
LEARNING ALGORITHMS FOR
CONNECTIONIST NETWORKS:
APPLIED GRADIENT METHODS
OF NONLINEAR OPTIMIZATION

Raymond L. Watrous

MS-CIS-88-62
LlNC LAB 124

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04

(Revised July 1988)

Acknowledgements: This research was supported in part by grants DARPAIONR-
NO001 4-85-K-0807, DARPA-N00014-85-K-0018, NSF-CER grant MCS-8219196 and U.S.
Army grants DAA29-84-K-0061, DAA29-84-9-0027.

Learning Algorithms for Connectionist Networks:
Applied Gradient Met hods of Nonlinear

Optimization

Raymond L. Watrous
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA

Siemens Research and Technology Laboratories
Princeton, NJ

May 5,1987
Revised July 22, 1988

Abst rac t
The problem of learning using coiiilectionist networks, in which

network connection strengths are modified systematically so that the
response of the network increasingly approximates the desired response
can be structured as an optimization problem. The widely used back
propagation method of connectionist learning [19, 21, 181 is set in the
context of nonlinear optimization. In this framework, the issues of
stability, convergence and parallelism are considered. As a form of
gradient descent with fixed step size, back propagation is known to
be unstable, which is illustrated using Rosenbrock's function. This is
contrasted with stable methods which involve a line search in the gra-
dient direction. The convergence criterion for connectionist problems
involving binary functions is discussed relative to the behavior of gra-
dient descent in the vicinity of local minima. A minimax criterion is
compared with the least squares criterion.

The contribution of the momentum term [lg, 181 to more rapid
convergence is interpreted relative to the geometry of the weight space.
It is shown that in plateau regions of relatively constant gradient, the
momentum term acts to increase the step size by a factor of e,
where p is the momentum term. In valley regions with steep sides, t i e
momentum constant acts to focus the search direction toward the local
minimum by averaging oscillations in the gradient.

The Davidon-Fletcher-Powell [8] and Broyden-Fletcher-Goldfarb-
Shanno [7] methods are considered in light of computational complex-
ity (time and space), convergence properties, and suitability to parallel
machines. These algorithms approximate the second derivative of the
objective function iteratively. This additional information about the
shape of the weight space allows for dramatically faster convergence.
The performance of these algoritlims is compared with the steepest de-
scent and back propagation algorithms for several sample connectionist
problems, including exclusive-OR and a multiplexor problem.

It is concluded that for moderate sized problems to be solved on
sequential machines, the use of higher-order techniques is mandated
by their excellent convergence properties.

1 Introduction

The ability to extract structure from data is an important prerequisite for
artificial intelligence, and especially for artificial perception. Here, it is often
uncertain which characteristics of the object of perception, as mediated by
the sensing mechanism, serve to define the corresponding psychological cat-
egories of perception. Thus, the relationship between stimulus and percept
is difficult to specify.

This is the case, for example, in speech recognition, where the acoustic
correlates of phonetic categories have been difficult to determine, since they
are multi-dimensional, context-dependent and speaker dependent.

A direct approach to this problem is to observe parameters of the stim-
ulus and encode regularities in rules. For example, many of the methods for
speech recognition are derived from visual observations of the speech wave-
form represented as spectral coefficients over time. Consequently, a process
which is inherently time-dependent is viewed spatially as a static pattern.
This difference in presentation may have negative consequences. Conse-
quently, the learning approach provides a means for extraction of significant
signal characteristics which may be less obvious visually, but inherent nev-
ertheless in the acoustic signal [5] .

The human speech processing system is extremely sensitive to small vari-
ations along certain dimensions of the acoustic signal, and indifferent to
variations along others. Thus, attempts to formalize in rules the regularities
of the signal must be flexible with regard to variations. In other approaches,
an estimate of the dimensions and correlations of the acoustic space as re-
lated to the perceptual space is computed. LVhere this dimensional analysis
is inadequate, a small variation in the input signal leads to an error in clas-

sification; this is, in fact, often characteristic of current speech recognition
sys tems.

The strength of the connectionist approach seems to be that the multiple
sources of knowledge can be appropriately integrated, and that statistical
covariance of multiple cues can be estimated accurately from small data
samples [9].

Learning in connectionist networks is not only important, it is in general
difficult. The networks are often complex, involviilg many nodes and even
more interconnections. This results in a learning problem of high dimension-
ality. In addition, the computational characteristics of the network nodes
are typically nonlinear. This nonlinearity constrains the choice of learning
algorithm which will solve the problem.

Such learning algorithms exist and have been used very successfully in
solving a wide variety of connectionist learning tasks [19, 11, 101. These al-
gorithms obtain problem solutions often after thousands of iterations, which
may take minutes or hours of processing. Consequently, the question of com-
putational efficiency and complexity is important. Are there more powerful
methods of learning which will find correct solutions in significantly shorter
time?

The problem of learning using connectionist networks, in which the net-
work connection strengths are modified systematically so that the response
of the network increasingly approsinlates the desired response, can be struc-
tured as an optimization problem.

In the past thirty years, the subject of numerical techniques for nonlinear
optimization has been extensively researched and is highly developed [12,15,
71. The properties of stability and convergence rate for many optimization
algorithms have been reported and investigated computationally.

The goal of this paper is to set the widely used back propagation method
of connectionist learning [19,21, lS] in the context of nonlinear optimization.
In this framework, the issues of stability, convergence and parallelism are
considered. In addition, the contribution of the momentum term to more
rapid convergence is interpreted relative to the geometry of the weight space.

Further, several more powerful optimization methods are considered in
light of computational complexity (time and space), convergence proper-
ties, and suitability to parallel machines. It is concluded that for moderate
sized problems on sequential machines, the use of higher order techniques is
mandated by their excellent conrrergence properties.

2 Nonlinear Optimization

The problem of optimization has been widely studied in many disciplines.
Indeed, as Tsypkin notes [22, page 51.

One can say without exaggeration that the problem of optimality
is a central problem of science, engineering and even everyday
life.

I t surfaces in control theory, economics, operations research, chemical en-
gineering, VLSI design and artificial intelligence. The mathematical theory
is highly developed, and well-founded on proofs of convergence rates and
stability for many powerful algorithms. The availability of digital com-
puters since 1950 has fostered the enrichment of the field with numerical
algorithms which can be applied to very large problems, with thousands of
variables. These well-researched techniques are most appropriate for use by
researchers in connectionist learning, which often involves nonlinear opti-
mization of large networks.

2.1 Overview

In order to discuss intelligently any method of optimization, it is necessary
first to give a careful definition of the optimization problem, and intro-
duce some formal notation. It is also necessary t o locate, within the vast
landscape of general optimization algorithms, the set of methods under con-
sideration. The following overview serves that purpose.

2.1.1 Optimality Criteria

To cast a particular problem as an optimization problem requires, among
other things, a definition of optimality. The value or effectiveness of a given
solution is measured in terms of this optimality criterion, which is variously
called the objective function, performa.nce index, or cost function.

This measure can be defined [22] as an expected value

where Q(x,c) is the cost functional of the solution space vector x and the
input vector c, from the space of input vectors C. The statistical distribution
of c is given by p(c).

For outputs which are deterministic (non-stochastic) functions of the
inputs, which are sets or sampled processes, the performance index can be

For connectionist learning problems, the function Q can be made explicit
in terms of the difference between the actual and desired responses of the
network t o the input set of items.

In general, Q is not a linear function of x or c[n], and the optimization
problem is consequently nonlinear. This is typically the case with connec-
tionist networks, for two reasons. First, the input-output characteristics
of neurological systems, which are paradigmatic for connectionist networks,
are decidedly nonlinear. Second, it appears that it is exactly the nonlinear
characteristics of connectionist networks which permit robust solutions t o
interesting and difficult problems [9, 141.

2.1.2 Constraints

Another consideration in the formulation of an optimization problem is the
expression of constraints on the possible solutions. These constraints can be
of various sources and forms, such as physical laws, limits on resources of
time and money, feasible policies, etc. In the case of connectionist networks,
relevant constraints might arise from a goal to maintain some plausibility for
the network as a biological model, in which case bounded connection weights
corresponding to finite synaptic strengths or limits on time constants corre-
sponding to neural properties of temporal integration and diffusion should
be considered. On the other hand, a goal of implementing connectionist net-
works in hardware might generate constraints due to limited data precision,
unit interconnection strategies, and limits on local processing power.

Although the issue of constraints is important for optimization problems,
it would complicate a basic picture comparing types of algorithms. Also, for
many practical connectionist problems, ul~constrained optimization leads to
solutions within the (inexplicit) constraints. For these reasons, the issue of
constraints in optiinization will not be considered further.

2.1.3 Algorithms

There is a vast domain of optimization dgorithms from which to choose.
Some discriminating features are useful for classifying the choices. The

distinction between gradient and search methods is basic. Search methods,
such as the simplex search [lG], perform function evaluations at various
point in the variable space, the selection of which is motivated by results
at previous points. Consequently, the sea,rch methods can avoid small local
minima in the search for the global minimum. However, the number of
points which must be evaluated in a search method can be intractable for
large problems, little use is made of the shape of the error surface. Gradient
methods are appropriate where the error surface is smooth and the gradient
is computable.

Another major division of methods is between stochastic and determin-
istic methods. The stochastic methods have the property of arbitrarily
increasing the probability of locating the minimum at the cost of greatly
increased steps in the search process. For this reason, the deterministic
methods have been selected for study here. Stochastic methods can be used
in conjunction with deterministic n~ethods, to evaluate the stability of the
region of the minimum.

In concluding this overview, then, the focus of this paper is on itera-
tive deterministic gradient methods for solutions to nonlinear optimization
problems.

2.2 Steepest Descent

There is a common and fundamental structure to the methods of iterative
solutions to optimization problems, which consists of a cycle of two sub-
problems [13, Chapter 71. First, from a chosen starting point, a desirable
direction of search is computed. Then, the function is minimized along the
direction of search. This cycle is repeated until some stopping criteria are
met.

The most obvious choice for a search direction is defined by the gradient
vector,

a f g = O f (x) = -
d x ;

The search is conducted in the opposite direction of the gradient, and is
called steepest descent.

The convergence characteristics of steepest descent are well-known. For
a quadratic function,

the rate of convergence can be shown to depend on the ratio of the largest
and smallest eigenvalues of Q [13, pa,ges 215-2191. This can be appreci-
ated from a graphical point of view as the eccentricity of the error surface.
The more skewed the curvatures of the space, the more the successive line
searches oscillate across the ideal path toward the minimum. If, by a process
of scaling, the eigenvalues are made approximately equal, the error surface
approaches spherical, and the gradient from any point is directly toward the
minimum.

The method for computing the optimal search direction is what serves to
categorize iterative optimization algorithms. They differ in the method of
direction selection, and employ some method of line search. The line search
algorithm, however, can affect the overall performance significantly [7] , and
should be considered carefully.

2.2.1 Line Search

The line search is an optimization subproblem which is generally a standard
component in a more complex optimization algorithm. The problem is to
find the minimum value of the objective function along a particular direction
of search.

min(f (x + aa))
CY

where a is a scalar, and a is the search direction vector.
There are three aspects of the line search, bracketing, sectioning, and

interpolation [7]. A bracket maintains the permissible range for a, which
is reduced in a controlled way as the search progresses. The bracket is
used to protect against undesirable results of an interpolation algorithm for
which assumptions about the objective function are not met; for example,
extrapolation from a point in a function which is not convex in the interval
could lead to values of a outside the interval, and result in a failure to
converge.

Sectioning is a method for subdividing the range of a in order to reduce
the interval in which the minimum must lie. I t is generally assumed that
the objective function is unimodal in the region of interest, and that the
process of sectioning can be carried out to isolate the neighborhood of that
minimum. The most efficient method, as measured by the rate of reduction
of the interval of uncertainty, can be shown to be the Fibonacci search [13].

In this case, the interval reduction rate is

where N is the number of measurements to be made. As N becomes large,
this ratio becomes:

FN-1 - 2
lim - - -

N-+m FN 1 + fi Oe618

which is defines the Golden Section search method.
More powerful methods can be employed in the case of smooth functions,

especially if the gradient is included in the line search. These methods
include Newton's method, which requires the gradient and its first derivative,
and the method of false position, which approximates the gradient derivative
as a difference of two gradients [13]. These methods require that the starting
point be sufficiently close to the actual minimum, in order to guarantee
convergence. They are, therefore, less desirable for a general solution.

The methods of interpolation (and extrapolation) are based on low-order
polynomial approximations to the objective function. The coefficients of
the polynomial can be computed from a few points, and the corresponding
minimum estimated directly. The quadratic interpolation method uses three
data points and has an order of convergence of 1.3 [13]. The cubic method
requires two data points and their associated gradient values, and has a
convergence order of 2 [13].

In general, very few points are maintained in search methods. Most
objective functions are not simple, and the accumulation of information
about their precise behavior is appa.rently not expected to greatly increase
the efficiency of search.

The initial estimate of cr also bears consideration [7, page 281. In practice,

works well, where
A f = max(fk+l - fk, 1 0 ~)

The line search involves design decisions in the tradeoff between accu-
racy and computational cost, especially since high accuracy along search
directions at points far from the global minimum may be unnecessary. Con-
sequently, several criteria have been developed for terminating line searches

prior to absolute convergence. These tests include the percentage test,
Armijo's Rule, the Goldstein Test, and the Wolfe test [13, pages 211-2141.
These methods contain parameters which can be set to vary the accuracy
of the line search, and also contain bracketing conditions which limit the
acceptable values for a.

2.2.2 Accelerated Methods

As discussed above, the method of steepest descent is affected by the contour
of the error-surface in N-space, and its convergence behavior is determined
by the ratio of the largest and smallest eigenvalues of the objective function.
Consequently, steepest descent makes increasingly slow progress the closer
it gets to the solution.

It was observed that the successive gradient directions were nearly or-
thogonal and that alternate minima. along the gradient directions defined a
set of vectors which pointed directly to the global minimum. This observa-
tion lead to accelerated gradient methods. One early such method involved a
weighted averaging of successive minima [24], while other methods combined
successive gradient vectors in order to generate a search direction more con-
sistently in the direction of the solution. This lead, in turn, to the method of
parallel tangents (PARTAN) which generates and maintains parallel search
vectors [13].

The importance of the accelerated gradient methods is that they rep-
resent an attempt to take into consideration the curvature of the objective
surface without conlputation of the second derivative. More powerful tech-
niques which address the same goal more rigorously are the Newton and
quasi-Newton methods.

2.3 Quasi-Newton Methods

The gradient methods of optimization represent the use of a limited amount
of knowledge about the objective functioil in computing its minimum. It is
intuitively clear that the rate of convergence to the minimum should be pro-
portional to the amount of knowledge about the objective function used in
the optimization process. That is to sa,y that second and higher order deriva-
tives provide information a.bout the error surface which can be exploited to
achieve more rapid convergence. It is also clear that this increased informa-
tion has an associated computational cost, so that the goal becomes most
rapid convergence for a given computational effort.

The second derivative, which gives information about the curvature of
the error surface, is the basis for a set of powerful optimization algorithms.
The objective function is approximated by Taylor series expansion as

Thus, the objective function is approximated by a quadratic function, for
which the minimum can be computed directly as

which is Newton's method.
This method involves the computation of the N x N second derivative

matrix and its inversion in order to solve for the minimum x. Since the com-
putation of the second derivative may b e impossible, or computationally ex-
pensive, and since the matrix inversion is O (N ~) , the so-called quasi-Newton
methods were developed in which the inverse matrix is approximated itera-
tively. This avoids the direct computation of the second derivative, and the
computational complexity is reduced by a factor of O (N) [7].

The basic quasi-Newton algorithm consists of the following steps:

1. set a search direction a = -Hg

2. minimize f along a

3. update H

The initial inverse matrix H is selected to be symmetric positive definite
l , usually I. The matrix update procedures are designed to maintain the
positive definiteness of H, and thus the descent property2.

The heart of the algorithm is the update strategy for the approximate
inverse Hessian. The general approach is to consider various update families
which meet the quasi-Newton condition:

where yi = g;+l- g; and Si = x;+l- x;. Thus, the Hessian maps a change in
gradient to a change in position. The families of possible update relations
are indexed by the rank of the update formula. This will become clear in
the following sections.

'A positive definite matrix has only positive eigenvalues. For the Hessian this implies
positive curvature in the error surface, which is a necessary condition for a local minimum.

'The descent property, g T a < 0, guarantees that the search direction is downhill. This
is ensured for u = -Hg if H is positive definite.

2.3.1 R a n k O n e Correct ion

Consider the simple update rela.tion

where
E ; = a z z T

The symmetric rank one3 matrix E; is constrained by the quasi-Newton
condition as follows:

(Hi + E;)y; = 6i

Thus,
T a z z yi = 6i - f I iy;

From the fact that zTyi is a scalar (dot product) it is clear that

1
z = - (S i - Hiy ;)

azTy;

Then choose azTy; = 1, which implies that z = S i - H;yi. Then,

It can be proved that the rank one method converges on a quadratic
function for N linearly independent vectors 6; in at most N+1 iterations such
that HN+1 = G-I [7, 131. Which is merely to say that the inverse matrix
can be found by N iterations, and the minimum computed in one step, given
G-'. The problem, however, is that the rank one method does not guarantee
that positive definiteness is preserved. In addition, the denominator zy ; can
become quite small, leading to numerical difficulties [13, page 2651. These
problems are addressed by the rank two update formulae.

2.3.2 R a n k T w o Correct ion

A more flexible update formula for the inverse matrix approximation would
be of the form:

= Hi + azzT + byy T

3Rank is the maximum number of linearly independent rows, or columns. zzT is
obviously of rank one.

This is a rank two update formula, wl~icl~ has more degrees of freedom than
the rank one method.

The first solution to this problem was advanced by Davidon [4] and
improved by Fletcher and Powell [8], and is called the Davidon-Fletcher-
Powell (DFP) method.

In brief, the quasi-Newton condition must again be met, and with obvi-
ous choices for z = 6 and y = Hy, the constraints azTy = 1 and byTy = -1
arise, yielding as a complete solution:

Another solution to the rank two update equation was developed, which
is the dual of the DFP algorithm, called the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [3, GI.

This algorithm is the dual of the DFP in the sense that B, the approximate
Hessian matrix, and H are interchanged, as are y and 6.

It was soon noted that these methods form a family, which can be gen-
eralized as

Hd = (1 - ~) H D F P + ~ H B F G S

Since this update formula maintains positive definiteness for 4 2 0, this
restriction is usually employed [13].

It has been shown that the Broyden family update procedures maintain
positive definiteness, and converges in at most N iterations for quadratic
functions [8]. However, subsequent application of the DFP method lead to
occasional problems of instability, in which the matrix became singular [2].
The difficulty is due to scaling of the variable x, and the solution involves
rescaling x and reinitializing H. This is apparently true of all members of
the Broyden class.

It has been shown [13, page 2711 that all members of the Broyden family
generate the identical update sequences, and thus reach convergence in the
same number of steps, provided a.n exact line search is used. In the case
of inexact line searches, the BFGS algorithm has consistently given results
superior to the DFP algorithm [7]. As a consequence, the BFGS algorithm
is generally preferred over DFP.

3 Back Propagation Algorithm

The back propagation (BP), or error propagation algorithm for learning in
connectionist networks was reported by Rumelhart, Hinton and Williams in
1985 [20,19]. They developed a network learning algorithm called the gener-
alized delta rule, which is a supervised learning procedure for connectionist
networks with deterministic unit functions. The name error- or back prop-
agation derives from the definition of an error value for each unit, which is
recursively computed from the error values of units to which it is connected.
The error at the output units is defined as the difference between the actual
and desired values.

This algorithm provides a solution to the so-called fault-assignment prob-
lem, which for multi-layer networks had presented an obstacle to research
in the use of connectionist networks. The solution of the weight modifica-
tion problem contributed to breaking the effect of Minsky and Papert's [14]
pessimistic report on connectionist network research. The realization that
practical connectionist solutions using multi-layer networks to interesting
problems could be achieved without a formal guarantee of convergence to a
global optimum spurred a burst of papers on multi-layer network problems
[21, 18, 5, 231.

The generalized delta rule is derived as a miilimization of the squared-
error between the actual and desired values of the output units. The algo-
rithm is derived from the relation

where w;j is the weight of the link connecting unit i to unit j , E is the
squared-error, and 7 is the learning constant. Obviously, in light of the
above discussion of nonlinear optimization, this algorithm is simply gradient
descent with a fixed step size. Contrary to frequent claims, however, it is
not steepest descent, since it lacks a line search along the negative gradient.

As Rumelhart, et. al. indicate, similar learning algorithms were pro-
posed by Parker [17] and Le Cun [19]. It is extraordinary that such a simple
and well-known technique should have been overlooked for so long.

The generalized delta rule, however, goes beyond simple optimization in
that the algorithm permits changes to the network link weights based only
on local information. The gradient computation is decomposed in such a
way that individual units make weight changes based on the error values
of their immediate neighbors. This suggests a direct mapping to a paral-

lel architecture in which individual units are separate processing elements.
Furthermore, this suggests possibly a feasible biological model for learning,
in that locality of information is used to improve performance in response
to repeated examples. The issue of locality, computation and biological
modeling is considered further below.

3.1 Learning Constant

In practice, the back propagation algorithm depends significantly on the
value of the learning constant. Clearly, the optimum value for q depends on
the problem being solved. For error surfaces with broad local minima, the
gradient will be small even far from the solution, and thus a larger value of
q will result in more rapid convergence. However, for problems with steep
narrow minima, a small value of q must be chosen to avoid overshooting the
solution. This can be illustrated using Rosenbrock's function:

f (x) = 100(x2 - 2;)= + (1 - x1)2

This function has a steep narrow curving valley [7], with a minimum at
(1, l) . Starting at (-1.5, -1.0), for example, for values of q 2 0.00169 the
back propagation algorithm will not only fail to converge, the function will
increase rapidly to infinity.

This makes clear the fact that q must be chosen experimentally for each
problem or problem type. Moreover, it is desirable to monitor the progress
of the optimization, so that q can be increased at appropriate points to
speed up convergence.

3.2 Convergence Criteria

A great number of the problems which have been investigated using the back
propagation algorithm are simulated Boolean functions [21, 19, 18, 51. In
these cases, the problems of interest are mappings between, or at least onto,
Boolean vectors which are chosen to encode the desired output.

The Boolean functions are typically approximated using real numbers:
0.1 for 0, 0.9 for 1, for example. Now, it becomes clear that for N out-
put units and M tokens, the optimiza.tion goal is to have the actual error
for each unit/token less than, say 0.3. I11 order to achieve this error, the
units and tokens must be trea,ted independently, and thus the necessary
squared-error convergence value should be (0 . 3) (~ + ~) . Clearly, this num-
ber vanishes rapidly for large 4.f and N. In practice, the output units are

treated separately, and optimization is terminated when all the units are
behaving correctly. This could be formalized by a different error metric,
which makes this explicit:

This defines a minimax procedure for Boolean function realization. It is
offered as a conjecture that the success of the back propagation algorithm
on these Boolean problems is due to the use of the minimax convergence
criterion rather than the required least-squares criterion, since the minimax
criterion identifies convergence long before least-squares would, and thus
avoids the interminable iterations of gradient methods near the solution.

3.3 Momentum

The momentum term [19] is a modification to the back propagation algo-
rithm designed to alleviate the problem of oscillation for a given choice of 7
[19]. The momentum term is defined by:

The momentum term is clearly a form of the convergence acceleration tech-
niques for gradient methods discussed above.

The effect of the momentum term is to magnify 7 by a factor 1/(1 - p) for
plateau regions of weight space where the gradient is essentially constant4.
The effect of the momentum term for narrow steep regions of weight space
is to focus the movement in a downhill direction by averaging out the com-
ponents of the gradient which alternate in sign.

4 Computational Complexity

The computational complexity of nonlinear optimization algorithms is an
important consideration in choosing a tool for research in connectionist net-
work learning. From a practical point of view, the important parameter is

4This is derived precisely in Appendix A

the number of floating point operations required to reach a solution. This
depends on the convergence rate of the optimization algorithm as well as the
computational complexity per iteration of the algorithm. That is, the com-
bination of algorithmic effectiveness and computational complexity must be
considered in evaluating algorithms.

A measure of the combined time complexity and optimization efficiency
is the approximate total number of operations to reach a solution. Let

where 3 is the cost of solution for a task using a particular algorithm, which
is composed of various components, such as gradient evaluations, function
evaluations and search direction updates, each of which has complexity C;.
Each component is executed Ri times in solving the problem in question.
The best algorithm is that for which F is minimal.

The complexity of the components of the algorithms reviewed in this
report are developed in Appendix B. The results of applying these methods
t o several example problems are reported here to give some experience with
the effectiveness of the different algorithms.

4.1 Example Problems

Several experiments were conducted to compare the convergence properties
of the back propagation (BP), steepest descent (SD), DFP and BFGS al-
gorithms. The convergence was measured as a function of floating point
operations in order to provide a basis for choosing an algorithm for further
use.

4.1.1 Rosenbrock's Function

The first problem chosen was Rosenbrock's function, which is defined above.
This is a numerical problem which requires minimization over two param-
eters, which is used as a standard test problem for optimization algorithm,
since the surface has a minimum which lies at the base of steep and curving
walls.

The complexity values for the Rosenbrock function evaluation and gra-
dient evaluation were computed directly from the function and gradient
equations. These values were (4Mf4A) and (5M+3A) respectively. The
complexity values per iteration were computed using N = 2. Table 1 gives
the complexity constants for the different algorithms.

Table 1: Complexity Constants for Rosenbrock's Function

DFP 2856
BFGS 1979

Table 2: Solution Statistics for Rosenbrock's Function

The four optimization algorithms were tested on this problem for a single
initial condition5. A value of 0.001 was used as a termination criterion. The
learning constant for the BP algorithm was no momentum was used.

The results of the experiment are given in Table 2, where the number
of iterations, function evaluations and gradient evaluations listed for each
optimization algorithm.

The convergence behavior of these algorithms is seen in Figure 1. The
graphs show the convergence as a function of the total number of operations
at each iteration.

The graph makes clear the fact that the first order algorithms make
excruciatingly slow progress as they get closer to the minimum. This is
precisely where the second order methods show dramatic convergence, since
the Hessian provides excellent orientation to the search vector.

4.1.2 XOR Problem

The XOR problem was also tested. This is a very simple problem which
requires the ability to compute mutual exclusion between two bits. I t is a
standard connectionist network demonstration problem because the input
patterns are not linearly separable, and thus require a multilayer network.

A network consisting of two input units, one hidden unit, and one output
unit, as well as threshold unit (K=2,0=1) was used. There were seven links
(N=7). The training set consists of four examples (T=4). Using these pa-

'The initial starting point for this test was (-1.2,1.00).

Figure 1: Progress of Optimization for Rosenbrock7s Function

Algorithm Cite, Cfunc Cgrad

106 146
DFP/BFGS 413 106 146

Table 3: Complexity Constants for XOR Network

rameters, the algorithm component complexity constants can be computed
as shown in Table 3.

This problem was repeated 5 times for each algorithm, using randomly
initialized weight values. The same 5 initial networks were used for each
algorithm. The target values for 0 and 1 were 0.1 and 0.9, respectively. A
termination criterion of 0.001 was used.

The average number of iterations, function evaluations and gradient eval-
uations was computed for each algorithm. These results are summarized in
Table 4. The BP algorithm was run only on one network with a learning
constant of 0.15 and no momentum. The optimization was terminated after
10,000 iterations, at which point the algorithm had reached an objective
function value of 0.04279. Thus, after 2,338,000 operations, no solutions
was found. A second run was made with a momentum value of 0.9, which
is listed in the table6. The DFP algorithm reached the termination value of

'Note that Cite, is now 28 instead of 14 because of the momentum term in the update

DFP 176 171 66750
BFGS 22 59 54 23224

Table 4: XOR Problem at 0.001 criterion
- - - - -

3063 3064 3063 771968

BFGS 19037

Table 5: XOR Results at 0.003 criterion

0.001 in only one of the five cases; the counts for this single case are given
in Table 4.

Because of the problems with the DFP algorithm reaching an objective
function value of 0.001, a second experiment was conducted in which the
termination condition was relaxed to 0.003. This represents a maximum
squared error of 0.024, or a maximum error of 0.15, which still guarantees
correct response. The average number of iterations, function evaluations
and gradient evaluations are summarized in Table 5. The BP algorithm
was run with a learning constant of 0.15 and momentum of 0.9. The DFP
algorithm failed to reach the termination value of 0.003 in one of the five
cases; this case is excluded from the average values.

The convergence behavior of the different methods for this problem is
shown in Figures 2 through 5. It can be seen that the DFP algorithm is
strongly dependent on initial condition, as is steepest descent. BP with
momentum gives more consistent results, while BFGS gives most consistent
and most rapid convergence.

4.1.3 Multiplexor Problem

Finally, a small multiplexor problem was also tested [I]. The problem con-
sists of a two-bit select field, a four-bit data field, and a one-bit output field.
The output bit is to correspond to the selected bit of the input data field.

equation.

19

Figure 2: Solutions of XOR using BP with momentum

Figure 3: Solutions of XOR using Steepest Descent

Figure 4: Solutions of XOR using DFP

Figure 5: Solutions of XOR using BFGS

Table 6: Complexity Constants for Multiplexor Network

This problem was solved using a connectionist network with one out-
put unit, four hidden units and six input units, with a total of 39 links
(0=1,K=5, N=39). The network was trained on all possible input data
patterns (T=64). The complexity constants for this network are shown in
Table 6.

Five randomly initialized networks were optimized until a termination
criterion of 0.003 mean squared error was met, or a maximum iteration
count, or failure of the line search algorithm. The average number of it-
erations, function evaluations and gradient evaluations was then computed
over the test runs which met the 0.003 squared error goal. These results are
summarized in Table 7. The average number of operations to reach this
level of convergence was computed from the constants in Table 6.

7645 7646 7645 129879404

DFP
BFGS 181 367 351 7947093

Table 7: Multiplexor Results at 0.003 criterion

The BP algorithm was run with a learning constant of 0.15 and a mo-
mentum constant of 0.9. The algorithm failed to reach the 0.003 criterion
in only one case, when the maximum iteration count of 10,000 was reached,
with a mean squared error value of 0.004. The table thus reflects the average
of four runs. The steepest descent algorithm met the 0.003 criterion in all
five cases.

The DFP algorithm failed in every case to reach convergence. The algo-
rithm was apparently thrashing, as evidenced by the huge value of a, and
the large ratio of function/gradient evaluations per line search (25). This
suggests that the iterative approximation of the inverse second derivative
matrix is inaccurate and misleading at points far from local solutions. It
has been suggested that the approximation matrix be reinitialized every N
iterations to address this problem, but this solution was not investigated in
this experiment.

The BFGS algorithm failed to reach convergence in two cases, halting at
mean squared error values of 0.008 and 0.014.

One might conclude from this experiment that the second-order methods
offer computationally efficient convergence rates a t the cost of an increased
risk of getting stuck in local minima wluch are not acceptable as problem
solutions.

4.1.4 Speech Recognition Problem

Finally, one acoustic phonetic discrimination task is selected as more rep-
resentative of realistic problems. This task involves the discrimination of 5
consonant phonemes in the context of 3 vowels in simple consonant-vowel
syllables.

The network consists of 3 layers, with 16 input units, 16 hidden units in
the first layer, 12 hidden units in the second layer and 5 output units (K=33,
0=5). The number of links is 1054. For this experiment, 10 repetitions of
each of 15 utterances were used, which had an average sample length of 60.
This results in a sample training set size of 9000. Under these conditions,
the component complexities are as shown in Table 8.

Note that the number of training samples is large relative to the num-
ber of network connections. Thus, while the complexity of the second-order
methods is generally measured by the N2 operations per iteration, the func-
tion and gradient evaluations begin to dominate in all algorithms, as T >> N.
Consequently, the convergence power of the quasi-Newton methods ensures
that the computational complexity of networks solutions is likely to remain

Table 8: Complexity Constants for Acoustic Phonetic Network

Algorithm
BP
SD
DFPIBFGS

several orders of magnitude less than those obtained by BP methods, even
for large problems.

C i t e r C j u n c Cgrad
2108 19998000 38583000
4216 20000108 38585108

7235183 20000108 38585108

5 Locality and Parallelism

Locality, or the constraint that each unit be able to make appropriate weight
changes on the basis of only local information, has been used to restrict the
use of optimization algorithms on computational and philosophical grounds.
The degree to which the use of local information should constrain the choice
of optimization algorithms is examined in the following sections.

5.1 Locality and Biological Modeling

As was noted above, the BP algorithm provides a decomposition of the
gradient computation such that weights changes can be made based on local
information. This has been taken to suggest an architecture for parallel
processing, as well as a plausible model for biological learning.

In light of the availability and convergence rates of higher-order nonlinear
optimization algorithms, such as the quasi-Newton methods, it becomes
imperative to evaluate the restriction of locality from both the perspective
of biological modeling and parallel processing.

The question of whether a connectionist network algorithm ought to meet
some criterion of biological pla,usibility a.ppea.rs to demand an affirmative an-
swer. It turns out, however, that this requirement is difficult to maintain. It
will be argued, therefore, tha.t failure to meet supposed biological plausibility
constraints should not rule out the use of powerful optimization techniques.

If faithfulness to a biological model is adopted as a design goal, then
it must be decided from the start which biological process is intended to
be modeled. There are processes of development, adaptation, learning and
design. Each of these processes has its orvn mechanisms, initial conditions
and time scales.

The process of design refers to the optimization of basic architectures
which endow an organism with neurosensory processing capabilities and po-
tentialities which, in turn, are the substrate of development, adaptation and
learning. This process is understood to consist of either the quasi-random
generation of genetic variations which interact with the environment under
the law of survival, or the personal expression of the infinite intelligence of
the Creator. Attempting to model the evolutionary process requires that
the process be well-focussed, and accelerated by many orders of magnitude.
On the creation model, those of us with finite minds and finite lifespans
may wish to adopt a pragmatic approach to solving design issues, in order
to live to see the results. Thus, it is quite possible to view connectionist
networks solely as a computational paradigm, without regard for the biolog-
ical process to which the networks are analogous. In this case, the choice of
optimization algorithms is unrestricted.

In the second place, it is not clear that biological plausibility can be well
defined, given the current state of ignorance about biological learning pro-
cesses. It would therefore seem premature to restrict the use of optimization
algorithms based on incomplete understanding of the constraints.

In the third place, the biological plausibility of the BP algorithm is rather
meager. The requirement that error values back-propagate along symmetric
links and serve to increase or decrease synaptic strengths seems improbable.
Furthermore, it is becoming well known that learning occurs through rapid
synaptic formation, and not (merely) by synaptic strength modification. In
addition, it is quite clear that there are global effects in learning, which
are probably chemically mediated. Thus, although BP may be plausible for
some type of learning process, it fails to account for other types.

Consequently, the issue of biological plausibility, although interesting,
ought to be reserved for the time when this requirement can be more accu-
rately specified, and clearly reserved for problems in which biological mod-
eling is part of the scientific objective.

5.2 Locality and Parallelisnl

In order to validate the use of locality as a principle for restricting on compu-
tational grounds the choice of optinlization algorithm, two conditions ought
to be met. It should be the case that methods which are local can be easily
mapped to parallel architectures, whereas nonlocal methods cannot be eas-
ily mapped, and that execution times for local methods scale well with the
number of processors, whereas the nonlocal methods do not.

It is clear that the BP algorithm can be mapped onto a parallel architec-
ture with N processors, where N is the number of units. The quasi-Newton
methods more naturally map onto architectures of W processors, where W
is the number of links. Although time does not permit a detailed exam-
ination of the parallelization of each algorithm, including interconnection
issues, it is clear that the mapping of an order W process onto N processors
may not be straightforward, or result in O(N) speedup. Since N << W, it
is more likely to have N than W processors. However, for large problems,
the number of units may exceed the number of processors. In this case,
the (marginal) advantage of the BP algorithm as far as parallelism may
disappear completely.

6 Conclusion

We conclude that there are iterative gradient techniques that are far superior
to back propagation as tools for solving nonlinear optimization problems.
We also conclude that the principle of locality should not be used to restrict
the use of optimization algorithms, either for biological modeling or parallel
processing. We finally conclude that the BFGS algorithm is one of the
most powerful and appropriate methods for solving connectionist learning
problems.

A Back-Propagation Momentum Term

The form of acceleration method for gradient-descent proposed for the back-
propagation algorithm [19, 181 is defined by:

where a, is the search vector in weight space (generally -gn), 77 is the
learning constant, and p is the momentum constant.

This is a first-order difference equation in Aw, which in the general form

has as its solution

The momentum equation, then, can be written as:

since an = p and b, = van.
Since Awn+* = wn+, - w,, this becomes:

Also, since Awl = wl - wo = qao, this can be reduced to

This, in turn, is a first-order difference equation in w, which can be
solved in the same way, with an = 1 and b, = 7 Cy=o pn-3aj. Thus,

By reordering the summation terms, this becomes:

n a-k

Now, assume that the gradient is essentially constant in a certain region
of weight space. Thus,

an X on-1 = a

Under these conditions,

since
n-k n - k

The finite sum can be expressed as a difference of infinite sums:

Simplified by factoring P"+ and some algebra:

Using binomial series expansion, this can be rewritten as:

Combining terms, this becomes:

This equation makes clear the effect of the acceleration term p on the
weight update formula. If the gradient is relatively small, as in a plateau,
the weight increment is small, and the number of iterations to cross the

1- n t l
plateau can be quite large. As n get large, becomes small, and the

1 effective acceleration factor approaches G.

B Complexity

The computational complexity of several optimization algorithms are dis-
cussed in this appendix. First, some notation is defined, and then the time
and space complexity of the various algorithm components are developed.
These results are summarized in Table 9.

B . l Notation

We define a connectionist network for the purposes of this derivation using
the following notation:

U = {ul, 212, ..., uIC}, units of the net.work, not counting input units.

0 = number of output units, 0 < IS.

W = {w i jd) , a set of connection strengths from unit u; to u j with delay d

N = number of links in the network, N = IWI.

T = total number of token samples in training set.

The connectionist network is represented by X = (U, W). It is noted that
N >> h', for most networks.

B.2 Function Evaluations

The evaluation of the objective function involves a forward pass through the
network and an accumulation of the squared error at the output units for
each item in the training set.

The forward pass requires, at each sample point, one multiplication and
addition for each link, in computing the contribution to the potential func-
tion, an evaluation of the unit output function for each unit, and a multiply
and two adds for each output unit to evaluate the squared error. The unit
output function requires an exponential function call, an add and a divide.
Assume that the exponential function evaluation is equivalent to a multipli-
cation operation.

Then, the complexity of the function evaluation is:

which, for M = A is:

operations.
The space requirements are determined primarily by the weight values

and unit values N + K ; if all token activations are stored, this value is
T * (N + K) .

B.3 Gradient Computation

The gradient computation is accomplished by computing the error at the
output units, back propagating the error across all the units and links, and
accumulating the error for each weight. The complexity of the gradient is
developed for the complete gradient method which is valid for networks with
recurrent links.

It is assumed that the forward activation pass is computed prior to the
gradient call, and that the unit activation history is available. Then, at each
time step, the output unit error is computed for each output unit, the unit
slope is computed for each unit, and the local unit error is multiplied by
the link weight for each link, and accumulated in a global error buffer. The
contribution to the gradient is computed for each link by summing over time
the product of the appropriate local error and unit output values.

Thus, the gradient complexity is

which for M = A is:
C g = T * (4 N + 2 K + 0)

operations. If the forward pass must be recomputed, the complexity be-
comes:

Ci = T * (6 N + 3Ir' + 0)

B.4 Weight Update

The weight update for the BP algorithm involves multiplying the search
vector by the learning constant and updating the weight vector. For the SD
algorithm, the search vector is multiplied by the minimizing scalar constant.
This requires N mults and adds. Momentum would add another N(M+A)
operations.

B.5 Line Search

The line search involves a series of function evaluations and gradient evalu-
ations, several dot product evaluations for checking descent conditions and
completion criteria, and some arithmetic overhead for interpolation and ex-
trapolation.

A dot product operation which computes the magnitude of the gradi-
ent is involved in every call to the line search. This adds N(M+A) opera-
tions. Each function evaluation step involves a weight update that requires
N(M+A) operations, and each gradient evaluation is followed by another
dot product to check for termination conditions. Thus, the line search al-
gorithm adds N(M+A) operations per iteration, function evaluation and
gradient evaluation.

B.6 Matrix Update

The BFGS algorithm specifies an update formula for the approximate in-
verse Hessian matrix. The complexity of this operation will be analyzed as
representative of the quasi-Newton methods.

The update procedure requires a vector difference, a matrix product,
two dot products, and a accumulation step. The algorithm also requires
a matrix product to modify the gradient direction by the inverse matrix.
The vector difference involves a scaling factor, so N(M+2A) operations are
needed. The matrix product operation requires N * N (M + A) operations,
and each dot product N(M+A).

The accumulation step involves 4 adds and 5 multi lies for each element
of H. Since H is symmetric, this can be reduced t o NPN+')(5M + 4A) .

The total then becomes:

Counting A = A4, this becomes:

The space requirements for the BFGS method are dominated by the in-
verse Hessian matrix, which is N ~ . Since this matrix is symmetric, this could
be reduced to $ N (N + 1) . This would slightly complicate the addressing
scheme for computation.

The memoryless quasi-Newton methods [13] are very similar; the use of
the identity matrix instead of H for updates reduces the space requirements
to O (N) from O (N 2) . The computation requirements are reduced by one
matrix product and one dot product, yielding N(9.5 + 4 . 5 N) operations.

B.7 Summary

This section draws together the complexities of the algorithm components to
give costs per iteration, function evaluation and gradient evaluation which
are parameterized by the size of the network and training set. These results
are summarized in Table 9.

The BP algorithm consists of a gradient evaluation, weight update and
function evaluation per iteration. The SD algorithm consists of a line search,
which contains function and gradient evaluations, and a weight update per
iteration. The BFGS and DFP algorithms consist of a line search and a
matrix update and search vector alignment step. The table summarizes the

Table 9: Computational Complexity of Algorithm Components

Algorithm 1 Citer c j u n c Cgrad

computational cost per iteration, function evaluation and gradient evalua-
tion for each of the four optimization algorithms. Recall that the line search
adds 2N operations to each iteration, function and gradient call. Also re-
call that the momentum term adds 2N operations per iteration for the BP
algorithm.

BP
SD
BFGS
DFP

References

2N (2N+3K+30)T (4N+2K+O)T
4N (2N+3K+30)T + 2N (4N+2K+O)T + 2N

N(13.5 + 6.5N) (2N+3Ii+30)T + 2N (4N+2K+O)T + 2N
N(13.5 + 6.5N) (2N+3Ii+30)T + 2N (4N+2K+O)T + 2N

[I] Charles William Anderson. Learning and Problem Solving with Multi-
layer Connectionist Systems. PhD thesis, University of Massachusetts,
September 1986.

[2] Yonathan Bard. On a numerical instability of Davidon-like methods.
Mathematical Computation, 223665-666, 1968.

[3] C. G. Broyden. The convergence of a class of double-rank minimization
algorithms. J. Inst. Maths Applics, 6:76-90,222-231, 1970.

[4] William C. Davidon. Variable Metric Methods for Minimization. AEC
Research and Development Report ANL-5990 Rev, Argonne National
Laboratories, November 1959.

[5] Jeffrey L. Elman and David Zipser. Learning the Hidden Structure of
Speech. Technical Report ICS Report 8701, UCSD Institute for Cogni-
tive Science, February 1987.

[6] Roger Fletcher. A new approach to variable metric algorithms. The
Computer Journal, 13(3):317-322, August 1970.

[7] Roger Fletcher. Practical Methods of Optimization. Volume 1 Uncon-
strained Optimization, John Wiley & Sons, 1980.

[8] Roger Fletcher and M. J. D. Powell. A rapidly convergent descent
method for minimization. The Computer Journal, 6:163-168, 1963.

[9] Stephen Jose Hanson and David J. Burr. Knowledge representation in
connectionist networks. In Proceedings ofthe Sixth National Conference
on Artijcial Intelligence, July 1987. submitted.

[lo] Geoffrey Hinton, Terrence Sejnowski, and David Ackley. Boltzmann
Machines: Constraint Satisfaction Networks That Learn. Technical
Report CMU-CS-84-119, Carnegie-Mellon University, 1984.

[ll] John J. Hopfield. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the Natural Academy
of Sciences USA, 79:2554-2558, 1982.

1121 F. A. Lootsma, editor. Numerical Methods for Non-linear Optimiza-
tion. Academic Press, 1972.

1131 David G. Luenberger. Linear and Nonlinear Programming. Addison-
Wesley, second edition, 1984.

[14] Marvin Minsky and Seymour Papert. Perceptmns. MIT Press, Cam-
bridge, MA, 1969.

[15] W. Murray, editor. Numerical Methods for Unconstrained Optimiza-
tion. Academic Press, New York, 1972.

[16] J. A. Nelder and R. Mead. A simplex method for function minimization.
The Computer Journal, 7(4):308-313, January 1965.

[17] David B. Parker. Learning- Logic. Center for Computational Research
in Economics and Management Science TR-47, Massachusetts Institute
of Technology, 1985.

1181 David C. Plaut, Steven Nowlan, and Geoffrey Hinton. Experiments
on Learning by Back Propagation. Technical Report CMU-CS-86-126,
Carnegie-Mellon University, 1986.

[19] David E. Rumelhart, Goeffrey Hinton, and Ronald Williams. Learn-
ing internal representations by error propagation. In J.L.McClelland
D.E.Rumelhart and the PDP research group, editors, Parallel Dis-
tributed Processing: Explorations in the hlicrostructure of -Cognition:
Volume I Foundations, chapter 8, A4IT Press, Cambridge, MA, 1986.

[20] David E. Rumelhart, Goeffrey Hinton, and Ronald Williams. Learning
Internal Representations by Error Propagation. Institute for Cognitive
Science ICS Report 8506, University of California, San Diego, Septem-
ber 1985.

[21] Terrence J. Sejnowski and Charles R. Rosenberg. NETtaEk: A Parallel
Network that Learns to Read Aloz~d. Technical Report JHU/EECS-
86/01, Johns Hopkins University, 1986.

[22] Ya. 2. Tsypkin. Adaptation and Learning in Automatic Systems. Vol-
ume 73 of Mathematics in Science and Engineering, Academic Press,
1971. Translated by Z. J. Nikolic.

[23] Raymond L. Watrous and Lokendra Shastri. Learning phonetic features
using connectionist networks. In Proceedings of the Tenth International
Joint Conference on Artificial Intelligence, pages 851-854, August 1987.

[24] J. H. Wegstein. Accelerating convergence of iterative processes. Com-
munications of the ACM, 1(6):9-13, 1958.

