic resource models for different periods. This representation made it possible to determine a periodic

model that minimizes the resource bandwidth for the interface taking into account context switch overheads.

Composition for extended interfaces was achieved by addition of resource bandwidths of individual interfaces.

This composition supports incremental analysis.

In order to make the composition associative, periodic resource models with identical periods are selected

for all the interfaces in the system. It is an open problem whether incremental schedulability analysis can

be achieved for hierarchical systems, using interfaces represented as periodic resource models with different

periods.
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