
Recursive Computation of Regions and Connectivity in Networks

Mengmeng Liu, Nicholas E. Taylor, Wenchao Zhou, Zachary G. Ives, Boon Thau Loo

Computer and Information Science Department, University of Pennsylvania
Philadelphia, PA, U.S.A.

{mengmeng, netaylor, wenchaoz, zives, boonloo}@cis.upenn.edu

October 31, 2008

Abstract
In recent years, data management has begun to consider situations in which data access is closely tied to network

routing and distributed acquisition: sensor networks, in which reachability and contiguous regions are of interest;
declarative networking, in which shortest paths and reachability are key; distributed and peer-to-peer stream systems,
in which we may monitor for associations among data at the distributed sources (e.g., transitive relationships). In each
case, the fundamental operation is to maintain a view over dynamic network state; the view is frequently distributed,
recursive and may contain aggregation, e.g., describing transitive connectivity, shortest paths, least costly paths, or
region membership.

Surprisingly, solutions to this problem are often domain-specific, expensive to compute, and incomplete. In
this paper, we recast the problem as one of incremental recursive view maintenance in the presence of distributed
streams of updates to tuples: new stream data becomes insert operations and tuple expirations become deletions. We
develop a set of techniques that maintain information about tuple derivability — a compact form of data provenance.
We complement this with techniques to reduce communication: aggregate selections to prune irrelevant aggregation
tuples, provenance-aware operators that can determine when tuples are no longer derivable and remove them from
their state, and shipping operators that greatly reduce the tuple and provenance information being propagated while
still maintaining correct answers. We validate our work in a distributed setting with sensor and network router queries,
showing significant gains in bandwidth consumption without sacrificing performance.

1 Introduction
As data management has broadened its scope to take on increasingly distributed applications, we are increasingly
seeing a blurring of the line between a network and a query processor. In a plethora of emerging applications, data
originates at a variety of nodes and is being frequently updated: routing tables in a peer-to-peer overlay network [3]
or in a declarative networking system [11, 22]; sensors embedded in an environment [13, 23]; monitors within various
clusters at geographically distributed hosting sites [25, 18]; data producers in large-scale distributed scientific data
integration [14]. In many of these situations, it is natural to express distributed data acquisition, integration, and
processing using declarative queries — and in some cases to compute and incrementally maintain the results of these
queries, e.g., in the form of a routing table, an activity log, or a status display.

The queries that are of interest in this domain are frequently quite different from the OLAP or OLTP queries
that exemplify centralized DBMS query processing: they involve finding and continuously monitoring (1) contiguous
regions with similar readings; (2) connectivity, reachability, or transitive associations; or (3) aggregates over the afore-
mentioned regions or paths (e.g., smallest, shortest, cheapest). These three classes of queries have many overlapping
characteristics.
Declarative networking. In declarative networking [22, 21], an extended variant of datalog has been used to manage
the state in routing tables — and thus to control how network messages are forwarded through the network. Perhaps
the central task in this work is to compute paths available through multi-hop connectivity, based on information in
neighboring routers’ tables. It has been shown that recursive path queries, used to determine reachability and cost, can
express conventional and new network protocols in a declarative way.
Sensor networks. Declarative, database-style query systems have also been shown to be effective in the sensor
realm [13, 23]. However, a variety of macroprogramming languages [29, 30] have been proposed as alternatives.

1

Macroprogramming languages have supported features like region and path computations, whereas database languages
have been largely limited to aggregation. In the long run, we argue that the declarative query approach has data
independence and optimization benefits. As sensors become increasingly powerful, it makes sense to develop more
advanced query runtimes, and the primitive operators that can be used to support declarative queries over regions and
paths.

Section 2 provides a number of detailed use cases and declarative queries for regions and paths in these two
domains. The use cases are heavily reliant on recursive computations, which must be performed over distributed data
that is being frequently updated in “stream” fashion (e.g., sensor state and router links are dynamic). The majority
of past work on recursive queries [4, 5] has focused on recursion in the context of centralized deductive databases,
and some aspects of that work have ultimately been incorporated into the SQL-99 standard and today’s commercial
databases. However, recursion is relatively uncommon in traditional database applications, and hence little work has
been done to extend this work to a distributed setting. We argue that the advent of declarative querying over networks
has made recursion of fundamental interest: it is at the core of the main query abstractions we need in a network,
namely regions, reachability, shortest paths, and transitive associations.

To this point, only specializations of recursive queries have been studied in networks: in the sensor domain, algo-
rithms have been proposed for computing regions and neighborhoods [19, 29, 30], but these are limited to situations
in which data comes from physically contiguous devices, and computation is relatively simple. In the declarative net-
working domain, a semantics has been defined [22] that closely matches router behavior, but it is not formalized, and
hence the solution does not generalize. Furthermore, little consideration has been given to the problem of incremental
recomputation of results in response to data arrival, expiration, and deletion.

In this paper, we show how to compute and incrementally maintain recursive views over data streams, in support of
networked applications. In contrast to previous maintenance strategies for recursive views [17], our approach empha-
sizes minimizing the propagation of state — both across the network (which is vital to reduce bandwidth consumption)
and inside the query plan (which reduces computational cost). Our methods generalize to sensors, declarative network-
ing, and data stream processing. We make the following contributions:

• We develop a novel, compact absorption provenance, which enables us to directly detect when view tuples are
no longer derivable and should be removed.

• We develop a new MinShip operator that reduces the number of times that tuples annotated with provenance
need to be propagated across the network and in the query.

• We develop a scheme for extending aggregate selection to streams of insertions and deletions, in order to reduce
the propagation of tuples that do not contribute to the answer.

• We evaluate our schemes within a distributed query processor, and experimentally validate their performance in
real distributed settings, with realistic Internet topologies and simualted sensor data.

Section 2 presents use cases for declarative recursive views. In Section 3.2 we discuss the distributed query
processing settings we address. Sections 4 through 6 discuss our main contributions: absorption provenance, the
MinShip operator, and our extended version of aggregate selection. We present experimental validation in Section 7,
describe related work in Section 8, and wrap up and discuss future work in Section 9.

2 Distributed Recursive View Use Cases
We motivate our work with several examples that frame network monitoring functionalities as distributed recursive
views. This is not intended to be an exhaustive coverage of the possibilities of our techniques, but rather an illustration
of the ease with which distributed recursive queries can be used.

Throughout the paper, we assume a model in which logical relations describe state horizontally partitioned across
many nodes, as in declarative networking [21]. In our examples, we shall assume the existence of a relation link(src, dst),
which represents all router link state in the network. Such state is partitioned according to some key attribute; unless
otherwise specified, we adopt the convention that a relation is partitioned based on the value of its first attribute (src),
which may (depending on the setting) directly specify an IP address at which the data is located, or a logical address
like a DNS name or a key in a content-addressable network [3].

2

Network Reachability. The textbook example of a recursive query is graph transitive closure, which can be used
to compute network reachability. Assume the query processor at node X has access to X’s routing table. Let a tuple
link(X,Y) denote the presence of a link between node X and its neighbor Y. Then the following query computes all
pairs of nodes that can reach each other.

Query 1 Reachability:

reachable(x,y) :- link(x,y).
reachable(x,y) :- link(x,z), reachable(z,y).

with recursive reachable(src,dst) as
(select src, dst

from link
union

select link.src, reachable.dst
from link, reachable
where link.dst = reachable.src)

Datalog provides a concise representation of recursive queries, and has been used in recent work on declarative
networks and sensor networks [11, 22]. However, it is by no means the only way to express recursive queries. SQL-99
has support for linear recursion, which comprises a bulk of network queries of interest. In our paper, we present our
examples in both Datalog and SQL1. The techniques of this paper are agnostic as to the query language.

The SQL query (view) above takes base data from the link table, then recursively joins link with its current
contents to generate a transitive closure of links. Note that since all tables are originally partitioned based on the src
attribute, computing the view requires a distributed join that sends link tuples to nodes based on their dst attributes,
who join with reachable.src.

There are many potential enhancements to this query, e.g., to compute reachable pairs within a radius, or to find
cycles.
Network Shortest Path. We next consider how to compute the shortest path between each pair of nodes:

Query 2 Shortest Path:

path(x,y,p,c,l) :- link(x,y,c), p=concat([x,y],nil), l=1.
path(x,y,p,c,l) :- link(x,z,c0), path(z,y,p1,c1,l1), c=c0+c1, p=concat([x],p1), l=1+l1.
minCost(x,y,min<c>) :- path(x,y,p,c,l).
minHops(x,y,min<l>) :- path(x,y,p,c,l).
cheapestPath(x,y,p,c) :- path(x,y,p,c,l), minCost(x,y,c).
fewestHops(x,y,p,l) :- path(x,y,p,c,l), minHops(x,y,l).
shortestCheapestPath(x,y,p1,c,p2,l) :- cheapestPath(x,y,p1,c), fewestHops(x,y,p2,l).

with recursive path(src,dst,vec,cost,length) as
((select src, dst, src | ’.’ | dst, cost, 1

from link
) union (
select L.src, P.dst, L.src |’.’| P.vec, L.cost+P.cost, P.length+1
from link L, path P
where L.dst = P.src

))

create view minCost(src,dst,cost) as
(select src, dst, min(cost) from path
group by src, dst)

create view minHops(src,dst,length) as
(select src, dst, min(length) from path
group by src, dst)

create view cheapestPath(src,dst,vec,cost) as
(select P.src, P.dst, P.vec, P.cost
from path P, minCost C
where P.src = C.src and P.dst = C.dst and P.cost = C.cost)

1We assume SQL UNIONs with set semantics, and that a query executes until it reaches fixpoint. Not all SQL implementations support these
features.

3

create view fewestHops(src,dst,vec,length) as
(select P.src, P.dst, P.vec, P.length
from path P, minHops H
where P.src = H.src and P.dst = H.dst and P.length = H.length)

create view shortestCheapestPath(src,dst,vec1,cost,vec2,length) as
(select P.src, P.dst, P.vec, P.cost, H.vec, H.length
from cheapestPath P, fewestHops H
where P.src = H.src and P.dst = H.dst)

This represents the composition of serveral views. The path recursive view is similar to the previous reachable
query, with additional computation of the path cost, path length, as well as the path itself. The expression p =
concat([x], p1) is satisfied if p is the path produced by appending link x to the existing path p1.

Here minCost computes an aggregate over path that considers the path costs, cheapestPath determines the paths
with minimum cost. Similarly, minHops and fewestHops determine the length of the fewest hop path, and the set of
paths with that length respectively. Finally shortestCheapestPath combines the results from the cheapestPath with
fewestHops.

As it stands, this query is inefficient since path enumerates all possible paths, and may not terminate. However,
query optimization techniques such as aggregate selections [28] exist to improve performance by automated rewriting
of the query. We will revisit this optimization with modifications for the distributed setting.
Sensing Contiguous Regions. In addition to querying the graph topology itself, distributed recursive queries can be
used to detect regions of neighboring nodes that have correlated activity. One example is a horizon query, where a
node computes a property of nodes within a bounded number of hops of itself. A second example as shown below
starts with a series of reference nodes, and computes contiguous regions of triggered sensors near these nodes. Then
it is able to find the largest region which contains the most sensors in it.

Query 3 Largest Region:

activeRegion(rid,x) :- sensor(x,posx), mainSensorInRegion(rid,x), isTriggered(x).
activeRegion(rid,y) :- sensor(x,posx), sensor(y,posy), isTriggered(x),

activeRegion(rid,x), distance(posx,posy) < k.
regionSizes(rid, count<x>) :- activeRegion(rid, x).
largestRegion(max<size>) :- regionSizes(rid, size).
largestRegions(rid) :- regionSizes(rid,size), largestRegion(size).

with recursive activeRegion(regionid,sensorid) as
(select M.regionid, S.sensorid

from sensor S, mainSensorInRegion M, isTriggered T
where M.sensorid = S.sensorid and S.sensorid = T.sensorid
union
select A.regionid, S2.sensorid
from sensor S1, sensor S2, activeRegion A, isTriggered T
where distance(S1.coord, S2.coord) < k

and S1.sensorid = A.sensorid and S1.sensorid = T.sensorid)

create view regionSizes(regionid,size) as
(select regionid, count(sensorid)
from activeRegion
group by regionid)

create view largestRegion(size) as
(select max(size) from regionSizes)

create view largestRegions(regionid) as
(select R.regionid
from regionSizes R, largestRegion L
where R.size = L.size)

Other Example Queries. The routing resilience query counts the number of paths (alternate routes) between any
two nodes. Another class of queries examines multicast or aggregation trees constructed within the network. A query
could compute the height of each subtree and store this height at the subtree root. Alternatively, we might query for
the imbalance in the tree – the difference in height between the lowest and highest leaf node. Finally, a query could
identify all the nodes at each level of the tree (referred to as the “same generation” query in the datalog literature).

4

Distributed query
computation nodes

VIEWS:

Reachability

Shortest path

Contiguous
region

Figure 1: Basic partially distributed architecture: query processing nodes are placed in a number of sub-networks.
Each collects state information about its sub-network, and the nodes share state to compute distributed recursive views
such as shortest paths across the network.

3 Execution Model and Approach
We consider techniques applicable to a broad variety of networked environments, and we make few assumptions about
our execution environment. We assume that our networked query processor executes across a number of distributed
nodes in a network; in addition, we allow for the possibility that there exist other legacy nodes that may not run
the query processor (as indicated in Figure 1). In this flexible architecture, the query processing nodes will serve as
proxy nodes storing state information (connectivity, sensor status, etc) about devices on their sub-networks: IP routers,
overlay nodes, sensors, devices, etc.

Individual sub-networks may have a variety of types of link-layers (wired IP, wireless IP with a single base station,
multi-hop wireless/mesh, or tree-structured sensor networks). They may even represent different autonomous systems
on the Internet backbone, or different locations within a multi-site organization. Through polling, notifications, or
snooping, our distributed query processing nodes can acquire detailed information about these sub-networks. The
query processing nodes each maintain a horizontal partition of one or more views about the overall network state:
cross-sub-network shortest paths, regions that may span physically neighboring sub-networks (e.g., a fire in a multi-
story building), etc. During operation, the nodes may exchange state with one another, either (1) to partition state
across the nodes according to keys or ranges, or (2) to perform computation of joins or recursive queries.

Importantly, in a volatile environment such as a network, both sensed state and connectivity will frequently change.
Hence a major task will be to maintain the state of the views, as base data (sensor readings, individual links) are added
or deleted, as distributed state ages beyond a time-to-live and gets expired, and as the effects of deletions or expirations
get propagated to derived data.

3.1 Query Execution Model
Query execution is a distributed, continuous stream computation, over a set of horizontally partitioned base relations
that are updated constantly. We assume that all communication among nodes is carried out using a reliable in-order
delivery mechanism. We also assume that our goal is to compute and update set relations, not bag relations: we stop
computing recursive results when we reach a fixpoint.

In our model, inputs to a query are streams of deletions or insertions over the base data. Hence, we process more
general update streams rather than tuple streams. Sliding windows, commonly used in stream processing, can be used
to process soft-state [26] data, where the time-based window size essentially specifies the useful lifetime of base tuples.
Thus, a base tuple that results from an insertion may receive an associated timeout, after which the tuple gets deleted.
When this happens, the derived tuples that depend on the base tuples have to be deleted as well. Due to the needs of
network state management, we consider timeouts or windows to be specified over base data only, not derived tuples.

5

reachable(src,dst)
(derivation step 1)

tuple at→ to pv
(A,B) A p1

(B,C) B p2

(C,A) C p3

(C,B) C p4

(A,C) B→ A p1 ∧ p2

(B,A) C→ B p2 ∧ p3

(B,B) C→ B p2 ∧ p4

(C,B) A→ C p1 ∧ p3

(C,C) B→ C p2 ∧ p4

reachable(src,dst)
(derivation step 3)

tuple at→ to pv
(A,A) A p1 ∧ p2 ∧ p3

(A,B) A p1

(A,C) A p1 ∧ p2

(B,A) B p2 ∧ p3

(B,B) B (p2 ∧ p4) ∨ (p1 ∧ p2 ∧ p3)
(B,C) B p2

(C,A) C p3

(C,B) C p4 ∨ (p1 ∧ p3)
(C,C) C (p2 ∧ p4) ∨ (p1 ∧ p2 ∧ p3)
∗(A,B) B→ A p1 ∧ p2 ∧ p3

∗(B,C) C→ B p1 ∧ p2 ∧ p3

(C,A) A→ C p1 ∧ p2 ∧ p3

∗(C,B) A→ C p1 ∧ p2 ∧ p4

reachable(src,dst)
(derivation step 2)

tuple at→ to pv
(A,B) A p1

(A,C) A p1 ∧ p2

(B,A) B p2 ∧ p3

(B,B) B p2 ∧ p4

(B,C) B p2

(C,A) C p3

(C,B) C p4 ∨ (p1 ∧ p3)
(C,C) C p2 ∧ p4

(A,A) B→ A p1 ∧ p2 ∧ p3

(A,B) B→ A p1 ∧ p2 ∧ p4

∗(B,B) C→ B p1 ∧ p2 ∧ p3

(B,C) C→ B p2 ∧ p4

(C,A) B→ C p2 ∧ p3 ∧ p4

(C,B) B→ C p2 ∧ p4

(C,C) A→ C p1 ∧ p2 ∧ p3

reachable(src,dst)
(derivation step 4)

tuple at→ to pv
(A,A) A p1 ∧ p2 ∧ p3

(A,B) A p1

(A,C) A p1 ∧ p2

(B,A) B p2 ∧ p3

(B,B) B (p2 ∧ p4) ∨ (p1 ∧ p2 ∧ p3)
(B,C) B p2

(C,A) C p3

(C,B) C p4 ∨ (p1 ∧ p3)
(C,C) C (p2 ∧ p4) ∨ (p1 ∧ p2 ∧ p3)

Figure 2: Recursive derivation of reachable in recursive steps (bold indicates new deriva-
tions). The “at” column shows where the data is produced. The “to” column shows where
it is shipped after production (if omitted, the derivation remains at the same node. The “pv”
column contains the absorption provenance of each tuple (Section 4). A tuple marked “*” is
an extra derivation only shipped in the absorption provenance model.

A B

C

Figure 3: Network
represented in link
relation

3.2 Motivation for New Distributed Recursive Techniques
To illustrate the need for our approach, we consider an example. Assume our goal is to maintain, at every node, the
set of all nodes reachable from this node. Refer to Figure 2, which shows a network consisting of three nodes and four
links (visualized in Figure 3). Each node “knows” its direct neighbors: we represent these in the link table, consisting
of four entries link(A, B), link(B, C), link(C, A), and link(C, B). As in our previous examples, the link table is
partitioned such that all values with source src are stored on node src. In our simple example, there is a one-to-one
mapping between attributes and physical storage, although one can decouple each location from its physical attribute
by using logical addresses (e.g., doing a hash-based partitioning).

Now we define a materialized view reachable(src, dst) that is again partitioned such that all values with source
src are stored on node src. This query computes the transitive closure over the link table, and is the query shown in
the Network Reachability example of Section 2. Unlike in traditional recursive query execution (e.g., for datalog),
here computing the transitive closure requires a good deal of communications traffic: link data must be shipped to
the node corresponding to its dst attribute in order to join with reachable tuples2; and the output of this join may
need to be shipped to a new location depending on what its src is. Figure 2 steps through the execution of reachable,
showing state after each computation step in semi-naı̈ve evaluation (equivalent to steps in stratified execution), as well
as communication (the “at → to” columns). (We defer discussion of the column marked pv.) Given the input link
tuples, the result of executing this query is the set of reachable tuples stored at the src node: essentially at fixpoint,
all nodes compute their reachability set. In this case, since we have a fully-connected network, the final resulting
reachable table at every node trivially contains the set of all nodes in the network.
Computing the View Instance. The base-case contents of reachable are computed directly from link, as specified

2Or vice-versa, depending on the query plan.

6

to dst

on link.dst=reachable.src

reachable(src,dst)

reachable(src,dst)

link(src,dst)

reachable(src,dst)

reachable(link.src,reachable.dst) @link.dst

reachable(src,dst)

to link.src

Figure 4: Plan for reachable query. Underlined attributes are the ones upon which data is partitioned.

in the first “branch” of the view definition (Section 2). The recursive query block joins all link tuples with those
currently in reachable. Since the tables are distributed by their first attribute, all link tuples must first be shipped to
nodes corresponding to their dst attribute, where they are joined with reachable tuples with matching srcs. Finally,
the resulting reachable tuples must be shipped to the nodes corresponding to their src attributes. For instance, in step
1, reachable(C, B) is computed by joining link(C, A) and reachable(A, B) as computed from step 0. That requires
first shipping link(C, A) to node A, performing the join with reachable(A, B) to generate reachable(C, B), and
sending the resulting tuple to node C. In our figure, we indicate the communication for the resulting reachable table
in the third column as A→ C.

Since we are following set-semantics execution, duplicate removal will eliminate tuples with identical values; but
this only occurs after they are created and sent to the appropriate node. For instance, consider reachable(C, C), which
is first computed in step 1 and sent to node C. During step 2, node A re-derives this same tuple; however, it must send
this result to node C before the duplication can be detected, and the tuple eliminated. In total, 16 tuples (4 initial link
tuples, and 12 reachable tuples) are shipped during the recursive computation. In the final step, a fixpoint is reached
when no new tuples are derived.
Incremental Deletion (Standard Approach). Now consider the case when link(C, B) expires (hence is deleted).
Commonly used schemes such as counting tuple derivations — used in maintaining non-recursive views — cannot be
used here. Instead, one must rely on a standard algorithm for recursive view maintenance, in particular DRed [17].
DRed works by first over-deleting tuples conservatively and then re-deriving tuples that may have alternative deriva-
tions. Figure 5 shows the DRed deletion phase (steps 0-4), followed by the rederivation phase (steps 5-8). In the
deletion phase, we first delete reachable(C, B) based on the initial deletion of link(C, B). This in turns leads to
the deletion of all reachable tuples with src = C (step 1), then those with src = B (step 2) and src = A (step 3).
The reachable table is empty in step 4. DRed will ultimately re-derive every reachable tuple, as shown in steps 5-8.
Overall, DRed requires shipping a total of 16 tuples, equivalent to computing the entire reachable view from scratch,
despite having just a single deletion.

In the above example, DRed is prohibitively expensive — and we have not even considered the requirement that
DRed waits until all deletions have been processed before it can rederive. (This requires distributed synchronization,
which may be expensive.) Perhaps surprisingly, our example illustrates the common case: most networks are well-
connected with bi-directional connectivity along several redundant paths. DRed will over-delete such paths, and then
re-derive data. In our example, deleting a single link resulted in the deletions of all reachable tuples; yet, it is clear that
nodes A, B, and C are still connected after the link is deleted. One source of deletions is tuple expirations; given the
fact that large-scale network tends to be highly dynamic, tuples will need to expire frequently, thus triggering frequent

7

reachable(src,dst)
(step 0)

tuple at
(A,A) A
(A,B) A
(A,C) A
(B,A) B
(B,B) B
(B,C) B
(C,A) C
(C,B) C
−(C,B) C
(C,C) C

reachable(src,dst)
(step 1)

tuple at→ to
(A,A) A
(A,B) A
(A,C) A
(B,A) B
(B,B) B
(B,C) B
(C,A) C
(C,C) C
−(C,A) B→ C
−(C,B) B→ C
−(C,C) B→ C

reachable(src,dst)
(step 5)

tuple at→ to
(A,B) A
(B,C) B
(C,A) C

reachable(src,dst)
(step 2)

tuple at→ to
(A,A) A
(A,B) A
(A,C) A
(B,A) B
(B,B) B
(B,C) B
−(B,A) C→ B
−(B,B) C→ B
−(B,C) C→ B

reachable(src,dst)
(step 6)

tuple at→ to
(A,B) A
(B,C) B
(C,A) C
(A,C) B→ A
(B,A) C→ B
(C,B) A→ C

reachable(src,dst)
(step 3)

tuple at→ to
(A,A) A
(A,B) A
(A,C) A
−(A,A) B→ A
−(A,B) B→ A
−(A,C) B→ A

reachable(src,dst)
(step 7)

tuple at→ to
(A,B) A
(A,C) A
(B,A) B
(B,C) B
(C,A) C
(C,B) C
(A,A) B→ A
(B,B) C→ B
(C,C) A→ C

reachable(src,dst)
(step 4)

tuple at→ to

reachable(src,dst)
(step 8)

tuple at→ to
(A,A) A
(A,B) A
(A,C) A
(B,A) B
(B,B) B
(B,C) B
(C,A) C
(C,B) C
(C,C) C
(A,B) B→ A
(B,C) C→ B
(C,A) A→ C

Figure 5: DRed algorithm: over-delete and re-derive steps after deletion of link(C,B).

recomputation and exacerbating the overhead.

3.3 Our Approach
The major challenge with distributed incremental view maintenance lies in handling deletions of tuples. In general,
we must either buffer base tuples, then recompute the majority of the query (as in our example); or we must maintain
state at intermediate nodes, which enables them to propagate the appropriate updates when a base tuple is removed.
We adopt the latter approach, developing a scheme that:

• Maintains a concise form of data provenance — bookkeeping about the derivations and derivability of tuples —
such that the existence of a view tuple can be directly determined when a base tuple is removed. (Section 4.)

• Propagates as little provenance or tuple derivation information from one node to another as possible, in order to
minimize network and computation costs, but preserves sufficient state to support deletions. (Section 5.)

• Distributes aggregate computations, such that only minimal state is propagated by the aggregate operations, but
enough state is preserved to support deletions. (Section 6.)

To help frame the discussion in the next three sections, consider an execution plan for the reachable query, shown
in Figure 4. This plan is disseminated to all nodes, from which it continuously generates and updates partitions of the
reachability relation. The left DistributedScan represents the table scan required for the base case, which fetches the
contents of link and sends them to the Fixpoint operator. In the recursive case, the Fixpoint invokes the right subtree
of the query plan: it sends its current contents to a FixPointReceiver, where they are joined via a PipelinedHashJoin
with a copy of link — whose contents have been re-partitioned and shipped to the nodes corresponding to the dst
attribute. The output is shipped to the fixpoint via the MinShip operator, which in the simplest case simply ships data.

4 Provenance for Efficient Deletions
In order to support view maintenance when a base tuple is deleted, we must be able to test whether a derived tuple

is still derivable. Rather than delete and re-compute (as with DRed), we instead propose to keep around metadata
about derivations, i.e., provenance [8], also called lineage [12].
Provenance alternatives. Different proposed forms of provenance capture different amounts of information. Lineage
in [12] encodes the set of tuples from which a view tuple was derived — but this is not sufficiently expressive to
distinguish what happens if a base tuple is removed. Alternatives include why-provenance [8], which encodes the

8

Algorithm 1 Fixpoint operator
Fixpoint(B∆, R∆)
Inputs: Input base stream B∆, recursive stream R∆

Output: Output stream U ′∆

1: Init hash map P : U(x̄)→ provenance expressions over U(x̄)
2: if there is a aggregate selection option then
3: Get the grouping key uk, number of aggregate functions n and aggregate functions agg1, · · · , aggn
4: B′∆ := AggSel(B∆, uk, n, agg1, · · · , aggn)
5: B∆ := B′∆

6: R′∆ := AggSel(R∆, uk, n, agg1, · · · , aggn)
7: R∆ := R′∆

8: end if
9: while not EndOfStream(B∆) and not EndOfStream(R∆) do

10: Read an update u from B∆ or R∆

11: if u.type = INS then
12: if P does not contain u.tuple then
13: P [u.tuple] := u.pv
14: Add u.tuple to the view
15: Output u to the next operator
16: else
17: oldPv := P [u.tuple]
18: P [u.tuple] = P [u.tuple] ∨ u.pv
19: deltaPv := P [u.tuple] ∧ ¬oldPv
20: if oldPv 6= P [u.tuple] then
21: u′.tuple := u.tuple
22: u′.type := INS
23: u′.pv := deltaPv
24: Output u′ to the next operator
25: end if
26: end if
27: else if u is from B∆ then
28: for each t in P do
29: oldPv := P [t]
30: P [t] = restrict(oldPv,¬u.pv)
31: if P [t] = false then
32: Remove t from P
33: Remove t from the view
34: end if
35: end for
36: end if
37: end while

set of sets of source tuples that produced the answer; and the general provenance representation of [14, 15], which
we term relative provenance here. In physical form, the latter encodes a derivation graph capturing which tuples are
created as an immediate consequent of others. The graph can be traversed after a deletion to determine whether a tuple
is still derivable from base data [14]. Either of these latter two forms of provenance will allow us to detect whether a
view tuple remains derivable after a deletion of a base tuple. However, to our knowledge, why-provenance is always
created “on demand” and has no stored representation; and relative provenance encodes all derivations, which we later
show can be expensive in a distributed setting.

Moreover, we note that the tuple derivability problem has several properties for which we can optimize. In par-
ticular, base (EDB) tuples may each participate in many different derivations — yet the deletion of that base tuple
“invalidates” all of these derivations. View maintenance requires testing each view tuple for derivability once base
tuples have been removed — which can be determined by testing all of view tuples’ derivations for their dependencies
on the deleted base tuples.
Our compact representation. We define a simplified provenance model, absorption provenance, which starts with
the following intuition. We annotate every tuple in a view with a Boolean expression: the tuple is in the view iff
the expression evaluates to true. Let the provenance annotation of a tuple t be denoted P(t). For base relations, we
set P(t) to a variable whose value is true when the tuple is inserted, and reset to false when the tuple gets deleted.
The relational algebra operators return provenance annotations on their results according to the laws of Figure 6 (this
matches the Boolean specialization of provenance described in the theoretical paper [15]).

Our key innovation with respect to provenance is to develop a physical representation in which we can exploit

9

σθ(R): If tuple t in R satisfies θ, annotate t with P(t)
R1 1 R2: For each tuple t1 in R1 and tuple t2 in R2, annotate the

output tuple t1 1 t2 with P(t1) ∧P(t2).
R1 ∪R2: For each tuple t output by R1 ∪R2, annotate t

with P(t1) ∨P(t2), where P(t1) is false iff
t does not exist in R1; similarly for P(t2), R2

ΠA(R): Given tuples t1, t2, . . . , tn that project to the same
tuple t′, annotate t′ with P(t1) ∨P(t2) ∨ · · · ∨P(tn)

Figure 6: Relational algebra rules for composition of provenance expressions.

Boolean absorption to minimize the provenance expressions: absorption is based on the law a∧(a∨b) ≡ a∨(a∧b) ≡ a,
and it eliminates terms and variables from a Boolean expression that are not necessary to preserve equivalence. We
term this model absorption provenance, and it describes in a minimal way exactly which tuples, in which combinations
of join and union, are essential to the existence of a tuple in the view. The more compact provenance annotations reduce
the network traffic. Even better, we can update a view after a base tuple has been deleted as follows: for each base
tuple, we substitute value false for its provenance variable, within all provenance annotations of tuples in the view. If
applying absorption to the tuple’s provenance results in the value false, we remove the tuple. Otherwise, it remains
derivable.
Absorption provenance in the example of Figure 2. Absorption provenance adds a bit of overhead to normal
query computation: the fixpoint operator must propagate a tuple through to the recursive step whenever it receives
a new derivation (even of an existing tuple), not simply when it receives a new tuple. Refer back to the reachable
query example of Figure 2. The pv column shows the absorption provenance for every tuple during the initial view
computation, with respect to the input link tuples labeled p1, p2, p3, and p4; we see that an additional 4 tuples (beyond
the previous set-oriented execution model) is shipped during query evaluation, as a result of computing absorption
provenance. For instance, reachable(B, B) is derived in both strata 1 and 2. They have different provenance, hence
we must track both derivations.

Absorption provenance shows its value in handling deletions. When link(C, B) is deleted, the only step required
with absorption provenance is to zero out p4 in the provenance expressions of all reachable tuples. In this example,
zeroing out this derivation only requires two message transmissions, and it does not result in the removal of any tuples
from the view. (It is still possible that deletions may need to be propagated to all nodes in the network, in the worst
case.)

4.1 Implementing Absorption Provenance
There are multiple alternatives when attempting to encode an absorption provenance expression and to develop oper-
ators over this expression. Each expression can, of course, be normalized to a sum-of-products expression, since in
the end there are possibly multiple derivations of the same tuple, and each derivation is formed by a conjunctive rule
(or a conjunction of tuples that resulted from conjunctive rules). From there we could implement absorption logic that
is invoked every time the provenance expression changes. We choose an alternative — and often more compact —
encoding for absorption provenance: the binary decision diagram [7] (BDD), a compact encoding of a Boolean ex-
pression in a DAG. A BDD (specifically, a reduced ordered BDD) represents each Boolean expression in a canonical
way, which automatically eliminates redundancy by merging isomorphic subgraphs and removing isomorphic chil-
dren: this process automatically applies absorption. Since BDDs are frequently used in circuit synthesis applications
and formal verification, many highly optimized libraries are available [20]. Such libraries, e.g., [20], provide abstract
BDD types as well as Boolean operators to perform on them: pairs of BDDs can be ANDed or ORed; individual BDDs
can be negated; and variables within BDDs can be set or cleared. We exploit such capabilities in our provenance-aware
stateful query operators.

Now we describe in detail the implementation of absorption provenance within the Fixpoint operator. We defer a
discussion of how aggregation state management works to Section 6.

4.2 Fixpoint Operator
The key operator for supporting recursion is the Fixpoint operator, which first calls a base case query to produce
results, then repeatedly invokes a recursive case query. It repeatedly unions together the results of the base case and
each recursive step, and terminates when no new results have been derived. We define the fixpoint in a recursive query

10

as follows: we reach a fixpoint when we can no longer derive any new results that affect the absorption provenance of
any tuple in the result.

Unlike traditional semi-naı̈ve evaluation, our fixpoint operator does not block or require computations in syn-
chronous rounds (or iterations), a prohibitively expensive operation in distributed settings. We achieve this with the
use of pipelined semi-naı̈ve evaluation [21], where tuples are arrived in the order in which they arrive via the network
(assuming a FIFO channel), and are only processed with tuples that arrive previously.

Pseudocode for this operator is shown in Algorithm 1. The fixpoint operator receives insertions from either the
base (B∆) or recursive (R∆) streams. It maintains a hash table P containing the absorption provenance of each tuple
that it has received, which remains derivable. Note that in our algorithms, each tuple contains three attributes, type
which indicates whether it is an INS or DEL tuple, tuple which records its raw tuple values, and pv which stores its
provenance.

Initially (Lines 2–8), we apply any portions of an aggregation operation that might have been “pushed into” the
fixpoint — this uses a technique called aggregate selection discussed in Section 6. Now, upon receipt of an insertion
operation u (Lines 11–26), the fixpoint operator first determines whether the tuple has already been encountered, and
perhaps with a different provenance. If u is new, it is simply stored in P [u.tuple] as the first possible derivation;
otherwise we merge it with the existing absorption provenance in P [u.tuple]. We save the resulting difference in
deltaPv. If the provenance has indeed changed despite absorption, u gets propagated to the next operator, annotated
with provenance deltaPv.

Deletions are handled in a straightforward fashion (Lines 27–35), given our implementation of absorption prove-
nance. In our scheme deletions on the recursive stream are essentially caused by the deletions on the base stream.
Hence, we only need to focus on deletion tuples generated from the base (B∆) stream. When we meet a deletion op-
eration u, for each tuple t in the table P , we zero out the associated provenance of tuple u (u.pv) from the provenance
expression of each t (P [t]), computed by bdd operation “restrict” [20] shown in Line 30. If the result is a provenance
expression returning false (zero), a deletion operation on t is propagated to the next operator after removing its entry
from P .

4.3 Join Operator
The PipelinedHashJoin operator is modified from a regular pipelined hash join to incorporate the use of absorption
provenance. The join operator needs to maintain two pairs of hashtables: the hR and hS maintains the tuples indexed
on the join keys Rk and Sk of each R and S tuple respectively, and pR and pS maintains the provenance indexed on
all attributes of each R and S tuple. The hashtables are similar to those used in the earlier Fixpoint operator, except
we need to maintain two hashtables, one for each input table.

We will describe in terms of processing a new update tuple u from R∆. Processing of updates from S∆ is
symmetrical. We consider two cases, when u is a deletion or an insertion. Replacements are treated as a deletion
followed by an insertion.

4.3.1 Deletions

We first consider the case where u is a delete tuple. We focus on describing the HalfPipeDel function in Algorithm 2
invoked by the main PipeHashJoin function for each delete tuple u. Two sets of updates need to be performed. First,
the internal state (i.e. hashtables of join tuples and respective provenance) maintained by the join operator is updated.
Second, new tuples are output from the join, and propagated as deletions up to the next operator according to the query
plan.
Operator state update (Lines 1– 8 in HalfPipeDel): The provenance state pu[u.tuple] for tuple u is retrieved, and
u’s provenance u.pv, is deleted from pu[u.tuple] (In BDD operations, x − y ≡ x ∧ ¬y). This essentially clears the
absorption provenance of the derivation of u. If pu[u.tuple] is false (zero), which means that all possible derivations
of u have been deleted, then we need to remove u from subsequent joins by purging its entry from both pu and hu

hashtable.
Delete propagation (Lines 9– 16 in HalfPipeDel): The deletion of u may cascade the deletion of other tuples
when pu[u.tuple] has been changed. New tuples u′ are formed by joining u with matching tuples t in hj [u.tuple[uk]]
retrieved using the join key uk of u. The absorption provenance of u′ is set to the join of u.pv and pj [t](computed by
the BDD as u.pv ∧ pj [t]).The resulting u′ tuple with the new absorption provenance is then propagated up the query
plan.

11

4.3.2 Insertions

If u is an insert tuple, a similar set of updates are performed. We focus on the HalfPipeIns function in Algorithm 2,
which is similarly invoked from PipeHashJoin for each insert tuple u.
Operator state update (Lines 1– 7 in HalfPipeIns): First, the provenance pu[u.tuple] is retrieved and updated
based on the u.pv of the new tuple u. This is required since the new u tuple may have a different derivation from any
u that have been derived previously. In addition, if we haven’t met u before, we add u to the hashtable hu indexed by
the join key uk of u. Since there may be multiple tuples with a common join key, we maintain a set of them.
Insert propagation (Lines 8– 15 in HalfPipeIns): Similar to deletions, the join operator may output new tuples
when pu[u.tuple] has been changed. The hj hashtable is probed using the join key of u, and each resulting u′ tuple
from the join is propagated up the query plan. For each matching t in hj [u.tuple[uk]] used in the join, the absorption
provenance of u′ is set to the join of u.pv and pj [t] (computed by the BDD as u.pv ∧ pj [t]).

4.3.3 Tuple Expirations

To this point, we have discussed the stream join in terms of processing updates without considering window semantics.
In our algorithm, we encapsulate the window-checking logic in functions WR and WS . Each takes a new update, plus
the provenance hash table describing the current contents of the relation. As we have previously mentioned, we only
support windowing on base relations — for non-base relations, WR or WS simply perform no operations and return
the empty set. For base relations, the window function (1) updates any relevant internal windowing relations based on
the provenance from the new tuple (e.g., advancing the timestamp, or, if the update was an insertion, adding the new
tuple’s identity as the last-received), and (2) returns the set of tuples that have expired, with the specific provenance
terms that have expired.
Calling the window functions (Lines 8–12 in PipeHashJoin): . After processing the update, we now pass it along
to the window function, so that it may update its internal state. The window function may then return a set of tuples
that have expired, with provenance. We delete each tuple from the join.

5 Minimizing Propagation of Tuple Provenance
With provenance, each time a given operator receives a new derivation of a tuple, it must typically propagate that

tuple and derivation, in much the same fashion as it would a completely new tuple. If a tuple is derivable in many
ways, it will be processed many times, just as a tuple might be propagated multiple times in a bag relation (versus a
set). This increases the amount of work done in query processing, as well as the amount of state shipped across the
network can increase correspondingly. Worse, in the general case, a recursive query may produce an infinite number
of possible derivations.

Fortunately, absorption helps in the last case. If a new tuple derivation is received whose provenance is completely
absorbed, we do not need to propagate any information forward. We will reach a fixpoint when we can no longer
derive any new results that affect the absorption provenance of any tuple in the result.

However, we must take additional steps to reduce the amount of state shipped by our distributed query processor
nodes. In order to minimize the number of tuple derivations with provenance expressions, we propagate through the
query plan and the network, while still maintaining the ability to handle deletions. Here we define a special stateful
MinShip operator. MinShip replaces a conventional Ship operator, but maintains provenance information about the
tuples produced by incoming updates. It always propagates the first derivation of every tuple it receives, but simply
buffers all subsequent derivations of the same tuple — merely updating their absorption provenance. By absorption,
the stored provenance expression absorbs multiple derivations into a simpler expression.

Now if the original tuple derivation is deleted, MinShip responds by propagating forward any alternate derivations
it has buffered — then it propagates the deletion of the first derivation. Additionally, depending on our preferences
about state propagation, we can require the MinShip operator to propagate all of its buffered state periodically, e.g.,
when the buffer exceeds a capacity or time threshold. By changing the batching interval or conditions, we can adjust
how many alternate derivations are propagated through the query plan — a smaller interval will propagate more state,
and a larger interval will propagate less state. In the extreme case, we can set the interval to infinity, resulting in what
we term lazy provenance propagation. In the lazy case, alternate derivations of a tuple will only be propagated when
they affect downstream results; this significantly reduces the cost of insertions. (In some cases it may slightly increase
the cost of deletion propagation.)

12

If we go back to our example in Figure 2, basically our MinShip algorithm would buffer all the newly derived
reachable tuples computed at the same node, given that a certain reachable tuple from that node has already been
shipped. For example, reachable(B, B) derived at node C twice will only be shipped once in the first stratum. The
second derivation is buffered at node C. Similarly, reachable(B, C) derived in strata 2 and 3 at node C needs to be
shipped once, and the second derivation is buffered. The buffering mechanism eliminates a good deal of excess traffic,
but is limited in scope to a single node: reachable(C, B) is generated at different nodes, and hence no buffering can
be done. Overall, buffering potentially reduces the number of messages communicated if the delayed communication
result in the absorption of provenances of similar derivations.

If adopting lazy propagation, where only one derivation is shipped, and the other are buffered until the previously
shipped derivation has expired. In this case, the second derivation of reachable(B, C) will be stored at node C until
the previous derivation has been deleted. With lazy propagation, we note that the number of messages communicated
to evaluate the query is 16, which is the same as not storing any provenance. Meanwhile, deletions become cheaper
than DRed, and flood propagation of deletions are avoided.

The pseudocode for the new ship operator is shown in Algorithm 3. The algorithm takes as input S, which is the
outgoing socket connection to the recipient node, a current window size W that is used for batching purposes and
an input stream U∆. The operator maintains three hashtables that maps from tuples to their respective absorption
provenance: Pins which stores batched insert tuple provenances seen so far; Pdel, which consists only of delete tuple
provenances that are batched for delete propagation; and Bsent, which indicates the tuple provenances that have been
sent. We describe the algorithm in terms of the following operations:
Base case and insertions (Lines 10–28): In the base case (Lines 11–13), the ship operator sees the first instance of u.
Given no prior u, this tuple is shipped right away (via the sendMessage command in line 12) since its insertion would
directly affect the final output result. Whenever sendMessage command is issued, the u is added to the hashtable
Bsent. On the other hand, if u already exists (Lines 15–27), there are two circumstances: If u is an insert tuple, then it
first checks if its provenance can be absorbed into the provenances already being sent, if not then it adds its provenance
u.pv to Pins; If u is a delete tuple, then it needs to wipe out the provenances in Pins of this derivation of u, and then
adds its provenance u.pv to Pdel.
Batched shipping (Lines 29–31): Periodically, the absorption provenance needs to be batched and sent from both
Pins and Pdel. This is triggered either using a counter-based approach by flushing after every W tuples (an alternative
using periodic timers can easily be incorporated). At each batched shipment, there are two modes: eager shipping and
lazy shipping(shown in two sub-functions BatchShipEager and BatchShipLazy respectively).

• Eager shipping (Lines 1–14 in BatchShipEager): In the eager shipping mode, it basically ships every tuple
with their absorbed provenance in Pins and Pdel respectively.

• Lazy shipping (Lines 1–14 in BatchShipLazy): In the lazy shipping mode, it does not eagerly propagate every
derivation in Pins. Whenever there is a deletion tuple t in Pdel, it propagates its corresponding provenance in
Pins[t]. In this way, it avoids over-delete in the end.

End-of-stream (Lines 33): When an end-of-stream signal is received by the ship operator, no more new update tuples
will be received. This triggers the final shipment of any outstanding tuples in a similar fashion as a single invocation
of batched shipping.

6 Minimizing Propagation of State
Our third challenge is to minimize the amount of state (not just the number of alternate derivations) that gets

propagated from one node to the next. Given that aggregation is commonplace in network-based queries (as in most
queries of Section 2), we need a way to also suppress tuples that have no bearing on the output aggregate values.
We adapt a technique called aggregate selection [28] to a streaming model, with a windowed aggregation (group-by)
operation [24]. We consider MIN, MAX, COUNT, and SUM functions3). In essence, the aggregate computation is
split between a sub-component that is used internally by stateful operators like the Fixpoint and MinShip, and a final
aggregation computation is done at the end. Our main contributions are to support revision (particularly deletion) of
results within a windowed aggregation model, and to combine aggregate selection with minimal provenance shipping.

3AVERAGE can be derived from SUM and COUNT, as in [10].

13

Our aggregate selection (AggSel for short) module (Algorithm 4) can be embedded within any operator that ships
state(In our system, both Fixpoint and MinShip have calls to this module). The module takes as input a stream
U∆, a grouping key uk, the number of aggregate functions n, and a set of aggregate functions agg1, agg2, · · · , aggn.
The module maintains a hashtable H indexed on the grouping key uk, which records all the buffered tuples met so
far based on its grouping key values — this is necessary to support tuple deletion. A corresponding hashtable P maps
from each tuple to their absorption provenance. Another hashtable B is maintained to record the value associated with
each aggregate attribute aggi, for the grouping key uk. AggSel finally outputs a stream U ′∆ of the update tuples.

Here is a detailed description of the module.
Insertions (Lines 6–29): If the input tuple is an insertion operation, it first updates its state in H and P (Lines 7–12):
if it hasn’t met u before, it adds u to the hashtable H indexed by the join key uk of u; if it met u before, it updates
its provenance in table P . Then, if the provenance of u.tuple, P [u.tuple], has been changed, it does the following
operations (Lines 14–28). For each aggregate function in this module, it checks whether this insertion tuple affects the
aggregate value associated with this tuple’s grouping key uk. More specifically, for a certain aggregate function aggi,
if there is no aggregate value associated with u’s grouping value u.tuple[uk], which means u is the first tuple received
so far on this grouping value, then the aggregate value is updated; if tuple u.tuple is better than the current aggregate
value B[u.tuple[uk]], then a deletion operation on the old aggregate value should be propagated. After checking all
the aggregate functions, if at least one of the aggregate values is changed, then u should be propagated as output; if
none of them is affected, it just ignores u and propagates nothing.
Deletions (Lines 30–56): If the input tuple is a deletion operation, in similar to insertions, it first updates its state in
H and P (Lines 31–36). Note that if H doesn’t contain this tuple (Line 30), which means it meets deletions before
insertions, in our assumption this is not allowed, so it just ignores the input. It updates u’s provenance in table P by
deleting u.pv from P [u.tuple] (In BDD operations, x − y ≡ x ∧ ¬y). If P [u.tuple] is false (zero), which means
that all possible derivations of u have been deleted, then we need to remove u.tuple from both P and H hashtable.
Next, if the provenance of u.tuple, P [u.tuple], has been changed, then it does the following operations(Lines 37–56).
For each aggregate function in this module aggi, if the aggregate tuple is just the same as this tuple u.tuple, then it
traverses through the current version of buffered tuple table B, computes the next aggregate value if there’s any, and
propagates an insertion of the new aggregate value. After checking all the aggregate functions, if at least one of the
aggregate values is affected, then this deletion tuple u should be propagated; if none of them is affected, it just ignores
u and propagate nothing.

7 Experimental Evaluation
We have developed a Java-based distributed query processor that implements all operators as described in Sections 4-
6. Our implementation utilizes the FreePastry 2.0 03 [27] DHT for data distribution, and JavaBDD v1.0b2 [20] as
the BDD library for absorption provenance maintenance. Our experiments are carried out on two clusters: a 16-node
cluster consisting of quad-core Intel Xeon 2.4GHz PCs with 4GB RAM running Linux 2.6.23, and an 8-node cluster
consisting of dual-core Pentium D 2.8GHz PCs with 2GB RAM running Linux 2.6.20. The machines are internally
connected within each cluster via a high-speed Gigabit network, and the clusters are interconnected via a 100Mbps
network shared with the rest of campus traffic. Our default setting involves 12 nodes from the first cluster; when we
scale up, we first use all 16 nodes from this cluster, then add 8 more nodes from the second cluster to reach 24 nodes.
All experimental results are averaged across 10 runs with 95% confidence intervals included.

7.1 Experimental Setup
We utilize two sets of query workloads that are representative of our use cases:
Workload 1: Declarative networks. Our query workloads consist of the reachable query (Query 1 in Section 2)
and the shortest-path query (Query 2 in Section 2). As input to these queries, we use simulated Internet topologies
generated with the GT-ITM [16], a package that is widely used to model Internet topologies. By default we use GT-
ITM to create “transit-stub” topologies consisting of eight nodes per stub, three stubs per transit node, and four nodes
per transit domain. In this setup, there are 100 nodes in the network, and approximately 200 bidirectional links (hence
400 link tuples) in the network. Each input link tuple contains src and dst attributes, as well as an additional latency
cost attribute. Latencies between transit nodes are set to 50 ms, the latency between a transit and a stub node is 10 ms,

14

1

10

100

1000

10000

0.5 0.75 1

Relative Eager Absorption Eager

Relative Lazy Absorption Lazy

DRed

Insertion Ratio

P
er

-t
u

p
le

 s
iz

e(
B

)

(a) Per-tuple Prov. Overhead (B)

0

5

10

15

20

25

30

0.5 0.75 1

Relative Eager

Relative Lazy

Absorption Eager

Absorption Lazy

DRed

Insertion Ratio

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
B

)

(b) Comm. Overhead (MB)

0

5

10

15

20

25

30

35

40

0.5 0.75 1

Relative Eager

Relative Lazy

Absorption Eager

Absorption Lazy

DRed

Insertion Ratio

St
at

e
Si

ze
 (

M
B

)

(c) State within operators (MB)

0

2

4

6

8

10

12

14

16

0.5 0.75 1

Relative Eager

Absorption Eager

Relative Lazy

Absorption Lazy

DRed

Insertion Ratio

Ex
ec

u
ti

o
n

 T
im

e
(s

)

>
>
2
5

(d) Convergence time (s)

Figure 7: reachable query computation as insertions are performed

and the latency between any two nodes in the same stub is 2 ms. To emulate network connectivity changes, we add
and delete link tuples during query execution.
Workload 2: Sensor networks. Our second workload consists of region-based sensor queries executed over a
simulated 100m by 100m grid of sensors, where the sensors report data to their local query processing node. We
include 5 “seed” groups, each initialized to contain a single device. Our recursive view (below) finds contiguous
(within k meters, where by default k=20) triggered nodes and adds them to the group — or removes them if they are
no longer triggered. The query is as Query 3 in Section 2.

Initially all the seed sensors are triggered. Also we trigger half of the sensors in the network to study the effects of
insertions, and then randomly remove them to study the effects of deletions. Note that while the input topology simu-
lates a grid-based sensor topology, the queries are executed over our real distributed query processor implementation.

Our evaluation metrics are as follows:

• Per-tuple provenance overhead(B): the space taken by the provenance annotations on a per-tuple basis.

• Communication overhead(MB): the total size of communication messages on each distributed node for exe-
cuting a distributed query to completion.

• Per-node states of operators(MB): the total overhead of states maintained inside operators on each distributed
node.

• Convergence time(s): the time taken for a distributed query to finish execution on all distributed nodes.

7.2 Incremental View Maintenance with Provenance
Our first set of experiments focuses on measuring the overhead of incremental view maintenance. Using the reachable
query as a starting point, we compare three different schemes: the traditional DRed recursive view maintenance
strategy, relative provenance [14] where each tuple is annotated with information describing derivation “edges” from

15

0

50

100

150

200

250

300

350

400

450

500

0.2 0.4 0.6 0.8 1

Relative Lazy

Absorption Eager

Absorption Lazy

DRed

Deletion Ratio

P
er

-t
u

p
le

 s
iz

e(
B

)

(a) Per-tuple Prov. Overhead (B)

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1

DRed

Relative Lazy

Absorption Lazy

Absorption Eager

Deletion Ratio

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
B

)

(b) Comm. Overhead (MB)

0

5

10

15

20

25

30

35

40

0.2 0.4 0.6 0.8 1

Relative Lazy

Absorption Eager

Absorption Lazy

DRed

Deletion Ratio

St
at

e
Si

ze
 (

M
B

)

(c) State within operators (MB)

0

50

100

150

200

250

300

350

0.2 0.4 0.6 0.8 1

DRed

Relative Lazy

Absorption Eager

Absorption Lazy

Deletion Ratio

Ex
ec

u
ti

o
n

 T
im

e
(s

)
(d) Convergence time (s)

Figure 8: reachable query computation as deletions are performed

1

10

100

1000

0.5 0.75 1

DRed

Absorption Eager

Absorption Lazy

Insertion Ratio

P
er

-t
u

p
le

 s
iz

e(
B

)

(a) Per-tuple Prov. Overhead (B)

0

0.005

0.01

0.015

0.02

0.025

0.5 0.75 1

DRed

Absorption Eager

Absorption Lazy

Insertion Ratio

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
B

)

(b) Comm. Overhead (MB)

0.001

0.01

0.1

0.5 0.75 1

DRed

Absorption Eager

Absorption Lazy

Insertion Ratio

St
at

e
Si

ze
 (

M
B

)

(c) State within operators (MB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.5 0.75 1

DRed

Absorption Eager

Absorption Lazy

Insertion Ratio

Ex
ec

u
ti

o
n

 T
im

e
(s

)

(d) Convergence time (s)

Figure 9: region query computation as insertions are performed

16

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.2 0.4 0.6 0.8 1

DRed

Absorption Eager

Absorption Lazy

Deletion Percentage

P
er

-t
u

p
le

 s
iz

e(
B

)

(a) Per-tuple Prov. Overhead (B)

0

2

4

6

8

10

12

14

16

18

0.2 0.4 0.6 0.8 1

DRed

Absorption Eager

Absorption Lazy

Deletion Percentage

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
B

)

(b) Comm. Overhead (MB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.2 0.4 0.6 0.8 1

DRed

Absorption Eager

Absorption Lazy

Deletion Percentage

St
at

e
Si

ze
 (

M
B

)

(c) State within operators (MB)

0

10

20

30

40

50

60

70

0.2 0.4 0.6 0.8 1

DRed

Absorption Eager

Absorption Lazy

Deletion Percentage

Ex
ec

u
ti

o
n

 T
im

e
(s

)
(d) Convergence time (s)

Figure 10: region query computation as deletions are performed

other tuples, and our proposed absorption provenance. We also consider two schemes for propagating provenance: an
eager strategy (propagate state from MinShip once a second) and a lazy one (propagate state only when necessary).
Insertions-only workload: We first measure the overhead of maintaining provenance, versus normal set-oriented
execution. Figure 7 shows the performance of the reachable query, where the Y-axis shows our four evaluation
metrics, and the X-axis shows the fraction of links inserted, in an incremental fashion, up to the maximum of 400
link tuples required to create the 100-node GT-ITM topology. Given an insertion-only workload, DRed has the best
overall performance, since no provenance needs to be computed or maintained. Relative provenance encodes more
information than absorption provenance, resulting in larger tuple annotations, more communication, and more operator
state. Relative provenance with eager propagation (Relative Eager) did not converge within 5 minutes for insertion
ratios of 0.75 or higher; hence, we only show lazy propagation (Relative Lazy) for the remaining graphs. Eager
propagation with absorption provenance (Absorption Eager) also is costly due to the overhead of sending every new
derivation of a tuple. Lazy propagation of absorption provenance (Absorption Lazy) is clearly the most efficient of the
provenance schemes.
Insertions-followed-by-deletions workload: Our next set of experiments separately measures the overhead of dele-
tions: here provenance becomes useful, whereas in the insertion case it was merely an overhead. (One can estimate the
performance over a mixed workload by considering the relative distribution of insertions vs. deletions and looking at
the overheads on each component.) Given the same 100-node topology, after inserting all the link tuples as above, we
then delete link tuples in sequence. Each deletion occurs in isolation and we measure the time the query results take
to converge after every deletion is injected. Figure 8 shows that DRed is prohibitively expensive for deletions when
compared to our absorption provenance schemes: it is an order of magnitude more expensive in both communication
overhead and execution time. Relative provenance wins versus DRed in communication cost and convergence time
because it does not over-delete and re-derive. However, its performance is far worse than absorption provenance, and
it also incurs more per-tuple overhead and operator state. Relative provenance relies on graph traversal operations to
determine derivability from base tuples (see [14]), and thus is expensive in a distributed setting. In contrast, absorption
provenance directly encodes whether a derived tuple is dependent on a base tuple. Overall, absorption provenance is

17

1

10

100

1000

10000

100 200 400 800

Eager Dense

Lazy Dense

Eager Sparse

Lazy Sparse

Total Links in Network

P
er

-t
u

p
le

 s
iz

e
(B

)

(a) Per-tuple Prov. Overhead (B)

0

1

2

3

4

5

6

100 200 400 800

Eager Dense

Lazy Dense

Eager Sparse

Lazy Sparse

Total Links in Network

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
B

)

(b) Comm. Overhead (MB)

0

5

10

15

20

25

30

100 200 400 800

Eager Dense

Lazy Dense

Eager Sparse

Lazy Sparse

Total Links in Network

St
at

e
Si

ze
 (

M
B

)

(c) State within operators (MB)

0

5

10

15

20

25

30

35

40

100 200 400 800

Eager Dense

Lazy Dense

Eager Sparse

Lazy Sparse

Total Links in Network

Ex
ec

u
ti

o
n

 T
im

e
(s

)
(d) Convergence time (s)

Figure 11: Increasing the number of links (and nodes) for the reachability query over inserts

the most efficient method in deletion handling, and consequently ships fewer tuples than the other methods. Taking
both insertions and deletions into account, Absorption Lazy has the best mix of performance.
Region-based sensor query: The region query is over a different topology from reachable, and it exhibits slightly
different update characteristics. Still, as we see in Figure 9, which measures performance with the insertion workload
described earlier in the experimental setup, performance follows similar patterns. (The overhead is lower across each
of the four metrics, since the network is smaller here and neighbors must be within close proximity.) Under deletion
loads, the trends shown by the region query shown in in Figure 10 also closely mirror that of the reachable query.
Since the queries exhibit similar performance, we focus on reachable in the rest of our experiments.

7.3 Scalability
Next we consider the scale-up of our methods, with respect to inputs and to query processing nodes.
Scaling Data. We increase the number of input link tuples, by increasing the average number of transit nodes in
the GT-ITM generated topology. We considered two network topologies: each node in the dense topology has four
links (as in our default setting), whereas the sparse setting has half the number of links for a given network size.
Figure 11 shows the insertion-only workload. We observe that the dense network is more costly to evaluate than the
sparse network: there are more derivations. Here, lazy propagation is essential: Eager Dense did not complete after
5 minutes on a 800-link network, whereas Lazy Dense finished in under 5 seconds. We further experimented with
deleting an additional 20% of the links shown in Figure 12. Observations are similar as the insertion case.
Increasing Query Processing Nodes. Next, we increase the number of query processing nodes to up to 24 machines,
while keeping the input dataset constant. Figure 13 shows the results. Per-tuple provenance overhead increases, then
eventually levels off, as the number of nodes increases: each node will now process fewer tuples, and the opportu-
nities of absorption and buffering are reduced. Higher numbers of query processors leads to a reduction in query
execution latency, per-node communication overhead, and per-node operator state. The increase of latency between
16 and 24 nodes is due to the low-bandwidth connection between our two subnets. In all cases, DRed incurs higher
communication overhead and takes longer to complete than our approach. A more detailed analysis is as follows:

18

1

10

100

1000

10000

100 200 400 800

Eager Dense

Lazy Dense

Eager Sparse

Lazy Sparse

Total Network Links

P
er

-t
u

p
le

 s
iz

e(
B

)

(a) Per-tuple Prov. Overhead (B)

0

5

10

15

20

25

100 200 400 800

Eager Dense

Lazy Dense

Eager Sparse

Lazy Sparse

Total Network Links

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
B

)

(b) Comm. Overhead (MB)

1

10

100

1000

10000

100 200 400 800

Eager Dense

Lazy Dense

Eager Sparse

Lazy Sparse

Total Network Links

St
at

e
Si

ze
 (

K
B

)

(c) State within operators (MB)

0.1

1

10

100

1000

100 200 400 800

Eager Dense

Lazy Dense

Eager Sparse

Lazy Sparse

Total Network Links

Ex
ec

u
ti

o
n

 T
im

e
(s

)
(d) Convergence time (s)

Figure 12: Increasing the number of links (and nodes) for the reachability query over deletions

• Per-tuple provenance size slightly increases because more derivations of insertions are triggered by deletions in
MinShip(deletions at every peer would trigger its insertions).

• Communication cost slightly increases because deletion tuples are broadcast to more nodes, also there are inser-
tion tuples triggered by deletions in MinShip(same reason as before). However, in DRed, it decreases since we
actually compute per-node communication cost here.

• States of operators decreases since less tuple states are maintained on each peer.

• Execution time decreases since each peer has less tuples to process, but 24-cluster has a jump because of slower
network connections between 16-node and 8-node subnetwork.

7.4 Multi-aggregate Selection
Figure 14 shows the effectiveness of aggregate selections over the dense and sparse topology of 100 nodes. We exper-
iment with two extensions of the shortest path query presented in Section 2: Multi AggSel computes two aggregates
(one for lowest path cost and the other for shortest hop count); Single AggSel minimizes only based on the path cost
metric. We observe that aggregate selections are most effective in dense topologies, and Multi AggSel costs only half as
much as Single AggSel due to aggressive pruning of the two aggregates simultaneously. Without the use of aggregate
selections, all queries are prohibitively expensive, and do not complete within 5 minutes for dense topologies.

7.5 Summary of Results
We summarize our results with reference to the contributions of this paper as outlined in Section 3.3.

• Absorption provenance (Section 4) results in an order-of-magnitude reduction compared to traditional schemes
such as DRed, in communication overhead and execution times for view maintenance with insertions and dele-

19

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25

DRed

Absorption Lazy

Number of physical peers

P
er

-t
u

p
le

 S
iz

e
(B

)

(a) Per-tuple Prov. Overhead (B)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

DRed

Absorption Lazy

Number of physical peers

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
(M

B
)

(b) Comm. Overhead (MB)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25

DRed

Absorption Lazy

Number of physical peers

St
at

e
Si

ze
 (

M
B

)

(c) State within operators (MB)

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25

DRed

Absorption Lazy

Number of physical peers

Ex
ec

u
ti

o
n

 T
im

e
(s

)
(d) Convergence time (s)

Figure 13: Varying the number of physical query processing nodes in computing reachable

tions. Moreover, our concise representation of data provenance is far more efficient compared to relative prove-
nance. Computing provenance incurs some overhead during insertions, and increased memory consumption,
but the increase is offset by huge improvements in bandwidth and execution times when deletions are part of
the workload. Most applications (both for declarative networking and sensor monitoring) include time-based
expiration for state, and hence include many deletions.

• Our second technique, lazy propagation of derivations (Section 5) using the MinShip operator, reduces traffic
when there are multiple possible derivations. Lazy propagation results in significant bandwidth savings. Given
the dense network topology with 800 links and many alternative routes, lazy propagation resulted in 5-second
running times, versus 5 minutes for eager propagation in the same network.

• Our third technique of multiple aggregate selections results in minimal propagation of tuples during query eval-
uation (Section 6). A dense network produces several alternative routes, and aggregate selections are especially
effective in this setting, resulting in at least an order of magnitude reduction in bandwidth and execution times.
While the benefits of aggregate selections have been explored previously in centralized settings, our main con-
tribution here was the extension to a stream model, including support for deletions, and validating that similar
benefits are observed in a distributed recursive stream query processor.

8 Related Work
Stream query processing has been popular in the recent database literature, encompassing sensor network query sys-
tems [23, 13] as well as Internet-based distributed stream management systems [1, 9, 2]. To the best of our knowledge,
none of these systems support recursive queries. Distributed recursive queries have been proposed as a mechanism
for managing state in declarative networks. Our work formalizes aspects of soft-state management and significantly
improves the ability to maintain recursive views. Our distributed recursive view maintenance techniques are applica-
ble to other networked environments, particularly programming abstractions for region-based computations in sensor

20

0

20

40

60

80

100

120

140

160

180

200

Multi AggSel Single AggSel No AggSel

Dense

Sparse

P
er

-t
u

p
le

si
ze

(B
)

(a) Per-tuple Prov. Overhead (B)

>25

0.01

0.1

1

10

Multi AggSel Single AggSel No AggSel

Dense

Sparse

C
o

m
m

u
n

ic
at

io
n

O
ve

rh
ea

d
(M

B
)

(b) Comm. Overhead (MB)

0.001

0.01

0.1

1

10

Multi AggSel Single AggSel No AggSel

Dense

Sparse

St
at

e
Si

ze
 (

M
B

)

(c) State within operators (MB)

>300

0.1

1

10

100

1000

Multi AggSel Single AggSel No AggSel

Dense

Sparse

Ex
ec

u
ti

o
n

 T
im

e(
s)

(d) Convergence time (s)

Figure 14: Aggregate selections performance on shortestPath and cheapestCostPath query

networks [30, 29].
Provenance (also called lineage) has often been studied to help “explain” why a tuple exists [8] or to assign a

ranking or score [6, 14]. Lineage was studied in [12] as a means of maintaining data warehouse data. Our absorption
provenance model is a compact encoding of the PosBool provenance semiring in [15] (which provides a theoretical
provenance framework, but does not consider implementability). We specialized it for maintenance of derived data
in recursive settings. Our approach improves over the counting algorithm [17] which does not support recursion. We
have experimentally demonstrated benefits versus DRed [17] and maintenance based on relative provenance [14].

9 Conclusions and Future Work
In this paper, we have proposed novel techniques for distributed recursive stream view maintenance. Our work is
driven by emerging applications in declarative networking and sensor monitoring, where distributed recursive queries
are increasingly important. We demonstrated that existing recursive query processing techniques such as DRed are
not well-suited for the distributed environment. We then presented techniques that combine the use of absorption
provenance to encode tuple derivability in a compact fashion, plus provenance-aware operators that are bandwidth
efficient and avoid propagating unnecessary information, while maintaining correct answers.

Our work is proceeding along several fronts. Since our experimental results have demonstrated the effectiveness
of techniques, we are working towards deploying our system in both the declarative networking and sensor network
domains. We intend not only to support efficient distributed view maintenance, but also to utilize the provenance
information to enforce decentralized trust policies, and perform real-time network diagnostics and forensic analysis.
We also hope to explore opportunities for adaptive cost-based optimizations based on the query workload, network
density, network connectivity, rate of network change, etc.

21

Acknowledgments
This work was funded by NSF grants CNS-0721845, CNS-0721541, IIS-0812270, IIS-0447972, and IIS-0713267,
and a DARPA Computer Science Study Group grant. We thank the anonymous reviewers for their suggestions.

References
[1] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and

S. Zdonik. Aurora: a new model and architecture for data stream management. VLDB J., 12(2), August 2003.

[2] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: semantic foundations and query
execution. VLDB J., 15(2), 2006.

[3] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking Up Data in P2P Systems.
Communications of the ACM, Vol. 46, No. 2, Feb. 2003.

[4] I. Balbin and K. Ramamohanarao. A generalization of the differential approach to recursive query evaluation. J.
Log. Program., 4(3), 1987.

[5] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strange ways to implement logic
programs. In PODS, 1986.

[6] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. ULDBs: Databases with uncertainty and lineage. In
VLDB, 2006.

[7] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers,
35(8):677–691, 1986.

[8] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of data provenance. In ICDT, 2001.

[9] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. A. Shah. TelegraphCQ: Continuous dataflow processing for an uncertain
world. In CIDR, 2003.

[10] S. Chaudhuri and K. Shim. Including group-by in query optimization. In VLDB, 1994.

[11] D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker, and I. Stoica. The design and implementa-
tion of a declarative sensor network system. In SenSys, New York, NY, USA, 2007.

[12] Y. Cui. Lineage Tracing in Data Warehouses. PhD thesis, Stanford University, 2001.

[13] A. J. Demers, J. Gehrke, R. Rajaraman, A. Trigoni, and Y. Yao. The Cougar project: a work-in-progress report.
SIGMOD Record, 32(3), 2003.

[14] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update exchange with mappings and provenance. In
VLDB, 2007. Amended version available as Univ. of Pennsylvania report MS-CIS-07-26.

[15] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS, 2007.

[16] GT-ITM. Modelling topology of large internetworks. http://www.cc.gatech.edu/projects/gtitm/.

[17] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In SIGMOD, 1993.

[18] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica. Quering the Internet with PIER.
In VLDB, 2003.

[19] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and robust communication
paradigm for sensor networks. In MobiCom, 2000.

[20] John Whaley. Javabdd library. http://javabdd.sourceforge.net.

22

[21] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and
I. Stoica. Declarative Networking: Language, Execution and Optimization. In Proc. SIGMOD, June 2006.

[22] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative routing: extensible routing with
declarative queries. In SIGCOMM, 2005.

[23] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Design of an acquisitional query processor for sensor
networks. In SIGMOD, 2003.

[24] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston, J. Rosenstein, and
R. Varma. Query processing, resource management, and approximation in a data stream management system. In
CIDR, 2003.

[25] D. Narayanan, A. Donnelly, R. Mortier, and A. Rowstron. Delay aware querying with Seaweed. In VLDB, 2006.

[26] S. Raman and S. McCanne. A model, analysis, and protocol framework for soft state-based communication. In
Proceedings of ACM SIGCOMM Conference on Data Communication, pages 15–25, 1999.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer
systems. In Middleware, pages 329–350, Nov. 2001.

[28] S. Sudarshan and R. Ramakrishnan. Aggregation and Relevance in Deductive Databases. In Proceedings of
VLDB Conference, 1991.

[29] M. Welsh and G. Mainland. Programming sensor networks using abstract regions. In NSDI, March 2004.

[30] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: a neighborhood abstraction for sensor networks. In
MASN, 2004.

23

Algorithm 2 Pipelined hash join operator
HalfP ipeIns(u, hu, pu, hj , pj , uk)

Inputs: Update u, build hash table hu, build provenance table pu, probe hash table hj , probe tuple provenance table pj , join keys uk.
Output: Update stream u′.
1: oldPv := pu[u.tuple]
2: if hu does not contain u.tuple then
3: hu[u.tuple[uk]] := u.tuple
4: pu[u.tuple] := u.pv
5: else
6: pu[u.tuple] := pu[u.tuple] ∨ u.pv
7: end if
8: if oldPv 6= pu[u.tuple] then
9: for each t in hj [u.tuple[uk]] do

10: u′.tuple := u.tuple 1 t
11: u′.type := INS
12: u′.pv := u.pv ∧ pj [t]
13: Output u′

14: end for
15: end if

HalfP ipeDel(u, hu, pu, hj , pj , uk)

Inputs: Update u, build hash table hu, build provenance table pu, probe hash table hj , probe tuple provenance table pj , join keys uk.
Output: Update stream u′.
1: oldPv := pu[u.tuple]
2: if hu contains u.tuple then
3: pu[u.tuple] := pu[u.tuple] ∧ ¬u.pv
4: if pu[u.tuple] = 0 then
5: Remove u.tuple from pu
6: Remove u.tuple[uk] from hu
7: end if
8: end if
9: if oldPv 6= pu[u.tuple] then

10: for each t in hj [u.tuple[uk]] do
11: u′.tuple := u.tuple 1 t
12: u′.type := DEL
13: u′.pv := u.pv ∧ pj [t];
14: Output u′

15: end for
16: end if

Process(u)
Inputs: Update u.
1: if u.type = DEL then
2: if u is from R∆ then
3: HalfP ipeDel(u, hR, pR, hS , pS , Rk)
4: else
5: HalfP ipeDel(u, hS , pS , hR, pR, Sk)
6: end if
7: else
8: if u is from R∆ then
9: HalfP ipeIns(u, hR, pR, hS , pS , Rk)

10: else
11: HalfP ipeIns(u, hS , pS , hR, pR, Sk)
12: end if
13: end if

PipeHashJoin(R∆, S∆, Rk, Sk,WR,WS)

Inputs: Update streams R∆, S∆, join keys Rk, Sk, window evaluation functions WR,WS .
Output: Update stream RS∆.
1: Init hash map hR : R(x̄)[Rk]→ {R(x̄)}
2: Init hash map hS : S(ȳ)[Sk]→ {S(ȳ)}
3: Init hash map pR : R(x̄)→ P(R(x̄))
4: Init hash map pS : S(ȳ)→ P(S(ȳ))
5: while not EndOfStream(R∆) and not EndOfStream(S∆) do
6: Read an update u from R∆ or S∆

7: Process(u)
8: Let expiredR := the results of calling WR(u, pR)
9: for t in expiredR do

10: t.type := DEL
11: Process(t)
12: end for
13: end while

24

Algorithm 3 MinShip operator
BatchShipEager(Pins, Pdel)
Inputs: Provenance table: Pins and Pdel
Ouput: Output stream U ′∆ sent on S.
1: for each t in Pins do
2: u′.tuple := t
3: u′.type := INS
4: u′.pv := Pins[t]
5: sendMessage(S, u′)
6: end for
7: Reset Pins
8: for each t in Pdel do
9: u′.tuple := t

10: u′.type := DEL
11: u′.pv := Pdel[t]
12: sendMessage(S, u′)
13: end for
14: Reset Pdel

BatchshipLazy(Pins, Pdel)
Inputs: Provenance table: Pins and Pdel
Ouput: Output stream U ′∆ sent on S.
1: for each t in Pdel do
2: u′.tuple := t
3: u′.type := DEL
4: u′.pv := Pdel[t]
5: sendMessage(S, u′)
6: if t is in Pins then
7: u′.tuple := t
8: u′.type := INS
9: u′.pv := Pins[t]

10: sendMessage(S, u′)
11: Remove t from Pins
12: end if
13: end for
14: Reset Pdel

MinShip(U∆,W, S)
Inputs: Input stream U∆, batched size W , socket S.
Output: Output stream U ′∆ sent on S.
1: Init hash map Pins : U(x̄)→ provenance expressions over U(x̄)
2: Init hash map Pdel : U(x̄)→ provenance expressions over U(x̄)
3: Init hash map Bsent : U(x̄)→ provenance expressions over U(x̄)
4: if there is a aggregate selection option then
5: Get the grouping key uk, number of aggregate functions n and aggregate functions agg1, · · · , aggn
6: U ′∆ := AggSel(U∆, uk, n, agg1, · · · , aggn)
7: U∆ := U ′∆

8: end if
9: while not EndOfStream(U∆) do

10: Read an update u from U∆

11: if Bsent does not contain u.tuple then
12: Bsent[u.tuple] := u.pv
13: sendMessage(S, u)
14: else
15: if u.type = INS then
16: if Bsent[u.tuple] ∨ u.pv 6= Bsent[u.tuple] then
17: Pins[u.tuple] := Pins[u.tuple] ∨ u.pv
18: end if
19: else
20: for each t in Pins do
21: Pins[t] := restrict(Pins[t],¬u.pv)
22: if Pins[t] = 0 then
23: Remove t from Pins
24: end if
25: end for
26: Pdel[u.tuple] := Pdel[u.tuple] ∨ u.pv
27: end if
28: end if
29: if size of Pins + size of Pdel >= W then
30: Call BatchShipEager(Pins, Pdel) or

BatchShipLazy(Pins, Pdel) based on ship mode
31: end if
32: end while
33: Call BatchShipEager(Pins, Pdel) or BatchShipLazy(Pins, Pdel) based on ship mode

25

Algorithm 4 Aggregate selection sub-module
AggSel(U∆, uk, n, agg1, agg2, · · · , aggn)

Inputs: Input stream U∆, grouping keys uk, number of aggregate functions n, aggregate function agg1, agg2, · · · , aggn.
Output: Stream U ′∆.
1: Init hash map H: U(x̄)[uk]→ {U(x̄)}
2: Init hash map P : U(x̄)→ provenance expressions over U(x̄)

3: Init hash map B: U(x̄)[uk]→ [1..n] ∗ {U(x̄)}
4: while not EndOfStream(U∆) do
5: Read an update u from U∆

6: if u.type = INS then
7: if H does not contain u.tuple then
8: H[u.tuple[uk]] := u.tuple
9: Set P [u.tuple] to the provenance of u

10: else
11: Add the provenance of u to P [u.tuple]
12: end if
13: if oldPv 6= P [u.tuple] then
14: changed := false
15: for i = 1 to n do
16: if B does not contain u.tuple[uk] then
17: B[u.tuple[uk]] := u.tuple
18: changed := true
19: else if u.tuple is better than B[u.tuple[uk]].i for aggi then
20: u′.tuple := B[u.tuple[uk]].i
21: u′.type := DEL
22: Set provenance of u′ to P [B[u.tuple[uk]].i]
23: Output u′

24: B[u.tuple[uk]].i := u.tuple
25: changed := true
26: end if
27: end for
28: if changed then Output u
29: end if
30: else if H contains u.tuple then
31: oldPv := P [u.tuple]
32: Remove the provenance of u from P [u.tuple]
33: if P [u.tuple] indicates no derivability then
34: Remove u.tuple from P
35: Remove u.tuple[uk] from H
36: end if
37: if oldPv 6= P [u.tuple] then
38: changed := false
39: for i = 1 to n do
40: if B[u.tuple[uk]].i = u.tuple then
41: changed := true
42: Remove u.tuple from B[u.tuple[uk]].i

43: for each tuple t in H[u.tuple[uk]] do
44: if B[u.tuple[uk]].i = null or t is better than B[u.tuple[uk]].i for aggi then
45: B[u.tuple[uk]].i := t
46: end if
47: end for
48: u′.tuple := B[u.tuple[uk]].i
49: u′.type = INS
50: Set provenance of u′ to P [B[u.tuple[uk]].i]
51: Output u′

52: end if
53: end for
54: if changed then Output u
55: end if
56: end if
57: end while

26

	Introduction
	Distributed Recursive View Use Cases
	Execution Model and Approach
	Query Execution Model
	Motivation for New Distributed Recursive Techniques
	Our Approach

	Provenance for Efficient Deletions
	Implementing Absorption Provenance
	Fixpoint Operator
	Join Operator
	Deletions
	Insertions
	Tuple Expirations

	Minimizing Propagation of Tuple Provenance
	Minimizing Propagation of State
	Experimental Evaluation
	Experimental Setup
	Incremental View Maintenance with Provenance
	Scalability
	Multi-aggregate Selection
	Summary of Results

	Related Work
	Conclusions and Future Work

