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ABSTRACT 

 

PREDICTING ALARM AND SAFETY SYSTEM PERFORMANCE USING 

SIMULATION 

Ian H. Moskowitz 

Warren D. Seider 

 

 Safety is paramount to the chemical process industries.  Because many processes 

operate at high temperatures and/or pressures, involving hazardous chemicals at high 

concentrations, the potential for accidents involving adverse human health and/or 

environmental impacts is significant.  Thanks to research and operational efforts, both 

academically and industrially, the occurrences of such incidents are rare.  However, 

disastrous events in the chemical manufacturing industry are still of relevant concern and 

garner further attention – the Deepwater Horizon incident (2010) and the Texas City 

refinery explosion (2005) being two recent examples.   

 Many techniques have been developed to understand, quantify, and predict alarm 

and safety system failures.  In practice, hazards are identified using Hazard and 

Operability (HAZOP) analysis, and a network of independently-acting safety systems 

works to maintain the probabilities of such events below a Safety Integrity Level (SIL).  

The network of safety systems is studied with Layer of Protection Analysis (LOPA), 

which uses failure probability estimates for individual subsystems to project the failures 

of entire safety system networks.   
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With few alarm and safety system activations over the lifetime of a chemical process, 

particularly the critical last-line-of-defense systems, the failure probabilities of these 

systems are difficult to estimate.  Statistical techniques have been developed, attempting 

to decrease the variances of such predictions despite few supporting data.  This thesis 

develops methods to estimate the failure probabilities of rarely activated alarm and safety 

systems using process and operator models, enhanced by process, alarm, and operator 

data.  Two repeated simulation techniques are explored involving informed prior 

distributions and transition path sampling.  Both use dynamic process models, based 

upon first-principles, along with process, alarm, and operator data, to better understand 

and quantify the probability of alarm and safety system failures and the special-cause 

events leading to those failures.   

In the informed prior distribution technique, process and alarm data are analyzed to 

extract information regarding operator behavior, which is used to develop models for 

repeated simulation.  With alarm and safety system failure probabilities estimated for 

specific special-cause events, near-miss alarm data are used, in real-time, to enhance the 

predictions.   

The transition path sampling method was originally developed by the molecular 

simulation community to understand better rare molecular events.  Herein, important 

modifications are introduced for application to understand better how rare safety 

incidents evolve from rare special-cause events.  This method uses random perturbations 

to identify likely trajectories leading to system failures – providing a basis for potential 

alarm and safety system design. 
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Chapter 1 

Introduction 

 

1.1 Background 

 

 Despite much attention and many efforts, accidents in the chemical manufacturing 

industries are relevant, costly, and occasionally fatal.  In the past four years, over 100 

fatalities have occurred in the United States due to a wide variety of accidents
 
(“Worker 

Fatalities to Federal and State OSHA”).  There have been incidents in the past decade that 

have drawn much attention due to their severe nature – BP’s Deepwater Horizon oil spill 

(“U.S. Chemical Safety Board Report: BP Deepwater Horizon”), Texas City refinery 

explosion (“U.S. Chemical Safety Board Report: BP America Refinery Explosion”), and 

the Kleen Energy Systems explosion (“U.S. Chemical Safety Board Report: Kleen 

Energy Natural Gas Explosion”), to name a few.  Each of these accident scenarios 

involves two critical similarities – an unexpected event occurred, and the event was not 

handled properly by operators and plant managers (Kletz, 2009).  Because many 

chemical plants involve dangerous chemicals, high temperatures, high pressures, or are in 

environmentally fragile areas (e.g., the Gulf Coast), the impacts of accidents can be quite 

large.  The Texas City refinery explosion claimed the lives of 14 workers and injured 

over 100 more.  The BP Deepwater Horizon oil spill devastated the environment along 

much of the Gulf Coast, and was one of the most costly accidents ever, having damage 

estimates as high as 42 billion dollars.  While these events are rare, their impact is 
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sufficiently high to warrant further research aimed at predicting, mitigating, and 

preventing these accidents. 

 The typical approach to preventing accidents in a chemical manufacturing process 

involves process design coupled with design of operating strategies, process 

controlsystems, and safety systems.  Processes can be designed such that they are 

inherently less sensitive to disturbances in process units and feedstock fluctuations.  This 

approach, known as inherently safer design (ISD), often varies process-to-process, with 

specific process units or features installed to handle potential accidents before they 

develop (Hendershot, 2006).  On the inlet of sensitive reactors, it is common for 

designers to introduce buffer tanks to dampen deviations in feed flow rates, compositions, 

temperatures, and pressures.  Separation units commonly involve extra trays, bed depth, 

or membrane areas – permitting continued operation in the face of large disturbances.  

Some units are designed to be used only when a problem arises in a plant.  In many cases 

involving pipes designed for gas flow, a pressure-release line is installed.  When the 

pressure exceeds an upper bound, gas can be redirected to the release line and flared so 

that it doesn’t rupture a pipe.  Stop valves are typically installed on the inlet and outlet of 

sensitive processing units – allowing operators to isolate problems that occur upstream of 

the unit or within the unit.  Various indices and statistical approaches for quantifiably 

evaluating and rationalizing ISD have been developed (Srinivasan et al., 2012). 

 Disturbances in a plant occur on a frequent basis, often minute-to-minute, and 

need to be handled in an efficient manner.  While process design features can help to 

dissipate disturbances, they are often not responsible for arresting them.  This is the role 

of the process control system.  PID controllers are the most basic – a variable is 
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measured, and based on its deviation from its setpoint, the controller typically opens or 

closes a valve in part or in full (Luyben, 1989; Stephanopoulos, 1984).  Here, the 

controller must be tuned properly, and the measuring device and actuator must be 

functioning properly.  If not, there is potential for the disturbance to propagate further.  

Control configurations involving PID controllers have been developed, such as cascade 

or feedforward controllers.  These provide tighter and/or more robust process control, 

assuming that the measuring devices and actuators are working properly.  Model-

predictive controllers use first-principle or empirical models to yield actuator responses 

that minimize deviations from set points over the predictive horizon (Garcia et al., 1989).  

They often improve controllability, but process-model mismatch may keep controllers 

from adequately arresting disturbances. 

 When the process design features and control systems are insufficientto regulate a 

disturbance, the operator, often in response to alarms, is responsible for any corrective 

actions to move the process back to typical operating conditions with a safety interlock 

system shutting down the process when it deviates sufficiently far from these conditions 

(Crowl et al., 2001).  Operators typically have the ability to make adjustments to decision 

variables in a process, open and close valves, and switch control systems on and off, and 

are aided by a network of alarms.  When alarms activate to notify operators that process 

variables have crossed thresholds, the operators are expected to: (1) diagnose the root 

cause of the problem, and (2) make appropriate corrective actions to mitigate the 

consequences (Hollifield et al., 2010).  This can be a difficult task, particularly when the 

root cause problem is shrouded; i.e., the process is undergoing inverse response or there 

is an undetected rare event occurring.   
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In addition to the operator, there is an automated safety interlock system.  Interlocks work 

to shut down the plant automatically when specific process variables, called primary 

variables, cross defined thresholds.  The automatic safety interlock system is important 

because it shuts down the process before safety systems, such as quench tanks or relief 

valves, are activated as a last line of defense in preventing the process from entering a 

runaway reaction mode where human health and environmental catastrophes are possible.  

Plant operator actions are important in the continued operation of a process, and safer 

operation is realized when plant operators are effective in preventing processes 

from undergoing shutdown (and associated restart) and activating crucial safety 

systems.   

  Alarms are placed on process variables to alert operators that the process is 

deviating from its expected regime(s) of operation.  A typical alarm has a low-threshold 

(for L alarms) and a high-threshold (for H alarms) that bound the range of typical 

operation.  When the measured variable moves outside these thresholds, an alarm is 

activated and a special-cause event has occurred.  The L and H-alarm thresholds, along 

with more severe alarm thresholds, are established during the commissioning phase of a 

process, typically the first one to three years of operation.  During the design phase, 

several measured variables are chosen as primary variables.  Strong candidates for 

primary variables are those that best describe the safety of the process – often, the 

measurements associated with the most potentially dangerous operations (i.e., process 

units at high temperature or pressure, or containing hazardous chemicals).  Ideally, safety 

interlocks are activated only when these variables move into unsafe regimes (Rothenberg, 
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2009).  The choice of alarm thresholds and primary variables has a major impact on the 

effectiveness of the operator response to alarms to reliably maintain safe operation.   

Areas of unsafe operation are commonly determined using hazard and operability, 

HAZOP, analyses (Kletz, 1999).  This common and systematic approach is intended to 

determine all potential hazards to process units.  All potential material inlets (through 

designed inlet ports and backflow through outlet ports, as well as leaks through the vessel 

walls) are considered, and the potential chemical reactions are postulated.  Mechanical 

failures to piping and valves and electrical failures to compressors, motors, and control 

systems are also considered.  HAZOP has long been performed as a qualitative approach, 

but computer-based HAZOP approaches and algorithms have been developed, in an 

effort to reduce the amount of human error that arises during the hazard identification 

procedure (Venkatasubramanian et al., 1994; Palmer et al., 2008).  Human error and 

“safety culture” has been incorporated into HAZOP approaches, with operator mistakes 

and failures studied as potential causes of hazards to process operation (Kennedy et al., 

1998).  The qualitative analysis is then enhanced using quantitative statistics – the failure 

rates of similar process units are used to gain an understanding of the most severe process 

risks.  This analysis is often the basis for determining the primary variables in the 

process.  Process variables associated with the greatest potential hazards or risks are 

chosen as primary variables, ensuring that an automatic shutdown is attempted when 

these variables are far outside their typical operating regions.   

With potential hazards to process operation identified, independently-acting 

safety systems are installed to maintain the probability of failure below a pre-specified 

Safety Integrity Level (SIL) (Dowell, 1998).  The independently-acting safety systems are 
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commonly evaluated using event-trees, where the probability of the network of safety 

systems failing is the product of the failure probability of each activated safety system 

(Andrews et al., 2000; Phimister et al., 2003).  As illustrated using the “Swiss Cheese 

Model”, an accident occurs when the various levels of safety systems fail or are 

insufficient (Reason, 1990). 

 

Figure 1.1.  Swiss cheese model  

Layer of Protection Analysis (LOPA), is the industry standard to quantify the accident 

probability for specific special-cause events, typically indentified during HAZOP 

(Summers, 2003).  This quantitative procedure is valuable in characterizing the safety of 

a process during a special-cause event.  More recently, techniques to evaluate the 

process’s safety through a period of human error have been developed (Baybutt, 2002; 

Baybutt, 2003).  Various techniques to quantify the failure probability of individual 
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safety systems and the network of safety systems have been developed, all sharing the 

challenge of few safety system activations over the lifetime of a process.  Bayesian 

networks (Marsh et al., 2008) and neural networks (Ruilin et al., 2010) have been utilized 

to quantify these failure probabilities.   

While LOPA estimates the probability of safety system failure, Fault Tree 

Analysis (FTA) estimates the probability of special-cause event occurrence.  The varying 

paths leading to a special-cause event are identified and process statistics are used to 

characterize the probability of such an event occurring (Khakzad et al., 2011; Tanaka et 

al., 1983).  These estimates can be combined with previous event-tree approaches for 

analyzing the failure probability of the safety system network during a special-cause 

event.  This “bow-tie” approach tracks the special-cause event from its root-cause 

through the safety system activation (Cockshott, 2005).   

In some cases, alarms are officially considered a layer-of-protection and 

contribute to the SIL rating of the overall safety system.  Therefore, the alarms are 

included in the safety-systems discussed herein – noting that often the full alarm system 

is not considered part of a plant’s safety instrumented system (SIS).  The failure 

probabilities of specific safety systems, as well as the network as a whole, are often 

difficult to estimate – the activation of most safety systems occur infrequently, and 

oftentimes the root-cause of the event is poorly understood.  If the failure probabilities of 

safety systems, could be known with certainty, the probability of accidents at a process 

could be guaranteed below the SIL with proper safety system design.  Various techniques 

and methods for quantifying the failure probabilities of rarely activated safety systems 

have been developed, and this thesis explores new techniques in this area. 
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Dynamic Risk Analysis (DRA) is used to update risk estimates over the lifetime 

of the plant (Meel et al., 2006; Kalantarnia et al., 2009).  As process and alarm data are 

collected, in real-time, DRA updates the risk estimations that were made during the 

design and commissioning phases.  Typically Bayesian statistics (Bayesian analysis) are 

used to generate failure probability estimates using alarm data (Pariyani et al., 2012a).  

The Bayesian approach has the potential to generate failure probabilities having lower 

variance than those achieved using classical statistics, and is explained in Chapter 2. 

DRA performs best in describing the risk of frequently activated safety systems – with 

more data available, estimates with narrower confidence intervals can be made.  For 

infrequently used systems, copulas have been introduced to make risk estimates with 

smaller variances (Pariyani et al., 2012b; Yi et al., 1998).  Copulas describe the 

dependence between the more frequently-activated, low-consequence systems with 

infrequently-activated, high-consequence systems.   

While dynamic risk analysis and copulas are effective in making meaningful risk 

estimates for many infrequently-used systems, data may be too sparse to permit copulas 

to reduce the variance of risk estimates sufficiently.  Many processes, such as the steam-

methane reformer studied herein, are well-understood, and special-cause events are 

generally handled reliably by plant operators.  This thesis explores model-based 

approaches for better understanding the failure probabilities of operator responses to 

alarms that rarely lead to safety interlock activations and associated plant shutdowns.  

Process models, while not a perfect representation of the process, can be simulated many 

times, generating a large pool of simulated alarm and safety interlock activations.  These 

statistics can then be enhanced with process and alarm data, when available, to improve 
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the failure probability predictions.  Various sampling techniques are developed and 

applied to safety systems.  In particular, this thesis explores informed prior distributions 

and transition path sampling.  These sampling techniques utilize both process and 

operator models, enhanced by process and alarm data collected at the plant.  Pathways, or 

trajectories, to safety interlock activations are explored.  While the safety interlock 

activations investigated are inherently rare, the failures have the potential to be 

catastrophic in the unlikely event that safety interlock systems fail.  At best, the safety 

interlock system activations are expensive due to lost product and process shutdowns.  

The three chapters describing these techniques are briefly introduced in the next three 

sections. 

 

 

1.2 Chemical Process Simulation for Dynamic Risk Analysis: Developing Informed 

Prior Distributions  

 

Chapter 2 describes how dynamic simulations of a manufacturing process can be 

used to construct informed prior distributions for the failure probabilities of alarm and 

safety interlock systems.  Bayesian analysis is used starting with prior distributions and 

enhancing them with likelihood distributions, constructed from real-time alarm data, to 

form posterior distributions, which are used to estimate failure probabilities.  The use of 

alarm data to build likelihood distributions has previously been investigated.  Rare-event 

historical data are typically sparse and have high-variance likelihood distributions.  When 

high-variance likelihood distributions are combined with typical high-variance prior 
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distributions, the resulting posterior distributions naturally have high variances yielding 

unreliable failure predictions.  In contrast with prior distributions obtained by maximizing 

entropy and those that are based on expert knowledge, this chapter introduces a repeated-

simulation method to construct informed prior distributions having smaller variances, 

which in turn yield posterior distributions with lower variances and a more reliable 

prediction of the failure probabilities of alarm and safety interlock systems.  The 

application of the proposed method is demonstrated for the offline dynamic risk analysis 

of a steam-methane reformer (SMR) process.   

 

 

 

1.3 Improved Predictions of Alarm and Safety System Performance Using 

Process and Operator Response-Time Modeling  

 

In Chapter 2, a repeated-simulation process-model-based technique for 

constructing informed prior distributions is introduced.  The models used in simulation 

are crucial to the low-variance risk predictions generated by the sampling technique.  

This chapter investigates the effect modeling has on the risk predictions, and how both 

process and operator models can be systematically improved to generate more accurate 

risk predictions.  This chapter presents a method of quantifying process model quality, 

which impacts prior and posterior distributions used in Bayesian Analysis.  The method 

uses higher-frequency alarm and process data to select the most relevant constitutive 

equations and assumptions.  New data-based probabilistic models that describe important 
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special-cause event occurrences and operators’ response-times are proposed and 

validated with industrial plant data. These models can be used to improve the estimates of 

failure probabilities for alarm and safety interlock systems. 

 

 

1.4 Understanding Rare Safety and Reliability Events Using Transition Path 

Sampling 

 

There is strong motivation to understand how rare reliability and safety-events 

develop and propagate.  Effective operator training, safety system design, and safety 

analysis, all benefit from a full understanding of such events.  A major challenge in the 

study of events that propagate to process shutdowns or safety incidents is their sparsity – 

typically these events occur so rarely that statistical techniques alone are incapable of 

describing and characterizing them – especially when they have not yet occurred.  

Simulation of these events could be useful to understand them, however, a daunting 

computational challenge exists.  Typical rare events occur on the order of years or 

decades apart, while the events occur within minutes or hours.  Thus, the bulk of the 

computational effort in simulating rare events is allocated to normal operation, making 

the events computationally infeasible to simulate with meaningful frequencies.   

 A rare-event sampling technique, Transition Path Sampling (TPS), has been 

developed by the molecular dynamics community.  While the time and length scales 

between molecular dynamics and process dynamics differ greatly, the ratios of the times 

of the rare events and the waiting times between them are similar.  This Monte-Carlo 
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based technique relies on the simulation of perturbed rare-event trajectories – an initial 

rare-event trajectory is randomly modified such that large numbers of trajectories are 

generated.  Clusters of rare safety-event trajectories are the basis for alarm and safety-

system design, assuring that TPS-generated clusters are preventable.  Important 

modifications to the TPS technique are needed to apply it to process dynamics.  The 

backwards integration, a key attribute of TPS, is not possible for most process 

simulations – instead a boundary-value optimization technique is used.  Furthermore, 

process models use vast amounts of process data for model verification and to estimate 

the relative likelihood of one trajectory to another.  The application of TPS is 

demonstrated using a simple jacketed exothermic CSTR, as well as a more complex air 

separation process.  This innovative approach allows for a quantitative rationalization of 

alarm and safety systems to reduce the occurrence of rare, yet serious, safety events. 
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Chapter 2 

Chemical Process Simulation for Dynamic Risk Analysis 

 

2.1. Introduction 

 

 The design of accurate process models and optimal flowsheets have challenged 

process systems engineering researchers for decades – often involving optimizations with 

decision variables (such as feed-stock or operation variables) adjusted to increase 

revenue, decrease cost, or increase profit (Seider et al., 2009).  From a controls 

perspective, controller parameters are tuned to improve performance measures (Seborg et 

al., 2010).  Furthermore, superstructures are used to determine which process units and 

controllers should be included for optimal functionality (Yeomans et al., 1999).  But, 

process models and flowsheets have been under-investigated in the process safety area, 

where process engineers are challenged to reduce the risk of incidents, the most serious 

of which may be classified as accidents.  Process incidents, resulting in human-health 

losses, environmental losses, and capital losses, are expensive and occasionally tragic 

(when safety systems are insufficient to prevent process incidents from becoming process 

accidents)
 

(U.S. Chemical Safety and Hazard Investigation Board; Process Safety 

Incident Database).   

 To design and operate a process with reduced incident and accident risk, it is 

crucial to quantify the probabilities of incidents.  This can be a difficult task, as it 

involves: (1) determining the probability of each special-cause event, (2) determining the 
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probability of each consequence arising from each special cause, and (3) evaluating the 

severity of each consequence
 
(Pariyani et al., 2010; Mannan et al., 1999).  To quantify 

accurately the overall risk of an incident, these three tasks are required for every special 

cause, consequence, and loss, providing quite a daunting challenge!  The success or 

failure of an alarm system depends upon the success or failure of operator actions taken 

in response to an activated alarm.  In contrast, the Safety Instrumented System (SIS) 

takes automatic actions such as a shutdown initiated by an interlock.  In this paper, the 

focus is on simulating the effects of special cause events to inform and improve design 

and operation decisions to mitigate incidents.  In this manner, process engineers and 

operators can make more informed decisions to reduce plant risk (Phimister et al., 2003; 

Jones et al., 1999).   

 Emphasis is placed on constructing sufficiently accurate process simulations to 

evaluate plant safety, given measured process and alarm data.  Clearly, special attention 

is needed: (i) in the most risky plant areas, and (ii) when special-cause events are likely to 

be amplified or masked
 
(Rosenthal et al., 2006).  The former typically involve high 

temperatures, pressures, and hazardous chemicals.  The latter are more difficult to 

identify, especially when their responses occur in rapid transients.  Masked responses 

include inverse responses and delays (dead-times) which may lead operators to take 

incorrect action in response to alarms.  Here, dynamic, first-principles, process models, 

built with knowledge from historical process and alarm data
 
(Chen et al., 1998), can help 

operators respond better to these special-causes.  While first-principles models have long 

been used in the chemical process industries to enhance an understanding of processes
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(Soroush et al., 1992), this paper provides a new method to estimate the failure 

probabilities of alarm and safety interlock systems.   

The rest of this chapter begins with a discussion of typical alarm and safety 

interlock systems and their associated event trees and failure probabilities.  Next, 

Bayesian analysis is reviewed, followed by the presentation of a new method that uses 

dynamic simulations to create informed prior distributions for Bayesian analysis.  Then, a 

detailed steam-methane reforming (SMR) model integrated with a pressure-swing 

adsorption (PSA) model is presented and the proposed method is demonstrated by 

simulating the combined model.  To our knowledge, no published integrated SMR-PSA 

model exists including recycle of the PSA-offgas to the SMR fuel system.  Finally, 

conclusions are drawn with recommendations for future work.  

 

 

2.2. Safety Systems and Event Trees 

 

An abnormal event occurs when a process variable leaves its normal operating 

range (green-belt zone in Figure 2.1), which triggers an alarm indicating transition into 

the yellow-belt zone.  If the variable continues to move away from its normal range, the 

variable may transition into its red-belt zone, indicated by a second-level alarm (e.g., LL, 

HH) activation.  Once a variable remains in its red-belt zone for a pre-specified length of 

time (typically on the order of seconds), an interlock activates and an automatic shutdown 

occurs (Hosseini et al., 2007). 
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Figure 2.1.  Belt-zone map for primary variables.  

 

An event-tree corresponding to a primary variable’s transition between belt-zones 

is shown in Figure 2.2.  The first-level (e.g., L, H) alarm system activates safety-system 1 

(SS1), which is typically an operator action.  When SS1 is successful, with probability    

1-x1, continued operation, consequence C1, is achieved.  The second-level (e.g., LL, HH) 

alarm system activates SS2, which is typically a more aggressive operator action.  When 

successful, with probability 1-x2, near-miss continued operation, consequence C2, is 

achieved.  If the primary variable occupies the red-belt zone for a pre-determined length 

of time (on the order of seconds), SS3, the automatic interlock plant shutdown, will 

become activated. The interlock system is designed to be independent of alarm systems, 

and the activation of SS3 is determined by an independent set of sensors.  It should be 

noted that if the interlock system is designed to have no delay time, the probability of SS2 
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success is equal to zero (x2 = 1).  If SS3 succeeds, with probability 1-x3, the interlock 

shutdown is successful and an accident is avoided, represented by consequence C3.  If the 

interlock shutdown is unsuccessful, an accident occurs at the plant, represented by C4.  

With proper design, x3 should be very small consistent with the specified Safety Integrity 

Level (SIL) (Stavrianidis et al., 1998; Stavrianidis et al., 2000).
 
Since the interlock 

system is independent of the alarm system, the success of SS3 will not depend on factors 

such as operator skill or alarm sensor fault.  However, it can be concluded that if either 

SS1 or SS2 are successful in arresting the special-cause event, the activation of the 

interlock system can be avoided altogether.  In some cases, alarms are officially 

considered a layer-of-protection and contribute to the SIL rating of the overall safety 

system, composed of SS1, SS2, and SS3.  Therefore, the alarms are included in the safety-

systems herein – noting that often the full alarm system is not considered part of a plant’s 

SIS. 

In this way, event trees represent the actions of various alarm and safety interlock 

systems and their end consequences after abnormal events
 
(Meel et al., 2006).  For 

dynamic risk analyses, alarm and interlock actions must be chronologically tracked and 

recorded (using the plant alarm historian).  Using data compaction techniques and 

Bayesian analyses, failure probabilities of the alarm and safety interlock systems and the 

probabilities of plant incidents
 
(Pariyani et al., 2012a; Pariyani et al., 2012b) have been 

estimated.   
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Figure 2.2.  Event tree involving three safety systems. 

 

 

2.3. Bayesian Analysis 

 

 Bayesian analysis is often used to determine the failure probabilities of alarm and 

safety interlock systems.  The central dogma of Bayesian analysis is that random-variable 

distribution parameters (e.g., mean and variance) are themselves distributions.  Unlike 

classical statistics that seeks to capture the true moments of a distribution, Bayesian 

statistics acknowledges that the moments of a distribution may not be fixed, and seeks to 

estimate the probability distributions of the moments.  This analysis often requires 

significantly fewer data to make meaningful predictions (Gelman et al., 2014; Berger, 

2013).  Additionally, as the process dynamics and operators’ behavior change with time 

(because of factors such as process unit degradation and operators’ improved skills), real-
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time data can be collected and used to estimate more accurate failure probabilities in real 

time. 

 In Bayesian analysis, the posterior distribution, represented as        , the 

probability distribution of          given the collected data,  , is calculated using 

Bayes’ rule: 

 

            
            

                
 
 

     (2.1) 

 

where       is the prior distribution of   , estimated before data are collected, and 

        is the likelihood distribution of the data given   .  The prior distribution is 

normally estimated using expert knowledge or maximum entropy techniques (Ahooyi et 

al., 2014).  The likelihood distribution captures the probability that the data could have 

been generated, if the failure probability was equal to   , as discussed next. 

 

  Herein. a beta distribution is used to represent an informed prior distribution, 

which is constructed using process simulations: 

 

          
      

        
  

         
                 (2.2) 

 

where   and   are parameters obtained through simulation, and      is the gamma 

function: 
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     (2.3) 

 

The beta distribution is well suited to represent a safety-system failure-probability 

distribution because its domain is [0, 1], and its two parameters can be estimated from 

only two moments (e.g., the mean and variance) of simulated data. 

   

The alarm data provides a record of each safety system activation, which can be tracked 

to its failure or success.  The binary performance lends itself to being described using a 

binomial likelihood distribution:  

 

            
  

        
  

       
      (2.4) 

 

where   represents the alarm data,   is the number of safety system activations, and   is 

the number of safety system failures. When Eqs. (2.2) and (2.4) are substituted into Eq. 

(2.1), the posterior distribution for   , given   and   is: 

 

            

        

                
  
           

       

 
        

                
  
           

          
 
 

   (2.5) 

 

This is a beta distribution with parameters         and          , 

recognizing that   is a function of    only.  Note that for the beta distribution in Eq. (2.2), 

a =   and b =  .  Consequently, using the identity: 
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      (2.6) 

 

the posterior distribution in Eq. (2.5) simplifies to the beta distribution: 

    

           
        

              
  

           
                       (2.7) 

 

As alarm data are collected in real time, the alarm statistics can be updated in real time 

(Meel et al., 2006; Khakzad et al., 2012; Kalantarnia et al., 2009).  In so doing, process 

engineers gain a better understanding of how the process is performing (Pariyani et al., 

2012b). 

 

 

2.4. Constructing Informed Prior Distributions 

 

The proposed method of construction of informed prior distributions has the eight 

steps listed in Table 1.  In Steps 1-3, a robust, dynamic, first-principles model of the 

process incorporating the control, alarm and safety interlock systems, is built.  The model 

can then be simulated using a simulator such as gPROMS (gPROMS v.3.6.1; Oh, et. al., 

1996), which is used herein.  The control system in the model mimics the actual plant 

control system, with consistent control logic and tuning.  Likewise, the alarm and safety 
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interlock systems in the model mimic those in the plant.  For operator actions, this can be 

difficult, as operators often react differently to alarms.  In particular, expert operators 

may take into account the state of the entire process when responding to alarms.  When 

creating a model, the likelihood of operator actions must be considered.  Either the 

modeler can use the action most commonly taken by operators, or a stochastic simulation 

can be set up in which the different actions are assigned probabilities. 

With these models, special-cause events are postulated in Step 4.  The list of 

special-cause events can be developed from various sources: HAZOP or LOPA analysis, 

observed accidents in the plant (or a similar plant), near-miss events at the plant (or in a 

similar plant), or from risks suggested in first-principles models of the plant.  For each 

special-cause event, an event magnitude distribution is created in Step 5.  A distribution 

for operator response time, τ, is created in Step 6.  These three distributions are used 

along with the dynamic simulation in Step 7 to obtain simulation data.  Lastly, in Step 8, 

the simulated data is used to regress parameters for the informed prior distribution.  The 

algorithm used to generate simulation data (Step 7) and regress informed prior 

distribution parameters (Step 8) is described in the paragraph below, and represented 

pictorially in Figure 2.3. 

The script that manages the dynamic simulations starts by sampling A1 from the 

event magnitude distribution created in Step 5.  Note that Figure 2.3 shows a Normal 

distribution centered at µSC with variance σ
2

SC, however any distribution can be used.  

Assign the number of safety system failures, i, to i = 0.  With this A1, the user script 

samples τ1 from the distributions created in Step 6.   Although Figure 2.3 shows Uniform 

distributions (with the maximum operator response time at τmax), any distribution can be 
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used.  With A1 and τ1, a dynamic simulation is run.  If the safety system fails to avoid a 

plantwide shutdown, then i = i + 1; if the safety system is successful, i is not incremented.  

When n < N, n = n + 1; i.e., for sampled Ai and τi, a dynamic simulation is run, and i is 

adjusted when necessary.  After N iterations, j1 = i/N is calculated, in the range [0,1].  

Then m is incremented and Am sampled, the inner loop is re-executed, and jm is calculated.  

When the outer loop has been completed (m = M), a vector of M elements (j1, ..., jM) has 

been accumulated.  The average and variance of this vector is used to calculate   and   of 

the Beta distribution.  Note that because the Beta distribution is the conjugate prior of the 

binomial likelihood distribution, it is the recommended choice.  The number of 

simulations, M×N, is chosen, recognizing that more simulations yield a smaller prior-

distribution variance.   

 

Table 2.1.  Steps to Construct an Informed Prior Distribution 

1. Develop a dynamic first-principles process model 

2. Incorporate control system into the dynamic process model 

3. Incorporate the alarm and safety interlock system into the dynamic process 

model 

4. Postulate potential special-cause events to be studied 

5. For each special-cause event, construct a distribution for the event 

magnitudes, ASC (i.e., for a postulated pressure decrease, construct a probability 

distribution for a decreasing magnitude) 

6. For each special-cause event, construct a distribution for operator response 

time, τ. 

7. For each special-cause event, conduct the simulation study according to 

the algorithm described in Figure 2.3 to simulate the range of possible event 

magnitudes, ASC, and operator response time, τ.  
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8. Estimate parameters of a distribution model (e.g., Beta distribution) 

representing the data generated in Step 7 – this is used as an informed prior 

distribution (Gelman et al., 2013).   
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Figure 2.3. Sampling algorithm used in Steps 7 and 8 in Table 2.1.   
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2.5. Steam-Methane Reforming (SMR) Process 

 

A typical SMR process is shown in Figure 2.4.  After pretreatment, natural gas 

feed (70) and steam (560) are mixed before entering the process tubes of an SMR unit 

(90), where hydrogen, carbon monoxide, and carbon dioxide are produced.  This hot 

process gas (100) is then cooled and sent to a water-gas shift converter (110), where 

carbon monoxide and water are converted to hydrogen and carbon dioxide.  The process 

gas effluent (120) is cooled in another heat exchanger, producing stream 170, which is 

sent to two water extractors.  Note that the last section of this heat exchanger is used to 

transfer heat to a boiler feed water makeup stream in an adjacent process.  The gaseous 

hydrogen, methane, carbon dioxide, and carbon monoxide, in stream 210, are sent to PSA 

beds.  Here, high-purity hydrogen is produced (220), and the PSA-offgas is sent to a 

surge drum.  Stream 800 from the surge drum is mixed with hot air (830) and a small 

amount of natural gas makeup (815), and sent to the furnace side, where it is combusted 

to provide heat to the highly-endothermic process-side reactions.  Its hot stack gas (840) 

is sent through an economizer, where it is used to heat steam (520), some of which is 

used on the process side (560), with the rest available for use or sale as a steam product 

(570). 
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Figure 2.4.  SMR process flow diagram 

 

 In modeling for process safety, emphasis should be placed on units that present 

the greatest risk; i.e., have the largest probabilities of incidents multiplied by incident cost
 

(Kalantamia et al., 2009).  In an SMR process, temperatures rise above 1,300 K with 

pressures over 20 atm.  Because overheating can lead to process-tube damage and failure, 

potentially leading to safety concerns, its model received special attention in this work.  

Partial differential and algebraic equations (PDAE’s), that is, momentum, energy and 

species balances, accounted for variations of pressure, temperature, and composition in 

the axial direction for both the process- and furnace-side gases.  For the reforming tubes, 

the rigorous kinetic model (Xu et al., 1989)
 
was used, while the furnace-gas combustion 

reactions were modeled using a parabolic heat-release profile.  Convection and radiation 

were modeled on the furnace-side, where view factors were estimated using Monte-Carlo 
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simulations and gray-gas assumptions.  The heat transfer on the process side was 

modeled by convection only, assuming a pseudo steady-state between the process gas and 

catalyst.  Details of the models are Section 2.6. 

The PSA beds represent a cyclic process, with beds switched from adsorption to 

regeneration on the order of every minute.  This type of separation scheme induces 

oscillatory behavior throughout the SMR process.  As the flow rates, compositions, and 

pressures fluctuate in effluent streams from the PSA beds, variables throughout the entire 

plant fluctuate as well.  In processes with such cyclical units, buffer tanks are often used 

to dampen fluctuations.  However, typical buffer-tank sizes (comparable to SMR-unit 

sizes) reduce the amplitude of these fluctuations by on the order of 50%.  Herein, the 

SMR process test-bed involves four PSA beds, which operate in a 4-mode scheme, with 

each bed undergoing adsorption, depressurization, desorption, and repressurization steps.  

PDAE’s are used to model the momentum, energy, and species balances, dynamically 

tracking pressure, temperature, and composition in the axial direction.  Langmuir 

isotherms are used to model adsorption kinetics.  Details of the models are in Section 2.7. 

In the full safety process model, the SMR-unit and PSA-bed models are used in 

conjunction with dynamic models for the water-gas shift reactor, water extractor, surge 

tank, heat exchanger, and steam drum.  Furthermore, the controls used with the dynamic 

process model are consistent with those used in the real process.  The full process is 

modeled using the software package, gPROMS.  A challenging aspect of the full process 

model involves convergence of the PSA-offgas recycle loop.   
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To my knowledge, no published SMR model exists with this level of detail.  In particular, 

this process model combines SMR and PSA-bed units within a plant-wide scheme with 

PSA-offgas recycle.  The results computed by gPROMS are consistent with the process 

data from the industrial plant.  This plant-wide model is extremely useful for building 

leading indicators and prior distributions of alarm and safety interlock system failure 

probabilities.   

 With a dynamic process model, process engineers can simulate special cause 

events and track variable trajectories.  Consider an unmeasured 10 percent decrease in the 

Btu-rating, due to a composition change of the natural gas feed (40), in Figure 2.4.  Note 

that the makeup stream (815) on the furnace side is relatively small and is not changed in 

the simulation.  Initially, because the process stream contains less carbon, less H2 is 

produced.  Because these reactions are endothermic, less heat from the furnace is 

consumed by the reactions and the furnace temperature rises, as shown in Figure 2.5.  

Also, the process-side temperature increases.  Eventually, the low-carbon PSA-offgas 

reaches the SMR furnace.  With less methane for combustion, the furnace temperature 

decreases, as does the temperature of the process gas.  This effect is shown in Figure 2.5.  

Note that the temperatures oscillate due the natural gas oscillation in stream 800 from the 

PSA-offgas surge tank – due to the cyclic nature of the PSA process.   
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Figure 2.5.  SMR effluent temperatures for a 10% decrease in the Btu 

content of the natural gas feed.   

 

2.5.1. Reformer Model 

 

 The SMR herein is a top-fired unit consisting of approximately 400 process tubes.  

Steam and CH4 are fed on the process side (Stream 90 in Figure 2.4).  In the tubes, H2 is 

produced via a set of endothermic reactions.  On the furnace side, a fuel source (Stream 

817) is combusted to provide heat for the process side.  A schematic of the SMR unit is 

shown in Figure 2.6 (Latham et al., 2011). 
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Figure 2.6.  Front-view schematic of SMR.  

 

The model proposed by (Latham et al., 2011), which describes the SMR in the steady-

state, was converted to a dynamic model.   Also, for the furnace-side, radiation view 

factors replaced the software RADEX used by Latham.  In this work, the SMR is 

modeled as four units: the process gas, the process tubes, the furnace gas, and the 

reformer brick.  The process gas and the furnace gas are modeled as networks of 

PDAE’s, having derivatives with respect to time ( ) and axial direction ( ).  Each model 

is discretized in the axial direction with central-difference approximations.  The resulting 

ODEs are integrated in time, with the discretized equations solved for the state variables 



 

32 
 

at the end of each time step.  The process tubes and reformer brick are modeled as 

networks of PDAE’s, having derivatives with respect to time ( ), axial direction ( ), and 

lateral direction (y).  These are also discretized in the spatial coordinates with central 

difference approximations.  

In the process and furnace gas models, the state variables are the molar flow rates of each 

species i (   ) and temperature ( ).  For the process gas, the mass balances for species i 

are: 

 

 

  
      

 

  

 

  
                                                   (2.8) 

 

and the energy balance is: 

 

 

  
           

 

  

 

  
           

  

 
                                (2.9) 

 

where    is the concentration of species i, AC is the cross-sectional area of a process tube, 

     is the stoichiometric coefficient of species i in reaction j, Cv is the molar heat capacity 

at constant volume,  Cp is the molar heat capacity at constant pressure, h is the heat-

transfer coefficient, r is the inner tube radius, Ttube is the tube wall temperature,  and     

is the enthalpy of reaction j.  The heat capacities are functions of Ci, which are functions 

of   and    :  

 

               
        

   ,                           (2.10) 
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                  (2.11) 

  

               
        

       (2.12)  

          

These functions are used in Eqs. (2.8) and (2.9). 

 The reaction rates are calculated using the kinetic model of (Xu et al., 1989), 

which involves three reforming reactions: 

 

                      (R2.1)  

                      (R2.2) 

                                                                        (R2.3) 

 

The reaction rates are: 
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where: 
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and     ,      , and    are constants and η is a parameter that describes the diffusion-

limitation of the reaction.   

 Note that R2 and R3 are highly endothermic.  The Ergun equation is used to solve 

for the pressure: 

 

    
 

  
      

   
 

  
 

   

  
      (2.16)  

  

where: 

 

   
         

     
      

 

and ρ is the gas density, vs is the superficial gas velocity, Dp is the catalyst particle 

diameter,   is the void fraction, and μ is the gas viscosity. 
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 The furnace gas model is similar with one major exception: radiation heat transfer 

is included in the energy balance.  The radiation heat loss rate emitted by a volume of gas 

is characterized as: 

 

                       (2.17) 

 

where   is the gas volume,   is the gas emissivity (a function of composition, 

temperature, and pressure),   is the Stefan-Boltzmann constant, and T is the absolute 

temperature.  When incorporating radiation into the model, it is critical to remember that 

radiation can travel from any one section of the furnace unit to another without being 

absorbed first.  Said differently, each discretized section of furnace gas undergoes 

radiation heat transfer with each other discretized section of furnace gas, as well as each 

discretized section of process tube and reformer brick that is exposed to the furnace gas.  

It should be noted that the radiation heat-loss rate emitted by the process tubes and the 

reformer brick are, respectively: 

 

                          
      (2.18) 

                      
       (2.19) 

 

where Atube is the tube area for heat transfer, Awall is the wall area for heat transfer, and 

εtube and εwall are the emissivities of the tube and wall.  Thus, the energy balance for the 

discretized furnace gas volume p is: 
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The coefficients      represent the probability that a ray of radiation leaving the radiation 

zone   is absorbed by zone  .  These are calculated using Monte-Carlo techniques.  At 

each radiation zone, a large number of points are randomly chosen, each with a random 

direction (representing a ray of radiation emitted).  Each ray’s absorption is tracked, 

permitting the estimation of      for radiation heat transfer between zones p and q.  Also, 

the probability of a furnace zone absorbing a ray of radiation depends upon the zone’s   

value, with high   values characterizing a ‘gray’ gas, which readily absorbs radiation, and 

low   values characterizing a ‘clear’ gas which lets radiation pass through.  Therefore, 

the temperature, composition, and pressure of the furnace gas affect each      within the 

furnace (Hottel et al., 1967).  Because the Monte-Carlo integration for determining each 

     is difficult to install in gPROMS, the Monte-Carlo integration was carried out off-
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line for a grid of reasonable temperature, pressure, and composition values.  Within 

gPROMS, values of      are interpolated from this grid.   

 

Figure 2.7 shows solutions for the temperature profiles on the process- and furnace-sides 

of the SMR for typical operation.  On the furnace side, the temperature quickly rises in 

the first third of the unit, where the combustion reaction takes place.  Over the next two 

thirds of the unit, the temperature on the furnace side decreases as heat is transferred to 

the process side.  On the process side, the temperature increases throughout, however its 

slope is greatest where the furnace gas is hottest.  Species flow rates on the process side 

are shown in Figure 2.8, with the bulk of H2 produced in the top section, and more than 

half of the CH4 consumed.  Also note that the reformer is sufficiently long, and 

consequently, little reaction takes place near its bottom. 

 

 

Figure 2.7. Temperature profile in the SMR.  
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Figure 2.8.  Mole fraction profile on the process-side of the SMR.  

 

2.5.2. Pressure Swing Adsorption (PSA) Model 

 

The pressure-swing adsorption model consists of four beds, each of which is described by 

a set of PDE’s (derivatives are taken with respect to time and the axial direction) and 

associated boundary conditions.  The PSA cycle consists of four steps: adsorption, 

depressurization, desorption, pressurization.  At any given time, one of the beds is in each 

step, cycling to the next step every minute.   To model the PSA process, just a single 4-

bed unit was used, with each bed triple its size in the plant.  These beds are sufficiently 

large to adsorb all of the carbon-compounds during the 1-minute adsorption step.  Also, a 

larger surge tank is used to dampen the bed swings, because three 4-bed groups cycle out 

of phase, creating destructive interference among the limit cycles.   
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Using the method of lines, the PDEs were discretized in the axial direction with central-

difference approximations (and forward/backward differences at the boundaries) to 

represent the derivatives with respect to distance.  Then, backward-difference formulae 

were used to integrate the resulting ODEs in time.  The following state variables were 

used in modeling the beds: temperature, pressure, gas density, gas velocity, mole fraction 

of each species, loading of each species on the adsorbent, and the equilibrium loading of 

each species on the adsorbent.  The Langmuir Isotherm was used to calculate the 

equilibrium loading of each species.   

Below is the schedule used for a 4-bed PSA cycle, similar to that implemented by 

Agarwal et al. (Agarwal et al., 2008), and Khajuria and Pistokopolous
 
(Khajuria et al., 

2011) (for a 2-bed cycle) and used herein.  The four beds (A, B, C, and D), shown 

schematically in Figure 2.9a, cycle through four steps, 1-4, during modes 1-4.  Initially, 

just prior to the first mode, bed A is at high pressure (HP) and unoccupied (U) by species 

to be adsorbed;  bed B is also at HP, but occupied (O); bed C is at low pressure (LP) and 

O; and bed D is at LP and U.  The valves are open or closed as shown.  During the first 

mode, bed A implements step 1; bed B, step 2; bed C, step 3; and bed D, step 4.  In mode 

2, A moves to step 2, B to step 3, C to step 4, and D to step 1.  Similar moves are made 

for the third and fourth modes.  For the PSA in the SMR process, the beds are occupied 

with CH4, CO, and CO2, and unoccupied with H2, which is used to desorb the adsorbents 

– HP > 20atm, and LP = 1.5 atm – each mode (and step) is of duration, 1 min. 

Next, the four steps are described, focusing on bed A.  Note that Figures 2.9a-d, show the 

states of each bed and the valve positions at the start of each mode.  In this analysis, it is 

assumed that the valves are adjusted instantaneously.      
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 Step 1: Adsorption in bed A (see Figure 2.9a at outset of mode 1) 

o Step 1 begins with bed A at HP and U 

o The water extractor effluent (210) is fed to the base of bed A (valve A1 open) 

o A high-purity stream of H2 leaves the bed (valve A3 open), as the adsorbent 

accumulates CH4, CO, and CO2 in time, with most of the H2 product sent in stream 220 to 

the H2 Product tank, and the remainder sent to bed C (valve C4 open). 

 

 Step 2: Depressurization of bed A (see Figure 2.9b at outset of mode 2)  

o Step 2 begins with the valve A1 and A3 closed.  

o Gas exits the pressurized bed through the base of bed A (valve A2 open), and in 

time the pressure in the bed equilibrates to a lower pressure (pressure of the surge tank) 

 

 Step 3: Desorption in bed A (see Figure 2.9c at outset of mode 3)   

o Step 3 begins with valve A4 open, with H2 product from bed C entering the top of 

bed A 

o Reminder: bed A is at LP and O 

o In time, the H2 product adsorbs on the adsorbent and the CH4, CO, and CO2 is 

released into the PSA-offgas 

 

 Step 4: Pressurization of bed A (see Figure 2.9d at outset of mode 4)  

o Step 4 begins with valve A2 and A4 closed 

o The water extractor effluent (210) is fed to the base of bed A (valve A1 open) 

o In time, the pressure of bed A equilibrates to the pressure of stream 210 
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a. Mode 1 of the PSA cycle 
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b.  Mode 2 of the PSA cycle 

Figure 2.9.  Schematic of PSA process.  
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c. Mode 3 of the PSA cycle 
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d. Mode 4 of the PSA cycle 

Figure 2.9.  Schematic of PSA process (Cont'd.) 
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To evaluate process safety using dynamic risk analysis, it's important to monitor the 

breakthrough of CH4, CO, and CO2  in the product H2 stream.  Previous models did not 

consider simulating a carbon breakthrough into the H2 product stream, since they use a 

semi-infinite boundary condition with respect to molar composition at the end of the bed
 

(Agarwal et al., 2008; Khajuria et al., 2011).  The model developed herein uses the same 

boundary condition, but at the end of an elongated bed.  In this way, the semi-infinite 

B.C. (zero derivative) is maintained at the end of the elongated bed, but a methane or 

CO/CO2 breakthrough at the end of the bed can be observed.  Shown in Figure 2.10 is the 

mole fraction of H2 in the PSA bed during Step 1 of the PSA cycle.  The mole fraction of 

H2 along the bed is shown minute-by-minute.  In time, the purity of the H2 product 

stream, taken at the exit of the 1 meter long bed, drops below an acceptable level (set 

point).  Clearly, this model is capable of simulating a carbon breakthrough into the H2 

product stream. 
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Figure 2.10.  Simulated mole fraction of H2 along the PSA bed during Step 1.  

 

The most important aspect of the PSA modeling as it relates to dynamic risk analysis of 

the SMR process is the oscillations in the PSA-offgas.  PSA-offgas is fed to the surge 

tank from the PSA bed undergoing Step 3 (desorption.)  When a PSA bed switches to 

Step 3, its concentration of carbon compounds is the highest.   This is because the 

adsorbent near the bottom of the bed, z = 0, contains the most    /   /  .  In Step 3, 

the carbon compounds are continuously desorbed, and consequently, the concentration of 

H2 in the PSA-offgas increases.  Because the PSA-offgas provides fuel for the furnace 

side of the SMR, the oscillations in its Btu-rating are important.  Most significant, for the 

4-bed model, are the oscillations in the effluent for  the surge drum, which are shown in 

Figure 2.11.  This is consistent with documentation for the industrial process studied. 
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Figure 2.11.  Simulated PSA-offgas Btu-rating  

2.6. SMR Informed Prior Distributions 

 

For the SMR process in Figure 2.4, a loss in steam pressure to the reformer-side 

(stream 560), was simulated with the responses of the safety systems monitored.  For 

small disturbances, the process control system handled the effect of steam pressure 

decreases.  There is a flow controller on the steam line, whose set point is generated using 

a linear equation involving the flow of natural gas into the SMR process-side, seeking to 

achieve a constant steam-to-carbon ratio in the process tubes.  This control system 

normally arrests typical fluctuations in steam pressure and flow rate, but for large steam-

pressure decreases, feedback control alone is insufficient.  In this case, the control valve 
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is wide-open, with a flow rate insufficient to accompany natural gas fed to the SMR-unit.  

For this reason, an investigation was undertaken to assess the effectiveness of the alarm 

systems associated with the SMR steam line.  When the steam flow rate is below its L-

alarm threshold, the steam-to-carbon ratio drops, accompanied by an increase in the 

process-side temperature, and potential tube failure.  Because of these operating limits, an 

interlock was placed at the HH-alarm threshold with a time delay.  This time delay, of 

several seconds, reflects that the temperature threshold may be exceeded in this case for a 

short period of time and permits the operator to respond rapidly in an attempt to bring the 

furnace temperature below its HH-alarm threshold.   

Three operator responses to the alarm are simulated: (1) the valve on the steam line is 

opened, (2) the valve on the makeup fuel line is pinched, and (3) the dampers associated 

with air flow in the furnace are opened (effectively increasing air flow rate).  When the 

operator is able to bring the furnace temperature below the HH-threshold before the 

interlock delay times out, an automatic shutdown is avoided.  If, however, the operator is 

unable to do so, the interlock is activated and a plant shutdown occurs.  The simulated 

abnormal event leads to either a success of SS2 (interlock is avoided), or a failure of SS2 

(interlock is activated).  It is desirable to have a reliable estimate of x2, the probability 

that the operator is not successful, despite only a few activations of this HH-alarm during 

the recorded history over several years.   

 Herein, a pressure decrease in the steam line to the process-side of the SMR-unit 

was simulated.  The magnitude of the pressure decrease was a random variable, sampled 

from a normal distribution centered at 50% of stream pressure.  The response time of the 

operator was taken as a random variable, sampled from a uniform distribution ranging 
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from 0 to 15 seconds.  The operators three responses were all incorporated into the 

simulation as step-changes in valve settings.  One thousand simulations were run, and the 

effectiveness of the operator’s response in each simulation was tracked.  In some 

simulations, the operator successfully reduced the furnace temperature below the 

interlock threshold in the allotted time before the automatic shut-down.  In others, the 

operator failed and the plant was shut-down.  In Figure 2.12, a temperature trajectories 

for events resulting in an interlock activation and in a near-miss are shown.  In the 

scenario where SS2 succeeds, the temperature is brought below the interlock threshold 

within the interlock delay time.  Note that the action of the control system was observed 

early in the trajectory, but it was insufficient to avoid the abnormal event and eventual 

plant shut-down.  The average number of safety-system failures was recorded for the 

simulations, as well as the failure variance, which were used to generate a beta-

distribution to describe the failure probabilities.  The beta-distribution, which has just two 

parameters, was created easily and is supported only in the range [0,1], which bounds the 

failure probability. 



 

48 
 

 

Figure 2.12. Furnace outlet temperature for a decrease in steam pressure. 

 

 This informed prior distribution was built using dynamic simulations with first-

principle models.  Even with no data available to update the distribution, process 

engineers and plant operators can make improved risk predictions
 
(Levenson et al., 2014).  

The alarm data are used to build a likelihood distribution, in this case a binomial 

likelihood distribution of a few trials, all of which are successes.  In Figure 2.13, the prior 

and posterior distributions are shown.  The informed posterior is shifted to the left of the 

prior distribution by the 0 percent failure rate observed in the data.  Unlike the commonly 
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used uninformed prior distributions, its posterior distribution has a similar shape to its 

informed prior distribution. The posterior distribution generated using the informed prior 

distribution can alert process engineers that a significant decrease in steam pressure has 

the high probability (>20%) of causing a plant shutdown.  This may lead operators to pay 

special attention to the steam pressure measurements, and may lead process engineers to 

install a more robust controller on the steam line. 

 

 

 

 Figure 2.13.  Prior and posterior distributions generated by dynamic 

simulations 
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2.7. Conclusions 

 

A method, involving repeated dynamic process simulations, for constructing informed 

prior distributions was presented.  The method was used in estimating the failure 

probabilities of alarm and safety interlock systems that are rarely called into action in 

chemical processes.  The method requires combining a dynamic, first-principles, process 

model with the control, and alarm and safety interlock systems.  Its application was 

demonstrated for offline dynamic risk analysis of a steam-methane reformer (SMR) 

process.  The high probability of a plant shutdown calculated by the method can alert 

operators to pay special attention to the steam pressure measurements, and may lead 

process engineers to improve the controller on the steam line, avoiding or reducing the 

cost of plant shutdowns.  Key aspects of the reformer/furnace and PSA models used to 

demonstrate the proposed methodology were presented.  The modeling of probable 

operator responses with respect to operator skill, shift (day or night shift), severity of 

alarm (H/L or HH/LL), and the difficulty of diagnosing the special cause, among other 

factors, is considered in Chapter 3. 
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2.8. NOMENCLATURE 

A  area 

Am   special-cause magnitude m 

D   observed alarm data 

i    failure counter; number of failures for a sampled special-cause magnitude 

jm    observed failure probability for a sampled special-cause magnitude, m 

m  special-cause magnitude counter, m = 1, ..., M 

M   number of sampled special-cause magnitudes 

n  sample operator variables counter, n = 1, ..., N 

N   number of sampled operator variables per special-cause sample 

p    number of possible operator response orders (sequences) 

SSi   safety system i 

xi   failure probability of a safety system i 

Greek 

α   first parameter of the Beta distribution 

β   second parameter of the Beta distribution 

ε emissivity 

ΔP   sampled pressure decrease 

µ    average value of jm  

µSC   average of sampled special-cause magnitude  

σ
2
  variance of jm 

σ
2

SC  variance of sampled special-cause magnitude  

τ  operator response time 

τmax    maximum operator response time 
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Chapter 3 

Improved Predictions of Alarm and Safety System Performance 

Through Process And Operator Response-Time Modeling 

 

3.1. Introduction 

 

 In the chemical process industries, there are many incentives to mitigate the 

frequency and consequences of incidents and accidents (“U.S. Chemical Safety and 

Hazard Investigation Board”).  To evaluate the effectiveness of alarm and safety interlock 

systems reliably, the probabilities of alarm and safety interlock failures and the failure 

consequences must be quantified.  Said differently, to compare two safety systems, 

quantitative estimates for their effectiveness in mitigating special causes are needed, 

where a special cause is a disturbance the basic process control system is unable to arrest. 

This work proposes a method of improving process models and introduces new 

probabilistic models that describe special-cause event occurrences and operator response-

times, allowing for estimating alarm and safety-system failure probabilities more 

accurately.  In industrial practice, methods such as HAZOP and HAZAN are commonly 

utilized to make safety and reliability estimates of processes on a unit-operation basis.  

The estimated failure probabilities (from statistical data and manufacturer estimates) of 

specific components are used to estimate failure probabilities in a process.  But, more 

recently, dynamic risk analysis has been employed to update these probabilities as real-

time data are measured.  The focus herein is on events that are inherently rare, where 
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failure predictions remain uncertain.  A process model is utilized to generate simulation 

data that enhance sparse measured data.  The effects of decisions involving process 

models, special-cause events, and operator behavior, on risk predictions are investigated. 

 An informed prior distribution was constructed in Chapter 2, shown in Figure 

2.13, to estimate the distribution of failure probabilities (  ) of the safety system 

associated with the HH-Temperature alarm (   ) in the SMR furnace.   Special-cause 

events were repeatedly simulated involving a substantial decrease of steam pressure at the 

inlet of the SMR reactor – sufficient to cause the furnace temperature to rise out of its 

green-belt zone through its yellow-belt zone, and into its red-belt zone.  It was shown that 

without operator actions, the short interlock time delay,      , would elapse and the 

process would undergo an automatic shutdown.  When the operators responded 

sufficiently quickly to the special-cause event, simulations showed the process often 

returning to its green-belt zone, with the interlock shutdown avoided.  The distribution of 

the simulation results estimates that     fails at about a 20% rate during these dramatic 

pressure decreases; i.e.,   the process is estimated to undergo an automatic shutdown in 

20% of these rare cases - this is not a projection of the process accident rate or the 

interlock shutdown rate.  

In process operation,     responded successfully to the rare HH-alarm 

activations, resulting in sparse alarm data.  A binomial likelihood distribution was used to 

calculate the posterior distribution of    given the alarm data  .  Since all of the collected 

data were successful     actions, the posterior distribution is shifted to the left of the 

prior distribution.  With just a handful of     activations, the resulting likelihood 
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distribution has a very large variance, and the accuracy of the informed prior distribution 

to the posterior distribution is uncertain.  If the process had undergone hundreds of     

activations, the accuracy could be assessed.  This poses a major challenge – how can the 

user be confident that the process and operator behavior models are sufficiently accurate 

given few data to assess the accuracy of the informed prior distribution?  If the models 

used to generate the informed prior distribution do not predict the special-cause event 

well, the results obtained from the posterior distribution may be unreliable.   

 

 

3.2. Development and Refinement of Models to Construct Informed Prior 

Distributions  

 

 Over years of process operation,     activations are infrequent, but still provide 

sufficient data for studying the propagation of special-cause events.  The activation of 

    is rarer, occurring 
 

  
 times less frequently – often resulting in very sparse data.  

While the data associated with     are insufficient alone to analyze the performance of 

the safety system, the similarities between the safety systems can be utilized.  The 

activations of both safety systems originate from a control system failure, which, for 

example, can be due the large magnitude of the disturbance, the inability of the control 

system to handle the disturbance, and/or the occurrence of an electrical or mechanical 

failure.  It is assumed that the same group of operators are involved.  If highly skilled, 
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they should arrest the special-causes at a high rate (Meel et al., 2007; Meel et al., 2008; 

Chang et al., 2007).  

 Clearly, the need for urgent responses of      are greater.  Also, when operators 

take action (e.g., as furnace temperatures become elevated), the need to respond within 

the interlock delay times dominate their concerns and actions.  This would normally 

stimulate a strong reaction to avoid automatic shutdown.   

 As the fundamental basis for the proposed method, a sufficiently-accurate first-

principles process model is needed. Also, the automated safety system models should be 

sufficiently accurate.  The second model, represented by        in Figure 2.3, is the 

distribution of special-cause event magnitudes to be simulated.  The operator behavior 

model,      , unlike automatic safety systems, must reflect human behaviors.  Here, the 

speed and effectiveness of operator responses often depend on the state of the process, 

the number of competitive active alarms, distractions, personal health and conflicts, and 

the like.   

 In the method introduced herein, first,     models are constructed and validated 

with plentiful data.  After constructing these models, and validating them with measured 

    data, they are modified to handle     activations (recognizing that their rare 

occurrences do not allow for reliable model validation).  In the next three sections, all 

three models are described with respect to    .  Their modifications to handle     

activations are then described.  Lastly, the failure probability estimates generated by 

using the      informed prior distributions are presented. 
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3.2.1. Dynamic Process Models 

 

 Because dynamic first-principles process models are widely used, approaches to 

model development are not considered here.  Instead, this section focuses on model 

evaluation and improvement for constructing informed prior distributions.  

 Often, process engineers have developed dynamic process models for control 

scheme testing during the design phase.  These are commonly used initially for carrying 

out dynamic risk analysis.  However, process models used for process design and control 

are normally developed to track responses in their typical operating regimes (green-belt 

zones) – but may not respond to special-cause events with sufficient accuracy; i.e., their 

predictions far from set points may be poor for risk analysis.  Consequently, dynamic 

process models should often be improved to construct informed prior distributions. 

 For the SMR process shown in Figure 2.4, four dynamic process models are 

constructed, as summarized in Figure 3.1.  The first, Process Model A, is the same as the 

one described in Chapter 2.  This model includes constitutive equations to model  the 

endothermic reformer reactions, the furnace that provides their heat, the exothermic 

water-gas shift reaction, the separation of hydrogen product from offgas in adsorption 

beds, and the production of steam (for process heating or sale), as well as models of 

associated PID controllers.   
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Figure 3.1.  Steam-methane reforming process models.  

 

 In Process Model A, to model the radiative heat transfer (~90% of the total heat 

transfer to the tubes), view factors are estimated from each surface or volume zone to 

each other zone, with the dynamics of radiative heat transfer modeled between all 

discretized zones (Hottel et al., 1967).  The remaining convective heat transfer is simpler, 

because heat transfer only occurs between physically adjacent zones (Latham et al., 

2011).   

In Process Models B and D, convection heat transfer is modeled only, with 

radiative heat transfer accounted for by overstating the heat-transfer coefficients between 

the furnace gases and tube surfaces.  Herein, to estimate the overstated heat-transfer 

coefficients, 50 steady-state windows were identified in the historical process data.  Each 

window corresponds to a duration of operation, on the order of a day, where process 

variables are at steady state.  Many different steady-state windows exist in the process 
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data due to different demand rates of hydrogen and steam, different feed ratios of steam 

to natural gas, and natural aging of the catalyst (in the reformer as well as the water-gas 

shift reactor). The heat-transfer coefficient was estimated from the temperature and flow 

rate of the process and furnace gas inlet and outlet measurements.   

 In Process Models A and B, the reforming reaction kinetics proposed by (Xu et 

al., 1989), which have been shown to be quite accurate over a broad range of 

temperatures and reactant concentrations, are used.  Note that, due to the presence of a 

complex denominator in the kinetic equations, the spatially-distributed SMR model can 

be difficult to converge.  Accurate guess values for the concentration of the reactants and 

products along the axial direction of the reformer tubes must be available, or generated 

using homotopy-continuation techniques, to converge the steady-state model.   

However, in Process Models C and D, elementary reaction kinetic equations are simpler 

to converge.  The rate constants of the elementary reactions are estimated, similar to the 

convection heat-transfer coefficients.  Using the data in the 50 steady-state windows, 

along with measured hydrogen product flow rates and offgas concentrations, the rate 

constants are estimated.     . 

 Initially, the four process models are compared in the 50 steady-state windows.  

Beginning with the measured inlet temperatures and flow rates for each mode, predicted 

and measured outlet temperatures are compared for each model.  The root-mean square 

outlet temperature differences are shown in Figure 3.2.  For this steady-state evaluation, 

Process Model A provided the best agreement with the data, whereas Process Model D 

was least accurate.  
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Figure 3.2.  Process model goodness-of-fit using steady-state and dynamic 

evaluations. 

 

However, because the models are used to estimate the responses to special-cause events, 

agreement with dynamics data is more important.  Fifty dynamic windows were 

identified in the historical process data – periods of time where the process variables 

describing the operation of the steam-methane reforming reactor are transient.  These 

windows are on the order of minutes to hours, and typically arise when hydrogen or 

steam demand rates change, feed ratios of steam to natural gas change, or operational 

changes occur in another process unit (such as a pair of pressure-swing adsorbent beds 

are taken offline). For each of the 50 dynamic windows, inlet temperature and flow rate 

trajectories are input to each model, with model-predicted outlet temperature trajectories 

compared to measured outlet temperature trajectories.    Dynamic predictions are 

typically less accurate than the steady-state ones.  Here, Process Model B outperforms 
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Process Model C, but when comparing just steady-state outlet temperature differences, 

Process Model C provides a closer fit to the data.  Clearly, Process Model B should be 

selected, rather than Process Model C, when constructing informed prior distributions.   

Next, the four process models are used to construct informed prior distributions for the 

failure of SS1 – using the uniform distributions for special-cause magnitude and operator 

behavior used in Chapter 2.  The 300 measured SS1 failures/successes are then used to 

construct a low-variance binomial likelihood distribution (see Eq. (2.4)). The four 

informed prior distributions for the failure of SS1 and the binomial distribution are shown 

in Figure 3.3.   To compare the informed four prior distributions with this likelihood 

distribution, the ξi,m index is defined:   

 

           
 

 
                

 

 
        (3.1) 

 

where i represents the model (i = A, B, C, D) and m represents the data-based likelihood 

distribution.  This index ranges from [0, 1], where unity corresponds to perfect matching 

between the informed prior distribution of model i and the measured likelihood 

distribution m.  As shown in Table 3.1, this index is consistent with the dynamic model 

accuracies in Figure 3.2, but low levels of agreement are obtained.  Note that using more 

detailed operator response-time models, in the next subsection, the performance indices 

are improved significantly. 
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Figure 3.3.  Informed prior distributions created using the four process models, as 

well as the binomial likelihood distribution created using the measured alarm data. 

 

Table 3.1.  Performance Index for Process Models A-D. 

 

Process  

Model A 

Process  

Model B 

Process  

Model C 

Process  

Model D 

ξi,m 0.159 0.063 0.045 0.026 

 

3.2.2. Special-Cause Event Occurrence Model 

 

 When constructing informed prior distributions to estimate the failure 

probabilities of safety systems that act infrequently, it is important to assess the special-

cause events that can activate specific safety systems.  Given that process units fail in 

many ways (e.g., as inlet stream compositions, temperatures, flow rates, and pressures 

vary; controllers experience measurement bias; valves malfunction; controller electronic 
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mechanisms fail), special-cause modeling deserves attention.  Clearly, for specific 

special-cause events, known to trigger safety systems, it is crucial to account for them 

when creating informed prior distributions.  Some are known to have a high likelihood of 

occurrence over the lifetime of a plant, while others may be un-observed locally, having 

occurred at other plant sites or even related plants.  For all potential special-cause events, 

a probability distribution should be constructed, even when likelihood data are 

unavailable. 

When developing occurrence models to estimate safety system failure 

probabilities, special-cause events must be selected and their magnitudes must be 

investigated, as special-cause events are likely to have devastating consequences (e.g., 

propagation of runaway reactions, leading to explosions).  To identify these events, 

HAZOP and LOPA analyses, especially, are particularly helpful.  HAZOP is the industry 

standard for postulating all possible special-cause events. 

 The effect of a special-cause event (SCE) depends on its magnitude.  SCE models 

(e.g.,        in Figure 2.3) are needed to estimate failure probability distributions.  SCE 

models having low expected values are most representative and rarely activate second-

level alarms, while SCE models having high expected values represent extreme cases, 

allowing for the study of second-level alarms.  Various steam-pressure-decrease 

magnitudes are shown in Figure 3.4 – each being a delta function centered at its 

corresponding point on the abscissa.  The expected value of the SS1 failure probability, jm, 

is graphed accordingly. 
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Figure 3.4.  SS1 failure probability as a function of a steam pressure decrease. 

 

3.2.3. Operator Response-Time Models 

 

In the simulation of a special-cause event, the behavior of the operator must be 

well understood.  In Figure 2.3,       represents operator response times in taking action 

following activated alarms associated with SS1.  An initial construction of       can be 

made using the histogram of operator response times to high-frequency alarms.  This 

provides valuable information about how the operators tend to act when a variable is 

under alarm (Macwan et al. 1994; Bendoyl et al., 2006; Stylios et al., 1999).  In some 

cases, when operators anticipate that the alarm thresholds have been set conservatively, 

they are slower to respond to expected nuisance alarms.  On the other hand, when 

operators recognize that alarms tend to trigger a flood of alarms elsewhere in the process, 

they view these alarms as critical – even though they just signal entry into the yellow-belt 
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zone.  To the extent possible, it is important to make quantifiable justifications when 

modeling operator effectiveness (Hollnagel, 1998; Reason, 2000).   

A histogram of approximately 300 observed operator response times to the H-

alarm associated with the SMR furnace effluent temperature (Moskowitz et al., 2015) is 

shown in Figure 3.5.  The operator response times are collected using the alarm data log, 

which records the time of each alarm activation and the time of each operator 

manipulation.  The time between an alarm activation and the initial operator manipulation 

is the operator response time.  This calculation method provides the most accurate data 

on operator response time. Alarm data are convenient to work with, but without alarm 

data, process data can be sampled to obtain operator response times.  A script can be 

written to record  the times process variables cross their thresholds, as well as the times 

controlled-variable set points or actuators undergo step-changes (considered to be 

operator actions)
 
(Pariyani et al., 2012a).  In either case, the data sampling interval is 

important to consider.  If data are sampled or recorded infrequently (such as by a 

composition analyzer), operator response times may be inaccurate.  Depending upon the 

frequency of process data points, reasonable estimates of operator response times can be 

obtained.  The wide range of operator response times, nearly all well represented, suggest 

many kinds of operator actions.  The highest number of responses are associated with the 

shortest response times – with operators taking action in less than one minute.  Nearly all 

of the operator response times lie between zero and six minutes, with far fewer of longer 

duration.  Past a six minute response time, the number of responses decreases rapidly, 

with just three response times beyond eight minutes. 
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Figure 3.5.  Operator response time histogram. 

 

 Two parametric distributions are proposed to model the operator response-time 

distribution.  The first distribution is an exponential distribution, which is called Operator 

Response-Time Model A: 

 

    
                                (3.2) 

 

where   is a parameter to be estimated by maximizing the likelihood function:  

  

                   
           (3.3) 
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where i is the response counter, n is the total number of response times measured (on the 

order of 300), and    is response time i.  It is often convenient to maximize the log-

likelihood function instead of the likelihood function: 

 

                    
 
       (3.4) 

 

The maximum of the log-likelihood function has a simple analytical form: 

 

   
 

  
                                                                      (3.5) 

where    
   

 
   

 
 is the sample mean of the measured response times. 

 The second is a weighted-sum of three gamma distributions (Operator Response-

Time Model B): 

 

           
       

 
   

  
  

     
                             

 
        (3.6) 

 

where each    is a weighting coefficient for gamma distribution j, and where    and    are 

the parameters   of gamma distribution j.  While any number of gamma distributions can 

be used, here the fourth distribution gives a negligible increase in the likelihood function 

(compared to the impact of the third distribution).  The eight parameters in Eq. (3.7) are 

estimated by maximizing the likelihood function:  
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     (3.7) 

 

Using Newton’s optimization method with an analytical Hessian matrix, the parameter 

values in Table 3.2 were estimated. 

 

Table 3.2. Parameters for Operator Response-Time Models A and B.   

                             

0.39 1.83 3.56 4.51 0.68 1.04 0.88 0.48 0.07 0.45 

 

While Operator Response-Time Models A  and B represent operator response 

times well, they do not account for the rate of change of each variable crossing its alarm 

threshold, as well as the number of activated alarms being monitored by an operator(s).  

Clearly, operator responses gain urgency, and often speed, when a variable crosses one of 

its thresholds rapidly.  Also, as the number of active alarms decreases, operators are less 

distracted and respond more rapidly. 

To account for the rate of change of each variable when the variable crosses an 

alarm threshold, using the SMR plant data, operator response times are displayed in 

Figure 3.6 as a function of the furnace effluent temperature derivative, 
  

  
, as the 

temperature crosses its high-alarm threshold.  The dependence of the operator response 

time,  , on the rate of change is well-described by: 

 

          
   

  

                                            (3.8) 
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where    and    are the model parameters.  These parameters are estimated by 

minimizing the sum of the squared errors: 

              
   

  

       
 

 
               (3.9) 

 

The estimated values of    and    as well as the corresponding       value are 

given in Table 3.3.   

 

 

Figure 3.6.  Operator response time as a function of temperature rate of change 

(plant data and model prediction). 
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Table 3.3. Parameters Used for Operator Response-Time Models C, D and E. 

   [min]   [s/K]        [min]         

4.33 1.54 302 3.8 4.2 413 

 

 To construct a       that accounts for the alarmed variable time-derivative, a 

stochastic component must be maintained – because if       were purely deterministic 

(like    ), the variance of the safety system failure probability with respect to    cannot 

be calculated.  While     is an estimate for the operator response time, it must be 

incorporated into a random variable distribution for  .  One choice for       is the 

exponential distribution having an expected value equal to    .  The exponential 

distribution in Eq. (3.8) is known to have an expected value of  
 

 
.  Therefore, Operator 

Response-Time Model C is proposed:  

  

      
    

 

   
   

  
  

    
  

   
   

  
  

     (3.10) 

 

A similar method can be used to account for the effect of multiple alarm activations in the 

process.  When many alarms are active, competing for operator(s) attention, response 

times are expected to increase.  Here, also, the exponential distribution is appropriate: 

 

            
                (3.11) 
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where   is the reciprocal of active alarms.  The parameters    and    are estimated by 

minimizing the sum of the squared errors: 

 

           
         

  
                (3.12) 

 

The estimated values for      and    as well as the corresponding      value are given in 

Table 3.3. 

 Using this logic, the Operator Response-Time Model D is formulated by setting 

the expected value of an exponential distribution equal to    : 

 

   
    

 

   
        

  

   
        (3.13) 

  

 Finally, the Operator Response-Time Model E is formulated that incorporates 

both     and    .  The effectiveness of     and     can be compared by their associated 

    .  Herein, the expected value of Operator Response Model E is set equal to: 

         
            

         
      (3.14) 

 

where the weighting coefficients for each distribution are proportional to their     .  

This yields Operator Response-Time E model: 

    
    

         

        
   

  
            

      

     
         

        
   

  
            

     

   (3.15) 
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Next, Operator Response-Time Models A-E are used to construct informed prior 

distributions for the failure probability of SS1, along with dynamic Process Model A.  The 

results are shown in Figure 3.7, along with the binomial likelihood distribution of the 

measured SS1 data, Eq. (2.4).  The model performance index, ξi,m, in Eq. (3.1) is used to 

quantify the model performance of Operator Response-Time Models A-E, with results 

shown in Table 3.4.  Operator Response-Time Models A and B, which are independent of 

the process state, describe the measured alarm data poorly.  As expected, Operator 

Response-Time Model B, with eight parameters, performs better than Operator 

Response-Time Model A, with just a single parameter.  The incorporation of     and     in 

Operator Response-Time Models C and D, clearly improves the informed prior 

distributions, with Model C performing better than Model D – expected because      < 

    .  Of the five models, Model E is in the closest agreement with the likelihood data.  

Given preferred Model E, the choice of process model can be revisited.  In Figure 3.8, the 

four dynamic process models are used to build informed prior distributions with Operator 

Response-Time Model E.  The model performance indices are shown for Process Models 

A-D in Table 3.5.  Once again, Process Model A yields the best agreement with the 

observed likelihood data, and can be considered the most appropriate process model.  
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Figure 3.7.  SS1 informed prior distributions constructed using the five operator 

response-time models (ORTMs) with dynamic Process Model A. 

 

Table 3.4.  Performance Index for Operator Response-Time Models A-E with 

Process Model A. 

 

ORTM A ORTM B ORTM C ORTM D ORTM E 

ξi,m 0.029 0.030 0.633 0.701 0.812 
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Figure 3.8.  SS1 informed prior distributions constructed using the four process 

models with Operator Response-Time Model E. 

 

Table 3.5.  Performance Index Revisited for Process Models A-D Using Operator 

Response-Time Model E. 

 

Process  

Model A 

Process  

Model B 

Process  

Model C 

Process  

Model D 

ξi,m 0.812 0.481 0.325 0.051 

 

 

3.3. Modeling     Failures Using Models with Parameters Estimated from     

Failures  

 Once the three types of models (process, special-cause event, and operator 

response-time models) are chosen and their parameters are estimated, they are used to 
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estimate the failure probabilities of    . These models must then be adjusted to handle 

simulations that involve the activation of     (i.e., after the failure of    ).  While it is 

desirable to keep the models intact, a few adjustments are recommended.   

 The dynamic process model, Process Model A, should not be altered much to 

simulate     activation events – because the simulations from high and high-high alarms, 

and beyond, are similar, with small changes in physical properties as temperatures rise.  

In general, Process Model A adjustments would be required when physical and chemical 

phenomena change abruptly – for example, with shifts from laminar to turbulent flows, or 

the introduction of two-phase flows.   

The Special-Cause Event Occurrence Model needs significant adjustment because the 

       distribution used for simulating L/H alarm activations infrequently activates 

LL/HH alarms.  To achieve this, a normal distribution is chosen for       , having 

mean    and standard deviation  .  A lower-tail, bounded by    and an upper-tail 

bounded by   , each two standard deviations from the mean, are defined:  

                           (3.16) 

noting that    is a special-cause magnitude closer to zero; that is, closer to typical 

operation.  The normal distribution is described by    and   ,  rather than the typical 

mean and standard deviation: 

          
 

   
     

 
 
 
 

     
    

     
 

 
 

  
     

 
 
     (3.17) 
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The lower bound of    is set at    values for which the L/H alarms failed in simulation – 

with smaller choices of    yielding many simulations where the LL/HH alarms are not 

activated.  Referring to Figure 3.4, with SS1 failures frequently observed when       , 

0.4 is a good lower bound for   .     is set such that the special-cause events are of 

interest and relevance.  Three Special-Cause Event Occurrence models are shown in 

Figure 3.9, each sharing       .  SCEM A has    closest to   , and samples special 

cause events that are most likely (closest to typical operation), yet have the least potential 

for SS2 failures.  The other extreme is SCEM C, which has    furthest from   .  SCEM 

B, having        , is chosen as an interior candidate to analyze the risk of SS2 

failures.  The choice of        has a significant impact on the estimated failure 

probabilities – the user must keep this in mind when analyzing the simulation results and 

making statements about the risk of the process.  The failure probability estimate attempts 

to describe the probability of failure while undergoing a special-cause event sampled 

from       , which is very different than typical day-to-day process fluctuations. 

  

Figure 3.9. Special-Cause Event Models for SS2 simulation. 
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 The Operator Response-Time Models also need adjustment, it being expected that 

operators react quicker to alarm activations that are associated with more urgent 

consequences.  Given an immediate threat of an automatic plant shutdown, operator 

actions should be accelerated.  To account for this, when     is activated to    , the time 

response to the     activation is divided by the ratio of the 90% percentile of operator 

response to a     activation,     , over the interlock shutdown time,      .  For this case, 

the Operator Response-Time Model E takes the form: 

   
    

         

        
   

  
            

      

     

    
     

         

        
   

  
            

     

 
     

    
          

(3.18) 

 

 Having constructed, chosen, and regressed the three types of models using the H-

alarm data, adjustments are made to model     activation events.  An informed prior 

distribution is then constructed for the failure probabilities of       Figure 3.10 shows the 

resulting informed prior and associated posterior distributions describing the failure 

probability of    .  The sparse alarm data are used to build binomial likelihood 

distributions that modify the prior distributions to form posterior distributions.  It can be 

seen that the most accurate posterior distribution (formed using Process Models A and 

Operator Response-Time Model E with an urgency adjustment for time responses in    ) 

is not shifted as dramatically as the posterior distribution formed using the simple 

informed prior distribution.  This indicates that the most accurate posterior distribution is 
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more effective at handling the special-cause simulations – leading to more accurate 

failure probability predictions.   

 

 

Figure 3.10.  Informed prior distributions and associated posterior  

distributions describing the failure probability of    . 

  

The interpretation of the posterior distribution is that during a severe loss in steam 

pressure, the probability that the process will undergo an automatic shutdown is on the 

order of 5%.  This allows engineers responsible for setting reliability estimates to have 

quantifiable justification when they do so.  An estimate for the reliability for various 

special-cause events can provide engineers with a broader understanding of the events 

that pose the greatest odds of an interlock activation, thus motivating different designs to 

handle these events.  The operator also benefits from these distributions, as he/she 
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becomes aware that, during such a severe pressure drops, his/her reactions have been 

projected to result in interlock activations after on the order of 5% of occurrences.  If this 

value is perceived to be too high, the operator may be motivated to act more urgently 

during this type of event.  

 

3.4. Conclusions 

 

Alarm and safety interlock system failure probabilities are difficult to estimate, 

but warrant careful consideration using the strategies introduced herein.  The safety of the 

operators and employees at a chemical plant, and those in the neighboring community 

and environment, is crucial to the chemical process industries.    For safety interlock 

systems and their associated alarms, statistical techniques on the sparse records of 

activations are alone insufficient to make meaningful evaluations of their failure 

probabilities.  The usage of alarm and process data associated with the relatively frequent 

alarm activations (e.g., H-alarms) to systematically improve the performance of less 

frequently activated alarms (e.g., HH-alarms) and safety interlock systems is very 

promising.  As demonstrated for an SMR plant example, the three types of models can be 

applied to a variety of chemical manufacturing processes.  The resulting models provide 

new insights into the performance of rarely-activated alarm and safety interlock systems, 

for which historical data are sparse.   
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Chapter 4 

Understanding Rare Safety and Reliability Events Using Transition 

Path Sampling 

 

4.1. Introduction 

 

 Safety and reliability are paramount to the chemical manufacturing industries.  

Because chemical plants are often operated at high temperatures and pressures, and with 

hazardous materials, the potential for adverse human health and environmental impacts 

exists.  With proper process design, effective implementation of control and safety 

instrumented (SIS) systems  mitigate such risks.  Less severe are product losses which 

result from poor plant reliability.  As chemical manufacturing processes approach 

dangerous operating conditions, automatic safety interlocks activate, shutting them down 

before dangerous consequences are realized.  When functioning correctly, the dangerous 

consequences are avoided, but manufacturing processes lose valuable production over the 

time period encompassing the automatic shutdown, process maintenance, and startup.  

Furthermore, plant startup is often the most dangerous mode of operation because large 

transients are often not as well understood compared with steady-state and cyclic 

operations.  There is clear motivation, both financially and ethically, to prevent chemical 

manufacturing processes from operating in regions where safety interlocks are activated –

resulting in automatic plant shutdowns or potentially in safety incidents. 
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 Safety interlocks are often based on HAZOP (hazard and operability analysis)
 

(Kletz, 1999; Venkatasbramanian et al., 1994; Kennedy et al., 1998) and LOPA (layer of 

protection analysis)
 
(Dowell, 1998; Summers, 2003).  With HAZOP, potential hazards to 

personnel and capital equipment that may occur during process operation are identified 

through a meticulous (yet qualitative) procedure.  It provides “a more complete 

identification of the hazards, including information on how hazards can develop as a 

result of operating procedures and operational upsets in the process” (Crowl and Louvar, 

1990).  With LOPA, the probabilities of identified hazards occurring are maintained 

under a low, pre-specified value by utilizing a system of high-performing, independently-

acting safety systems.  Said differently, the hazards identified by HAZOP analysis are 

mitigated to lower-consequence events (such as plant shutdowns) with high probability 

by using safety systems identified through LOPA.  Through these analyses, safety 

interlock thresholds are determined.  From a reliability perspective, operators seek to 

avoid costly shutdowns by adjusting valves when control systems are too slow or 

insufficient in responding to severe disturbances (known as special-cause events).  

Avoiding shutdowns is also beneficial from a safety perspective, as transient shutdowns 

and startups are avoided. 

 Operators are aided by an alarm structure in which process variables pre-specified 

to be important to the reliability and safety of the process are equipped with alarms.  

When a variable moves outside of its typical (safe) operating region, the green-belt zone, 

either a low (L) or a high (H) alarm activates accordingly.  Often, process variables have 

several levels of alarms, possibly a yellow belt-zone (bounded by L and H alarms), an 

orange belt-zone (bounded by LL and HH alarms), and a red belt-zone (bounded by LLL 
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and HHH alarms).  Such an alarm scheme is depicted in Figure 4.1.  Here, in Figure 4.1a, 

a process variable is displayed over months and years,  normally residing within its 

green-belt zone – and, when perturbed into its yellow-belt zone, safety systems/operator 

actions usually return it to its safe green-belt zone.  Rare events result in the automatic 

shutdown (safety interlock) of the process, followed by a shutdown and restart, which 

occur over minutes and hours, as shown in Figure 4.1b.  The safety-interlock shutdown is 

activated when the process variable resides in the red belt-zone for a pre-specified length 

of time,      , typically on the order of seconds to minutes.  As a variable moves into 

each successive belt-zone, the operator becomes aware that interlock activation is 

impending and takes more severe actions to return the variable to its green-belt zone.   
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Figure 4.1. Alarm belt-zones and interlock shutdown for a process variable. 

 

 The alarm thresholds are set in the process commissioning phase
 
(Hollifield et al., 

2010), with competing objectives to: (1) assure that when an alarm is activated operators 

have sufficient time to act, avoiding subsequent (more severe) alarms or interlock 
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activations, and (2) that the alarm isn’t a nuisance, often activated unnecessarily, and 

often disregarded by operators.  Commissioning is usually performed using expert 

knowledge of process behavior (based upon the actions of similar processes and upon 

insights gained in the process design phase), and tests to observe typical transient 

responses of the variables.   

 Clearly, alarms are commissioned to alert operators to postulated, more common, 

events that could propagate to interlock activation.  But, alarm structures may be 

insufficient to alert operators to rare or un-postulated events.  Such unforeseen safety 

events have the potential to move to the red belt-zone and activate the interlock shutdown 

faster than the alarms/safety systems are designed to handle.  These events may arise 

early involving variables that are not alarmed, or when some combination of variables 

leads to such an event.  While these events may be easily handled by operators, without 

proper alarming, operators may not be able to prevent automatic shutdowns.   

A quantitative technique to better identify and understand events that lead to 

process shutdowns would be very useful to engineers responsible for commissioning 

alarms and operators that respond to those alarms.  This paper introduces transition path 

sampling (TPS) as such a technique for application in the chemical manufacturing 

industries.  TPS is a Monte-Carlo sampling strategy that simulates process models as they 

propagate toward interlock-activating events.  Trajectories of these events are randomly 

generated, uncovering many un-postulated events, and enabling postulated events to be 

better understood.  With many similar trajectories generated, the probability of a typical 

trajectory can be estimated, identifying the most likely unsafe events, suggesting more 

effective alarm thresholds.  TPS has been widely investigated by the molecular dynamics 
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community to study rare molecular events (Bolhuis et al., 2002; Dellago et al., 2002), but 

the application of TPS to process dynamics for studying rare interlock-activating events 

is novel and presents its own challenges. 

 

4.2. Transition Path Sampling  

 

 TPS was invented to study rare molecular dynamic trajectories; for example, the 

dissociation of a weak acid in an aqueous solution.  A weak acid, such as hydrofluoric 

acid (HF), dissociates in water in approximately a millisecond, but its dissociation event 

occurs in just nanoseconds (Bolhuis et al., 2002).  Hence, its initiation time is on the 

order of 10
6
 times longer than the event itself!  Clearly, simulation of the 

initiation/dissociation sequence involves excess computation time to track the initiation 

phase.  In TPS, to circumvent this, just one initiation/dissociation event is simulated.  

Then, at a random time,   , along the event trajectory (spanning [0,   ]), state variables are 

randomly perturbed (such as atom locations and momenta).  This new state is simulated 

forward spanning [       and backwards spanning [    ].  If the acid is associated at   

 , and dissociated at     , then a second rare-event trajectory has been generated, 

which may be accepted.  Over many iterations, numerous rare-event trajectories can be 

generated, with minimal computational effort in simulating the initiation phase (Dellago 

et al., 2002).   

 When applied to process dynamics, TPS can identify and explain rare interlock-

activating events.  The models and time scales in process dynamics are vastly different 
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from those in molecular dynamics, but the challenge of simulating rare-events is similar.  

A typical rare interlock-activating event may occur over years to decades, while the event 

itself occurs over minutes to hours.  Similarly, TPS can be used to circumvent simulating 

the initiation phase – the time in between rare safety-events of interest.  As shown in 

Figure 4.2a, a complete trajectory is identified by simulation (or by a rare safety event in 

a plant or similar facility elsewhere) and then randomly perturbed, as shown in Figure 

4.2b, allowing for the generation of many trajectories.  These perturbations are applied to 

state variables, often process unit temperatures, compositions, and pressures.  The 

perturbations are also applied to stochastic variables – either noise to operational and 

design parameters that effect multiple balance equations (parametric noise), or noise 

introduced as a term to a single balance equation (non-parametric noise).  The parametric 

noise can be used to explore rare-events that may arise when operational parameters 

(such as product demand rate or feed conditions) fluctuate in a specific pattern.  Design 

parameters (such as reaction rate constants or binary interaction coefficients) are fixed 

over the course of simulations, but perturbations over small ranges can yield rare-event 

trajectories.  Non-parametric noise, introduced in a well-scaled term added to a process 

unit balance equation, can yield physical interactions not in the first-principles model – 

such as a side reaction or leak in a vessel.  Careful formulation of these terms can 

improve the effectiveness of non-parametric noise in predicting plant shutdowns and 

accidents.  
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Figure 4.2. TPS used to generate a trial rare-event trajectory from an initial 

trajectory. 

 

Also, when applying TPS, unlikely rare-event trajectories are often generated easily using 

process models.  But, careful analysis is helpful in generating initial trajectories that 

enable TPS to discover serious unpostulated plant shutdowns and accidents. 

The outline of the TPS algorithm is shown in Table 4.1.  The random perturbation 

of rare-event trajectories may lead to the development of new rare-event trajectories, as 

shown by Figure 4.2b.  When this new trajectory is accepted  further iterations take place 

from this trajectory.  If the new trajectory is not a rare-event trajectory, or the new 

trajectory is an unaccepted rare-event, further iterations take place from the previous 

trajectory.  The random nature of TPS allows for interesting, possibly unpostulated, rare-

event trajectories to be identified.  Additionally, by simulating many trajectories of 

postulated interlock-activating events, engineers and operators can gain a more 

quantitative understanding of such events. 
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Table 4.1. TPS Algorithm 

 

1. Identify an initial safety event trajectory 

2. Choose a random time, t', along the trajectory 

3. At t', perturb state variables, x, to x’ and stochastic variables,  , to    

4. Integrate forward from t' to tf, and backwards from t' to 0 

5. Determine if this trial trajectory identifies a safety-event 

6. If yes, consider accepting the trial safety event trajectory as the new 

trajectory, where the trajectory acceptance criteria are defined in Figure 4.5.   

7. Return to step 2. 

 

 

4.2.1. Backward Integration 

 

 An important difference between TPS in molecular and process dynamics is the 

backward integration approach.  In molecular dynamics, force balances, 

 

 
    

   
          (4.1) 

 

are solved, which are second-order ordinary differential equations (ODEs), noting that    

is the position of atom  , and        are the forces exhibited on atom   by all other atoms.  

At   , when backward integration is initiated, the initial conditions are     
   and 

   

  
    .  

For backward integration, the sign of the first derivative is reversed, –
   

  
     , to enable a 

stable forward integration to    .   However, in process dynamics, typical systems are 

first-order ODEs, taking the form: 
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             (4.2) 

 

where   is a vector of state variables (e.g., moles or energy),   is a vector of stochastic 

variables, and   is a vector of input variables (e.g., feed conditions).  The same approach 

for backward integration in molecular dynamics is not applicable.  If the signs of the 

time-derivative terms were reversed: 

 

      
   

  
          ,    (4.3) 

 

the resulting Jacobian matrices of f, for typical process systems, would have large 

positive eigenvalues.  Even with linear multi-step integrators (e.g., backward-difference 

formulae), numerically unstable solutions would be obtained that are often chaotic.  

Because the resulting trajectories are usually inaccurate, a boundary-value optimization is 

often formulated, as discussed next.   

In one approach, initial conditions in the vector,   , are manipulated such that when 

integration proceeds along [    ], the state variables at   ,       , approach the desired 

state variables at   ,   .  Said differently, the backward-integration step is performed by 

solving: 
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                 (4.4) 

            

 
   

 

  
          

         

 

In this approach, a shooting method (Bock et al., 2000) is used as illustrated in Figure 

4.3.  Here,      is the initial guess for   .  After forward integration to   ,   
      is 

substantially less than   .  To compensate, a larger guess,       is chosen, yielding   
        

      is too large.  The next guess value,     , yields   
       which is sufficiently close 

to   .  This optimization effectively performs the function of backward integration.  When 

the initial value lies within the typical operation region, a rare-event trajectory has been 

located.  If not, this trial trajectory is discarded and a new    and    are chosen from the 

previous trajectory. 

 

  

Figure 4.3. Boundary-value optimization to indirectly perform backward 

integration using initial-value shooting. 
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In perhaps a more common approach, used herein, the optimization is formulated using 

orthogonal collocation on finite elements (Cuthrell et al., 1989).  This technique involves 

introducing xi
K
(t), a K-order polynomial approximation of x over the time range,   

         , with N finite elements spanning the total time range [0, t’].  Each xi
K
(t) is 

constructed using K + 1 interpolations of               , where   is a normalized time 

spanning          .    The minimization problem: 

      
   

              (4.5) 

           

        
       

    
       

                

       
   

    

  
                           

          
     

 

is solved for x0.  Similar to the shooting method, x0 is the initial condition that places x(t) 

close to x’at t = t’.  The orthogonal collocation method is summarized in Figure 4.4. 
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τ = [0,1]

f(x(ti-1+hiτ1),η(ti-1+hiτ1),u)

f(x(ti-1+hiτ2),η(ti-1+hiτ2),u)
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Figure 4.4. Orthogonal collocation over finite-elements. 
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4.2.2. Trajectory Likelihood Calculation  

 

Another key difference between the two TPS formulations involves the estimation of 

trajectory likelihood in Step 6, Table 4.1.  In molecular dynamics, the likelihood of a 

trajectory is simply the product of Boltzmann factors corresponding to the atomic 

configurations at each time step.  In process dynamics, likelihood probabilities rely on 

available or simulated process data.  The likelihood probability,  , is often calculated 

using: 

 

                                 
  
     (4.6) 

 

where      , a binary variable, is unity when      lies within normal operation 

conditions (green-belt zone) at    ,       , a binary variable, is unity when       

satisfies the criteria of unsafe or unreliable conditions (red-belt zone) at     ,       is 

the likelihood of the initial conditions,        are the stochastic variables at time   , 

         is the likelihood of stochastic variables at time   , and   is the number of 

stochastic samples taken along [    ] 
8,9

.   The likelihood of initial conditions can be 

estimated using process data, with       increasing as the population of x0 increases.  In 

large part, stochastic variables are related to noise (parametric or non-parametric), often 

expressed as probability distributions (commonly, normal distributions).  In these cases, 

         are simply the likelihood of noise   at time,   .  When   is a normal distribution 

with mean 0 and variance,   : 
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        (4.7) 

 

Note that when these likelihood probabilities are very small, they are often expressed on 

a log scale. 

 

4.2.3. Full TPS Algorithm 

 

 The full TPS algorithm for sampling process safety-events is shown in Figure 4.5, 

with the three phases: generating an initial trajectory, generating N unique trajectories, 

and grouping the N trajectories into k clusters.  The algorithm begins with counters     

and    , an initial trajectory, x
1
(0,…,tf), and its associated likelihood  , calculated 

using Eq. (6).  At time t’, the x
1
(t’) trajectory is perturbed using normal distributions to 

develop the state x’.  The boundary-value problem in Eq. (4) is solved to obtain   , which 

is then integrated over [0,tf] to obtain the trial trajectory,           .  The likelihood of 

this trajectory,   , is calculated using Eq. (6).  A random number, r, in the range [0,1] is 

sampled; when less than 
  

 
,the trial trajectory is rejected, otherwise, it is accepted.  If 

           is accepted, i = i + 1,      , x
i
(0,…,tf) =           , and p = p’.  If 

           is rejected, i = i + 1 and x
i
(0,…,tf) =             .  When N unique 

trajectories have been calculated (    , they are grouped into k = 2 clusters using the 

k-means clustering technique
 
(Hartigan et al., 1979).   The Euclidean distance, s, is 

calculated between all pairs of centroids (the center of each cluster) and if the distance 
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between the closest pair is greater than 5% of the distance between the furthest pair, k is 

increased by one and new centroids are calculated.  Eventually, the additional new cluster 

will be sufficiently close to an existing cluster, and the loop will be terminated.    

r < p’/pr < p’/p

Generate an initial 
trajectory, 
xi(0,…,tf)

Sample 
t’ ~ uniform[0,tf]

Integrate
dx*/dt = f(x*,η ,u); x*(0) = x0

Over the range [0,tf]

Sample
 r ~ uniform(0,1)

i = i + 1
j = j +1

p = hA(0) ⨯ hB(tf) ⨯ f0(xi(0)) ⨯ 
Π(g(η(ti))) 

i = 1
j = 1

Sample 
x’ ~ normal(xi(t’),σ2)
η' ~ normal(η,σ2) 

Solve for x0:
min (x’ - x*(t’))2

dx*/dt = f(x*,η ,u)
x*(0) = x0

p’ = hA
*(0) ⨯ hB

*(tf) ⨯ f0(x0) ⨯ 
Π(g(η(ti))) 

Begin

xi(0,…,tf) = 
x*(0,…,tf)

p = p’

η = η’ 

j = Nj = N

YesNo

No

k = 2

Group N trajectories into 
k clusters, each cluster 

having centroid 
Cp,k ; p ϵ {1,…,k}

Yes

Generate Initial 
Trajectory

Generate N
Trajectories

Group N 
Trajectories into k 

Clusters

Calculate all combinations:  

  , , =   𝑐 ,  𝑐 ,  
2

     

∀    1,  ,   ;    { + 1,  ,  } 

min{sp,q,k} > 0.05⨯max{sp,q,k}min{sp,q,k} > 0.05⨯max{sp,q,k}

k = k-1

End

k = k+1

Yes

No

i = i + 1

xi(0,…,tf) = 
xi-1(0,…,tf)

 

Figure 4.5. TPS algorithm for calculating trajectories of process safety-events. 
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4.3. Exothermic CSTR Example 

 

The TPS algorithm is demonstrated using a familiar example – that of the 

exothermic CSTR.  With only two differential balance equations, a heat and material 

balance, and PI-control, this example has the benefit of being low-dimensional.  The 

existence of multiple (high- and low-conversion) stable steady-states (Balakotaiah et al., 

1983), and in particular, the infrequent transitions between them, provide an excellent 

example of the potential of using TPS to study rare, yet important, safety-events. 

Consider a model for the jacketed exothermic CSTR with reaction:  

 

         ,     (4.8) 

 

a schematic of which is shown in Figure 4.6.  The temperature and inlet concentration of 

A are   ,     , and the outlet temperature and concentration of A,     , are calculated as a 

function of time.  The reactor is assumed to have perfect level control, with equal inlet 

and outlet volumetric flow rates,  .  The cooling jacket is assumed to be sufficiently 

large such that the temperature change of the cooling fluid,   , is negligible.  The reaction 

has elementary kinetics and an Arrhenius rate constant; i.e., 

 

             
  

  
        (4.9) 
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where   is the intrinsic reaction rate,    is the pre-exponential factor,    is the activation 

energy, and   is the gas constant.  The derivatives of    and   with respect to time,  , 

are: 

 

    
   

  
 

 

 
                  

  

  
      (4.10a) 

      
  

  
 

    

 
                          

  

  
    (4.10b) 

 

where   is the residence time,   is the overall heat-transfer coefficient,  is the area for 

heat transfer,   is the reactor volume,   is the density,    is the heat capacity, and    is 

the heat of reaction.  Typical parameters are listed in Table 4.2. 

 

F, Tf, CA,f  

F, T, CA

Tc

Tc

A → P

 

Figure 4.6. Schematic of the exothermic CSTR. 
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Table 4.2. Parameters for the dynamic CSTR model 

Parameter Value Unit 

A 30 m
2
 

CA,f 2 kmol/m
3
 

Cp 4 kJ/(kg-K) 

Ea 1.50E+04 kJ/kmol 

k0 1.7038 1/min 

R 8.314 kJ/(kmol-K) 

Tc 300 K 

Tf 300 K 

U 100 kJ/(min-K-m
2
) 

V 10 m
3
 

 H 2.20E+05 kJ/kmol 

ρ 1,000 kg/m
3
 

τ 0.5 min 

Kc -0.02 min/K 

τI 0.05 min 

 

This reactor exhibits S-shaped dependences of conversion and temperature on residence 

time, as shown in Figure 4.7a,b.  Consider that it is desired to operate along the high-

conversion branch, but at lower temperature, 800K, for safety reasons, with a residence 

time of 0.5 minutes, having a conversion of 0.5 and a temperature of 800K.   
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Figure 4.7. Conversion in the exothermic CSTR. 

 

It is important to understand the mechanisms by which the CSTR can move from 

operation on the high- to the low-conversion branch.  From a reliability perspective, this 

CSTR would likely be shutdown when it moves to the low-conversion branch, especially 

considering that ignition to the high-conversion branch during operation may pose safety 

risks (e.g., large overshoot that is difficult to avoid).  To move from the high- to low-

conversion branch, non-parametric noise is introduced to each of the two balance 

equations.   

 

   
   

  
 

 

 
                  

  

  
    

   

 
   (4.11a) 

     
  

  
 

    

 
                          

  

  
    

      

 
 

 (4.11b) 

 

Each   is sampled every minute (        ) from an independent normal distribution 

with mean 0 and variance,   
 .  The non-parametric noise terms in Eq. (11) must be 
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scaled carefully to predict plant shutdowns and accidents.  Each noise term was scaled to 

represent noise in convective flux – the noise introduced to each equation is of the same 

order of magnitude as fluctuations in feed material or energy.  These terms are scaled to 

yield either noise in convective flux or unpostulated safety events arising from 

phenomena having similar magnitudes to convective noise; possibly modest side-

reactions or water leaks.  When      (i.e.,    is sampled from a delta function centered 

at zero,     ) at all times, with   
      , the dynamic trajectory over an hour is 

shown in Figure 4.8a.  However, when the variance is increased to   
     , the system 

moves to its low-conversion region, as shown in Figure 4.8b.  These figures motivate 

control for the CSTR – a relatively modest noise drives the system to its low-conversion 

region, and for very small noise, the temperature still fluctuates over a 50K range.  Note 

that parametric noise could have been introduced to a parameter appearing in both 

balances, such as  , by modifying        , where    is the original choice for   

(listed in Table 4.2). 
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Figure 4.8. Effect of introducing noise to an uncontrolled CSTR. 
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In typical operation, PI-control is used to maintain the reactor in its high-conversion 

region.  Herein, the residence time is manipulated to maintain the temperature at 800K: 

 

   
   

  
 

 

 
                  

  

  
    

   

 
   (4.12a) 

     
  

  
 

    

 
                          

  

  
    

      

 
 

 (4.12b) 

    
   

  
            (4.12c) 

               
  

  
      (4.12d) 

 

where     is the temperature setpoint,    is the controller gain,    is the integral of the 

error, and    is the integral time constant, shown in Table 4.2.  With control, the noise 

term has far less impact, as shown in Figure 4.9.   

While control makes moving to the low-conversion region far less likely, it remains a 

plausible rare event with safety implications.  In other words, even with control, a noise 

pattern can move the reactor to its low-conversion region.  Using TPS, rare paths from 

the high- to the low-conversion regions are shown next.   
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Figure 4.9. Effect of introducing noise to a controlled CSTR. 

 

 

 

4.3.1. TPS to Generate Rare-Event Trajectories 

 

As shown in the TPS algorithm in Table 4.1, an initial rare-event trajectory must 

be generated.  Such a low-likelihood trajectory can be generated by prescribing the noise, 

  , to take a high magnitude over the full hour trajectory.  An initial trajectory is 

generated by setting    = -1.5 at each sampling interval (one minute), and setting     .  

The trajectory begins at steady-state.  As the temperature initially decreases, with less 

reactant available, the PI-controller increases the residence time, increasing the 

conversion of the reaction and generating more heat.  The trajectory is shown below in 

Figure 4.10.  With the system at a low concentration of A and a temperature below the 

setpoint (800K), the PI-controller continues to increase the residence time, but the 
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reaction heat release is offset by the cooling jacket.  Said differently, at the end state of 

this trajectory, the PI-controller is incapable of returning the reactor to the desired high-

conversion region.  Subsequently, the region of rare-safety events is initially demarked by 

regions in the ranges:  

 

                                            (4.13) 

 

and final conditions bounded by: 

 

                                     (4.14) 

 

time

 

Figure 4.10. Initial rare-event trajectory. 
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 From this initial trajectory, the TPS technique generates more trajectories – 

specifically, those having higher likelihoods (i.e., less noise).  At random time,   , 

perturbations are made to the state variables,  ,   , and   , and the stochastic variables; 

  , and   .  These are sampled from normal distributions: 

                      (4.15a)  

     
          

              (4.15b) 

     
         

           (4.15c) 

     
                  (4.15d) 

     
                 (4.15e) 

 

Given sampling distributions for the perturbations, the likelihood distributions       and 

         are needed.  A simple, uniform likelihood distribution for the initial conditions 

is used, with all trajectories that meet the initial rare-event criteria (Eqs. (12) and (13)) 

equally likely; i.e.,    

 

            
 

         ⨯         
   (4.16) 

 

The likelihoods of the noise variables are: 

 

                    (4.17a)  

                   (4.17b) 
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With these distributions established, the TPS methodology iteratively generates many 

random rare-event trajectories.  In Figure 4.11, a few such trajectories are illustrated. 

 In the TPS algorithm, the length of the trajectory,   , must be specified a priori. 

Both    and the sampling interval,   , for stochastic variables,    and   , must be selected 

carefully.  When    is too long, trajectories reside in either the high- or low-conversion 

regions too long – rather than moving from region-to-region in transition; i.e., along 

pathways of interest.  Figure 4.12 shows a poor choice for   , where the reactor moves too 

quickly to the low-conversion region; i.e., low-temperature region.  In this case,    was 

set at 24 hr.  But, when    is too small, the low-conversion region is not reached; i.e., no 

rare-event trajectories are computed.   
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Figure 4.11. Rare-event trajectories generated using TPS. 

 

time

 

Figure 4.12.  Example of a simulation that is too long. 
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 The stochastic sampling time is especially crucial when control is implemented.  

Here, the PI-controller moves toward a steady-state, at its setpoint, in the face of 

disturbances.  When effective, in response to    and    noise, the reactor equilibrates at 

its desired steady-state.  But, after equilibration, backward integration cannot be restarted.  

Consequently, when responding to stochastic noise, sampling intervals must be smaller 

than controlled reactor response times; i.e., when sufficiently small noise sampling 

intervals are used, dynamic behavior is achieved.  Note that more effective controllers 

require shorter noise sampling time intervals.  For this example, a sampling time of one 

minute is sufficiently short. 

 The TPS strategy continually yields trajectories having probabilities greater than 

or of similar magnitude to the probabilities of the previous trajectory (Step 6 in Table 

4.1).  The TPS algorithm was run for N = 100,000.  The likelihood probabilities,  , of the 

first 350 unique trajectories are shown in Figure 4.13, in sequence.  From the least-likely 

initial trajectory, the sampling strategy moves towards more likely trajectories.  These 

probabilities, of course, remain small as they represent the most likely of rare safety-

events – and the first 150 are rejected as atypical.   
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 Figure 4.13.  First 350 TPS trajectories. 

 

As the trajectories are generated, it is desirable to cluster them to better understand the 

transitions between the high- and low-conversion states.  In Figure 4.14, the time-

averaged noise,    , is displayed as a function of the time-averaged noise,    , noting that 

each data point represents a single trajectory, with each time-averaged noise: 

 

        
 

  
       

  
 

    (4.18) 

 

As shown, there are two distinct clusters of trajectories, A and B, which are identified 

using the k-means clustering technique (Hartigan et al., 1979).  Here, each trajectory is 

clustered about one of the centroids, the centers-of-mass of the clusters.  Using this 

strategy, two distinct paths to the safety-event have been identified.  While other clusters 

may not have been identified, these two clusters of likely trajectories are excellent 

candidates for protection in the form of reliability and safety systems.    
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Figure 4.14. The trajectories displayed in two clusters.   

 

 Figure 4.15 shows the natural log of trajectory likelihood for 100,000 unique 

trajectories, with values displayed for trajectories 201, 301, 501, …, in sequence.  Note: 

the first 200 trajectories are atypical and not displayed.  Initially, Cluster A is populated, 

involving data for approximately 20,000 trajectories, having likelihoods near       

    .  Eventually, the trajectories move towards the bridge between the two clusters, 

with those in Cluster B displayed, having likelihoods near           .  When the TPS 

algorithm samples from within a cluster, it tends to yield trajectories within the cluster.  

However, some perturbations allow the algorithm to move from one cluster to the other.  

The movements between clusters are possible when sampling occurs from sections close 

to the other cluster – permitting transfers to occur with just small perturbations.  In fact, a 

third Cluster C may exist, which is not populated because it lies too far from Clusters A 

and B.   
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 Figure 4.15. Trajectory likelihood in sequence. 

 

When larger perturbations are allowed, the movement between clusters is more frequent 

– occurring across larger distances.  Let the variances of the perturbations include a factor 

   

 

                       (4.19a)  

     
          

              (4.19b) 

     
         

            (4.19c) 

     
                  (4.19d) 

     
                 (4.19e) 

 

When the TPS algorithm is run, starting with the same initial trajectory, the number of 

movements between the clusters are shown as a function of   in Figure 4.16.  The greater 
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the perturbation variance, the more movements between clusters.  It should be noted that 

even when    , only Clusters A and B were populated (i.e., Cluster C was not 

discovered).  But, even larger   may yield Cluster C – with significantly longer 

computation times.  Alternatively, starting from a number of very different initial 

trajectories may be a fruitful avenue for discovering new trajectory clusters, because with 

larger perturbations, the trajectories are less likely to satisfy the rare safety-event criteria 

(i.e.,                , or the acceptance criteria.  Figure 4.17 shows that as   

increases, the probabilities of acceptance decrease significantly.  While     allows for 

25 movements between Clusters A and B, on the order of 1,000,000 trial trajectories are 

generated to capture 100,000 unique trajectories.  

Clearly, the number of trial trajectories to yield a new, uncorrelated trajectory is 

sensitive to the choice of  .  While small   yields a high probability of acceptance, as 

shown in Figure 4.17, the accepted trajectories are quite similar to the original trajectories 

– and many trajectories must be accepted before a new, uncorrelated trajectory is 

generated.   

The autocorrelation function quantifies the correlation between trajectories   

iterations apart.  As follows, a       is determined to locate sufficiently different 

trajectories.  First, a midpoint for the respective trajectories is selected.  For the CSTR 

process, within the green-belt and red-belt zones, temperatures and concentrations differ 

significantly, whereas in the yellow-belt zone, temperatures and concentrations follow 

similar paths.  A midpoint is selected at         [(750 + 790)/2] – the temperature 

midpoint between the high and low conversion regions (see Eqs. (12, 13)).  Note that for 
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a trajectory  , the     trajectory is similar at its midpoint, the     trajectory is less 

similar, and so on.  As the iteration distance   increases, the midpoint of trajectory     

becomes less similar to the midpoint of trajectory  .  The autocorrelation function 

averages the correlation between the midpoints of trajectory   and     over all 

trajectories
 
(Gelman et al., 2014).  The autocorrelation function is: 

 

         
       

    
       

      
   

  
     (4.20) 

 

where      is the autocorrelation value at  iteration distance,   is the expected value 

function,     
  is the concentration of trajectory   at   ,   

  and   
  

 are the mean and 

variance of the midpoint concentration amongst trajectories in the cluster associated with 

iteration i, respectively.  A critical iteration distance,      , is defined as the smallest   for 

which  

 

                      (4.21) 

 

noting that the autocorrelation function has the properties: 

 

                               (4.22) 

 



 

111 
 

Figure 4.18 shows       as a function of   noting that the minimum,       is the most 

efficient computational choice. 

 

 

Figure 4.16. Number of movements between clusters as a function of perturbation 

size. 

 

Figure 4.17.  Probability of accepting trajectories as a function of perturbation size. 
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Figure 4.18.       as a function of  . 

 

 With the two clusters identified, an opportunity exists to better understand each 

cluster.  In Figure 4.19, the concentration of A is displayed as a function of temperature 

for 1,000 random trajectories associated with Cluster B.  All trajectories fit the same 

pattern, which can be helpful in creating an alarm.  Movement in this pattern suggests 

that a reliability or safety-event is impending.  Such an alarm could alert operators in time 

to prevent such an event.  This is a very powerful use for TPS – reliability and safety 

systems can be aided by the quantitative simulation analysis to mitigate rare safety events 

more frequently. 
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Figure 4.19. Concentration of A as function of temperature for all trajectories in 

Cluster B. 

 

4.4. Air Separation Unit (ASU) Example 

 

 The exothermic CSTR example involves just two state variables in a simple, 

familiar model to demonstrate the TPS method and its associated challenges and 

opportunities.  But, industrial application of TPS is likely to involve significantly more 

complex processes.  In this example, TPS is applied to an ASU model, having 480 state 

variables.  This model uses a modified version of a process flow diagram proposed by the 

NETL (“Commercial Technologies for Oxygen Production”), and uses mathematical 

formulae proposed by Huang et al.
 
(Huang et al., 2009)  Because the process operates at 

cryogenic conditions, it has many heat recycle loops.  These loops create complex 
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process interactions, some of which may propagate to rare safety and reliability events.  

The power of TPS is demonstrated in this example – with events that occur due to 

process-scale interactions captured and better understood, as compared with events that 

arise just due to unit operation disturbances and failures. 

 Pretreated air (stream 1) is separated into product liquid oxygen (LOX – stream 

23), gaseous oxygen (GOX – stream 22), liquid nitrogen (LIN – stream 12), gaseous 

nitrogen (GAN – stream 14), and liquid argon (LAR – stream 20).  Its pretreatment 

involves removing water, carbon dioxide, methane, and cooling to saturated vapor and 

saturated liquid feed streams with only oxygen, argon, and nitrogen present (in order of 

increasing volatility).  In this example, three distillation columns are used – a high-

pressure column (HPC) at 5.5 bar beneath a low-pressure column (LPC) at 1.25 bar, with 

a crude argon column (CAR) taking a sidedraw (stream 18) from the LPC, as shown in 

Figure 4.20.  At these pressures, the columns operate cryogenically at temperatures on the 

order of 85K.  The HPC vapor overhead (stream 8) is condensed by vaporizing the LPC 

bottoms liquid, and the CAR vapor overhead (stream 18) is condensed by vaporizing the 

HPC bottoms liquid (stream 5, cooled to stream 6).  As streams leave the HPC and 

expand from 5.5 bar to 1.25 bar, they are cooled by GAN (stream 14) and waste nitrogen 

(stream 15) to maintain saturated liquids at the same temperature.  The HPC and CAR 

has 40 trays, and the LPC has 80 trays.  The feed and side-draw locations were chosen to 

provide products having impurities <1 mol%, as specified in the Huang et al. (Huang et 

al., 2009) ASU model.   

The trays in each column are modeled at equilibrium using the MESH (mass 

balance, phase equilibrium, summation of mole fractions, and heat balance) equations, an 
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empirical equation relating the liquid holdup to the liquid flow rate, and the Peng-

Robinson equation of state
17

.  This model is modified from the Huang et al. (Huang et al., 

2009) for model-predictive control.  The overall material balance of tray   is represented 

by:   

 

 
 

  
                          (4.23) 

 

where    is the liquid molar holdup,  is the liquid molar flow rate,  is the vapor molar 

flow rate, and    is the molar feed flow rate (zero for most trays).  It should be noted that 

only the liquid holdup is considered here – the vapor, being far less dense, has a 

negligible holdup.  The component material balances describe the composition of each 

tray, and are shown in: 

 

 

  
                                                     ∀                (4.24) 

 

where   is the liquid molar fraction,   is the vapor molar fraction, and   is the feed molar 

fraction (phase unspecified).  The heat balance is: 

 

  
 

  
     

       
          

        
      

      
       (25) 
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where    is the liquid molar enthalpy,    is the vapor molar enthalpy, and    is the feed 

molar enthalpy (phase unspecified).  An empirical relationship for the liquid flow rate as 

a function of the liquid molar holdup is assumed: 

 

                 (4.26) 
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Figure 4.20.  Air Separation Unit process flow diagram. 
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where    was specified by Huang et al. (Huang et al., 2009) at 0.5 min
-1

.  The vapor-

liquid equilibrium in each tray is modeled by equating the mixture fugacities of the 

species in the vapor and liquid phases: 

 

         
          

         (4.27) 

 

where     
  is the liquid fugacity coefficient of species j on tray i, and     

  is the vapor 

fugacity coefficient of species j on tray i, each calculated using the Peng-Robinson 

equation of state, at the tray temperature,   , the column pressure, and the mole fractions 

of the associated phases.  The enthalpies are also calculated using the equation of state as 

described by Peng and Robinson
 
(Peng et al., 1976).  Lastly, the mole fractions sum to 

unity in the vapor on each tray: 

 

                  (4.28) 

 

 The feed air is assumed to have a constant composition (78% nitrogen, 21% 

oxygen, 1% argon).  Its flow rate, Fair, is determined by the product demand of each 

product i, di: 

 

          
         

    
 
         

    
 
    

    
     (4.29) 

 



 

119 
 

There are six more operation decision variables, β1 through β6: the LIN split fraction fed 

to the subcooler, the LIN split fraction fed to the LPC, the LAR split fraction to the CAR 

reflux, the side-draw split fraction of waste nitrogen, the side-draw fraction of crude 

argon, and the side-draw fraction of GOX.  These decision variables are manipulated 

using PID controllers to maintain the six set points, α1 through α6: N2 mole fraction of 

GAN, N2 mole fraction of LIN, O2 mole fraction of GOX, O2 mole fraction of LAR, ratio 

of GAN to LIN, and ratio of GOX to LOX.  Note, the O2 mole fraction of LAR is 

controlled, rather than the Ar mole fraction, because a fourth column normally handles 

the Ar-N2 separation in industry – not included herein to reduce the computational load.  

The set points and α-β pairs are shown in Table 4.3. 

 

4.4.1. TPS Process-Scale Demonstration 

 

 To demonstrate TPS, at least one rare-event must be identified.  The rare events of 

interest for this example involve the nitrogen mole fraction in the LAR stream 20,    

   .  

In this model, the LAR typically contains on the order of 0.001 mole fraction nitrogen.  

As its nitrogen content increases, its condensation load increases – with the rich liquid 

oxygen stream (6) increasingly vaporized.  The effluent liquid oxygen (stream 7), a feed 

to the LPC (on tray 30 – typically the largest feed stream), is crucial to the operation of 

the column, and as it becomes increasingly vaporized, α3, dGOX, and dLOX may not be met.  

Additionally, as more nitrogen is introduced to the LAR, a greater burden is placed on the 

column responsible for the N2-Ar separation before the argon product can be sold 
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(column not modeled).  When the nitrogen fraction in the LAR exceeds a critical level, 

the process typically undergoes a shutdown (reliability-event), which has the potential to 

become a safety-event (as shutdown and restart can provide more challenges).  Therefore, 

the rare-event is defined by: 

            

                     

          (4.30) 

 

Table 4.3.  Control logic of the ASU Model. 

Controlled Variable Manipulated Variable Set point 

α1 (N2 mole fraction of GAN) β4 (side-draw fraction  

of waste nitrogen) 

0.995 

α2 (N2 mole fraction of LIN) β1 (LIN split fraction  

to subcooler) 

0.995 

α3 (O2 mole fraction of GOX) β5 (side-draw fraction  

of crude argon) 

0.985 

α4 (Ar mole fraction of LAR) β3 (LAR split fraction  

to CAR) 

0.99 

α5 (ratio of GAN to LIN) β2 (LIN split fraction  

to LPC) 

dGAN/dLIN 

α6 (ratio of GOX to LOX) β6 (side-draw fraction  

of GOX) 

dGOX/dLOX 

 

 

 An initial rare-event trajectory begins with little nitrogen in the CAR column – 

thus, there is little nitrogen entering the column from the LPC in stream 16.  The vapor 

mole fraction profile along the LPC is shown in Figure 4.21a at the start of this trajectory 

– notice that the argon composition peaks close to tray 39, the tray whose vapor sidedraw 

is fed to the CAR column, while the nitrogen fraction is sufficiently low.  At the 

beginning of this trajectory, overly aggressive set points (which are described by the set 
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point likelihood, described later) for the production rate of LOX and LAR are simulated.  

With large amounts of vapor from the bottom of the LPC column, liquid higher in the 

column vaporizes to replace it, and the argon bubble begins dropping along the column.  

The mole fraction profiles at 1-, 4-, and 12-hr are shown in Figures 4.21b, 4.21c, and 

4.21d, respectively.  As the nitrogen enters the CAR, it rises into the LAR product, whose 

nitrogen mole fraction along the trajectory is shown in Figure 4.21e.  This trajectory, 

which satisfied the criteria in Eq. (30), represents a rare-event trajectory. 
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a) b)

c) d)

e)

Figure 4.21.  Mole fraction profiles after 

LOX and LAR setpoints are increased: (a) 

initial profiles, (b) 1-hr, (c) 4- hr, (d) 12-

hr.  (e) The initial safety-event trajectory 

is displayed, with nearly 2% nitrogen in 

the final LAR product at tf.
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 From this initial trajectory, perturbations are made to each state variable,     
  , 

     
    , and      

    .  The perturbations to liquid mole fractions are particularly 

challenging – in regions where species j mole fractions,     , are near zero or unity, only 

small perturbations can be handled (that is, large perturbations may not allow the system 

of equations to be solved).  However, in regions where      are near 0.5, much larger 
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perturbations can be handled.  Therefore, the variances of the perturbations are scaled by 

factors     (1-     .  The stochastic variables in the model are the demand of each product, 

di, sampled at each half-hour (with 48 samples over the day-long trajectory).  The 

perturbations are sampled from normal distributions with mean and variance in 

parentheses: 

 

       
          

                    (4.31a) 

        
             

          
              

            (4.31b) 

        
             

          
              

            (4.31c) 

       
          

                    (4.31d) 

 

 The other important user-defined function is the likelihood of each trajectory, p.  

The density of initial conditions,       , is calculated using computational data, collected 

from a 100-day run of the system with    sampled at 30 minute intervals: 

 

    
           

                    (4.32) 

 

where   
  are shown in Table 4.4.  A multivariate normal distribution, having 480 

dimensions (one for each state variable) is constructed from this data, and is used as   .  

Two dimensions (oxygen and argon purity of the LPC sump and CAR condenser, 

respectively) of this distribution are shown in Figure 4.22. 
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Table 4.4. Product Demand for this Simulated Example. 

Product 

Demand Load 

[kmol/day] 

GAN 20,000 

LIN 20,000 

GOX 10,000 

LOX 10,000 

LAR 500 

 

 

 

Figure 4.22. Initial condition simulated data. 

 

The likelihood of the product demand at each sampling interval is calculated by: 
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                    (4.33) 

 

Having defined all factors in Eq. (6), the likelihoods of the trajectories for this example 

are calculated. 

 With an initial trajectory, a sampling distribution for perturbing the state variables 

at t’, and a trajectory likelihood function, the TPS algorithm is run to investigate the rare-

event.  Because the boundary-value problem and integration of the model equations are 

more computationally taxing than for the CSTR example, N is reduced to 5,000.  When 

this algorithm is executed, the trajectories move into one of two clusters.  Said 

differently, two clusters (at least) of trajectories are identified, but trajectories are not 

observed to move between the clusters as in the CSTR example.  The clusters are shown 

in Figure 4.23, with trajectories 50, 100, 150, …, 5,000, displayed.  Here, cluster A 

contains trajectories that have a high average demand for LOX, whereas Cluster B is 

occupied by trajectories having a high average demand for LAR.  For the trajectories in 

Cluster A, as LOX is withdrawn from the LPC, more N2 is drawn into its lower trays and 

the waste nitrogen withdrawn is reduced   Consequently, the crude argon sidedraw 

(stream 16) becomes increasingly concentrated in nitrogen, and as nitrogen enters the 

CAR column, the rare-event is realized.  For the trajectories in Cluster B, a similar effect 

occurs where more material from the top of the column (typically N2 rich) is drawn to the 

crude argon sidedraw.  With more LAR production, the rich liquid stream has a higher 

condensing duty, with the rich liquid stream increasingly vaporized, resulting in more 
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oxygen leaving through the waste nitrogen stream.  Liquid nitrogen, from the LIN reflux, 

drops into the middle trays in the LPC to replace liquid oxygen, the crude argon stream 

becomes increasingly concentrated with nitrogen, and the rare-event trajectory is realized.   

 

Clearly, rare-events occur when either LOX or LAR contain overdrawn nitrogen.   

The two nitrogen accumulations do not occur together in the rare events observed.  Also, 

as shown in Figure 4.24, the sequence of TPS trajectories does not show movement 

between the two clusters in Figure 4.23 as the trajectories are generated.   

 

 

Figure 4.23. Clusters of rare-event trajectories. 
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Figure 4.24. Likelihood of rare-event trajectories in succession. 

 

4.5. Conclusions   

 While rare molecular dynamics events have been studied using TPS methods, this 

paper extends the techniques to apply to process dynamics in the study of rare product 

reliability and safety events.  For process dynamics, a boundary-value problem is solved 

in lieu of performing backwards integration, and the likelihoods of trajectories are 

formulated.  Two boundary-value solution methods, shooting (Bock et al., 2000) and 

orthogonal collocation (Cuthrell et al., 1989), are investigated.  While both are sufficient 

for the CSTR process, the orthogonal collocation method is much better suited to handle 

the larger ASU process model.  Other sampling algorithms, such as forward-flux 
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sampling (Escobedo et al., 2009) or milestoning
 
(Kuczera et al., 2009), do not require 

backwards integration, and may prove to be effective in understanding rare-event 

trajectories as well.  The likelihood distributions are formed using simulated data, with 

the incorporation of process data to be investigated in the future.  For the exothermic 

CSTR, two clusters of trajectories are generated by the TPS technique.  For an ASU 

process model, having far more variables and process interactions, two separate clusters 

of trajectories are generated.  In both examples, the discovery of two clusters was not 

expected – demonstrating that TPS can yield unanticipated rare-event trajectories.  

Possibly most interesting is the separation of clusters when applied to the ASU process.  

Because the clusters are sufficiently far apart, this indicates that in the operation of this 

ASU model, the LOX and LAR demand rate changes can be considered separately.  Said 

differently, reaching the upper limit of acceptable LOX draw should not influence the 

upper limit of acceptable LAR draw.  This sampling strategy benefits from the 

randomness in state variable perturbations and trajectory acceptances, allowing clusters 

of rare-event trajectories to be better understood and for the potential discovery of 

unanticipated trajectories.   
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Chapter 5 

Conclusions and Future Work 

 

5.1 Summary 

 This thesis has presented two methods, the generation of informed prior 

distributions (IPD) and transition path sampling (TPS), for predicting the failure 

probabilities of rarely activated alarm and safety systems.  These are difficult to estimate 

using classical statistical approaches.  Commonly, an alarm or safety system is activated 

just a handful of times, on the order of one to ten, over the lifetime of a process, yielding 

confidence intervals too large to allow meaningful design or operational decisions.  

Research on dynamic risk analysis, using copulas, reduced the variance of their 

predictions (Meel et al., 2006; Pariyani et al., 2012b).  However, even using the most 

advanced statistical techniques, their variances depend upon the amount of data collected.  

Alarm and safety systems are vital to the proper operation of a chemical process, and 

meaningful estimates of their failure probabilities are extremely useful, even in the design 

and commissioning phase (when few data are available), or over the lifetime of the 

process despite relatively few data points where alarm and safety interlock systems 

activate. 

Chapter 2 describes the IPD technique, which estimates failure probabilities of 

alarms rarely activated.  In Chapter 3, operator behavior models are introduced, 

enhancing the predictions calculated using IPDs.  Large amounts of L- and H-alarm data, 

resulting from more frequent, less severe, special-cause events, are systematically applied 

to improve the predictions resulting from less frequent, more severe special-cause events.  
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When applied to a SMR process, this methodology is shown to provide more reliable 

failure probability estimates. 

The second method, TPS, developed initially by the molecular simulation community, 

has been modified and applied to study rare process dynamic events.  Similar to IPDs, the 

probabilities of “trajectories” leading to alarm and safety system failures are estimated.  

With this method, many trajectories are calculated using random perturbations, with 

statistical weight given to the most likely trajectories.  With a fuller understanding of the 

trajectories that lead to alarm and safety system activations and failures, using both 

methods, operators and plant managers can better protect processes from transitioning 

toward unsafe operating conditions. 

 

5.2 A Systematic Approach for Simulation-Based Safety Analysis 

 While IPDs and TPS can be used individually to improve failure probability 

predictions, acting together, they can provide a fuller understanding of rare safety events.  

Each method relies on dynamic process models, which can be cumbersome to construct.  

Usually, beginning with steady-state models, appropriate dynamic terms are added, then 

controllers, and eventually alarm and safety systems, are modeled.  Alarm and safety 

systems often involve operator decisions – usually involving stochastic modeling.  The 

construction of these models often requires substantial time and effort.  However, 

modeling for various design and control decisions is normally carried out in the chemical 

manufacturing industries, so these models are often not built solely for alarm and safety 

system analyses.  With dynamic process and operator models, IPDs and TPS can be 

applied, both during the design and commissioning phases. 
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 Beyond the dynamic modeling in generating IPDs, TPS provides a framework for 

generating more likely paths leading to alarm and safety system actions.  Random 

perturbations allow for various trial trajectories to be calculated, and then accepted or 

rejected based upon their likelihood.  This approach is structured to encourage potentially 

un-postulated trajectories to be ‘discovered’.  Its results may aid process managers during 

the design phase, where HAZOP is performed to assess potential process accidents.  

HAZOP analysis focuses on individual process units, the chemical compounds that may 

enter the unit, and the possible failures encountered by the unit.  Without accounting for 

more complex process interactions (such as in material or heat recycle), HAZOP does not 

identify the most probable special-cause event trajectories on the process scale.  Said 

differently, as the fluctuations within a process unit influence all downstream units, 

failure probabilities of similar units vary amongst different processes.  TPS is well-suited 

to quantify the paths leading to special-cause events, possibly terminating with safety 

interlock shutdown or an accident.  This method has the potential to calculate path 

trajectories that are either not postulated during HAZOP analysis, or events determined to 

be of far less significance than may be envisioned in the specific process design. 

Even when TPS does not uncover un-postulated special-cause events, it often extends our 

understanding of postulated events.  TPS helps plant managers identify operational 

conditions that render events more dangerous – possibly during a demand rate shift, or in 

the presence of another process disturbance.  With process interactions leading to special-

cause events well understood, the failure of alarm and safety-interlock systems may be 

prevented through safer operations that avoid their activation. 
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The TPS technique calculates many trajectories of special-cause events, and their 

associated probabilities.  Using this information, probability distributions of special-cause 

events can be constructed.  Note that IPDs in Chapters 2 and 3 are generated to estimate 

the failure probabilities of alarm and safety systems from particular special-cause events.  

The special-cause events, and the distributions of special-cause event magnitudes, can be 

quite challenging to quantify.  With few such events, few data are available to directly 

calculate these distributions.  Rather, TPS can be used to generate  distributions of the 

most probable special-cause events along with their magnitudes, which can be input to 

generate the IPDs for the failure probabilities of alarm and safety systems – even those 

that involve complex human factors.  The synergy of these two methods is quite 

powerful, even with few data (or no data, in the process design phase), permitting the 

probabilities of special-cause events and the associated failure probabilities of alarm and 

safety systems to be better estimated.   

 While TPS calculates the trajectory probabilities leading to alarm and safety 

system failures, the IPD is better suited for this purpose.  The backwards integration 

feature required in TPS, accomplished through the solution of a boundary-value problem, 

does not permit stochastic operator response times to be modeled.  In the simulations to 

obtain IPDs, operator response times are calculated upon the activation of alarm 

thresholds, with response times a function of the derivatives of variables as they cross 

their thresholds, and the number of other active alarms in the process.  Other factors were 

investigated (the demand rate of the process, reactant feed composition), but did not 

correlate well with operator response times.  The factors were used to generate a 

distribution of response times from which a response time is sampled and simulated.   
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With backwards integration, this approach cannot be taken the response time of the 

operator must be purely deterministic.  Therefore, the IPD technique is capable of 

accounting for stochastic operator responses, and thus is better suited for estimating 

alarm and safety system failure probabilities.   

 

5.3 Future Work 

In future work, three areas are worthy of consideration, as discussed briefly in the next 

subsections. 

5.3.1 Rare-Event Sampling Strategies 

 TPS was developed by the molecular simulations community as a technique for 

studying rare-events.  This thesis adapted the technique to handle rare process dynamic 

events.  While TPS has provided many exciting opportunities in the molecular 

simulations community, other sampling strategies have been developed to handle similar 

problems.  Three such techniques are forward flux sampling (FFS), milestoning, and 

transition interface probabilities (Allen et al., 2009). 

The main computational effort when applying TPS to process dynamics is in solving the 

boundary-value problem, often accounting for well over 90% of the computation time in 

the two examples in Chapter 4.  This limitation is circumvented by FFS, which does not 

require the calculation of backward-integrated trajectories.  The general approach of this 

method involves an order parameter,  , that spans the two regions of interest from     

at the interface to region A and     at the interface to region B.  The probability of a 

trajectory transitioning from:   
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        to     ;                          

 (5.1) 

is calculated for all    in [0,1].  In this manner, the probability of a trajectory spanning 

from region A to region B can be calculated.  Additionally, the rate of formation of 

trajectories is calculated.   

This method may provide further insights toward understanding special-cause events in 

process dynamics.  Trajectories spanning the two regions (from green- to red-belt zones) 

are calculated using FFS without solving a boundary-value problem.  Thus, the 

computational efficiency of FFS shifts to the efficiency of forward integration.  Similar to 

TPS, random perturbations are introduced, retaining the potential to discover un-

postulated trajectories.  Furthermore, in TPS, the event time must be fixed, whereas in 

FFS the time length is allowed to vary.  This can be important in setting alarm thresholds 

that give operators sufficient time to take corrective action. 

 

5.3.2 Operator Decision Modeling 

 The informed prior distribution technique utilizes operator decision models, 

which seek to quantify operator response times as a function of various factors within the 

process.  These include the state of the process during a special-cause event, which has 

significant impact on the operator’s ability to diagnose and appropriately respond to 

events.  Also, information pertaining to the specific operators describing those that are 

most effective and better trusted to handle more challenging tasks (larger demand rate 

shifts or operational shifts) is helpful.  Furthermore, the time-of-day or time-of-year may 



 

135 
 

play a critical role in determining operator’s successes.  A better understanding of these 

phenomena may influence scheduled shutdown periods or rate shifts at a plant. 

 

 

5.3.3 Alarm and Safety System Design 

This thesis has presented techniques for estimating the failure probabilities of rarely 

activated alarm and safety systems in chemical processes.  These estimates permit 

engineers and plant managers to install more effective systems.  Through the use of 

transition path sampling and informed prior distributions, better choices of alarmed 

variables, alarm thresholds, operator training, operator decisions, and automatic safety 

systems, can be selected.  As the dynamic risk analysis community continues to develop 

sophisticated methods for understanding the performance of alarm and safety systems, 

better operational and design decisions will be implemented (Khan, 2015). 
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