
39

A Comparison of Compositional Schedulability Analysis Techniques
for Hierarchical Real-time Systems

MADHUKAR ANAND, Cisco Systems
SEBASTIAN FISCHMEISTER, University of Waterloo
INSUP LEE, University of Pennsylvania

Schedulability analysis of hierarchical real-time embedded systems involves defining interfaces that represent the underlying
system faithfully and then compositionally analyzing those interfaces. Whereas commonly used abstractions, such as periodic
and sporadic tasks and their interfaces, are simple and well studied, results for more complex and expressive abstractions
and interfaces based on task graphs and automata are limited. One contributory factor may be the hardness of compositional
schedulability analysis with task graphs and automata. Recently, conditional task models, such as the recurring branching
task model, have been introduced with the goal of reaching a middle ground in the tradeoff between expressivity and ease
of analysis. Consequently, techniques for compositional analysis with conditional models have also been proposed, and each
offer different advantages. In this work, we revisit those techniques, compare their advantages using an automotive case
study, and identify limitations that would need to be addressed before adopting these techniques for use with real-world
problems.

Categories and Subject Descriptors: C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYSTEMS]: Real-time
and embedded systems

General Terms: Theory, Design, Performance

Additional Key Words and Phrases: compositionality, state-based scheduling, real-time systems

ACM Reference Format:
Anand, M., Fischmeister, S., and Lee, I. 2011. A Comparison of Compositional Schedulability Analysis Techniques for
Hierarchical Real-time Systems. ACM Trans. Embedd. Comput. Syst. 9, 4, Article 39 (March 2010), 33 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
The increasing complexity of real-time embedded systems should be met with equally sophisticated
design methods. Component-based analysis techniques promise to deliver such methods, because
they approach modeling, designing, and realizing such systems with a divide-and-conquer strategy.
This strategy also applies to the temporal domain, where real-time systems must meet temporal re-
quirements that are often expressed as deadlines. A schedulability check decides whether or not the
system can meet these deadlines. In this context, component-based approaches naturally lead to hier-
archical scheduling frameworks with hierarchical resource sharing under different policies. To take
advantage of a component-based design, schedulability analysis of hierarchical frameworks must
then be addressed. Furthermore, to be faithful to the paradigm of component-based engineering,
it is desirable to do this analysis compositionally, i.e., system-level schedulability analysis should
combine component interfaces that abstract component-level timing requirements.

Checking schedulability in a hierarchical real-time system consists of several steps, the first of
which is to choose interfaces that are sufficiently expressive to represent components, only exposing

This work is supported in part by NSF CNS-0834524, ARO W911NF-11-1-0403, NSERC DG 357121-2008, ORF RE03-
045, ORE RE-04-036, and ISOP IS09-06-037.
Author’s addresses: M. Anand, Cisco Systems, Inc. San Jose, USA; S. Fischmeister, Department of Electrical and Com-
puter Engineering, University of Waterloo, Canada; I. Lee, Department of Computer and Information Science, University of
Pennsylvania, USA.

information that is needed for the latter analysis. Real-time systems have traditionally been repre-
sented using task frameworks such as periodic/sporadic tasks, task graphs, and timed automata.
Schedulability is a well studied problem for hierarchic periodic/sporadic representations, but results
for more sophisticated representations such as task graphs and timed automata are limited. One con-
tributory factor may be the hardness of compositional schedulability analysis with task graphs and
automata. A subclass of task graph models, called “Recurring Task with Branching” (RTB) model
and “Recurring Branching Task Model with Control Variables” (RTC), hereafter collectively re-
ferred to as conditional task models, have been introduced as generalizations of periodic, sporadic,
and multi-frame tasks. These models represent real-world applications more accurately than peri-
odic and sporadic tasks, because they can capture the branching behavior and dependencies found
in real-world applications. In our earlier work [Anand et al. 2008], we developed efficient schedu-
lability and compositional analysis techniques for these models. This subclass of the task graph
model therefore represents a middle ground in the tradeoff between expressivity and hardness of
schedulability analysis, and is the focus of our work.

The second aspect in the analysis of hierarchical embedded real-time systems is solving the prob-
lem of interface composition. In recent years, increasing attention has been given to the compo-
sitional analysis of hierarchical scheduling frameworks. Traditionally, this analysis has been per-
formed using resource-model-based interfaces that characterize the resource supply necessary to
schedule components. Mok and Feng proposed the bounded-delay resource partition model for a
hierarchical scheduling framework [Feng and Mok 2002], and Shin and Lee [Shin and Lee 2004] ad-
dressed the interface generation problem for these models. Similarly, studies [Saewong et al. 2002;
Lipari and Bini 2003; Shin and Lee 2003] have been carried out on the component abstraction prob-
lem using periodic resource models. When these techniques are used for hierarchical frameworks
with conditional task models, the complexity of the interface generation depends on the utilization
of the task set (i.e., the schedulability checking of conditional task models depends on the utiliza-
tion [Baruah 1998a]). Specifically, if the utilization is high, then these procedures will be inefficient.
On the other hand, compositional analysis techniques for recurring branching models (see [Anand
et al. 2008]) synthesize component interfaces from the resource demand of conditional task models
in those components. These techniques are independent of task set utilization, and therefore, do
not suffer from the same drawback as resource-model based techniques; however, they do so at the
expense of increasing the system complexity.

It must be noted that compositional schedulability analysis can be done for every type of task
model, including periodic, RTB/RTC, and task graphs. Depending on the choice of the task model,
the complexity computing the task demand of a composite component will be different. Related to
this complexity is the question of how precise (close enough to the aggregate demand of underlying
tasks) the abstract task demand is. In this work, we mostly focus on the second question, and show
that RTB/RTC task models offer a good trade-off. The abstract RTB/RTC model captures underlying
task demand more closely than periodic task model, but are simpler to construct and analyze than
task graphs.

Methodology and Overview. In this paper, we work with new models of real-time tasks that are
strictly more expressive than traditional real-time task models, such as the periodic and multiframe
models, as well as the recurring task model as proposed by Baruah [Baruah 1998a], but at the same
time these new models retain efficient demand computation. Specifically, we support analysis for
models where the period of recurrence of different branches is not identical (anisochronous) and for
models with explicit control variables, transition guards, and assignments. We call these models the
RTB and RTC models, respectively.

Using the RTB and RTC, we focus on the analysis of hierarchical scheduling frameworks. We
believe that to be faithful to the paradigm of component-based development, it is desirable to carry
out schedulability analysis of a hierarchical systems in a compositional manner, i.e., a system-level
schedulability analysis should combine component interfaces that abstract component-level timing
requirements. We work with techniques to abstract the resource demand of RTB/RTC models into
interfaces (that are in turn RTB and/or RTC models), and thus address the compositional analysis
for these models.

2

Contribution of this work. In this work, we apply compositional analysis techniques to the study
of the schedulability of an automotive control application with the aim of gauging the effectiveness
of the abstraction techniques and weighing the tradeoffs with respect to system analyzability, ab-
straction overhead, ease of modeling, etc. involved in a real-world application. Specifically, we have
four goals for this study:

(1) Evaluate RTC in a real-world application,
(2) study the impact of task models on the schedulability analysis of the application,
(3) illustrate compositional analysis for hierarchical scheduling frameworks, and
(4) study the impact of the choice of abstractions for the compositional schedulability analysis.

In the case study, we look into the requirements/considerations for a Class C vehicle commu-
nication system as described by the Society for Automotive Engineers (SAE) in their report SAE
J2056/1 [SAE 1993]. The Class C vehicle communication specification models a multiplex system
marked by high-data communication rates and communication to support real-time control systems
such as engine control and anti-lock brakes. In the multiplex setup, components communicate over
a shared signal bus, as opposed to point-to-point links, to facilitate distributed control and to reduce
vehicle wiring. The shared bus raises concerns about access contention, which must be resolved
using an appropriate scheduling algorithm in a way such that all the timing requirements (latencies)
of all the subsystems and messages are met.

Several bus technologies, such as the Controller Area Network (CAN) [Tindell and Burns 1997]
and the Time Triggered Protocol (TTP) [Kopetz 1994], provide the means to implement the SAE
class C application. Each of these technologies provides a different approach to bus arbitration. CAN
takes a dynamic priority-based approach, whereas TTP uses a predefined time-triggered schedule. In
contrast to these specific arbitration techniques, our objective here is not to describe a scheduling al-
gorithm, but rather to study the impact of task models and abstractions in analyzing the schedulabil-
ity of the application when using a hierarchical framework. We therefore do not consider attributes
such as fault tolerance, message optimizations, or any other overhead associated with a particular
choice of bus technology as all of these can be incorporated into the analysis when desired.

The rest of the paper is organized as follows. Section 2 introduces the system, task and resource
models. Section 3 presents compositional analysis using resource supply and conditional task mod-
els. Section 4 presents highlights of the SAE Class C application communication requirements.
Section 5 develops the conditional models for the application and Section 6 develops the abstrac-
tions for different modules of the application. Section 7 presents the results of different abstraction
techniques for schedulability analysis, and our conclusions are presented in Section 8.

2. MODEL AND DEFINITIONS
In this section, we define the task and supply models along with their their execution semantics.
Our system consists of multiple real-time components sharing a global resource (e.g., CPU, shared
network, etc.) under a hierarchical scheduling policy. Schedulability is a property of the tasks and
the system resources whereby all the tasks in the system can meet their resource requirements before
the stipulated deadline. Schedulability, however, is not concerned with the actual allocation of those
resources, which is specified by a scheduling algorithm. In our framework, we assume that the
scheduling of tasks is done as per either the Earliest Deadline First (EDF, [Baruah et al. 1990]) or
Rate-monotonic (RM [Lehoczky et al. 1989]) algorithms.

A hierarchical real-time system comprises one or more components arranged in a scheduling
hierarchy, i.e., each component has its own scheduling policy, and the resources are allocated hi-
erarchically from a parent component (This system is assumed to be free of cycles). The shared
resource demand of each component is assumed to be represented by a set of Tasks.

A simple task T = (e,d) requires e time units of the resource within d time units of its release.
Simple tasks express basic resource requirements without attempting to capture any type of inter-
actions or dependencies in the resource requirements of the application. The RTB model uses these
simple tasks and captures timing dependencies between simple tasks.

3

2.1. Sporadic Task Model
A sporadic task S = (p,e,d) has minimum separation p, execution requirement e and relative dead-
line d such that e ≤ d ≤ p. The resource demand of a component with only sporadic tasks in its
workload is the collective resource requirement that its tasks request when they are scheduled using
the components scheduling algorithm.

dbfS(t) =
⌊

t + p−d
p

⌋
e (1)

2.2. Recurring Task with Branching (RTB) Model
Informally, an RTB model is a structure consisting of nodes and transitions between these nodes,
where each node defines the release of a simple task and each transition identifies the minimum
jitter between successive task releases.

Definition 2.1 (RTB Model). An RTB model Ω is a tuple 〈V,v0,VF ,E,τ,ρ〉 where

— V is a set of nodes.
— v0 ∈V is the start node.
— VF ⊆V is a set of final nodes called leaves.
— E ⊆V×V =ET ∪ER is a set of transitions where ER is a set of resets, where ER = {〈v,v0〉|v∈VF}

and ET = E \ER such that the underlying graph (V,ET) is a directed tree.
— τ : V → T is a function from nodes to simple tasks.
— ρ : E→ N is a function from a transition to minimum jitter.

For this model, we assume that any node releases one simple task. Multiple task releases can be
handled by transitions with zero jitter. The execution semantics of a RTB model can be described
as follows. The execution starts at node v0, where the task τ(v0) is released. After the release, a
transition from v0 is chosen non-deterministically to one of the descendant nodes of v0 (say, v). This
transition is made after a minimum delay of ρ(〈v0,v〉), and this process of task release continues
from node v. This behavior continues until a leaf node is reached. At the leaf, the execution resets
and restarts at the initial node v0.

Example: Consider the example of the Three Tanks System (3TS) [Ghosal et al. 2006] shown
in Figure 1. The plant consists of interconnected water tanks, where each tank has evacuation taps
for simulating perturbations - Tap1, Tap2, and Tap3. The tanks are interconnected via taps Tap13
and Tap23. The Pumps P1 and P2 can pump water to increase the water level of tanks T1 and T2,
whereas the evacuation taps can be used to simulate perturbations in the water level. The goal of the
controllers is to maintain the water level in tanks T1 and T2. The plant is nonlinear and therefore
uses three different controllers for each pump: (1) A controller P (proportional) is used when there is
no perturbation (no water leaves the tank); (2) a controller PI (proportional integrator) is used when
there is some perturbation (water drains out of the tank); and (3) when the control error is large, a
controller with a fast integration speed is used (otherwise, a controller with a slow integration speed
is used).

The controller logic is implemented in a language called Hierarchical Timing Language (HTL).
The HTL code specifies the firing (timing) of the controller tasks, actuator tasks, and sensor tasks.
The HTL code itself is executed inside a virtual machine (VM) environment that ensures the timing
constraints (e.g., the periodicity of HTL tasks) specified by the HTL code are met. The virtual
machine in turn executes inside the native operating system. The tasks themselves are written in a
high level language such as C, and are executed directly on the native operating system.

The entire system can be modeled using a two-level scheduling hierarchy as shown in Figure 2.2.
On the first level of the hierarchy, we have the HTL tasks describing the firing of the controller tasks,
the sensor tasks, and the actuator tasks. These HTL tasks are scheduled by the virtual machine (VM)
scheduler. These three modules release tasks TCT , TS and TA, which perform the control, sensing and
actuation. The native operating system is responsible for scheduling these tasks and the VM that
runs the HTL tasks. In our example, we assume that the VM uses EDF (SCH1=EDF) for scheduling
the modules and that the operating system uses RM (SCH2=RM) to schedule the tasks. The firing

4

Tap2

Tap13 Tap23

P1
P2

T2T3T1

Tap1 Tap3

Fig. 1. Overview of 3TS

Root

VM S1

S2

TSTCT TA

Controller Sensor Actuator

Fig. 2. System hierarchy

logic described in the HTL code is modeled using a conditional task model. Figure 3 shows these
conditional models for the three modules of the 3TS.

(1) The controller task (firing) model has two modes of operation. The first mode of operation
(m T 1 control P) involves using the proportional controller (P) as mentioned above. The sec-
ond mode (m T 1 control PI) corresponds to using the proportional integrator (PI) controller.
This mode has two sub-modes, which correspond to fast (PI f) and slow (PIs) rates of integra-
tion. These modes are captured as transitions from the nodes of the RTC model in Fig. 3, i.e.,
a mode change is modeled as taking a transition to a particular node in the RTC model. In the
model, the nodes P, PI f , and PIs each release a control task with an appropriate deadline. The
leaf nodes L1, . . . ,L6 do not release any tasks but continue back to the start node. The dangling
edges over leaves represent a reset back to the start node. The execution of the controller task
starts at node R. Based on the sensor inputs that monitor the water level, one of the controller
modes (P/PI) is chosen first. If mode PI is chosen, again, depending on further sensor inputs,
the rate of integration is decided. Once the rate of integration is decided, there are different pos-
sible transitions to leaf nodes. Specifically, one transition in which the next mode will be set to
P, and another in which the leaf node will ensure that the mode remains the same. For example,
from node PI f , there are transitions to L3, with a guard condition PI 2 P and an assignment of
next mode to be P, and a transition to leaf L4 without changing the mode.

(2) The firing of a sensor is modeled as a conditional model with two modes of operation corre-
sponding to the P or PI modes of the controller. The PI mode, as for the controller task, has
two sub-modes corresponding to fast and slow rates of integration. From the node PI, a guard
condition isFast PI T 1 or isSlow PI T 1 (set by the controller) will determine which of the
sub-modes is entered.

(3) The actuator firing is modeled as a simple periodic task.

5

Actuator task

P

R

L1

L3 L4

L2

L5 L6

PI(100, 500)

gRPIgRP

(0, 0)

(0, 0) (100, 450)

(10, 50)

(0, 0)(0, 0)

PIf PIs
(150, 450)

gPL1
gPIPIs

Controller Task

gRP ≡ (0,mode == m T1 control P, ∅)
gRPI ≡ (0,mode == m T1 control PI, ∅)
gPL1

≡ (0, isP 2 PI1(e1, e3, s1),mode = m T1 control PI)

gPL2
= ¬gPL1

gPIPIf ≡ (0, isFast PI T1(h1), ∅)
gPIPIf ≡ (0, isSlow PI T1(h1), ∅)
gPIfL3

≡ (0, isPI 2 P1(e1, e3, s1),mode = m T1 control P)

gPIfL4
= ¬gPIfL3

gPIsL5
= gPIfL3

gPIsL6
= gPIfL4

P

R

Sensor Task

PI(20, 500)

gRPIgRP

(0, 0)

(20, 450)

(5, 50)

PIf PIs

gPIPIs

(40, 450)

A (10, 250)

Fig. 3. Conditional task models for the 3TS system

The reader is referred to HTL code [Iercan 2005], which contains the actual programming logic
for these modules.

We now introduce some definitions related to the RTB model.

Definition 2.2 (Run). For a given RTB model Ω = 〈V,v0,VF ,E,τ,ρ〉 and a duration t, a run
r ≡ run(vi,vi+ j, t) is a a sequence of progressions of nodes from vi to vi+ j. The sequence is defined

as vi
ei+1−→ vi+1

ei+2−→ . . .
ei+ j−→ vi+ j where ∀l ∈ [1, j], ei+l = 〈vi+l−1,vi+l〉 ∈ E, and t = ∑

l
k=1 ρ(ei+k).

We denote the minimum possible duration1 t of run r by Γ(r). The resource demand of the run r is
defined as ∆(r) = ∑

j
l=0 τ(vi+l).e.

In this definition, τ(vi+l).e represents the execution requirement of task τ(vi+l). Also note that the
duration parameter t is needed to distinguish runs that involve resets and thus have multiple visits
to the root node in the same run.

Definition 2.3 (Isochronicity). An RTB model Ω is isochronous, if the progression along
all branches to the leaves requires the same time: ∀vi,v j ∈ VF ,Γ(run(v0,vi, t)) + ρ(vi,v0) =
Γ(run(v0,v j, t)) + ρ(v j,v0). In this case, the smallest t for which this condition is true is called
the period of Ω. In all other cases, Ω is anisochronous.

For an isochronous RTB model Ω with period P, we define the worst-case loop as the loop
progression with the highest demand starting from v0, ending at v0, and passing through exactly one
leaf: wcl(Ω) = argmaxr ∆(r), where r≡ run(v0,v0,P) and argmaxr gives the argument at which the
function attains its maximum value.

As an example, consider the RTB tasks of the 3TS system shown in Figure 2.2. All the tasks are
isochronous. The controller and sensor tasks have a period of 500 time units, whereas the actuator
task is a periodic task (trivially an isochronous RTB task) with a period of 250 time units. For the
controller task, the cumulative demand posed by different paths (from left to right) are 100 (through
L1 and L2), 160 (through L3 and L4), and 150 (through L5 and L6). Therefore, the path from the root
through L3 or L4 is the worst-case loop of the RTB, with the highest demand being 160 units needed
during 500 time units.

2.2.1. The Demand for RTB Models. The resource demand bound function (dbfΩ : R→ R) of an
RTB model Ω defines an upper bound for the amount of resources required to meet all deadlines.
For a time interval length t, dbfΩ(t) gives the largest resource demand of Ω for any time interval of
length t. This computation is done over tasks that are both released and have their deadlines within
the interval. Furthermore, a run r of Ω such that ∆(r) = dbfΩ(t) is called a critical run over the
interval length t. In this paper, for ease of presentation, it is assumed that Γ(r) ≤ t. This property

1Note that this is actually the minimum possible duration of the run. As we are interested in analyzing the worst case
schedulability, we are concerned with this minimum duration.

6

is known as frame separation.2 This frame separation is, however, not necessary for the schedula-
bility checking of RTB models (See a similar argument for recurring branching tasks presented by
Baruah [Baruah 1998a]). For the purposes of the analysis presented in this paper, it is only required
that, for any v ∈ V , the deadline of τ(v) be at most the duration of the shortest run to v0 from v, a
property known as reset frame separation. The request bound function (rbfΩ : R→ R) of an RTB
model Ω, puts an upper bound on the amount of resource demand released in a time interval. The rbf
computation takes into account the demand of all the tasks that are released in the interval, including
those tasks the deadlines of which are outside the interval.

For isochronous RTB models, a procedure similar to that proposed by Baruah [Baruah 1998a] can
be used to compute the dbf. We summarize this technique below. We assume Ω = 〈V,v0,VF ,E,τ,ρ〉
and a time interval of length t < 2P, where P is the period of Ω. In any run of Ω with duration
t, the start node v0 occurs at most once. These runs can therefore be enumerated to compute dbfΩ

for all t < 2P. For t ≥ 2P, a critical run consists of three phases: (1) a run(vi,v0, t1) s.t. t1 < P,
(2) some k ∈ N multiples of wcl(Ω) of total duration t2, and (3) a run(v0,v j, t3) s.t. t3 < P and
t1+t2+t3 = t. Because run(vi,v0, t1) ends in v0 and run(v0,v j, t3) starts from v0, we can concatenate
them into a single run of duration t1 + t3(< 2P) for the purposes of the dbf computation. Therefore,
for all t ≥ 2P, dbfΩ(t) = dbfΩ(t1 + t3)+ k ∆(wcl(Ω)), where dbfΩ(t1 + t3) is computed using the
aforementioned dbf procedure for t < 2P.

The above procedure cannot be directly applied to anisochronous models, because the minimal
duration between successive invocations of the start node in the anisochronous case depends on the
particular run. In fact, it can be easily shown that the problem in NP-hard by reducing the integer
knapsack problem to the algorithm for computing the dbf for anisochronous models.

We now describe a procedure to transform anisochronous RTB models into isochronous models.
This procedure ensures that the demand of the transformed model is at least as high as the demand
of the anisochronous model. Consider an anisochronous RTB model Ω = 〈V,v0,VF ,E,τ,ρ〉. Let
{r1, . . . ,rn} denote the runs from v0 to each of the leaf nodes vi, and 〈Γ(r1), . . . ,Γ(rn)〉 be the set of
run durations. Furthermore, without loss of generality, we assume that Γ(r1)≤ Γ(r2)≤ . . .≤ Γ(rn).
For example, consider the anisochronous RTB model shown in Figure 4(a). This model consists of
two different runs between successive invocations of the start node, one through leaf v1 and the
second through v2. In this case, the minimum durations of these runs are 〈Γ(r1) = 4,Γ(r2) = 7〉.

We transform Ω to an isochronous model with period P for some P≥ Γ(rn) by adding the dbfΩ

at the end of each run. For this transformation, we assume that for any v ∈ V , the deadline of τ(v)
is at most the duration of the shortest run to v0 from v (reset frame separation). This transformation
procedure is presented in Algorithm 2 (Appendix A.1). Rather than go into the details here, we
illustrate the algorithm using the anisochronous model shown in Figure 4(a) when P = Γ(r2) = 7.
The resulting isochronous model is shown in Figure 4(b).

THEOREM 2.4. (from [Anand et al. 2008]) Let Ω = 〈V,v0,VF ,E,τ,ρ〉 and P be the input to Al-
gorithm 2, and Ω′ = 〈V ′,v0′ ,VF ′ ,E ′,τ′,ρ′〉 denote its output. Then, for all t > 0,dbfΩ′(t)≥ dbfΩ(t).

The proof of the above theorem can be found in the dissertation [Anand 2008]. We now present an
upper bound on the demand overhead incurred in the conversion technique given by Algorithm 2. If
the original anisochronous model is Ω and the corresponding isochronous model is Ω′, the maximal
utilization overhead is defined as follows:

MUO(Ω,Ω′) = max
t>0

dbfΩ′(t)
t

−max
t>0

dbfΩ(t)
t

This overhead reflects the increase in utilization that a resource supply would have to support due
to the transformation. First, we make the following observation about dbfΩ in any interval. This
observation follows from the reset frame separation property and arguments similar to the dbf com-
putation for isochronous RTB models [Baruah 1998a].

2Under frame separation, the deadline of a task at any node is at most the minimum jitter over all outgoing transitions from that node.

7

−
3

(1, 3)

(1, 2)(1, 2)

2

v0

v2

4

2

t

1

dbfΩ(t) rbfr1(t)

6

4

3

2

2

1

1 0 1

1 2

2

2

−

v1

dbfr1(t)

0

1

1

1

(a) Example anisochronous model

2

umax uδ ub ua

(1, 2)

1

(0.5, 3)

3

v1

v2

v0

(1, 2)(1, 7)

(1, 2)

(1, 3)

0 2 2

4

0

(1, 3)

(b) Transformed model

Fig. 4. Model transformation

PROPOSITION 1. Given an anisochronous model Ω with the reset frame separation property
(with 〈Γ(r1), . . . ,Γ(rn)〉, representing the minimum durations of runs between successive invoca-
tions of the start node through different leaf nodes) and a time interval t, we can partition t into
sub-intervals t1, . . . , tm, where t1, tm ≤ Γ(rn), and for i = 2, . . . ,m−1 ∃ j, 1≤ j≤ n, with ti = Γ(r j),
such that dbfΩ(t) ≥ ∑

m−1
i=2 maxri ∆Ω(ri)+maxr1,rm ∆(r1 + rm), where ri is a run of Ω of duration ti.

Further, the run of length t1 ends at v0 and the run of length tm begins at v0.

We now bound the time interval t up to which we need to check for computing MUO(Ω,Ω′).

THEOREM 2.5. (from [Anand et al. 2008]3) Let Ω′ = RTB-ISO-GEN(Ω,P). Then

MUO(Ω,Ω′) ≤ max
t<2Γ(rn)

dbfΩ′(t)
t

−bΩ− max
t<2Γ(rn)

{
maxr∈R ∆(r)−dΩ

t

}
where R is the set of all runs of Ω through v0 and of duration less than 2Γ(rn), ri is as defined in

Proposition 1, and bΩ = maxi
∆(ri)
Γ(ri)

and dΩ = 2Γ(rn)bΩ.

Note that because Ω′ is isochronous, the computation of dbfΩ′ for values up to 2Γ(rn) is straight-
forward. We refer the interested reader to the dissertation [Anand 2008] for a proof of the theorem.

2.3. Recurring Branching Task with Control variables (RTC) Model
Definition 2.6 (RTC Model). The RTC model Ψ is similar to the RTB model Ω (Definition 2.1),

except that ρ is now defined as a function from a transition to the minimum jitter, an enabling
condition, and a variable assignment.

Formally, (ρ : E→N×G×A), where a ∈ A consists of assignments for variables in V and g ∈G
is any decidable function over the variables V . The definitions of a run, Γ, ∆, isochronicity, and
wcl for RTC models are similar to those for RTB models, except that the transitions in a run must
be enabled. Hence, a run is only defined under a fixed variable assignment. In the remainder of the

3In [Anand et al. 2008], MUO is referred to as MLO - Maximal Load Overhead. We use slightly different terminology here.

8

paper, although we use the same notation to denote a run (run(va,vb, t)), we assume, strictly for
didactic purposes, that there is an implicit initial variable assignment that uniquely identifies and
enables this run. The execution semantics of the RTC model are similar to those of the RTB model.
In addition, the enabling conditions/variable assignments on a transition from vi are assumed to be
instantaneously evaluated after the release of task τ(vi). The right part of Figure 3 shows the 3TS
system models with the enabling conditions included.

We make the following assumptions for an RTC model: (1) the set of enabling conditions
g1, . . . ,gm on transitions leaving a node must be exhaustive, i.e.,

∨m
j=1 g j = true and (2) the en-

abling conditions and assignments incur no space and time overheads. This assumption simplifies
the presentation of the paper, and the overhead can be easily integrated into our analysis. (3) the set
of leaf nodes VF is nonempty, and every other node has a run to one of the leaf nodes.

2.3.1. Demand for RTC Models. Given an RTC model Ψ, we denote its demand bound function by
dbfΨ, and its request bound function by rbfΨ. For a recurring real-time task model, Baruah [Baruah
1998b] has presented a technique for computing the dbf with exponential complexity even when the
model is isochronous. This complexity arises from the fact that between any pair of nodes there can
be exponentially many runs that need to be considered. Note that a similar procedure, which also
considers enabling conditions on transitions, can be used for computing the dbf of RTC models.
Without any restriction on the RTC model, this procedure has similar properties similar to those of
the RTB model.

To make the dbf computation efficient, one way to restrict a RTC model without compromis-
ing the expressivity much, is to ensure that any two nodes in the model have at most a constant
number of simple runs between them. We call this property the constant-simple-runs property. A
simple run is a run that never resets (i.e., a run that uses only transitions in ET) and no transition
is repeated. The constant-simple-runs property is not overly restrictive, in that it permits multiple
simple runs between a pair of nodes where each run is enabled by mutually exclusive constraints.
Under this restriction a straightforward extension of the technique for use with RTBs can be used
to compute the dbf for RTC models. The algorithm for computing the RTC task abstraction (dis-
cussed in Section 3.3.2) solves the computation for the more expressive RTC model with the same
run-time complexity as the simpler RTB model. It is our expectation that RTCs with the constant-
simple-runs restriction can compactly capture many real-world applications. This expectation stems
from the fact that typical real-time applications, such as those involving different modes of oper-
ations, allow for a fixed number of different runs. Note that the constant-simple runs restriction is
not necessary when modelling using RTCs. Relaxing the restriction will result in an increase in the
complexity of the demand computation. For the 3TS example, there exists only one path between
any non-root nodes (without considering a reset). The RTC task models in Section 4 also illustrate
this clearly for the automotive case study.

For anisochronous RTC models, as with RTBs, we present an algorithm RTC-ISO-GEN in Ap-
pendix A.2 to transform the task into an isochronous task.

2.3.2. RTB/RTC in relation to other task modeling frameworks. The periodic task model is the sim-
plest of the task models, followed by sporadic task models with explicit deadlines and multiframe
task models, which are generalized from the recurring task models. The RTB/RTC task models
generalize these well-known task models to consider cycles of variable length (anisochronous) and
guards for transitions. Hence, they are more expressive than the basic task models. However, task-
graphs, timed-automata, and process-algebra-based models are, in general, more expressive than
RTB/RTC models. However, the additional expressivity of these models comes at the cost of an
increased complexity of demand computation. In related work, real-time calculus based approaches
(such as [Thiele et al. 2006; Thiele et al. 2000; Chakraborty et al. 2003]), and real-time interfaces
([Matic and Henzinger 2005; Bordoloi and Chakraborty 2006]) focus on schedulability analysis
given an input (demand) curve, for example, in the form of a task graph. This approach cannot
be directly applied to hierarchical frameworks with conditional task models, where the focus is on
synthesizing an abstraction that abstracts the complexities and resource requirements of underlying
components (perhaps consisting of several conditional models). For large, complex systems, com-
positional analysis has the potential to simplify the analysis by reducing its overall complexity, but

9

this may incur overhead on the demand side. It is possible to use these techniques to synthesize
the abstraction, but exploring that is beyond the scope of this paper. This work analyses different
compositional analysis techniques, measuring this overhead incurred with different techniques. We
refer the interested reader to the dissertation [Anand 2008] for a detailed comparison along these
lines.

2.4. Periodic and Bounded-Delay Resource Models
In the next two sections, we summarize resource supply models that we use in this work.

The resource supply for tasks is assumed to be provided according to a resource model (e.g., [Shin
and Lee 2003; Lipari and Bini 2003; Feng and Mok 2002]). The Periodic Resource model [Shin and
Lee 2003; 2004] is a resource model that characterizes a periodic resource allocation to tasks. Such
a model ν(Π,Θ) is a partitioned resource supply such that the Θ allocations of time units every Π

time units is guaranteed, where a resource period is a positive integer and a resource allocation time
is a real number in (0,Π]. For a periodic model ν, its supply bound function sbfν(t) is defined by
computing the minimum resource supply for every interval length t as follows (Refer to [Shin and
Lee 2003] for the details):

sbfν(t) =
{

t− (k+1)(Π−Θ) if t ∈ [(k+1)Π−2Θ,(k+1)Π−Θ],
(k−1)Θ otherwise, (2)

where k = max
(⌈(

t− (Π−Θ)
)
/Π
⌉
,1
)

.
The Bounded Delay model was introduced by Feng and Mok [Feng and Mok 2002]. This re-

source partition model, denoted as RB(α,Λ), describes the behavior of a partitioned resource that
is available at its full capacity at some times, but unavailable at all other times, with reference to
a fractional resource RF(α). The following property holds between RB(α,Λ) and RF(α): when an
event e happens time t after another event e′ over RF , the time between e and e′ over RB is between
t−Λ and t +Λ (Refer to [Feng and Mok 2002] for details).

sbfRB(t) =
{

α(t−Λ) if t ≥ Λ,
0 otherwise, (3)

2.5. Explicit Deadline Periodic (EDP) Resource Model
The Explicit Deadline Periodic (EDP) [Easwaran et al. 2007] resource model provides a periodic re-
source supply to an application such that the resource is provided before a deadline that is explicitly
specified in the model. This choice is implementation-oriented, because many existing real-time
schedulers support EDP-model semantics. This model also characterizes many real-time applica-
tions, such as avionics and digital control. This model is more general than the well-known periodic
resource model (c.f., [Shin and Lee 2003; Lipari and Bini 2003]), in that the deadlines for EDP mod-
els are different from their periods. Specifically, an EDP resource model ξ = (Π,Θ,Λ) periodically
provides Θ units of resource within Λ time units, where the period is Π.

We now compute the resource supply using an EDP model. An EDP model, ξ = (Π,Θ,Λ), is a
resource model, in which Θ units of resource supply will be provided within Λ(≤ Π) time units,
and this process will be repeated every Π units. We define the bandwidth of this model as Θ

Π
. Note

that a periodic resource model ν = (Π,Θ) is equivalent to the EDP model (Π,Θ,Π). The supply
bound function for this model, sbfξ is given in another work (Refer to [Easwaran et al. 2007] for the
details).

sbfξ(t) =

{⌊
t−(Λ−Θ)

Π

⌋
Θ+

(
t− (Π+Λ−2Θ)−

⌊
t−(Λ−Θ)

Π

⌋
Π

)
0

t ≥ Λ−Θ

0 Otherwise
(4)

10

3. COMPOSITIONAL ANALYSIS
In previous sections, we introduced the conditional task model and described techniques to compute
the resource demand in the conditional task model. In this section, we discuss the compositional
schedulability analysis for a hierarchical resource sharing system, such as the one described in
Figure 2.2, in which the components comprises tasks modeled as RTB or RTCs.

Resource-model-based component interfaces and their compositional analysis are well known
(e.g., [Lipari and Bini 2003; Saewong et al. 2002; Shin and Lee 2003; 2004]). Resource models
represent the characteristics of resource supplies, and have been used extensively for schedulability
analysis. The idea here is to first synthesize a resource supply that meets the scheduling demands
of all the tasks at any particular level of the system hierarchy. The next step involves generating a
task abstraction at the next level of the hierarchy that guarantees the resource supply underneath.
For example, consider a system with hierarchical resource sharing as illustrated in Figure 5. At the
bottom of the hierarchy, there are components C1, C2, and C3 with individual scheduling policies.
For C1 and C2, scheduling is done as per EDF , and for C3, a rate-monotonic scheduler is used.
The component C4 comprises sub-components C1 and C2 and has its own scheduling policy. The
compositional schedulability analysis of the system is carried out in two steps. In the first step,
a resource supply SCH12 is synthesized in such a way that it can meet the resource requirement
of tasks T1 and T2 of component C1. In the next step, a task T12 is synthesized, so that resources
allocated to that task can ensure a supply of SCH12 for its underlying tasks. Similarly, a supply of
SCH34 is synthesized for tasks T3 and T4, and this supply is transformed into the task T34. At the
level of component C4, checking for schedulability involves ensuring that tasks T12 and T34 meet
their requirements under the local scheduling policy (EDF in this case).

RM

EDFEDF

EDF

RM

Supply S34

C1 C2

C3

Component comprising of C4, C3

Component comprising of C1, C2

C5

C4

Tasks T1, T2

Supply S12

Tasks T12, T34

Tasks T3, T4

Fig. 5. Hierarchical Scheduling and Compositional analysis

Returning to the 3TS example, as per the system hierarchy in Figure 2.2, a compositional analysis
of this situation would involve synthesizing a supply for the controller, sensor, and actuator tasks
under the scheduling policy SCH1 of the VM. Once this supply is has been synthesized, the second
step would be to convert the supply to a task at the next level (say TV M) and the schedulability
analysis performed with tasks TV M,TCT ,TS and TA with respect to the scheduling policy SCH2.

As mentioned in the introduction, in the compositional analysis of hierarchical frameworks,
system-level schedulability analysis is carried out by analyzing the combined resource requirements
of components via interfaces that abstract the component’s resource requirements. Compositional
analysis using resource models involves two steps. In the first step, given the component tasks and

11

their demands, a resource supply Ω is computed for a component C such that the supply always
meets the demand. For instance, for component feasibility, ∀t,sbfΩ(t) ≥ ∑τC

dbfΩ(t) (P1). Addi-
tionally, for optimal abstraction, ∃t,sbfΩ(t) = ∑τC

dbfΩ(t) is ensured. In the second step, we map
the resource model onto a task at the next level of the hierarchy. The task mapping is such that the
abstraction task τΩ realizes for the next level that ∀t,dbfτΩ

(t)≥ sbfΩ(t) (P2).
For the example in Figure 5, let T1 be a simple periodic task (25,4), i.e., for every 25 time units,

the task requires 4 units of the resource. If T2 is a simple periodic task (40,5), then a periodic re-
source supply of ν = (10,3.1) will meet the demand (based on the first criteria of P1). With this
supply, a periodic task (10,3.1) at the next level meets the criteria P2, and thus serves as an abstrac-
tion for its underlying tasks. Note that this abstraction is not optimal (6 ∃t,sbfΩ(t) = ∑τC

dbfΩ(t)),
because it adds demand overhead (resource demand that is strictly more than what is required for
underlying tasks) through the process of abstracting the resource requirements.

Several techniques have been proposed for compositional schedulability analysis using resource
models under both fixed-priority [Almeida and Pedreiras 2004; Davis and Burns 2005; Lipari and
Bini 2003; Saewong et al. 2002] and EDF [Shin and Lee 2003]. For our case study, we use the
periodic resource model-based techniques proposed by Shin and Lee [Shin and Lee 2003] and the
EDP based techniques proposed by Easwaran et al [Easwaran et al. 2007].

3.1. Compositional Analysis using Periodic Resource Model
A periodic resource model is specified by ν = (Π,Θ), where Π is the period and Θ is the amount of
the resource provided. The supply of a periodic resource model is given by,

sbfν(t) =
{

yΘ+max{0, t− x− yΠ} t ≥Π−Θ

0 Otherwise
(5)

In this equation, x= 2(Π−Θ) and y=
⌊

t−(Π−Θ)
Π

⌋
. We use the following two-step procedure to com-

pute an optimal periodic resource abstraction for each component of the SAE application. Again,
by optimal we mean that the abstraction incurs the least amount of utilization overhead.

(1) Fix the period of supply Π to the shortest period of any underlying task.
(2) Find the smallest Θ such that (a) ∀t,sbfν(t) ≥ dbfΨ(t), where Ψ is the underlying RTC model

and (b) ∃t,sbfν(t) = dbfΨ(t).

Once we have an optimal ν, we transform ν into an optimal sporadic task τν at the next level of the
scheduling hierarchy. This transformation is optimal in the sense that (a) ∀t,dbfτν

(t) ≥ sbfν(t) and
(b) ∃t,dbfτν

(t) = sbfν(t). The computation procedure for τν is similar to the three-step procedure
listed above, with the appropriate changes in dbf and sbf.

3.2. Compositional Analysis using EDP Resource Model
Recall from Section 2.5 that an EDP resource model is specified by ξ = (Π,Θ,Λ) where Π is the
period, Θ is the amount of resource provided by the deadline Λ. The supply bound function (sb f)
for ξ is given by,

sbfξ(t) =
{

yΘ+max{0, t− x− yΠ} t ≥ Λ−Θ

0 Otherwise
(6)

where x = (Π+Λ−2Θ) and y =
⌊

t−(Λ−Θ)
Π

⌋
. We use the following three step procedure to compute

an optimal EDP abstraction for each component of the SAE application. By optimal, we mean that
the abstraction incurs the least amount of utilization overhead.

(1) Fix the period of supply Π to the shortest period of any underlying task and use the shortest
period of recurrence for sporadic tasks. This step ensures that the task with the shortest period
gets the resource in time.

(2) Set Λ = Θ and find the smallest Θ such that (a) ∀t,sbfξ(t)≥ dbfΨ(t), where Ψ is the underlying
RTC model and (b) ∃t,sbfξ(t) = dbfΨ(t). Let the Θ meeting these criteria be called Θ∗.

12

2P -t′

t : t ≤ P

t′ : 2P > t′ > P

v3

v2

t′-P

t

vw

v1

(δ2, t′-P)

(δw, P)

(δ1, P)(0, 0)(δ, t)

v0P -t

P

P

0

0

Fig. 6. RTB abstraction

(3) With Π and Θ∗, find the largest Λ such that both criteria (a) and (b) of the previous step are met.

Once we have computed an optimal resource supply ξ for a component, we transform it into
a sporadic task τξ for the next level. Again, this transformation is optimal in the sense that (a)
∀t,dbfτξ

(t) ≥ sbfξ(t) and (b) ∃t,dbfτξ
(t) = sbfξ(t). The computation procedure for τξ is similar to

the three-step procedure listed above, with the appropriate changes in dbf and sbf.

3.3. Compositional Analysis using Conditional Models
Compositional analysis based on resource models, although relatively straightforward, have some
shortcomings. The first problem with these approaches for compositional analysis is that of band-
width overhead. The bandwidth of a resource model (e.g., Θ

Π
for a periodic resource) is a measure

of the resource requirement of the model. It is desirable to minimize this quantity when abstract-
ing component requirements using resource models. For a resource model to be able to schedule
a demand, the length of the largest time interval with no supply (henceforth denoted as starvation
length) must be smaller than the earliest deadline in demand. Because periodic models have implicit
deadlines, satisfaction of this requirement depends entirely on its capacity when the resource period
is fixed. The overhead incurred by periodic resource models can be significantly reduced by having
an explicit deadline for resource supply.

The second problem with previous approaches concerns conditional task models. The resource
model based compositional analysis techniques use schedulability conditions to generate compo-
nent abstractions. For RTB/RTC task models, the complexity of schedulability checking is very
high. Schedulability checking for conditional models [Baruah 1998a] is proportional to the average
utilization. Therefore, all these approaches for compositional analysis are rendered ineffective for
large values of average utilization. To address some of these concerns, abstraction techniques have
been developed for a task set comprises recurring task models that does not depend on checking
schedulability. These will be our focus for the remainder of this section.

3.3.1. RTB Abstraction. In this section, we describe a technique to abstract a collection of RTB
models into one RTB model. Specifically, given models Ω1, . . . ,Ωm, we develop an RTB abstraction
(model) Ω such that ∀t > 0, dbfΩ(t)≥ ∑

m
i=1 dbfΩi(t). Informally, in Ω we introduce loops from the

start node such that their demand satisfies the total dbf of models Ω1, . . . ,Ωm. The procedure for
generating an RTB abstraction is given in Algorithm 1. First, we transform each model Ωi into an
isochronous model of period Pm = P (Line 1). We add a loop from the start node having a demand
equal to the concurrent execution of all wcl(Ωi) (Line 2). This loop is shown in Figure 6 as the

13

loop through node vw. The dashed line indicates the reset transition. For each t ≤ P, we add a node
with demand δ = ∑

m
i=1 dbfΩi(t) (Lines 4-8). This loop is shown in Figure 6 as the loop through v1.

Further, for each P < t < 2P, we add two nodes v2 and v3 that release tasks (δ1,P) and (δ2, t−P) as
shown in Figure 6 (Lines 9-14), such that δ1 + δ2 = ∑

m
i=1 dbfΩi(t). We observe that the abstraction

is isochronous, reset frame separated, and its size is O(P logP). The following theorem shows that
Algorithm 1 generates a sound abstraction with respect to scheduling feasibility.

Algorithm 1 Algorithm for generating RTB abstraction
Input: Ω1, . . . ,Ωm,

where Ωi = 〈Vi,vi
0,V

i
F ,Ei,τi,ρi〉.

Input: P1 ≤ . . .≤ Pm = P, where Pi is period of Ωi.
Input: C = {t < 2P|∀ε > 0,∃i,dbfΩi(t)> dbfΩi(t− ε)}
Output: Ω = 〈V,v0,VF ,E,τ,ρ〉, s.t. dbfΩ ≥ ∑

m
i=1 dbfΩi .

1: For each i, let Ωi← RTB-ISO-GEN(Ωi,P)
2: Create v0, τ(v0) = (0,0); vw, τ(vw) = (δw,P).

// δw = ∑
m
i=1 ∆(wcl(Ωi))− τ(v0).e).

3: Create e1 = 〈v0,vw〉, ρ(e1) = 0; e2 = 〈vw,v0〉, ρ(e2) = P.
4: for t ∈C∧ t ≤ P do
5: Create v1 s.t. τ(v1) = (δ, t) where δ = ∑

m
i=1 dbfΩi(t)

6: Create e1 = 〈v0,v1〉 s.t. ρ(e1) = P− t.
7: Create e2 = 〈v1,v0〉 s.t. ρ(e2) = t.
8: end for
9: for t ∈C∧ (P < t < 2P) do

10: δ1 = ∑
m
i=1 ∆(run(va

i ,v
b
i ,P))

// where run(vai ,v
b
i ,P) is a prefix of the critical run of Ωi for interval length t.

11: δ2 = ∑
m
i=1 dbfΩi(t)−δ1

12: Create u2, τ(v2) = (δ1,P); v3, τ(v3) = (δ2, t−P).
13: Create e1 = 〈v0,v2〉, ρ(e1) = 0; e2 = 〈v2,v0〉, ρ(e2) = P; e3 = 〈v0,v3〉, ρ(e3) = 2P− t; e4 = 〈v3,v0〉,

ρ(e4) = t−P.
14: end for

THEOREM 3.1. (from [Anand et al. 2008]) If RTB Ω can be feasibly scheduled on a uniproces-
sor platform, then RTB’s Ω1, . . . ,Ωm can also be feasibly scheduled.

This result follows from the fact that for all t > 0, dbfΩ(t) ≥ ∑
m
i=1 dbfΩi(t), which is true by con-

struction for Ω.
Abstraction for 3TS. We apply this abstraction technique to the 3TS example introduced in

Section 2.2. For the models shown in Figure 3 using the hierarchical resource sharing framework
in Figure 2.2, we ignore the guards and assignments on transitions. Consequently, these models
are isochronous RTBs with periods of P = 500. The RTB abstraction Ω for the virtual machine
scheduling the modules of Figure 2.2 is given in Figure 7.

3.3.2. RTC Abstraction. In this section, we develop an RTC abstraction for a set of RTC models.
The abstraction generation technique uses a procedure MERGE (described in Appendix A.3) that

merges critical, concurrent runs to generate the RTC abstraction. The overall procedure is similar to
Algorithm 1. Due to space constraints, we do not describe this technique, and instead only highlight
the differences from Algorithm 1: (1) RTB-ISO-GEN is replaced by RTC-ISO-GEN and (2) for
every critical time instant t (Lines 2,10,11), dbf(t) for the abstraction is generated using MERGE
instead of adding the demands from underlying critical runs. The soundness of the RTC abstraction
with respect to scheduling feasibility is similar to the RTB case. For a more detailed description of
the algorithm, we refer the interested reader to [Anand 2008].

14

0

(130, 450)

(200, 450)

(15, 50)

500

50

450

250

(25, 250)

250

450 50

(210, 500)

50

450

500

(225, 500)

(0, 0)
0

Fig. 7. Abstractions for 3TS

3.3.3. Compositional Analysis with Proposed Abstractions. In this section, we discuss the compo-
sitional analysis of conditional task models using our abstractions. Given reset frame separated RTB
models, the RTB abstraction generated in Section 3.3.1 is also reset frame separated. Therefore, our
technique can be used to analyze the feasibility in a hierarchical system with RTBs as components.
If the underlying RTB models are not reset frame separated, then RTB-ISO-GEN should be modi-
fied using rbfΩ instead of dbfΩ to generate the abstraction. Intuitively, because rbf accounts for the
demand of all the task releases in a time interval, the rbf compensates for the loss of demand result-
ing from the transformation. In general, this modification can result in a larger demand overhead.
Therefore, it is beneficial to have reset frame separation.

Similarly, given reset frame separated RTC models, an RTC abstraction can be generated as de-
scribed in Section 3.3.2. However, this abstraction also does not need to satisfy the reset frame
separation property. A modification to RTC-ISO-GEN, similar to that aforementioned, can be used
to overcome the problem. We can then perform compositional analysis of components comprises
tasks modeled as RTCs.

The RTB abstraction algorithm uses only the resource demand of the underlying models. Hence,
it can be used to generate an RTB abstraction for RTC models without modification. Finally, by ob-
serving that an RTB model is trivially an RTC model with no variables and has the constant-simple-
runs property, we can compositionally analyze a system comprises both RTB and RTC models.

4. SAE CLASS C APPLICATION REQUIREMENT CONSIDERATIONS
In this section, we introduce vehicle communication requirements as listed in the SAE specification
document J2056/1 [SAE 1993], which we use for our case study. The class C category vehicle com-
munication requirements introduce the aspect of real-time closed-loop feedback in a system. The
requirement considerations in J2056/1 are clarified with respect to an electrical vehicle drive- and
brake-by-wire system. The implementation of the system in an advanced electric vehicle powertrain,
called the ETX-I (Electric Trans-Axle), consists of seven modules: the vehicle controller (V/C), in-
verter motor controller (I/M), instrument panel display, transmission, traction battery, brakes and
driver inputs.

15

Transmission Controller

Traction Battery

Brakes Driver Inputs

I/M Controller

Panel

Display

Instrument

Vehicle Controller (V/C)

Fig. 8. Block diagram of the different modules

Table I. ETX State diagram definitions

No. Definition No. Definition
0 Initialize vehicle controller 18 Deenergize 1st gear friction clutch
1 Display ”NOT IN PARK/NEUTRAL” message 19 Energize 2nd gear friction clutch
2 Close Inverter/Motor controller power relay 20 Deenergize 2nd gear friction clutch
3 Send initialization record to I/M C 21 Start timeout 1 for measured torque
4 Send PTR (Prepare to run) message to I/M C 22 SHUTDOWN
5 Park or Neutral 23 Display diagnostic status
6 Close main contactor negative side 24 Open V/C power relay
7 Close main contactor positive side 25 Send FRV to I/MC
8 Send MCA 26 Send MCR and start timeout for MCC
9 Send NOT(MCR) and start timeout for NOT(MCC) 27 Send NOT(MCR)
10 Open main contactor and start timeout for NOT(MHNA) 28 Set motor overspeed warning flag
11 Send NOT(MCA) 29 Display ”CHARGER STILL PLUGGED IN” message
12 Send NOT(FRV) to I/MC 30 Clear motor overspeed warning flag
13 Energize 1st gear friction clutch 31 Decrement Max power available to motor
14 DRIVING 32 Increment Max power available to motor
15 Start time delay 2 for regen to drive shift 33 Increase negative torque to limit motor speed
16 Stop time delay 2 34 Decrease negative torque
17 Start time delay 3 for clutch to drive shift

The V/C acts as the system’s command center. It electronically interprets all driver commands
by monitoring the accelerator, brake pedals, and shift lever as well as providing the desired wheel
torque response by appropriately controlling the operation of the inverter, motor, transmission, and
brake. It also provides fault management and diagnostics. Alternative implementations typically
use two dedicated serial links. However, the preferred configuration, as shown in Figure 8, uses
a shared bus to enable distributed control and reduce the amount of vehicle wiring resulting in a
reduction of the production cost. For further details, the SAE handbook and other references [SAE
1994; Company 1988] contain a detailed description of the propulsion system, its operation, and the
design of the control system.

In the following paragraphs, we provide a brief description of the relevant aspects of system
operation to illustrate the relationship between system operation and communication requirements.
Table I lists all the possible states of the system, and IV list all the control messages that are sent
over the communication bus in the ETX-I system.

The initial state of the system is that of the ignition key turned on. Several messages such as the
key switch start (KSW , Table IV) and Key switch run (KSR, Table IV) are initiated as a result of
this driver action. The V/C needs to know the status of the shift lever, the friction clutches in the
transmission, and the relay that locks the power on to the vehicle controller itself. For example, if
the transmission is not in “PARK” or “NEUTRAL”, then the system will enter the fault state and
display an appropriate message. Alternatively, if the transmission is in “PARK” or “NEUTRAL”,
then the friction clutches will be disengaged and the power relay will be locked on. As the key goes
into the “START” position, the system transitions into state numbered 2 in the table, and energizes
the relay that provides power to the I/M Controller. The message prepare-to-run (PT R) is signalled

16

following State 2, after sending the interlock INT , and Power ACK messages to V/C VCA, and
the Inverter ICA, respectively. During the time the vehicle moves from “PARK” or “NEUTRAL” to
“DRIVING”, the V/C sends a Main Contractor Acknowledge (MCA) message to the I/M controller.
Thus, the action of the driver in turning the ignition to “ON” and switching the key into the “START”
position results in a burst of messages. Although these messages are not recurring, they still should
have minimum worst-case latencies to prevent a perceptible delay between key turning and system
initialization.

When the system is in State 14 (“DRIVING”), the V/C is repeatedly sending a torque command
(e.g., T QC) to the I/M Controller every 5ms, and at the same time, the V/C needs to receive a
pedal position (APP, BPM, BPL, etc.) and calculated torque value (T QM) at the same rate. This
is an example of recurring data which must be updated at a rate fast enough to provide a smooth
response. If the required time for transmitting the acknowledgment exceeds a particular threshold,
then the system may omit the acknowledgment and use the old data until the next data packet arrives.
In State 14, the vehicle controller also monitors several other event-driven, single-shot signals which
can lead to state transitions (e.g., PBK,SOC,ASW, and BSW). Recipients must acknowledge such
messages to prevent faulty state transitions in the system.

One of the ETX-I Control system state transitions will occur, if the driver shifts from 1st to 2nd

gear (See State 19 of the table). Because the initiation and execution of the gearshift depend on a
time-dependent sequence of certain conditions, it is necessary that the communication system meets
the data requirements. Also, while switching gears, the clutch pressure and motor speed signals need
to be updated at a much faster rate (5 to 10ms) than during normal driving in a particular gear. The
accelerator switch (ASW), speed control SPC, and shift gear (to park/reverse/drive mode) SHIFT
are some of the different messages that are generated during the driving phase, but they are not
active concurrently.

The emergency brake message (PBR) and emergency reset (SOC) are two special messages that
are get sent by the driver to the vehicle controller in different emergency situations.

The complete list of the messages can be found in the Table IV. In the table, the message type
indicates the length of the message in bits. Messages 1− 13, 21,29,30,32, and 36 of the table
are the recurring signals. The other messages are signals that were sent between the vehicle and
the inverter/motor controllers. Signals without an update rate associated with them in Table IV are
known as event-driven (i.e., driver action or a change in state), and their update rate can only be
approximated by a lower bound on successive updates (see Section 5 for a description of how we
model them). Some of the signals in the table can cause a state change that might trigger other
messages as previously described. Sporadic messages capture event-driven signals.

We now briefly highlight some interesting application characteristics for our schedulability anal-
ysis.

— The SAE application very well fits a hierarchical scheduling framework (c.f., Figure 9). The
first level of the scheduling hierarchy contains subsystems with specific scheduling policies for
these subsystems (e.g., S1, . . . ,S7). For instance, messages generated by one subsystem can be
scheduled inside the subsystem using EDF, whereas others use a FIFO strategy. The second
level schedules all messages on the bus, and on this level, the bus arbitration policy decides
which messages should be transmitted. For example, in the CAN system, either fixed priority
mechanisms [Tindell and Burns 1997] or EDF [Natale and Meschi 2001] policies can be used,
whereas in a TTA system, the arbiter uses a strict TDMA policy.
The SAE system has also been modeled with up to three levels of hierarchy [Meyerowitz et al.
2003], where the extra level of scheduling between the modules performs some optimization.

— The message set consists of both periodic (time-triggered) and sporadic (event-triggered) mes-
sages, and the periods of time-triggered messages can differ by several orders of magnitude. That
is, the message set contains both messages with very short periods and messages that have long
periods. Both of these characteristics affect the abstractions used for compositional analysis. Fur-
thermore, as we will show, the complex inter-message dependencies of the event-triggered part
make conditional real-time models more appropriate to model the application than simple peri-
odic or sporadic tasks.

17

V/C Driver Batt I/M C Trans DisplayBrakes

Bus with arbitration policy

S2S1 S3 S4 S6S5 S7

Fig. 9. Scheduling hierarchy for the SAE application

5. MODELING THE SAE APPLICATION
In this section, we model different parts of the SAE application using a two-level hierarchy as
indicated in Figure 9. We use mainly the EDF policy for our schedulability analysis, however, fixed
priority scheduling can be applied in a similar fashion.

INIT

PBK

SOCR

APP

KSR KSW

ASW

Shift

SPC

INIT

INIT BMD

〈0, BMD − enabled = 1, ∅〉

(8, 5)

(1, 20)

(1, 20)

〈0, x = 0, ∅〉

(0, 0) 〈0, x = 1, ∅〉

〈0, ∅, x := 1〉

〈50, ∅, x := 0〉

〈5, ∅, ∅〉

〈0,KSR− enabled = 0, ∅〉

〈0,KSR− enabled = 1, ∅〉

(1, 20)

(0, 0)

〈0, ∅, ∅〉

(0, 0)

〈50, ∅,KSR − enabled := 1〉

(1, 20)

(3, 20)

(3, 20)(2, 20)

〈0, ASW − enabled = 0, ∅〉

〈50, ∅, ASW − enabled := 1〉

〈0, ASW − enabled = 1, ∅〉

〈50, ∅, ASW − enabled := 0〉

〈50, ∅, ∅〉

〈0,DRI ∨ LOW ∨NEU ∨ PAR ∨REV, ∅〉

(0, 0)

(1, 20)

〈50, ∅, ∅〉

Fig. 10. Task model of the driver module

18

We begin with the driver module. Table IV indicates that the driver module comprises nine mes-
sages, one of which is periodic (APP) and eight of which are event-triggered. We use the RTC
model for the event-triggered messages, and Figure 10 shows the resulting model. The tuple 〈c,d〉
on each node denotes the demand of the task c (in bits), and its deadline d (in ms). The tuple 〈 j,g,a〉
denotes the transition’s minimum jitter, guard, and assignment. A dashed line specifies a reset to the
start location. Below are the different tasks of the driver module.

(1) From Table IV, we see that the driver module sends the brake mode message BMD. Correspond-
ingly, we create the first RTC task with a guard variable to determine if the mode is enabled or
not.

(2) The message APP corresponds to the accelerator position and is sent periodically. The second
RTC task for the driver module is, therefore, a simple one node model.

(3) From Section 4, the emergency brake message (PBR) and emergency reset (SOC) are also exclu-
sive. We model the third task of the driver module considering the exclusivity of these messages.

(4) The remaining event-triggered messages KSR, KSW , ASW , SPC, and SHIFT are related as
follows. As discussed in Section 4, the Key switch start (KSW) and Key switch run (KSR)
are only active initially. The accelerator switch (ASW), speed control SPC, and shift gear (to
park/reverse/drive mode) SHIFT are not active concurrently. These constraints are captured in
the last task of the driver module.

The SAE specification, unfortunately, lacks a lower bound on the inter-arrival rate of event-
triggered messages. For our schedulability analysis, we assume a 20ms deadline for sporadic mes-
sages and a minimum recurrence period of 50ms. These parameters are similar to those used in
other works [Tindell and Burns 1997; Kopetz 1994]. A closer inspection reveals that using a spo-
radic model without dependencies for the analysis results in a high overhead. For instance, the
messages associated with the ignition system (KSR and KSW) occur only once in the entire state
diagram. Further, the messages never occur simultaneously with the accelerator switch and speed
control messages (ASW and SPC respectively). The RTC model captures such dependencies, e.g.,
by using the variable KSW-enabled to ensure mutually exclusive messages releases of shift and
accelerator messages.

INT VCA ICA

P100 P1000HiLo

INIT

MCA
(1, 20)

(32, 20)

〈100, ∅, ∅〉

(17, 20)

〈1000, ∅, ∅〉

(4, 20)

〈50, ∅, ∅〉

〈0, !PTR, ∅〉

〈0, PTR, ∅〉

(1, 20)

(0, 0)

〈0, ∅, ∅〉 〈0, ∅, ∅〉

(1, 20) (1, 20)

〈50, ∅, ∅〉

〈50, ∅, ∅〉

Fig. 11. Task model of the battery module

The battery module comprises twelve messages, of which four recur with a period of 100ms and
three with a period of 1000ms. The remaining five have sporadic behavior. We model the periodic
messages as is and represent them as nodes P100 and P1000, respectively, as shown in Figure 11.

19

The demand of these nodes is the sum of the individual messages. We model event-triggered mes-
sages using the RTC model. This model, again, provides less overhead than the other models. For
example, as mentioned in Section 4, the messages INT , VCA, and ICA never occur after the prepare-
to-run event PT R. We leverage this by defining a variable PT R that is true whenever the event PT R
has happened and false otherwise.

KSW

ASW

Shift

INIT

MCA

〈0, (REV ∨ 2ND), ∅〉

〈0,KSW − enabled = 0, ∅〉

〈0,KSW − enabled = 1, ∅〉

(1, 20)

(0, 0)

〈50, ∅,KSW − enabled := 1〉

(0, 0)

(12, 20)

〈50, ∅, ∅〉

(1, 20)

〈50, !(REV ∨ 2ND), ∅〉

〈50, ∅, ∅〉

〈0,DRI ∨ LOW ∨NEU ∨ PAR ∨REV, ∅〉

Fig. 12. Conditional task model of the V/C module

The vehicle controller module generates 17 messages. We apply the same methodology to its six
periodic messages as shown in the battery model, and we incorporate the remaining eleven messages
in an RTC model as shown in Figure 12. The RTC model is based on the observation that the key
switch message (KSW) occurs initially, followed by the contractor acknowledge message (MCA),
followed by SHIFT and Accelerator switch messages that get triggered depending on the different
driving gears.

We then model the remaining modules. The brake module contains only one sporadic message
and three periodic messages. The transmission controller generates only periodic messages, and we
model these messages as they are. Finally, the I/M controller outputs eight messages, of which six
have event-triggered behavior. We model the two periodic messages as they are. Unfortunately, the
event-triggered messages are independent of each other, and we therefore model this part using a
purely sporadic task model without dependencies.

As a final note, the demand shown in all the figures represents the number of transmitted bits,
representing not just the length of the contents but also the required number of bits including, for
instance, stuffing bits and CRC data. For the remainder of the paper, unless otherwise specified, we
assume that the bus speed is 20kpbs when computing the message transfer duration.

6. ABSTRACTIONS FOR DIFFERENT MODULES
We now compare four techniques for computing abstractions of these modules. The choice of tech-
niques is based on the frameworks proposed for the compositional analysis of a hierarchical schedu-
lability framework. We consider the following four techniques:

20

45

15
(0, 0)

(86, 50)

35

35
(62, 35)

2525

30

(38, 20)

20

20

30

50

(24, 15)

(54, 30)

(46, 25)

0(16, 10)

(78, 45)

(70, 40)

(8, 5)

45

5

40

10

15

10

40

5

Fig. 13. RTB abstraction of the driver module.

— A conditional task (RTB/RTC) abstraction for the RTC task models as proposed earlier,
— An explicit deadline periodic (EDP) resource abstraction for the RTC task models and subsequent

mapping onto a sporadic task,
— An EDP resource abstraction for the sporadic task model and subsequent mapping onto a sporadic

task, and finally,
— A periodic resource abstraction for the RTC task models and subsequent mapping onto a sporadic

task.

Conditional task abstraction: We use an RTB model for the driver module because its period
of recurrence is always at most 50ms. Using Algorithm 1, we compute the RTB task shown in
Figure 13. The battery module hosts tasks whose period of recurrence varies from 50ms to 1000ms.
An RTB abstraction would result in 40 additional locations to accommodate changes in the demand.
We therefore use an RTC abstraction using the technique described in Section 3.3.2 in Figure 14.
For the sake of brevity, we omit details for the other modules. However, these can be created in a
fashion similar to those presented thus far.

We have highlighted the computation of the optimal EDP abstraction and the corresponding op-
timal transformation for the Vehicle Controller module in Figure 15. Specifically, the bottom-most
function, dbfΨ represents the net demand of all the RTB tasks of the controller module. sbfξ and
dbfξ represent the supply function and the corresponding optimal task abstraction of the explicit
deadline periodic resource model for the module. sbfν and dbfν represent the supply function and
the corresponding optimal task abstraction of the periodic resource model for the module. The EDP
abstraction, as can be seen from the plot, performs better than the optimal periodic resource abstrac-
tion. More details on computing the periodic resource abstraction are highlighted below.

In the remainder of this document, to keep the narrative simple, we abuse the notation and denote
the sporadic task generated by the EDP resource τξ by ξ.

Figure 15 lists the demand of tasks of the of the vehicle controller module, the demand of the
periodic resource abstractions and the demand of the corresponding (optimal) sporadic task abstrac-
tion.

21

INT VCA ICA HiLo

TBTA TBTM TGF

TBV TBI ABV ABI

〈100, x2 = 1, x2 = 0〉

〈0, ∅, ∅〉

(1, 20) (1, 20)
(1, 20)

〈0, ∅, ∅〉

〈0, ∅, ∅〉

(8, 1000) (1, 1000)
(8, 1000)

〈0, ∅, ∅〉

〈0, ∅, ∅〉 〈0, ∅, ∅〉

(8, 100)

〈0, ∅, ∅〉

(4, 20)

〈0, ∅, ∅〉

(8, 100) (8, 100)
(8, 100)

〈0, (x2 = 1 ∨ x3 = 1) ∧ x21 = 1, x21 = 0〉

〈50, (x2 = 1 ∨ x3 = 1) ∧ x21 = 0, x21 = 1〉

〈50, x1 = 1, x1 = 0〉

〈0, x3 = 1 ∧ x31 < 10, x31 = x31 + 1〉

〈0, x3 = 1 ∧ x31 = 10, x31 = 0〉

〈0, ∅, x3 = 0〉

Fig. 14. RTC abstraction of the battery module

time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25

d
e
m

a
n

d
 b

o
u

n
d

 f
u

n
c
ti

o
n

sbfν(t)
dbfν(t)
dbfΨ(t)

sbfξ(t)
dbfξ(t)

Fig. 15. Computing optimal abstractions (V/C module)

Table II. The table listing EDP and periodic abstractions for different modules

Module EDP Abstraction Task EDP Abstraction Task (S) Periodic Abstraction Task
Driver (5,0.475,4.525) (5,0.5625,4.4375) (5,2.585,4.6)
Battery (20,0.484,19.516) (20,0.497,19.503) (20,10.175,19.65)
V/C (5,1.4875,3.5125) (5,1.5125,3.4875) (5,2.8895,4.2)
I/M C (5,0.975,4.025) − (5,2.8895,4.2)
Brakes (5,0.875,4.175) − (5,2.8895,4.2)
Trans (5,0.4205,4.5795) − (5,2.6885,4.6)

22

Table II lists the EDP and periodic resource abstractions for all the components of the SAE
application. For comparison, we have also listed the optimal EDP abstractions for the case where,
instead of conditional models, all the components were modeled using purely sporadic tasks. This
is denoted by an (S) in the table. As for the I/M controller, brakes, and transmission modules, the
EDP abstractions for sporadic and conditional task cases are identical because we have no explicit
conditional models.

7. ANALYSIS AND RESULTS
In this section, we present the results of applying and comparing the abstractions for each of the
seven modules of the SAE application. Recall that in Section 2.2.1, we provided a theoretical bound
on the maximum utilization overhead for the conditional models. In this section, we use this metric,
and the relative utilization overhead to measure the abstraction overhead.

Given a model M and its abstraction A,
Maximum utilization :

MU(M) = max
t>0

dbfM(t)
t

Maximum utilization overhead :

MUO(A,M) = max
t>0

dbfA(t)
t
−max

t>0

dbfM(t)
t

Relative utilization overhead :

RUO(A,M) =
maxt>0

dbfA(t)
t

maxt>0
dbfM(t)

t

−1

The utilization overhead reflects the increase in utilization that a resource supply would have
to provide to the application due to the abstraction and an estimate of the demand overhead. The
relative utilization overhead describes only how much more demand is incurred by the abstraction
relative to the original model.

 1

 2

 3

 5

 0 10 20 30 40 50

de
m

an
d

bo
un

d
fu

nc
tio

n

time

 4

 0

dbfξ(t)(S)

dbfS(t)
dbfξ(t)

dbfΨ(t)

Fig. 16. Demand for the sporadic and conditional task model of the driver module

23

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70

de
m

an
d

bo
un

d
fu

nc
tio

n

time

dbfξ(t)(S)

dbfΨ(t)

dbfξ(t)
dbfS(t)

Fig. 17. Demand for the sporadic and conditional task model of the V/C module

Impact of the task model: First, we consider the demand for the conditional task model versus
the demand for a purely sporadic model. Figures 16 and 17 plot the demands for the driver and
vehicle controller modules. As before, dbfΨ represents the demand of the module tasks, dbfS is
the demand of the sporadic task abstraction, and dbfξ, and dbfξ(S) represent the demand of the
task abstraction (at the next level of hierarchy) constructed using an EDP resource model for the
underlying conditional and the sporadic task abstractions, respectively. Based on the plots, we can
make the following observations:

(1) The conditional task abstractions incur no demand overhead. This is because the selected mod-
ules have a harmonic recurrence period. Therefore, the transformation algorithms can compute
the demand exactly, introducing no additional overhead.

(2) The conditional task models require less demand. Based on the figures, it is apparent that the
demand of conditional task models is smaller than that of purely sporadic task models. In fact,
for the driver module, the maximum utilization is 0.0950 for RTC model (Figure 10), whereas
it is 0.1125 for the sporadic task model (an increase of 18.42%). For the battery module, the
maximum utilization for the RTC model (Figure 11) is 0.0242 and that of the sporadic task
model is 0.0249. The RTC model performs better because it is more expressive than the RTB
and does not consider mutually exclusive messages running concurrently. In the case of the
battery, the increase is a modest 2.69%, mainly because of a small difference in demands on
either of the branches of the RTC model. For the vehicle controller module, these numbers are
0.2975 and 0.3025, a 1.68% increase. The reason for the modest increase is the same as for the
battery module.

(3) A hierarchical abstraction amplifies the benefits of the conditional task model. Although as
illustrated in the previous point, the conditional models have a lower utilization than the spo-
radic models, the effect of the choice of the task model is more pronounced when they are
abstracted. For instance, EDP abstractions for the conditional and sporadic task models for the
driver module incur utilization overheads of 0.0100 and 0.0318, an increase in utilization of
10.5% and 33.43%, respectively. For the battery module, because the difference in utilization
between RTC and sporadic task models is small, the utilization overhead for EDP abstractions
are 0.0006 and 0.0013, an increase of just 2.48% and 5.23%. The results for the vehicle con-
troller module are similar to those of the battery module. The intuition behind this effect is that

24

the abstraction process adds an overhead that may not be linear with respect to the demand of
the underlying tasks. In other words, a small increase in the demand posed by the underlying
task set causes a disproportional abstraction overhead.

 100

d
e
m

a
n

d
 b

o
u

n
d

 f
u

n
c
ti

o
n

time

 0

 2

 4

 6

 8

 10

 0 20 40 60 80

dbfξ(t)(50)

dbfΨ(t)(20)

dbfΨ(t)(50)
dbfξ(t)(20)

Fig. 18. The EDP abstraction at different bus speeds for the driver module

time

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

de
m

an
d

bo
un

d
fu

nc
tio

n

dbfξ(t)(50)

dbfΨ(t)(20)

dbfΨ(t)(50)
dbfξ(t)(20)

Fig. 19. The EDP abstraction at different bus speeds for the battery module

Abstractions and bus speed: We now investigate the effect of the different abstractions and bus
speeds. In our study, we consider two different bus speeds: 20kbps and 50kbps. Figures 18 and 19

25

plot the demands for EDP abstractions at these different speeds. As before, dbfΨ represents the
demand of the module tasks, and dbfξ represents the task abstraction corresponding to the EDP
resource model. The demand for the conditional task models is provided as a reference. We can
make the following observations.

(1) An increase in the bus speed decreases the utilization level and results in less overhead in the
abstractions. An increase in the bus speed from 20kbps to 50kbps results in a 250% increase
in speed. Ideally, this would translate into a utilization decrease of 40%(1/2.5) in its value
at 20kbps. While this was observed for the conditional models in the driver, battery, and ve-
hicle controller modules, the EDP abstractions registered reductions in utilization of 37.63%,
39.41%, and 31.90%, respectively, rather than 40%. These surprisingly low utilizations and the
discrepancy between the expected and observed values are most likely due to the fact that as the
utilization decreases, the EDP model is better able to abstract the demand of underlying tasks.

(2) The gap between the conditional task abstraction and the EDP task abstraction shrinks as the bus
speed increases. This decrease could be due to the increase in the resource supply that decreases
the overhead introduced by the EDP task abstraction.

(3) The decrease in the gap between the abstraction demand and the actual demand is consistently
observed across modules. For example, the relative utilization overheads between the two ab-
stractions for the driver module at 20kbps and 50kbps are 10.5% and 3.95%, for the battery
module they are 2.48% and 0.98%, and the V/C module they are 42.35% and 13.51%, re-
spectively. These decreases in overhead can be explained by observing that as the bus speed
increases, the utilization drops, as does the utilization gap between the conditional and EDP
task abstractions.

de
m

an
d

bo
un

d
fu

nc
tio

n

time

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

dbfν(t)

dbfΨ(t)
dbfξ(t)

Fig. 20. The abstraction demands for the driver module

The impact of the abstraction technique used: Finally, we compare different abstraction tech-
niques and the overheads they incur. Figures 20, 21, and 22 plot the abstraction demands for the
different abstraction techniques. In these plots, dbfΨ represents the demand of the module tasks
(RTB/RTC), dbfξ represent the demand of the task abstraction corresponding to the EDP resource
model, and dbfν is the task (sporadic) abstraction corresponding to the periodic resource model.
As can be seen clearly, the periodic model-based abstraction performed worst out of the three. The

26

 2

 4

 6

 8

 10

 12

 0 50 100 150 200

de
m

an
d

bo
un

d
fu

nc
tio

n

time

 0

dbfν(t)

dbfΨ(t)
dbfξ(t)

Fig. 21. The abstraction demands for the battery module

de
m

an
d

bo
un

d
fu

nc
tio

n

time

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70

dbfξ(t)
dbfν(t)

dbfΨ(t)

Fig. 22. The abstraction demands for the I/M module

overall demand due to these abstractions is shown in Figure 23. Table III gives the maximum uti-
lization and relative utilization overheads for different abstractions, for each of the modules of the
SAE application. The relative utilization overheads are shown as percentages in brackets. As the
conditional models do not incur any utilization overhead, the overhead values are omitted in the
table. We can make the following observations in this case:

(1) The conditional task models perform better than other abstractions in terms of utilization. The
tables and figures immediately show this fact. The EDP abstraction of the conditional task

27

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

de
m

an
d

bo
un

d
fu

nc
tio

n

time

 0

dbfξ(t)(S)

dbfΨ(t)
dbfξ(t)

dbfν(t)

Fig. 23. The abstraction demands for the entire application

Table III. The utilization and overhead for different abstractions

Module RTB/RTC Abstraction EDP Abstraction EDP Abstraction (S) Periodic Abstraction
Driver 0.0950 0.1050 (10.5%) 0.1268 (33.43%) 0.5620 (491.53%)
Battery 0.0242 0.0248 (2.48%) 0.0255 (5.23%) 0.5178 (2039.72%)
V/C 0.2975 0.4235 (42.35%) 0.4337 (45.78%) 0.6880 (131.25%)
I/M C 0.1950 0.2422 (24.22%) − 0.6880 (252.81%)
Brakes 0.1650 0.1976 (19.76%) − 0.6880 (316.96%)
Trans 0.0841 0.0918 (9.18%) − 0.5845 (594.95%)

Overall 0.8475 0.9134 (7.18%) 0.9380 (10.68%) 3.2972 (289.04%)

models comes close to an overall utilization overhead of 7.18%, and the periodic abstraction
performs significantly worse in all cases. In fact, the periodic abstraction with a utilization of
3.2972 is not even schedulable. This lack of schedulability occurs because the periodic model
is not able to ensure as tight a supply as the EDP model does. The advantage that the EDP
model has with respect to the periodic lies in its explicit deadline. This effect can be clearly
seen in Figure 15, which shows both the periodic and EDP abstractions. The EDP model can
start earlier and hence, reduce the starvation length and touch the demand curve much later.

(2) Large periods cause high overprovisioning in the abstraction. The periodic abstraction suffers
greatly for the battery module. This drop in performance occurs because the battery module has
a period of 20ms, higher than that of other components. Therefore, the periodic resource model
ends up providing significantly more resources than are actually needed simply to maintain the
minimum utilization.

(3) The overall utilization overhead for EDP and the periodic resource model is not just the sum of
the individual modules. This property arises because the maximum utilization for each module
may occur during different time intervals.

Finally, we discuss the aspects of abstractions other than utilization, namely, the ease of model-
ing and checking schedulability. Whereas, in terms of utilization, the conditional models perform
better, they are harder to model and check for schedulability. Specifically, schedulability checking
for conditional models is proportional to utilization. Therefore, in systems with high utilization, the
bound on the time interval over which schedulability has to be checked can be very large. In contrast
to the conditional models, EDP models appear to incur additional overhead but are comparatively

28

easier to model and analyze. Periodic models, however, impose too much overhead even if they
allow for easy schedulability analysis. Finally, we observed that the utilization of EDP abstractions
for sporadic task models is higher than those of conditional models. Therefore, even if conditional
task abstractions are not used, the task models may serve as a good first step.

8. CONCLUSIONS
In this paper, we have introduced conditional task models with control variables (RTC) techniques
for their compositional analysis. These techniques enable the modeling and analysis of many real-
time applications with hierarchical scheduling policies and conditional real-time code. We modeled
the SAE class C vehicle communication requirements as a conditional task model and analyzed the
message schedulability using various abstraction techniques.

From the results of the study, we conclude that conditional task models can be used to faithfully
capture the requirements of a system and yield clear benefits in compositional analysis. Specifically,
abstractions based on conditional models incur lower utilization overheads, both individually and for
the overall application. Amongst the abstractions compared, conditional task abstractions incurred
the least amount of utilization overhead. The EDP model presents a good tradeoff between ease of
modeling and the utilization overhead incurred. We conclude by stating some of the limitations of
this study and some indications of how they might be overcome.

— We have considered preemptive scheduling here. Solutions involving the CAN bus [Tindell and
Burns 1997] support preemptive scheduling across multiple messages. However, many bus tech-
nologies support only non-preemptive scheduling, and preemptive scheduling cannot be applied
inside network packets. Applying the proposed techniques to a non-preemptive setting usually
results in low schedulability, and more work needs to be done in this regard.

— This study was performed using the EDF policy. The results can be easily extended to fixed
priority scheduling by modeling the appropriate demand into the tasks. Extending the results to
FIFO scheduling may be more difficult, because the queue length for every module would have
to be determined precisely.

— In the case study, we did not model overhead, such as header information, which is required
in many bus technologies. However, this modeling should be relatively straightforward, and we
expect our results to hold also for overheads even though we may see an overall increase in
utilization.

— Specific technologies also use optimizations, such as the piggybacking of messages and frame
packing. However, such optimizations only affect message utilization and reduce system over-
head. We expect the results of our study to hold even if these considerations are explicitly mod-
eled.

REFERENCES
ALMEIDA, L. AND PEDREIRAS, P. 2004. Scheduling Within Temporal Partitions: Response-time Analysis and Server De-

sign. In EMSOFT ’04: Proceedings of the 4th ACM International Conference on Embedded Software. ACM, New York,
NY, USA, 95–103.

ANAND, M. 2008. Conditional models for compostional analysis of real-time embedded systems. Ph.D. thesis, University
of Pennsylvania, Philadelphia, PA, 19104.

ANAND, M., EASWARAN, A., FISCHMEISTER, S., AND LEE, I. 2008. Compositional feasibility analysis for conditional
task models. In Proceedings of the Eleventh IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC). IEEE Computer Society, Washington, DC, USA.

BARUAH, S. 1998a. Feasibility Analysis of Recurring Branching Tasks. In Proceedings of the 10th Euromicro Workshop on
Real-Time Systems (ECRTS). 138–145.

BARUAH, S. 1998b. A general model for recurring real-time tasks. In Proceedings of the IEEE Real-Time Systems Symposium
(RTSS). 114–122.

BARUAH, S., HOWELL, R., AND ROSIER, L. 1990. Algorithms and complexity concerning the preemptive scheduling of
periodic, real-time tasks on one processor. Journal of Real-Time Systems 2, 301–324.

BORDOLOI, U. D. AND CHAKRABORTY, S. 2006. Interactive schedulability analysis. In RTAS ’06: Proceedings of the
12th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06). IEEE Computer Society,
Washington, DC, USA, 147–156.

29

Table IV. ETX-I vehicle control system signals

No. Description Type Update Interval Symbol From To
1 Traction Battery Voltage 8 100.0 TBV Battery V/C
2 Traction Battery Current 8 100.0 TBI Battery V/C
3 Traction Battery Temp, Average 8 1000.0 TBTA Battery V/C
4 Auxiliary Battery Voltage 8 100.0 ABV Battery V/C
5 Traction Battery Temp, Max. 8 1000.0 TBTM Battery V/C
6 Auxiliary Battery Current 8 100.0 ABI Battery V/C
7 Accelerator Position 8 5.0 APP Driver V/C
8 Brake Pressure, Master Cylinder 8 5.0 BPM Brakes V/C
9 Brake Pressure, Line 8 5.0 BPL Brakes V/C
10 Transaxle Lubrication Pressure 8 100.0 PLT Trans V/C
11 Transaction Clutch Line Pressure 8 5.0 PCT Trans V/C
12 Vehicle Speed 8 100.0 WHS Brakes V/C
13 Traction Battery Ground Fault 1 1000.0 TGF Battery V/C
14 Hi&Lo Contactor Open/Close 4 - Battery V/C
15 Key Switch Run 1 - KSR Driver V/C
16 Key Switch Start 1 - KSW Driver V/C
17 Accelerator Switch 2 - ASW Driver V/C
18 Brake Switch 1 - BSW Brakes V/C
19 Emergency Brake 1 - PBK Driver V/C
20 Shift Lever (PRNDL) 3 - Driver V/C
21 Motor/Trans Over Temperature 2 1000.0 TOTEMP Trans V/C
22 Speed Control 3 - SPC Driver V/C
23 12V Power Ack Vehicle Control 1 - VCA Battery V/C
24 12V Power Ack Inverter 1 - ICA Battery V/C
25 12V Power Ack I/M Contr. 1 - IMCA Battery V/C
26 Brake Mode (Parallel/Split) 1 - BMD Driver V/C
27 SOC Reset 1 - SOCR Driver V/C
28 Interlock 1 - INT Battery V/C
29 High Contactor Control 8 10.0 MHC V/C Battery
30 Low Contactor Control 8 10.0 MLC V/C Battery
31 Reverse and 2nd Gear Clutches 2 - PC1/2 V/C Trans
32 Clutch Pressure Control 8 5.0 PC1/2 V/C Battery
33 DC/DC Converter 1 1000.0 DDC V/C Battery
34 DC/DC Converter Current Control 8 - DIC V/C Battery
35 12V Power Relay 1 - APC/TPC V/C Battery
36 Traction Battery Ground Fault Test 2 1000.0 TGF V/C Brakes
37 Brake Solenoid 1 - BSL V/C Brakes
38 Backup Alarm 1 - BVA V/C Brakes
39 Warning Lights 7 - V/C Ins.
40 Key Switch 1 - KSW V/C I/M C
41 Main Contactor Close 1 - MCC I/M C V/C
42 Torque Command 8 5.0 TQC V/C I/M C
43 Torque Measured 8 5.0 TQM I/M C V/C
44 FWD/REV 1 - FRA V/C I/M C
45 FWD/REV Ack. 1 - FRA I/M C V/C
46 Idle 1 - IDL V/C I/M C
47 Inhibit 1 - SIN I/M C V/C
48 Shift in Progress 1 - SIP V/C I/M C
49 Processed Motor Speed 8 5.0 PMS I/M C V/C
50 Inverter Temperature Status 2 - ITS I/M C V/C
51 Shutdown 1 - SDN I/M C V/C
52 Status/Malfunction (TBD) 8 - SML I/M C V/C
53 Main Contactor Acknowledge 1 - MCA V/C I/M C

CHAKRABORTY, S., KUNZLI, S., AND THIELE, L. 2003. A general framework for analysing system properties in platform-
based embedded system designs. In DATE ’03: Proceedings of the conference on Design, Automation and Test in
Europe. IEEE Computer Society, Washington, DC, USA, 10190.

COMPANY, F. M. 1988. ETX-I final report, vol 1. Tech. rep., Ford.
DAVIS, R. I. AND BURNS, A. 2005. Hierarchical Fixed Priority Pre-Emptive Scheduling. In Proceedings of the 26th IEEE

International Real-Time Systems Symposium (RTSS). IEEE Computer Society, Washington, DC, USA, 389–398.

30

EASWARAN, A., ANAND, M., AND LEE, I. 3-6 Dec. 2007. Compositional Analysis Framework Using EDP Resource
Models. In Proceedings of the 28th IEEE Real-Time Systems Symposium (RTSS). 129–138.

FENG, X. A. AND MOK, A. K. 2002. A Model of Hierarchical Real-Time Virtual Resources. In Proceedings of the IEEE
Real-Time Systems Symposium (RTSS). IEEE Computer Society, Los Alamitos, CA, USA.

GHOSAL, A., SANGIOVANNI-VINCENTELLI, A., KIRSCH, C. M., HENZINGER, T. A., AND IERCAN, D. 2006. A Hierar-
chical Coordination Language for Interacting Real-time Tasks. In Proceedings of the 6th ACM & IEEE International
Conference on Embedded software. ACM Press, New York, NY, USA, 132–141.

IERCAN, D. 2005. Master’s thesis, Politehnica University of Timisoara.
KOPETZ, H. 1994. A Solution to an Automotive Control System Benchmark. Tech. Rep. Research report 4/1994, Institut fur

Technische Informatik, TU Wien.
LEHOCZKY, J., SHA, L., AND DING, Y. 1989. The rate monotonic scheduling algorithm: exact characterization and average

case behavior. In Proc. of IEEE Real-Time Systems Symposium. 166–171.
LIPARI, G. AND BINI, E. 2003. Resource Partitioning Among Real-time Applications. In Proceedings of the 15th Euromicro

Conference on Real-Time Systems (ECRTS). 151–158.
MATIC, S. AND HENZINGER, T. A. 2005. Trading End-to-End Latency for Composability. In Proceedings of the 26th IEEE

International Real-Time Systems Symposium (RTSS). IEEE Computer Society, Washington, DC, USA, 99–110.
MEYEROWITZ, T., PINELLO, C., AND SANGIOVANNI-VINCENTELLI, A. 2003. A Tool for Describing and Evaluating

Hierarchical Real-time Bus Scheduling Policies. In Proceedings of the 40th Conference on Design Automation (DAC).
ACM, New York, NY, USA, 312–317.

NATALE, M. D. AND MESCHI, A. 2001. Scheduling Messages with Earliest Deadline Techniques. Real-Time Systems
Journal 20, 3, 255–285.

SAE. 1993. Class C Application Requirement Considerations. Tech. Rep. Technical Report J2056/1, SAE.
SAE. 1994. SAE Handbook 1994 edition. Society of Automotive Engineers.
SAEWONG, S., RAJKUMAR, R., LEHOCZKY, J., AND KLEIN, M. 2002. Analysis of Hierarchical Fixed-priority Scheduling.

In Proc. of Euromicro Conference on Real-Time Systems.
SHIN, I. AND LEE, I. 2003. Periodic resource model for compositional real-time guarantees. In Proc. of IEEE Real-Time

Systems Symposium. 2–13.
SHIN, I. AND LEE, I. 2004. Compositional Real-time Scheduling Framework. In Proc. of IEEE Real-Time Systems Sympo-

sium.
THIELE, L., CHAKRABORTY, S., AND NAEDELE, M. 2000. Real-time calculus for scheduling hard real-time systems. In in

ISCAS. 101–104.
THIELE, L., WANDELER, E., AND STOIMENOV, N. 2006. Real-time interfaces for composing real-time systems. In Proc.

of 6th ACM International Conference on Embedded Software. 34–43.
TINDELL, K. AND BURNS, A. 1997. Guaranteed Message Latencies for Distributed Safety Critical Hard Real-Time Net-

works. Tech. Rep. YCS 94-229, Dept. Computer Science, Univ. of York, York, UK.

31

A. ALGORITHMS
A.1. Algorithm to Transform Anisochronous RTB into an Isochronous RTB
In the below algorithm, the nodes labeled u,uδ and umax denote the inserted nodes. To make the
presentation simple, in all the algorithms described in this paper, we assume that the creation of
nodes and edges also appropriately updates the sets V , VF , and E. In Lines 5-21 of Algorithm 2,
we insert nodes between vi and v0 in Ω such that the duration of the inserted run is P−Γ(ri). This
inserted run mimics the transition jitters of the old run ri (of duration P−Γ(ri)), but the demand of
each inserted node is the dbfΩ for an interval length equal to the jitter on outgoing transition. This
insertion ensures that any critical run in the old model also exists in the transformed model and has
at least the same demand. When Γ(ri) < P−Γ(ri), the introduced portion is longer than the old
run, and therefore, the remainder demand for P−2Γ(ri) is inserted in Line 18.

Algorithm 2 RTB-ISO-GEN(Ω,P)
Input: Ω = 〈V,v0,VF ,E,τ,ρ〉, Γ(r1)≤ . . .≤ Γ(rn)≤ P
Output: Isochronous model Ω

1: Compute dbfΩ(t),∀t ≤maxi{P−Γ(ri)}. Let dmax = 0.
2: Compute M = maxt<2Γ(rn)

dbfΩ(t)
t .

3: for i = 1 to n do
4: Let u1 = vi,eo = 〈vi,v0〉,u2 = v0, j = t = ρ(eo)
5: while (t ≤ P−Γ(ri))∧ (u1 6=⊥) do
6: Create node u s.t. τ(u) = (M ·ρ(eo), t)
7: dmax = max{dmax,τ(u).e}
8: Create transition e = 〈u,u2〉 s.t. ρ(e) = ρ(eo)

// If u1 6= v0, then PRED(u1) returns predecessor of u1, else it returns ⊥.
9: u2=u,eo=ρ(PRED(u1),u1),u1 = PRED(u1)

10: t = t +ρ(eo)
11: end while

// The following condition checks for Γ(ri)≥ P−Γ(ri)
12: if u1 6= v0 then
13: Create u, τ(u) = (M · (P−Γ(ri)− t),P−Γ(ri))
14: dmax = max{dmax,τ(u).e}
15: Create e = 〈u,u2〉 s.t. ρ(e) = P−Γ(ri)− t
16: jδ = 0
17: else
18: Create u, τ(u) = (M · (P−2Γ(ri)),Γ(ri))
19: Create e = 〈u,u2〉 s.t. ρ(e) = 0.
20: jδ = p−2Γ(ri).
21: end if
22: Let δ = maxt<Γ(ri){rbfri(t)−dbfri(t)}
23: Create uδ, τ(uδ) = (δ,P−Γ(ri))
24: Create e1 = 〈uδ,u〉, ρ(e1) = jδ,e2 = 〈vi,uδ〉, ρ(e2) = j
25: end for
26: Create umax, τ(u) = (dmax,P)
27: for vi ∈VF do
28: Create e = 〈vi,umax〉, ρ(e) = ρ(〈vi,v0〉)
29: end for
30: Create e = 〈umax,v0〉 with ρ(e) = 0, and let v0 = umax

As we make the RTB model isochronous by introducing new nodes, it is possible that some of
the older nodes will get shifted out of a critical interval in the dbf computation. In Line 23 of the
algorithm, we add a node that compensates for the demand of such displaced nodes. Finally, we
introduce a node umax at the beginning of the RTB, which has a demand equal to the maximum
demand over all inserted nodes (except uδ and the node inserted in Line 18). This is required to
handle the case where the critical interval does not end on an inserted node. Whenever P < 3Γ(r1),

32

all values of dbf and rbf required by the algorithm can be computed in O(|V |3) time [Baruah 1998a;
1998b], yielding an overall running time of O(|V |3 + |V |P). In addition, we observe that (1) the
number of nodes inserted by the algorithm is O(|VF ||V |) and (2) the reset frame separation property
is preserved.

A.2. Algorithm to Transform Anisochronous RTC into an Isochronous RTC Model
For anisochronous RTC models, a procedure similar to RTB-ISO-GEN can be defined to transform
them into isochronous RTC models. RTC-ISO-GEN differs from RTB-ISO-GEN in the following
aspects: (1) PRED in Line 9 of RTB-ISO-GEN takes a run and a node, and returns the predecessor
of the node in the run, (2) existing assignments and enabling conditions for transitions are pre-
served, and (3) the transition introduced to the new node has no variable assignments and is always
enabled. It is required that the Ψ model satisfies the reset frame separation property to ensure that
the schedulability analysis remains valid 4. Additionally, RTC-ISO-GEN only introduces O|V | new
nodes in the model because control variables can be used to merge common prefixes of final nodes
(e.g., merge nodes introduced in Line 6 of RTB-ISO-GEN).

A.3. Algorithm to Merge Critical Runs of a RTC Model
First, we describe a sub-procedure to merge the critical runs from underlying models, and we will
subsequently use this sub-procedure in the final abstraction procedure.

Merging Runs of RTC Models: Consider m runs r1, . . . ,rm of RTC models that are of the same
duration t. Procedure 3 (MERGE) describes a technique to merge these runs into a single run r
of duration t and demand ∆(r) = ∑

m
i=1 ∆(ri), i.e., it generates a run whose demand is equal to the

demand of all runs ri executing concurrently. In this procedure, we first insert all nodes in runs
r1, . . . ,rm into a min-priority queue ordered by the duration of the partial runs leading to the node.
Then, we extract each node v from this queue and insert it into a run r with an incident transition
e from the current node vc of r. We assume that lvc denotes a unique control variable associated
with node vc. The transition e has the following properties: (1) the enabling condition on e checks
whether the variable lvc is set to v, and (2) the minimum jitter of e is such that the duration up to node
v is preserved, i.e., if v belonged to run ri, then the duration of the partial run leading to v in ri will
be preserved in r. Furthermore, the assignment of the transition incident on vc is set to lvc = v. These
assignments and enabling conditions on transitions will be used in the abstraction we generate to
prevent spurious runs. The merging procedure is demonstrated in Figure 24, where we only show
the minimum jitter on transitions. In the figure, runs r1 = run(va,vc,9) and r2 = run(v1,v3,9) are
merged to give run r = run(va,v3,9).

The following lemma shows that this procedure preserves the demand of runs r1, . . . ,rm and is of
duration Γ(ri) for any i.

LEMMA A.1. ∆(r) = ∑
m
i=1 ∆(ri) and Γ(r) = Γ(ri).

PROOF. By definition, ∆(s) for any run s is equal to the total execution requirement of tasks
released by all the nodes in the run. Because Procedure 3 adds all nodes in each run ri to the run r,
the first result follows.

Consider any node v belonging to run ri. We show that the duration of the partial run leading to
node v in run r is the same as that in run ri. In Line 11 of the procedure, we set the jitter of the
transition to tv− tc, where tc is the duration of r leading to node vc. However, because vc precedes v
in run r, the duration of the partial run of r leading to v is tc +(tv− tc) = tv. This quantity is equal to
the duration of the partial run leading to v in ri. Because this statement holds for all nodes in r, we
get ∆(r) = ∆(ri).

4Without the reset frame separation, Proposition 1 would not hold.

33

Procedure 3 MERGE(r1, . . . ,rm)

Input: Runs r1, . . . ,rm s.t. ∀i, j : Γ(ri) = Γ(r j).
Output: Run r s.t. ∆(r) = ∑

m
i=1 ∆(ri) and Γ(r) = Γ(ri).

1: Create a min-priority queue Q← /0.
2: for i = 1 to m do
3: for each node v in ri do
4: INSERT(Q, tv) where tv = Γ(rv

i), rv
i being the partial run of ri leading to node v.

// We assume that node v is inserted into Q as satellite data.
// We also assume that in case of conflict, nodes of ri have higher priority than nodes of rj for
all i < j.

5: end for
6: end for
7: Let vc = EXTRACT-MIN(Q), ec = ε, tc = 0 denote the current node, transition into vc, and the current

duration, respectively, in run r.
8: Initialize r = run(vc,vc,0).
9: while Q 6= /0 do

10: (tv,v) = EXTRACT-MIN(Q)
11: Create e = 〈vc,v〉 s.t. ρ(e) = 〈tv− tc,{lvc ==v}, /0〉.

// We assume that lvc denotes a unique control variable associated with node vc.
12: if ec 6= ε then
13: (t ′,g′,a′) = ρ(ec).
14: ρ(ec) = 〈t ′,g′,{lvc = v}〉
15: end if
16: r = r·run(vc,v, tv− tc), ec = e.
17: vc = v, tc = tv.
18: end while

5

r :

r2 :

r1 : va

v1

va v1

v2

vb

v2

vc

v3

v3
0

vcvb
0

3 1 5

63

4

Fig. 24. Example for MERGE

34

