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Abstract

We consider the problem of conducting a survey with the goal of obtaining an unbiased esti-
mator of some population statistic when individuals have unknown costs (drawn from a known
prior) for participating in the survey. Individuals must be compensated for their participation
and are strategic agents, and so the payment scheme must incentivize truthful behavior. We
derive optimal truthful mechanisms for this problem for the two goals of minimizing the variance
of the estimator given a fixed budget, and minimizing the expected cost of the survey given a
fixed variance goal.

1 Introduction

Consider the idealized process of conducting a survey: individuals x can be randomly sampled
from some population X, and can be asked a question q for some q : X → {0, 1}. If the goal
is to estimate Ex∈X [q(x)], then the empirical average of q(x) gives us an unbiased estimator, and
indeed, only O(1/α2) samples are required to estimate this quantity to within accuracy ±α with
high probability.

However, as with many things in life, conditions are rarely ideal. Although it may be possible
to randomly sample individuals from a population, it is not always possible to convince them
to participate in a survey. Participation is not without cost, and individuals are self interested.
Therefore, although the population sampled for the survey may be random, the population that
actually responds to the survey is biased towards the subset of the population that has a low cost for
participating, which may significantly distort the results. This problem can be partially alleviated
by compensating individuals for their participation. But what is the right level of compensation?
For a variety of reasons, including varying time constraints and privacy concerns, the cost for
participating in a survey can vary substantially from individual to individual. Any fixed level of
compensation1 will therefore still result in a biased sample. We assume that either the agents will
not lie about the content of the survey, or that their responses are somehow otherwise verifiable.

On the other hand, costs for participation are known only to the individuals and not to the
surveyor, and so it is not possible to simply pay each sampled individual exactly their cost for
participation. They cannot simply be asked their cost, because as rational agents, they can mis-
report their true costs if it is financially beneficial for them to do so. The surveyors problem

∗Department of Computer and Information Sciences, University of Pennsylvania. Email: aaroth@cis.upenn.edu
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1Any fixed level of compensation below some population wide maximum on costs: but we want to avoid having to

pay each individual $1 million to respond to our surveys.
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therefore lies in the realm of mechanism design: he must determine a payment rule that properly
incentivizes individuals from the population to report their true cost for participation.

In this paper, we initiate the formal study of the surveyors problem from the perspective of
mechanism design. We consider the problem of computing an unbiased estimator of some statistic
Ex∈X [q(x)] when individuals from X have varying costs for participation drawn from a known prior
F . We derive optimal truthful mechanisms for minimizing the variance of the estimate given a fixed
budget on the expected cost of the survey, and for minimizing the expected cost of the survey given
a fixed constraint on the variance of the estimator. Our mechanism is simple, practical, and ex-post
dominant strategy truthful.

1.1 Our Results

Given a prior distribution on costs F , we show how to conduct an survey that optimally trades
off the expected variance2 of an unbiased estimator with the expected cost. We first prove a
characterization theorem that greatly simplifies our design space: we show that for any truthful
surveying mechanism, there exists another truthful surveying mechanism that merely makes take-it-
or-leave-it offers that constructs an identical estimator, and has the same expected cost. Therefore,
we may without loss of generality restrict our attention to take-it-or-leave-it survey mechanisms
when seeking to optimize any function of the survey’s estimator as it relates to the expected cost
of the survey.

Then, under an extremely mild regularity condition on the prior distribution on costs F , we
derive the form of a surveying mechanism which optimizes any continuous, convex, and monotone
function of the cost and variance of the mechanism. In particular, this allows us to derive the
surveying mechanism which achieves the minimum variance unbiased estimator of a population
statistic subject to a cost constraint, and similarly, the minimum cost mechanism subject to a
variance constraint.

Because we are optimizing over the class of take-it-or-leave-it mechanisms (to be defined), our
optimization problem reduces to finding the optimal distribution over offer prices. We note that
if this were an unconstrained optimization problem, it would end up being a relatively simple
exercise in the calculus of variations. However, because we must solve for a function which is a
valid probability distribution, we are facing a constrained optimization problem which results in a
number of technical complications.

1.2 Related Work

The problem of survey design has a long history, and is the topic of an entire field of inquiry in
statistics. The idea that survey results may be biased because different individuals may have differ-
ent proclivities for answering the survey as a function of their types (due to stigmatizing questions)
goes back at least to Warner [War65], who proposed a “randomized response” approach to lessen
the cost of answering a stigmatizing question. The statistical literature tends to approach the
problem by making distributional assumptions about the relationship between survey response and
data type, and attempts to avoid bias by compensating for these differences or imputing the values
of missing data. We do not attempt to survey this vast literature, but refer the interested reader
to useful texts on this topic [LL91, SMOG11]. In particular, our work differs from this literature in

2instead of optimizing the expected variance, we optimize for a closely related quantity that may differ by at most
1/n from the actual variance
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that we do not make any assumptions about the relationship between data value and response rate,
but instead take a mechanism-design approach and model survey respondents as rational agents
with private costs for participating in the survey, and insist on truthful survey mechanisms which
incentivize sufficient response rate to provide accurate statistical estimates, without assumptions on
how costs are related to types. Crucially, we are prepared to pay individuals for their participation,
and rely on their rational responses to guarantee the accuracy of our estimators.

The field of Bayesian optimal mechanism design originated with the groundbreaking work of
Myerson [Mye81], which (in certain settings) characterized the auction rule which maximizes seller
revenue, given a known prior on the distribution over buyer values. See, e.g., [Kri09] for a survey
of the literature that has followed. In this work, we take the methodology of Bayesian optimal
mechanism design and apply it to the problem of survey design. We assume a known prior over costs
for individuals participation, but assume that the correlation between costs and survey responses is
worst-case. We then design truthful survey mechanisms for calculating unbiased estimators while
minimizing various objective functions (i.e. minimizing the variance of the estimator given a cost
constraint, or minimizing the cost of the survey given a variance constraint, as well as more general
objectives).

Recently, the problem of designing truthful mechanisms to estimate statistics from a population
which explicitly experiences costs for privacy loss was introduced by Ghosh and Roth [GR11].
Subsequently (and concurrently with this work), Ligett and Roth [LR12] extend this work to
sequences of take-it-or-leave-it offers. Although it has similar goals, this line of work differs from
the current paper in that it measures cost using the formalism of differential privacy, and more
importantly, takes a worst-case view and does not assume a known prior over agent costs. In
contrast, here we use a prior over agent costs to derive optimal mechanisms. This paper can be
viewed as answering an open question posed by [GR11], which asked whether the approach of
Bayesian-optimal mechanism design could be brought to bear on the data gathering problem when
the distribution over agent costs was known.

2 Preliminaries

2.1 Model and Mechanism Design Basics

We consider a surveyor who is interested in some population statistic defined by a predicate on
individuals, q : X → {0, 1}. We model each individual xi ∈ X as having an unknown cost ci ≥ 0 for
participating in the survey (i.e. for revealing the bit q(xi)). Individuals and costs (xi, ci) are drawn
i.i.d. from a distribution D: (xi, ci) ∼ D, and the surveyor wishes to estimate E(xi,ci)∼D[q(xi)].
Note that ci and xi can be arbitrarily correlated. We denote by F the marginal distribution of D
on c. We write f for the probability density function for F , and write F for the cumulative density
function. We assume that f is piecewise differentiable except, possible, on a measure 0 set. The
surveying mechanism knows (and can be a function of) F , the marginal distribution on costs, but
has no other knowledge of D. We write n to denote the number of individuals sampled by the
surveying mechanism.

A survey mechanism consists of an allocation rule A : R+ → [0, 1] and a possibly randomized
payment rule P̂ : R

+ → R≥0. We define P : R
+ → R≥0 to be P (c) = E[P̂ (c)]. At time i,

the mechanism can sample an individual (xi, ci) ∼ D, elicit their reported cost ĉi, and then with
probability A(ĉi) collect the survey sample q(xi) in exchange for a payment P̂ (ĉi). With the
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remaining probability 1 − A(ĉi) the mechanism does not conduct the survey and does not make
any payment.

We model individuals as having quasi-linear utility functions and being expectation maximizers.
An individual with cost ci who reports cost ĉi to a surveying mechanism, experiences cost P (ĉi)−ci
when the survey is conducted, which occurs with probability A(ĉi). Therefore their expected utility
is:

u(ci, A(ĉi), P (ĉi)) = A(ĉi) · (P (ĉi)− ci)

Note that this only depends on P̂ via its expectation P . We want our surveying mechanisms to
be able to give accuracy guarantees even in the presence of rational, selfish agents who wish to
maximize their own utility. Therefore we require that our mechanisms be truthful and individually
rational.

Definition 2.1 (Truthfulness). A surveying mechanism (A, P̂ ) is truthful if for all ci, ĉi ∈ R
+:

u(ci, A(ci), P̂ (ci)) ≥ u(ci, A(ĉi), P̂ (ĉi))

Definition 2.2 (Individual Rationality). A surveying mechanism (A,P ) is individually rational if
for all ĉi resulting in the survey being conducted:

P (ĉi) ≥ ĉi

Informally, truthfulness states that a utility-maximizing agent can do no better than report-
ing his true cost faithfully to the surveying mechanism, and individual rationality states that no
individual can ever be forced to experience negative utility.

Truthfulness and individual rationality impose the constraints on our design space for truthful
surveys. We now define the objective that we wish to maximize within this space. When a
transaction is made with an individual i through the mechanism (which occurs with probability
A(ci)), he supplies his bit q(xi) ∈ {0, 1}. The mechanism compiles these bits into an estimator S
of the statistic E(x,c)∼D[q(x)]. We require that our mechanisms give unbiased estimates.

Definition 2.3 (unbiased estimator). An estimator S = S(D, A, n) of the statistic E(x,c)∼D[q(x)]
is unbiased if:

E[S(D, A, n)] = E(x,c)∼D[q(x)]

where the randomness of E[S(D, A, n)] is taken over the random choices of the sampled individuals
(xi, ci) ∼ D for i ∈ [n] and the internal randomness of the mechanism allocation rule A.

We wish to design mechanisms for constructing unbiased estimators of E(x,c)∼D[q(x)] while
minimizing variance.

Definition 2.4 (variance). The variance of a random variable S(D, A, n) is:

Var(S(D, A, n)) = E[(S(D, A, n)− E[S(D, A, n)])2]

Note that Var(S) depends on the unknown distribution D3, even though the mechanism knows
only the marginal distribution over costs, F . Therefore, our measure of performance will be worst
case variance over all distributions D consistent with the marginal distribution F :

3For example, most reasonable estimators S(D, A, n) will have Var(S) = 0 if D is such that Pr(x,c)∼D[q(x) = 1] = 0.
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Definition 2.5 (Worst case variance). The worst case variance of a random variable S(D, A, n)
given a marginal distribution on costs F is:

Var∗(S) = max
D

Var(S(D, A, n))

where the maximum is taken over all distributions D consistent with F .

When the distribution is not known, it is not always possible to design the minimum variance
unbiased estimator of a distribution parameter. Therefore, we will concentrate on linear estimators
in this paper.

Definition 2.6. An estimator S is linear if for each individual i from which the mechanism elicits
q(xi), there is a multiplier β(ci) such that:

S =
∑

β(ci)q(xi)

We will want to measure the expected cost of running a truthful survey. The mechanism
only needs to make a payment P (ci) when a transaction with agent i occurs, which happens with
probability A(ci). Therefore we can derive the expected cost of a truthful mechanism with prior
F . The following claim is immediate:

Claim 2.1. The expected cost of surveying n individuals with a truthful mechanism (A,P ) is:

E[cost(A,P, n)] = n ·
∫ ∞

0
A(c) · P (c) · f(c) dc

For intuition’s sake, we here give an example of a non-trivial truthful lottery mechanism:

Example 2.1. For values ci ∈ [1,∞], consider a lottery mechanism with A(x) = 1/x2 and P (x) =
2x. Note that we always have P (x) ≥ x and so the mechanism is individually rational. Observe
that it is also truthful. For any individual i, we have:

ui(ci, A(ĉi), P (ĉi)) =
1

ĉ2i
(2ĉi − ci) =

2

ĉi
− ci

ĉ2i

taking the derivative with respect to ĉi, we can see that this quantity is always maximized when
ĉi = ci, which is the condition needed for truthfulness.

2.2 Calculus of Variations Basics

In this paper we will seek to minimize the cost and variance of our mechanisms, which are functionals
of our chosen allocation rule A and pricing rule P . Functional minimization problems are addressed
by the Calculus of Variations. Here we give an informal introduction to the required (very basic)
preliminaries. This can be found, for example, in [Lib12].

Let U be a space of functions over which we would like to optimize. Let M : U → R. The first
variation (which is corresponds to the Gateaux derivative) of M at G ∈ U in the direction Ĝ is
simply

δM|G(Ĝ) = lim
ǫ→0

[

M((G+ ǫĜ)−M(G)

ǫ

]
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A direction is feasible if G + ǫĜ ∈ U for sufficiently small ǫ. We only deal with convex U . In
this case every feasible direction of a derivative at G can be written as Ĝ−G for some Ĝ ∈ U .

For a convex U , we say that G is a minimizer (or local minimum) of M if for every feasible
direction Ĝ we have that δM|G(Ĝ) ≥ 0.

For a convex U , we call δ2M|G : U → R the second variation of M at G if

M(G+ ǫĜ) = M(G) + ǫδM|G(Ĝ) + ǫ2δ2M|G(Ĝ) + o(ǫ2)

for all feasible directions Ĝ ∈ U and all ǫ > 0
M is convex if δ2M|G ≥ 0 for all G ∈ U . M is strictly convex if δ2M|G > 0 for all G ∈ U . If M

and U are convex than any minimizer is also a global minimum. If M is strictly convex and U is
convex than any minimizer is also a unique global minimum.

We will use Lagrange Multipliers. If we are trying to minimize M : U × R → R subject to
the constraint H : U × R → R, then by properties of Lagrange Multipliers we must have that any
direction that decreases M is in the tangent space of the constraints. Thus it is sufficient to show
∂G[M(G∗, n)+ λH(G∗, n)] ≥ 0, ∂λ[M(G∗, n)+ λH(G∗, n)] = 0, and ∂n[M(G∗, n) + λH(G∗, n)] = 0
for some λ ∈ R.

3 Simplifying the Design Space

In this section, we show that without loss of generality, we can restrict our attention to a simple
class of mechanisms.

Definition 3.1. A take-it-or-leave-it (TIOLI) lottery mechanism is defined by a distribution G
over R

+ with probability density function g and cumulative density function G. Given a price x
from an agent, A(x) and P (x) are then computed as follows:

1. Sample pi ∼ G.

2. Set A(x) = 0 if x > pi and A(x) = 1 if x ≤ pi.

3. Set P̂ (x) = 0 if x > pi and P̂ (x) = pi if x ≤ pi.

Thus A and P̂ are completely determined by G. Namely A(c) = 1 − G(c); and P̂ (c) is the
distribution G conditioned on being greater than c.

We first observe that a TIOLI lottery mechanism is truthful and individually rational.

Theorem 3.1. Any take-it-or-leave-it lottery mechanism is truthful and individually rational.

Proof. It is immediate that TIOLI mechanisms are individually rational, since whenever A(ci) = 1
we have ci ≤ pi and so: P (ci) = pi ≥ ci. To see that the mechanism is truthful, observe that for each
fixed pi, if ci ≤ pi then individual i gets utility pi−ci for every reported valuation ĉi ≥ pi and utility
0 for every reported valuation ĉi < pi. If ci ≤ pi then pi − ci ≥ 0 and the so the utility of reporting
ĉi = ci is non-negative and is not changed by over-reporting ĉi > ci (and under-reporting can only
reduce the payoff to 0). If ci > pi then pi − ci < 0, which cannot be improved by under-reporting
ĉi < ci (and over-reporting can only result in negative utility).

We now show that without loss of generality, we may restrict our attention to TIOLI lottery
mechanisms: that is, every lottery mechanism (A,P ) is implementable as a TIOLI lottery mecha-
nism with the same allocation rule and the same expected payment.
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Lemma 3.2. If (A,P ) is a truthful lottery mechanism, then A(x) must be monotonically decreasing
in x.

Proof. Let x1, x2 ∈ R
+. We will show that if A(x2) > A(x1) then x1 > x2. By the truthfulness of

the mechanism (A,P ) we have that for all c:

ui(c,A(x), P (x)) = A(x)(P (x) − c) = A(x)P (x) −A(x)c

is maximized at x = c. In particular, considering c = x1 and c = x2 we have the following pair of
inequalities:

A(x1)P (x1)−A(x1)x1 ≥ A(x2)P (x2)−A(x2)x1

A(x2)P (x2)−A(x2)x2 ≥ A(x1)P (x1)−A(x1)x2

Adding these two inequalities, we find:

x1(A(x2)−A(x1)) + x2(A(x1)−A(x2)) ≥ 0

Note that by assumption, (A(x2)−A(x1)) > 0. Therefore, dividing both sides by (A(x2)−A(x1))
we have:

x1 − x2 ≥ 0

which completes the proof.

Theorem 3.3. Every truthful differentiable allocation rule A : R+ → [0, 1] is implementable as
a take-it-or-leave-it lottery mechanism with the same allocation rule A(x) and the same expected
payment E[A(x)P (x)].

Proof. Fix an allocation rule A∗ and a corresponding payment rule P ∗ so that (A∗, P ∗) is a truthful
lottery mechanism. Define a TIOLI lottery mechanism with allocation and payment rules denoted
A,P respectively, by defining the distribution over offers G to be the distribution with probability
density function g(x) = − d

dx
A∗(x). Note that by lemma 3.2 we have g(x) ≥ 0 for all x, and

∫∞
0 g(x) = A∗(0) ≤ 1, and so g is a valid probability density function. Now consider the probability
that this TIOLI mechanism transacts with an individual i with cost ci: this occurs exactly when
the sampled offer pi is such that pi ≥ ci, which occurs with probability:

A(ci) =

∫ ∞

ci

g(x)dx = −
∫ ∞

ci

d

dx
A∗(x) = A∗(ci)

Thus the given TIOLI lottery mechanism implements exactly the allocation rule A. It remains to
show that the expected payment of both mechanisms are the same: E[A(x)P (x)] = A∗(x)P ∗(x) for
all x.

E[A(x)P (x)] = E[P (x)|pi ≥ x] · Pr[pi ≥ x]

=

(

∫∞
x

t · g(t)dt
A(x)

)

·A(x)

=

∫ ∞

x

t · g(t)dt

Now consider the utility of agent i reporting value x to mechanism (A∗, P ∗):

u(ci, A
∗(x), P ∗(x)) = A∗(x) (P ∗(x)− ci) = A∗(x)P ∗(x)− ciA

∗(x))
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By the truthfulness of this mechanism, for every value of ci, this expression is maximized by setting
x = ci. Write the function A∗P ∗(x) = A∗(x)P ∗(x). Taking the derivative of the above expression
and setting it to zero, we have simultaneously for all values c:

d

dc
(A∗P ∗(c)) = c · d

dc
(A∗(c))

Integrating both sides of the above equality from x to ∞ we have:

−A∗(x)P ∗(x) =

∫ ∞

x

d

dc
(A∗P ∗(c))dc

=

∫ ∞

x

c · d

dc
(A∗(c))dc

= −
∫ ∞

x

c · g(c)dc

In other words, for all x:

A∗(x)P ∗(x) =
∫ ∞

x

c · g(c)dc = E[A(x)P (x)]

Remark 3.1. The requirement that the allocation rule is differentiable is for technical convenience,
and can be relaxed to a more mild piecewise differentiable condition.

We have just seen that with respect to allocation and payment rules, we can restrict our attention
without loss of generality to TIOLI mechanisms. What about unbiased estimators? In our setting,
as it happens, the celebrated Horvitz-Thompson estimator is the unique unbiased linear estimator,
and therefore the linear unbiased estimator of minimum variance, independent of the distribution
D.

Definition 3.2 (Horvitz-Thompson Estimator). For an allocation ruleA(x), the Horvitz-Thompson
estimator computes:

SHT (D, A, n) =
1

n

n
∑

i=1

di

where:

di =

{

q(xi)
A(ci)

, If the mechanism transacts with individual i;

0, Otherwise.

Theorem 3.4 ([HT52]). For every distribution D and every allocation rule A, SHT (D, A, n) is the
minimum variance linear unbiased estimator of E[q(xi)].

Moreover, the Horvitz-Thompson estimator is admissible among the set of all unbiased esti-
mators of E(x,c)∼D[q(x)] [GJ65] (even non-linear estimators). This means that the estimator is
un-dominated : there is no other estimator that has lower variance than SHT with respect to every
distribution D.

Therefore, for the rest of the paper, we restrict our attention to TIOLI mechanisms that use
the Horvitz-Thompson estimator.
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3.1 Price and Variance of TIOLI mechanisms that use the Horvitz-Thompson

estimator

In this section we derive the cost and variance of the TIOLI mechanisms that use the Horvitz-
Thompson estimator.

Recall that for a TIOLI mechanism with price distribution G, we have:

E[Cost(A(G), P (G), n)] = n ·
∫ ∞

0
A(c) · P (c) · f(c)dc

= n ·
∫ ∞

0
f(c) ·

(
∫ ∞

c

x · g(x)dx
)

dc

= n ·
∫ ∞

0
c · g(c) · F (c)dc

We can compute (up to additive error 1/n) the worst case variance of a TIOLI mechanism
characterized by distribution G:

Lemma 3.5. The worst-case variance of a Horvitz-Thompson TIOLI mechanism parameterized
with distribution G used on a marginal value distribution F for n iterations is:

1

n

∫ ∞

1

f(x)

1−G(x)
dx− 1

n
≤ Var∗(A(G),F , n) ≤ 1

n

∫ ∞

1

f(x)

1−G(x)
dx

Proof. Recall that given an allocation rule A, the Horvitz-Thompson estimator is defined as:

SHT (D, A, n) =
1

n

n
∑

i=1

di where di =

{

q(xi)
A(ci)

, If the mechanism transacts with individual i;

0, Otherwise.

We will analyze Var(d1) and then observe that Var( 1
n

∑n
i=1 di) = 1

n
Var(d1) since each di is

independent and identically distributed. First note that Var(d1) = E[d21] − (E[d1])
2. We observe

that 0 ≤ E[d1]
2 ≤ 1 and that:

E[d21] =

∫ ∞

0

(

f(v) ·A(v) · Pr[q(x) = 1|c = v] ·
(

1

A(v)

)2
)

dv

≤
∫ ∞

0

(

f(v) ·A(v) ·
(

1

A(v)

)2
)

dv

=

∫ ∞

0

f(v)

A(v)
dv

=

∫ ∞

0

f(v)

1−G(v)
dv

with equality holding for the distribution that sets q(x) = 1 independent of the valuation c. Hence,
we have:

∫ ∞

0

f(v)

1−G(v)
dv − 1 ≤ Var∗(d1) ≤

∫ ∞

0

f(v)

1−G(v)
dv

as claimed.
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Let V∗(A(G),F , n) =
∫∞
0

f(v)
1−G(v)dv. Instead of optimizing for the worst-case expected variance

Var∗(A(G),F , n) we will optimize for V∗(A(G),F , n), since V∗(A(G),F , n) is a very good approxi-
mation and will be much more convenient. Additionally, we note that if we change the estimator
slightly to be

S̃HT (D, A, n) =
1

n

n
∑

i=1

di where di =

{

(−1)q(xi)

A(ci)
, If the mechanism transacts with individual i;

0, Otherwise.

Then this is an unbiased estimator of 1−2E[q(xi)] with expected variance exactly V ∗(A(G),F , n).
For a TIOLI mechanism Cost(A(G), P (G), n) and V ∗(A(G),F , n) can we written in terms of F ,

G and n, and no longer need to be stated in terms of D, A, or P . Thus we will, in the future,
denote them by Cost(F ,G, n) and V ∗(F ,G, n), and will often put fixed terms in the subscripts (e.g.
CostF ,n(G)).

Claim 3.6. Let F , G, and Ĝ have piecewise twice differentiable CDFs, then

δCostF ,n|Ĝ−G(Ĝ − G) =
∫ ∞

0
(ĝ(y)− g(y))yF (y)dy

Proof. Calculations show

lim
ǫ→0

[

Cost(F , (1− ǫ)G + ǫĜ, n)− Cost(F ,G, n)
ǫ

]

= n

∫ ∞

0
(ĝ(y)− g(y))[yF (y)]dy

Claim 3.7. Let F , G, and Ĝ have piecewise twice differentiable CDFs, the

δV ∗
F ,n|G(Ĝ) =

∫ ∞

0
(ĝ(y)− g(y))

∫ x

0

f(y)

(
∫∞
y

g(z)dz)2
dydx

Proof. Calculations show

lim
ǫ→0

[

V ar(F , (1 − ǫ)G + ǫĜ, n)− V ar(F ,G, n)
ǫ

]

=
1

n

∫ ∞

0

f(x)
∫∞
x

ĝ(y)− g(y)dy

(
∫∞
x

g(z)dz)2
dx

=
1

n

∫ ∞

0
(ĝ(y)− g(y))

∫ y

0

f(x)

(
∫∞
x

g(z)dz)2
dxdy

This last step we switch the integrals, which we can do because f and g are piecewise continuous.
The claim follows.

4 Deriving Optimal Mechanisms

In this section, we derive optimal TIOLI mechanisms that use the Horvitz-Thompson estimator.
Recall that such mechanisms are defined by a distribution G over prices p ∈ [0,∞) with CDF G
and pdf g. In the previous section, we derived formulas for the cost, Cost(F ,G, n), and worst-case
expected variance, V ∗(F ,G, n) with error at most ±1/n.
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We now derive optimal mechanisms for minimizing the variance subject to a cost constraint,
and minimizing cost subject to a constraint on the variance, where F is a distribution that satisfies
a certain regularity condition. In the case where the number of participants is fixed, we can extend
this to design optimal mechanisms for any possible convex minimization objective function.

We will assume that F is twice differentiable for all positive x, that n is fixed We remark that
this assumption can be further relaxed so that f is piecewise twice differentiable.

We optimize over the class of distributions with piece-wise twice differentiable CDF. Also,
without loss of generality, we require that G has no support less than every point in the support
of F except possibly a point mass at zero. This is clearly without loss of generality as any such
offer will never be accepted. We do this so that we can (often) claim the uniqueness of optimal
solutions.

We first define what the optimal will be. To this end we first define

G̃F ,α(x) = 1−
√

α
f(x)

F (x) + xf(x)

g̃(x)F ,α =
√
α

2f(x)2 − F (y)f ′(y)

(yf(y) + F (y))
3
2 f(y)

1
2

=
d

dx
[G̃F ,α(x)]

As above, if G is a CDF, we will denote the corresponding density function by g.
For the correct setting of α, G̃F ,α will be a (possibly infeasable) CDF of the local minimum.

G̃F ,α may be decreasing or negative and thus infeasible as a cumulative density function. We first
construct a monotone version of G̃F ,α, then we make it positive.

Next we define {Īk}. Because F is twice differentiable everywhere, 2f(x)2 ≥ f ′(x)F (x) except
on a countable number of intervals where 2f(x)2 < f ′(x)F (x). Let these intervals be {(ik, jk)}.

For each (ik, jk) define

Kk(x) =

∫ jk

x

f(y)

(
∫∞
y

g̃(z)dz)2
− f(y)

(
∫∞
j̄k

g̃(z)dz)2
dy

ǐk = supx≤ikKk(x) ≤ 0.

to get the new interval (̌ik, jk). Discard any intervals that are subsets of other intervals, and relabel
the remaining intervals as Ī1 = [̄i1, j̄1), Ī2 = [̄i2, j̄2), . . . where 0 ≤ ī1 < j̄1 ≤ ī2̄ < j̄2̄ ≤ . . .. Let
Ī = ∪Īk.

Let

ǦF ,α(x) =

{

G̃F ,α(x) x 6∈ Ī

G̃F ,α(j̄k) x ∈ Īk

x̄F ,α = max{0, inf
x

∫ ∞

x

g̃F ,α(x) ≤ 1}

Ḡ(x)F ,α = max{ǦF ,α(x), 0}

Claim 4.1. Ḡ(x)F ,α is a valid CDF: i.e. for x ∈ [0,∞], Ḡ(x)F ,α is non-decreasing, 0 ≤ Ḡ(x)F ,α,
and limx→∞ Ḡ(x)F ,α = 1.
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Proof. g̃F ,α(x) =
√
α
n

2f(x)2−F (x)f ′(x)

(xf(x)+F (x))
3
2 f(x)

1
2
, which is non-negative whenever 2f(x)2 ≥ F (x)f ′(x) be-

cause F (x), f(x), x, n ≥ 0. Thus, ǦF ,α(x) is non-decreasing for x 6∈ Ī because we have ǦF ,α(x) =
G̃F ,α(x) and 2f(x)2 ≥ F (x)f ′(x). Also, for x ∈ Ī we have that ǧF ,α(x) = 0. This leaves only
īk and j̄k to check. By inspection ǦF ,α is non-decreasing at j̄k for all k (it is continuous and all
surrounding derivatives are non-negative). At any īk we have that ǦF ,α(̄ik) = G̃F ,α(j̄k), but that
at all points to the left ǦF ,α(̄ik − ǫ) = G̃F ,α(̄ik − ǫ), which limits to G̃F ,α(̄ik) so we must show that
G̃F ,α(̄ik) ≤ G̃F ,α(j̄k). However, this follows from the construction of Ik because Kk (̄ik) = 0, but
Kk (̄ik + ǫ) > 0. Thus the derivative of Kk at īk which is −f (̄ik)[(

∫∞
īk

g̃(z)dz)−2 − (
∫∞
j̄k

g̃(z)dz)−2] =

−f (̄ik)[(1 − G̃(̄ik))
−2 − (1− G̃(j̄k))

−2] is non-negative, and so G̃F ,α(̄ik) ≤ G̃F ,α(j̄k).
Because Ǧ is non-decreasing, by construction Ḡ is also. Also, by construction 0 ≤ G(0). Because
f(x)

F (x)+xf(x) ≤
1
x
, for sufficiently large x we have

1−
√

α

x
≤ 1−

√

α
f(x)

F + xf(x)
= Ḡ(x) ≤ 1

and so Ḡ(x) goes to 1 as x increases.

Remark 4.1. We remark that Cost(F , ḠF ,α, n) and V∗(F , ḠF ,α, n) are continuous in α and are
monotonically increasing and monotonically decreasing in α, respectively.

Theorem 4.2. Let F be twice differentiable for all positive x, and let n be fixed. The unique
minimizer of V ∗

F ,n(G) subject to an expected cost constraint CostF ,n(G) ≤ B, is of the form ḠF ,α(x)
where α is unique. Also, the unique minimizer of CostF ,n(G)(G) subject to a worst-case expected
variance constraint V ∗

F ,n(G) ≤ B, is of the form ḠF ,α(x) where α is unique.

Theorem 4.3. Let Φ(x1, x2) be continuous, convex, and monotone in both of its inputs; let F be
twice differentiable for all positive x, and let n be fixed. The unique minimizer of Φ(Cost(F ,G, n), V ∗(F ,G, n))
is of the form ḠF ,α(x) where α is unique. Moreover, this is also guaranteed to be the global mini-
mum.

In this last theorem, the number of participants in the survey is no longer fixed, and we allow a
cost to be associated with recruiting each participant independently of whether or not they accept.

Theorem 4.4. Let F be twice differentiable for all positive x, and suppose there is a cost β ≥ 0 for
recruiting each participant (i.e. independently of whether or not they accept the offer). If β > 0,
then the unique minimizer of V ∗

F (G,n) subject to an expected cost constraint CostF (G, n) ≤ B, is
of the form ḠF ,α(x) where α is unique. If β = 0, then there is a collection of minimizers of the
form ḠF ,α(x) where α ∝ 1/n.

Also, if β > 0, the unique minimizer of CostF ,n(G) subject to a worst-case expected variance
constraint V ∗

F ,n(G) ≤ B, is of the form ḠF ,α(x) where α is unique. If β = 0, then there is a

collection of minimizers of the form ḠF ,α(x) where
√
α ∝ 1/n.

Remark 4.2. The requirement that F be twice differentiable everywhere is for technical conve-
nience. Our theorems can be generalized to the case where the PDF F is piece-wise twice differ-
entiable by first approximating F with everywhere twice differentiable PDFs and then taking the
limit.
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We prove these theorems after developing the necessary machinery.
Let

MF ,n,λ(G) = n

∫ ∞

0
xF (x)g(x)dx +

λ

n

∫ ∞

0

f(x)

1−G(x)
dx (1)

HF ,G,n,λ(x) = nxF (x) +
λ

n

∫ x

0

f(y)

(1−G(y))2
dy (2)

(3)

For notational convenience, we will often omit the subscripts when their meaning is clear from
the context (e.g. MF ,n,λ(G) and H(x)F ,n,λ(G) become as M(G) and H(x), respectively).

M(G) will be a function that we would like to minimize, δM|G(Ĝ−G) is the derivative at Ĝ−G

in the direction Ĝ − Ḡ, which we will want to show is always ≥ 0 at some local minimum. H(x)
will turn out to be the derivative of M(G), a sort of point-wise version of δM|G(Ĝ).

Claim 4.5.

δMF ,n,λ|G(Ĝ−G) =

∫ ∞

0
(ĝ(x)− g(x))H(x)dx

Proof. This follows immediately from Claim 3.6 and Claim 3.7.

Claim 4.6. MF ,n,λ(G) is strictly convex.

Proof. By Claim 4.5 the first derivative of M|G is H(x) = nxF (x) + λ
n

∫ x

0
f(x)

(1−G(x))2
. Taking the

second derivatives we get 2λ
n

∫ x

0
f(y)

(1−G(y))3
dy, which is positive as long as we are above some point in

the support of F (because by Claim 4.1 we know that G is between 0 and 1). By our assumption,
the only point less than every element in the support of F that we consider is 0. Thus, the derivative
at G in direction Ĝ:

∫ ∞

0
((ĝ(x)− g(x))

2λ

n

∫ x

0

f(y)

(1−G(y))3
dydx

is positive unless G and the direction are the same except for at the point 0. However, this is never
the case if the direction is non-trivial. And thus this is always strictly positive.

Lemma 4.7. For all Ĝ, δMF ,n,λ|Ḡ
F, λ

n2

(Ĝ − Ḡ) ≥ 0. Moreover, ḠF , λ

n2
is the unique CDF G for

which this holds.

Proof. By Claim 4.5 we see that we must show that for all Ĝ,
∫∞
0 (ĝ(x)− ḡ(x))H(x)dx ≥ 0. Both

ĝ and ḡ are distribution density functions, so they integrate to one and their difference integrates
to 0. Necessarily off the support of G we have ĝ(x) ≥ ḡ(x) = 0 . Thus it is enough to show that
H(x) is constant on some region that contains the support of G and that outside this region it is
always greater than inside the region.

We show that

1. H is constant over the intervals [x̄, ī1], [j̄k, īk+1] for 1 ≤ i < m, and [j̄m,∞);

2. For every Īk, H (̄ik) = H(j̄k) and for every x ∈ Īk, H(x) ≥ H[jk]; and
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3. For x ∈ [0, x̄], H(x) ≥ H(x̄).

These three steps suffice to show that for all Ĝ, δMF ,n,λ|Ḡ
F, λ

n2

(Ĝ− ḠF , λ

n2
) ≥ 0.

Let x ∈ [j̄k, īk+1] for 1 ≤ i < m then

H(x)−H(j̄k) = nxF (x)− nj̄kF (j̄k) +
λ

n

∫ x

j̄k

f(y)

(1− ḠF , λ

n2
(y))2

dy (4)

= nxF (x)− nj̄kF (j̄k) +
λ

n

∫ x

j̄k

f(y)

(1− G̃F , λ

n2
(y))2

dy (5)

= 0 (6)

The last line follows because G̃F , λ

n2
(x) = 1−

√

λ
n2

f(x)
F (x)+xf(x) so

λ

n

∫ x

j̃k

f(y)

(1− G̃F , λ

n2
(y))2

dy =
λ

n

(

n2

λ
yf(x) + F (y)

)x

j̃k

= nxF (x)− nj̄kF (j̄k).

At the single point īk+1, it might not be that ḠF , λ

n2
(y) = G̃F , λ

n2
(y), but because this is a single

point, and f(x) is differentiable, this will not affect the calculation.
The same argument works for x ∈ [x̄, ī1], and x ∈ [j̄m,∞)
To show 2) observe that:

H(j̄k)−H(x) = nj̄kF (j̄k)− nxF (x) +
λ

n

∫ j̄k

x

f(y)

(1− Ḡ(y))2
dy (7)

= nj̄kF (j̄k)− nxF (x) +
λ

n

∫ j̄k

x

f(y)

(
∫∞
y

g̃(z)dz)2
dy +

λ

n

(

∫ j̄k

x

f(y)

(1− Ḡ(y))2
− f(y)

(
∫∞
y

g̃(z)dz)2
dy

)

(8)

=
λ

n

∫ j̄k

x

f(y)

(1− Ḡ(y))2
− f(y)

(
∫∞
y

g̃(z)dz)2
dy (9)

However, by the definition of Īk, for īk ≤ x ≤ j̄k this is less that or equal to 0 with equality
when x = īk.

Finally, we show that for x ∈ [0, x̄], H(x) ≤ H(x̄). As in the previous setup we see that:

H(x̄)−H(x) =
λ

n

∫ j̄k

x

f(y)

(1− Ḡ(y))2
− f(y)

(
∫∞
y

g̃(z)dz)2
dy (10)

But this is negative because for x < x̄ we have that
∫∞
x

g̃(z)dz ≥ 1, but Ḡ(y) = 0.
The uniqueness follows directly from the fact that we found a local minimum and by Claim 4.6

the function is strictly convex over our space which is also convex.
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of Theorem 4.2. : Let F be twice differentiable for all positive x, and let n be fixed. We minimize
V ∗(G) subject to a expected cost constraint B. From Lagrange Multipliers (see section 2.2) we
have

L[G,λ] = V∗
F ,n(G) + λ (CostF ,n(G)−B)

=
1

n

∫ ∞

0

∫ x

0

f(y)

1−G(y)
dydx+ λn

(
∫ ∞

0
(xF (x)g(x)dx −B)

)

Thus we have that:

∂L[G,λ]

∂G
= δMF ,n, 1

λ
(G) ≥ 0 (11)

∂L[G,λ]

∂λ
= n

∫∞
0 xF (x)g(x)dx −B = 0 (12)

where M is define in Equation 1. By Equation 12 we see that
∫∞
0 nxF (x)ḡF ,n, 1

λ
(x)dx = B/n

and by Remark 4.1 this uniquely determines λ. From Lemma 4.7 we see that Equation 11 implies
that G = ḠF , 1

λn2
.

The proof is analogous when we are minimizing the cost with a bound on the variance.

of Theorem 4.3. :

δΦ|G(Ĝ−G) =
∂Φ

∂x1 |Cost(G)
δCost(Ĝ−G) +

∂Φ

∂x1 |V ∗(G)
δV ∗

G(Ĝ−G) = δMF,n,λ|G(Ĝ−G)

where n = ∂Φ
∂x1 |Cost(G)

and λ = ∂Φ
∂x1 |V ∗(G)

n. So for any fixed ḠF ,α to be optimal we must have

δMF,n,λ|G(Ĝ− ḠF ,α) ≥ 0 for all Ĝ. However, by Lemma 4.7 we see that if this is the case, then G
must be of the form ḠF ,α(x) for some

α =
λ

n2
=

∂Φ
∂x2 |V ∗(ḠF,α)

∂Φ
∂x1 |Cost(ḠF,α)

.

The RHS, α, is strictly monotonically increasing in α and goes from 0 to infinity as α does,
where as the LHS is monotonically decreasing with respect to α (because V ∗(ḠF ,α) decreases with α
and Cost∗(ḠF ,α) increases with α, and Φ is convex), and is always positive because Φ is monotone.
Because all the functions are continuous, there exists a unique solution for α. Because Φ, Cost and
V ∗ are all convex the composition is, and thus this is a global maximum.

Now we generalize the results to the setting where the number participants is not fixed a priori,
but there may be some cost β associated with each additional person recruited.

of Theorem 4.4. :
Thus the cost of the mechanism becomes

Cost(F ,G, n, β) = n

(

β +

∫ ∞

0
xF (x)g(x)dx

)

and the variance remains the same. We will deal with the setting where we would like to minimize
the variance subject to some cost constraint. This give us the following problem:
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Minimize
1

n

∫ ∞

0

f(x)

1−G(x)

Subject to: n

(

β +

∫ ∞

0
c · g(c) · F (c)dc

)

= B

Using a Lagrange multiplier, we arrive at the equation:

L[G,λ] = V∗
F ,n(G) + λ (CostF ,n(G) −B)

=
1

n

∫ ∞

0

f(x)

1−G(x)
dx+ λ

(

n

(

β +

∫ ∞

0
(xF (x)g(x)dx) −B

))

Thus we have that:

∂L[G,n, λ]

∂G
= δMF ,n, 1

λ
(G) ≥ 0 (13)

∂L[G,n, λ]

∂n
= −1

n2

∫∞
0

f(x)
1−G(x)dx+ λ

(

β +
∫∞
0 xF (x)g(x)dx

)

= 0 (14)

∂L[G,n, λ]

∂λ
= n

(

β +
∫∞
0 xF (x)g(x)dx

)

−B = 0 (15)

where M is define in Equation 1.
From Lemma 4.7 we see that Equation 13 implies that G = ḠF , 1

λn2
. If we let α = 1

λn2 , then

Equation 14 then implies that

√
α(V∗

F ,1(ḠF ,α)) =
1√
α
(CostF ,1(ḠF ,α) + β). (16)

However,

√
α(V∗

F ,1(ḠF ,α)) =
√
α

[
∫ ∞

0

f(x)
∫∞
x

ǧF ,α(y)dy
dx+

(
∫ x̄F,α

0

f(x)
∫∞
x

ḡF ,α(y)dy
− f(x)
∫∞
x

ǧF ,α(y)dy
dx

)]

=

∫ ∞

0

f(x)
∫∞
x

ǧF ,1(y)dy
dx+

√
α

(
∫ x̄F,α

0

f(x)
∫∞
x

ḡF ,α(y)dy
− f(x)
∫∞
x

ǧF ,α(y)dy
dx

)

And this increases in α because, by the definition of x̄F ,α, the integrand in the second term is
positive. Similarly,

1√
α
(Cost∗F ,1(ḠF ,α) + β) =

1√
α

[
∫ ∞

0
xF (x)ǧF ,α(x)dx−

(
∫ x̄F,α

0
xF (x)ǧF ,α(x)dx

)

+ β

]

=

∫ ∞

0
xF (x)ǧF ,1(x)dx−

∫ x̄F,α

0
xF (x)ǧF ,1(x) +

β√
α
dx

And this decreases to 0 as α increases. Moreover, if β > 0 then the RHS monotonically decreases
from +∞ to 0, and so there exists a unique α that satisfies Equation 16. Having derived a value
for α, Equation 15 uniquely determines n.
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In the other case, β = 0, and we can solve with different values of n, as in Theorem 4.2, and
directly compare the values of the objective function. As we have seen, the optimal G is of the
form ḠF ,α where α = λ

n2 . From Equation 12 (or Equation 14) and using a derivation similar to
that above, we see that

√
λ = B/

(
∫ ∞

0
xF (x)ǧF ,1(x)dx−

∫ x̄F,α

0
xF (x)ǧF ,1(x) +

β√
α
dx

)

,

and the objective function becomes

1

n

∫ ∞

0

f(x)

1− ḠF ,α(x)
dx =

√
λ

(
∫ ∞

0

f(x)
∫∞
x

ǧF ,1(y)dy
dx+

√
α

(
∫ x̄F,α

0

f(x)
∫∞
x

ḡF ,α(y)dy
− f(x)
∫∞
x

ǧF ,α(y)dy
dx

))

= B

∫∞
0

f(x)∫∞
x

ǧF,1(y)dy
dx+

√
α
(

∫ x̄F,α

0
f(x)∫∞

x
ḡF,α(y)dy

− f(x)∫∞
x

ǧF,α(y)dy
dx
)

∫∞
0 xF (x)ǧF ,1(x)dx−

∫ x̄F,α

0 xF (x)ǧF ,1(x) +
β√
α
dx

This is minimized if x̄0 = 0 because the extra term in the numerator is positive and the extra
term in the denominator is negative. In the degenerate case where x̄F ,α is always greater than 0, a
solution may not exist. This happens if and only if there is mass on F arbitrarily close to 0. The
reason for this is that the surveyor will want an unbounded number of samples close to 0, because
no matter how many samples he has, their price to variance trade off is cheap because their price
is arbitrarily small. Otherwise, after n is above some threshold α will be sufficiently small so that
x̄0 = 0. At this point, the objective function will remain the same regardless of n, and there exists
a inverse relationship between

√
α and n because λ is fixed and α = λ

n2 .

5 Discussion and Open Problems

In this paper, we have initiated the study of truthful, Bayesian-optimal survey design for generating
unbiased estimators of a population statistic. Of course, there are many interesting directions left
open for future work. For example:

1. In this paper, we have focused on mechanisms which promise unbiased estimators, and have
focused on optimizing properties of these mechanisms (i.e. variance, cost, etc.). However,
if the surveyor is in the end interested in accuracy, he may be willing to compute a biased
estimator if doing so can significantly reduce variance without increasing cost (error, in the
end, is a function both of the bias of the estimator, and of its variance). What do optimal
mechanisms look like in the regime of minimizing error, when we cannot necessarily restrict
our attention to the Horvitz-Thompson estimator?

2. We have assumed a known prior over costs, but have otherwise made worst-case assumptions
on what the distributions on surveyed types looks like. Is it possible to do substantially
better in some cases if we make further (natural) assumptions on the distribution from which
player types are drawn? One natural assumption might be that E[q(x)|c(x)] is monotonically
increasing in c(x). For example, we would expect this to be the case if q(x) = 1 represents
some stigmatized property, and so such individuals might have higher cost for participating
in such a survey.
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3. What if costs are indeed drawn from some prior distribution, but this distribution is un-
known to the mechanism. Can a mechanism which must now learn this distribution over
costs compete with the optimal mechanisms derived here, with prior knowledge over the true
distribution?
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