
Towards Content-driven Reputation
for Collaborative Code Repositories

Andrew G. West
University of Pennsylvania

Philadelphia, PA, USA
westand@cis.upenn.edu

Insup Lee
University of Pennsylvania

Philadelphia, PA, USA
lee@cis.upenn.edu

ABSTRACT
As evidenced by SourceForge and GitHub, code repositories
now integrate Web 2.0 functionality that enables global par-
ticipation with minimal barriers-to-entry. To prevent detri-
mental contributions enabled by crowdsourcing, reputation
is one proposed solution. Fortunately this is an issue that
has been addressed in analogous version control systems
such as the wiki for natural language content. The Wik-
iTrust algorithm (“content-driven reputation”), while devel-
oped and evaluated in wiki environments operates under a
possibly shared collaborative assumption: actions that “sur-
vive” subsequent edits are reflective of good authorship.

In this paper we examine WikiTrust’s ability to measure
author quality in collaborative code development. We first
define a mapping from repositories to wiki environments and
use it to evaluate a production SVN repository with 92,000
updates. Analysis is particularly attentive to reputation loss
events and attempts to establish ground truth using commit
comments and bug tracking. A proof-of-concept evaluation
suggests the technique is promising (about two-thirds of rep-
utation loss is justified) with false positives identifying ar-
eas for future refinement. Equally as important, these false
positives exemplify differences in content evolution and the
cooperative process between wikis and code repositories.

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: collabora-

tive computing, computer-supported cooperative work

Keywords
WikiTrust, wikis, code repository, SVN, reputation, trust
management, content persistence, code quality.

1. INTRODUCTION
Version control systems (VCS), particularly those aimed

towards source code development (e.g., CVS, SVN, Git)
have long supported local collaboration among known and

c© ACM, 2012. This is the author’s version of the work. It is posted here
with permission for your personal use. Not for redistribution. The definitive
version was published in: WikiSym ’12, August 27–29, Linz, Austria.

trusted parties. More novel is opening these repositories to a
global and anonymous set of participants. This trend can be
seen with online repository hosts such as SourceForge and
GitHub. Consider also vehicleforge.mil [5], a DARPA
led effort to crowdsource a next-generation military vehicle.
While such broad collaboration is time and cost effective it
can also invite inefficient, buggy, or malicious contributions.

This not an issue unique to code repositories. Consider
English Wikipedia which operates on a VCS (the wiki plat-
form) where ≈7% of edits are unconstructive (“vandalism”).
To this end, “content-driven reputation” was developed and
encoded as the WikiTrust [2, 3] algorithm. WikiTrust’s as-
sumption is that actions which persist across subsequent re-
visions are indicative of reputable authors (see Sec. 2).

WikiTrust’s hypothesis has been shown effective for nat-
ural language content on wikis, however, one can imagine
it might hold true in many collaborative settings, includ-
ing source code repositories. To investigate this we define
a mapping between repository software and wiki platforms.
Then, we apply WikiTrust over a case study SVN repository
containing some 92,000 updates (Sec. 3).

WikiTrust plots user reputations across repository history.
Our analysis scrutinizes reputation loss on these graphs,
gleaming additional information from bug tracking and com-
mit comments. Our goal is to determine whether the reputa-
tion penalty was justified, and we estimate those decrements
were warranted in about two-thirds of cases (Sec. 4). False
positives are given particular attention since they suggest
how WikiTrust might be refined for use in code reposito-
ries. Fortunately, we are able to identify several redundant,
detectable, and correctable sources of error (Sec. 5).

Should these suggestions produce a sufficiently accurate
and robust reputation those values can be integrated in ways
that remove administrative burden, heighten end user trust,
and further promote “openness” in development. For exam-
ple, additional scrutiny could be given to contributors with
low reputation or the most productive users rewarded.

While the development of a refined version remains a work
in progress the shortcomings of our straightforward Wik-
iTrust application are valuable in and of themselves. Er-
roneous reputation events exemplify differences in the con-
tent evolution of wikis and code repositories. Collaborative
semantics are not uniform across cooperative settings and
research should be attune to these subtleties.

2. BACKGROUND & RELATED WORK
Discussion begins by reviewing the WikiTrust algorithm

(Sec. 2.1) before examining related literature (Sec. 2.2).

2.1 WikiTrust Algorithm
Assume a VCS environment consisting of a set of docu-

ments {d0, d1 . . . dn}. Each document d has a version history
ver hist(dx) = [dx.0, dx.1 . . . dx.m] where dx.0 is an empty
document and dx.m is the most recent version. The transi-
tion dx.y → dx.y+1 is termed an edit/revision and each has
an author associated with it, ax.y+1.

The WikiTrust algorithm [2, 3] begins by initializing au-
thors with a default reputation. Whenever a new document
version dx.y+1 is created, its relationship with the previous
n versions is investigated, possibly updating the reputations
of the n authors {ax.y−n . . . ax.y}. These authors’ reputa-
tions are updated according to how much of their actions
“persist” to the new version per a metric of edit survival.

Edit survival uses an edit distance computation to quan-
tify the similarity of an author’s (prior) version to the cur-
rent one. This captures not only the survival of novel au-
thored content (i.e., text survival) but also reorganization
and content removal. The size of a reputation delta is pro-
portional to the degree of change and weighted by the rep-
utation of the current version’s author.

WikiTrust assumes that when an author edits a document
but leaves portions intact, those portions have his/her im-
plicit endorsement. This approach allows feedback regarding
contributions to be gleamed from typical system interaction
rather than explicit mechanisms. Moreover, an editor puts
his/her own reputation at stake when they cast judgment
on others, since he/she becomes part of the edit history.

In the interest of brevity we point readers to [2, 3] where
WikiTrust is formally described. WikiTrust’s successful de-
ployment motivated its application to code-centric VCS.

2.2 Related Work
WikiTrust succeeds because it captures and quantifies the

evolution of wiki content [8]. Harnessing these same proper-
ties an alternative approach [10] models a wiki as a Dynamic
Bayesian Network but uses author reputation as an input.

Shifting focus towards software engineering and reposito-
ries, there have been numerous attempts to evaluate code
quality in a static fashion. Metrics such as lines-of-code,
nesting depth, and comment usage have all been applied,
with [9] using them to evaluate open source development.

More relevant are approaches leveraging some notion of
historical code evolution. The Dynamine system [7] mines
revision history to find function co-occurrence patterns and
locate existing/future violations thereof (e.g., file.close()
should generally follow a file.open()). A separate work [6]
quantifies multiple dimensions of the collaborative history
(e.g., code age, number of contributors, module dependen-
cies) to predict fault prone code. Relative to WikiTrust these
approaches appear more focused on system wide evolution
than attributing actions to any particular author/developer.

Additionally, Cataldo [4] has analyzed distributed devel-
opment in particular, quantifying common sources of error
and offering advice for corrective collaborative tools.

3. FROM REPOSITORY TO REPUTATION
To evaluate WikiTrust over code repositories we choose to

“import” a repository onto a wiki platform in order to make
use of an existing WikiTrust implementation. We define a
general model to make this transformation (Sec. 3.1) before
making some practical adaptations in our implementation of
the technique over a case study SVN repository (Sec. 3.2).

Figure 2: Repository revision model.

3.1 Repository to Wiki Model
We now describe the transformation of a code repository

into a wiki representation. Generic discussion suffices given
that instantiations of both repositories (e.g., CVS, SVN,
Git, etc.) and wikis (e.g., Mediawiki, PmWiki, etc.) have
an expected set of functionality. Our writing assumes some
familiarity with both paradigms (see also Fig. 2).

Our aim is to “replay” the history of a repository into
the wiki format. Simple repository actions (add, modify,
and delete) have a straightforward mapping that requires no
description. Elsewhere, minor accommodations are needed:

• Multi-file check-in: An atomic repository check-in can
involve multiple files, while wikis support only single
document edits. A single check-in can be replayed as
multiple edits, and this is inconsequential so long as
no reputation updates occur internal to a batch.

• Branch-merge: It is our design decision only to replay
the primary trunk/ line of development. Branches are
intended for experimental coding and their inclusion
might bring unwarranted WikiTrust punishment. As
a consequence, if a branch is merged back into the
trunk/ all changes are attributed to the merging user
(and this is taken as an implicit recommendation).

• Tagging : Tagging actions are ignored as they are only
snapshots capturing no real authorship value.

3.2 Implementation and Practical Issues
Our transformation is next applied to a case study repos-

itory. We chose to use the Mediawiki [1] SVN repository
which as of our late 2011 analysis had ≈92,000 check-in ac-
tions and 420,000 trunk/ file versions. This code history
is replayed into an instance of the Mediawiki [1] wiki en-
gine (yes, the same software is both utilized and analyzed),
a platform with an existing WikiTrust implementation [2].

The workflow begins by using svnsync to create a com-
plete local repository copy (not simply a checkout). From
that, [svn log] yields metadata that acts as a script for the
replay phase where the [svn cat filepath@revision_id]

syntax is used to generate all unique file versions in a chrono-
logical fashion. These versions are piped to the Mediawiki
API and associated with the proper user. When done, the
wiki DB is given to an implementation of the WikiTrust
algorithm modified to output verbose reputation data.

Several practical adjustments are made to the process.
As our interest lies with programming code we make a best-
effort to replay the histories of only PHP code files (the core
Mediawiki language). This means we exclude: (1) binary
files, which are often not token-izable, (2) non-PHP text
files, such as documentation, and (3) PHP internationaliza-
tion files, which consist only of localized strings. We retain
WikiTrust’s white space delimitation and discuss alternative
tokenization/normalization schemes in Sec. 5. Tab. 1 shows
statistics about both the original and “filtered” repository.

PROPERTY ORIG MOD
authors 326 271

check-ins 91,808 53,715
file versions 585,629 117,432

. . . in trunk/ 420,613 117,432
unique paths 138,741 7,521

. . . to PHP file 56,063 7,521
. . . w/2+ auth. 27,330 5,477

Table 1: Mediawiki SVN statistics
per late 2011 for the entire reposi-
tory (ORIG) and a reduced version
used for analysis (MOD).

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

%
 o

f r
ep

os
ito

ry
 u

se
rs

reputation value (logscale)

Figure 1: CDF of user reputations.

ID ∆SIZE REVS(#) REP#
U1 7.0MB 4,243(8) 1 (tie)
U2 6.2MB 6,825(4) 14
U3 6.2MB 7,106(3) 1 (tie)
U4 5.1MB 9,546(1) 1 (tie)
U5 4.2MB 7,221(2) 15
U6 3.9MB 3,270(10) 25

Table 2: Comparing participation
metrics: Users are sorted by the
size of all his/her revision deltas
(∆SIZE) and ranked (#) by num-
ber of file revisions (REVS) and fi-
nal reputation (REP).

4. CASE STUDY RESULTS
This section reports on the output of applying WikiTrust

to the Mediawiki SVN. We begin with broad statistical ob-
servations (Sec. 4.1) before examining reputation accuracy
(Sec. 4.2). Lastly, false positives are discussed (Sec. 4.3).

4.1 General Statistics
The reputations WikiTrust computes lie on [0, 20000] with

the upper bound being set to prevent “god-like” users whose
actions carry excessive weight. Reputations grow in a loga-
rithmic fashion and should be interpreted relatively.

A document must have 2+ authors to contribute to repu-
tation; one cannot influence their own reputation. However,
a single edit can affect the reputations of n = 10 prior doc-
ument authors (our search depth). Over the SVN history
these criteria produce ≈40k reputation updates, quantify-
ing the behavior of 183 (of 271) authors. Of these updates
87% are reputation increments, a non-surprising result given
the productive nature of the development community (see
Fig. 3). Fig. 1 displays the reputation distribution for all
authors. The graph suggests a typical exponential model of
participation as few users contribute much value.

We can also compare reputations to conventional metrics
as Tab. 2 shows. Those who contribute the most content do
not necessarily have the best reputations; WikiTrust is not
simply duplicating the results of simpler measures. Con-
sider user U2 who contributed the 2nd most “change” but
ranked 14th in terms of reputation. Similarly, one user with
maximal reputation ranked 78th in file revision quantity.

Of course, final reputations are just a snapshot of a dy-
namic progression. Fig. 4 plots the reputation history for
some example users. Editors E1 and E2 are prolific, long-
term contributors and their reputations reflect this with
their generally upward trend (E1 sits on the reputation ceil-
ing). At the other extreme are users like E4 whose reputa-
tions tend to be low, volatile, and derived from short-term
participation (and perhaps speak to why they are no longer
active community members). Such observations are mean-
ingless, however, without a greater understanding of repu-
tation accuracy and the types of behavior being captured.

4.2 Assessing Accuracy
Setup: Intuitively, if the WikiTrust computation is accu-
rate then reputation increments will follow from constructive
contributions and vice versa. However, establishing ground
truth is challenging. Reputation is accumulated when con-
tent survives, but rarely is good content celebrated. This
motivates our decision to focus on reputation loss events

since poor content often generates explicit evidence in sub-
sequent commit comments and/or bug tracking reports.

Investigation began by randomly selecting 100 reputation
loss updates from the top-50th percentile of all loss events
(by magnitude). In doing so only significant loss events
are evaluated, skirting subtle instances and the classification
difficulties they may pose. Such events report: “author A =
ax.y lost reputation per the edit of author B = ax.z>y.” As
a convenience we require that the two edits be adjacent in
that z = y + 1. In this manner the author progression must
be A ⇒ B, rather than with middle-men, i.e., A ⇒ C ⇒ B,
as such indirect assessments can convolute investigation.

Assuming A loses reputation on an adjacent edit by B, we
seek to answer, “would B label A’s edit as unconstructive?”
We rely on B’s commit and its context in making a manual
classification of events as UNCONSTRUCTIVE, CONSTRUCTIVE,
or UNCLEAR. Admittedly this is a subjective process, but for-
tunately evidence is often strongly indicative in nature.

Before proceeding we should note that absent an objec-
tive/reliable ground truth it is our intention to produce a
proof-of-concept assessment. More rigorous analyses are
needed operating on: (1) stronger ground truth, (2) mul-
tiple repositories of varied size and maturity, and (3) the
full spectrum of reputation events.

Rationale & Results: Classifying reputation loss events
takes considerable manual effort and proceeds according to
the following criteria (see also Tab. 3):

• Unconstructive: Instances where the previous contri-
bution has been at least partially reverted or consider-
ably refined. The previous author must be implicated
and the unconstructive code changes explained.

• Unclear : Similar to the“unconstructive”case, but rea-
soning is orthogonal to code quality (e.g., whitespace
or documentation changes). Also includes the common
“not now” revert rationale used when large changes re-
quire more testing (but exhibit no blatant errors).

• Constructive: Instances not meeting the other two
criteria per a conservative approach. Generally this
means the cause of reputation loss was not the fault of
the affected author (see Sec. 4.3).

Manually classifying our 100 reputation loss events, we ar-
rive at quantities |CONSTRUCTIVE| = 30, |UNCLEAR| = 19, and
|UNCONSTRUCTIVE| = 51. Discounting the ambiguous cases
our small sample suggests an accuracy of 51/81 = 63%.
While not appropriate for production use this is an encour-
aging result for a straightforward WikiTrust application.

 0

 10

 20

 30

-(103) -10 -0.1 0 0.1 10 103

%
 o

f r
ep

. u
pd

at
es

reputation delta (logscale bins)

Figure 3: Histogram of reputation up-
date magnitudes.

UNCONSTRUCTIVE
“introduced massive breakage . . . ”
“revert x . . . trigger errors”
“revert . . . uglier . . . prone to error”
“revert . . . do not remove functions”

UNCLEAR
“revert x for now . . . needs testing”
“white-space [not per style guide]”

Table 3: Examples of SVN com-
mit comments by class. Sec. 4.3
discusses cases with the “con-
structive” label (false positives).

5k

10k

15k

20k

2004
2006

2008

2009

2010

2011

re
pu

ta
tio

n
va

lu
e

E1

E2

E3

E4

Figure 4: Example editor reputations
plotted over repository history.

4.3 Scrutinizing False Positives
Crucial to improving performance is understanding false

positives. We identify several redundant sources of error:

• Reorganization: When a file is renamed SVN reports
a disjoint file deletion and addition. Thus, previous
document authors see all of their content deleted (a
reputation loss) and the“new”document has no prove-
nance data. Code reorganization has similar effects.

• The “not now” trap: Frequently a change is reverted
with a “not now” justification, e.g., needing to hold for
more testing. When that testing is done the changes
are likely to be re-committed in much the same form,
punishing the benign reverting editor.

• Non-code issues: Authors occasionally place TODO style
comments in code and then lose reputation when those
notations are replaced in favor of actual code. String
and whitespace changes sometimes have similar effect.

• Code upgrades: Even good code may get refined if
methods deprecate, more efficient techniques are dis-
covered, or feature requests are fulfilled.

Algorithmic refinements towards mitigating common errors
are discussed in Sec. 5, with about two-thirds of false posi-
tives fitting into the above categories.

While these errors are detrimental to performance their
existence is valuable in demonstrating the non-uniformity
of the collaborative process. Code and natural language
evolve in different ways. This finding motivates investigation
into this parity across a broader set of cooperative settings
and should serve as notice to researchers that cooperative
behaviors are not fixed across the“peer production”domain.

5. REFINEMENT & CONCLUSIONS
Future work needs to address weaknesses in both the algo-

rithm and evaluation. WikiTrust excels at modeling intra-
document evolution, but reorganization false positives result
from inter-document transfers. A solution is to diff all files
of an SVN check-in. If an entire file is delete-added a rename
action has occurred, which wikis can accommodate. Simi-
larly, movement of code blocks between files can be detected

in this fashion. Modeling proves to be a bigger challenge, but
at minimum, undue reputation gain/loss can be prevented.

A second refinement is document/code standardization.
Should comments/strings be part of reputation? Should
whitespace be normalized for tokenization? What delim-

iters are most appropriate (line breaks, semicolons, etc.)?
Language specific pre-processors may be needed.

A more rigorous evaluation is crucial in moving forward.
WikiTrust has many free variables. A large and objective
corpus of ground truth would provide something to optimize
these parameters against and be a test bed for other modifi-
cations. Such empirical grounding has proven elusive as one
needs to establish not just where faults occurred but when

they originated and whom is to blame. It may be necessary
to rely on qualitative data from repository participants.

Herein we have shown that a straightforward WikiTrust
application is a good foundation towards achieving our goals.
A repository-to-wiki mapping was defined and utilized over
a production SVN repository to which WikiTrust was ap-
plied. Informal analysis revealed mediocre results but also
identified common and correctable error cases. Equally as
important, these errors are indicative of differences in con-
tent evolution and the collaborative process in the differing
environments. Accommodating these differences we are op-
timistic our suggested refinements will permit the design a
content-driven reputation model optimized for use in code
repositories. Such an approach would allow repositories to
have security functionality while still embracing the benefits
of collaborative development.

Acknowledgements: This work was supported in part by ONR
MURI N00014-07-1-0907 and DARPA HR0011-11-C-0096. We
thank our UPenn colleagues Jian Chang, Andreas Haeberlen,
Zach Ives, Oleg Sokolsky, and Krishna Venkatasubramanian.

References
[1] Mediawiki. http://www.mediawiki.org.
[2] WikiTrust (online). http://wikitrust.soe.ucsc.edu/.
[3] B. Adler and L. de Alfaro. A content-driven reputation sys-

tem for the Wikipedia. In WWW, 2007.
[4] M. Cataldo. Sources of error in distributed development

projects: Implications for collaborative tools. In CSCW ‘10.
[5] C. Dillow. DARPA’s Vehicleforge.mil aims to crowd-source

next-gen combat vehicles. Popular Science (online), 2011.
[6] T. L. Graves, A. F. Karr, et al. Predicting fault incidence us-

ing software change history. IEEE Transactions on Software
Engineering, 26(7):653–661, 2000.

[7] B. Livshits and T. Zimmermann. Dynamine: Finding com-
mon error patterns by mining software revision histories. In
ESEC/FSE, pages 296–305, 2005.

[8] R. Priedhorsky, J. Chen, et al. Creating, destroying, and
restoring value in Wikipedia. In GROUP, 2007.

[9] I. Stamelos, L. Angelis, et al. Code quality analysis in open
source software development. Info. Sys. Journal, 12, 2002.

[10] H. Zeng, M. Alhossaini, et al. Computing trust from revision
history. In Intl. Conf. on Privacy, Security, and Trust, 2006.

