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The critical properties of the model of a spin-glass proposed by Edwards and Anderson
are studied using the renormalization group. The critical exponents are calculated in 6
—e spatial dimensions. It is argued that a tricritical point can exist where the nonorder-
ing field is the skewness of the distribution. of g.

Although spin-glasses, such as dilute solutions
of Mn in Cu, ' have been studied experimentally
for many years, only recently have formulations
been given in terms of a microscopic Hamilto-
nian. ' ' Even so, the spin-glass transition has
not been successfully related to the usual picture
of phase transitions as we shall do here. As in
Refs. 3-6 we consider the spin Hamiltonian, X,
given by

X'/hT = -g Z(r, r')S(r) S(r'), (I)
fF

where S(r) = S,(r), S,(r), . .. , S (r) is a classical
m-component spin of unit magnitude at the lattice
point r, and K(r, r') = J(r, r')/kT, where J(r, r')
is a random variable with a probability distribu-
tion P(r, r'; J), and J(r, r') is assumed to be a
finite-ranged interaction. We treat a quenched
random system where the average free energy is
calculated as the average, denoted []„,over all
configurations of J(r, r'):

~ = [J((J])].,

According to mean-field theory one expects a
fe r ro magnetic o r antife r rom agnetic state if [J(r,
r')]» is sufficiently large in magnitude. If [J(r,
r')]» is zero, Edwards and Anderson (EA)' ar-
gue that there will still be a transition at a freez-
ing temperature 7.'& to an ordered state character-
ized by a new order parameter,

q(r) = [&S(r))(,)
~ &S(r)&(,)]„, (3)

where &8(r))(~) is the thermal average of S(r) for
a given configuration(J). Note that q is by defi-
nition a positive quantity. This will be important
in what follows. EA calculate the properties of
this spin-glass phase transition using mean-
field theory and a Gaussian random distribution
of J's centered about [J(r, r')]» = 0. They find a
continuous transition with an order-parameter
exponent of P = I and a finite discontinuity in the
slope of the specific heat, dC(T)/dT, at T =Tz,
so that n = —1.. Similar results were found by
other more detailed calculations. ' A straight-
forward generalization of the EA treatment to in-
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elude an external field conjugate to the order pa-
rameter yields susceptibility and correlation-
length exponents y=1 and v=2. These exponents
should be valid for spatial dimensionality, d,
greater than a critical value, d, . The value of
d, may be determined as the value of d for which
the scaling relation 2P+y = d, v is satisfied by the
mean-field values of the exponents given above.
Thus d, = 6 for the spin-glass problem. The same
argument was used by Toulouse' to correctly pre-
dict d, = 6 for the percolation problem' and by oth-
er authors in connection with similar random
systems. ~' Deviations from mean-field theory
occur for d & d, and are of order d, —d = & for d

C

In this paper we will use the renormalization
group"" (RG) to analyze the spin-glass transi-
tion. As predicted above, this analysis will le
to an & expansion in 6-& dimensions. We beg
with a Hamiltonian of Eq. (1) with only nearest
neighbor interactions K(r, r+ 6). As is conve-
nient in treating random systems, ~ we evaluat
the partition function of the system replicated
times:

where

= —Z Z K(r, r+ 6)S"(r) S"(r+b)
n=I F, 5

and where Tr, is a trace over all spin variables.
The free energy of Eq. (2) is then given by

E = lim (- kT /n) InZ~ "~ .
n~p

The integral over (K) in Eq. (4) can be carried
out formally for independent interactions and the
result is

Z " = fd(K]P(iK]) Tr, exp( R" /kT-),

ad
where C& is the 0th cumulant of the distribution
P(K): C, =[K]„,C, =[K']„-[K]„'.

For C, 40, the model described above has been
used to study the critical properties of dilute

e
quenched random systems. ' We now consider
the spin-glass in which C, =0. For simplicity,
we consider first the case of a Gaussian random

(4) distribution for which C~ = 0 for all k & 2. In this
! case Eq. (6b) simplifies and R/kT becomes

(8)

Qc, Z Z Qgg" (r)Qg~ 8(r+ 5)+ QC, Z[S (r) S"(r+5)]',
r, 5 a&8 &.S r, 6 n

where Q=-Q~&"8(r) =S& "(r)S&8(r)(1 —5„&). In the limit n-0 the order parameter (Q&&"8) is directly re-
lated to the order parameter q of EA:

m

e= Z&Q;~"&, «P
To construct a field-theoretic formulation we need to express Z " in terms of the tensor Q which

orders at the spin-glass transition. Accordingly, we introduce a probability distribution for Q via

P((Qj)= Tr, II 5(Q 8(r) —S"(r)SB(r)) exp(C, QZ[S (r)'S (r+b)]'].
r, n, 8 r, 5 n

The trace over S in Eq. (9) could be performed explicitly. However, since we wish to develop a contin-
uum theory, we observe that the following form for P(Q (r)) will reproduce the constraint that Q;~"8(r)
be obtained from spins of unit length according to the definition below Eq. (7):

P(Q (r))- exp[a TrQ'+so TrQ' —b (TrQ')'], (10)

where

Z Q "'Q.'
n, 8,$,j

etc. This equation does not include nonlocal effects present in Eq. (9). These will contribute to the
Tr(VQ)' term in Eq. (11b). Following the approach used by Wilson and Kogut" for the Ising model, we
note that if a and b tend to infinity in the appropriate ratio, then the normalization of TrQ is fixed.
Furthermore, for fixed TrQ'=n(n —1), TrQ' is a maximum when Q&z"8 is of the form S;"S&~ with S"
~ S"=1. Thus in the limit when zo, a, and b become infinite, in the appropriate way Eq. (10) is valid.
A similar scheme has been used by Priest and Lubensky" for generalizations of the Potts model. Us-
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ing Eq. (10) and taking the continuum limit we obtain

Z{n) f ~Q K

R= fd'xgr TrQ'+~ Tr(VQ)'-w TrQ'+u (TrQ')'

where r-T —T*, and T~-[(6J)z],„'na zis the mean-
field transition temperature. The Ez(Q) are the
fourth-order invariants other than (TrQ )' which
are generated by repeated iterations of the RG.
For the m =1, Ising case E,(Q}=TrQ', Ez(Q)
=Q„sz(Q„" )'(Q„"')', and E,(Q)=Q z(Q„).'
For m ~ 2 there are many I' s. The Hamiltonian
of Eq. (11b) may also be used when P(J) is non-
Gaussian provided [J]„=0. In this case the ini-
tial values of the potentials will depend on the de-
tails of E{zI).

The mean-field minima of Eq. (11b) with v, =0
can be located by setting Q;z

8 =m 'qbzzI~B,
where I~& is a symmetric off-diagonal tensor
with unit entries. Then we have

m2K

n(n —1)Q)'zT

(11a)

(11b)

—(2/m). The exponents for n-0 are listed in
Table I.

An interesting possibility exists if P(J) is not
symmetric in/. If [J ]» is nonvanishing, there
will be an extra term in the Hamiltonian propor-
tional to —[J']»TrQ' T.hus, if the distribution
is sufficiently skewed to the antiferromagnetic
side, the sign of w in Eq. (11) can change. In
this case, there would be a first-order transition
within mean-field theory for n &2. Thus the point
so = 0 would correspond to a tricritical point with
the skewness of the distribution acting as the non-
ordering field. The tricritical exponents can be
determined from the recursion relations in 4-e
dimensions with so =0. To first order in 6 they
are of the form

= +mrqz —zo(n —2)qz +n(n —1)uq4, (12} u'=b'[u-128u'K&lnb -gzAzuvz QB-,&v,v&],

where 0 is the volume. The extrapolation of this
mean-field Hamiltonian into the regime n &1 is
ambiguous, as may also be the case in Ref. 6.
There is, however, no ambiguity for n&1. We,
therefore, calculate physical quantities such as
susceptibilities or specific heats, etc. , for 1 &n

&2 and analytically continue the results to n=0.
In so doing, no anomalies as a function of n are
encountered. For instance, consider the calcula™
tion of the order parameter. Remembering that
q must be positive, we see'" that Eq. (12) pre-
dicts a first-order transition whenever (n —2)w
& 0 and a second-order transition when (n —2)w
&0. Form &0 and n&2 one has a second-order
transition with q =mr/f6(n —2)w] and we believe
this result can be extended to n- 0.

We now discuss the e expansion in 6 -c dimen-
sions. The recursion relations are obtained in
the standard way and in the notation of Ref. 12
are

r' = bz "fr —36(n —2)mwz[A (0) —2K,r 1nb]],

(13a)

(14a)

v = b'[vz —192uvzK~ lnb -g;&C;&vzv&], (14b)

r' = b'[r —32ruK„ lnb +D u], (14c)

where A. ~, Bq&, C;&, and D are constants of order
lnb. Thus, at the "Heisenberg" fixed point (HFP)
with u* = e/(128K„), v;* = 0 for all i, one has A,

1exponents" A.„=—e, A, (vz) =-2e, for alii, so
that the HFP is stable. The other fixed points
are assumed to be unstable or unphysical. Also,
to lowest order in E near the HFP, one has

w'= b'+"'w[1- 96K,u lnb], (15)

TABLE I. Values of exponents correct to first order
in &. Other exponents are obtained by o. =2-dv, P
= ~~ (d +q —2)v z y = (2 —g) v ~

from which one can determine the crossover ex-
ponent cp„defined so that the free energy depends
on the variable zo as w/r«. The tricritical ex-

zo' = b"z z"'z{w +36f(n —3)m +1]wzKz lnbj,

z) = 12(n —2)mzo'K, .
(13b)

(13c)

These equations have a stable fixed point with
(zo*)'= -@{36K,[(n -4)m+2]] ' whenever n &4

Exponent

v

&w

Critical
point at
d=6 —e

2z+5 me/12{2m —1)
—me/3{2m —1)

Tricritical
point at
d=4 —e

~—e/16
0

1

417
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ponents deduced from Eqs. (14) and (15) are list-
ed in Table I.

There are other cooperative phenomena which
must be re-examined in light of the possible ex-
istence of the spin-glass state. In particular we
are now considering the competition between fer-
romagnetic or antiferromagnetic ordering and
spin-glass ordering that will occur at some crit-
ical value of [J]„.We are also considering the
possibility of other types of spin-glass ordering
that may occur in other types of random systems,
e.g. , systems with random uniaxial anisotropy. "
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Temperature dependence of the nuclear quadrupole frequency, v, of noncubic metals
has been studied theoretically. It is shown that the electronic contribution to the field
gradient is largely responsible for the observed T behavior. The conclusions are
general and apply to all noncubic metals.

The study of electric field gradients, eq, in
metals is of great importance since it not only
provides a detailed knowledge of the electronic
wave functions in the occupied Fermi volume,
but can also yield valuable information regarding
the nuclear quadrupole moment, Q. Experiments
using a variety of probes, such as nuclear mag-
netic resonance, time-differential perturbed an-
gular correlation, and Mossbauer effect, have
been performed on both pure noncubic metals and
alloys to study the distribution of eq. In several
systems the sign of the nuclear quadrupole cou-
pling, vz —e'qQjh, has also-been determined.

Recently the temperature dependence of v@ of
several metals, such as Cd,'' Zn, ' In,' Sb,' and
Ga,' has been studied experimentally. An analy-
sis of these results reveals the interesting fea-
ture that v@ generally decrea, ses' a,s T' ' for all
these metals, namely,

vz=v+ (1 —nT ),
where v' is the value of the nuclear quadrupole
frequency at T =0 K and a is a constant. Since
the electronic structures of all these metals are
very different from each other, this "universal"
form of the temperature dependence suggests that


