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ABSTRACT 

SYSTEMS BIOLOGY DERIVED MECHANISM OF BMP GRADIENT FORMATION 

Joseph M. Zinski 

Mary C. Mullins 

A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the 

dorsoventral (DV) axis of all vertebrates. This gradient is established by the extracellular 

interaction of the asymmetric expression of the BMP ligand and its extracellular 

regulators. Though the basic agonism and antagonism of BMP by these regulators has 

been established over the last two decades, the mechanism by which they come together 

to form a robust BMP signaling gradient remains poorly understood. The prevailing view 

in vertebrates for BMP gradient formation is through a counter gradient of BMP 

antagonists, often along with ligand shuttling to generate peak signaling levels. To 

delineate the mechanism in zebrafish, I created a quantitative method of measuring BMP 

signaling, and used it to precisely quantify the BMP activity gradient in wild-type and 

mutant embryos. We combined these data with a computational model-based screen to 

test hypotheses for gradient formation.  Surprisingly, the analysis did not support a 

counter-gradient mechanism and rules out both a BMP shuttling mechanism, and a bmp 

transcriptionally-informed gradient mechanism. Instead a fourth model emerged, a 

source-sink mechanism, which relies on a restricted BMP antagonist distribution acting 

as a BMP sink that drives BMP diffusion and gradient formation. We measured Bmp2 

diffusion and found that it supports the source-sink model, suggesting a new mechanism 

to shape BMP gradients during development. We have developing a way to quantify the 

BMP signaling gradient, a mathematical model incorporating the core extracellular BMP 
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regulators, and mathematical definitions for the different gradient mechanisms. In doing 

so, we have opened the door for future studies to add in additional BMP regulators to the 

model such as Bmper, Twisted Gastrulation and Sizzled, to identify and measure key 

biophysical parameters, and to address questions about how cells sense a BMP 

morphogen gradient and translate that signal into target gene expression. 
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Chapter 1: The extracellular regulation of BMP morphogen gradients 

Subsection 1.1: Morphogen Gradients 

Morphogen gradients pattern axonal pathways, the neural tube, the dorsal-ventral 

(DV) and anterior-posterior (AP) embryonic axes, as well as multiple organ systems 

(Bokel and Brand 2013, Briscoe and Small 2015, Cohen et al. 2013, Rogers and Schier 

2011, Rushlow and Shvartsman 2012, Sansom and Livesey 2009, Schilling et al. 2012, 

Tuazon and Mullins 2015). Morphogens are defined as factors that form a spatially non-

uniform distribution spanning multiple cell-lengths that instructs different cell fates at 

distinct levels. Their importance in specifying multiple cell fates in a gradient has spurred 

decades of research deciphering how they work. In 1970, Francis Crick proposed that 

such a gradient could be formed by a source of morphogen flowing to a sink that 

destroyed it (Crick 1970). We now know that the mechanisms by which morphogen 

gradients are established are diverse and complex, and that understanding these 

mechanisms is paramount to understanding developmental biology (Briscoe and Small 

2015, Muller et al. 2013, Rogers and Schier 2011). Bone Morphogenetic Proteins (BMPs) 

act as morphogens repeatedly during development, including in patterning the embryonic 

DV axis, the neural tube, and the Drosophila wing disc (Bier and De Robertis 2015, 

Briscoe and Small 2015, Rogers and Schier 2011).  

A morphogen gradient of BMP signaling patterns the dorsal-ventral (DV) axis of 

all vertebrates (Fig. 1.1) (Gourronc et al. 2007, Robertis 2008). Axis patterning in mice 

takes place from about E5.5-E8.5, 5 days after the transition from maternal to zygotic 

transcription (Beddington and Robertson 1999). In contrast, the DV axis of zebrafish is 
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patterned between 4 and 12 hours after fertilization, just hours after the initiation of 

zygotic trascription (De Robertis and Kuroda 2004, Schier and Talbot 2005, Tucker et al. 

2008). In vertebrates, high levels of BMP signaling induce ventral tissue fates (such as 

epidermis and blood), intermediate levels induce lateral tissue (such as neural crest), 

while BMP signaling must be blocked for dorsal tissue development (such as notochord, 

hindbrain, and prechordal plate) (De Robertis and Sasai 1996, Little and Mullins 2006, 

Schier and Talbot 2005). It is postulated that cells all along the gradient sense the amount 

of BMP signal, which determines their DV tissue fate. Known to be directly activated by 

BMP signaling during DV patterning are msx1b (Esteves et al. 2014, Maeda et al. 1997, 

Tribulo et al. 2003), p63 (Bakkers et al. 2002), foxi1 (Hans et al. 2007), XVent2 (Hata et 

al. 2000, Henningfeld et al. 2002, Karaulanov et al. 2004, Lee et al. 2002, Schuler-Metz 

et al. 2000), XVent1 (Lee et al. 2011), bambi (Karaulanov et al. 2004), tsg (Karaulanov et 

al. 2004), bmpr2 (Karaulanov et al. 2004), smad6 (Karaulanov et al. 2004) and smad7 

(Karaulanov et al. 2004), and there are likely more yet to be identified. 
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Figure 1.1: BMP signaling during vertebrate DV patterning. Lateral views of 

embryos at the onset of gastrulation during DV patterning (mouse embryos at E7.5, 

Xenopus embryos at stage 10, and zebrafish embryos at shield stage). (A-A’) Location of 

the germ layers and dorsal organizer in each organism, (B-B’) An approximation of the 

BMP signaling gradient in each organism. 

It is unclear whether DV cell fate is specified by different thresholds of BMP 

signaling, different durations of BMP signaling, or some combination of the two. It is 

also unclear how many distinct domains/signaling thresholds are patterned by the 

gradient of BMP signaling. Deciphering these mechanisms has been hindered by the lack 

of quantitative measurements of BMP signaling and BMP target gene expression taken to 

date. The BMP signaling gradient has been visualized using antibodies against 

phosphorylated Smad5 in mouse (Di-Gregorio et al. 2007), zebrafish (Hashiguchi and 
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Mullins 2013, Ramel and Hill 2013, Tucker et al. 2008, Xue et al. 2014), and Xenopus 

(Cho et al. 2013, Kurata et al. 2001, Plouhinec et al. 2013, Schohl and Fagotto 2003) 

embryos, but these visualizations have only been qualitative. The development of 

quantitative readouts for target gene expression and BMP signaling could reveal how the 

BMP target genes read and respond to the BMP signaling gradient. 

Subsection 1.2: The extracellular regulation of BMP signaling 

 The BMP signaling gradient is established by the asymmetric expression of BMP 

ligands, agonists, and antagonists, while the expression of the BMP receptors and smads 

are ubiquitous. In mouse, zebrafish, and Xenopus, the majority of the BMP ligands are 

expressed ventrally while the majority of the extracellular antagonists are expressed 

dorsally near and in the dorsal organizer (Fig. 1.2A) (Carron and Shi 2016, Kishigami 

and Mishina 2005, Little and Mullins 2006, Niehrs 2004). Also referred to as the 

Spemann-Mangold organizer in Xenopus and zebrafish or the Node in mouse, the dorsal 

organizer is the region where gastrulation movements begin. The dorsal organizer 

expresses a common suite of extracellular BMP antagonists and transcriptional repressors 

essential to repressing BMP signaling in the dorsal region of the embryo (Niehrs 2004, 

Nieto 1999, Thisse and Thisse 2015). BMP antagonists such as Chordin, Noggin, and 

Follistatin bind to BMP ligands in the extracellular space, preventing BMP signaling 

dorsally. These antagonists are opposed by the ventrally expressed metaloproteases 

Tolloid and Bmp1a, which cleave Chordin and release BMP ligand. A complicated 

network of other extracellular proteins regulate antagonist binding and decay, including 

Bmper, Tsg, Ont1, Sizzled, and Crescent, and these interactions are covered in detail in 

this section (Fig. 1.2A). 
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Figure 1.2: Extracellular agonism and antagonism of BMP and Nodal during axis 

patterning. A) References supporting and defining agonism and antagonism listed next 
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to each connector. Expression domain of each species during axis patterning denoted by 

box color. B) Conserved domains of each agonist and antagonist along with known 

binding domains. Note that additional known binding partners that don’t have a known 

binding domain determined by a structure-function analysis may exist. References to 

structure-function analysis shown for each binding domain. AA=Amino acid, 

CR=Cystine-rich domain, Pro=Pro-domain, CC=Coil-coil domain, DAN=Differentially 

screening-selected gene Arbitrative in Neuroblastoma domain, Olfactomedin= 

Olfactomedin domain, TM=TransMembrane domain, Partial vWHD=Von Willebrand 

factor type D domain, Kaz=Kazal domain family Follistatin module, E=EGF domain, 

CUB= complement C1r/C1s-sea urchin epidermal growth factor-BMP1, Protease= 

Protease, Nog domain=Noggin domain, Sfrp-1L=secreted frizzled-related protein 

domain, Chrd=Chordin domain, TgfB-L=Tgf-B-Like domain, TIL= typsin inhibitor-like 

cysteine-rich domain.  

References: 1. (Agius et al. 2000) 2. (Aykul and Martinez-Hackert 2016) 3. (Aykul et al. 

2015) 4. (Ambrosio et al. 2008) 5. (Bates et al. 2013) 6. (Bayramov et al. 2011) 7. (Bell 

2003) 8. (Belo et al. 2000) 9. (Bijakowski et al. 2012) 10. (Blader 1997) 11. (Blitz et al. 

2000) 12. (Blitz et al. 2003) 13. (Chang C. et al. 2001b) 14. (Chang Chenbei et al. 2003) 

15. (Chen and Shen 2004) 16. (Church et al. 2015) 17. (Collavin 2003) 18. (Connors SA. 

et al. 1999) 19. (Connors S. A. et al. 2006) 20. (Dal-Pra et al. 2006) 21. (Degenkolbe et 

al. 2013) 22. (Feldman et al. 2002) 23. (Geng et al. 2011) 24. (Geach and Dale 2008) 25. 

(Glister et al. 2004) 26. (Glister et al. 2015) 27. (Goodman et al. 1998) 28. (Jay Groppe 

and Affolter 1998) 29. (Groppe et al. 2002) 30. (Groppe et al. 2003) 31. (Harms and 

Chang 2003) 32. (Iemura et al. 1998) 33. (Inomata et al. 2008) 34. (Inomata et al. 2013) 
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35. (Jasuja et al. 2006) 36. (Katsu et al. 2012) 37. (Khokha M. K. et al. 2005) 38. 

(Kisonaite et al. 2016) 39. (Larrain et al. 2000) 40. (Larrain et al. 2000) 41. (Larrain et al. 

2001) 42. (Lee et al. 2006) 43. (Lee et al. 2009) 44. (Marques et al. 2004) 45. (Miller-

Bertoglio et al. 1999) 46. (Muraoka et al. 2006) 47. (Oelgeschlager et al. 2000) 48. 

(Oelgeschlager 2003) 49. (Paine-Saunders et al. 2002) 50. (Stefano Piccolo Eric Agius, 

Bin Lu, Shelley Goodman, Leslie Dale, and Eddy M. De Robertis 1997) 51. (Piccolo et 

al. 1999) 52. (Ploper et al. 2011) 53. (Rentzsch et al. 2006) 54. (Cha et al. 2006) 55. 

(Salic et al. 1997) 56. (Scott et al. 1999) 57. (Scott et al. 2001) 58. (Seemann et al. 2009) 

59. (Serpe et al. 2008) 60. (Shibata et al. 2005) 61. (Sidis et al. 2006) 62. (Sun et al. 

2006) 63. (Tanegashima et al. 2004) 64. (Troilo et al. 2014) 65. (Troilo et al. 2016) 66. 

(Viviano et al. 2004) 67. (Vonica and Brivanlou 2007) 68. (Wardle et al. 1999) 69. 

(Winstanley et al. 2015) 70. (Xie and Fisher 2005) 71. (Yabe T. 2003b) 72. (Zhang J. L. 

et al. 2007a) 73. (Zhang J. L. et al. 2010) 74. (Zimmerman et al. 1996) 75. (Cheng et al. 

2004) 
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Name

BMP Agonist 

or 

Antagonist

Dorsal or 

Ventral 

Exression Mechanism Organism Binding Affinities Ref

Tolloid Agonist Ventral Cleaves Chd
human, zebrafish, frog, 

mouse

2Bmp7=Binds                                  
2Bmp4≈ 20 nM                                      
1
Chd≈10 nM                        

1Szl=19 nM                    
3
Collagen IV=Binds

1
Lee et al. 2006; 

2
Lee et al. 2009; 

3
Winstanley et al. 2015

Bmp1 Agonist Ventral Cleaves Chd
human, zebrafish, frog, 

mouse

2Bmp4=16 nM                                        
1
Szl=14 nM                                          

3
Ont1=Binds

1
Bijakowsky et al. 2012; 

2
Lee et al. 

2009; 3Inomata et al. 2008

BMP Ligands Agonist Ventral
Signals Through Type I and Type II Receptors 

to activate Smad1/5/8

human, zebrafish, frog, 

mouse

See Inhibitors      
1
HSPG=Binds  

1Jasuja et al. 2004

Twisted 

Gastrulation

Agonist and 

Antagonist
Ventral

Enhances chd cleavage by Tld/Bmp1a;          

Enhances the binding of Chd to BMP;            

Binds and inhibits BMP;                                      

Has another yet-unknown Chd-independent 

BMP agonist function

human, zebrafish, frog, 

mouse

1Bmp7=28 nM     
2,3Bmp4=2.5 nM       
1
Bmp2=50 nM                 

1
Gdf5=53 nM              

5HSPGs=NB                  
2,3,6

Chd=3 nM                   
4
Bmper=Binds                 

6
Tld=NB

1Zhang et al. 2007; 2Oelgeschlager 

et al. 2000, 2003; 3Chang et al. 

2001; 
4
Ambrosio et al. 2008; 

5Jasuja et al. 2004; 6Troilo et al. 

2016

Bmper
Agonist and 

Antagonist
Ventral

Binds and Inhibits Chd;                                   

Binds and inhibits BMP

human, zebrafish, frog, 

mouse

7Bmp9=Binds     
2,5

Bmp7=3.5-7 nM 
1,2Bmp4=2.0 nM 
2,4,5Bmp2=1.2-22 nM 
1,2,4

Chd=1.4-175 nM 
2,3HSPGs=Binds        
5
Gdf5=34 nM        

6
LRP1=Binds                 

1
Tsg=Binds

1Ambrosio et al. 2008; 2Rentzsch 

et al. 2006; 3Serpe et al. 2008; 
4
Zhang et al. 2010;

 5
Zhang et al. 

2007; 6Pi et al. 2012; 7Yao et al. 

2012;

Sizzled Antagonist Ventral Inhibits Chd Cleavage by Tld/Bmp1a zebrafish, frog
1Bmp1=14 nM                       
2Tld=19 nM

1
Bijakowsky et al. 2012; 

2
Lee et al. 

2006;

ADMP Agonist Dorsal
Signals Through Type I and Type II Receptors 

to activate Smad1/5/8
zebrafish, frog See Inhibitors
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Name

BMP Agonist 

or 

Antagonist

Dorsal or 

Ventral 

Exression Mechanism Organism Binding Affinities Ref

Ont1
Agonist and 

Antagonist
Dorsal

Enhances Chd cleavage by Tld/Bmp1; Binds to 

BMP ligand and Chd
Xenopus

1
Chd=Binds                                  

1
Bmp4=Binds

1Inomata et al. 2008

Chordin Antagonist Dorsal Binds and Inhibits BMP
human, zebrafish, frog, 

mouse

2,7
BMP7=8-46 nM               

1,2,12Bmp4=0.3-5.8 nM     
3,7BMP2=12-37 nM       
4
Tld≈10 nM          

3,5,6
Bmper=1.4-175 nM         

8
HSPG=Binds               

9
Tsg1=3 nM                 

10Ont1=Binds                   
11Integrins=Binds

1
Picollo et al. 1996; 

2
Trolio et al. 

2014; 
3
Rentzsch et al. 2006; 

4
Lee 

et al. 2006; 
5
Zhang et al. 2010; 

6Ambrosio et al. 2008;7Zhang et al. 

2007; 
8
Jasuja et al. 2004; 

9
Troilo et 

al. 2016; 
10

Inomata et al. 2008; 
11Larrain et al. 2000; 12Larrain et 

al. 2003

Noggin Antagonist Dorsal Binds and Inhibits BMP, Nodal, and Activin
human, zebrafish, frog, 

mouse

5ADMP=Binds              
1BMP10=NB                    
1Bmp9=NB                
2,7BMP7=Binds     
2,5,7BMP4=0.02 nM   
2BMP2=Binds 
3,4,6HSPGs=Binds       
1,8GDF5=2 nM       
5Activin=Binds         
5Xnr2=Binds          
5Xnr4=Binds             
5Wnt8=Binds

1Seemann et al. 2009; 
2Zimmerman et al. 1996; 
3Nesterenko et al. 2015; 4Viviano 

et al. 2004; 5Bayramov et al. 2011, 
6Paine-Saunders et al., 2002; 
7Groppe et al. 1998,2003; 
8Degenkolbe et al. 2013

Follistatin Antagonist Dorsal Binds 2:1 and Inhibits BMP1 human, zebrafish, frog, 

mouse

5Bmp15≈30 nM   
6,7,8Bmp7=35 nM    
7,8Bmp6=5.4 nM   
6,7,8,11Bmp4=2.9-23 nM         
10Bmp2=136 nM         
2,9

HSPG=5-56 nM       
10GDF11=4.95 nM   
3,4,7,8Activin=0.02-0.28 nM               
6
tgf-b=NB

1Thomsen et al. 2005; 2Nakamura 

et al. 1991; 3Chang et al. 2002; 
4Schneyer et al. 1994; 5Otsuka et 

al. 2001; 
6
Iemura et al. 1998; 

7Glister et al. 2004,2015; 8Sidis et 

al. 2006; 9Zhang et al. 2012; 
10

Takehara-Kasamatsu et al. 2007. 
11Geng et al 2011



10 
 

 

Table 1.1: The expession, binding, and function of the extracellular BMP Agonists and Antagonists active during Zebrafish 

and/or Xenopus DV patterning. 

Name

BMP Agonist 

or 

Antagonist

Dorsal or 

Ventral 

Exression Mechanism Organism Binding Affinities Ref

Crescent Antagonist Dorsal
Inhibits Chd Cleavage by Tld/Bmp1a1; Can also 

inhibit Wnt5a/8/112 frog

1Bmp1a=11 nM     
2Wnt11=Binds     
2Wnt8=Binds        
2
Wnt5a=Binds    

1Ploper et al. 2011; 2Shibata et al., 

2005

Coco/Dand5 Antagonist Animal
Coco enhances tgf-B signaling, but inhibits 

Nodal, BMP, and Activin

zebrafish, frog, mouse, 

human

1,2
Bmp4=Binds     

2,3Xnr1=Binds       
2Wnt8=Binds       
2Activin=Binds   
3Derriere=Binds

1
Deglencerti et al. 2015; 

2
Bell et al. 

2003; 
3
Vonica and Brivanlou 2006;

Gremlin-1 Antagonist Dorsal Binds and Inhibits BMP
human, zebrafish, frog, 

mouse

3
Bmp7=88 nM           

3
Bmp6=76 nM              

3,6
Bmp4=28 nM               

3Bmp2=32 nM            
1BMP2=5.6 nM                 
2HSPGs=20 nM                       
5Gdf5=Binds            
4
VEGFR1=47 nM 

1
Kisonaite et al. 2016; 

2
Chiodelli et 

al. 2011; 3Church et al. 2015; 
4Mitola et al. 2010; 5Dionne et al. 

2001; 6Sun et al. 2006
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Subsection 1.3: The antagonism of BMP by Chordin: an overview 

 The extracellular BMP antagonist Chordin and its homologs are essential to 

proper regulation of BMP signaling in mouse, fish, and frog development. Chordin is the 

central node of a network of regulators that modulate Chordin function in the 

extracellular space. Chordin inhibits BMP signaling by binding BMP ligand, rendering 

BMP ligand unable to bind its receptors (Fig. 1.2A, Table 1.1) (Stefano Piccolo Yoshiki 

Sasai, Bin Lu, Eddy M. De Robertis 1996, Troilo et al. 2014, Zhang J. L. et al. 2007a). 

Chordin is expressed in dorsal tissues, including the dorsal organizer, throughout early 

development (Abe et al. 2014, Abe et al. 2016, Bachiller 2003, Bachiller et al. 2000, 

Branam et al. 2010, Kuroda et al. 2004, Miller-Bertoglio et al. 1997, Ramel and Hill 

2013, Schulte-Merker et al. 1997, Shimizu et al. 2000, Xue et al. 2014). In zebrafish, the 

loss of chordin causes a modest expansion of ventral mesodermal and ectodermal 

structures such as blood and tail and a concomitant reduction of dorsal structures such as 

the somites, eyes, and brain (Fisher et al. 1997, Matthias Hammerschmidt 1996, Schulte-

Merker et al. 1997). A similar expansion of ventral mesodermal markers and ventral 

structures is seen in Xenopus embryos deficient for Chordin (Oelgeschlager et al. 2003). 

In mice, the loss of chordin alone does not induce as severe a phenotype, causing an 

expansion of the allantois at the expense of the embryonic mesoderm, along with mild 

pharyngeal and bone defects (Bachiller 2003).  

Other BMP antagonists play partially redundant roles to Chordin. In both 

zebrafish and Xenopus, the loss of the BMP antagonists Noggin and Follistatin further 

ventralize embryos lacking chordin, suggesting these three antagonists act together to 

inhibit BMP signaling during DV patterning (Dal-Pra et al. 2006, Khokha M. K. et al. 
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2005). These genes have not yet been knocked out altogether in mice. In all of these 

organisms, other genes similar to chordin are present that, like chordin, contain 

conserved CXXCXC and CCXXC motifs and antagonize BMP signaling (Garcia Abreu 

et al. 2002). These genes are referred to as chordin-like genes (Garcia Abreu et al. 2002). 

While one chordin-like gene has been suggested to act redundantly with chordin during 

gastrulation in fish, the limited early expression of chordin-like genes in mice and 

Xenopus suggests they only play a role later in development (Branam et al. 2010, 

Nakayama et al. 2001, Nakayama et al. 2004, Pfirrmann et al. 2015). 

 Chordin binds to BMP via multiple conserved Cysteine rich repeats known as CR 

domains or Von Willebrand Type C domains (Fig. 1.2B) (Larrain et al. 2000, Zhang J. L. 

et al. 2007a). One molecule of Chordin binds one dimer of BMP ligand (Stefano Piccolo 

Yoshiki Sasai, Bin Lu, Eddy M. De Robertis 1996, Troilo et al. 2014, Zhang J. L. et al. 

2007a). Chordin curves around the BMP dimer, binding one half with its CR1 domain 

and the other with its CR2/CR3/CR4 domains (Troilo et al. 2014). Chordin is also able to 

bind numerous other BMP extracellular modulators. The CR2-CR3 domains of Chordin 

bind the BMP extracellular modulator Twisted Gastrulation (Tsg) (Table 1.1, Fig. 1.2B) 

(Troilo et al. 2016). Chordin binds the BMP extracellular modulator Bmper (CV2) and 

HSPGs via undetermined domains (Fig. 1.2B, Table 1.1) (Ambrosio et al. 2008, Jasuja et 

al. 2004, Lee et al. 2006, Zhang J. L. et al. 2010). 

 Given that Chordin can bind so many extracellular BMP modulators, it is 

unsurprising that these modulators regulate the stability and activity of Chordin. The 

stability of the Chordin protein is regulated by the highly homologous metalloproteases 

Tolloid (also called Xolloid in Xenopus) and Bmp1, as well as the metalloprotease 
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inhibitors Sizzled and Crescent (Fig. 1.2A) (De Robertis and Moriyama 2016). Tolloid 

and Bmp1 cleave Chordin in two locations rendering it unable to inhibit BMP ligand 

effectively (Fig. 1.2B black arrows) (Blader 1997, Blitz et al. 2000, Connors SA. et al. 

1999, Connors S. A. et al. 2006, Geach and Dale 2008, Jasuja et al. 2006, Muraoka et al. 

2006, Stefano Piccolo Eric Agius, Bin Lu, Shelley Goodman, Leslie Dale, and Eddy M. 

De Robertis 1997, Wardle et al. 1999). Tolloid and Bmp1 function is abrogated by the 

proteinase inhibitors Sizzled and Crescent (Fig. 1.2 A-D) (Bijakowski et al. 2012, 

Collavin 2003, Inomata et al. 2013, Miller-Bertoglio et al. 1999, Muraoka et al. 2006, 

Ploper et al. 2011, Salic et al. 1997, Yabe T. 2003b). Ont1 acts as a scaffold to enhance 

the cleavage of Chordin by Tolloid and Bmp1 (Fig. 1.2 A,E) (Inomata et al. 2008).  

Tsg and Bmper regulate BMP activity by binding independently to Chordin and to 

BMP ligand, or by binding both Chordin and BMP in a tripartite complex. Tsg can 

enhance the cleavage of Chordin by Tolloid and Bmp1 by binding Chordin and pulling 

CR domains 2-4 away from the BMP ligand, thus making CR domain 2-4 more 

accessible to cleavage (Fig. 1.2A,B,F, Table 1.1) (Larrain et al. 2001, Little and Mullins 

2004, Troilo et al. 2016, Xie and Fisher 2005). Tsg can inhibit BMP signaling by binding 

to and enhancing the binding of Chordin to BMP ligand, as well as by binding BMP 

ligand itself (Fig. 1.2A,F, Table 1.1) (Blitz et al. 2003, Chang C. et al. 2001a, Scott et al. 

2001, Troilo et al. 2016, Zhang J. L. et al. 2007a). Bmper similarly is able to both 

enhance and inhibit BMP signaling. Bmper enhances BMP signaling by binding Chordin, 

and inhibits BMP signaling by binding to BMP ligand (Fig. 1.2A,G, Table 1.1) 

(Ambrosio et al. 2008, Rentzsch et al. 2006, Zhang J. L. et al. 2010). Together, this 
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network of extracellular factors regulate BMP signaling by modulating activity and 

stability of the antagonist Chordin. 

Subsection 1.4: Tolloid and Bmp1 antagonize Chordin  

Tolloid and Bmp1 are metalloproteases that regulate Chordin stability by cleaving 

Chordin at two locations near the N- and C-terminal region of the protein (Fig. 1.2B) 

(Blader 1997, Muraoka et al. 2006, Scott et al. 1999, Stefano Piccolo Eric Agius, Bin Lu, 

Shelley Goodman, Leslie Dale, and Eddy M. De Robertis 1997, Wardle et al. 1999). The 

cleavage of Chordin blocks the ability of Chordin to bind and inhibit BMP ligand 

(Larrain et al. 2000, Lee et al. 2006, Stefano Piccolo Eric Agius, Bin Lu, Shelley 

Goodman, Leslie Dale, and Eddy M. De Robertis 1997). Though the cleavage of Chordin 

by Tolloid leaves the individual BMP binding domains (CR domains) intact, which are 

still able to bind BMP (Troilo et al. 2014), these fragments: bind BMP with a lower 

affinity than full-length Chordin (Larrain et al. 2000), are cleared from the extracellular 

space faster (Kelley et al. 2009, Larrain et al. 2001, Xie and Fisher 2005), and can be 

competed away by the extracellular BMP agonist Twisted Gastrulation (Larrain et al. 

2001). The first two “Complement 1r/s, Uegf and BMP1” (CUB) domains and Epidermal 

Growth Factor (EGF) domain of Tolloid are needed for effective cleavage of Chordin 

(Canty et al. 2006, Geach and Dale 2008), as the CUB domains bind to BMP ligand, and 

may also be responsible for its high affinity to Chordin (Fig. 1.2C, Table 1.1) (Geach and 

Dale 2008, Lee et al. 2006, Lee et al. 2009). The first three CUB domains are also needed 

for Tolloid to bind Collagen IV (Winstanley et al. 2015), which enhances Chordin 

cleavage by Tolloid (Fig. 1.2A,C, Table 1.1) (Winstanley et al. 2015). 
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 Bmp1 and Tolloid enhance BMP signaling and thus promote the formation of 

ventral cell fates in the developing embryo (Table 1.1). In zebrafish and Xenopus, tolloid 

and bmp1 are first ubiquitously expressed in the early gastrula before becoming ventrally 

restricted in the mid to late gastrula (Table 1.1) (Connors SA. et al. 1999, Dale et al. 

2002, Goodman et al. 1998, Jasuja et al. 2006). In zebrafish, the loss of either bmp1 or 

tolloid alone only mildly dorsalizes the most posterior portions of the embryo, while the 

loss of both leads to a severe loss of all ventral tissues (Blader 1997, Connors SA. et al. 

1999, Connors S. A. et al. 2006, Jasuja et al. 2006, Muraoka et al. 2006). A similar level 

of dorsalization is seen in frogs injected with dominant-negative bmp1 or tolloid RNA 

(Blitz et al. 2000, Geach and Dale 2008, Stefano Piccolo Eric Agius, Bin Lu, Shelley 

Goodman, Leslie Dale, and Eddy M. De Robertis 1997, Wardle et al. 1999). In the early 

mouse gastrula, bmp1 and tolloid are expressed ubiquitously, while tolloid-like1 is 

expressed laterally and tolloid-like2 is expressed anteriorly (Scott et al. 1999). However, 

mice mutant for bmp1 and tolloid show no early DV patterning phenotype, possibly due 

to functional redundancy between Tolloid, Bmp1a, and the Tolloid-like proteins 

(Pappano et al. 2003, Suzuki et al. 1996). 

Subsection 1.5: Sizzled and Crescent antagonize Tolloid and Bmp1  

 Sizzled and Crescent, relatives of the secreted Frizzled Receptor (Sfrp) family, 

competitively inhibit the metalloprotease action of Bmp1 and Tolloid (Fig. 1.2A) 

(Ambrosio et al. 2008, Bijakowski et al. 2012, Lee et al. 2006, Muraoka et al. 2006, 

Ploper et al. 2011). Like other Sfrps, Crescent is able to bind Wnt ligand (Fig. 1.2D, 

Table 1.1) (Pera and De Robertis 2000, Ploper et al. 2011, Shibata et al. 2005). In 

contrast, Sizzled is not able to bind Wnt ligand or inhibit Wnt signaling (Fig. 1.2D) (Lee 
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et al. 2006). The N-Terminal Cysteine-Rich Frizzled domain of both Sizzled and 

Crescent tightly binds to the active site of Tolloid and Bmp1, inhibiting the ability of 

Tolloid and Bmp1 to bind and cleave Chordin (Fig. 1.2A,D) (Ambrosio et al. 2008, 

Bijakowski et al. 2012, Lee et al. 2006, Muraoka et al. 2006, Ploper et al. 2011). This 

contrasts the human and mouse Sfrp proteins which cannot inhibit Tolloid- or Bmp1-

mediated proteolysis of Chordin (Bijakowski et al. 2012, Kobayashi et al. 2009). 

Crescent and Frzb were recently found to greatly enhance the diffusion of Wnt in 

Xenopus embryos, transporting Wnts and allowing them to signal at considerable 

distances from where they are secreted (Mii and Taira 2009). 

  By inhibiting Tolloid and Bmp1, Sizzled and Crescent increase the amount of 

Chordin that can block BMP signaling, thus promoting dorsal cell fate specification in the 

early embryo (Table 1.1). sizzled is expressed ventrally and its expression depends on 

BMP signaling (Table 1.1), acting as a negative feedback inhibitor during DV patterning 

(Fig. 1.2A, Table 1.1). In contrast, crescent is expressed dorsally in Xenopus (Table 1.1) 

(Lee et al. 2006, Pera and De Robertis 2000, Ploper et al. 2011, Yabe S. I. 2003a). Loss 

of sizzled causes an expansion of ventral mesodermal and ectodermal cell fates, which 

depends on the presence of Tolloid/Bmp1 (Collavin 2003, Lee et al. 2006, Matthias 

Hammerschmidt 1996, Miller-Bertoglio et al. 1999, Yabe T. 2003b). This dependence 

and that loss of sizzled does not further ventralize chordin mutant embryos, shows that 

Sizzled acts entirely by inhibiting Tolloid/Bmp1 degradation of Chordin during axis 

patterning (Lee et al. 2006, Miller-Bertoglio et al. 1999). The loss of crescent ventralizes 

Xenopus embryos, while the injection of crescent RNA dorsalizes them (Pera and De 

Robertis 2000, Ploper et al. 2011). Despite the important role Sizzled and Crescent play 
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during zebrafish and Xenopus DV patterning, mammals do not have sizzled or crescent 

homologs (Kuraku and Kuratani 2011), and the related members of the Sfrp family do 

not appear to inhibit Chordin metalloprotease activity (Bijakowski et al. 2012, Kobayashi 

et al. 2009).  

 sizzled stands out as an antagonist of BMP signaling that is expressed ventrally in 

a similar domain to the BMP ligand (Lee et al. 2006, Yabe T. 2003b). sizzled 

transcription is regulated by BMP signaling (Table 1.1) (Inomata et al. 2013, Lee et al. 

2006), thereby forming a negative feedback loop with BMP signaling. It has been 

postulated that this feedback loop provides stability to the system. If BMP signaling were 

to only upregulate BMP agonists and downregulate antagonists, the system could be 

easily thrown out of balance. The negative feedback of Sizzled helps BMP limit its own 

expression domain through a transcriptional autoregulatory loop, stabilizing the system 

(Collavin 2003, Inomata et al. 2013). There is also evidence that this negative feedback 

loop helps to properly shape the BMP gradient properly in different sized embryos, a 

phenomenon referred to as scaling (Inomata et al. 2013). 

Subsection 1.6: The antagonism and agonism of BMP by Twisted Gastrulation 

 Twisted Gastrulation is a small but multi-functional extracellular modulator 

capable of promoting or antagonizing BMP signaling depending on embryonic context 

(Fig. 1.2A). Tsg is capable of antagonizing BMP signaling in either the absence or 

presence of Chordin (Fig. 1.2A). In the absence of Chordin, Tsg inhibits BMP signaling 

by binding the BMP ligand with an affinity ranging between 2.5-50 nM depending on the 

ligand (Table 1.1) (Chang C. et al. 2001a, Oelgeschlager 2003, Oelgeschlager et al. 2000, 



18 
 

Troilo et al. 2016, Zhang J. L. et al. 2007a). Tsg binds BMP ligand with its N-Terminal 

CR domain (Fig.1.2F) (Oelgeschlager 2003, Zhang J. L. et al. 2007a). Tsg can also 

antagonize BMP signaling by forming a ternary complex with BMP and Chd, thereby 

enhancing the binding of Chordin to BMP ligand (Fig. 1.2F) (Chang C. et al. 2001b, 

Oelgeschlager 2003, Oelgeschlager et al. 2000, Scott et al. 2001, Troilo et al. 2016, 

Zhang J. L. et al. 2007a). Consistent with this, the overexpression of tsg antagonizes 

BMP signaling in the absence or presence of Chordin (Blitz et al. 2003, Chang C. et al. 

2001a, Little and Mullins 2004, Troilo et al. 2016). Conversely, in the presence of both 

Chordin and the metalloprotease Tolloid, Tsg acts as a BMP agonist by enhancing the 

degradation of Chordin by Tolloid (Fig. 1.2A) (Scott et al. 2001, Troilo et al. 2016, Xie 

and Fisher 2005). Tsg also enhances the binding of extracellular BMP modulator Bmper 

to Chordin (Fig. 1.2A) (Ambrosio et al. 2008). Therefore, Tsg can enhance or inhibit 

BMP signaling depending on the presence and concentration of BMP ligand, Chordin, 

Bmper, and the metalloproteases Tolloid and Bmp1.  

 Despite the numerous mechanisms by which Tsg can antagonize BMP signaling, 

Tsg may act predominantly as a BMP agonist during early patterning. In Xenopus, tsg is 

ventrally expressed in a similar domain as BMP ligand during DV patterning (Table 1.1) 

(Oelgeschlager et al. 2000). In mice, tsg is expressed in the anterior visceral endoderm 

and the primitive streak in the late blastula and throughout the mesoderm in the early 

gastrula (Zakin and De Robertis 2004). In fish and frogs, the loss of tsg causes a 

substantial retraction of ventral gene markers, an expansion of dorsal somites, and loss of 

tail structures (Blitz et al. 2003, Little and Mullins 2004). Despite the strong conservation 

between fish, frog, and mouse tsg genes, the loss of tsg in mice does not alter early 
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patterning, manifesting only as subtle defects in the vertebrae and thymus (Nosaka et al. 

2003, Zakin and De Robertis 2004). However, the loss of tsg in conjunction with one 

allele of bmp4 caused forebrain, eye, and further skeletal defects suggesting that tsg acts 

as a BMP agonist in mice as well (Zakin and De Robertis 2004). Though Tsg has been 

shown in some contexts to act as a BMP agonist in vivo, it is still likely that Tsg exerts 

different effects on BMP signaling in different embryonic contexts.  

Subsection 1.7: The antagonism and agonism of BMP by Bmper  

 Like Tsg, Bmper (also known as Crossveinless-2) is a multi-functional 

extracellular modulator capable of promoting or antagonizing BMP signaling depending 

on embryonic context. Bmper can antagonize BMP signaling in the absence or presence 

of Chordin, but can only act as an agonist when Chordin is present (Fig. 1.2A, Table 1.1). 

Bmper acts as a BMP agonist by binding to Chordin, reducing its ability to bind and 

inhibit BMP (Fig. 1.2G, Table 1.1) (Ambrosio et al. 2008, Rentzsch et al. 2006, Zhang J. 

L. et al. 2010). Bmper interacts with the extracellular matrix by binding HSPGs (Fig. 

1.2G, Table 1.1) (Serpe et al. 2008), and this interaction is thought to enhance BMP 

signaling during vertebral field patterning by concentrating BMP ligand in the vertebral 

body where bmper is expressed (Zakin et al. 2010, Zakin et al. 2008). Paradoxically, 

Bmper also increases Chordin protein levels in the vertebral body, suggesting Chordin, 

Bmper, and BMP ligand may form a ternary complex. Alternatively, Bmper may be 

sequestering Chordin extracellularly facilitating the release of BMP from Chordin. 

Additional studies are needed to fully resolve the mechanism by which Bmper enhances 

BMP signaling. The antagonism of BMP signaling by Bmper is clear. Bmper binds 

directly to the BMP ligand (Fig. 1.2G, Table 1.1), and thus interferes with the interaction 
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of the BMP ligand and its Type I receptor (Ambrosio et al. 2008, Rentzsch et al. 2006, 

Zhang J. L. et al. 2010). In cell culture, the BMP-Bmper complex binds to LRP1 and is 

endocytosed more rapidly than BMP alone, suggesting Bmper may also antagonize BMP 

ligand by clearing it from the extracellular space (Table 1.1) (Pi et al. 2012). Tsg 

enhances the ability of Bmper to bind BMP ligand and inhibit signaling (Fig. 2A) 

(Ambrosio et al. 2008), and it is possible that Bmper and Tsg act synergistically as 

suggested by their genetic interaction in mouse kidney and vertebral field formation 

(Ikeya et al. 2010, Zakin et al. 2008). 

 Bmper acts as either a BMP agonist or antagonist depending on developmental 

context and organism. During fish DV patterning, Bmper enhances BMP signaling by 

acting as a competitive inhibitor of Chordin, and the loss of bmper dorsalizes the embryo 

(Rentzsch et al. 2006, Zhang J. L. et al. 2010). Conversely, during Xenopus DV 

patterning Bmper inhibits BMP signaling by binding BMP ligand directly, and the loss of 

bmper ventralizes the embryo (Ambrosio et al. 2008). In both systems, overexpression of 

bmper dorsalizes the embryo by binding directly to the BMP ligand (Moser et al. 2003, 

Rentzsch et al. 2006, Zhang J. L. et al. 2010). In mice, the loss of bmper has no effect on 

axis patterning, instead causing skeletal and kidney defects later in development (Ikeya et 

al. 2006). The loss of bmper and tsg together does not affect axis patterning either (Ikeya 

et al. 2008, Zakin et al. 2008).  

Subsection 1.8: The Noggin and the Follistatin family antagonize BMP  

Noggin, Follistatin, and Follistatin-like are extracellular BMP inhibitors that bind 

to BMP ligand and inhibit BMP ligand-receptor interaction. Noggin self-dimerizes to 
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form a butterfly shaped complex capable of binding some, but not all, BMP ligands with 

a high affinity (Fig. 1.2A,I, Table 1.1) (Bayramov et al. 2011, Groppe et al. 2002, Groppe 

et al. 2003, Jay Groppe and Affolter 1998, Zimmerman et al. 1996). Noggin can also bind 

the BMP related GDFs, and to a lesser extent ADMP, Wnt8, and Activin (Table 1.1) 

(Bayramov et al. 2011, Degenkolbe et al. 2013, Seemann et al. 2009). Knockdown 

studies suggest that the binding of Noggin to Wnt8, and Activin/Nodal plays a role 

during embryonic patterning in Xenopus (Bayramov et al. 2011). Noggin also strongly 

binds HSPGs (Fig. 1.2I), and this interaction is thought to limit Noggin dimer mobility in 

the extracellular space (Inomata et al. 2013, Nesterenko et al. 2015, Paine-Saunders et al. 

2002, Viviano et al. 2004). Follistatin similarly binds numerous BMPs, GDFs, and 

Activins (Fig. 1.2A) (Geng et al. 2011, Glister et al. 2004, Glister et al. 2015, Iemura et 

al. 1998, Nakamura et al. 1991, Otsuka et al. 2001, Schneyer et al. 1994, Sidis et al. 2006, 

Takehara-Kasamatsu et al. 2007). Unlike Noggin, Follistatin does not self-dimerize, 

though two Follistatin proteins can bind to a single BMP dimer (Thompson et al. 2005). 

Like Noggin, Follistatin strongly binds HSPGs, which may limit its diffusivity in the 

extracellular space (Table 1.1) (Nakamura et al. 1991, Zhang F. et al. 2012). 

Interestingly, Follistatin-Activin complexes bind HSPGs more tightly than Follistatin or 

Activin alone (Zhang F. et al. 2012). 

Noggin, Follistatin, and Follistatin-like proteins act as BMP antagonists during 

axis patterning, promoting dorsal fates by binding BMP ligand. noggin, follistatin, and 

follistatin-like are expressed in the dorsal organizer during axis patterning (Table 1.1) 

(Bachiller 2003, Bachiller et al. 2000, Dal-Pra et al. 2006, Khokha M. K. et al. 2005). 

Interestingly, the loss of either noggin or follistatin or both noggin and follistatin together 
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has little effect on embryonic DV patterning (Dal-Pra et al. 2006, Geng et al. 2011, 

Khokha M. K. et al. 2005, Lana-Elola et al. 2011, Matzuk et al. 1995, McMahon et al. 

1998, Stafford et al. 2014, Sylva et al. 2013). Only in the absence of chordin does the loss 

of noggin and follistatin further ventralize zebrafish and Xenopus embryos, indicating 

that these three proteins act partially redundantly to promote dorsal cell fates (Dal-Pra et 

al. 2006, Khokha M. K. et al. 2005). The chordin;noggin;follistatin loss of function 

phenotype is not yet known for mice, but double mutants for chordin and noggin fail to 

form forebrain (Bachiller et al. 2000). It is possible that additional BMP antagonists such 

as Gremlin, Cerberus, and Chordin-like also function redundantly to compensate for the 

loss of Chordin, Noggin, and Follistatin during axis patterning.  

Subsection 1.9: Dan Family proteins Gremlin and Coco antagonize BMP and Nodal 

 Coco and Gremlin are ‘Differentially screening-selected gene Arbitrative in 

Neuroblastoma’ (DAN) family extracellular proteins capable of inhibiting BMPs as well 

as other ligands such as Activin, Wnt, and Nodal (Fig. 1.2J, Table 1.1). Coco binds and 

inhibits Activin, BMP, Nodal, and Wnt ligands, but also enhances canonical Tgf-β 

signaling (Bates et al. 2013, Bell 2003, Deglincerti et al. 2015) by interacting with its 

receptor Alk-5 (Fig. 1.2A,J, Table 1.1) (Deglincerti et al. 2015). Gremlin binds and 

inhibits numerous BMP ligands as well as Gdf5 (Fig. 1.2A,J, Table 1.1) (Church et al. 

2015, Dionne et al. 2001, Kisonaite et al. 2016, Sun et al. 2006). Interestingly, Gremlin 

also belongs to the Cysteine knot superfamily, which includes Vascular Endothelial 

Growth Factor (VEGF) (Vitt et al. 2001). Due to its similarity to VEGF, Gremlin can 

activate VEGF receptors and promote angiogenesis (Mitola et al. 2010). Gremlin binds 
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strongly to HSPGs, likely limiting its effective diffusivity (Table 1.1) (Chiodelli et al. 

2011).  

 Coco inhibits endoderm and mesoderm formation during AP patterning by 

inhibiting Activin and Nodal signaling (Bates et al. 2013, Bell 2003). Coco also helps 

establish the fate of the right side of the embryo by inhibiting Nodal signaling 

(Schweickert et al. 2010, Vonica and Brivanlou 2007). Mice lacking gremlin suffer 

malformed limbs, lungs, and kidneys (Khokha MK. et al. 2003, Michos et al. 2004). The 

phenotype for the loss of gremlin1 has not been determined in zebrafish or Xenopus, but 

it is expressed dorsally during axis patterning in fish (Nicoli et al. 2005).  
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Chapter 2: Systems biology derived source-sink mechanism of BMP 

gradient formation 

Subsection 2.1: Introduction: the mechanism of BMP gradient formation during DV 

patterning 

While much is known about the binding interaction and basic function of the 

extracellular BMP regulators, how these regulators come together to form the BMP 

signaling gradient that patterns the DV axis in vertebrates is poorly understood. In 

contrast, the DV gradient has been well studied in Drosophila, revealing a complex 

mechanism referred to as ‘shuttling’ centered around the BMP antagonist Sog, a 

homologue of vertebrate Chordin (Eldar et al. 2002, Guillermo Marques 1997, Holley S. 

et al. 1996, Peluso et al. 2011, Shilo et al. 2013, Shimmi et al. 2005, Umulis et al. 2010). 

The mechanism was revealed by visualizing the BMP signaling gradient using an 

antibody against phosphorylated-Mad protein, which is phosphorylated by the Type I 

receptors in response to BMP signaling.   

A key part of the shuttling mechanism is the ability of Sog to act not only as a 

BMP antagonist during DV patterning, but also as an agonist. During Drosophila DV 

patterning, Sog acts as an agonist by binding to and moving BMP ligand via facilitated 

diffusion to regions of Tolloid activity (Fig 2.1A). Tolloid then cleaves Sog, which 

releases BMP thus increasing peak BMP levels, a process altogether known as shuttling 

(Fig. 2.1A) (Eldar et al. 2002, Guillermo Marques 1997, Holley S. et al. 1996, Peluso et 

al. 2011, Shilo et al. 2013, Shimmi et al. 2005, Umulis et al. 2010). The shuttling 

mechanism is essential to Drosophila DV patterning, where Sog shuttles BMP ligand 
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from lateral regions to dorsal regions (Fig. 2.1A) (Eldar et al. 2002, Guillermo Marques 

1997, Holley S. et al. 1996, Peluso et al. 2011, Shilo et al. 2013, Shimmi et al. 2005, 

Umulis et al. 2010). This shuttling mechanism is required to steepen the BMP signaling 

gradient and specify the dorsal-most cell fates in the Drosophila embryo (Eldar et al. 

2002, Guillermo Marques 1997, Holley S. et al. 1996, Peluso et al. 2011, Shilo et al. 

2013, Shimmi et al. 2005, Umulis et al. 2010). The shuttling of BMP ligand by Chordin 

has also been suggested to play a role in DV patterning in Echinoderms (Lapraz et al. 

2009) and Nematostella (Genikhovich et al. 2015).  

It is unclear whether Chordin shuttles BMP in patterning vertebrate tissues. In 

Xenopus, the shuttling of a particular BMP ligand, ADMP, by Chordin was reported to 

play a role in DV axial patterning in the scaling of embryos (Ben-Zvi et al. 2008, 

Reversade and De Robertis 2005). In the mouse, Chordin has been suggested to shuttle 

BMP ligand from where it is expressed in the intervertebral disc to its site of signaling in 

the vertebral body (Zakin et al. 2010). Mathematical models of zebrafish and Xenopus 

DV patterning have predicted that Chordin may shuttle BMP ligand (Ben-Zvi et al. 2008, 

Zhang Y. T. et al. 2007b). The transcriptional profiles of zebrafish BMP components at 

the onset of gastrulation resembles that of the Drosophila embryo (Dutko and Mullins 

2011, O'Connor et al. 2006). In Drosophila, sog is expressed ventral-laterally while the 

BMP ligand dpp is expressed dorsally (Fig. 2.1A). Vertebrates have undergone a DV axis 

inversion with respect to arthropods (De Robertis and Sasai 1996, Gerhart 2000, Sander 

and Schmidt-Ott 2004, TC. 1995), thus chordin is expressed dorsally while bmp ligands 

are expressed ventrally (Fig. 2.1A,B). However, whether Chordin acts as a BMP agonist 
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by shuttling BMP ligand during DV patterning in zebrafish or other vertebrates has not 

been determined. 

In vertebrates, the mechanism by which the BMP ligands and antagonists shape 

this gradient is unclear. Several potential mechanisms have been proposed: 1) an inverse 

gradient of BMP antagonists imparts the shape of the BMP signaling gradient (Fig. 2.1C) 

(Blitz et al. 2000, Connors SA. et al. 1999, Little and Mullins 2006, Thomsen 1997), 2) 

BMP antagonists generate the peak BMP signaling levels by shuttling BMP ligand to 

these regions  (Fig. 2.1B,D) (Ben-Zvi et al. 2008, Shilo et al. 2013, Zhang Y. T. et al. 

2007b), 3) the gradient shape mirrors the shape of the bmp expression domain (Fig. 2.1E) 

(Ramel and Hill 2013), and 4) the gradient is generated by BMP diffusing from its ventral 

source to a dorsal sink of BMP antagonists (Fig. 2.1F). These mechanisms are not 

mutually exclusive and multiple may act in combination.  

To identify the mechanism of BMP signaling gradient formation in the zebrafish 

embryo, we established a robust quantitative imaging analysis to directly measure the 

BMP signaling readout. We integrated the results with a mathematical modeling 

approach, using the experiments to inform our model selection. The modeling provided 

information on key parameters to measure to identify the mechanism by which the BMP 

signaling gradient is formed. We used phosphorylated Smad5 protein as a direct read-out 

for BMP signaling in both WT and chordin mutant embryos. We quantified nuclear 

phosphorylated-Smad5 (P-Smad5) fluorescent intensity across the entire embryo at 

single-cell resolution at different stages of development. Combining the P-Smad5 data 

with a computational model-based screen showed that shuttling of BMP during DV 

patterning does not shape the gradient, and that a gradient of bmp transcript cannot 
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account for the gradient of BMP signaling activity. From these results, we conclude that 

the signaling gradient patterning the vertebrate DV axis is generated by either a source-

sink or counter-gradient mechanism. To discern between these mechanisms, we 

developed and measured the diffusion rate of a BMP2-Venus fusion protein in the 

zebrafish blastula and found that it is relatively mobile, which supports a source-sink 

mechanism. Our results suggest that significant differences exist between the biophysical 

parameters of conserved proteins in zebrafish and Drosophila DV patterning. Through 

quantification and modeling, we present a new view of the mechanism that the BMP 

antagonists and ligand use to establish the BMP signaling gradient patterning the DV axis 

in zebrafish. 

 

Figure 2.1: Potential Mechanisms of BMP Morphogen Gradient Formation. (A) 

Cross-sectional view of the Drosophila embryo depicting Sog shuttling Dpp (the fly BMP 

ligand) dorsally. (B) Lateral view of the zebrafish embryo depicting Chordin (Chd) 

shuttling BMP ventrally. (C) Counter-Gradient: Chd diffuses ventrally to form a counter-
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gradient repressing BMP. (D) Shuttling: BMP bound to Chd is shuttled ventrally, where 

it is released by Tolloid cleavage. (E)  Transcriptional: BMP stays where it is produced, 

mirroring the bmp expression gradient. (F) Source-sink: BMP diffuses from its source of 

ventral production to a sink of dorsal Chd. 

Results 

Subsection 2.2: Quantifying the Wild Type Signaling Gradient 

To measure the BMP signaling gradient, we quantified the levels of the BMP 

signal transducer P-Smad5 across the entire embryo at single cell resolution. Smad5 is 

directly phosphorylated by the BMP type I receptor in response to BMP signaling, and P-

Smad5 has been shown to linearly correlate with the concentration of BMP ligand in the 

Drosophila wing disc and S2 cells (Bollenbach et al. 2008, Serpe et al. 2008). Fixed 

embryos were whole-mount immunostained for P-Smad5 and imaged using a Line 

Scanning Confocal Microscope (Fig. 2.2A-E). We developed a mounting and imaging 

protocol that minimized photo-bleaching, light scattering, and refractive index mismatch 

(see methods). We wrote a Matlab algorithm to identify all 8000+ nuclei centerpoints in 

each embryo in 3 dimensions, to remove populations unresponsive to P-Smad5 such as 

yolk syncytial nuclei and dividing cells (see methods), and to extract the P-Smad5 

intensities associated with each nucleus (Fig. 2.2A’-E’). Embryos were aligned by 

coherent point drift (see methods) to a reference embryo to create ensembles of embryos 

suitable for statistical analysis (Andriy Myronenko 2010). We used a band of cells around 

the margin of the embryo (Fig. 2.2F’) to plot profiles from the dorsal-most to the ventral-
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most points to compare P-Smad5 gradient profiles between stages and between wild-type 

and mutant embryos (Fig. 2.2F). 

Our quantitative analysis revealed that the BMP gradient during DV patterning is 

quite dynamic. BMP signaling patterns prospective head and rostral trunk DV axial 

tissues during late blastula to mid-gastrula stages at ~5 to 7 hours post fertilization (hpf) 

in zebrafish (Hashiguchi and Mullins 2013, Kwon et al. 2010, Tuazon and Mullins 2015, 

Tucker et al. 2008). We quantified the BMP signaling gradient at 30-minute intervals 

across this period. We found that the ventral-most 30˚ undergoes about a 2-fold 

intensification from 4.7 to 6.7 hpf (Fig. 2.2F). This is accompanied by a 3 to 5 fold 

increase in the slope of the gradient in ventrolateral regions of the embryo (0-75 degrees) 

over this 2-hour period (Fig. 2.2G). Moreover, the lateral region encompassing the high 

slope (>0.5 A.U./degree) expands from a size of 20˚ to 75˚, meaning that by 6.7 hpf, 

nearly half the embryo falls within this high slope region. This contrasts with Drosophila 

DV patterning, where an initial broad, low-slope distribution of P-Mad is refined into a 

steep peak of BMP signaling covering only the dorsal-most 8% of the embryo (11 cell 

lengths) (Sutherland et al. 2003, Wang and Ferguson 2005). This intensification of P-

Mad is very rapid in Drosophila DV patterning, where P-Mad increases about 3 fold in 

the 30 minutes between stages 5 and 6 (Ross et al. 2001, Sutherland et al. 2003, Wang 

and Ferguson 2005), a process that we found is much slower in the zebrafish embryo: a 

2-fold increase over a 2 hour period.  
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Figure 2.2: Dynamics of the WT P-Smad5 gradient across head and trunk 

patterning. (A-E) Animal views of maximum projections of P-Smad stained individual 

embryos. (A’-E’) Animal views of nuclear intensities of all nuclei from the embryos 

shown above. (F) Average marginal intensities for 4.7-6.7 hpf (4.7: N=3, 5.3: N=4, 5.7: 

N=13, 6.3: N=11, 6.7: N=4). Error bars indicate standard deviation. (G) Slope of the P-

Smad gradients shown in panel F. Dotted line separates high slope (>0.5 a.u./deg) regions 

from low slope regions. 
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Subsection 2.3: A Computational Model-Based Screen of Zebrafish the BMP 

Signaling Gradient 

We then performed a computational model-based screen to investigate which 

gradient-forming mechanisms (Fig. 2.1C-F) would fit the WT P-Smad5 gradient profiles 

(Fig. 2.2). To do so, we first needed to determine the expression domains of bmp, 

chordin, noggin, and tolloid to use for the computational model. We based our domains 

on our own measurements (Fig. 2.3) as well as past groups’ in situ hybridizations for bmp 

(Furthauer et al. 2004, Ramel and Hill 2013), chordin (Miller-Bertoglio et al. 1997), 

tolloid (Connors SA. et al. 1999), and noggin (Dal-Pra et al. 2006). chordin and noggin 

expression domain sizes were measured to be 75 and 40 degrees in width, respectively, 

based on quantification of animal-pole views of wholemount in situ hybridizations (Fig. 

2.3A-C). We also estimated the size of the bmp expression domain via wholemount in 

situ hybridizations (Fig. 2.3D). However, bmp2b expression appeared to be graded and 

not as easily measured as chordin and noggin. Our collaborator Xu Zhang instead 

measured the relative shape of the bmp2b expression gradient via fluorescent in situ 

hybridization on cross-sections through the entire DV marginal domain at 5.7 hpf (Fig. 

2.3F-H). She quantified the relative intensity of our fluorescent bmp2b in situ (Fig. 2.3I 

black line), and I used it to estimate the BMP production domain in our model (Fig 2.3I 

blue line). 
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Figure 2.3: Measuring the bmp2b, chordin, and noggin expression domains. Animal 

pole views of wholemount in situ hybridizations of the expression of (A) chd (N=25), and 

(B) nog (N=8) in WT embryos. (C) Measured domain size of chd and nog domains via 

wholemount in situ hybridization in WT and chd mutant embryos. (D-D’’’) bmp2b in chd 

+/- embryos at 4.7 (N=10), 5.3 (N=15), 5.7 (N=20), and 7 hpf (N=16), and (E-E’’’) 

bmp2b expression in chd -/- embryos at 4.7 (N=6), 5.3 (N=16), 5.7 (N=13), and 7 hpf 

(N=12). (F-H) Fluorescent in situ hybridization (FISH) signal of bmp2b from a marginal 

slice at 5.7 hpf with a DAPI nuclear stain. Scale bars=100μm. (I) Quantification of FISH 

of bmp2b expression from ventral to dorsal (black line, N=5) compared to the BMP 
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production gradient used in the mathematical model (blue dotted line). Error bars indicate 

standard deviation.  

We then developed a system of partial differential equations to model the 

interactions of BMP, Chordin, Noggin, and Tolloid. BMP, Chordin, Noggin, BMP-

Chordin, and BMP-Noggin were modeled as diffusible species, while Tolloid was treated 

parametrically according to its domain of expression (Fig. 2.4A, 4.2A). The zebrafish 

gastrula was reduced to a 1-dimensional half-circumference with a length of 700 µm. 

Domains of production of BMP, Chordin, and Noggin were estimated as described in Fig. 

2.3. The dissociation constants for Bmp-Chordin and BMP-Noggin were set to 1 and 0.1 

nM respectively, based on previously reported analysis (Stefano Piccolo Yoshiki Sasai, 

Bin Lu, Eddy M. De Robertis 1996, Troilo et al. 2014, Zhang J. L. et al. 2007a, 

Zimmerman et al. 1996). All remaining parameters (ie. the diffusion coefficients, 

production rates, decay rates, on and off binding rates) were varied over 4 orders of 

magnitude encompassing all biologically feasible values (Table 2.1).  
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Table 2.1: List of the parameter ranges used in the computational model-based 

screen. Values range between the upper and lower bound. Note that the dissociation 

constant of BMP-Chd and BMP-Nog was held constant, but the on- and off- rates were 

allowed to vary. 

The equations are solved for the developmental window from ~3.5 hpf to ~5.7 

hpf, since bmp and chordin are first expressed after the mid-blastula-transition at 3 hpf 

(Koos and Ho 1999, Leung 2003, Shimizu et al. 2000, Solnica-Krezel and Driever 2001). 
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The equations were simulated 1,000,000 times, each time with different randomly 

selected parameters. Each parameter combination was then re-simulated without Chordin 

or Noggin to predict the BMP signaling gradient in a chordin or noggin loss of function 

(LOF) scenario. We then selected parameter combinations that generated BMP protein 

distributions that were less than 8% different to our experimentally measured P-Smad5 

gradient at 5.7 hpf, henceforth referred to as “solutions” (Fig. 2.4B). We also eliminated 

parameter combinations that have significantly different BMP distribution gradients 

when Noggin production was set to 0, as the loss of Noggin does not affect DV 

patterning in zebrafish or Xenopus (Fig. 2.9) (Dal-Pra et al. 2006, Khokha M. K. et al. 

2005).   

All simulation results that fit our data were classified into categories based on the 

biophysical process that dominated formation of the gradient shape: shuttling, source-

sink, counter-gradient, or transcriptional (Fig. 2.4C). We discerned between source-sink, 

counter-gradient, and transcriptional mechanisms by examining the balance of binding, 

diffusion, decay, and accumulation processes in the partial differential equation for the 

BMP species (Fig. 2.4C,C’’). If 80% of the BMP ligand was degraded where it was 

produced or accumulated there, the solution was classified as transcriptional (Fig. 

2.4C,C’’). If the majority of BMP diffused away from its site of production rather than 

being bound by Chordin, the solution was considered to have a source-sink mechanism 

(Fig. 2.4C,C’). Conversely, if the majority of BMP was bound at its site of production by 

Chordin, the solution was classified as a Chordin counter-gradient mechanism (Fig. 

2.4C,C’). We classified a solution as shuttling if the ventral-most point in the predicted 

chordin-/- BMP profile was at least 20% lower than in WT, as shuttling is a process 
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whereby the antagonist leads to a net accumulation of ligand in the ventral-most region 

(Fig. 2.4C,C’’). By Comparison, Drosophila shuttling has a much more significant effect 

on the peak level, with a 50% decrease in the peak P-Mad level observed when the 

chordin homolog sog is deficient (Mizutani et al. 2005, Peluso et al. 2011, Sutherland et 

al. 2003). Shuttling of 20% is over one standard deviation greater than our measured 

embryo to embryo variability for peak P-Smad signaling levels (Fig 2.2B). 

Multiple classes of mechanisms generated solutions fitting our WT data, 

including an antagonist counter-gradient, source-sink, and shuttling. Out of 1,000,000 

randomly picked parameter combinations, 15,142 fit the experimentally measured WT 

signaling gradient (Fig. 2.4D’). 13,382 of these were classified as source-sink, 1,710 as 

counter-gradient, and 50 as shuttling (Fig. 2.4D”). Notably, no transcriptional solutions 

were found, because our selected bmp expression profile (Fig. 2.4H) did not exactly 

match our measured WT BMP signaling gradient (Fig. 2.3), and therefore BMP needed to 

diffuse away or be bound by Chordin to fit our measured signaling gradient. 

Even though the measured bmp2b expression profile (Fig. 2.3) did not precisely 

match the measured WT BMP signaling gradient (Fig. 2.2), we wanted to determine what 

type of bmp expression domain would permit a transcriptional mechanism to match the 

P-Smad gradient we measured (Fig. 2.2). When we matched the bmp expression domain 

to the BMP signaling gradient (Fig. 2.4E), we found that the transcriptional mechanism 

was the most abundant mechanism among the solutions (Fig. 2.4E’,E’’). No Counter-

Gradient solutions were found, as Chordin binding to BMP would interfere with the 

shape of the BMP protein gradient, causing it to no longer match the measured BMP 

signaling gradient. 
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Figure 2.4: Creation of a system-scale mathematical model of BMP gradient 

formation. (A) Depiction of the species and binding possibilities modeled. (B) BMP 

distributions of 10 individual model solutions (black dotted lines) plotted against the WT 

5.7 hpf P-Smad5 gradient (blue line). Error bars indicate standard deviation. (C) Flow-

chart of model mechanism classification. (C’) BMP mass balance from model labeled to 

indicate which terms contribute to the source-sink, counter-gradient, and transcriptional 

mechanisms at each point. (C”) Shuttling mechanism was defined by a 20% decrease at 

the ventral-most point in chd LOF compared to WT. (D) Expression domains of bmp 

(blue), tld (purple), chd (red), and nog (yellow) used in the model. (E) Expression 

domains of bmp (blue), tld (purple), chd (red), and nog (yellow) used for the alternative 
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scenario where the bmp expression domain mirrors the measured P-Smad gradient. (D’, 

E’) Pie chart showing how many parameter combinations fit the WT data (blue) and how 

many failed to do so (grey). (D”, E”) Pie chart showing how many parameter 

combinations were classified to have a source-sink (blue), counter-gradient (red), 

transcriptional (orange), or shuttling (green) mechanism. 

Subsection 2.4: Constraints on biophysical parameters imposed by the WT gradient 

Each mechanism required specific biophysical parameters to fit the 

experimentally measured DV signaling gradient. The source-sink mechanism required 

BMP to have a high diffusion rate and low decay rate so BMP could diffuse to a dorsally 

localized sink of antagonists (Fig. 2.5A). The counter-gradient mechanism required 

Chordin to have a high diffusion rate and low decay rate so Chordin could diffuse 

ventrally to set up an antagonist gradient (Fig. 2.5B).  When BMP and Chordin range are 

plotted on the same axis, the segregation of the source-sink and counter-gradient 

mechanisms based on range is readily apparent (Fig. 2.5C). The shuttling mechanism 

required that BMP-Chordin have a high diffusion rate and low decay rate in order to 

freely diffuse ventrally where Tolloid cleaves Chordin, which then releases BMP (Fig. 

2.5D). 

 For the simulations performed where the bmp expression domain was set to match 

the signaling gradient, distinct biophysical requirements were also observed for each 

mechanism. The source-sink mechanism required BMP to have a high range, while the 

transcriptional mechanism required BMP to have a low range or a very low diffusivity 

(<0.05 µm
2
/s) (Fig. 2.5G,I). Neither of these mechanisms constrained Chordin range (Fig. 
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2.5H,I). The shuttling mechanism required BMP-Chordin range to be high and its decay 

rate to be low (Fig. 2.5J). The shuttling mechanism also required BMP range to be high 

(Fig. 2.5G), because Chordin cannot move ventrally to bind BMP in this scenario since 

that would interfere with the bmp expression gradient matching the BMP signaling 

gradient. BMP needs to move dorsally to form the BMP-Chordin species that ultimately 

is then shuttled back ventrally. The remaining parameters required for shuttling were 

similar for the two simulations (Fig. 2.5,F,K,L). Intriguingly, the WT distributions of P-

Smad5 data alone did not eliminate any of these gradient formation mechanisms in the 

simulations. 
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Figure 2.5: Biophysical values of individual simulations that fit the WT P-Smad5 

gradient. (A-L) Scatter plots comparing biophysical parameters of 1,000 solutions 

classified by mechanism that fit the WT data. Combinations that failed to fit the WT P-

Smad5 gradient are small grey dots. We plot solutions as large circles colored according 

to their mechanism, which is based on definitions outlined in Figure 4C: counter-gradient 

(red), source-sink (blue), transcriptional (orange), or shuttling (green). We plotted 

additional shuttling solutions in order to better illustrate trends. (A-F) Simulations using 

domains displayed in Fig. 4D. (G-L) Simulations using domains displayed in Fig. 4E. 

(A,G) BMP diffusivity vs. BMP decay rate. (B,H) Chd diffusivity vs. Chd decay rate plus 

the rate of Chd cleavage by Tld. (C,I) Range was estimated as sqrt(diffusivity/decay). 

(D,J) Diffusivity of BMP bound to Chd vs. decay rate of BMP bound to Chd. (E,K) 

Range of Nog protein. (F,L) Chd and BMP-Chd cleavage rate by Tld. 

Subsection 2.5: The chordin mutant gradient shows no evidence of shuttling 

To determine whether Chordin shuttling of BMP ligand plays a functionally 

relevant role in generating the ventral P-Smad5 peak in zebrafish, as it does in 

Drosophila, we quantified the P-Smad5 gradient of chordin mutant embryos over a 

developmental time series (Fig. 2.6A,B). If it does play a role, then we would expect the 

ventral P-Smad5 peak to be reduced in chordin mutants compared to WT embryos. We 

found that the P-Smad5 gradient in chordin mutants showed a statistically significant 

increase in lateral regions of the embryo at the four time-points examined from 4.7 to 6.3 

hpf (Fig. 2.6C-F,4.2B). Importantly, no decrease in P-Smad5 was observed in the ventral 

region of chordin mutant embryos, nor in any region of the gradient.  These results 

indicate that, unlike the Drosophila homolog Sog, Chordin plays no significant BMP 
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shuttling role during zebrafish DV patterning. It is worth noting that in many solutions, 

small amounts of BMP ligand are shuttled short distances but do not impact the gradient 

significantly, and thus are not classified as shuttling. The P-Smad5 gradient in the 

chordin mutants shows, however, that this is minimal in zebrafish. 

Interestingly, the loss of chordin did not cause an increase in the ventral-most P-

Smad5 peak level either (Fig 2.6C-F,4.2B), suggesting that Chordin does not actively 

block BMP signaling there. However, Smad5 could be limiting and already saturated as 

P-Smad5 in the ventral-most cells of WT embryos, rendering them unresponsive to 

further increases in free ligand. To investigate this possibility, I overexpressed Bmp2/7 

ligand in WT embryos at a level that fully ventralizes (V5) them at 24 hpf (Fig. 2.6G,H). 

We quantified P-Smad5 at 5.7 and 6.5 hpf and found that the gradient showed a 

significant increase in signaling embryo-wide over WT siblings, including in the ventral-

most region (Fig. 2.6I).  These results indicate that BMP signaling in ventral regions is 

not near saturation in WT embryos and that Chordin does not regulate the peak P-Smad5 

levels by promoting or inhibiting signaling at these stages.  

We next tested whether the P-Smad gradient is robust to the heterozygosity of 

chordin. The Drosophila P-Mad gradient shows some small changes in sog heterozygotes 

(sog is a chordin homologue) compared to wildtype (Eldar et al. 2002, Umulis et al. 

2010). Similarly, zebrafish heterozygous for chordin do not show any DV patterning 

phenotype at 24 hpf (Matthias Hammerschmidt 1996). We found that the chordin 

heterozygous and WT signaling gradients were indistinguishable at 5.7 hpf (Fig. 2.6J). 

Therefore, we show that the BMP signaling gradient in zebrafish is robust to a 50% 

decrease in Chordin levels, but not to the complete loss of Chordin.  
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Figure 2.6: Effect of Chd on gradient shape and ligand shuttling. (A,B) Animal views 

of average intensities from each time-point in (A) WT (4.7: N=3, 5.3: N=4, 5.7: N=13, 

6.3: N=11) and (B) chd mutant (4.7: N=3, 5.3: N=5, 5.7: N=11, 6.3: N=9) embryos. (C-F) 

Average marginal intensities for WT (blue) and chd mutant (red) embryos from 5.7-6.3 

hpf. (G) Average marginal intensities for WT (blue, N=4) and bmp2/7 RNA injected 

embryos (grey, N=4) at 5.7 and 6.3 hpf (black, N=5). Error bars indicate standard 

deviation.  (H) Fully ventralized (V5) embryos injected with 6 pg of bmp7a RNA and 12 
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pg of bmp2b RNA vs (I) uninjected WT siblings. (J) WT (N=9) vs chd+/- (N=10) at 5.7 

hpf. 

Subsection 2.6: Constraints on computational models imposed by the chordin 

mutant gradient 

We then constrained the computational model-based screen with both the WT and 

the chordin mutant and heterozygote P-Smad5 gradients at 5.7 hpf to determine which 

mechanisms and parameter combinations would remain compatible (Fig. 2.7A,B). We 

eliminated individual simulations that deviated by more than 8% from the chordin 

heterozygous or homozygous P-Smad gradients (Fig. 2.7C-D). Many mathematical 

model solutions that fit the WT BMP signaling gradient did not fit our chordin 

heterozygous and homozygous mutant data.  Of the 15,142 parameter combinations that 

fit the WT gradient alone, only 4,059 fit both the WT and chordin mutant gradients (Fig. 

2.7E-E’). Of those, all were either source-sink or counter-gradient mechanisms (Fig. 

2.7E’). All parameter combinations classified as shuttling had chordin LOF BMP 

distributions that deviated from the measured chordin mutant P-Smad (Fig. 2.6) gradient 

by more than 17% (Fig. 2.7C). Many, but not all, parameter combinations classified as 

counter-gradient had chordin heterozygous BMP distributions that deviated from the 

measured chordin heterozygous mutant P-Smad (Fig. 2.6J) gradient by more than 8% 

(Fig. 2.7D).  

These remaining mechanisms required different and specific combinations of 

biophysical parameters.  The source-sink solutions required a high BMP range of 60+ µm 

with a diffusivity above 1 µm
2
/s (Fig. 2.7F,G).  The counter-gradient mechanism required 
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a lower BMP range, less than 60 µm, and a high Chordin range above 40 µm with a 

diffusivity above 2 µm
2
/s (Fig. 2.7G,H). A low rate of Chordin cleavage by Tolloid was 

also required for the counter-gradient mechanism to facilitate a high Chordin range (Fig. 

2.7I).  

We then tested whether the transcriptional mechanism could also fit the chordin 

mutant data. We used our previously discussed simulation in which the bmp expression 

domain exactly matched the WT P-Smad5 gradient (Fig. 2.4E). Of the 64,893 parameter 

combinations identified as having a source-sink mechanism that fit the WT data alone, 

227 fit both WT and chordin mutant gradients (Fig. 2.7J,J’). These source-sink solutions 

required a high BMP diffusivity (Fig. 2.7K) and range similar to what was observed in 

the simulation with a broader bmp expression domain (Fig. 2.7L). However, while 83,747 

parameter combinations identified as having a transcriptional mechanism fit the WT data 

alone, none fit both the WT and chordin mutant gradients (Fig. 2.6H,H’). This is because 

only a change in the bmp expression domain in the chordin mutant could allow a 

transcriptional mechanism to fit both the WT and chordin mutant data.  

The bmp expression domain is known to become responsive to BMP signaling, 

creating a positive feedback loop during gastrulation (Matthias Hammerschmidt 1996, 

Nguyen et al. 1998, Schmid et al. 2000a). Gastrulation begins in zebrafish at 6 hpf. While 

the initial bmp expression domains are established independently of BMP feedback, a 

BMP feedback loop becomes active with reported onset times ranging from ~5.5 to 6.5 

hpf (Kishimoto et al. 1997, Miller-Bertoglio et al. 1999, Ramel and Hill 2013, Schmid et 

al. 2000b). To test whether the bmp expression domain changes in chordin mutants at 4.7 

to 5.7 hpf, we compared the bmp2b domain size in sibling chordin-/- and chordin+/- 
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embryos (Fig. 2.3D,E). chordin heterozygotes display a WT phenotype (Matthias 

Hammerschmidt 1996, Miller-Bertoglio et al. 1999) and we found also display a WT P-

Smad5 gradient (Fig. 2.6J). There was no discernable difference in the bmp2b domain 

size at 4.7, 5.3, or 5.7 hpf, indicating that bmp transcriptional feedback is not active 

before 5.7 hpf (Fig. 2.3D,E). Similarly, the chordin expression domain did not change in 

size before 5.7 hpf (Fig. 2.3B). Therefore, the increase in BMP signaling activity 

observed in chordin mutants precedes the change in bmp expression, showing that the 

transcriptional mechanism cannot account for the P-Smad5 gradient profiles prior to 5.7 

hpf. We observed a change in bmp2b expression by 7 hpf, consistent with previous 

findings that bmp transcriptional feedback activates after gastrulation begins (Fig 

2.3D’’’,E’’’) (Kishimoto et al. 1997, Miller-Bertoglio et al. 1999, Ramel and Hill 2013, 

Schmid et al. 2000b).  
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Figure 2.7: Biophysical values of individual simulations that fit both the WT and 

chd LOF P-Smad gradients. (A) BMP distributions of 5 individual modeling solutions 

(WT: black dotted lines, chd LOF: grey dotted lines) plotted against WT (blue line) and 

chd LOF (red line) 5.7 hpf P-Smad5 gradients. Error bars indicate standard deviation of 

experimental P-Smad intensity. (B) BMP distributions of 5 individual modeling solutions 

(WT: black dotted lines, chd +/-: grey dotted lines) plotted against WT (blue line) and 

chd +/- (green line) 5.7 hpf P-Smad5 gradients. Error bars indicate standard deviation of 

experimental P-Smad intensity. (C,D,F-I,K,L) 1,000 randomly selected parameter 
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combinations capable of fitting both the WT data, chd +/-, chd LOF data classified by 

mechanism. Larger circular points fit the WT P-Smad gradient and are colored based on 

their mechanism according to the definitions outlined in figure 4C: counter-gradient 

(red), sink-source (blue), transcriptional (orange), or shuttling (green). Combinations that 

failed to fit the WT P-Smad gradient are small grey dots. (C-D) Normalized Root Mean 

Squared Deviation (NRMSD) between the measured P-Smad and the model BMP 

distributions. Black dotted lines mark the 8% threshold. (C) Comparing WT and chd 

LOF. (D) Comparing WT and chd +/-. (E) Parameter combinations fit both the WT data 

and chd LOF data (blue) and how many failed to do so (grey). (E’) parameter 

combinations were classified to have a source-sink (blue), counter-gradient (red), or 

shuttling (green) mechanism. (F-I) Simulation using the bmp expression domain 

displayed in Fig. 4D. (K,L) Simulation using the bmp expression domain displayed in 

Fig. 4E. (F,K) BMP diffusivity vs. BMP decay rate. Green dotted line marks the BMP 

diffusivity we measured using FRAP (4.4 µm2/s). (G,L) Range was estimated as 

sqrt(diffusivity/decay). (H) Chd diffusivity vs. Chd decay rate plus the rate of Chd 

cleavage by Tld. (I) Rate of Chd cleavage by Tld vs. rate of BMP-Chd cleavage by Tld. 

(J) Pie chart showing the parameter combinations that fit the WT data (blue) or failed to 

do so (grey) for the alternative scenario where the bmp expression domain mirrors the 

measured P-Smad5 gradient (Fig. 3I). (J’) Pie chart of how many solutions had a source-

sink (blue), counter-gradient (red), transcriptional (orange), or shuttling (green) 

mechanism. 
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Subsection 2.7: Fluorescence Recovery After Photobleaching (FRAP) to measure 

BMP diffusivity 

The combination of WT and chordin mutant P-Smad5 gradients limits the number 

of computationally-derived model solutions and, importantly, reduces the number of 

mechanisms to two: source-sink and counter-gradient. We and others have largely 

purported the counter-gradient mechanism as acting in vertebrate DV patterning (Blitz et 

al. 2000, Hama and Weinstein 2001, Little and Mullins 2006, Sasai and De Robertis 

1997, Thomsen 1997).  To our surprise, the source-sink modeling solutions emerged 

more frequently within our computational screen than the counter-gradient solutions (Fig 

2.7B’). In the source-sink mechanism, BMP ligand must exhibit high diffusivity (Fig 

2.7C). To test if BMP diffusivity excludes or supports the source-sink mechanism, we 

measured the effective diffusivity of the Bmp2b ligand using fluorescence recovery after 

photobleaching (FRAP).  

Our collaborator Ye Bu tagged Bmp2b by inserting the fluorescent protein Venus 

between the pro- and mature domains of bmp2b. He was able to detect both the the pro- 

and mature domains of Bmp2b with Venus protein (Fig. 2.8A, black arrows). The Venus 

tag did not interfere with Bmp2b activity, as injections of 50 or 100 pg of the mRNA at 

the 1-cell stage significantly ventralized the embryos (Fig. 2.8B, Rows 1-2). To further 

assess the activity and range of the Bmp2b-Venus chimera, I tested if Bmp2b-Venus 

could rescue embryos lacking Bmp2b, as it has been previously reported that embryos 

lacking bmp2b can be rescued using bmp2b RNA (Nguyen et al. 1998). I was able to 

rescue bmp2b LOF embryos to a WT phenotype by injecting bmp2b-venus RNA (Fig. 

2.8B, Rows 6-8).  
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To perform the FRAP, we injected bmp2b-Venus mRNA into a single blastomere 

at the 8-cell stage (Fig. 2.8B, Row 3) and then photobleached a 160 µm cube of cells in 

4.3 hpf embryos (Fig 2.8C). We then measured recovery of fluorescence over one hour. 

To ensure we only recorded extracellular Bmp2b-Venus, we photobleached a region 

away from the cells producing Bmp2b-Venus. The bleached region recovered 

fluorescence to its initial level in ~30 mins (Fig. 2.8C,E), corresponding to a measured 

Bmp2b-Venus effective diffusivity of 4.4 +/- 0.4 µm
2
/s (SEM, n=5). To ensure that we 

were only measuring the diffusivity of Bmp2b-Venus alone and not Bmp2b-Venus bound 

to Chordin, we repeated the FRAP experiment in Chordin LOF embryos (Fig 2.8B Row 

4-5). Again, The bleached region recovered fluorescence to its initial level in ~30 mins 

(Fig. 2.8F), corresponding to a measured Bmp2b-Venus effective diffusivity of 4.0 +/- 

0.5 µm
2
/s (SEM, n=5). To determine the extent to which Bmp2b was limiting diffusion, 

we measured the diffusivity of Venus alone. The bleached region recovered fluorescence 

much more rapidly, reaching its initial level in under 5 mins (Fig. 2.8D,G), corresponding 

to a measured Venus effective diffusivity of 16.3 +/- 2.2 µm
2
/s (SEM, n=5).  

A measured BMP diffusivity of ~4 µm
2
/s fits with a large portion of the source-

sink modeling solutions. In fact, 1,421 source-sink solutions have diffusivities within 2 

µm
2
/s of our measured diffusivity (Fig 6F, Green Line). In contrast, only 31 counter-

gradient solutions were within 2  µm
2
/s of our measured diffusivity, and these solutions 

all have very high BMP decay rates (above 10
-3

/s)(Fig 6F, green Line). A decay rate of 

that magnitude would cause the half-life of BMP ligand in the embryo to be very short, 

less than 10 minutes for decay rates above 1x10
-3

/s, suggesting that a source-sink 
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mechanism more likely establishes the BMP signaling gradient patterning the zebrafish 

DV axis. 

 

Figure 2.8: Measuring Bmp2b-Venus diffusivity via FRAP. (A) Detection of Bmp2b-

Venus and secreted Venus proteins by western blot. Embryos were injected with bmp2b-

venus mRNA (250pg) or secreted-Venus mRNA (200pg) at the one-cell stage. Protein 

lysates were prepared at late blastula stage. In the Bmp2b-Venus overexpression sample, 

two major protein bands were detected by Venus antibody (black arrows). The larger 

molecular weight protein is the pro- and mature domains of Bmp2b with Venus protein 

(669AA, ~74KDa). The smaller protein is the mature domain of Bmp2b with Venus 
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protein (376AA, ~41KDa). The secreted Venus protein (248AA, ~27KDa) is also 

detected in the secreted-Venus overexpression sample (red arrow). β-actin was used as a 

loading control. (B) 24 hpf phenotypes of embryos injected with the bmp2b-venus 

construct used for FRAP experiments, controls, and rescue. Dorsalization was classified 

as C5: Loss of all ventral structures; C4-C3: Loss of, or truncated tail; C2-C1: Loss of 

ventral tail fin. Ventralization is classified as V1: reduction is eye size; V2-V3: the eyes, 

notochord, and anterior brain are partially or completely absent; or V4-V5: complete loss 

of all dorsal structures. Fluorescent BMP-Venus (C) or Venus (D) recovery after 

photobleaching for 20 minutes. (E-G) Plots of fluorescent intensity recovery in the 

extracellular region. Bold lines are mean curves, thin lines are raw intensity data. (H) 

BMP diffusivity vs. BMP decay rate for simulations that fit WT, chd +/-, and chd -/- P-

Smad profiles and were within 2 µm2/s of 4.4 µm2/s. Large blue circles are simulations 

classified as source-sink, red are counter-gradient, and small grey dots failed to fit the 

measured P-Smad profiles. FRAP and Western Blot were performed by Ye Bu in the lab 

of David Umulis. Rescue experiments were performed by the author. 

Subsection 2.8: How Noggin and Follistatin affect the BMP gradient 

During zebrafish DV patterning, two additional antagonists, Noggin and 

Follistatin act together with Chordin to repress BMP signaling dorsally (Dal-Pra et al. 

2006, Schulte-Merker et al. 1997). Noggin and Follistatin differ from Chordin in their 

expression domains, phenotype, and interaction with the metalloprotease Tolloid. chordin 

is expressed in a larger domain than noggin or follistatin (Fig. 2.3,A,B) (Dal-Pra et al. 

2006), and Chordin has been shown to diffuse more rapidly than Noggin in the Xenopus 

gastrula (Inomata et al. 2013). Most importantly, Noggin and Follistatin are not cleaved 
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by Tolloid or Bmp1, and they bind to BMP with a higher affinity than Chordin 

(Bayramov et al. 2011, Geng et al. 2011, Glister et al. 2004, Glister et al. 2015, Groppe et 

al. 2002, Groppe et al. 2003, Iemura et al. 1998, Jay Groppe and Affolter 1998, Sidis et 

al. 2006, Zimmerman et al. 1996). Therefore, when BMP is bound by Noggin or 

Follistatin, it is removed from the system with little chance of being freed to re-enter. 

Despite their strong BMP binding and immunity to metalloprotease degradation, 

the loss of noggin or follistatin by themselves or together does not show a DV patterning 

phenotype at 24 hpf (Fig. 2.9A) (Dal-Pra et al. 2006). However, when Noggin and 

Follistatin are depleted in chordin mutants, the embryo becomes further ventralized (Fig. 

2.9B,C) (Dal-Pra et al. 2006), showing that Noggin and Follistatin play a partially  

redundant role with Chordin.  

To better understand the role that Noggin and Follistatin play during DV axis 

patterning, we quantified the BMP signaling gradient in embryos depleted of Noggin and 

Follistatin. The depletion of Noggin and Follistatin together via morpholino injection did 

not significantly alter the p-Smad gradient at 5.7 hpf (Fig. 2.9D,E,H), consistent with the 

lack of phenotype seen at 24 hpf (Fig. 2.9A). Surprisingly, the depletion of Noggin and 

Follistatin in a chordin mutant embryo showed little change from the chordin mutant P-

Smad gradient, except for a small but significant increase of BMP signaling in the dorsal 

organizer at 5.7 hpf (Fig. 2.9F,G,I,J). Intriguingly, this suggests that Noggin and 

Follistatin may be responsible for safeguarding the dorsal organizer from receiving any 

BMP signaling. The dorsal organizer is responsible for secreting numerous BMP 

antagonists (Niehrs 2004, Nieto 1999, Thisse and Thisse 2015), and BMP signaling is 
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known to repress antagonist expression after the onset of gastrulation (Miller-Bertoglio et 

al. 1997).  

There are a few explanations as to how the small dorsal increase in BMP 

signaling seen in Chordin, Noggin, and Follistatin depleted embryos at 5.7 hpf (Fig. 

2.9F,G,I,J)  could account for the decrease in head structures seen at 24 hpf (Fig 2.9B,C). 

In both WT and chordin mutant embryos, P-Smad is never observed in the dorsal 

organizer. Though the loss of some head tissue and the notochord could be explained by 

elevated signaling in the dorsal organizer, much of the midbrain and diencephalon is 

derived from more animal cells above the organizer where no change in signal is seen at 

5.7 hpf. It is possible that increased signaling in the dorsal organizer begins to diminish 

antagonist expression after gastrulation begins, ultimately exacerbating the BMP 

signaling phenotype and elevating BMP signaling laterally. It is also worth noting that the 

noggin and follistatin morpholinos cause significant developmental delay which may 

alter patterning in unforeseen ways. For this reason, I recommend that further queries into 

the function of Noggin and Follistatin be done by generating mutant lines with CRISPR. I 

was unable to generate a noggin mutant using CRISPR due to time constraints. 

Constraining the model with the Chordin, Noggin, and Follistatin triple LOF data 

did little to constrain any model variables or narrow down the solution set (Fig. 2.9K-N). 

Note that Noggin and Follistatin were combined into a single species (refered to as 

Noggin) for modeling purposes because their binding to BMP (Table 1), expression (Dal-

Pra et al. 2006), and interaction with Tolloid are similar. I eliminated any solutions that 

deviated from the Chordin, Noggin, and Follistatin LOF P-Smad data by more than 8% 

(Fig. 2.9K). Less than 1,000 source-sink solutions were eliminated, and it was not enough 
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to significantly alter the ratio of source-sink to counter-gradient solutions. The 

diffusivities and decay rates of BMP and Noggin were not constrained further by the 

addition of the triple loss of function data. 

 

Figure 2.9: Effect of Noggin and Follistatin on gradient shape and ligand shuttling. 

(A-C) 24 hpf phenotypes of (A) embryos injected with noggin and follistatin morpholino, 

(B) chordin mutant embryos, (C) chordin mutant embryos injected with noggin and 
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follistatin morpholino. Animal views of average intensities at 5.7 hpf in (A) WT (N=9), 

(B) chd mutant (N=11), (C) noggin and follistatin morpholino injected (N=7), and (D) 

chordin mutant embryos injected with noggin and follistatin morpholino. (C-J) Average 

marginal intensities for WT (blue), noggin and follistatin morpholino injected (green), 

chordin mutant with noggin and follistatin morpholino injected (yellow), and chordin 

mutant (red) embryos from 5.7 hpf. Error bars indicate standard deviation.  Black dots 

indicate rejection of the null hypothesis at the 5% significance level for a Two-tailed T-

Test. (K) Mean relative error (residual) between the measured P-Smad and the model 

BMP distributions. Black dotted lines mark the 8% threshold. Grey dots did not fit. Blue 

dots are source-sink solutions, red dots are counter-gradient solutions, green dots are 

shuttling solutions. (M,N) parameter combinations capable of fitting the WT data, chd +/, 

chd LOF, Nog+Fstl LOF data and Chd+Nog+Fstl LOF data classified by mechanism. 

(M) BMP diffusivity vs. BMP decay rate. (N) Noggin diffusivity vs. Noggin decay rate. 

Subsection 2.9: Comparing Zebrafish and Drosophila DV patterning 

Our results show that the BMP signaling gradient patterning the zebrafish DV 

axis is markedly different from the one patterning the Drosophila DV axis. The zebrafish 

BMP signaling gradient is broad, reaching half of its maximum at ~40% of the total DV 

axis length (Fig. 2.2F). In contrast, the Drosophila gradient is incredibly steep, reaching 

half of its peak at only ~10% of the total embryo DV axis length (Fig. 2.10A) (Peluso et 

al. 2011, Sutherland et al. 2003). Similarly, the loss of the main BMP antagonist in either 

organism, Chordin or Sog, causes markedly different effects on the BMP signaling 

gradient (Fig. 2.10A) (Mizutani et al. 2005, Peluso et al. 2011, Sutherland et al. 2003).  



57 
 

Zebrafish and Drosophila DV patterning differ in both length-scale and time-

scale. The Drosophila embryo has a 250 µm half-circumference, while the zebrafish 

embryo has a 700 µm half-circumference. The zebrafish gradient is established gradually 

in ~2-3 hours and maintained for several hours (Ramel and Hill 2013, Tucker et al. 

2008), whereas the Drosophila BMP signaling gradient is established and patterns DV 

tissues in ~1 hour (Dorfman and Ben-Zion 2001, Wang and Ferguson 2005). Given these 

differences between the Drosophila and zebrafish systems, we sought to determine if 

Drosophila-like shuttling solutions could exist with zebrafish time- and length-scales, 

and if so, how the biophysical parameters of components would differ from those 

consistent with the WT and chordin mutant P-Smad5 gradients observed (Fig. 2.6).  

In the 1,000,000 random simulations tested, we found many parameter 

combinations that could generate a steep gradient with extensive shuttling in zebrafish. 

Solutions were considered to be Drosophila-like if their WT gradient reached its half-

maximum <10% of the total embryo circumference and the ventral peak of the chordin 

mutant was 50% lower than the ventral peak level of the WT curve (Fig. 2.10A) 

(Mizutani et al. 2005). We found 251 solutions that fit the Drosophila-like signaling 

gradients for both WT and chordin mutant conditions. We also excluded simulations with 

excessive BMP-Noggin interaction, as Drosophila does not possess noggin or follistatin 

homologs (Fig. 2.10B).  

The Drosophila-like solutions required a very mobile Chordin and BMP-Chordin 

species. Drosophila-like solutions required Chordin to have a high range to move to 

encounter the BMP in the ventral region (Fig. 2.10C,E). Similarly, BMP-Chordin needed 

to have a high range so it could be shuttled a sufficient distance towards the ventral-most 
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region of the embryo (Fig. 2.10D,E). The cleavage of free Chordin by Tolloid needed to 

be low to allow Chordin range to remain high (Fig. 2.10F). Conversely, the cleavage of 

bound Chordin needed to be high to release the BMP from Chordin (Fig. 2.10F). Chordin 

range must be high to allow the formation of a counter-gradient to block signaling in the 

lateral regions of the embryo (Fig. 2.10E). Conversely, BMP range was relatively 

unrestricted in Drosophila-like solutions, as the shuttling mechanism relies more on 

BMP-Chordin mobility than BMP mobility (Fig. 2.10G).   

 

Figure 2.10: Comparing Zebrafish and Drosophila-like solutions. (A) Depiction the 

BMP gradients patterning the Drosophila and zebrafish DV axis. Drosophila DV axis has 

been flipped to match the zebrafish. Solid lines are WT. Dotted lines are chd or sog LOF. 

(B) List of homologous genes involved in DV patterning of zebrafish and Drosophila. (C-

F) Solutions able to fit WT and chd LOF zebrafish data (blue) vs. solutions capable of 

fitting Drosophila-like WT and Drosophila-like chd LOF gradients (red). Parameter 

combinations that failed to fit either are represented as small grey dots. (C) Chd 

diffusivity vs. Chd decay rate plus the rate of Chd cleavage by Tld. (D) Diffusivity of 
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BMP bound to Chd vs. decay rate of BMP bound to Chd. (E) Range was estimated as 

sqrt(diffusivity/decay). (F) Cleavage rate of Chd and BMP-Chd by Tolloid. (G) BMP 

diffusivity vs. DMP decay rate. 

Subsection 2.10: Discussion 

Here we have quantified the BMP signaling gradient in WT and chordin zebrafish 

mutants by measuring with high precision the P-Smad5 immunofluorescence level in all 

~8,000+ nuclei of an embryo, with high reproducibility within and between embryos at 

multiple developmental stages. We then used these data to inform a computational 

model-based screen of over 1,250,000 combinations of biophysical parameters of the 

major extracellular BMP modulators. We defined mathematical criteria to distinguish 

between four widely proposed mechanisms to set up the BMP signaling gradient. Our 

computational model-based screen excludes the shuttling and transcriptional mechanisms 

as possibilities for establishing our measured WT and chordin mutant P-Smad5 profiles, 

providing compelling evidence that the BMP signaling gradient patterning the zebrafish 

DV axis is established by either a counter-gradient or source-sink mechanism. We further 

determined that the effective diffusivity of the BMP ligand in the zebrafish embryo is 

relatively fast, consistent with 1,421 source-sink solutions but only 31 counter-gradient 

ones. Comparison of models that satisfy zebrafish or Drosophila-like profiles suggest that 

either the range of BMP-Chordin and/or degradation rate of BMP bound to Chordin/Sog 

by Tolloid differ between zebrafish and Drosophila BMP DV patterning.  
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Subsection 2.11: Fish vs. flies: a mechanism diverged 

The shape of the BMP signaling gradient differs greatly between Drosophila and 

zebrafish DV patterning. The parameters that drive the most significant difference 

between the Drosophila-like and zebrafish solutions are the mobility and processing rates 

of BMP-Chordin (Fig. 2.5D,F, 2.10D,F). For all shuttling solutions, the BMP-Chordin 

needed to be sufficiently mobile to reach the ventral-most region of the embryo (Fig. 

2.5D,J,9D) and Tolloid needed to cleave BMP-Chordin at a rate that released it close to 

the ventral-most point (Fig. 2.5F,L,2.10D). For shuttling to be possible in a system with a 

broad peak of signaling, as it is in zebrafish, the BMP-Chordin cleavage rate needed to be 

low enough to allow BMP-Chordin to move farther and distribute BMP over a larger 

region (Fig. 2.5F,L). For shuttling to be possible in a system with a tight peak of 

signaling as it is in Drosophila, BMP-Chordin cleavage needed to be rapid to release 

BMP-Chordin over a smaller region (Fig. 2.10F). We show that a shuttling mechanism is 

not functioning in zebrafish, indicating that this delicate balance of BMP-Chordin 

mobility and Tolloid cleavage has been lost or did not emerge in vertebrate DV 

patterning.  

Sog and its vertebrate homolog Chordin differ in how they are processed by the 

metalloprotease Tolloid depending on whether it is bound to BMP ligand. Chordin can be 

cleaved by Tolloid whether bound to BMP ligand or not (Stefano Piccolo Eric Agius, Bin 

Lu, Shelley Goodman, Leslie Dale, and Eddy M. De Robertis 1997), while Sog is only 

cleaved when bound to  BMP (Guillermo Marques 1997). Interestingly, when Sog is 

mutated to allow it to be processed by Tolloid regardless of BMP binding, the shuttling of 

BMP-Sog complexes in flies is greatly reduced (Peluso et al. 2011), suggesting that this 
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attribute of Sog is necessary for effective shuttling. However, surprisingly, we found 

numerous shuttling solutions in our zebrafish modeling-based screen with the opposite 

properties, high Chordin cleavage rates and low BMP-Chordin cleavage rates (Fig. 

2.5F,L). The requirement for preferential cleavage of BMP-Chordin by Tolloid only 

emerged when we screened for Drosophila-like solutions, in which shuttling was 

generating a tight peak of BMP signal (Fig. 2.10A, F). This suggests that the preferential 

processing of BMP-Sog by Tolloid seen in Drosophila is not an inherent requirement of 

the shuttling mechanism, but may instead be a result of both the requirement to facilitate 

shuttling and to generate a steep gradient. 

In Drosophila DV patterning, the BMP signaling gradient is so steep that its base 

falls well within the region of bmp expression, far from the sog/chordin expression 

domain (Fig. 2.10A) (Francois et al. 1994, Holley SA. et al. 1995). To suppress lateral 

BMP signaling and form the Drosophila-like solutions seen in our model-based screen 

(Fig. 9A), Sog/Chordin needed to have a high range to diffuse far from its site of 

expression to inhibit BMP signaling over most of the bmp expression domain (Fig. 

2.10C,E). Therefore, the degradation of free Sog/Chordin by Tolloid needed to be low 

(Fig. 2.10F). However, to generate a small peak of BMP signaling (Fig. 2.10A), BMP-

Chordin cleavage by Tolloid needed to be high (Fig. 2.10F). Therefore, the requirement 

to preserve the range of action of free Chordin, combined with the requirement to rapidly 

cleave BMP-Chordin to generate a steep peak of signaling may explain why the 

preferential cleavage of BMP-Sog by Tolloid is needed for shuttling in Drosophila.   

Subsection 2.12: Comparing the source-sink and counter-gradient mechanisms 
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While the shuttling mechanism relies on the movement of the bound BMP-

Chordin complex, the source-sink and counter-gradient mechanisms rely on the 

movement of unbound BMP and Chordin. The source-sink mechanism relies on BMP 

diffusing dorsally to bind Chordin. Conversely, the counter-gradient mechanism relies on 

Chordin diffusing ventrally to bind BMP. Consistent with this, we found that the majority 

of solutions consistent with the source-sink mechanism requires a high BMP range and a 

high BMP diffusivity (above 1 µm
2
/s), while the counter-gradient mechanism requires a 

high Chordin range and high Chordin diffusion rate (above 1 µm
2
/s) (Fig. 2.5,2.7).   

To illustrate the distinct manners by which a source-sink and counter gradient 

mechanism would generate the zebrafish BMP signaling gradients observed, we 

graphically display in Fig. 2.11 the relative contributions of BMP and Chordin diffusion 

and BMP-Chordin binding to gradient formation.  The primary differences between the 

source-sink and counter-gradient mechanisms manifest in the relative amount of Chordin 

protein that diffuses ventrally into the bmp expression domain and the primary role of 

Chordin in forming the BMP gradient.  A counter-gradient mechanism leads to higher 

levels of Chordin that extend over a greater region of the ventral bmp expression domain 

compared to a source-sink mechanism (Fig. 2.11A). Counter-gradient and source-sink 

mechanisms also differ significantly in where Chordin binds and inhibits BMP ligand 

activity along the DV axis, which is consistent with the distinct Chordin protein 

distributions (Fig. 2.11A). In a counter-gradient mechanism Chordin binds BMPs in a 

broader domain, extending over a much greater extent of the DV axis than in a source-

sink mechanism (Fig. 2.11B,C). In a source-sink mechanism, Chordin binds BMP largely 

in dorsal regions and extends little ventrally, effectively generating a driving force for 
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BMP diffusion (Fig. 2.11B,C).  This dorsal sink of Chordin leads to a diffusive flux of 

BMP ligand down its concentration gradient (Fig. 2.11C) that largely shapes the BMP 

signaling profile in a source-sink mechanism but contributes far less to a counter-gradient 

mechanism (Fig. 2.11B).   

Importantly, gradient formation by either of these mechanisms need not be 

exclusive, and instead characteristics of each can contribute to some extent in shaping 

sectors of the other’s gradient.  In the source-sink simulation in Fig. 2.11A,C, Chordin 

forms a small counter-gradient partially contributing to the gradient shape in this region. 

Thus, in some source-sink simulations, Chordin shaped the gradient by simultaneously 

binding ligand to block signaling in lateral positions and by establishing a sink that serves 

as a driving force for the diffusion of ligand from ventral positions dorsally towards the 

regions of higher Chordin. Though each solution is classified by the dominant 

mechanism, many share some aspects of both the source-sink and counter-gradient 

mechanisms. 
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Figure 2.11: How the source-sink and counter-gradient mechanisms shape the 

gradient. (A) The mean Chd concentrations in all source-sink and counter-gradient 

solutions fitting WT, chd LOF, and chd heterozygous P-Smad data and within a 

diffusivity between 2.4 and 6.4 µm2/s. (B) The diffusive flux divided by the decay 

{(DBMP/decBMP)*(d[BMP]/dx)*(1/[BMP]max)} of BMP (blue) with units of 103*µm 

and rate of binding of BMP to Chd (kon*[BMP]*[Chd]) (red) with units of 3.6*10-2*sec-

1 for representitive (B) Counter-Gradient and (C) Source-Sink solutions fitting WT, chd 

LOF, and chd heterozygous P-Smad data and within a diffusivity between 2.4 and 6.4 

µm2/s (Fig. 7). 

Subsection 2.13: BMP diffuses relatively freely 

We measured BMP diffusivity for the first time in vertebrates. Using FRAP, we 

show that BMP can diffuse relatively freely with a diffusivity of 4.4 +/- 0.4 µm
2
/s (Fig. 

2.8E), about 4-fold less than unhindered Venus diffusion in the zebrafish blastula (≈16 

µm
2
/s) (Fig. 2.8G). Our measured BMP diffusivity is comparable to the diffusivity of 

Squint (Ndr1, D=3.2 µm
2
/s), another TGF-β ligand in the zebrafish blastula that acts as a 
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long-range mesoderm inducer (Muller et al. 2012). This high BMP diffusivity is 

consistent with previous BMP heterodimer protein injections into the extracellular space 

of BMP-deficient embryos, which could extend throughout the embryo and restore the 

WT P-Smad5 gradient within 1.5 hours, suggesting the BMP ligand can move rapidly 

(Little and Mullins 2009).   

Our model-based screen found hundreds of solutions with a BMP diffusivity near 

4.4 µm
2
/s. The vast majority of those solutions were classified as having a source-sink 

mechanism by the definition we outlined in Fig. 2.4. The remaining few are classified as 

having a counter-gradient mechanism. This paucity of counter-gradient solutions is a 

reflection of the fine-tuning needed for this mechanism to work as compared to the 

source-sink mechanism. The counter-gradient mechanism requires a specific balance of 

Chordin diffusivity and decay as well as Tolloid degradation rate, while the source-sink 

mechanism does not (Fig. 2.7H,I). Together, this suggests that the source-sink 

mechanism is more robust to changes in biophysical parameters than the counter-gradient 

mechanism.  

Subsection 2.14: BMP transcriptional feedback: a symptom not a cause 

The recent observation that bmp2b and bmp7a are expressed in a graded manner 

in WT embryos has lead to the hypothesis that the BMP signaling gradient may largely 

reflect the bmp expression gradient (Ramel and Hill 2013). A similar hypothesis was 

made when Bicoid, the morphogen patterning the Drosophila AP axis, was also observed 

to have graded transcript localization (Spirov et al. 2009). However, the Bicoid protein 
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gradient was later found not to mirror its expression domain and to be set up 

predominantly by diffusion (Little et al. 2011).  

We sought to determine if the BMP signaling gradient in zebrafish is 

predominantly established by mirroring a bmp expression gradient. We disproved this 

hypothesis three ways. First, we measured the relative shape of the bmp2b expression 

domain (Fig. 2.3) and found that it did not mirror the P-Smad gradient (Fig. 2.2). Second, 

we mathematically defined a gradient established by a transcriptional mechanism as one 

where 80% of the BMP accumulates or is degraded where it is produced, as opposed to 

binding antagonists or diffusing away. When we performed a computational model-based 

screen using a bmp expression profile that mirrored the P-Smad5 WT gradient, no tested 

parameter combination could fit both our measured WT and chordin LOF P-Smad5 

gradients. For the transcriptional mechanism to work, the bmp expression domain would 

have to change in the chordin mutant condition to fit the mutant gradient profile. 

Finally, we show that feedback by BMP signaling on bmp expression does not 

begin until after 5.7 hpf. This is likely because the initial bmp expression domain is 

established by maternal factors and repression from Bozozok, a transcription factor 

activated by maternal Wnt signaling (Koos and Ho 1999, Langdon and Mullins 2011, 

Leung 2003, Solnica-Krezel and Driever 2001). Fgf and Nodal signaling also repress bmp 

expression dorsally (Furthauer et al. 2004, Kuo et al. 2013, Maegawa et al. 2006, Shimizu 

et al. 2000, Varga et al. 2007). Importantly, BMP signaling does not play a role in the 

initial establishment of the bmp and chordin expression domains at 4 hpf, as both are 

unchanged prior to ~6 hpf in BMP pathway mutants (Kishimoto et al. 1997, Miller-

Bertoglio et al. 1997, Schmid et al. 2000b). After ~6 hpf, the bmp expression domain 
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begins to respond to changes in BMP signaling level, as bmp expression decreases in 

BMP pathway mutants and increases in BMP antagonist mutants (Kishimoto et al. 1997, 

Miller-Bertoglio et al. 1999, Nguyen et al. 1998, Ramel and Hill 2013, Schmid et al. 

2000b). We show that the bmp2b expression domain does not begin to shift in response to 

the loss of chordin until after 5.7 hpf  (Fig. 2.3), while the P-Smad5 gradient shifts as 

early as 4.7 hpf (Fig. 2.6).  

Subsection 2.15: Integrated approach reveals source-sink mechanism 

  Although in vertebrates we, and most others in the field, have contended that a 

Chordin (or BMP antagonist) counter-gradient drives formation of the BMP activity 

gradient in DV patterning, our studies here, intriguingly, suggest that an alternate source-

sink mechanism may prevail. While the source-sink gradient mechanism is also 

modulated by Chordin, Chordin instead acts in a distinct manner as a sink, binding BMP 

ligand predominantly in dorsal regions, thus allowing a BMP diffusive gradient to form 

throughout most of the ventral half of the embryo. Key to deriving this alternate model 

was the integrated approach used that combined quantitative experimental analysis with 

computational modeling. Importantly, a role for Chordin in establishing a sink that drives 

gradient formation would not have been revealed to us had we not performed the 

computational model-based screen.  By narrowing the modeling solutions successively 

with the P-Smad5 WT and then chordin mutant profiles, many source-sink models 

perdured, while most of the counter-gradient ones did not. Furthermore, the 

computational modeling also illuminated the BMP diffusivity parameter as one to test 

further the source-sink mechanism. Significantly, our measured Bmp2 diffusivity further 

supports the source-sink mechanism of gradient formation.  Thus the seamless integration 
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of quantitative experimental analysis with computational model-based screens has proved 

to be a highly successful approach to elucidating mechanisms of BMP gradient 

formation.  Future studies will be required to definitively determine the mechanism and 

further test the source-sink and counter gradient models of BMP gradient formation. 

Subsection 2.16: Future studies on target gene response and cell to cell variability 

 Though the interpretation of the BMP signaling gradient by BMP target genes is a 

crucial step in patterning the DV axis, the relative level of P-Smad promoter binding 

needed to elicit a BMP target gene response in vivo is not yet known. The recent 

development of quantitative fluorescent in situ hybridization method by the RNAscope 

method and its application to whole mount zebrafish embryos may now allow us to 

quantify the response of BMP target genes by counting the number of transcript foci 

produced. By pairing this quantification of the transcriptional response with our method 

of quantifying the P-Smad response (Fig. 2.12A-F), we can determine the level of BMP 

signaling needed to induce target gene transcription in an actively patterning vertebrate 

morphogen gradient.  

To determine the relative thresholds needed to activate BMP responsive genes, we 

could compare the P-Smad level (Fig. 2.12B,C,F) and gene domain size of direct targets 

of BMP signaling in WT and chordin mutant embryos. The genes msxb, AP-2, and dlx3, 

as well as the well characterized BMP response element (BRE), could be used for this 

analysis. By cloning the promoter regions of these genes into a reporter construct, we 

could determine which parts of their promoters impart different levels of responsiveness 

to BMP signaling. 
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How morphogen gradients create distinct regions of target gene expression in the 

presence of cell to cell and embryo to embryo variability is an ongoing area of research 

(Hironaka and Morishita 2012). Due the technical challenges of quantifying morphogen 

gradients, measurements of embryo to embryo variability have been limited to 

Drosophila anterior-posterior (AP) (Bahram Houchmandzadeh 2002, Gregor et al. 2007, 

He et al. 2008), DV (Gavin-Smyth et al. 2013, Umulis et al. 2010), and wing disc 

patterning (Bollenbach et al. 2008, O. Wartlick 2011). Cell to cell variability has only 

been measured for the Bicoid gradient patterning the Drosophila AP axis (Gregor et al. 

2007). 

I provide the first measure of both cell to cell and embryo to embryo positional 

variability in a vertebrate morphogen gradient. I found that cell to cell variability ranged 

from ≈10% dorsally to 24% ventrally (Fig. 2.12G). Embryo to embryo variability 

followed a similar trend, ranging from ≈6%-18% (Fig. 2.12H). I then determined how 

this cell to cell and embryo to embryo variability translates into positional variability (σx). 

σx is defined as the variability divided by the slope of the gradient in a given region. 

Regions of the embryo that have a high slope and low variability are capable of 

patterning with greater precision. Using the measured variability and gradient slope, we 

show that σx is lowest between ≈±125˚ and ≈±85˚ of the embryo at all time-points, 

averaging ≈4% of the embryos length over that range for both cell to cell (Fig. 2.12I) and 

embryo to embryo (fig. 2.12J) variability. At this stage, cells are ≈1.4% of embryo length 

in diameter, meaning σx ≈ 3 cell lengths in both cases. When thresholded to an absolute 

intensity of 23, the precision of these boundaries can be observed (Fig 2.12A,C,E). 
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I then determined whether the loss of Chordin affects cell to cell variability. The 

loss of chordin increases cell to cell variability in dorsolateral regions (Fig 2.12K). 

However, this increase in variability is due to the overall increase in BMP signaling level 

seen in chordin mutants, as cells with higher signaling levels in both mutant and WT 

embryos have higher variability (Fig. 2.12L). Therefore, while the loss of chordin 

increases BMP signaling dorsolaterally, it does not increase the cell to cell variability of 

cells with equivalent signaling levels. 

It is unknown whether BMP responsive genes also have similar cell to cell and 

embryo to embryo variability in expression as the P-Smad gradient. We could use 

quantitative fluorescent in situ hybridization on BMP responsive genes in conjunction 

with our quantitative measure of BMP signaling activity to determine if the expression of 

these genes also varies predictably. If they show less variability than the P-Smad 

gradient, it would indicate that cells are using other mechanisms to supplement their 

ability to sense positional information. Together, the ability to quantify BMP signaling 

activity and gene expression in zebrafish embryos offers an important opportunity to 

move studies of BMP morphogen gradient interpretation into the vertebrate embryo for 

the first time.    
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Figure 2.12: Cell to cell and embryo to embryo variability in WT and chd embryos. 

(A,C) Animal view of the average P-Smad intensities for (A) WT or (C) chd LOF 
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embryos from 4.7-6.3 hpf. (B,D) Individual embryos with a threshold for the absolute 

intensity set to 23 marks cells above that value blue and below that value as red. (E) 

Marginal relative P-Smad intensity of a WT time series from 4.7-6.7 hpf. (F) Average 

relative P-Smad intensity with a threshold set at the absolute intensity of 23 (horizontal 

black dotted line). The horizontal black dotted lines mark the shift in position of the given 

threshold in WT vs chd mutant embryos. (G) The cell to cell coefficient of variance in 

WT embryos. (H) The positional cell to cell variance in WT embryos. (I) The embryo to 

embryo coefficient of variance in WT embryos. (J)  The positional embryo to embryo 

variance in WT embryos. (K) Comparing the cell to cell coefficient of variance in WT 

and chd LOF embryos from 5.3-6.3 hpf. (L) The intensity vs the coefficient of variance in 

WT and chd LOF embryos from 5.3-6.3 hpf. 
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Chapter 3: The role of Bmper in DV patterning 

Subsection 3.1: Background  

Bmper has been reported to play a pro-BMP role during zebrafish DV patterning, 

but morpholino knockdown induces a wide range of dorsalized and ventralized 

phenotypes (Ambrosio et al. 2008, Rentzsch et al. 2006, Zhang J. L. et al. 2010). This 

range of phenotypes may be attributed to the ability of Bmper to bind Chordin, in 

addition to BMP ligand itself, as well as HSPGs and Tsg (Figure 3.1A, Table 1.1) 

(Ambrosio et al. 2008, Rentzsch et al. 2006, Serpe et al. 2008). Bmper has been reported 

to act as both an BMP agonist and antagonist in different systems, presumably because of 

a different environment of proteins present. For example, in Xenopus, Bmper inhibits 

BMP by forming a ternary complex with it and Tsg (Ambrosio et al. 2008), while in 

mouse kidney and vertebral field formation, Bmper plays a pro-BMP role that is 

suppressed by the loss of Tsg (Ikeya et al. 2010, Zakin et al. 2008). In zebrafish, Bmper 

can enhance BMP signaling only when Chd is present (Zhang J. L. et al. 2010), but can 

inhibit BMP signaling even in the absence of Chd (Zhang J. L. et al. 2010). However, all 

studies on Bmper to date in zebrafish have relied on morpholino knockdown, which may 

account for some of the variability in phenotype. 

Subsection 3.2: The bmper mutant phenotype  

Because Bmper interacts with key extracellular components of the DV patterning 

system, we considered it an important regulator in shaping the BMP signaling gradient. 

To test the role of Bmper in quantitatively shaping the BMP signaling gradient, I used 

TALEN targeted mutagenesis to create a 2 and 5 bp deletion at base pair 669/2004 (AA 
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223/668) in exon 8 of 16 total exons.  Both mutations create a premature stop codon in 

the same exon (Fig. 3.1A). This premature stop codon disrupts the last two CR domains, 

as well as the partial von Willebrand Factor D domain at the C-terminus of the protein 

responsible for HSPG binding (Serpe et al. 2008). Because the mutation creates a stop 

before the last exon, it likely also induces nonsense mediated decay, thereby preventing 

translation of Bmper . We also obtained a nonsense mutation at amino acid 545 of 668 

total in exon 12 from the Sanger Zebrafish Mutation Project (Fig. 3.1A). The sa108 allele 

does not disrupt the CR domains, but it may still induce non-sense mediated decay. 

To our surprise, none of the bmper mutant alleles showed any overt DV 

phenotype at 24 or 48 hours after fertilization. The bmper∆2 and bmper∆5 alleles were 

consistently WT at 24 and 48 hpf (Fig. 3.1B). The sa108 allele fish were predominantly 

WT, but they did show some mild dorsalization and tail problems (Fig. 3.1B). The most 

consistent phenotype displayed by sa108 mutant incrosses was a vein bulge which often 

blocked the tail vein and caused heart edema (Fig. 3.1B, Vein Bulge). It is unclear 

whether the mild dorsalization and vein phenotype seen in the sa108 line is from the 

disruption of bmper or from another mutation in a different gene induced by the 

Zebrafish Mutation Project mutagenesis screen. The lack of a DV phenotype in the 

bmper∆2 and bmper∆5 alleles, which cause a stop codon far earlier in the gene than the 

sa108 allele, suggests that Bmper may not be playing as prominent a role in DV 

patterning as was originally thought. It also suggests that the previous phenotypes 

observed in bmper morpholino injected fish were artifacts of morpholino injection 

(Rentzsch et al. 2006, Zhang J. L. et al. 2010).  
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The bmper∆2, bmper∆5, and sa108 all share the same larval and adult ear defects 

that are not related to body axis patterning. This ear defect was initially missed by my 

analysis until Tanya T. Whitfield from the Bateson Centre and Department of Biomedical 

Science contacted our lab to request our help in analyzing the DV phenotype of the sa108 

allele. She had noticed a defect in the developing ear anterior and posterior canal duct 

epithelia. She has found that this defect results in a malformation of the semi-circular 

canal, and that the adult fish present with vestibular behavioral deficits. After examining 

my bmper∆2 and bmper∆5 alleles, I found the same ear malformation as seen in the 

sa108 allele fish (Fig. 3.1C,D). Both the sa108 and bmper∆2 homozygous mutants show 

an enlarged posterior semicircular canal pillar with a diminished posterior semicircular 

canal pillar (Fig. 3.1D). The ear defect was 100% penetrant, observed in all sa108 and 

bmper∆2 larval fish. Interestingly, this suggests that the bmper∆2 and sa108 mutations 

both disrupt Bmper function, likely via non-sense mediated decay. 

What role Bmper plays in zebrafish ear development is not yet known. BMP 

signaling is known to play a role in cochlear development and sensory cell formation 

(Basch et al. 2016). While zebrafish do not possess a cochlea, they instead show defects 

in semi-circular canal formation (Fig. 3.1D). bmper is directly positively regulated by 

dlx5, a gene associated with human split-hand/split-foot type 1 malformation associated 

with sensorineural hearing loss and mouse inner ear development (Sajan et al. 2011). Dr. 

Whitfield and colleagues will continue to investigate the role of Bmper in regulating 

BMP signaling in this new context.  
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Figure 3.1: The phenotype of the bmper∆2, bmper∆5, and sa108 alleles. (C) lateral 

view of a WT ear bud at 48 hpf from (Hammond et al. 2010), (ap) anterior semicircular 

canal pillar; (ao) anterior otolith; (dls) dorsolateral septum; (po) posterior otolith; (pp) 

posterior semicircular canal pillar; (vp) ventral semicircular canal pillar. (D) Lateral view 

of sa108 and bmper∆2 mutant ear buds at 48 hpf. 
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Subsection 3.3: Future studies on Bmper 

Though the bmper∆2 and bmper∆5 show no obvious DV phenotypes at 24 hpf 

(Fig. 3.1B), they may still play a role in DV patterning. We have not yet quantified the P-

Smad gradient during DV patterning or looked for changes in BMP target gene 

expression during DV patterning. Such analysis may reveal a more subtle BMP signaling 

phenotype that does not drastically affect the zebrafish at 24 hpf. 

 The loss of bmper in conjunction with tsg may reveal a role in DV patterning and 

exacerbate the observed ear defects. The loss of tsg dorsalizes zebrafish embryos, playing 

a pro-BMP role (Little and Mullins 2004). Tsg has been proposed to enhance the 

degradation of Chordin by Tolloid during gastrulation in zebrafish (Xie and Fisher 2005). 

Bmper has also been proposed to play a pro-BMP role in zebrafish by binding to 

Chordin, but the mechanism by which it does so is not clear (Rentzsch et al. 2006, Zhang 

J. L. et al. 2010). Bmper has been shown not only to bind to Tsg, but to form a ternary 

complex with Tsg and Chordin (Ambrosio et al. 2008). Tsg modulates Bmper function 

during DV patterning in Xenopus (Ambrosio et al. 2008), during vertebral field 

patterning in mouse (Zakin et al. 2008), and during kidney formation in mouse (Ikeya et 

al. 2010).  

I am currently generating bmper∆2;tsg double mutants to determine if these two 

genes function together or partially redundantly in zebrafish. I used TALEN targeted 

mutagenesis to induce a 7-bp deletion at base pair 243/720 (AA 81/220) at the beginning 

of exon 4 of 7 that induces a premature stop in the same exon (Fig. 3.2A). This mutation 

removes the region of Tsg predicted to bind Chordin and may induce non-sense mediated 
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decay of the transcript. I currently have bmper∆2;tsg∆7 double heterozygotes and will be 

making bmper∆2;tsg∆7 double mutants.  

Finally, both the bmper∆2 and bmper∆5 mutant fish eventually develop mild 

skeletal defects which shorten the lifespan of the fish, with very few living past 2 years. 

The female fish become hunched in posture, and analysis via X-Ray reveals a sharp bend 

between the 10
th

 and 11
th

 vertebrae (Fig. 3.2B-E). In mice, the loss of bmper causes 

defects in vertebral column development (Zakin et al. 2010, Zakin et al. 2008), as well as 

eye and kidney defects (Ikeya et al. 2006). The mice die at birth. While the defects 

caused by the loss of Bmper in zebrafish are much milder, it is possible that the vertebrae 

of bmper mutant fish do not form properly or degrade later in life due to deficient BMP 

signaling. To determine if BMP signaling plays a role in the skeletal defects caused by 

bmper mutant alleles, further tracking the progression of skeletal defects as well as 

measuring BMP signaling activity in the vertebral column of larval and adult fish is 

needed. Additionally, the combinatorial knockout of bmper along with tsg may 

exacerbate these skeletal defects.  
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Figure 3.2: tsg mutant generation and bmper mutant skeletal phenotype. (A) The 

location of the 7-bp deletion generated relative to the important binding domains in the 

Tsg protein. (B-E) Lateral X-Rays of 2-year-old WT and bmper∆5 fish. References: 1. 

(Chang Chenbei et al. 2003) ; 2. (Oelgeschlager et al. 2000); 3. (Oelgeschlager 2003); 4. 

(Shibata et al. 2005); 5. (Troilo et al. 2016)  
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Chapter 4: Materials and Methods 

mRNA injection for BMP overexpression 

Embryos were injected with mRNA at the 1-cell stage.  bmp2b and bmp7a RNA were 

made using the SP6 MMessage Machine (Life Technologies AM1340). bmp2b cDNA in 

a pBluescript II KS- construct was linearized with NotI. bmp7a cDNA in a pCS2+ 

construct was linearized with NotI. To overexpress BMP, 6 pg of bmp7a RNA and 12 pg 

of bmp2b RNA were injected. Resulting embryos had a V5 fully ventralized phenotype at 

24 hpf (Fig. 5H,I). 

In situ hybridization and domain size analysis 

Whole-mount in situ hybridizations were performed using RNA DIG probes as described 

using: chordin (Miller-Bertoglio et al. 1997) and noggin1 (Dal-Pra et al. 2006). RNA 

probes were generated using the Roche DIG RNA labeling kit (11277073910). Embryos 

were cleared in glycerol, and photographed using a Leica IC80 HD. Images were 

processed using ImageJ and MATLAB.  In situs were stained with Anti-DIG-Alkaline 

Phosphatase (Roche 11093274910) and developed using BM Purple (Roche Life 

Sciences). 

The sizes of the chordin and noggin expression domains was determined by image 

processing with MATLAB.  Centerpoints of animal views of each embryo were 

determined by thresholding. The boundaries of the noggin and chordin expression 

domains relative to the center of the animal view were determined by a second threshold. 

These points were connected by line segments, and the angle was measured (Fig. 5C). 
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TALEN Mutagenesis 

Plamids containing TALENs against bmper were ordered from Timothy Dahlem, PhD 

from the Mutation Generation and Detection Core at the University of Utah. Plasmids 

targeted ‘T ATGATAACTGCACCACCT’ and ‘T CTTCCTGCAGAGCACTGT’ with a 

‘gcacctgtgtggactcc’ spacer region in a PCSII plasmid. Plasmids were linearized using 

NotI and synthesized from the Sp6 promoter to make RNA for injection. The tsg1b 

TALEN was prepared the same way, but its target sequences were ‘T 

GTAACCCGCGCAGCAT’ and ‘ACGGGCAGGAGTACGGTGG A’ with a 

‘gagtgagtctccagcg’ spacer. 50 pg of RNA was injected of both the left and the right 

TALEN. 

Single molecule fluorescence in situ hybridization and image analysis 

Two-color Single molecule fluorescence in situ hybridization (smFISH) was performed 

on fixed cryosections using a RNAscope Fluorescent Multiplex Kit (Advanced Cell 

Diagnostics(ACD)). Embryos were fixed with 4% paraformaldehyde in PBS at 4°C 

overnight. Embryos equilibrate in 30% sucrose until they sink and incubated in fresh 30% 

sucrose for 3 days at 4°C. Cryosections (20μm) at the marginal region were collected on 

slides, followed by air drying for 30min at −20°C. In situ hybridization were performed 

according to the manufacturer’s instructions(ACD). A custom C2 probe was designed for 

bmp2b (#456471-C2). chd probe was purchased from the ACD catalog(#440081). bmp2b 

and chd probes were mixed at 1:10 dilution.  Sections are stained for DAPI and images 

are acquired at 63× oil objective using a Zeiss 800 upright confocal. 



82 
 

Relative intensity quantification of mRNA levels were performed maximum intensity 

projections of 20μm sections. chd mRNA expression was used to determine the dorsal 

region. Marginal cells were grouped into 10 degree intervals along the marginal 

circumference. Average intensity was quantified in each section using MATLAB image 

analysis toolbox. Averaged bmp2b mRNA levels in 2.5hpf embryos were used to 

measure background. We found equivalent intensity levels and distributions in the 2.5 hpf 

embyros and the dorsal bmp2b signal in wt 5.7 hpf embryo suggesting limited to zero 

bmp2b expression in the dorsal region. For each cross-section, the right and left side of 

the distributions were averaged into a single ventral to dorsal profile.  

Immunostaining 

Embryos were fixed overnight in 4% paraformaldehyde at 4
o
C, blocked in NCS-PBST 

(10% fetal bovine serum, 1% DMSO, 0.1% Tween 20 in PBS), and probed overnight 

with a 1:100 dilution of anti-phosphoSmad1/5/8 antibody (Cell Signaling Technology), 

followed by a 1:500 dilution of goat anti-rabbit Alexa Fluor 647-conjugated antibody 

(Molecular Probes). Embryos were mounted in BABB (benzyl alcohol (Sigma B-1042) 

and benzyl benzoate (Sigma B-6630), 1:2 ratio) and scanned using a Zeiss LSM 710 

confocal microscope with a LD LCI Plan-Achromat 25x/0.8 Imm Corr DIC M27 multi-

immersion lens.  The oil-immersion setting was used to reduce Mie scattering distortion, 

spherical aberrations, and chromatic aberrations by minimizing refractive index (R.I.) 

mismatch between the lens oil (R.I.=1.518), the coverslip, BABB (R.I.≈1.56), and the 

light scattering particles in the embryo (R.I.≈1.56). Fluorophore bleaching was greatly 

reduced by precise embryo orientation, reducing sample thickness, and by high scan 
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speeds using a Zeiss LSM 710 confocal microscope. Nuclei were visualized with Sytox 

Orange (Molecular Probes) or Sytox Green (Molecular Probes). 

 

Figure 4.1: Quantifying nuclear P-Smad intensities embryo-wide. (A) Marginal P-

Smad intensity from a chd LOF embryo imaged twice. (B) Average P-Smad intensity 

drop-off from photo-bleaching of all nuclei in embryos imaged twice (N=5). (C) There is 

minimal intensity drop-off due to spherical aberration, as shown by the average intensity 

of the nuclear DNA stain (Sytox Orange) versus distance from the coverslip (4.7: N=3, 

5.3: N=4, 5.7: N=13, 6.3: N=11, 6.7: N=4). (D) Maximum projection of an animal view 

of a single embryo. (E) Nuclei centerpoints (red dots) identified from the sytox nuclear 

stain (blue). (F) Measured centerpoint nuclear intensities displayed as a heatmap. (G) P-

Smad is absent in dividing cells (red stain, yellow arrows). Dividing cells have bright 

condensed chromatin (green stain, yellow arrows). (H) Bright condensed chromatin was 

used to identify dividing cells.  Cells above a certain threshold (red line) were eliminated 
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from the analysis. (I) Lateral view of a single embryo. (J) Sparse Yolk Syncytial Layer 

nuclei below the margin are eliminated. (K) Single lateral slice depicting the elimination 

of remaining Yolk Syncytial Layer nuclei and Enveloping Layer Nuclei by subtracting 

the outer 15% of all nuclei (filled in circles) to leave only deep cell nuclei (open circles). 

(L) Lateral view of embryo after outer 15% has been eliminated. 

Summary of imaging and processing 

Immunostained P-Smad5 embryos were processed and imaged as described above.  We 

observed minimal photo-bleaching and spherical aberration (Fig. 11A-C).  We wrote a 

Matlab algorithm capable of identifying all 8000+ nuclei centerpoints in each embryo in 

3D, removing populations unresponsive to P-Smad (such as yolk syncytial nuclei and 

dividing cells), and extracting the P-Smad intensities associated with each nucleus (Fig. 

11D-L). The resulting individual digital embryos (Fig. 3A’-E’) from each condition were 

averaged together to generate large datasets from embryo-wide P-Smad levels could be 

quantified in WT and mutant conditions (Fig. 5A-B). 

Image Processing 

Nuclear intensities of P-Smad were extracted from the stacks of images generated using 

Matlab algorithms (source code in supplemental files).   

The centerpoints of all the nuclei were located using the Sytox DNA stain.  The ‘.lsm’ 

files were converted to ‘.tif’ files using ImageJ, and then imported into Matlab as 1024 X 

1024 X Z multidimensional arrays. XY pixels were 0.55 um, Z pixels were 2.3 um. The 

images were then smoothed using a 9 x 9 x 3 kernel (most nuclei are 15 x 15 x 4 pixels 

large).  Local minima and maxima were removed using the ‘imhmax’ and ‘imhmin’ 
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functions.  The remaining maxima were found using the ‘imregionalmax’ function on the 

entire 1024 X 1024 X Z array.  Maxima closer together than 6 pixels were assumed to be 

in the same nucleus, and were combined.  The remaining maxima were assumed to be the 

centerpoints of the nuclei (Fig. 11E).  

These centerpoints were used to extract P-Smad intensities on the P-Smad channel.  P-

Smad distribution in each nucleus was approximately uniform, so a small sphere within 

each nucleus was averaged to attain the P-Smad intensity. On the P-Smad channel, pixels 

within within a spherical 6 x 6 x 3 kernel of each maxima were averaged.  

Cell types unresponsive to Bmp signaling were removed. P-Smad appears to be 

uniformly distributed throughout the cytoplasm during cell division, making 

measurement impractical (Fig. 11G). In dividing cells, chromatin condenses making 

DNA stains such as Sytox concentrated and bright. Cells with a bright DNA fluorescence 

staining above 140% of the mean DNA fluorescence were considered dividing and 

eliminated from the analysis. Extra-embryonic cells such as the Enveloping Layer (EVL) 

and the Yolk Syncytial Layer (YSL) did not appear to respond to BMP ligand the same 

way as the deep cells. These cell types are not patterned along the DV axis by BMP, and 

were eliminated from our analysis.  To do so, sparse EVL cells located below the vegetal 

margin were eliminated by hand (Fig. 11J).  Next, the inner and outer layer of 

approximately 15% of the total cells was eliminated (Fig. 11K,L). The remaining cells 

were assumed to be non-dividing deep cells.  

Embryos of similar stages were then aligned and conformed to a template embryo of the 

same stage using Coherent Point Drift (CPD)(Song 2010). Embryos were aligned in the 
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AP direction by fitting them to a sphere, finding a plane that spanned the marginal region, 

and rotating until that plane was aligned with the XY axis. Embryos were aligned in the 

DV direction using the embryonic shield as a morphological marker.  Before 6 hpf, when 

the shield is not present, the embryos were aligned in the DV direction by fitting a 

polynomial regression to the P-Smad gradient around the margin and rotating until the 

max peak was ventral. Next, embryos were all aligned to a template using an affine CPD 

(Song 2010). This corrected for any distortions in embryo shape that may have occurred 

during fixation and staining. 

Embryos from the same set were subjected to no normalization.  Embryos stained and 

imaged on different days with different settings were normalized by multiplying the 

entire set by a single scalar value.  To determine this normalization scalar, control WT 

embryos were always imaged in conjunction with each experimental condition.  The 

scalar normalization value was determined by minimizing the sum of the error between 

the control WT embryos imaged on different days.   

Generating and comparing P-Smad profiles around the margin of the embryo 

To generate marginal profiles, a 40 um thick band of cells around the dorsal margin was 

chosen for each embryo. Cells within that band were grouped into 10 degree intervals and 

averaged together to form 36 individual points.  The left and right side of the gradient 

were averaged together into a single ventral to dorsal profile. For 3-D embryo-wide 

averages, all nuclei were projected onto a sphere fitting the embryo.  The sphere was then 

divided into 4800 approximately equilateral triangles. All nuclei falling within each 

triangle were averaged together. Slopes were obtained by fitting a lowess fit to the 
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averaged 3-D data’s spherical coordinates phi and theta using the ‘fit’ function in Matlab. 

To determine if the marginal gradients of WT and chordin mutant embryos were 

significantly different, two-tailed T-Tests were performed with a rejection of the null 

hypothesis at the 5% significance level (Fig. 1, S1B).We observed a difference in WT vs. 

chordin mutant embryos that was much larger than our observed embryo to embryo 

variability (Fig. 1). Our t-tests confirmed that our sample sizes are sufficient to discern 

differences between the WT and chordin mutant embryos (Fig. 1, S1B). 

 

Figure 4.2: Model-based screen of DV patterning in zebrafish. (A) System of 

differential equations used for model-based screen. (B) P-Values of WT vs. chd mutant 

embryo margin comparison. P values less than 0.05 are highlighted in green. 

Model-Based Screen Method 

For each set of parameters defined in the parameter vector, we solved the five non-linear 

reaction-diffusion partial differential equations (PDEs) for BMP ligand, Chordin, Noggin, 

and the complexes of BMP-Chordin, BMP-Noggin in MATLAB (Fig. S1A). Equations 
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were solved on the half-circumference, with ‘symmetry’ boundary conditions imposed on 

the first and last node-point in the spatial discretization.  The half-circumference was 

discretized into 55 node points with equidistant spacing and the 2
nd

 order spatial 

derivative is discretized via the finite difference method. The production regions of BMP 

ligand, Chordin, Noggin, are specified along the nodes by mapping the spatial position to 

subsequent node position (Fig. 3,4D,E, Table 1). Tld is treated parametrically as a 

function of position according to its domain of expression (Fig. 4D,E,Table 1). Time-

stepping of the solution is handled by the adaptive solver ode15s with a relative tolerance 

set to 1e-9.  The model is solved for the developmental window that spans from 3.5 to 5.7 

hpf and all measurements of model error are calculated at 5.7 hpf. 

For each parameter vector, the model is initially solved against WT conditions and 

subsequent simulations for mutant conditions are carried out for the same parameter 

vector by setting the corresponding production rates for the mutant to zero and re-

simulating. Error between the model results and the fluorescent data are calculated via a 

two-step process.  First, the amplitude of the pSMAD fluorescent-intensity data and 

model peak levels for free BMP are normalized as commonly done when calculating a 

residual with fluorescent intensity data (Hengenius et al. 2014, Pargett and Umulis 2013). 

This approximation is valid considering that 1) BMP ligands are not saturating receptors 

and 2) SMAD activity is not saturated (Fig. 5G).  The scaling parameter determined for 

model-fitness against pSMAD is then applied to the remaining model results to capture 

any changes in BMP levels in the mutant simulations.  Residuals are calculated for WT 

and mutant conditions independently and solutions are scored for passing the WT and 
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mutant conditions independently as opposed to using an aggregate residual. Solutions are 

classified as transcriptional, source-sink, counter-gradient, or shuttling.  

Fluorescence Recovery After Photobleaching 

Constructs 

Sequence encoding fluorescent protein Venus was amplified from pBSK12-her1:Ub2-

Venus (a gift from Sharon L. Amacher, Ohio State University, OH) (Delaune et al. 2012). 

This sequence was inserted between the pro- and mature domains of Bmp2b two amino 

acids downstream of the proprotein convertase (PC) cleavage site (REKR) with a 

GSTGTTGGG linker separating the prodomain and the fluorescent protein and a GS 

linker (GGGGSGGGGS) separating the fluorescent protein from the mature domain. This 

fusion construct was modified from pCS2(+)-HA-Bmp2b (Little and Mullins 2009). 

Sequences encoding Venus protein were also fused to the pro-domain of Bmp2b two 

amino acids downstream of the proprotein convertase (PC) cleavage site (REKR) with a 

GSTGTTGGG linker, to generate the secreted-Venus plasmid. 

mRNA synthesis 

Capped mRNA was synthesized using the mMessage mMachine Kit (Ambion) with SP6 

RNA polymerase according to the manufacturer's protocol. Vectors were linearized by 

digestion with NotI.  

RNA and morpholino Injection 

mRNA encoding the Bmp2b-Venus or secreted-Venus, was injected into one- or eight-

cell stage embryos. For rescue experiments, 1 ng of bmp2b morpholino 
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(GTCTGCGTTCCCGTCGTCTCCTAAG) was injected along with 9 pg of bmp2b-venus 

RNA from a different needle. To perform FRAP in the absence of Chordin, we injected 

embryos at the 1-cell stage with 1 ng of chordin morpholino 

(ATCCACAGCAGCCCCTCCATCATCC). Next, bmp2b-venus RNA was injected into a 

single blastomere at the eight-cell stage. Associated injection phenotypes are shown in 

Figure 8B. 

Western Blot 

Zebrafish embryos were lysed in Pierce RIPA buffer (89900, Thermo Scientific) 

supplemented with Halt Protease Inhibitor Cocktail (1862209, Thermo Scientific) and 

Phosphatase inhibitor Cocktail (1862495, Thermo Scientific). Protein samples mixed 

with Laemmli sample buffer (Bio-rad) were denatured by incubation for 5min at 98o, and 

resolved by SDS-PAGE using Mini-PROTEAN TGX Gels (10%, Bio-rad) and 

transferred to PVDF membranes (Bio-rad). The membranes were blocked with 5% non-

fat milk (Bio-rad) in PBST 1 hour at room temperature, and incubated with primary 

antibodies in 2% BSA (Sigma) in PBST at 4℃ overnight.  After that, the membranes 

were incubated with HRP-coupled secondary antibodies 1 hour at room temperature. 

Chemiluminescence was detected using Clarity Western ECL Substrate (Bio-rad) to get 

the image. Using stripping buffer (46430, Thermo Scientific), the membranes were 

reused to detect β-Actin as loading controls. 

Subheading XX: Fluorescence Recovery After Photobleaching (FRAP) 

mRNA encoding the Bmp2b-Venus fusion protein (50pg) was injected at the one-cell 

stage to test the activity of the mRNA in a ventralization assay. Embryos used for FRAP 
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were injected in one cell at the eight-cell stage. Embryos were mounted in 1% low 

melting temperature agarose (Sigma) in glass bottom microwell dishes (MatTek 

Corporation). FRAP experiments were performed using a LSM 800 confocal microscope 

(Zeiss) with a W Plan-Apochromat 20×/1.0 objective (D=0.17 M27 75mm). 

Photobleaching in a square region (160.4μm × 160.4μm) was performed through the 

depth of the blastoderm with 100% laser power in ~10 min. Recovery of fluorescence 

was monitored every 10s in the same imaging plane.  

Processing of FRAP data 

In 8-cell stage injected embryos, regions lacking Bmp2b-Venus producing cells 

(visualized by high intensity signaling throughout the cytoplasm) were identified.  Cells 

displayed characteristic higher intensity signals in the intercellular space and no signal 

was detected intracellularly in the non-producing cells. Images are taken before the 

FRAP experiment commences, and saved every 10s during acquisition.  All files are 

exported in lossless TIFF format for subsequent quantification in MATLAB.  To measure 

the recovery, all TIFF files are imported into MATLAB and the FRAP region is 

identified for subsequent measurements.  Internal FRAP region is scaled from 8-bit [0 

255] to [0, 1] and an extracellular mask is generated by removing background with a 

minimum threshold level set at 1% of the image maximum value.  This excludes the 

intracellular compartments from biasing the average intensity calculations for the 

extracellular recovery.  With background removed, recovery is calculated as the average 

fluorescence intensity of the extracellular fluorescence within the masked region.   

Calculation of diffusion coefficients from FRAP data 
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The FRAP region is modeled using a finite-difference equation for diffusion in the FRAP 

region. Diffusion is estimated by measuring model recovery starting from zero initial 

conditions and constant concentration boundary conditions.  Masked region dimensions 

for measurement are mapped directly to node-points and distances in the finite difference 

model to compare and optimize recovery in the mask region.  A steepest-descent 

optimizer with multiple starts was used to estimate the diffusion coefficient for each 

FRAP experiment.  We do not explicitly model the occlusion and tortuosity of the 

diffusion process caused by the arrangement of cells, nor does it account explicitly for 

binding and unbinding to HSPGs and other immobile binding components. The impact of 

binding and the role of occlusions in the diffusion path are very well known (Cussler 

2009, Maxwell-Garnett 1904). Therefore our measured diffusion coefficients are the 

effective diffusion coefficients in zebrafish and not an intrinsic measurement of the 

diffusion coefficient in a free environment. 
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