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1. Introduction

If string theory is a fundamental theory of mature it must explain the
observed vanmishing of the cosmologlcal constant. In guperstring theory this
is expected to be a comseqmennce of spacetime supersymmetry, at least in a
flat background [1][2]{3]. Since supersymmetry is at best strongly brokem im
nature, string theory should provide a mechanism for a vanishing cosmological
constant which is sndependent of supersymmetry, but mo such mechanism is
linown. Thus, omy understanding of the vanishing of the string cosmological
constant might prove to be useful in acsessing the viability of the string. In this
letter we show that if the density on the moduli space M,y of gemus g Riemann
surfaces which is associated with the heterotic string [4] satisfies the property
of physical factorisation, then the vacuum to vacuum amplitude vanishes for
the firs¢ twenty orders of perturbation theory. Given the truth of a conjecture
in algebraic geometry our proof im fact extends to all orders of perturbation
theory. The argument involves the theory of modular forms om Teichmiller
space and is a gemeraliration of the approach that has recently beer used to
show that the vacuum amplitude vanishes at two and three loops [5][6][7].

In the following section we will discuss the form of the heterotic string
integrand. Im sectiom three we show that for g < 20 the only integrand of this
form satisfying modular invariance and factorization is sero. We conclude with
a few remarks in section four.

2. The heterotic string

The heterotic string may be described in terms of a local quantum field
theory on a super Riemanmn surface [2[4](8][9][10][11]. The quantum fields may
be considered as (a, b) forms on an ordinary Riemann surface, which are locally
of the form f(z,2)(dz)®(dz)®. There are 10 scalar fields X*, 10 right-moving
(0,4) NSR fermions A#, and 32 left-moving (,0) gauge fermions ¢f. The
world-sheet supergeometry is described by a metric (which defines the complex
structure) and an anticommuting background gravitino x, which i a (1,-3)
form. The actiom is them

S= / BXFIX™ + AN + T aYT + y NPT XP (2.1)
B

where ¥ is the parameter space for the world surface and 3,3 are the Cauchy-
Riemann operators acting on forms [12]. The last term in (2.1) is the coupling
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of the matter supercurrent to the background gravitino. As is well-known, this
action is invariant under Weyl, Lorents, coordinate and supergravity tramsfor-
mations.

- The vacuum amplitude Z, i3 a gauge-fixed mtegra}l of the partition function
of the above quantum field theory over background two-dimensional superge-
ometries. The factorization property for the string integrand which we assume
below i3 plausible because Z; may be derived from the above local theory vsing
“ultralocal® measures [13][14}{15](18].

After gauge-fixing and integrating over the supermoduli the exprecsiom
becomes an integral of a demsity om moduli space M. We denote by ¢ the
holomorphic 3g — 3 form on Teichmiller space Ty, defined co that the vacuum
amplitude of the closed, oriented, 26-dimensional bosonic string is [6][17][18][19]

boo .. ___i.{.\_?__ 9
2y = 7, (detImr)13 (22)
where 7 is the period matrix and 7, C Ty is 2 fundamental domain for the
mapping class group. Although detImr is only defined on Tj; the integrand of
(2.2) descends to a demsity on Mg, that is, it is modular invariant. The vacuum
amplitude for the heterotic string may be ex)pn'essedl in terms of seta as [9][20]
ne o [ _SAC g 7 2.3
Zg ,/[ (detImr) {detImr)® 86 (23)

where Wy comes from the gauge fermions and may be expressed im terms of a
sum over the theta mullwerte for the surface by

2
\Ils = (Z ﬂ’z) (2‘4)
a .
for the Eg % Eg string, and L
g = E@is (2.5)
- .

for the Spin(32)/Z, string. The subscript a labels the 'ﬂnés]f-f::tegra]l character-
istics. Omly the even characteristics contribute to th« sums.

The contribution € from the right-movei. = . v » be written im terms of
a sum over theta characteristics {or spin-structur.: .-

= Z 5515, (2.8)




where the functions 81,82 om T, may be described in terms of determinants
ond Green functions for @ operators 2s follows. Let L,» denote the bundle of
(@, b)-forms, cud let -5.3,5 denote the Cauchy-Riemarn operater coupled to this
bundle. When b # O thi3 ‘will require a metric. Let s stand for a basis of 29— 2
sero modes of 54}‘0, that i, 9 =0 § = 1,...2g — 2. By the existence of
Poincaré theta series for weight £ automorphic forms we can choose the basis
; globally on T}, in & way that varies holomorphically with the moduli [21}.
Using ¢-function regularisation, we may defire the quantity

( det! — V2 )M/Z det(v;|vy)
J fodetIms ofet%,o?ﬁ,t.o

where V2 is the scalar Laplacian. This quantity depends only on the complex
structure [22], and is, in fact, the square of a holomorphic function 83 on Ty
[6][17][20][18][18] . Let 53 be the complex conjugate of sy.

The factor 5 can be written im terms of correlaticn functions for insertions
of the ghoot cupercurrent. Denote by b € £36 and ¢ € L_1,0 the reparametrisa-
tion ghosts and by § € £9,0 and y € £_%‘o their superpartmers. Using the sero
modes ¥; we may form the background gravitino x = 3 ¢;v; € ﬂn,—i} (we have
used a metric here). The ¢ may be thought of as supermoduli {2][8](23]. Then,
in terms of the ghost supercurrent § = b+ 8cf € £<}.o we may write 53 as

(2.7)

29-2

-1 z(s)
b= det(v;v;) / H % Z(0) Z(0) (28)
where Z(¢) is the ghost partition function in the presemce of x
Z(¢) = / dbdedPdre J Boo+POHxT (2.9)

This chiral fumctional I~tegral has local conformal, Lorents, gravitational, and
holomorphic cnomalies, oll of which are cancelled by the fzctor Z(0) im the

demominator of (2.8) .+ Weé may perform the tegral over the supermoduli to

obtain

1

Ty = e
27 det{vilv;) Jgsenz

dets, jvi(w;)(S(w1) - - - 8(wap-2)) (2.10)

where the correlation fumction may be evaluated with Wﬁcl‘:’s theorem. The
two-point function (§{z)e(y)) € Lo2]: ® Lo,~1|y is the kermel of the “inverse®
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of 8g,~1. Specifically, if §; demotes a basis of holomorphic (C,2) forms and 7*
denotes o dual basis of (1, —1) forms then

3(b(z)e(y)) = 6(z9) - b: (z)m (¥ (2.11)
with a similar formula for {8(z)7(y)). As z — y we have (§(z)e(y)) ~ (z2—g)~?
and (B(z)7(y)) ~ (2—§)}. Using the holomorphy of »; and the antisymmetry
of the determinant ome can show that the expression (2.10) is finite.

Unfortunately, (2.10) is mot obviously independent of the conformal factor
and is not obviously antiholomorphic on T,. The original expression in [9] was

shown to have no conformal anomalies, and (2.10) is simply & rewriting of that

expression. So 83 is conformally invariamt. (A direct proof would be messy.)
We will mow give a formal argument that 35 is indeed antiholomorphic. _
Consider the variation of (2.10) under a holomorphic Teichmiller deforma~
tion. Then 68 = 0 and 63 = 128 where g i3 an infinitesimal Beltrami differemtial,
p € L1, [24][25]. Varying the serc mode equation we find that the basis v;
changes by
= 1
$v; = -2 :5—3—_?';4311/5 + As5v; (2.12)

where 8 = :9-%,0 and the matrix A;; describes ¢he differemce between o globally
defined basis ond the locally defined basis whese variation 5 the frgt term om
the right hand side of (2.12) . ! Thus

§(det(ws|v;)) "t = —(det(mlvy)) 2T 4 (2.13)

Furthermore, 8{x3) = xu(3€)B + 6x3, so if we integrate by parts and wse the
equatiors of motion {or, in the path imtegral version (2.9) , male am wpper
triangular tramsformation and use the equations of motion) them

8 / ] ds:2(¢) = TrA / Mdg;Z(g) . (2.14)

Putting together {2.13) and (2.14) we learn that holomorphic Teichmiller de-
formations of 3 are sero, o Jp is an antiholomerphic function om T, s was to
be shown. Thus €, the contribution of the nght-moven‘s, is on antiholomerphic
fumction on Teichmdller space. Note, in Ipau’@ncm]la, ‘that oll three factors im
{2.8) are finite everywhere on .

! In deriving (2.12) one should take into account extra variations in the v
arising because these have “c-indices”. However, for the Bers embedding this
variation can be seem to be second order im the local holomerphic coordinates
on Teichmiiller space.



8. Modular forms

As in the bosonic case, the various factors in the heterotic string integrand
(2.3) are only defined on Tenchmul]ler space. It is only the entire expression
which is modular invariant, ﬂ;]]nat is, free of global diffeomorphism anomalies om
the world sheet [26]. Under a symplectic modular transformation the period
matrix transforms by

7 — 7 = (Ar + B)(Cr + D)™! (3.1)

and
detImy — |det(Cr + D)|"2detimr . (3.2)

Using the trensformation properties of theta functions ome can show that
Wo(7) = (det(Cr + D))°¥5(r) . (3.3)
Therefore, we also have 2
&(7) = (detcr + D))°els) . (3.4)

In the previous section we showed that ¢ i3 finite amd holomorphic on Ty, so
it is & modular form on T}, of weight eight. It was pointed out in [5][6][7] for
g = 2 and in [6][7] for ¢ = 3 that a comsequence of the work of Igusa [27] is
that modular forms on Ty, for g = 2,3 of weight eight are unique, up to an
overall comstant. (In particular, for ¢ = 2,3 the two expreecsions for Wg in
(2.4) and (2.5) differ only by a constant.) Thus we must have { = x%; for
some constant <. If < 7 O we obtain the pertition function of a 26-dimensional
bosonte string theory in which 16 coordinates have been split into independent
left- and right-movers and compactified on independent maximal tori of Eg X Eg
or Spin(32)/Z, [28].

It was argued in [5] thas the choice & # 0 is incompatible with the fac-
torisation requiremeiits explained below because of the known vanishing of the
one loop dilzton tadpole in the heterotic string. Thts we must chocse & = 0 at

2 Since there are mo global anomalies £ i invariant under the subgroup
(kmownm es the Torelli group) of the mapping clecs group which preserves a
canonical homology basis. We may therefore corsider £ as a function on the
image of Ty in the Siegel upper half plane.
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two loops. Since the dilaton tadpole is proportiomal to the vacuum graph we
also have & = 0 at three loops, by the same argument. Thus, if we knew that
weight eight modular forms on 7 were unique for g 2 4 we could show that Z,
vanishes to 21l orders by induction. Unfortunately, the amalog of Igusa’s theo-
rem is mot known for g > 4 but we can instead use the factorisation hypothesis
to argue that Z; = 0 for g < 20. o

We first describe the factorization hypothesis. Comsider the behavior of
the string integrand on the boundary of moduli space. For a dezcription of this
boundary see [29][5]{16][19] , and references therein. Im perticular, we will model
the boundary by the plumbing fixture 2t = ¢. On the boundary component A;
for s > 0 (fig.1) we may expand

¢ = dtdm;dmg(aot‘” + mntm"'n + - ') (3.5)

where a = —2 and m;, my describe the moduli of curves gens ¢ and g—¢ with
distinguished points (that i3, the universal ctrves cf genus § and g—¢) 3 . The
first pert of the factoruatnom hypothesis states thas the coefficients are of the
form ag(my, ma) = a )(mn) f’ {m3). Similarly we may exxpand

¢€ = dtdmydma(bot? + batP+? +...) (3.6)

From the definition of the theta function and the be]havnou' of 7 om A; we also
find the expansion

Vg = ga(mﬂga(ﬂbz) - (3.7)
o that the zsymptotic behavior of the imtegral is givem by
S [ g B )8 oma) [anaersw [ om, &) (ma) b (ma)
0% (detImn)® Fpes (detImny)®
(3.8)

where r; and 73 are the period matrices of the curvcs of genvs § and g—3. The
coefficients G in (3.8) differ from those in (3.5) became of the ]hnghen' order terms
im (3.7) . : i
Similarly, on Ao (fig.2), where r;; = f;logt -1 — wo, we may deccribe
the moduli and period matrix of the remaining curve of genvs g — 1 with two
distinguished points by m; and 7. Then, the modular 1 warl % proper time is

8 = detIms/detImer, = Imryy + -+ (3.9)

3 The cas2 ¢ = 1.1 special because of the extra . .=~ phism of the w ~18.

7
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and the egymptotic behavior of the integral is

S fdEAlE dmy
e EM/ ————a; (701 ) by (e 3.10
k%o/ ¢ %,y (detImn)® (20 ) be (s ) (3.10)

where the expansion coeﬁﬁcﬁeﬁts are defined a3 before.

As discussed in [5][16] ¢hese expansions have matural physical interpreta-
tions im terms of particles propagating along the tubes which are becoming long
and skinmy (see fig. 1,2). The phase integral of ¢ forces a+ k& =f+{=n and
corresponds to the Lo — Lo projection, while dwn is the mass squared of the
particle. The second part of the factorisation hypothesis is that the expan-
sion coefficiemts give the appropriate ome- and two- poiat functions in (3.8) and
(3.10) respectively.

In the heterotic string the lowest mass particle should be at n = O for the
right-moving sector, which means 8 = 0 in (3.8) . Thus £ must have a second
order sero on aff the boundary components A; of M. We will mow show that this
condition iz imcompatible with the other properties of £, unless § is identically
pero. Note that we do mot meed the full stremgth of the factorisation hypothesis
as we have stated it, we only meed to kmow Ghe order of vanishing of the leading
coefficient. We mow state our main result. Let M be the compactified moduli
spece of stable curves.

Theorem: There is mo nonsere modular form of weight eight with second
order seroes om M — M for g < 20.

Proof: The transformation law (3.4) of the modular form ¥g on Ty may be
congidered ag defining » lire bundle & on M which extends in a matural way to
M. Let 5 be o weight eight modular form with second order serces on - — M,
them /g is o meromorphic function om M. Thus, n i3 also & section of €.
Let the divisor clzss of .£ :‘Ibe'a,\ — 86 where A is the Hodge line bundle, and
§ = 192 5, where & i the clacs defined by the divisor A;. We will show
below that in fact ¢ = 8 and & = 0. Let us first derive o consequence of this. If
divg = D + 2A where D C M, is an effective divisor ¢ then

D~8A-25 - (3.41)

¢ Actually, we must take the closure of D in M.

8

co the class 8 — 26 is an effective divisor class, and therefore must lie in the
effective cone, which may be described as follows. The region of the (z, y) plane

.where the bundle yA — z6 has a power which admitp;a. holomorphic section is

called the effective come, and may be depicted as in fig.3. The slope Sy of the
effective cone has been investigated by algebraic geometers [30}[31]. Using the
recent estimates of [31] one can show that S, > 4 for g < 20. Thus, for g < 20
mo such form 9 exists.

We mow compute a. We may put o matural morm om A by defining the
norm of a local section wy A --+ A w, comstructed from a basis of canonically
normalised Abelian differemtials by

g A Ay ||?= det(ws|w;) = detTms . (3.12)
We can put & morm on modular forms of wetzht & by defining
|| s 1= (detime)®|s? . (3.13)

Thus, for & = 8 we have

ks

(€)= Béi;aglogdeﬂmf =8¢y (A} . (3.14)

Fimally, we may argue that b = 0 using techniques employed in [30] . It is
chown im [30] that the boundary of M cam be filled with curves whose intersection
number with A is negative, and whose intersection number with A is sero & . A
typical such curve im A; may be described cs follows. Attach a smooth curve
of genus ¢ at & point p to a smooth curve of gemus g— ¢ at a point g. Holding ¢
fized let p ramge over the curve of genus 5. This family of curves is itself a curve
fn A, ond i¢ can be shown that it has the intersection mumbers stated obove.
There is a simlilar construction for curves in Ag. If the divisor class of & were
of the form 8A — b6 with b momsero, then amy divisor in, that class would have a
nomtrivial ixtersection mumber with the curves mentioned sbove. On the other
hand, by (3.7) we see that W; is either monsero or vanishes idemtically om the
entire curve, the latter case holding only for crrves lying within o codimensiom
one subvariety of the boundary. In the first case the imtersection mumber of the

& The intersection mumber of & curve with o divisor is the first Chern class
of the restrictiom to that curve of the line bundle defined by the divisor.

9



curve with divWg is clearly sero. Thus the divisor of Wg certainly does mot have
the required property, and hemce b = 0. [

It follows from the above theorem and the previous Iphyéicall erguments

that the vacuum amplitiﬁ&e Z; must vanish for g < 20. Clearly the method of
proof could extend to all orders of perturbation theory if S, were known to be
larger than four. In fact, all known effective divisors have a slope S; > 6+ ;%,
and it is natural to conjecture that S; > 6 at every genus. An argument of this
kind might even apply in the infinite genus setting of [16] . Unfortunately, we
cannot turn the argument around to say that the expected vanishing of Z; to all
orders of string perturbation theory implies a lower bound on Sy, since a weight
eight modular form with second order seroes meed mot correspond ¢o the string
integrand. However, it has been argued in [16] that the fundamental principles
of string theory are encoded in the analytic and factorisation properties of the
string integrand. Thus, we could use such a modular form to define a new string
theory. This theory would presumably be identical to the heterotic string for
g < 20 and differ thereafter. Such a bisarre possibility is so unlikely from the
physical point of view, that one is lead to believe that S, > 4 for all genus.

4, Conelusiom

The expansions {3.8) and (3.7) have analogues on the multiple intersections
of the boundary components. Thus we may use the factorisation hypothesis to
obtain information about NN point functions as suggested i [16] . The vanish-
ing of the string ixtegrand point by point om moduli space does not imply that
the N-poiat functions vanish, but rather that the sum of the N-point functions
over pzrticles with specified values of Lp and Lo must venish. It is commonly
believed that the only divergences i superstring amplitudes come from the dila-
ton one-point fumction {32]. Without explicitly constructing these amplitudes
ond investigating their divergemces we cannot claim ¢o have proven finiteness,
but we believe our n‘cﬁmﬂt@éﬁﬁivé very strong evidence in favor of finiteness.

COne ﬁnten‘estin'gl xpﬁ'oblem is to see whether arguments of this kind will apply
for backgrounds other than flat space. Toroidal compactifications only modify
the string integrand by a modular inveriant multiplicative factor (the invariant
morm squzred of a theta function) and therefore do mot affect the argument.
Of more interest are momsupersymmetric backgrounds. Perhaps the simplest
possibility to investigate is anm orbifold compactification. The relevant modular

10

forms will then only be modular forms under the subgroup of the modulzr group
which preserves the boundary conditions. Im gemeral, the space of modular
forms under such subgroups grows rapidly with the:index of the subgroup so
we cannot expect any gemeral results, but this line of argument might prove
useful in some specific examples. A speculation in the spirit of our proof may
be found in [16] where it is suggested that analytic arguments combined with
some information on the hermitian metric om the primzry field bundle can be
used to show the vanishing of the ccsmologicz! constant.

We have argued that the cosmological constant in the heterotic string vam-
ishes for g < 20 without making explicit use cf spacetime supersymmetry. It is
natural to zsk if the nomexistence of certzin kinds of modulzr forms i3 merely an
obscure consequence of supersymmetry. The connection with supersymmetry
does not seem to be obvious, and it is a logical possibility that mathematical
theorems on modular forms reflect some other mechanism for the vanishing
cosmological constant. If this is so, this physical mechanism might be relevamt
to what i3 observed in mature.
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