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Abst rac t  
The problem of learning using coiiilectionist networks, in which 

network connection strengths are modified systematically so that the 
response of the network increasingly approximates the desired response 
can be structured as an optimization problem. The widely used back 
propagation method of connectionist learning [19, 21, 181 is set in the 
context of nonlinear optimization. In this framework, the issues of 
stability, convergence and parallelism are considered. As a form of 
gradient descent with fixed step size, back propagation is known to  
be unstable, which is illustrated using Rosenbrock's function. This is 
contrasted with stable methods which involve a line search in the gra- 
dient direction. The convergence criterion for connectionist problems 
involving binary functions is discussed relative to the behavior of gra- 
dient descent in the vicinity of local minima. A minimax criterion is 
compared with the least squares criterion. 

The contribution of the momentum term [lg,  181 to  more rapid 
convergence is interpreted relative to the geometry of the weight space. 
It is shown that in plateau regions of relatively constant gradient, the 
momentum term acts to increase the step size by a factor of e, 
where p is the momentum term. In valley regions with steep sides, t i e  
momentum constant acts to focus the search direction toward the local 
minimum by averaging oscillations in the gradient. 



The Davidon-Fletcher-Powell [8] and Broyden-Fletcher-Goldfarb- 
Shanno [7] methods are considered in light of computational complex- 
ity (time and space), convergence properties, and suitability to parallel 
machines. These algorithms approximate the second derivative of the 
objective function iteratively. This additional information about the 
shape of the weight space allows for dramatically faster convergence. 
The performance of these algoritlims is compared with the steepest de- 
scent and back propagation algorithms for several sample connectionist 
problems, including exclusive-OR and a multiplexor problem. 

It is concluded that for moderate sized problems to be solved on 
sequential machines, the use of higher-order techniques is mandated 
by their excellent convergence properties. 

1 Introduction 

The ability to extract structure from data is an important prerequisite for 
artificial intelligence, and especially for artificial perception. Here, it is often 
uncertain which characteristics of the object of perception, as mediated by 
the sensing mechanism, serve to define the corresponding psychological cat- 
egories of perception. Thus, the relationship between stimulus and percept 
is difficult to specify. 

This is the case, for example, in speech recognition, where the acoustic 
correlates of phonetic categories have been difficult to determine, since they 
are multi-dimensional, context-dependent and speaker dependent. 

A direct approach to this problem is to  observe parameters of the stim- 
ulus and encode regularities in rules. For example, many of the methods for 
speech recognition are derived from visual observations of the speech wave- 
form represented as spectral coefficients over time. Consequently, a process 
which is inherently time-dependent is viewed spatially as a static pattern. 
This difference in presentation may have negative consequences. Conse- 
quently, the learning approach provides a means for extraction of significant 
signal characteristics which may be less obvious visually, but inherent nev- 
ertheless in the acoustic signal [5] .  

The human speech processing system is extremely sensitive to small vari- 
ations along certain dimensions of the acoustic signal, and indifferent to 
variations along others. Thus, attempts to formalize in rules the regularities 
of the signal must be flexible with regard to variations. In other approaches, 
an estimate of the dimensions and correlations of the acoustic space as re- 
lated to  the perceptual space is computed. LVhere this dimensional analysis 
is inadequate, a small variation in the input signal leads to an error in clas- 



sification; this is, in fact, often characteristic of current speech recognition 
sys tems. 

The strength of the connectionist approach seems to be that the multiple 
sources of knowledge can be appropriately integrated, and that statistical 
covariance of multiple cues can be estimated accurately from small data 
samples [9]. 

Learning in connectionist networks is not only important, it is in general 
difficult. The networks are often complex, involviilg many nodes and even 
more interconnections. This results in a learning problem of high dimension- 
ality. In addition, the computational characteristics of the network nodes 
are typically nonlinear. This nonlinearity constrains the choice of learning 
algorithm which will solve the problem. 

Such learning algorithms exist and have been used very successfully in 
solving a wide variety of connectionist learning tasks [19, 11, 101. These al- 
gorithms obtain problem solutions often after thousands of iterations, which 
may take minutes or hours of processing. Consequently, the question of com- 
putational efficiency and complexity is important. Are there more powerful 
methods of learning which will find correct solutions in significantly shorter 
time? 

The problem of learning using connectionist networks, in which the net- 
work connection strengths are modified systematically so that the response 
of the network increasingly approsinlates the desired response, can be struc- 
tured as an optimization problem. 

In the past thirty years, the subject of numerical techniques for nonlinear 
optimization has been extensively researched and is highly developed [12,15, 
71. The properties of stability and convergence rate for many optimization 
algorithms have been reported and investigated computationally. 

The goal of this paper is to set the widely used back propagation method 
of connectionist learning [19,21, lS] in the context of nonlinear optimization. 
In this framework, the issues of stability, convergence and parallelism are 
considered. In addition, the contribution of the momentum term to more 
rapid convergence is interpreted relative to the geometry of the weight space. 

Further, several more powerful optimization methods are considered in 
light of computational complexity (time and space), convergence proper- 
ties, and suitability to parallel machines. It is concluded that for moderate 
sized problems on sequential machines, the use of higher order techniques is 
mandated by their excellent conrrergence properties. 



2 Nonlinear Optimization 

The problem of optimization has been widely studied in many disciplines. 
Indeed, as Tsypkin notes [22, page 51. 

One can say without exaggeration that the problem of optimality 
is a central problem of science, engineering and even everyday 
life. 

I t  surfaces in control theory, economics, operations research, chemical en- 
gineering, VLSI design and artificial intelligence. The mathematical theory 
is highly developed, and well-founded on proofs of convergence rates and 
stability for many powerful algorithms. The availability of digital com- 
puters since 1950 has fostered the enrichment of the field with numerical 
algorithms which can be applied to very large problems, with thousands of 
variables. These well-researched techniques are most appropriate for use by 
researchers in connectionist learning, which often involves nonlinear opti- 
mization of large networks. 

2.1 Overview 

In order to  discuss intelligently any method of optimization, it is necessary 
first to  give a careful definition of the optimization problem, and intro- 
duce some formal notation. It is also necessary t o  locate, within the vast 
landscape of general optimization algorithms, the set of methods under con- 
sideration. The following overview serves that purpose. 

2.1.1 Optimality Criteria 

To cast a particular problem as an optimization problem requires, among 
other things, a definition of optimality. The value or effectiveness of a given 
solution is measured in terms of this optimality criterion, which is variously 
called the objective function, performa.nce index, or cost function. 

This measure can be defined [22] as an expected value 

where Q(x,c) is the cost functional of the solution space vector x and the 
input vector c, from the space of input vectors C. The statistical distribution 
of c is given by p(c). 



For outputs which are deterministic (non-stochastic) functions of the 
inputs, which are sets or sampled processes, the performance index can be 

For connectionist learning problems, the function Q can be made explicit 
in terms of the difference between the actual and desired responses of the 
network t o  the input set of items. 

In general, Q is not a linear function of x or c[n], and the optimization 
problem is consequently nonlinear. This is typically the case with connec- 
tionist networks, for two reasons. First, the input-output characteristics 
of neurological systems, which are paradigmatic for connectionist networks, 
are decidedly nonlinear. Second, it appears that it is exactly the nonlinear 
characteristics of connectionist networks which permit robust solutions t o  
interesting and difficult problems [9, 141. 

2.1.2 Constraints 

Another consideration in the formulation of an optimization problem is the 
expression of constraints on the possible solutions. These constraints can be 
of various sources and forms, such as physical laws, limits on resources of 
time and money, feasible policies, etc. In the case of connectionist networks, 
relevant constraints might arise from a goal to maintain some plausibility for 
the network as a biological model, in which case bounded connection weights 
corresponding to finite synaptic strengths or limits on time constants corre- 
sponding to  neural properties of temporal integration and diffusion should 
be considered. On the other hand, a goal of implementing connectionist net- 
works in hardware might generate constraints due to  limited data precision, 
unit interconnection strategies, and limits on local processing power. 

Although the issue of constraints is important for optimization problems, 
it would complicate a basic picture comparing types of algorithms. Also, for 
many practical connectionist problems, ul~constrained optimization leads to  
solutions within the (inexplicit) constraints. For these reasons, the issue of 
constraints in optiinization will not be considered further. 

2.1.3 Algorithms 

There is a vast domain of optimization dgorithms from which to choose. 
Some discriminating features are useful for classifying the choices. The 



distinction between gradient and search methods is basic. Search methods, 
such as the simplex search [lG], perform function evaluations at various 
point in the variable space, the selection of which is motivated by results 
at previous points. Consequently, the sea,rch methods can avoid small local 
minima in the search for the global minimum. However, the number of 
points which must be evaluated in a search method can be intractable for 
large problems, little use is made of the shape of the error surface. Gradient 
methods are appropriate where the error surface is smooth and the gradient 
is computable. 

Another major division of methods is between stochastic and determin- 
istic methods. The stochastic methods have the property of arbitrarily 
increasing the probability of locating the minimum at the cost of greatly 
increased steps in the search process. For this reason, the deterministic 
methods have been selected for study here. Stochastic methods can be used 
in conjunction with deterministic n~ethods, to evaluate the stability of the 
region of the minimum. 

In concluding this overview, then, the focus of this paper is on itera- 
tive deterministic gradient methods for solutions to  nonlinear optimization 
problems. 

2.2 Steepest Descent 

There is a common and fundamental structure to the methods of iterative 
solutions to optimization problems, which consists of a cycle of two sub- 
problems [13, Chapter 71. First, from a chosen starting point, a desirable 
direction of search is computed. Then, the function is minimized along the 
direction of search. This cycle is repeated until some stopping criteria are 
met. 

The most obvious choice for a search direction is defined by the gradient 
vector, 

a f g = O f ( x )  = - 
d x ;  

The search is conducted in the opposite direction of the gradient, and is 
called steepest descent. 

The convergence characteristics of steepest descent are well-known. For 
a quadratic function, 



the rate of convergence can be shown to depend on the ratio of the largest 
and smallest eigenvalues of Q [13, pa,ges 215-2191. This can be appreci- 
ated from a graphical point of view as the eccentricity of the error surface. 
The more skewed the curvatures of the space, the more the successive line 
searches oscillate across the ideal path toward the minimum. If, by a process 
of scaling, the eigenvalues are made approximately equal, the error surface 
approaches spherical, and the gradient from any point is directly toward the 
minimum. 

The method for computing the optimal search direction is what serves to 
categorize iterative optimization algorithms. They differ in the method of 
direction selection, and employ some method of line search. The line search 
algorithm, however, can affect the overall performance significantly [7] ,  and 
should be considered carefully. 

2.2.1 Line Search 

The line search is an optimization subproblem which is generally a standard 
component in a more complex optimization algorithm. The problem is to 
find the minimum value of the objective function along a particular direction 
of search. 

min( f (x + aa)) 
CY 

where a is a scalar, and a is the search direction vector. 
There are three aspects of the line search, bracketing, sectioning, and 

interpolation [7]. A bracket maintains the permissible range for a, which 
is reduced in a controlled way as the search progresses. The bracket is 
used to protect against undesirable results of an interpolation algorithm for 
which assumptions about the objective function are not met; for example, 
extrapolation from a point in a function which is not convex in the interval 
could lead to values of a outside the interval, and result in a failure to 
converge. 

Sectioning is a method for subdividing the range of a in order to  reduce 
the interval in which the minimum must lie. I t  is generally assumed that 
the objective function is unimodal in the region of interest, and that the 
process of sectioning can be carried out to isolate the neighborhood of that 
minimum. The most efficient method, as measured by the rate of reduction 
of the interval of uncertainty, can be shown to be the Fibonacci search [13]. 



In this case, the interval reduction rate is 

where N is the number of measurements to be made. As N becomes large, 
this ratio becomes: 

FN-1 - 2 
lim - - - 

N-+m FN 1 + fi Oe618 

which is defines the Golden Section search method. 
More powerful methods can be employed in the case of smooth functions, 

especially if the gradient is included in the line search. These methods 
include Newton's method, which requires the gradient and its first derivative, 
and the method of false position, which approximates the gradient derivative 
as a difference of two gradients [13]. These methods require that the starting 
point be sufficiently close to the actual minimum, in order to guarantee 
convergence. They are, therefore, less desirable for a general solution. 

The methods of interpolation (and extrapolation) are based on low-order 
polynomial approximations to the objective function. The coefficients of 
the polynomial can be computed from a few points, and the corresponding 
minimum estimated directly. The quadratic interpolation method uses three 
data points and has an order of convergence of 1.3 [13]. The cubic method 
requires two data points and their associated gradient values, and has a 
convergence order of 2 [13]. 

In general, very few points are maintained in search methods. Most 
objective functions are not simple, and the accumulation of information 
about their precise behavior is appa.rently not expected to greatly increase 
the efficiency of search. 

The initial estimate of cr also bears consideration [7, page 281. In practice, 

works well, where 
A f  = max(fk+l - fk, 1 0 ~ )  

The line search involves design decisions in the tradeoff between accu- 
racy and computational cost, especially since high accuracy along search 
directions at  points far from the global minimum may be unnecessary. Con- 
sequently, several criteria have been developed for terminating line searches 



prior to absolute convergence. These tests include the percentage test, 
Armijo's Rule, the Goldstein Test, and the Wolfe test [13, pages 211-2141. 
These methods contain parameters which can be set to vary the accuracy 
of the line search, and also contain bracketing conditions which limit the 
acceptable values for a. 

2.2.2 Accelerated Methods 

As discussed above, the method of steepest descent is affected by the contour 
of the error-surface in N-space, and its convergence behavior is determined 
by the ratio of the largest and smallest eigenvalues of the objective function. 
Consequently, steepest descent makes increasingly slow progress the closer 
it gets to the solution. 

It was observed that the successive gradient directions were nearly or- 
thogonal and that alternate minima. along the gradient directions defined a 
set of vectors which pointed directly to the global minimum. This observa- 
tion lead to accelerated gradient methods. One early such method involved a 
weighted averaging of successive minima [24], while other methods combined 
successive gradient vectors in order to generate a search direction more con- 
sistently in the direction of the solution. This lead, in turn, to the method of 
parallel tangents (PARTAN) which generates and maintains parallel search 
vectors [13]. 

The importance of the accelerated gradient methods is that they rep- 
resent an attempt to take into consideration the curvature of the objective 
surface without conlputation of the second derivative. More powerful tech- 
niques which address the same goal more rigorously are the Newton and 
quasi-Newton methods. 

2.3 Quasi-Newton Methods 

The gradient methods of optimization represent the use of a limited amount 
of knowledge about the objective functioil in computing its minimum. It is 
intuitively clear that the rate of convergence to the minimum should be pro- 
portional to  the amount of knowledge about the objective function used in 
the optimization process. That is to sa,y that second and higher order deriva- 
tives provide information a.bout the error surface which can be exploited to 
achieve more rapid convergence. It is also clear that this increased informa- 
tion has an associated computational cost, so that the goal becomes most 
rapid convergence for a given computational effort. 



The second derivative, which gives information about the curvature of 
the error surface, is the basis for a set of powerful optimization algorithms. 
The objective function is approximated by Taylor series expansion as 

Thus, the objective function is approximated by a quadratic function, for 
which the minimum can be computed directly as 

which is Newton's method. 
This method involves the computation of the N  x N second derivative 

matrix and its inversion in order to solve for the minimum x. Since the com- 
putation of the second derivative may b e impossible, or computationally ex- 
pensive, and since the matrix inversion is O ( N ~ )  , the so-called quasi-Newton 
methods were developed in which the inverse matrix is approximated itera- 
tively. This avoids the direct computation of the second derivative, and the 
computational complexity is reduced by a factor of O ( N )  [7]. 

The basic quasi-Newton algorithm consists of the following steps: 

1. set a search direction a = -Hg 

2. minimize f along a 

3. update H 

The initial inverse matrix H is selected to be symmetric positive definite 
l ,  usually I. The matrix update procedures are designed to maintain the 
positive definiteness of H, and thus the descent property2. 

The heart of the algorithm is the update strategy for the approximate 
inverse Hessian. The general approach is to consider various update families 
which meet the quasi-Newton condition: 

where yi = g;+l- g; and Si = x;+l- x;. Thus, the Hessian maps a change in 
gradient to  a change in position. The families of possible update relations 
are indexed by the rank of the update formula. This will become clear in 
the following sections. 

'A positive definite matrix has only positive eigenvalues. For the Hessian this implies 
positive curvature in the error surface, which is a necessary condition for a local minimum. 

'The descent property, g T a  < 0, guarantees that the search direction is downhill. This 
is ensured for u = -Hg if H is positive definite. 



2.3.1 R a n k  O n e  Correct ion 

Consider the simple update rela.tion 

where 
E ;  = a z z  T 

The symmetric rank one3 matrix E;  is constrained by the quasi-Newton 
condition as follows: 

(Hi + E;)y;  = 6i  

Thus, 
T a z z  yi = 6i - f I iy;  

From the fact that zTyi is a scalar (dot product) it is clear that 

1 
z = -  ( S i  - Hiy ; )  

azTy;  

Then choose azTy;  = 1, which implies that z  = S i  - H;yi. Then, 

It can be proved that the rank one method converges on a quadratic 
function for N linearly independent vectors 6; in at most N+1 iterations such 
that HN+1 = G-I [7, 131. Which is merely to say that the inverse matrix 
can be found by N iterations, and the minimum computed in one step, given 
G-'. The problem, however, is that the rank one method does not guarantee 
that positive definiteness is preserved. In addition, the denominator zy ;  can 
become quite small, leading to  numerical difficulties [13, page 2651. These 
problems are addressed by the rank two update formulae. 

2.3.2 R a n k  T w o  Correct ion 

A more flexible update formula for the inverse matrix approximation would 
be of the form: 

= Hi + azzT + byy T 

3Rank is the maximum number of linearly independent rows, or columns. zzT is 
obviously of rank one. 



This is a rank two update formula, wl~icl~ has more degrees of freedom than 
the rank one method. 

The first solution to this problem was advanced by Davidon [4] and 
improved by Fletcher and Powell [8], and is called the Davidon-Fletcher- 
Powell (DFP) method. 

In brief, the quasi-Newton condition must again be met, and with obvi- 
ous choices for z  = 6 and y = Hy,  the constraints azTy = 1 and byTy = -1 
arise, yielding as a complete solution: 

Another solution to the rank two update equation was developed, which 
is the dual of the DFP algorithm, called the Broyden-Fletcher-Goldfarb- 
Shanno (BFGS) algorithm [3, GI. 

This algorithm is the dual of the DFP in the sense that B, the approximate 
Hessian matrix, and H are interchanged, as are y and 6. 

It was soon noted that these methods form a family, which can be gen- 
eralized as 

Hd = (1 - ~ ) H D F P  + ~ H B F G S  

Since this update formula maintains positive definiteness for 4 2 0, this 
restriction is usually employed [13]. 

It  has been shown that the Broyden family update procedures maintain 
positive definiteness, and converges in at most N iterations for quadratic 
functions [8]. However, subsequent application of the DFP method lead to 
occasional problems of instability, in which the matrix became singular [2]. 
The difficulty is due to  scaling of the variable x, and the solution involves 
rescaling x and reinitializing H. This is apparently true of all members of 
the Broyden class. 

It has been shown [13, page 2711 that all members of the Broyden family 
generate the identical update sequences, and thus reach convergence in the 
same number of steps, provided a.n exact line search is used. In the case 
of inexact line searches, the BFGS algorithm has consistently given results 
superior to  the DFP algorithm [7]. As a consequence, the BFGS algorithm 
is generally preferred over DFP. 



3 Back Propagation Algorithm 

The back propagation (BP), or error propagation algorithm for learning in 
connectionist networks was reported by Rumelhart, Hinton and Williams in 
1985 [20,19]. They developed a network learning algorithm called the gener- 
alized delta rule, which is a supervised learning procedure for connectionist 
networks with deterministic unit functions. The name error- or back prop- 
agation derives from the definition of an error value for each unit, which is 
recursively computed from the error values of units to  which it is connected. 
The error at the output units is defined as the difference between the actual 
and desired values. 

This algorithm provides a solution to the so-called fault-assignment prob- 
lem, which for multi-layer networks had presented an obstacle to  research 
in the use of connectionist networks. The solution of the weight modifica- 
tion problem contributed to breaking the effect of Minsky and Papert's [14] 
pessimistic report on connectionist network research. The realization that 
practical connectionist solutions using multi-layer networks to  interesting 
problems could be achieved without a formal guarantee of convergence to a 
global optimum spurred a burst of papers on multi-layer network problems 
[21, 18, 5, 231. 

The generalized delta rule is derived as a miilimization of the squared- 
error between the actual and desired values of the output units. The algo- 
rithm is derived from the relation 

where w;j is the weight of the link connecting unit i to unit j ,  E is the 
squared-error, and 7 is the learning constant. Obviously, in light of the 
above discussion of nonlinear optimization, this algorithm is simply gradient 
descent with a fixed step size. Contrary to frequent claims, however, it is 
not steepest descent, since it lacks a line search along the negative gradient. 

As Rumelhart, et. al. indicate, similar learning algorithms were pro- 
posed by Parker [17] and Le Cun [19]. It  is extraordinary that such a simple 
and well-known technique should have been overlooked for so long. 

The generalized delta rule, however, goes beyond simple optimization in 
that the algorithm permits changes to the network link weights based only 
on local information. The gradient computation is decomposed in such a 
way that individual units make weight changes based on the error values 
of their immediate neighbors. This suggests a direct mapping to a paral- 



lel architecture in which individual units are separate processing elements. 
Furthermore, this suggests possibly a feasible biological model for learning, 
in that locality of information is used to improve performance in response 
to repeated examples. The issue of locality, computation and biological 
modeling is considered further below. 

3.1 Learning Constant 

In practice, the back propagation algorithm depends significantly on the 
value of the learning constant. Clearly, the optimum value for q depends on 
the problem being solved. For error surfaces with broad local minima, the 
gradient will be small even far from the solution, and thus a larger value of 
q will result in more rapid convergence. However, for problems with steep 
narrow minima, a small value of q must be chosen to avoid overshooting the 
solution. This can be illustrated using Rosenbrock's function: 

f (x) = 100(x2 - 2;)= + (1 - x1)2 

This function has a steep narrow curving valley [7], with a minimum at 
(1, l ) .  Starting at (-1.5, -1.0), for example, for values of q 2 0.00169 the 
back propagation algorithm will not only fail to converge, the function will 
increase rapidly to  infinity. 

This makes clear the fact that q must be chosen experimentally for each 
problem or problem type. Moreover, it is desirable to monitor the progress 
of the optimization, so that q can be increased at appropriate points to 
speed up convergence. 

3.2 Convergence Criteria 

A great number of the problems which have been investigated using the back 
propagation algorithm are simulated Boolean functions [21, 19, 18, 51. In 
these cases, the problems of interest are mappings between, or at  least onto, 
Boolean vectors which are chosen to encode the desired output. 

The Boolean functions are typically approximated using real numbers: 
0.1 for 0, 0.9 for 1, for example. Now, it becomes clear that for N out- 
put units and M tokens, the optimiza.tion goal is to have the actual error 
for each unit/token less than, say 0.3. I11 order to achieve this error, the 
units and tokens must be trea,ted independently, and thus the necessary 
squared-error convergence value should be ( 0 . 3 ) ( ~ + ~ ) .  Clearly, this num- 
ber vanishes rapidly for large 4.f and N. In practice, the output units are 



treated separately, and optimization is terminated when all the units are 
behaving correctly. This could be formalized by a different error metric, 
which makes this explicit: 

This defines a minimax procedure for Boolean function realization. It is 
offered as a conjecture that the success of the back propagation algorithm 
on these Boolean problems is due to the use of the minimax convergence 
criterion rather than the required least-squares criterion, since the minimax 
criterion identifies convergence long before least-squares would, and thus 
avoids the interminable iterations of gradient methods near the solution. 

3.3 Momentum 

The momentum term [19] is a modification to the back propagation algo- 
rithm designed to  alleviate the problem of oscillation for a given choice of 7 
[19]. The momentum term is defined by: 

The momentum term is clearly a form of the convergence acceleration tech- 
niques for gradient methods discussed above. 

The effect of the momentum term is to magnify 7 by a factor 1/(1 - p) for 
plateau regions of weight space where the gradient is essentially constant4. 
The effect of the momentum term for narrow steep regions of weight space 
is to focus the movement in a downhill direction by averaging out the com- 
ponents of the gradient which alternate in sign. 

4 Computational Complexity 

The computational complexity of nonlinear optimization algorithms is an 
important consideration in choosing a tool for research in connectionist net- 
work learning. From a practical point of view, the important parameter is 

4This is derived precisely in Appendix A 



the number of floating point operations required to reach a solution. This 
depends on the convergence rate of the optimization algorithm as well as the 
computational complexity per iteration of the algorithm. That is, the com- 
bination of algorithmic effectiveness and computational complexity must be 
considered in evaluating algorithms. 

A measure of the combined time complexity and optimization efficiency 
is the approximate total number of operations to reach a solution. Let 

where 3 is the cost of solution for a task using a particular algorithm, which 
is composed of various components, such as gradient evaluations, function 
evaluations and search direction updates, each of which has complexity C;. 
Each component is executed Ri times in solving the problem in question. 
The best algorithm is that for which F is minimal. 

The complexity of the components of the algorithms reviewed in this 
report are developed in Appendix B. The results of applying these methods 
t o  several example problems are reported here to give some experience with 
the effectiveness of the different algorithms. 

4.1 Example Problems 

Several experiments were conducted to compare the convergence properties 
of the back propagation (BP), steepest descent (SD), DFP and BFGS al- 
gorithms. The convergence was measured as a function of floating point 
operations in order to provide a basis for choosing an algorithm for further 
use. 

4.1.1 Rosenbrock's Function 

The first problem chosen was Rosenbrock's function, which is defined above. 
This is a numerical problem which requires minimization over two param- 
eters, which is used as a standard test problem for optimization algorithm, 
since the surface has a minimum which lies at  the base of steep and curving 
walls. 

The complexity values for the Rosenbrock function evaluation and gra- 
dient evaluation were computed directly from the function and gradient 
equations. These values were (4Mf4A) and (5M+3A) respectively. The 
complexity values per iteration were computed using N = 2. Table 1 gives 
the complexity constants for the different algorithms. 



Table 1: Complexity Constants for Rosenbrock's Function 

DFP 2856 
BFGS 1979 

Table 2: Solution Statistics for Rosenbrock's Function 

The four optimization algorithms were tested on this problem for a single 
initial condition5. A value of 0.001 was used as a termination criterion. The 
learning constant for the BP algorithm was no momentum was used. 

The results of the experiment are given in Table 2, where the number 
of iterations, function evaluations and gradient evaluations listed for each 
optimization algorithm. 

The convergence behavior of these algorithms is seen in Figure 1. The 
graphs show the convergence as a function of the total number of operations 
at each iteration. 

The graph makes clear the fact that the first order algorithms make 
excruciatingly slow progress as they get closer to the minimum. This is 
precisely where the second order methods show dramatic convergence, since 
the Hessian provides excellent orientation to  the search vector. 

4.1.2 XOR Problem 

The XOR problem was also tested. This is a very simple problem which 
requires the ability to compute mutual exclusion between two bits. I t  is a 
standard connectionist network demonstration problem because the input 
patterns are not linearly separable, and thus require a multilayer network. 

A network consisting of two input units, one hidden unit, and one output 
unit, as well as threshold unit (K=2,0=1) was used. There were seven links 
(N=7).  The training set consists of four examples (T=4). Using these pa- 

'The initial starting point for this test was (-1.2,1.00).  



Figure 1: Progress of Optimization for Rosenbrock7s Function 

Algorithm Cite, Cfunc Cgrad 

106 146 
DFP/BFGS 413 106 146 

Table 3: Complexity Constants for XOR Network 

rameters, the algorithm component complexity constants can be computed 
as shown in Table 3. 

This problem was repeated 5 times for each algorithm, using randomly 
initialized weight values. The same 5 initial networks were used for each 
algorithm. The target values for 0 and 1 were 0.1 and 0.9, respectively. A 
termination criterion of 0.001 was used. 

The average number of iterations, function evaluations and gradient eval- 
uations was computed for each algorithm. These results are summarized in 
Table 4. The BP algorithm was run only on one network with a learning 
constant of 0.15 and no momentum. The optimization was terminated after 
10,000 iterations, at  which point the algorithm had reached an objective 
function value of 0.04279. Thus, after 2,338,000 operations, no solutions 
was found. A second run was made with a momentum value of 0.9, which 
is listed in the table6. The DFP algorithm reached the termination value of 

'Note that Cite, is now 28 instead of 14 because of the momentum term in the update 



DFP 176 171 66750 
BFGS 22 59 54 23224 

Table 4: XOR Problem at 0.001 criterion 
- - -  - -  

3063 3064 3063 771968 

BFGS 19037 

Table 5: XOR Results at 0.003 criterion 

0.001 in only one of the five cases; the counts for this single case are given 
in Table 4. 

Because of the problems with the DFP algorithm reaching an objective 
function value of 0.001, a second experiment was conducted in which the 
termination condition was relaxed to 0.003. This represents a maximum 
squared error of 0.024, or a maximum error of 0.15, which still guarantees 
correct response. The average number of iterations, function evaluations 
and gradient evaluations are summarized in Table 5. The BP algorithm 
was run with a learning constant of 0.15 and momentum of 0.9. The DFP 
algorithm failed to  reach the termination value of 0.003 in one of the five 
cases; this case is excluded from the average values. 

The convergence behavior of the different methods for this problem is 
shown in Figures 2 through 5. It can be seen that the DFP algorithm is 
strongly dependent on initial condition, as is steepest descent. BP with 
momentum gives more consistent results, while BFGS gives most consistent 
and most rapid convergence. 

4.1.3 Multiplexor Problem 

Finally, a small multiplexor problem was also tested [I]. The problem con- 
sists of a two-bit select field, a four-bit data field, and a one-bit output field. 
The output bit is to correspond to the selected bit of the input data field. 

equation. 
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Figure 2: Solutions of XOR using BP with momentum 

Figure 3: Solutions of XOR using Steepest Descent 

Figure 4: Solutions of XOR using DFP 



Figure 5: Solutions of XOR using BFGS 

Table 6: Complexity Constants for Multiplexor Network 

This problem was solved using a connectionist network with one out- 
put unit, four hidden units and six input units, with a total of 39 links 
(0=1,K=5, N=39). The network was trained on all possible input data 
patterns (T=64). The complexity constants for this network are shown in 
Table 6. 

Five randomly initialized networks were optimized until a termination 
criterion of 0.003 mean squared error was met, or a maximum iteration 
count, or failure of the line search algorithm. The average number of it- 
erations, function evaluations and gradient evaluations was then computed 
over the test runs which met the 0.003 squared error goal. These results are 
summarized in Table 7. The average number of operations to  reach this 
level of convergence was computed from the constants in Table 6. 

7645 7646 7645 129879404 

DFP 
BFGS 181 367 351 7947093 

Table 7: Multiplexor Results at 0.003 criterion 



The BP algorithm was run with a learning constant of 0.15 and a mo- 
mentum constant of 0.9. The algorithm failed to reach the 0.003 criterion 
in only one case, when the maximum iteration count of 10,000 was reached, 
with a mean squared error value of 0.004. The table thus reflects the average 
of four runs. The steepest descent algorithm met the 0.003 criterion in all 
five cases. 

The DFP algorithm failed in every case to  reach convergence. The algo- 
rithm was apparently thrashing, as evidenced by the huge value of a, and 
the large ratio of function/gradient evaluations per line search (25). This 
suggests that the iterative approximation of the inverse second derivative 
matrix is inaccurate and misleading at points far from local solutions. It  
has been suggested that the approximation matrix be reinitialized every N 
iterations to address this problem, but this solution was not investigated in 
this experiment. 

The BFGS algorithm failed to reach convergence in two cases, halting at 
mean squared error values of 0.008 and 0.014. 

One might conclude from this experiment that the second-order methods 
offer computationally efficient convergence rates a t  the cost of an increased 
risk of getting stuck in local minima wluch are not acceptable as problem 
solutions. 

4.1.4 Speech Recognition Problem 

Finally, one acoustic phonetic discrimination task is selected as more rep- 
resentative of realistic problems. This task involves the discrimination of 5 
consonant phonemes in the context of 3 vowels in simple consonant-vowel 
syllables. 

The network consists of 3 layers, with 16 input units, 16 hidden units in 
the first layer, 12 hidden units in the second layer and 5 output units (K=33, 
0=5).  The number of links is 1054. For this experiment, 10 repetitions of 
each of 15 utterances were used, which had an average sample length of 60. 
This results in a sample training set size of 9000. Under these conditions, 
the component complexities are as shown in Table 8. 

Note that the number of training samples is large relative to the num- 
ber of network connections. Thus, while the complexity of the second-order 
methods is generally measured by the N2 operations per iteration, the func- 
tion and gradient evaluations begin to dominate in all algorithms, as T >> N. 
Consequently, the convergence power of the quasi-Newton methods ensures 
that the computational complexity of networks solutions is likely to  remain 



Table 8: Complexity Constants for Acoustic Phonetic Network 

Algorithm 
BP 
SD 
DFPIBFGS 

several orders of magnitude less than those obtained by BP methods, even 
for large problems. 

C i t e r  C j u n c  Cgrad 
2108 19998000 38583000 
4216 20000108 38585108 

7235183 20000108 38585108 

5 Locality and Parallelism 

Locality, or the constraint that each unit be able to make appropriate weight 
changes on the basis of only local information, has been used to restrict the 
use of optimization algorithms on computational and philosophical grounds. 
The degree to which the use of local information should constrain the choice 
of optimization algorithms is examined in the following sections. 

5.1 Locality and Biological Modeling 

As was noted above, the BP algorithm provides a decomposition of the 
gradient computation such that weights changes can be made based on local 
information. This has been taken to suggest an architecture for parallel 
processing, as well as a plausible model for biological learning. 

In light of the availability and convergence rates of higher-order nonlinear 
optimization algorithms, such as the quasi-Newton methods, it becomes 
imperative to evaluate the restriction of locality from both the perspective 
of biological modeling and parallel processing. 

The question of whether a connectionist network algorithm ought to meet 
some criterion of biological pla,usibility a.ppea.rs to demand an affirmative an- 
swer. It turns out, however, that this requirement is difficult to maintain. It 
will be argued, therefore, tha.t failure to meet supposed biological plausibility 
constraints should not rule out the use of powerful optimization techniques. 

If faithfulness to a biological model is adopted as a design goal, then 
it must be decided from the start which biological process is intended to 
be modeled. There are processes of development, adaptation, learning and 
design. Each of these processes has its orvn mechanisms, initial conditions 
and time scales. 



The process of design refers to the optimization of basic architectures 
which endow an organism with neurosensory processing capabilities and po- 
tentialities which, in turn, are the substrate of development, adaptation and 
learning. This process is understood to consist of either the quasi-random 
generation of genetic variations which interact with the environment under 
the law of survival, or the personal expression of the infinite intelligence of 
the Creator. Attempting to model the evolutionary process requires that 
the process be well-focussed, and accelerated by many orders of magnitude. 
On the creation model, those of us with finite minds and finite lifespans 
may wish to  adopt a pragmatic approach to solving design issues, in order 
to live to see the results. Thus, it is quite possible to view connectionist 
networks solely as a computational paradigm, without regard for the biolog- 
ical process to which the networks are analogous. In this case, the choice of 
optimization algorithms is unrestricted. 

In the second place, it is not clear that biological plausibility can be well 
defined, given the current state of ignorance about biological learning pro- 
cesses. It  would therefore seem premature to restrict the use of optimization 
algorithms based on incomplete understanding of the constraints. 

In the third place, the biological plausibility of the BP algorithm is rather 
meager. The requirement that error values back-propagate along symmetric 
links and serve to increase or decrease synaptic strengths seems improbable. 
Furthermore, it is becoming well known that learning occurs through rapid 
synaptic formation, and not (merely) by synaptic strength modification. In 
addition, it is quite clear that there are global effects in learning, which 
are probably chemically mediated. Thus, although BP may be plausible for 
some type of learning process, it fails to account for other types. 

Consequently, the issue of biological plausibility, although interesting, 
ought to be reserved for the time when this requirement can be more accu- 
rately specified, and clearly reserved for problems in which biological mod- 
eling is part of the scientific objective. 

5.2 Locality and Parallelisnl 

In order to validate the use of locality as a principle for restricting on compu- 
tational grounds the choice of optinlization algorithm, two conditions ought 
to be met. It should be the case that methods which are local can be easily 
mapped to  parallel architectures, whereas nonlocal methods cannot be eas- 
ily mapped, and that execution times for local methods scale well with the 
number of processors, whereas the nonlocal methods do not. 



It is clear that the BP algorithm can be mapped onto a parallel architec- 
ture with N processors, where N is the number of units. The quasi-Newton 
methods more naturally map onto architectures of W processors, where W 
is the number of links. Although time does not permit a detailed exam- 
ination of the parallelization of each algorithm, including interconnection 
issues, it is clear that the mapping of an order W process onto N processors 
may not be straightforward, or result in O(N) speedup. Since N << W, it 
is more likely to have N than W processors. However, for large problems, 
the number of units may exceed the number of processors. In this case, 
the (marginal) advantage of the BP algorithm as far as parallelism may 
disappear completely. 

6 Conclusion 

We conclude that there are iterative gradient techniques that are far superior 
to  back propagation as tools for solving nonlinear optimization problems. 
We also conclude that the principle of locality should not be used to restrict 
the use of optimization algorithms, either for biological modeling or parallel 
processing. We finally conclude that the BFGS algorithm is one of the 
most powerful and appropriate methods for solving connectionist learning 
problems. 

A Back-Propagation Momentum Term 

The form of acceleration method for gradient-descent proposed for the back- 
propagation algorithm [19, 181 is defined by: 

where a, is the search vector in weight space (generally -gn), 77 is the 
learning constant, and p is the momentum constant. 

This is a first-order difference equation in Aw, which in the general form 

has as its solution 



The momentum equation, then, can be written as: 

since an = p and b, = van. 
Since Awn+* = wn+, - w,, this becomes: 

Also, since Awl = wl - wo = qao, this can be reduced to 

This, in turn, is a first-order difference equation in w, which can be 
solved in the same way, with an = 1 and b, = 7 Cy=o pn-3aj. Thus, 

By reordering the summation terms, this becomes: 

n a-k 

Now, assume that the gradient is essentially constant in a certain region 
of weight space. Thus, 

an X on-1 = a 

Under these conditions, 

since 
n-k  n - k  



The finite sum can be expressed as a difference of infinite sums: 

Simplified by factoring P"+ and some algebra: 

Using binomial series expansion, this can be rewritten as: 

Combining terms, this becomes: 

This equation makes clear the effect of the acceleration term p on the 
weight update formula. If the gradient is relatively small, as in a plateau, 
the weight increment is small, and the number of iterations to cross the 

1- n t l  
plateau can be quite large. As n get large, becomes small, and the 

1 effective acceleration factor approaches G. 

B Complexity 

The computational complexity of several optimization algorithms are dis- 
cussed in this appendix. First, some notation is defined, and then the time 
and space complexity of the various algorithm components are developed. 
These results are summarized in Table 9. 

B . l  Notation 

We define a connectionist network for the purposes of this derivation using 
the following notation: 

U = {ul, 212, ..., uIC}, units of the net.work, not counting input units. 

0 = number of output units, 0 < IS. 



W = {w i jd ) ,  a set of connection strengths from unit u; to u j  with delay d 

N = number of links in the network, N = IWI. 

T = total number of token samples in training set. 

The connectionist network is represented by X = (U, W). It is noted that 
N >> h', for most networks. 

B.2 Function Evaluations 

The evaluation of the objective function involves a forward pass through the 
network and an accumulation of the squared error at  the output units for 
each item in the training set. 

The forward pass requires, at  each sample point, one multiplication and 
addition for each link, in computing the contribution to the potential func- 
tion, an evaluation of the unit output function for each unit, and a multiply 
and two adds for each output unit to evaluate the squared error. The unit 
output function requires an exponential function call, an add and a divide. 
Assume that the exponential function evaluation is equivalent to a multipli- 
cation operation. 

Then, the complexity of the function evaluation is: 

which, for M = A is: 

operations. 
The space requirements are determined primarily by the weight values 

and unit values N + K ;  if all token activations are stored, this value is 
T * ( N + K ) .  

B.3 Gradient Computation 

The gradient computation is accomplished by computing the error at  the 
output units, back propagating the error across all the units and links, and 
accumulating the error for each weight. The complexity of the gradient is 
developed for the complete gradient method which is valid for networks with 
recurrent links. 



It is assumed that the forward activation pass is computed prior to the 
gradient call, and that the unit activation history is available. Then, at each 
time step, the output unit error is computed for each output unit, the unit 
slope is computed for each unit, and the local unit error is multiplied by 
the link weight for each link, and accumulated in a global error buffer. The 
contribution to the gradient is computed for each link by summing over time 
the product of the appropriate local error and unit output values. 

Thus, the gradient complexity is 

which for M = A is: 
C g = T * ( 4 N + 2 K + 0 )  

operations. If the forward pass must be recomputed, the complexity be- 
comes: 

Ci = T * ( 6 N  + 3Ir' + 0 )  

B.4 Weight Update 

The weight update for the BP algorithm involves multiplying the search 
vector by the learning constant and updating the weight vector. For the SD 
algorithm, the search vector is multiplied by the minimizing scalar constant. 
This requires N mults and adds. Momentum would add another N(M+A) 
operations. 

B.5 Line Search 

The line search involves a series of function evaluations and gradient evalu- 
ations, several dot product evaluations for checking descent conditions and 
completion criteria, and some arithmetic overhead for interpolation and ex- 
trapolation. 

A dot product operation which computes the magnitude of the gradi- 
ent is involved in every call to the line search. This adds N(M+A) opera- 
tions. Each function evaluation step involves a weight update that requires 
N(M+A) operations, and each gradient evaluation is followed by another 
dot product to check for termination conditions. Thus, the line search al- 
gorithm adds N(M+A) operations per iteration, function evaluation and 
gradient evaluation. 



B.6 Matrix Update 

The BFGS algorithm specifies an update formula for the approximate in- 
verse Hessian matrix. The complexity of this operation will be analyzed as 
representative of the quasi-Newton methods. 

The update procedure requires a vector difference, a matrix product, 
two dot products, and a accumulation step. The algorithm also requires 
a matrix product to modify the gradient direction by the inverse matrix. 
The vector difference involves a scaling factor, so N(M+2A) operations are 
needed. The matrix product operation requires N * N ( M  + A )  operations, 
and each dot product N(M+A). 

The accumulation step involves 4 adds and 5  multi lies for each element 
of H. Since H is symmetric, this can be reduced t o  NPN+')(5M + 4A) .  

The total then becomes: 

Counting A = A4, this becomes: 

The space requirements for the BFGS method are dominated by the in- 
verse Hessian matrix, which is N ~ .  Since this matrix is symmetric, this could 
be reduced to $ N ( N  + 1) .  This would slightly complicate the addressing 
scheme for computation. 

The memoryless quasi-Newton methods [13] are very similar; the use of 
the identity matrix instead of H for updates reduces the space requirements 
to  O ( N )  from O ( N 2 ) .  The computation requirements are reduced by one 
matrix product and one dot product, yielding N(9.5 + 4 . 5 N )  operations. 

B.7 Summary 

This section draws together the complexities of the algorithm components to  
give costs per iteration, function evaluation and gradient evaluation which 
are parameterized by the size of the network and training set. These results 
are summarized in Table 9. 

The BP algorithm consists of a gradient evaluation, weight update and 
function evaluation per iteration. The SD algorithm consists of a line search, 
which contains function and gradient evaluations, and a weight update per 
iteration. The BFGS and DFP algorithms consist of a line search and a 
matrix update and search vector alignment step. The table summarizes the 



Table 9: Computational Complexity of Algorithm Components 

Algorithm 1 Citer c j u n c  Cgrad 

computational cost per iteration, function evaluation and gradient evalua- 
tion for each of the four optimization algorithms. Recall that the line search 
adds 2N operations to each iteration, function and gradient call. Also re- 
call that the momentum term adds 2N operations per iteration for the BP 
algorithm. 

BP 
SD 
BFGS 
DFP 
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