
30 January 1986

THE MODEL CONCEPT

NON-PROCEDURAL PROGRAMMING
FOR

NON-PROGRAMMERS

January 1986

Table of Contents
PART I: INTRODUCTION TO MODEL
1. INTRODUCTION AND OVERVIEW

1.1. INTRODUCTION
1.2. HOW TO USE THIS TEXT
1.3. USING THE MODEL SYSTEM
1.4. WHY USE MODEL: A SUMMARY

2. BASIC CONCEPTS
2.1. MODEL TERMS

2.1.1. FILES
2.1.2. VARIABLES
2.13. SUBSCRIPTS

2.2. PRINCIPLES OF DATA ORGANIZATION
2.2.1. ARRAYS AND TREES
23.2. DESCRIBING ARRAY STRUCTURE

2.3. EQUATIONS
23.1. EXPRESSING REQUIREMENTS AS EQUATIONS
23.2. DEFINING SINGLE VALUES FOR VARIABLES

2.4. SAMPLE SPECIFICATION
2.4.1. THE SECTIONS OF THE SPECIFICATION 'SUMMARIES'
2.4.2. THE DATA STRUCTURES
2.43. RECORD AND GROUP STATEMENTS
2.4.4. THE TARGET FILE, 'SUMS'
2.45. THE INTERIM FILE
2.4.6. RANGES AND THEIR PROPAGATION
2.4.7. THE EQUATIONS

3. PROGRESSIVE MODULAR DEVELOPMENT
3.1. INTRODUCTION
3.2. THE GENERAL PROCESS OF MODEL SYSTEMS DEVELOPMENT

3.2.1. STAGE ONE: A SYSTEM OVERVIEW
3.22. STAGE TWO: FROM PROBLEM TO SUB-PROBLEMS
3.23. STAGE THREE: IDENTIFY GOALSISUB-GOALS
3.2.4. STAGE FOUR. PROTOTYPING
3.25. STAGE FIVE: PROGRAM GENERATION

33. DEVELOPMENT OF AN INDIVIDUAL MODULE: A SPECIFIC CASE
33.1. REQUIREMENT
33.2. SPECIFICATION - FIRST FORM
333. SPECIFICATION - SECOND FORM - SUBLINEAR INDICES
33.4. SPECIFICATION - THIRD FORM - ENDFILE CONDITIONS
335. SPECIFICATION - FINAL FORM

PART 11: MODEL STATEMENTS AND METHODOLOGY
4. COMMONLY USED LANGUAGE ELEMENTS

4.1. INTRODUCTION
4.2. EBNF NOTATION
43. MODEL CHARACTER SET
4.4. DELIMITERS

' 4.5. VARIABLE NAMES
4.6. QUALIFIED NAME VARIABLES AND RESERVED WORDS
4.7. CONSTANTS

4.7.1. CHARACTER STRING CONSTANTS
4.7.2. BIT STRING CONSTANTS
4.73. ARITHMETIC CONSTANTS

4.8. OPERATORS

4.9. EXPRESSIONS
4.9.1. USE OF OPERATORS IN EXPRESSIONS
4.92. PARENTHESES IN EXPRESSIONS
4.93. ARITHMETIC EXPRESSIONS
4.9.4. LOGICAL EXPRESSIONS
4.95. STRING EXPRESSIONS
4.9.6. BOOLEAN EXPRESSIONS
43.7. COMPARISON EXPRESSIONS

4.10. FUNCTIONS
4.10.1. CREATING USER-DEFINED FUNCTIONS

4.11. CONVERSION OF DATA TYPES XN EXPRESSIONS AND FUNCTIONS
5. DATA DECLARATION IN MODEL

5.1. OVERVIEW
5.2. MODEL HEADER
5.3. DATA DECLARATION SYNTAX
5.4. FILE DECLARATION STATEMENTS
5.5. GROUP AND RECORD DECLARATION PHRASES
5.6. FIELD DECLARATION STATEMENTS AND DATA TYPES

5.6.1. CHARACTER STRING VARIABLES
5.6.2. BIT STRING VARIABLES
5.63. NUMERIC STRING VARIABLES
5.6.4. DECIMAL AND BINARY VARIABLES
5.65. PICTURE VARIABLES
5.6.6. ON CONVERSION ERROR

5.7. SHORTCUTS IN DECLARATION OF DATA STRUCTURES
5.8. DECLARING REPETITIONS AND OPTIONAL DATA STRUCTURES
5.9. DECLARING INTERIM DATA STRUCTURES
5.10. VARIABLE RANGE DEFINITION

6. EQUATIONS
6.1. OVERVIEW
6.2. SIMPLE EQUATIONS
6.3. CONDITIONAL EQUATIONS

63.1. OVERVIEW
633. NESTED CONDITIONAL EQUATIONS
633. SIMULTANEOUS EQUATIONS

7. USING SUBSCRIPTS IN EQUATIONS
7.1. OVERVIEW
7.2. TYPES OF SUBSCRIPT EXPRESSIONS AND THEIR USES

72.1. SUBLINEAR INDIRECT INDEXING
7.3. SUBSCRIPT VARIABLES
7.4. CONVENTIONS FOR SUBSCRIPT OMISSION

8. CONTROL VARIABLES
8.1. OVERVIEW
8.2. SIZEX
8.3. END.X
8.4. LENX
8.5. MALDATAX
8.6. NEXT.X
8.7. SW3SET.X
8.8. P0INTER.X
8.9. FOUNDX
8.10. ENDFILER
8.11. EMPTY3

9. DEBUGGING AND DOCUMENTING MODEL SPECIFICATIONS
9.1. DEBUGGING A MODEL SPECIFICATION

9.1.1. ERROR MESSAGES
9.1.2. THE STAGES OF THE MODEL COMPILER
9.13. STAGE ONE: SYNTAX ANALYSIS
9.1.4. STAGE TWO: PRECEDENCE ANALYSIS AND DIMENSION PROPAGATION
9.15. STAGE THREE: RANGE PROPAGATION
9.1.6. STAGE FOUR. SCHEDULING AND CODE GENERATION

9.2. REPORTS PRODUCED FOR DOCUMENTING A SPECIFICATION
9.3. PARAMETERS OF THE MODEL COMPILER
9.4. THE TEST-DATA GENERATOR

10. RESTATING A SPECIFICATION TO IMPROVE EFFICIENCY OF
PRODUCED PROGRAMS
10.1. USER'S GUIDANCE ROLE m PRODUCING EFFICIENT PROGRAMS
10.2. REDUCING THE NUMBER OF VARIABLES AND EQUATIONS IN A MODEL

SPECIFICATION
10.3. ATTAINING VIRTUAL DIMENSIONS OF VARIABLES

10.3.1. USE OF APPROPRIATE SUBSCRIPT EXPRESSIONS
10.3.2. USE OF APPROPRIATE RANGE SPECIFICATIONS
10.33. FINDING THE EQUATIONS TO BE MODIFIED

10.4. REPLACING LARGE PHYSICAL DIMENSION TABLES BY ISAM FILES.
11. MODEL FUNCTIONS

11.1. LIST OF FUNCTIONS IN MODEL
11.2. BUILT-IN PWI FUNCTIONS

11.2.1. ARITHMETIC FUNCTIONS
11.23. STRING-HANDLING FUNCTIONS
11.23. SYSTEM FUNCTIONS

113. BUILT-IN MODEL FUNCTIONS
11.4. FUNCTIONS DEFINED BY USERS

Appendix L ERROWWARNING MESSAGES IN MODEL
Index

PART I: INTRODUCTION TO MODEL

1. INTRODUCTION AND OVERVIEW

1.1. INTRODUCTION
This text contains description of the syntax and semantics of the language, MODEL, and techniques for its use.

MODEL is a fifth-generation computer language. It is equational and non-procedwal. (What these terms mean
will be made cleat to you as you begin to get involved in the MODEL system.) In this chapter, we shall discuss the
value of the language.

MODEL is a tool for systems and program design and &velopment. Like most computer languages, the MODEL
system comes with a compiler which is used to receive and analyze the language statements. But as we shall see
later on, the whole process of analysis and coding is radically different in the MODEL system from programming
methods in current practice.

Using today's conventional technology, it is necessary for the analyst to have knowledge of how a computer
works internally. Otherwise, the analysis is often unusable by the programmers. To express data processing
requirements that are translatable into a procedural language requires knowledge of how a computer executes the
solution of the problem Non-procedural languages are problem-oriented and independent of knowledge of how the
computer works.

MODEL eliminates the need for transfer of information from analyst to programmer. The MODEL system uses
the computer to perform program design and coding automatically. In traditional systems design, after the
requirements and analysis phases are completed, the programming task begins. Specifications are given to
programmers who fmt perform the program &sign and then write and debug the programs. In MODEL, once a
specification is completed, the "programming" task is also done as a byproduct The specification itself is entered
into the computer; submitted to the MODEL compiler. A PUI program is generated, as well as a series of reports
about the newly generated program.

MODEL has facilities for automating all program development phases: design, coding and testing. It reduces the
analyst's involvement with computer execution through having the compiler interface with the computer and its
environment. The analyst writes a specification which is entered into the computer. The specification is
transformed into a PUI program by the MODEL compiler. As soon as the specification is completed the system is
ready for testing. In short, MODEL is an outgrowth of a widespread need to make programming more natural and
more accessible to non-programmers.

Welcome to the realm of non-procedurality. You are going to learn a new methodology for systems analysis. It
will help you to complete complex projects and enable you to conceptualize problems in a clear, precise manner,
without having to at the same time worry about its implementation in a computer.

1.2. HOW TO USE THIS TEXT
Because MODEL is intended to be easy to use, there is no need for a high level of computer skills in order to

learn it. This text is written for a range of people, from those who have had no previous experience with computers,
to seasoned programmers looking for a new tool. We will explain all computer-related terms that we use, but we
assume familiarity with algebra and basic mathematics. We also include comments written for people who know
more about computers. (In planning this manual we set a goal of providing useful information about the MODEL
system to people of all levels of computer experience who have a familiarity with algebra and basic mathematics.)

Here is a summary of the chapters. There are two parts. The first part provides an overall review of MODEL. It
consists of three chapters as follows.

The first chapter explains MODEL in general terms. It gives suggestions for using the rest of the text and
presents the components of a specification.

The second chapter reviews the basic concepts of data processing needed to program in MODEL. Some of this
material may be a review for readers who have a computer background. The chapter should be reviewed before
reading subsequent ones.

The third chapter discusses the process of developing a specification and the stages encountered in a specific
application.

The fourth chapter presents the syntax and semantics of the language elements, the basic building blocks of the
MODEL specification. The second part provides more detailed information on the statements of MODEL and how
to use it. This part contains eight chapters as follows.

The fifth chapter presents the syntax and semantics for representing data to be described in MODEL
specifications.

The sixth chapter describes how equations are composed

The seventh chapter discusses use of subscripts in equations.

The eighth chapter describes the use of MODEL control variables.

The ninth chapter discusses techniques employed in debugging of a MODEL specification.

Chapter ten describes considerations in composing a MODEL specification of efficiency of the produced

Program

Finally, chapter eleven contains a description of functions available in the MODEL system.

First skim each chapter to get an idea of what it's about, then read it for understanding. Flip back to earlier
sections to find information that is referenced. Refer to the Index and Table of Contents when additional
information on any specific topic is desired. Try also to follow the explanations accompanying the examples. This
will help reinforce the important points.

1.3. USING THE MODEL SYSTEM
A program can be described as a means of taking certain data (e.g., lists of numbers or words) and producing new

data as its output The input can come from one or more external devices such as tape, disk, cards, or a keyboard.
The output can appear on a report or go to a screen, tape, disk, or cards as well.

A conventional computer program (e.g. COBOL, PUI, etc.) consists of a list of instnrctions that tell a computer
what to do. If the program was correctly developed, the computer will carry out the planned sequence of events
needed to achieve the system designer's goals.

The MODEL compiler is what is known as an automatic program generator. The user gives the compiler a set of
requirements, (called a spec@cation), and the system automatically produces a program in PUI, which you can then

. Source Data
Step 1

Cata Processing

PROGWM Requirements

Target Data
Step 3:

Keyboard Key I n
Termina I and run MOCEL " Cornputatfon

MODEL Statements
Data v .

Header FAODEL

A System

S t eo 4 Anal y3l3 o f .
In~mpletenassas
Amblguitfes
hconsistencies

0
and Program Oocurnc!~tulion

PROGRAM - step 5:
~ M P I L J ~ ~ O N Camp iia and Load

Step 7 : - Step 6:
Change Specificat ion run PIogm

for A Revised

4
Requirement PROGRAM

Figure 1.1 The Overall Procedure for Using MODEL

use as you would any other program It is not necessary for you to know how to program in PUI in order to use
MODEL.

A MODEL specification consists of three main parts each with its own purpose: the header names the
specification and any input and output files; the data declaration describes the organization of the data; the
equations state the relationships among data (the problem statement).

The writing and using of a MODEL specification takes place in several stages. These are illustrated in Figure 1.1.

The process starts with a need to solve a problem through potential data processing applications. It may involve a
few or several programs that communicate among themselves, and that read in and produce data. We call individual
executable programs modules.

In the second step you compose a specification for each module in an attempt to state the problem in detail. Most
users will probably enter their specifications through a terminal using a text editor.

In step 3, the MODEL compiler checks the input specification for incompleteness, ambiguities and
inconsistencies, and reports any that it finds. It makes decisions in an attempt to fill in what is missing. If the
specification compiles cleanly it produces a program in PUI.

In step 4, the system generates documentation from its compile of your specification. You can select various
report listings which will help you improve upon your original attempt at the problem statement. Possible report
options include a reformatted listing of the specification, a variable cross-reference report, a subscript-range report
that gives the dimensions and sizes of a l l arrays, a flowchart and listing of the generated program and an error

report-

The error report contains both warning and error messages. Warnings indicate that aspects of your specification
may have been reinterpreted because of incomplete information. Error messages refer to problems which prevented
the MODEL compiler from successfully converting your specification into a PUI program. Error messages
describe the type of error along with the line in your listing where the error is located.

At this point, using the documentation of your specification, you may wish to rewrite and correct parts of it.
When you resubmit a specification after correcting the errors, the compiler may present a new set of other errors
which were previously hidden. (For example, the compiler does not discover semantic errors until errors in syntax
are corrected.) This process usually takes place over a few stages.

In step 5, after you have successfully compiled your specification into a PUI program, you can submit it to the
PUI compiler and load it in preparation for execution. Before you can run the program, you must have your input
(Source) data in a form available to the computer and stored on some physical device such as cards, tape or disk.

In step 6, you run the program which the MODEL compiler has written from your specification. After
examining your output (Target) data, if you are satisfied with the results, then you can stop. Otherwise, from step 7
you can alter the specification and try again. In general, it is recommended that you only make alterations in the
MODEL specification and not in the PUI program it produces, though this h sometimes a useful debugging
technique. Because changes are easy, MODEL is well suited to the maintenance of programs as well as their
creation.

1.4. WHY USE MODEL: A SUMMARY
We hope you will find MODEL simpler to use than other languages, because writing a MODEL specification

only requires the ability to express the relationships (equations) that characterize your problem and frees you from
the details of how the computer executes the solution. Writing a MODEL specification is conceptually allied to
setting up equations for an algebra problem

In MODEL, tasks such as input, output, program timing, memory allocation, and loops (repeated sets of
operations) are all set up by the compiler based on your specification. To use MODEL, you don't need to know
what a loop is. You can learn to use it effectively even if you have not had exposure to computer concepts. Your
task is further simplified because the MODEL system conducts a thorough analysis of your specification and
prompts you to correct any incompletenesses, inconsistencies, or ambiguities that it may have discovered. Finally,
the MODEL compiler will produce a highly efficient program, which would otherwise require more detailed
analysis.

MODEL will also be attractive to you if you are already a proficient programmer with sophisticated business or
scientific needs. For example, the equations format supports simultaneous equations, making MODEL an ideal
language in which to perform system modelling.

Unlike other very high level languages, MODEL is domain independent and general in purpose. It uses all the
functions and data types available in WI, and allows new functions to be defined as well.

2. BASIC CONCEPTS

2.1. MODEL TERMS
In this chapter, we will infroduce the basic concepts for developing equations and using data in MODEL.

2.1.1. FILES
A p e in MODEL is an aggregate of scalar or array variables. A file can be viewed in many different ways by the

user. This provides great versatility in approaches for solving problems. MODEL accesses files through its
generated PUI program. You describe the data in your specification in two different ways. One is a structural
representation of the data in your source (input) intermediate and Target (output) files; the second is through
expressing the relationships between data as indicated in your equations. You can think of the purpose of a
program as being one of achieving the goal of realizing target files according to constraints expressed in equations.

Data may be external or internal. External data are data residing on external devices and are represented by
Source File or Target File statements in the specificiation. Internal, or Intermediate files are data structures set up by
the programmer to hold data, but this data will not be available after the execution of the program is completed.

2.1.2. VARIABLES
In a MODEL specification, the equations express relationships among variables. The concept of a variable in

MODEL is different from the concept in a procedural program. In procedural languages, a variable is a slot which is
given a name, like a mail slot. This slot can be filled with any one of a range of possible values, and these may
change during the program execution.

MODEL is unlike most computer languages which allow you to assign more than one value to a variable in a
program. One reason for this restriction in MODEL is that we follow the mathematical notion of an equation. An
equation in MODEL defines a dependent variable on the lefthand side of an equal sign in terms of independent
variables on the righthand side. If the independent variables are vectors or arrays, then the equation will be applied
across the entire structure throughout its ranges. We consider each element of a multi-dimensional saucture to be a
separate variable. Therefore, variables contain one and only one value.

Furthermore, when the independent variables are given values, the dependent variable is computed from the
single equation. A dependent variable is said to have only one value and that is the value of the equation which
expresses the relationships among the variables needed to detennine it.

2.1.3. SUBSCRIPTS
As in algebra, in MODEL, you use subscripts in parentheses to distinguish between the elements of array

variables. The subscript gives the position of an element along a dimension of the array. Individual instances of
data are represented by a variable name as well as subscript values. The subscript starts at 1 (first element) and goes
up to the number of elements in the dimension which is also known as the dimension's range.

A subscript is placed in parentheses after a variable name, for example, ITEM(1). This represents the first
element of the data structure called "ITEM". Subscript values must be integers or variables that have the value of
integers.

The real power of MODEL comes through the use of Subscript variables. For example, in "lTEM(J)", J is said to

be a subscript variable. "ITEM(J)" refers to a range of elements as J is allowed to vary. It can take any value from
1 to n, where n is the range of the dimension.

Of course, a variable may have more than one subscript depending on the number of dimensions in its structure.
Generally, however, most standard MODEL applications will be limited in their use of multi-dimensional data
structures. With just a few dimensions, the MOD= language can solve most every problem.

2.2. PRINCIPLES OF DATA ORGANIZATION
As part of writing a MODEL specification you need to describe how your data are organized. The equations you

will write represent a bridge between your source and target files. How you set up your data structures will greatly
impact the way you approach the more general task of describing the problem through the equations. (MODEL
allows you to describe your problem as a means tc reaching solutions.)

The following discussion provides a theoretical background of representations for multi-dimensional structures as
it applies to MODEL data structures. It may be skimmed if you feel comfortable with the concepts of Arrays and
Tree sauctures. Later chapters will explain how these conventions are applied in data declarations.

2.2.1. ARRAYS AND TREES
The phrase "how your data are organized" concerns also the names and subscripts you use in equations to refer to

each piece of data. In MODEL, you may think of data as consisting of lists (vectors) of basic elements, lists of lists
(matrices), lists of lists of lists (3 dimensional arrays), etc. Each list has a name and a repetition count, that is, the
number of elements it contains. The use of subscripts is consistent with organizing data. (The use of dimensions of
arrays and subscripts in describing arrays will be explained shortly). For example, each row in a table may be
thought of as a list, and the whole table may therefore be thought of as a list of lists. Each element in the table can
be identified by providing the values of its subscripts. Figure 2.2 shows a 3x4 array of iterns in shopping lists for
three different stores, each list contains four items.

ITEM %

1 2 3 4

LIST OF STORES --
1 SUPERMARKET apples milk bread cheese

2 DRUG STORE band-aids cough drops comb soap

3 SCHOOL BOOKSTORE MODEL text calendar Pens notebook

Figure 2.2

Shopping List Array

In MODEL this organization is described as a 3 level hierarchid structure as follows:

1 SHOPPING-LISTS IS GROUP,
2 STORE (3) IS GROUP

3 ITEM (4) IS FIELD (CHAR(12));

This table has a rectangular saucture; it consists of three STORE lists of each four i t e m with 12 characters allowed

for each item. You can do this because each list has the same number of items. In a rectangular array each row
should have the same number of entries as every other row. The same thing is true for the columns.

Suppose after checking your refrigerator, you realize that you need to add chicken to your supermarket shopping
list. To keep track of a set of lists where you can potentially have a different number of items on each list, you need
to allow also non-rectangular arrays with different number of elements in each row. Another alternative is to
structure data in the form of a tree.

SHOPPING LIST
I

I 1 I
SUPERMARKET DRUG STORE SCHOOL BOOKSTORE

I I I
I I I I I I I I 1 I 1 I I

apples 1 bread I chicken lcough drops lsoap I calendar 1 pens
I I 1 I I I

milk cheese band-aids comb MODEL text notebook

Figure 2.3

Shopping List Tree

Figure 2.3 shows the shopping list array rearranged into a tree. Trees consist of nodes and the brunches between
them Nodes are the parts of the tree that are given distinct names. In this case, the name of each store is a node in
the tree. Different levels in a data tree are connected by branches. These branches show how the nodes are
interrelated. This kind of data organization is called hierarchical, because nodes representing lists that contains
other lists are higher up in the tree than the nodes representing the lists they contain.

For any pair of nodes connected by a branch, the upper node is called the parent, and the lower node is called the
child. One node can be the parent for any number of child nodes. Also the same node can be the parent of the one
immediately below it in the tree and the child of the one immediately above i t The node SHOPPING-LISTS,
representing the whole free, is parent for the nodes representing shopping lists for individual stores. Similarly, store
lists are parents for individual items. The variability of number of elements of the items for each store can be
expressed by giving the maximum and minimum number of repetitions of items for each store.

1 SHOPPING-LISTS IS GROUP,
2 STORES (3) IS GROUP,

3 ITEM (4 : 5) IS FIELD (CHAR 12) ;

Such an m y will be called a ragged edge m y . The actual number of elements will have to be defined by an
equation, as described later.

2.2.2. DESCRIBING ARRAY STRUCTURE
The following data structures use numbers as the basic elements. This is a matter of convenience. Data sauctures

may be constructed using character elements. There can be data strucnues of any size containing letters, names,
binary bits, etc. There can also be data structures which include both numbers and character strings as basic
elements.

A scalar or zero-dimensional array is a single variable, like X in algebra. See Figure 2.4(a) for exaniples. Giving
a variable name, such as X or LUCY, to a scalar is enough to idenafy it uniquely. This means using the variable
name, either you or the computer can refer to a scalar without getting it confused with any other scalar.

. 0 5 6.02323 11

LUCY ETAEL LITTLE-RICKY

(a) Examples of Scalars

I 1 2 3 4 5

FELIX (I) . 0 5 - 7 6 . 3 1 .40 .72

(b) Example of a Vector

1 2 3 4

COLUMN (J)

(c) Example of Matrix MOE (I, J)

..
MATRIX (I) 1 2

1 2 3 4 1 2 3 4

COLUMN (K) COLUMN (K)

(d) E x a q l e of Three-Dimensional Array CURLY(I,J,K)

. Figure 2 . 4 Arrays of Different Sizes

A vector or a one-dimensional array is a single row of element variables, each of which can take on one value.
See Figure 2.4(b) for an example of a vector. The number of elements (numbers) in a vector is called its range or
size. Giving a name, such as FELIX, to a vector will not enable you to specifically refer to any of its elements. For
a vector of range M, where M >= 1, any member of that vector can be uniquely specified with a subscript I, where 1
<= I <= M. From the example in Figure 2.4(b), FELIX(1) = .05, FELIX(2) = .76, FELIX(3) = .31, and so on. Each
element of the vector has a different subscript. The whole vector is called FELIX, and its range is 5. Any data
structure, such as FELIX, whose elements are distinguished with subscript values is also called a repeating variable,

or a subscripted variable.

An ordinary table of numbers is a two-dimensional array or a matrix. A matrix consists of a certain number of
vectors laid down next to each other. Each vector is a row in the table, or if you prefer, each can be a column. Each
element of a matrix must have two subscripts, (I,J), to specify it uniquely, where one of the subscripts refers to the
row number and the other refers to the colurn number. For example, in Figure 2.4(c), with I being row number and
J being column number, MOE(2,3) = 4, while MOE(3,2) = 3. The range (or size) of the row dimension of
MOE(IJ) is 3, while the range of the column dimension is 4.

A three-dimensional array consists of a series of matrices arranged one above the other to form a rectangular
prism, like a stack of blackboards. See Figure 2.4(d) for an example (presented two-dimensionally). Each element
of a three dimensional array must have three subscripts (I J,K), where one of the subscripts refers to the number of
the matrix, a second refers to mw number, and a third refers to the column number. For example, in Figure 2.4(d),
with I being matrix number, J being row number, and K being column number, CURLY(1,2,3) = 4, while
CURLY(3,2,1) does not exist. The ranges of I, J, and K are 2,3, and 4, respectively.

A four-dimensional array would consist of a series of rectangular prisms of the same size and shape, like several
stacks of blackboards. The reader can probably infer that an element within it would require four subscripts
(I,J,K,L) for unique specification. The general rule is that an array of n dimensions requires n subscripts in order for
each element to be uniquely identified.

2.3. EQUATIONS

2.3.1. EXPRESSING REQUIREMENTS AS EQUATIONS
The form for representing a problem is expressed through equations. These are statements that define the value of

one variable in terms of one or more other variables, constants or functions. For example,

FRED = 5;

defines the value of the variable FRED to be 5. (FRED could not be given another value in the same
specification.)

ITEM(2) = ITEM(1) ;

defines the value of m (2) as equal to the value of ITEM(1). This equation could appear at any point in the
specification, even before the value of lTEM(1) is defmed. The value of ITEM(1) would be defined in another
assertion, such as

In writing equations, it is common (and efficient) to use subscript variables, instead of subscript numbers. In this
way, all the elements are defined in one equation. This is illustrated with €he following example: Suppose we have
two source vector variables, DIVIDEND, DMSOR and a target vector variable, QUOTIENT. (By -m
"Vector" variable, we mean a one dimensional data structure.) Essentially, we have a list of dividends and a list of
divisors, and we want a list of their respective quotients. The vaIues of the quotients are defined in a single
equation:

QUOTIENT(J) = DIVIDEND(J) / DIvISOR(J) ;

In words, "any Jth quotient is defined as the Jth dividend divided by the Jth divisor." This would apply to aII

values of J, which will generally vary from 1 up to the range of the source file dimension.

Often, it is not possible to define target variables directly in terms of source variables. Instead, we may have to
define interim variables which will be given values based upon the source variables, and still other variables defined
in terms of these, and so on. For example, QUOTIENT(J) might be an interim variable instead of a target variable,
and there might be another equation defrning som= other variable LOGQUO(J), such as

LOGQUO (J) = LOG (QUOTIENT (J)) ;

2.3.2. DEFINING SINGLE VALUES FOR VARIABLES
Non-procedurality requires that a variable be defmed uniquely. Contradictory equations which give a variable

different values are not allowed. Each target and interim variable is defined by one equation in which that variable
appears on the lefthand side of the equal sign. (It is possible to use more than one equation to define a variable
provided each applies when a different mutually exclusive condition is met). The values of source variables are
obtained from data in the source files.

Non-procedurality may at first create some problems, especially for a person who is used to conventional
computer languages where a variable is given different values at different places in a program. It requires a different
way of conceptualizing.

The following example illustrates the difference between procedural and non-procedural. Suppose we wish to
fmd the factorial of M. (Factorial of M, M!, is the product of all the integers from 1 to M, i.e. 1 *2*3*...*M). In a
procedural language we would write a loop program to repeatedly multiply a previous product by the next bigger
integer until the number M is reached (In this example, the value for M! will be stored in the variable, N after the
loop is completed execution).

N=1;
DO I 2 TO M;

N=N* I ;
END

In MODEL the factorial specification would be defined using a subscripted variable N(1). Using a repetition
count of M, or a SIZE statement, the subscript variable, I, will automatically vary from 1 to M. Each element of N(1)
corresponds to a partial product. This equation would have the following form:

N (1) = IF I = 1 THEN 1 ELSE I * N(1-1) ;

In non-procedural terms, the following has occurred: We have defined a vector called N with a range of M. This
vector is a list of numbers the first of which would be represented by N(1), the second by N(2), etc. I is a subscript
variable which covers the range of the vector N.

The above equation says the following: When I is 1, (i.e. N(l), the first element in vector N), then N(1) has a
value of 1 (this is the meaning of "THEN 1"). When I is a value other than 1, (the "ELSE" clause), then N(1) has the
value of I*N(I-1). (The symbol * indicates multiplication.) Expressed otherwise, this simply says that a factorial is
the product of the previous factorial, N(1-I) and the next number in the series. In this case N(5) would have a value
of 120.

2.4. SAMPLE SPECIFICATION
In this section, we have selected an example of a MODEL specification. It solves a simple problem and has been

chosen for illustrative purposes. Review this section carefully because the concepts discussed can be applied to the
writing of specifications in general. In later sections of the manual we shall give sophisticated examples which will
explore more advanced techniques in MODEL.

The following specification solves a problem involving summing groups of five numbers. The source file
consists of records each containing the numbers. The target file is to consist of records each with the sum of the
numbers in the corresponding source records.

The name of this specification is SUMMARIES. It is shown in Figure 2.1.

Module : Summaries ;
Source: Figures;
Target: Sums;

1 Figures is file,
4 Fig-record (*) is record,

7 Number-group (5) is group,
10 Number is field (pic '99999');

? i ,
1 Stma is file, . . t

6 S-record (*) is record,
12 Totals is field (pic '999999'); . - VP_ w r . '

' +

1 Work-fld is field (pic '999999'); - - . --, . . , I

, [I (x , y) are subscripts ; 7

work-f id (x, y)c= if y=l then Number (x , 1) else
Work-fld (x , y-1) + Number (x , y) ;

Totals (x) =work-f ld (x , 5) ;

Figure 2.1

The Specification SUMMARIES

2.4.1. THE SECTIONS OF THE SPECIFICATION 'SUMMARIES'
Look over this specification. Read through the statements. We are going to discuss each of them in detail. (Note,

the line numbers have been added to assist in clarity and are not really part of the specification).

The module name and the source and target files (lines 100-300) comprise the header section. In the case of
SUMMARIES, there is one source file, FIGURES, and one target file, SUMS. The next part (lines 500-1600)
contains the layouts of the data structures. Data structures are the statements which define the shape and elements of
the source, target and interim files. The last part of the specification are the equations. Note that this program has
only two, (lines 1800-2100). As you will see, with these two e@ations the designer of this specification is able to
accomplish the required goal.

In SUMMARIES there is one source file, FIGURES. The statements describing this file are in lines 500-800.
The FILE statement (line 500) must be present in order for the MODEL system to recognize the external file
indicated in the header section (line 200). In combination with a SOURCE or TARGET statement, the FILE

statement tells the system that the statements which follow represent the data structure of external fdes which will be
read and/or written in the generated program. FIGURES, which is a source file, will be supplying data to the
program which will be used to define other variables in the specification.

2.4.2. THE DATA STRUCTURES
There are four types of data statements, FILE, RECORD, GROUP and FIELD. The statements describing

FIGURES contain all four. In the description for FIGURES, the statements each have similar formats beginning
with a level number, (1,4,7 and lo), followed by the variable name, (FIGURES, FIG-RECORD, etc.) and a
keyword, (FILE, RECORD, GROUP, etc.). In addition, the RECORD and GROUP statements, (lines 600 and 700),
contain what are known in MODEL as repetition counts, (this is the asterisk and the number 5 which appear in
parentheses in lines 600 and 700 respectively).

Level numbers are used to indicate the hierarchical relationship among the elements of the data structure. You
will notice in FIGURES that there are four levels, the highest represented by the FILE statement which has a level
number of 1 (all structures must begin with this number) and the lowest is the FIELD with a level number of 10.
Level numbers do not have to be sequential as you can see from the example.

As mentioned earlier, MODEL allows you to define your data as multi-dimensional structures. The number of
dimensions may be determined by counting how many repetition counts exist between a given FIELD statement and
the FILE statement at the top. A repetition count follows the name of the RECORD, GROUP or FIELD to which it
will apply and usually takes the form of either a single number, an asterisk or two numbers seperated by a colon. In
the case of FIGURES, you can tell that the data structure is two dimensional because there are two repetition counts,
one for the RECORD, (line 600) and the other for the GROUP, (line 700).

We get information regarding the ranges of the dimensions from the repetition counts. The (*), indicates that
there are an unknown (or variable) number of repetitions in the first dimension, while the (5) indicates that there are
a futed number of repetitions of the second dimension.

2.4.3. RECORD AND GROUP STATEMENTS
All external files, (source or target), must have a RECORD level in their data declaration representation. This is

the unit the computer uses for input or output of the external file. Although both RECORD and GROUP statements
contribute to &flning the dimensionality of a structure, it is only the RECORD statements which are used for
external files.

In source files, you may use multidimensional data structures to describe data which are in some prescribed
format which you are unable to change. In this case, it is important that you understand the connection between the
representation as it is created in the MODEL specification and the actual data in the external file.

In the case of FIGURES, the record contains 5*5 or 25 bytes (a PIC '99999' is a five byte field and this is
multiplied by the repetition count of NUMBER-GROUP) and there are an unknown number of data records.

2.4.4. THE TARGET FILE, 'SUMS'
In SUMMARIES there is one target fde, SUMS. The statements &scribing this file are in lines 1000-1200. The

FILE statement (line 1000) tells the system that the following statements represent the data structure of the external
file which will be written out in the generated program. The statements describing SUMS contain the FILE
statement, a RECORD statement and a FIELD statement. Since all external files, (source or target), must have a

RECORD level in their data declaration representation, we have one for SUMS as well. We can see that the units
the computer will use for output in the external file will be 6 byte fields, (we have no group repetition this time).

The RECORD statement, (line 1100), contains a repetition count of (*) indicating that SUM-RECORD will be
written an unknown number of times and since this is the only repetition count in the structure, the structure is one
dimensional.

2.4.5. THE INTERIM FILE
It is sometimes impossible to define target file variables directly in terms of source f i e variables. Instead, we

may have to define interim variables which will be given values based upon the source file variables and be used in
turn to provide values to target file variables. This is the case in SUMMARIES. In order to define the target file
field, TOTALS, it was necessary to define an interim which would have the same structure as the source fde, but
which could be used to generate the target field. This variable is defined in line 1400 and is called WORK-FLD.

It is also possible to have FILE statements for an interim file structure, but as can be seen from this example, it is
not always necessary to code this statement

If you look at the equation in which the interim field is defined, (lines 1800-1900), you will notice that the field
has two dimensions. Many efforts have been made to make the MODEL language tolerate incompletenesses and
inconsistencies in specifications. When incompletenesses and inconsistencies are found, the MODEL processor
tries to correct the specification in a reasonable way. The user is saved from the work of writing a FILE statement
for the interim field, WORK-FLD. In this case, the compiler assumes that there are two dimensions above the field

'i with the same ranges as the source fde. \. !, f -+ , ., c J J e it 1 : \ . -c, i .. c , d L 4 . , . I .
An interim structure is completely self-contained and data from it will never remain after the program has fmished

executing.

2.4.6. RANGES AND THEIR PROPAGATION
The program has two subscript variables, identified in line 1600. Subscript variables are used in equations to

enable you to defme an entire array stnrcture in a single statement. The values which the subscripts will assume
have to match the ranges of the dimensions of the variables which use them. For example, we know that the second
dimension of NUMBER has a range of 5. Therefore, we need some way of ensuring that in the expression
NUMBER(X,Y), the subscript Y assumes values which go from 1 to 5.

A subscript variable which appears in a subscript statement as in line 1600 is known as a Global subscript. This
means that whatever range X and Y each have, they will vary over the same range in every equation in which they
are present.

Whenever there is a source file structure with a record which has a (*) for a repetition count, the MODEL
compiler assumes that the end of the source file is the end of the range. Therefore, the generated program will read
until it reaches end-of-file.

We can now draw some conclusions about the range of the target file: The equation which gives a value to the
target field, TOTALS, has TOTALS subscripted by X. Since X is a global variable, therefore we know that the first
dimension of the source f i e (which is also subscripted by X) has the same range as the target file. Since the range
of the source record is the same as the range of the target record, both files have the same number of records.

Suppose there are 500 records in the file. Then the array, FIGURES, will be 500x5. The vector SUMS will have
500 elements.

2.4.7. THE EQUATIONS
Now let us look at the equations in this progrcn. One provides a link from source to interim, (equation 1, lines

1800-1900) and the other, from interim to target, (equation 2, line 2100).

Equation 1 contains the actual calculation of the sum of 5 numbers. It is in a form known as a conditional
equation. Based upon the result of a logical test, (in this case, Y=l), the equation will assume different values,
either NUMBER(X, 1) or WORK-FLD(X,Y- l)+NUMBER(X,Y).

The simplest way to describe what equation 1 accomplishes is to evaluate WORK-FLD as we vary X and
Y. With each record retrieved by the PUI program, (i.e. as X varies in its range), X will be incremented and Y will
vary within its range (up to 5). When Y is 1, WORK - FLD(X,Y) will be given a value of the frst number field in
the source record. When Y is 2, it will add the second number field in the source record to the value of
WORK - FLD(X,2-1) [i-e. WORK - FLD(X,l)]. But, this value was obtained from the first number field in the source
record. So the value of WORK_FIELD(X,2) will now reflect the sum of the fmt two numbers in the source record.
The calculation will occur throughout the range of Y. When Y is 5, we will have the sum of all 5 numbers in the
field WORK-FLD(X5). This is the value we wish in the target file. Consequently, the second equation, is just a
matter of making this assignment.

When this module is run through the MODEL compiler, a PUI program is generated. (PUI is a procedural
programming language.) In this case, the generated PUI program is about 84 lines, much longer than the
specification which led to its creation. The next stage would involve sending the generated program through a PUI
compiler, converting the object file to an executable form and testing the program with test data.

3. PROGRESSIVE MODULAR DEVELOPMENT

3.1. INTRODUCTION
This chapter deals with the subject of progressive modular development. We will approach this subject in two

different ways: First we will discuss the subject in general terms, describing the whole process of systems &sign in
MODEL and the stages of prototyping. This discussion assumes that the entire system design, which may consist of
several modules, is being undertaken, and outlines the approach by which the system gradually takes shape and
definition and eventually the problem is solved.

Next, we shall look at the question of modular development on the lowest level, the stages of coding an individual
specification. We shall go through the step-by-step stages which the designer went through before reaching the final
specification. This application makes use of sublinear indices and therefore should be reviewed in detail by anyone
wishing to understand how this feature adds to the power and scope of the MODEL language.

3.2. THE GENERAL PROCESS OF MODEL SYSTEMS DEVELOPMENT
What approaches are available to a systems analyst wishing to develop a new data processing application?

Generally there have been two basic plans of attack.

One involves an attempt to solve the problem through brain-storming, developing a seemingly practical solution
and presenting this to a programmer or programmers to begin the coding process. Generally, snags arise and the
original plans are revised. This technique requires the analyst to have had experience and experrise in the discipline
of systems &sign, to have an intimate, a priori knowledge of the particular aspect of the business to which the
application will eventually lend assistance. Having programming skills is also frequently required.

The second method for systems development involves building a system up through prototyping with the
assumption that a solution will eventually come through achieving a better focus on the specific characteristics of
the problem. This method came about because it was felt that analysts spent too much time in the planning phase
before all the basic components of the problem had been uncovered and subsequently had to scrap initial solutions
which had been developed under incomplete scenarios.

Development of systems in MODEL involves a gradual convergence toward the soIution through an iterative
process which involves the non-programmer and the computer. Unlike traditional application design, in the
MODEL development process, a knowledge-base of software engineering principles ~IE stored in the computer and
offer help and guidance. The non-programmer is led down the path toward a solution as he states and re-states his
problem with the computer giving feedback each time. With each compilation, your specification or specifications
help to clarify the elements involved. As the problem begins to take form you find that you are also simultaneously
creating a solution.

The systems development process can be broken into five stages. If you are working on a specific problem, you
may find it useful to try and answer some of the questions posed below as they apply to your objectives.

3.2.1. STAGE ONE: A SYSTEM OVERVIEW
Preparatory to any work, the designer will have an idea in general terms of what is needed to be accomplished.

Meetings with users or other system stakeholders will have occurred. Though the actual form which the final
specification will take need not be considered, a broad understanding of the basic elements is essential.

The folIowing questions should be addressed: What data will be given to be used as sources of information?
What is going to be the end use of this information? (Generally at this early stage, you have an idea of the data
sources and the final product in the application, but need only a vague notion of how the two will be connected.)

The data analysis, identifying sources and targets, is the first stage in the evolution of the system configuration.
Inputs can be connected to outputs through modules which are still undefined. In the next stage we shall further
break down the function of each module.

3.2.2. STAGE TWO: FROM PROBLEM TO SUB-PROBLEMS
At this point you will have identified all inputs and outputs of one big box which represents the entire system It

is now necessary break it down further. The overall problem must be divided into sub-problems. The idea is to
proceed based on fmt impressions of a general nimm as to what you can identify. The result of this step should be
a high level configuration of the system, with boxes representing modules. Source files are the inputs to the boxes
and target files are the outputs.

Identify points of data overlap. This serves as glue between boxes. Which sub-problems share the same source
data? Which target data is source data for another box? Whenever possible, communication may be established
between sub-problems sharing data.

3.2.3. STAGE THREE: IDENTIFY GOALSISUB-GOALS
Some areas are more clearly defined than others. As a general rule, you should begin with the areas which have

the least definition. Focusing on these modules will uncover the rest of the required work.

The goals of each box should be listed. As you pmeed, it may be apparent that a box can be broken down further
into smaller boxes. These sub-divisions help to define the goals through the creation of sub-goals.

Sub-goals are frequently identical with the target files. Often, the sub-goals serve as an intermediate collection of
data needed to achieve a desired goal.

3.2.4. STAGE FOUR: PROTOTYPING
Once the breakdown of the application is achieved, it will be most appropriate establish the relationships between

files through equations. MODEL will help you along in this process. Define your Source, Interim, Control and
Target variables and don't concern yourself with the order of execution calculations or details of field
manipulations.

Great care should be given to mapping out the data structures. All subscripts should be defined and their ranges.
Only the critical fields of Source, Interim and Target files (sort fields, conml variables, ranges, in short all fields
critical to the design) should be coded up. These initial versions of your files need not be complete.

As this stage progresses, the partial data structure along with groups of equations can be submitted to the MODEL
COsMPILER which will return reports illustrating the progress, as well as indications of inconsistencies pointing you
back to reconsider approaches to the particular area of the application (and possibly to breaking goals into smaller
sub-goals).

3.2.5. STAGE FJYE: PROGRAM GENERATION
The prototyping generation is the most time consuming. You may have to go through many iterations before the

final product meets the required goals.

As soon as the relationships are defined to satisfaction, further details such as report layouts and texts can now be
added to complete the specification.

When all the module specifications have been completed, not only are the modules defined, but the overall
application configuration is established Another system not &fined here is the MODEL configurator which creates
JCL (VAX only) and ensures that data will be processed in proper sequence.

The W I code is highly optimized. The system is ready for turnover to production.

3.3. DEVELOPMENT OF AN INDIVIDUAL MODULE: A SPECIFIC
CASE

The following section charts a course through the stages of specification design as it was actually experienced by
a non-programmer who was developing an application which would merge data from two files. The designer made
several attempts to state the problem clearly. At each stage, the system directed him to the next area which needed
to be addressed. In this manner, the specification eventually took form and became the basis for a section of a larger
system.

3.3.1. REQUIREMENT
The problem analysis uncovered the following: There were two files with different data but with one key in

common. There was a need to combine these files into a single file which would have all the data of both fdes, but
it was desired-that this be accomplished as follows: If there was a match on the key field, (i.e., if a certain key was
present on both files), then there was to be only a single record created with the information from both present. If a
given key was present in one file but not in the other, then the field which was missing data was to be given a value
which would have a special meaning indicating that the key had not been present on that file. One additional
characteristic is that both source files were sorted by the key field and when a key existed it was only to occur one
time in a given file, (i.e. all the information associated with a key was unique).

Listed below is an example of sample data with 2 Source files and the Target file the system required.

FILE 1 FILE 2

Key Info KeY Info

0 1 John 0 2 Susan
03 Jim 0 4 Trisha
05 Harold 0 6 Louise
0 6 B i l l 0 7 Ruth
0 7 Tom 08 Mary

Target F i l e

Inf 01

John
Not found

Inf 02

Not found
Susan

Jim Not found
Not found Trisha
Harold Not found
B i l l Louise
Tom Ruth
Not found MarY

The goal was to state the problem in MODEL and ultimately generate a PUI program which would accomplish
this task.

3.3.2. SPECIFICATION - FIRST FORM
The non-programmer went through the following analysis: "I have two files and I don't know anything of their

respective ranges: Clearly they will both get =petition counts of '*'. Since they will almost definitely have
different ranges, I will set up three global subscripts, one for each Source file and one for the Target.

"When the key of File1 is equal to the key of File2, my target file Fields will both have values. Otherwise, I shall
use a Iess than, 'c', condition to indicate that I don't have a match, and I will generate target records which have
some data missing."

The non-programmer wrote the following specification and submitted it to the MODEL compiler.

Module: Match;
Source : F i l e l , Fi le2 ;
Target : Combine;

1 F i l e l is f i l e ,
2 F i l e l r ec (*) is record,

3 keyl is f i e l d (char 2) ,
3 i n f o l i s f i e l d (char 20) ;

1 File2 is f i l e ,
2 File2rec (*) is record,

3 key2 is f i e l d (char 2) ,
3 info2 is f i e l d (char 20) ;

1 Combine i s f i l e ,
2 Comborec (*) is record,

3 keyC is f i e l d (char 21,
3 in f o l c is f i e l d (char 20) ,
3 info2c is f i e l d (char 20);

(f l , f 2 , c) a r e subscripts;
keyc (c) = if keyl (f 1) =key2 (f2) then key1 (f 1) else

i f keyl (f 1) <key2 (f2) then key1 (f 1) else
key2 (f 2) ;

inf o l c (c) = i f keyl (f 1) =key2 (f 2) then i s f of (f 1) else
if keyl(fl)<key2 (f2) then i n fo l (f l) else .

'NFQmD' ;

inf o2c (c) = if keyl (f 1) =key2 (f 2) then in f 02 (f2) else
if keyl (f 1) <key2 (f2) then 'NFOUND' else

in f 02 (f 2) ;

First, notice that the problem has been oversimplified for ease of progressive modular development. Although
File1 and File2 have many fields in the real application, in this initial stage it is recommended to leave out the
inessential calculations and express the problem in broadest terms.

Running the specification through the MODEL compiler produced the following error messages:

--- ERROR (S) /WARNING (s) DETECTED FOR COMBOI. INP : ---

WARNING 11x1: SOME SUBSCRIPTS APPEAR ON THE RIGHT-HAND-SIDE BUT NOT ON THE
LEFT---SIDE OF AN ASSERTION. SELECTION IS IMPLIED FOR ",F2,Fl" IN
ASSERTION AASS10.

WARNING 11x1: SOME SUBSCRIPTS APPEAR ON THE RIGHT-HAND-SIDE BUT NOT ON THE
LEFT-HAND-SIDE OF AN ASSERTION. SELECTION IS IMPLIED FOR ",F2,F1" IN
ASSERTION AASS8.

WARNING 11x1: SOME SUBSCRIPTS APPEAR ON THE RIGHT-HAND-SIDE BUT NOT ON THE
LEFT-HAND-SIDE OF AN ASSERTION. SELECTION IS IMPLIED FOR ",F2,FlW IN
ASSERTION AASSg.

WARNING RGP1: DIMENSION 1 OF "AASS9" IN RANGE SET NUMBER 1 DOES NOT HAVE AN
EXPLICIT RANGE.

WARNING RGP1: DIMENSION 1 OF llFILE1.INE'O1" IN RANGE SET NUMBER 2 DOES NOT
HAVE AN EXPLICIT RANGE.

WARNING RGP1: DIMENSION 1 OF "FILE2.INFO2" IN RANGE SET NUMBER 3 DOES NOT
HAVE AN EXPLICIT RANGE.

ERROR En3: NO RANGE DEFINITION FOUND FOR RANGE 1 IN THE RANGE TABLE.
ERROR EVL3: NO RANGE DEFINITION FOUND FOR RANGE 1 IN THE RANGE TABLE.
ERROR EVL3: NO RANGE DEFINITION FOUND FOR RANGE 1 IN THE RANGE TABLE.
ERROR EVL3: NO RANGE DEFINITION FOUND FOR RANGE 1 IN THE RANGE TABLE.
ERROR EYL3: NO RANGE DEFINITION FOUND FOR RANGE 1 IN THE RANGE TABLE.
ERROR EVL3: NO RANGE DEFINITION FOUND FOR RANGE 1 IN THE RANGE TABLE.
WARNING EVLl: THE RANGE FOR DIMENSION 2 OF "FILE1.FILE1RECW NEEDS AN UPPER

BOUND AND HAS BEEN ASSUMED TO BE 9999.
"WARNING* EVL1: THE RANGE FOR DIMENSION 2 OF llFILE1.FILEIREC" NEEDS AN UPPER

BOUND AND HAS BEEN ASSUMED TO BE 9999.
WARNING Enl: THE RANGE FOR DIMENSION 3 OF "FILE2.FILE2RECw NEEDS AN UPPER

BOUND AND HAS BEEN ASSUMED TO BE 9999.
"WARNING* EVL1: THE RANGE FOR DIMENSION 3 OF "FILE2.FILE2RECW NEEDS AN UPPER

BOUND AND HAS BEEN ASSUMED TO BE 9999.
ERROR RTB1: NO IMPLICIT RANGE HAS BEEN FOUND FOR RANGE NUMBER 1 IN THE RANGE

TAELE. PLEASE CHECK RANGE DEFINITION(S) .
STATISTICS: 10 WARNING(S) AND 7 ERROR(S) DETECTED IN SEMANTIC ANALYSIS

- JOB ABORTED DUE TO THE ERROR(S) NOTED ABOVE.

RANGE SET NUMBER 1, (also referred to as RANGE NUMBER 1 or RANGE 1). can be found through
looking at the RANGE TABLE in the back of the listing. Looking it up there, it was found that this was the range
associated with the Target file. The subscripts for the 2 Source files were automatically given ranges which end at
end-of-file, but the system did not know how to determine the range of the Target file.

As a next step, the non-programmer tried to add an END statement for the output structure,
'END.COMBOREC(C)=ENDFILE.FILElREC(Fl)&END~.~~C(Q);'. This cleared up the compiler
error and a PUI program was generated, however, upon trying to execute the generated program, the PL/I went into
a loop and produced no output records.

-a . . -
3.3.3. SPECIFICATION - SECOND FORM - SUBLINEAR INDICES ,

Clearly, the problem required a higher degree of defmition. The S~urce file dimensions eeded to be constrained, Y /
and their connection to the Target nedded to be made more explicit. The reasoning was as follows: Whenever there
is a specific pattern desired between different structur& whenever the incrementing of subscripts needs to be
explicitly controlled, then through the facility of sublinear indices this will readily be accomplished.

Sublinear indices allow you to express the relationships between structures with different ranges in much greater
detail. It was clear from the first attempt that the system was unable to &tennine the exact ordering of events to
solve the problem. More information was required.

The non-programmer needed to define the relationship between Source and Target so the compiler would know
how to perform proper sequencing.

There are two ways to approach this, The first involves expressing the range of the Target file as a sublinear of
the two Source file indices. In this case, the subscripts would be F1, F2 and C(F132). The problem with this
approach is that if we take the case where the Records of FILE1 are lower in key than the current record of FILE2,
then there is no way to tell the MODEL system that it should increment the F1 subscript and hold F2 constant since
they are global subscripts and not sublinear.

The second approach involves expressing the ranges of the Source files as a sublinear of the Target file index.
When the keys are equal, both will be incremented; when one is lower than the other, we shall only increment the
former.

Consequently, the specification was modifled as follows:

Module: Match;
Source : F i l e l , F i l e 2 ;
Target : Combine;

1 F i l e l is f i l e ,
2 F i l e l r e c (*) is record,

3 key l is f i e l d (char 2) ,
3 i n f o 1 is f i e l d (char 20) ;

1 F i l e 2 is f i le ,
2 F i l e 2 r e c (*) is record, /

3 key2 is f i e l d (char 2) , .
3 in fo2 is f i e l d (char 20) ;

1 Combine is file,
2 Comborec (*) is record,

3 keyC is f i e l d (char 2) ,
3 i n f olc is f i e l d (char 20),
3 in fo2c is f i e l d (char 20);

(c) a r e s u b s c r i p t s ;
f f (c) = i f c=l then 1 else i f keyl (f 1 (c-1))<= key2 (f2 (c-1)) then f 1 (c-1) +l

else f l (c-1) ;

f2 (c) =if c=1 t h e n 1 else if key2 (f2 (c-1)) <= keyl (f 1 (c-1)) t hen f 2 (c-1) +l
else f 2 (c-1) ;

keyc (c)= if key1 (f 1 (c) <=key2 (f2 (c) 1 t hen keyl (f 1 (c)) else key2 (f 2 (c)) ;

in fo lc (c) = i f keyl (f 1 (c)) <=key2 (f2 (c)) then in f 01 (f 1 (c)) else rNFOUNDr ;

in f o2c (c) = i f key2 (f2 (c)) <=key1 (f 1 (c)) then info2 (f 2 (c)) else 'NFOUND' ;
end. comborec (c) =endfile. f i l e l r e c (f 1 (c)) & endf i l e . f i l e2 rec (f2 (c)) ;
1 f 1 is f i e l d (dec (7)) ;
1 f 2 is f i e l d (dec (7)) ;

(The END statement for the Target file remains. Also, two data declarations for the sublinear indices have been
added. These were optional).

First note that F1 and F2 have been removed from the subscript statement, They are now Interim variables with
the same range as the Target record. (The end of the Source record range is still automatically generated as
ENDFILE).

Look at the equation for Fl(C).

f 1 (c) =if c=l then 1 else i f keyl (f 1 (c-1))<= key2 (f2 (c-1)) then f l (c-1) +l
else f l (c-1) ;

Put into words, the statement says: If we are at C=l, then read the first record, otherwise, if the prior FILE1 key
(indicated by a subscript of C-1) is less than or equal to the prior FILE2 key, then we wish to increment the
sublinear, (i.e. increment the sublinear). Otherwise, we must leave the current record for later.

The second file is given a similar sublinear statement.

The target fde Fields ate set up with the following rationale: When the keys are equal, all info is present. On a
greater than condition, (i.e. the ELSE condition for less than or equal), there will be a 'not found' condition. (Refer
to statement below for INFOlC).

inf o l c (c) = i f keyl (f 1 (c)) <=key2 (f2 (c)) then inf 01 (f 1 (c)) else INFOUND' ;

This is ensured by the fact that the reading of records will be synchronized by the sublinears.

As it turns our, the desired result was achieved. The following target file was produced by the above
specification.

i

Target F i l e

KeY Inf 01 Inf 02

John Not found
Not found Susan
Jim Not found
Not found Trisha
Harold Not found
B i l l Louise
Tom Ruth

Not found

3.3.4. SPECIFICATION - THIRD FORM - ENDFILE CONDITIONS
Everything was working as planned, except there seems to be a problem with the last record. Instead of "08 Not

found Mary" which was expected, the program produced a record of " Not found".

Immediately, the non-programmer pinpointed the problem as stemming from an inability on the part of the system

to determine values for the target f ie variables at a point where one file had reached end-of-file before the other.

With the test data which had been set up, FILE1 reaches end-of-file after key '07' is processed, while FILE2 has
one more record.

Doming his Sherlock Holmes cap, he realizes that the ENDFILE condition will have to be explicitly added to
conditions. What seems to be happening is that after end-of-file, the key field associated with FILE1 is being given
a value lower than the key in FILEZ, and this is causing incorrect results.

It is therefore insufficient to simply use the keys comparison as a basis for determining the value of the field.
How must the equations be modified? Let us consider the equation for KEYC:

keyc (c) = i f key1 (f 1 (c)) <=key2 (f2 (c)) then
keyl (f 1 (c)) e l se key2 (f 2 (c)) ;

We know that we must test for ENDFILEJILJ5IREC(Fl(C)) to prevent what is currently happening. Is this
sufficient?

keyc (c) = if key1 (f 1 (c)) <=key2 (f2 (c)) & Aendfile. f i l e lrec (f 1 (c) then
keyl (f 1 (c)) e l se key2 (f2 (c)) ;

Well, it may solve the current problem But the eventuality of FILE2 reaching end-of-fiIe fmt must also be guarded
against. In that case KEYC would incorrectly be given KEY2(f2(c)) instead of KEY l(fl(c)).

Therefore the correct logic would be:

keyc (c) = if endfile. f ile2rec (f 2 (c)) I
(keyl (f 1 (c) <=key2 (f2 (c)) & Aendfile. f i l e lrec (f l (c)))

then key1 (f 1 (c)) e l se key2 (f2 (c)) ;

Modifying the equations to incorporate the ENDFILE conditions as above, the specification was once again sent
through the system with the following results:

Target File

Key Inf 01 Inf 02

John Not found
Not found Susan
Jim Not found
Not found Trisha
Harold Not found
B i l l Louise
Not found Ruth

Not found

3.3.5. SPECIFICATION - FINAL FORM
At first glance, the non-programmer felt that the prior modification had had no effect. Upon looking more

carefully, it was noticed that this time, the '07' record is getting a 'Not found' condition from INFO1. this indicated
that the ENDFILE condition was negating the key comparison logic.

When the ENDFILE condition is used, it is sometimes necessary to process the last record of a structure fmt and
only go down the logical path of ENDFILE after this processing has been completed. In this case, through using a
'C-1' instead of 'C' as a subscript to the sublinear for the ENDFILE statements, the specification was corrected and

the results were as desired.

Module: Match;
Source : F i l e l , File2 ;
Target : Combine;

1 F i l e l is f i l e ,
2 F i l e l r ec (*) is record,

3 keyl is f i e l d (char 2) ,
3 in f 01 is f i e l d (char 20) ;

I File2 is f i l e ,
2 Fi le2rec (*) is record,

3 key2 i s f i e l d (char 2) ,
3 info2 is f i e l d (char 20);

1 Combine i s f i l e ,
2 Comborec (*) is record,

3 keyC is f i e l d (char 2) ,
3 i n fo l c is f i e l d (char 20),
3 i n f o2c is f i e l d (char 20) ;

(c) a r e subscripts;
f 1 (c) =if c=l then 1 else i f keyl (f 1 (c-1)) <= key2 (f 2 (c-1)) then f 1 (c-1) +l

else f 1 (c-1) ;

f 2 (c) =if c=l then 1 else i f key2 (f2 (c-1)) <= keyl (f 1 (c-1)) then f 2 (c-1) +l
else f 2 (c-1) ;

keyc(c)= if endfile.file2rec(f2(c-1)) I
(keyl (f 1 (c)) <=key2 (f2 (c)) & "endf i l e . f i l e l r e c (f 1 (c-1)))

then keyl (f 1 (c)) else key2 (f 2 (c)) ;

inf o l c (c) = i f endf i le . f i l e2 rec (f2 (c-l)) I
(keyl (f 1 (c)) <=key2 (f 2 (c)) h "endfile. f i l e l r e c (f l (c-1)))

then info1 (f 1 (c)) e l s e 'NFOUND' ;

inf o2c (c) = i f endf i l e . f i l e l r e c (f 1 (c-1)) I
(key2 (f 2 (c)) <=key1 (fl(c)) h "endfile. f i l e2 rec (f 2 (c-1)))

then in f 02 (f 2 (c)) else ' NFOUND' ;
end. comborec (c) =endfile. f i l e l r e c (f 1 (c)) h endfi le . f i l e2 rec (f 2 (c)) ;
1 f l is f i e l d (dec (7)) ;
1 f 2 is f i e l d (dec (7)) ;

At this point, the non-programmer added the actual &tail calculations and real field names desired and the
specification and its generated program became a part of their system

PART 11: MODEL STATEMENTS AND METHODOLOGY

4. COMMONLY USED LANGUAGE ELEMENTS

4.1. INTRODUCTION
This Chapter will tell you about the basic elements you can put together to write a MODEL specification. Here

we will discuss the use of characters, operators, variable names, constants, expressions, and functions. We assume
that you already know how to get access to the MODEL system. You can use a text editor to write your
specification as an input file. (When using a text editor, it is a good idea to build your specification in a file which
has a name which matches your module name, for example, SUMMARIES.INP on a VAX system In this way, you
will have consistency between the module name and the external name.) You also have the option of using other
methods of input, such as tape or cards. The individual statements you write are made up of the basic elements to be
described in this chapter.

4.2. EBNF NOTATION
In this Section we will explain EBNF (Extended Backus-Nauer form), which is the notation we will be using to

describe the syntax of statements. EBNF is used to construct syntax diagrams which give the allowable
relationships between syntax elements. In the syntax diagrams, elements consist of words which are combined to
form clauses and expressions and are then combined to form statements. We will use syntax diagrams in this
Chapter to define the commonly used language elements and in subsequent Chapters to give the syntax of MODEL
data declaration and equations.

Syntax diagrams in EBNF employ a set of symbols which are used to express how one syntax element is defined
in terms of another. They also indicate how the parts of a statement may be or&red, when elements are optional,
and when they may be repeated. The following set of EBNF symbols will be used in syntax diagrams defining
MODEL language elements. Please review this carefully, as it will make it possible for you to understand the
significance of the diagrams which follow later:

1) ::= means that the left hand side "is defined by" the right
hand side.

2) [...I means that the enclosed is optional.
3) 1 means that the inrmsdiate elements on both sides are

alternatives, either of which can be used
4) [...I* means that the enclosed repeats zero or more times.
5) <...> means that the enclosed will be defined in another

statement in EBNF notation on the left hand side of ::= .
The following is an an example of a syntax diagram:

1 Q4ODEL specification> ::= [<statement>;]*
2 <statement> : := <header statement> 1

<data declaration statement> I
<equation>

The first line of the syntax diagram indicates that each MODEL specification is composed of any number of
statements, each ending with a semi-colon. The second line indicates that a statement may be one of three types: a
header statement (MODULE, SOURCE, and TARGET), a data declaration statement (FILE, GROUP, RECORD,
and FIELD), or an equation (simple and conditional).

4.3. MODEL CHARACTER SET
The character set used by the MODEL language consists of 82 characters, made up of characters, digits, and -

delimiters, which are listed in Figure 3.1. Words are either "reserved words," that is, words that have a meaning
defined by the system (e.g., FILE) or they are names of variables (e.g., TOTAL). Letters used in words in MODEL
statements may be in either upper or lower case, however, for the purpose of this text, reserved words are
represented in upper case letters. Characters, consisting of the letters, $, and - can be used in MODEL variable
names. The numeric digits 0 to 9, can be used in variable names, in any but the first character. They are also used
in declaring FIELD data types. Delirniters, consisting of special characters, are used to separate words and
expressions in MODEL statements. Other characters, which are not part of the MODEL language such as ", ?, %, or
cannot be used in MODEL variable names or statements, but they can be used literally in character string
constants or variables, as described in Sections 4.7 and 4.6.

<character> ::= A ~ B ~ C ~ D ~ E (F ~ G ~ H ~ I (J ~ K I L I M I N I O I P I Q I R I S I T l U l V l W l X l Y l Z l $ l I
a l b l c l d l e l f l g l h l i l j l k l l l m l n l o l ~ l q l r l s l t l ~ l ~ l ~ l ~ l ~ l ~

<digit> ::= 0111213141516171819
<&limiter> ::= . [< I ((+ l & I I J * I) I ; I A l - l / l , l > l r l : I = I (BLANK)
<non-MODEL character> ::= " l ? I % l #

Figure 4 . 1

MODEL Character S e t

4.4. DELIMITERS
Delimiters, (line 3 in above), are used to separate one word or one expression from another, that is, to show where

one ends and the next begins.

All MODEL statements end with a semi-colon. Usually, you write one statement per line, but a complex
statement can run over several lines. Alternatively, several short statements can be put on a single line. A common
syntax error is to omit the semi-colon at the end of one of your statements. This error, while common, is difficult
for the MODEL compiler to resolve automatically, so it's important to remember to put a semi-colon, ';', at the end
of each of your statements.

Blank spaces are used to separate words. Extra spaces and blank lines are ignored.

In MODEL commas serve to separate elements in a series, variable names, subscripts, or function arguments.
You can write comments, which are notes to yourself or others that have no effect on the system, by beginning your
comment with I*, slash-asterisk, and ending it with *I, asterisk-slash as follows:

Documenting your specification by writing comments to explain variable names or the purposes of equation
statements is a good technique, especially if other people will use a specification that you have written.

Parentheses are used to indicate that a list of elements or an expression is to be treated as a single element relative
to the elements outside the parentheses (see Section 4.9.2 for more &tails and examples). Specific uses of
parentheses in different types of MODEL statements are explained as each statement is discussed in later chapters.

The use of most of the other &limiters will be explained in Section 4.8 on operators.

4.5. VARIABLE NAMES
Variable names can be up to 31 characters long. They must begin with a letter from the alphabet or the character

$ (dollar sign), but after that, they can include the numbers, and the character '-' (underscore) as well. Therefore,
the syntax diagram for variable names is as follows:

Only the leftmost 31 characters of a variable name will be recognized by MODEL; the rest will be disregarded.
You can make up the names of the variables as you please, but it's a good idea to make up names that are good
mnemonics. For example, ITEM would be a good name for an element in a stock inventory.

The '-' is used to join parts of a name, instead of a hyphen (which would be confused with a minus sign if it were
used). If you want a variable name to consist of more than one word, then you should connect the words with '-', as
in OUR-lTEM.

4.6. QUALIFIED NAME VARIABLES AND RESERVED WORDS
The period is used to join names to form a qualified name variable. A qualified name variable consists of a

variable name, preceded by one or more special prefmes. The syntax of a qualified name variable is as follows:

1 <Qualified name variable> ::= <prefix>.[<prefix>.]*<name>
2 <prefix> ::= <keyword prefix> I <parent name>

3 <keyword prefix> ::= SIZE I END I LEN I NEXT I POINTER I FOUND I
SUBSET I FOR EACH I MALDATA I ENDFILE I EMPTY

3 <parent nama> : := <name> I OLD I

A qualified name variable can be formed by preceding a variable with a keyword prefix (which is a "reserved
word" and may not be used as a variable name).

Qualified name variables with keyword prefixes are also called conrrol variables. They allow you to define and
refer to specific variable attributes, such as a range of a dimension. For example, if ITEM is the name of a FIELD
variable, then NEXT.lTEM is a qualified name variable that refers to the corresponding FIELD in the next record.
LEN.NEXT.ITEM referring to the length of NEXT.ITEM is also a legal qualified name, showing that a single
variable can have more than one keyword prefixes. The qualified variables generally have the game shape as the
variable named in the suffix, i.e. the same number of dimensions with the same respective ranges. the one exception
to this rule is the SIZE prefixed variable which has at least one dimension less than its suffix. For a quick summary
of the use of keyword prefues see Figure 4.2.

EMPTY. X

ENDF ILE . X

END. X

FOR-EACH . X

FOUND. X

INITIAL. X

LEN. X

NEXT. X

POINTER. X

SIZE. X

SUBSET. X

MALDATA. X

Denotes whether f i l e X is empty (no records)

Denotes whether the record X is the l a s t
in the respective f i l e .

Denotes
the condition of t h e l a s t element a t
a t the end of the rightmost dimension
of t he variable X. It is a
two value Boolean variable.

Denotes global subscript with same range
a s the lowest, rightmost dimension of
variable X.

Denotes whether a RECORD X ex i s t s i n
the ISAM
FILE with same KEY as given by
P0INTER.X. Two value Boolean
variable.

Denotes the i n i t i a l value of the suf f ix
variable X t o be used in an i t e r a t i v e
solution of simultaneous equations where
X is defined.

Denotes the length of a FIELD X

Denotes FIELD X i n the next sequentially
ordered RECORD i n a SOURCE FILE.

Denotes a KEY FIELD t ha t references
RECORD X i n an ISAM FILE

Denotes the s i ze of the range of the lowest,
rightmost dimension of variable X.

Denotes whether record X is
included i n forming
a TARGET f i l e .

Two value Boolean variable.

Denotes whether a conversion e r ro r
occurred when reading a f i e l d of
source record X.
Two value Boolean variable.

FIGURE 4.2

Use of MODEL Keywork Prefixes

A qualified name variable can also be formed by preceding a variable with OLD, NEW or a filename. This form
has the purpose of eliminating ambiguity. If you give a variable used in an equation a prefix of OLD or NEW, it
will distinguish between the same FIELD in a SOURCE FILE and its updated TARGET version (when both FILES
and both FIELDS have the same name). An example is the equation

NEW.BALANCE = OLD.BAL?iNCE + DEPOSIT;

The second way qualified names are used to eliminate ambiguity is to give a variable a prefix of the name of the
FILE in which it is a member if the same variable name is used in two different FILES. (However, you cannot use
the same name for two variables in the same file.)

Consider the case where the same FIELD variable, ITEM, is contained in both a SOURCE FILE, IN, and a

TARGET FILE, OUT. (IN and OUT are FILE names, not keywords.) For unambiguous reference in your
equations, the name of this FIELD could be preceded by the name of the FILE it came from as in

0UT.ITEM = IN.ITEM + SOMETHING;

4.7. CONSTANTS
A constant is a string of characters or numbers appearing in equations. You write constants directly as operands

in your equations. This means that they are fixed, in the sense that their values don't depend on the external given
data MODEL recognizes three types of constants: character string, bit string, and arithmetic.

4.7.1. CHARACTER STRING CONSTANTS
Character string constants are &fined as follows:

1 < c h a r a c t e r string constant> ::= '<any character> [<any character>]*'
2 <any character> ::= <character> I <digit> I <delimiter> 1

<non-MODEL character>

A character string constant is formed by enclosing a string of any characters and of any length in apostrophes, for
example, 'JON'. Character strings can be used with any operators or functions that work on character strings, such
as the concatenation operator, 11 (next Section), or the function SUBSTRING (Section 3.10)

4.7.2. BIT STRING CONSTANTS
A bit saing constant is similar to a character string constant, but it contains characters listed below. It is defined

as follows:

1 < b i t string constant> : := ' < b i t > [<bit>] *'B [<n>]
2 *it> ::= 011(2131415161718)9(AlBlClDlElF
2 <n> ::= 1 1 2 1 3 1 4

A bit string constant can be of any length and should be enclosed with apostrophes. To distinguish it from a
character string constant, bit string constant is followed by a capital B, as '10101 1'B.

MODEL accepts four forms of bit string constants. These are strings expressing values in base 2, base 4, base 8,
or base 16. Bit string constants are used in logical and saing expressions (Sections 4.9.4 and 4.9.5). To show that a
bit string constant is in base 2, you would follow the string with a B or B1. A base 2 bit string constant may only
contain 1's and 0's. This is the form of bit strings which is most common. (A base 4 bit string constant is indicated
by following the string with a B2, base 8 with a B3 and base 16 with a B4.

4.7.3. ARITHMETIC CONSTANTS
Arithmetic constants are used in arithmetic operations and are written using a string of digits. They are defined as

follows:

Arithmetic constants are always decimal (not binary). They can have a fractional component (also decimal) and
can be expressed in exponential notation which is a shorthand way of expressing numbers which are very large or
very close to 0. In exponential notation the unsigned number part of an arithmetic constant (called the mantissa) is
multiplied by 10 raised to the power of the exponent. The exponent must be an integer. In the Vax version of
PLII, the exponent cannot have an absolute value higher than 34 (see Section 4.6 for more information). The " E
preceding the number means "10 to the". Examples of arithmetic constants are 1001 1, 503.64, and 9.45E-23. (To
write 9.43323 without exponential notation, you would have to put 22 zeros between the 9 and the decimal point at
the beginning of the fraction.)

As you will see in the description of arithmetic expressions, arithmetic constants can also be given a positive or
negative sign in front of them. Arithmetic expressions and the operators used in them will be discussed in detail in
the next two sections of this chapter,

EXPRESSION OPERATORS OPERAND

ARITHMETIC

STRING

BOOLEAN

COMPARISON

ARITHMETIC ARITHMETIC
(Decimal, Binary,
Numeric String,)

LOGICAt LOGICAL

STRING STRING
(Concatenation) (Character, Bit)

LOGICAL

COMPARISON

BIT, COMPARISON
EXPRESSION

ANY EXPRESS ION

Types of Expressions
Figure 4.3

4.8. OPERATORS
Certain of the MODEL &limiters, called operatom, indicate arithmetic, logical, or string operations. These

symbols are used with variables, called operands, to create expressions. There are restrictions on which Operator
can go with which kind of operand (see Figure 4.3). These restrictions have to do with the idea of data types,
(Section 5.6) It does not make sense to divide one character string by another character string. And although it may
make sense to "add" two strings, by stringing them end to end, MODEL uses 1) for this rather than +. This operation

is actually called concatenation. When you declare variables in your specification, you also indicate the data type
of each variable. If you try to use an operator with the wrong type, for example, a + between two variable names
that stand for character strings, you will get a conversion error message (Section 4.11). The conversion is however
performed automatically if it is feasible, namely if the character string consists only of numbers.

The following symbols are the arithmetic operators which can be used with any arithmetic variables, constants,
or functions that are decimal or binary. Arithmetic operators are used in arithmetic expressions (next Section).

+ addition, or a prefix indicating a positive number;
- subtraction, or a negative number;
* multiplication - NOTE: This MUST be used for multiplication.

Unlike algebra, you do not indicate
multiplication by no symbol at all.

/ division
** exponentiation or raising to power - For example, 2**3 means

2 to the third power, or 8.

In addition to arithmetic operators, there are the following comparison operators, which are used in Boolean
expressions (see next Section):

greater than
less than
equals
not greater than'
not less than
greater than or equal to
less than or equal to
not equal to

The equals sign '=' is also used in MODEL equations to mean "is defined as".

Another set of operators, called logical operators, can be used in logical or Boolean expressions.

A not
6 and

1 01:

These operators work on Boolean, or bit string variables (including binary). A Boolean variable has a value of
either true or false represented by a 1 or a 0. In Boolean expressions, these operators work on single Boolean
variables, while in logical expressions, these operators work on bit strings and binary variables (see Sections 5.7.2
and 5.9.4), which are equivaIent to several Boolean variables strung together.

Parentheses, '(' and ')', are called group operators and can be used in any type of expression and with any data
type. They usually surround one expression which is contained within a second expression. They mean that the
expression they surround is to be evaluated separately and treated as a unit in evaluating the second expression.

The symbol I(is called the concatenation operator or string operator. It is used with bit strings and character
strings in string expressions. It means "string together" or place end to end. Other operations performed on strings
use reserved functions instead of operators, and we shall discuss these later.

4.9. EXPRESSIONS
Expressions are combinations of operaton, functions, constants, and variables which act like clauses or phrases in

a sentence to express a partial value. Expressions can also be combined to form larger expressions. The major types
of expressions used in MODEL equations are arithmetic, logical, string, and Boolean. Comparison expressions are a
subclass of Boolean. The types of expressions, along with their preferred operators and operands were listed in
Figure 4.3. It is also possible to write expressions containing mixed operands. Depending on the particular case,
one of the operands may be converted by the PUI compiler, so that the expression can be evaluated, or you may get
an error message. (Section 4.11 describes the treatment of expressions with mixed operands by the MODEL
system).

4.9.1. USE OF OPERATORS IN EXPRESSIONS
Expressions containing operators are evaluated in the following order of priority, based on the operators they

contain:

() (expressions enclosed in parentheses)
functions
expressions used as subscripts (subscript expressions)
+ (as a prefix, meaning a positive number)
- (as a prefix, meaning a negative number)
* * (exponentiation)
A (logical not)
* (multiplication)
/ (division)
+ (addition)
- (subtraction)
I I (concatenation)
= (equal to)
> (greater than)
< (less than)
"> (not greater than)
"< (not less than)
A= (not equal to)
>c (greater than or equal to)
<= (less than or equal to)

& (logical and)
I (logical or)

In this table, operators with higher priority (lower numbers in the table) are applied fmt in evaluating expressions.
Thus, in A * B + C, A and B are muItiplied before C is added. You can tell this because * is priority 5 and + is
priority 7. Similarly in "D 1) E, logical not, ", is applied to bit string D before it is concatenated to bit string E,
because A is priority 4 while 11 is priority 7. All the operators under the same number have the same priority. If
several operators of the same priority are present in the same expression, then the operators will be applied
sequentially from left to right, except for exponentiation, which is applied from right to left, and parentheses. (See
next section)

4.9.2. PARENTHESES IN EXPRESSIONS
Expressions can be combined to form larger expressions. At the end of Chapter 2, we discussed structuring data

in terms of trees where nodes can keep branching into new nodes deeper in the tree. The same thing is true for
expressions; the various types of expressions can include expressions as basic elements. For example, the syntax

diagram for arithmetic expressions (Section 4.9.3) shows that an arithmetic expression, surrounded by parentheses,
can take a sign, be raised to a power by an exponent, etc. These nested expressions could contain other expressions,
which contained still other expressions, and so on.

You show that expressions are nested in other expressions by enclosing the inner expression in parentheses. By
creating embedded expressions, you can change the order that operators will be applied in evaluating your
expressions. This is because parentheses have the highest priority as operators. For example, in the expression A +
B * C, according to the above order of operations, the multiplication is done before the addition. However if you
rewrote the expression using parentheses to form (A + B) * C, the parentheses would cause the addition in the inner
expression to be done fmt.

Parentheses can also be used to change the order that expressions containing logical and string operators are
evaluated. For example, to apply a logical not, ", to two strings after they have been concatenated, you should
enclose the two strings and the concatenation operator in parentheses as in ?A 11 B). If you use several sets of
parentheses inside each other, the expression embedded within the innermost parentheses will be evaluated first,
then the second innermost, and so on. You can also use parentheses to improve the readability of expressions by
setting off related elements together, without changing the value of the expression, as in ((A**3)/B) - ((X**4)/Y).

4.9.3. ARITHMETIC EXPRESSIONS
The basic components of arithmetic expressions are arithmetic constants, variables, functions, other arithmetic

expressions, as well as the various arithmetic operators. Any variables or functions used in arithmetic expressions,
must have interpretable values which are numeric. They may be of decimal, binary, numeric suing, or picture data
types. Subscript variables are a special class of arithmetic variables. (Arithmetic expressions used as subscripts,
which may contain subscript variables, are called subscript expressions. These are described in Chapter 7.)

The syntax diagram defining arithmetic expressions is as follows:

1 <arithmetic expression> ::= <arithmetic term> [<addition operator>
<arithmetic term>] *

2 <addition operator> ::= + I -
2 <arithmetic term> ::= <arithmetic factor> [<multiplication operator>

<arithmetic factor>] *
3 <multiplication operator> ::= * I /
3 <arithmetic factor> ::= <arithmetic primary>

[** <arithmetic primary>] *
4 <arithmetic primary> ::= [<sign>] <arithmetic element>
4 <sign> ::= + 1 -
5 <arithmetic element> ::= <arithmetic constant> I <arithmetic

variable> I <subscript variable> I
arithmetic function> I

(<arithmetic expression>)

Operations in arithmetic expressions apply to both decimal and binary variables, functions, and nested
expressions. However, as described in Section 3.7.3, arithmetic constants must be decimal.

The following are examples of arithmetic expressions:

4
ELEPHANT + 3
JACK * QUEEN
PAUL + DAVID * ANN/ (LUKE - 4)
-12E-15

4.9.4. LOGICAL EXPRESSIONS
The syntax diagram of logical expressions is as follows:

1 <logical expression> ::= <logical term> [I <logical term>]*
2 <logical term> ::= <logical factor> [h <logical factor>]*

3 <logical factor> ::= [A]<logical primary>
4 <logical primary> ::= <bit string constant> 1 <bit string

variable> I <binary variable> I
<logical function> I (<logical expression>)

The operands of logical expressions are bit strings (including functions, constants, and variables), binary
variables, and nested expressions. (Bit string constants with a base other than 2 are represented internally as base 2
strings in logical expressions.) Each 1 or 0 in these operands corresponds to a separate Boolean variable. (In
essence 1 means true and 0 means false.) The logical operators &, I, and A can be used with operands of any length;
& and I take two operands, while " takes one. The result of any of the above operations is always a single bit string.

The logical operators, and, &, and or, I, work on individual bits in the same respective positions from the right
ends of two logical operands. When these operators are applied to operands of different lengths, 0's are added to the
right of the shorter operand until the operands are of the same length. Thus, the length of the result will be the
length of the longer operand.

If the logical operation is & and if the corresponding bits in the two operands are both 1's (true), then the resulting
bit in the new string is a 1; otherwise it is a 0 (false). For the I operation, if one or both of the bits in the two
operands is a 1, then the resulting bit is also a 1; otherwise it is a 0. For example, if X is '10110'B and Y is
'llOOOIB, thenX&Y is '10000'B andXI Y is'11110'B.

The logical not operator, '"', reverses the truth value of what it precedes; it exchanges '1'BYs for 'O'Bss and
'O'B's for '1'B's in a logical primary. For example, if X is '10110', then "X is '01001'. (On some keyboards it
looks like a sideways 'L' and is usually above the "6).

4.9.5. STRING EXPRESSIONS
String expressions, which can incorporate only the concatenation operator, 11, are defined in the following syntax

diagram:

1 <string expression> ::= <string term> [I I <string term>]*
2 <string term> ::= <character string constant> I <character string

variable> I <string function> I
<logical factor> I (<string expression>)

In string expressions, character string constants, variables, functions, and nested expressions can be. joined
together to form longer character strings. For example, 'Learning the MODEL language' 11 'is fun.' becomes
'Learning the MODEL language is fun.' Logical factors can also be smng end to end using the concatenation
operator, so that '1 11 101'B 11 A'O1O1 'B becomes ' 111 101 1010'B. Finally, you can concatenate character strings to
logical factors. The end result will be a character string, with the logical factor being converted according to PUI
conventions. For example, 'WILLIAM' II ' 1001 'B becomes 'WILLIAM1OOll.

4.9.6. BOOLEAN EXPRESSIONS
Boolean expressions, like a Boolean variable, have a single value of true or false. Their syntax diagram is as

follows:

2 <~oolean- term> : := <Boolean factor> [& (Boolean factor>] *
3 (Boolean factor> ::= ["I <comparison expression>

4 <comparison expression> ::= (Boolean primary> [<comparison
operator> <Boolean primary>] *

5 <Boolean primary> ::= <arithmetic expression> I <logical
expression> I <atring expression> I
((Boolean expression>)

5 <comparison operator> ::= = I < I > I <= I >= I "= I
^< I ^>

Boolean expressions act like logical expressions and use the same operators. The only difference is that Boolean
expressions can only have a single bit as an operand rather than bit strings of arbitrary length. Boolean expressions
can use nested comparison expressions as operands, since comparison expressions have a single bit value. An
example is the expression A = B I C = D & E = F, which is aue when either A equals B or both C equals D and E
equals F.

4.9.7. COMPARISON EXPRESSIONS
Comparison expressions can use any type of expression as operands. If the two operand expressions hold the

relationship, given by the comparison operator, then the comparison expression has a bit value of true. If not, then
it has a bit value of false. For example, the comparison expression A > B has a value of true only when A is greater
than B; otherwise it is false. When you write a comparison expression containing more than one non-nested
comparison operator, such as A < B < 10, the comparisons will be made in order from left to right In this case the
comparison expression is always true, because the comparison of A and B will result in a true or false bit (no matter
what A and B are), which will be converted to a 0 or a 1 for the next comparison which will be smaller than 10.

When two expressions are compared, they should be of the same type, that is, both arithmetic, both logical, both
character string, or both nested Boolean. Also remember that comparison operators have a higher priority than
logical 'and' (&) and logical 'or' (I), so if you wish to compare two logical expressions containing & or 1, you should
enclose the logical expressions in parentheses.

When containing arithmetic constants, functions, and variables, comparison expressions follow the same
principles as in arithmetic, for example, 3 >= 2 is true, while 7 < 5 is false. Comparison operations can involve bit
or character strings as well as numbers. When comparison operators are applied to bit strings, if the strings are of
different length, then the shorter string is fmt extended with 0's on the right so that both strings will be of the same
length. So, when evaluating the auth of '10010'B > '100010017B, '10010'B will be extended to '10010000'B.
(This is the same as the convention for using logical operators on strings of different length discussed earlier.) The
bit strings are then compared as if they were binary numbers. Tkefore, using the example from above, the
Boolean expression '10010'B > '10001001'B is true, because '10010000'B is greater than '10001001'B. (If the
numbers 10010 and 10001001 were directly compared in binary, then 10001001 would be greater.)

Character strings are compared character by character from left to right. If the character strings are of different
lengths, blanks will be added to the right of the shorter saing before the comparison is made. The comparison is
alphanumeric, with letters near the end of the alphabet &fined as greater than letters near the beginning of the

alphabet, and lowercase letters greater than uppercase. Also letters are defined as greater than numbers, and
numbers are defined as greater than most punctuation. (The basis for each comparison is the ASCII code numbers
of the relevant characters, and on IBM, EBCDIC conventions apply). If the fmt character in two strings is the same,
then the second is compared, and so on. All of the following are true comparisons of character strings:

'ABZ' > 'ABY'
fNOAHf < 'Noahf (This is just the opposite in EBCDIC)
'catlf > 'cat.'

4.10. FUNCTIONS
There are certain tedious calculations that most users want their specifications to perform at one time or other. To

save you from the necessity of having to write equations to specify these calculations, you can use functions. These
functions are either built into the MODEL system or added by a programmer. To use a function, you enter the name
of the function along with the variable(s) or expression(s) that you want to be operated on. An example would be
the function SQRTO, which evaluates the square root of a positively valued arithmetic expression surrounded by
parentheses. X is called the argument of the function, what the function operates on. In this case, X represents an
arithmetic argument, but for other types of functions, it could represent other types. More complex functions can
have several arguments. The single result that a function with any number of arguments returns is called the
function's value.

Function names in a MODEL specification are reserved words, which means they should not be used as variable
names. MODEL can use any of the functions available in PLA. Additional functions can also be written in
MODEL and added to your system Once a function is created in this way, its name also becomes a reserved word.
A sample of PUI functions, plus a list of additional functions written especially for MODEL, is contained in chapter

The syntax diagram for functions is as follows:

1 <function> ::= <function name> [(<argum8nt> [, <argument>]*)]
2 <argument> ::= <arithmetic expression> I <logical expression> I

<character string expression>

To use a function you type in the function's name followed by the variable(s) or expression(s) to be used as
arguments, enclosed in one set of parentheses. If the function takes more than one argument, they are separated by
commas. Some functions do not take any arguments. In that case the parentheses are omitted.

There are functions appropriate for all expressions and data types. SQRT(X), which we already mentioned, is an
ARITHMETIC function which can be applied to decimal, binary, numeric string, or picture data types. Another
example of an ARITHMETIC function is SUM. SUM(X(I),I) adds up all the elements in vector X(1) and returns
the result as a scalar. For a variable with two or more dimensions, a SUM function can be used to add the elements
along any one of its dimensions. SUM is referred to as a reduction function, because it reduces the number of
dhensions of the result to one less than originally contained in the argument.

Other functions can be used on character or bit string variables. An example would be the string function
SUBSTR(Xl,XZLX3]), used to extract a smaller string or substring from string variable XI. X2 gives an integral
value corresponding to the position, counting characters from the left, where you want the substring to be extracted
from X1 to start. X3 is optional, as indicated by the square brackets. You can use X3 to give the number of
characters in the substring. If you omit it, then the substring will extend from position X2 to the end of XI.

4.10.1. CREATING USER-DEFINED FUNCTIONS
If there is a group of logical processes common between several programs, in the interests of ease and efficiency

it is sometimes helpful to separate out the procedure and make it available to a large number of specifications. The
user-defined function facility makes this possible.

User-defined functions have the following requirements:

1- A source f i l e with up t o 10 parameters (input f i e l d s) .
2- A target file with one f i e l d (containing the result of the function).

Functions are defined as any other specification except that the keyword 'function' replaces the word 'module' in
the header section. They must include only one source file and one target file and the target file may have only one
field.

In order to get your function registered in the system, the function specification is run through the MODEL
compiler to create a PLJI source program. There is a special file in the system call the user funcrion library
(UFCNLIB.DAT). This 'file contains PUI source for all the functions available to your programmers in your
installation. In order to add a new function, simply insert the PUI code from the MODEL compilation of your
function into the UFCNLIB file. Make sure to insert it after the end of the last function in the file. At this point the
function is available to be run from any specification.

Functions are invoked from within specifications through function name (must be different than the names of any
fields or other data structure elements) followed by the function parameters in parentheses separated by commas.
The parameters can be in the form of literals or variables.

At execution time, the program will call the desired function and the correct value is returned.

The following is an example of a function and a specification which references i t The function returns one of the
roots of a quadratic equation given the coefficients and the program writes a report.

L

Function: Quad;
Source: quadin;
Target: quadout;

1 quadin is Fi le ,
2 quadinr is record,

3 AIN is f i e l d (pic ' ~ 9 9 9 9 9 ') ~
3 BIN is f i e l d (pic '~99999'1,
3 CIN is f i e l d (pic '~99999');

1 quadout is Fi le ,
2 quadoutr is record,

3 X i s f l d (Decimal (7 ,2)) ;

/* Interim fields for floating point calculations */
1 A is ' f i e l d (decimal Float (l o)) ;
1 B is f i e l d (decimal Float (l o)) ;
1 C i s f i e l d (decimal Float (10)) ;

<An Example of a Function, "QUADss>

Module: Call-fnc;
Source: Coeffic;
Target: Quadrpt;

1 Coeffic is File,
2 Corec (*) is record,

3 Coeff-1 is field (pic '~99999')~
3 Coeff-2 is field (pic '~99999')~
3 Coeff-3 is field (pic '~99999');

1 quadrpt is File,
2 quadrec (*) is record,

3 Literall is f ld (char 22) ,
3 Aout is field (pic '~99999')~
3 Literal-la is fld (char 51,
3 Bout is field (pic '~99999')~
3 Literal-lb is f ld (char 2) ,
3 Cout is field (pic '~99999')~
3 Literal2 is fld (char (17)),
3 Answer is fld (pic 'szzz99v.99') ;

Answer = Quad (Coef f-1, Coef f-2 I Coef f-3) ;

~out=Coeff-l;
Bout=Coeff-2;
~out=~oeff-3 ; +- L
Literall = 'The coefficients are';
Literal2 = ' . The answer is';
Literal-la= ' X**2'
Literal-1- IX: ; k$

\ '4 (A specification which invokes the Function, "QUADw>

4.11. CONVERSION OF DATA TYPES IN EXPRESSIONS AND
FUNCTIONS

As explained in Section 4.9 and 4.10, MODEL expressions and functions were designed to use certain specific
data types as operands and arguments. Figure 4.4 explains how the MODEL system evaluates expressions or
functions written using non-preferred data types.

I LHS TYPE I OPERATOR I RXS TYPE I + -+ +
1 1,2,3,4,5,6,7 I + * 1 lr2,3,4,5,6,7
I-------------------+----------+-------------------

I

** I -------------- I
1 1t2'3t 4,5,6t7 1
I-------------------+----------+-------------------

I
I

I 0,1'3,5,7 I I I I 0'1'3'5,7 I

COMPARISON OPERATOR = = 1 A= I > I >= I < I <=

CHARACTER STRING
FIXED BINARY
NUMERIC
FIXED DECIMAL
FLOAT BINARY
BIT STRING
FLOAT DECIMAL
PIC STRING

Figure 4.4

Conversion of Data Types in Expressions with Mixed Operands

For an operator in a given row of the above table, you can write a legal expression using as operands any data type
mentioned in the LHS and RHS columns of the same row. When an expression uses mixed operands, the RHS
operand is automatically converted into the LHS type. Therefore, the evaluated expression will also be of LHS type.

In conditional equations of the f o m

A = IF C THEN EXPl
ELSE EXP2;

C must have a bit string data type. The choice of data types for EXPl and EXP2 obeys the above rule for
comparison expressions. If different from A, the data types of EXPl and EXP2 will be converted (See Chapter 6 for
more information on conditional equations.)

Functions, as described in Section 4.10, have &ta types associated with their arguments and returned values.
When a function is written using a non-preferred &ta type, the rules of automatic conversion in the "COMP row of
the table are applied. This means that argument(s) will be converted to the type(s) conventionally used with the
function, so that the function can be evaluated normally.

Warning messages are issued whenever automatic conversion is applied. Error messages are issued whenever the
above rules are violated.

5. DATA DECLARATION IN MODEL

5.1. OVERVIEW
This Chapter will discuss the syntax and semantics of MODEL data declaration statements. Syntax, as you recall

from the previous chapter, is concerned with how the elements of a statement are defined in terms of other elements
and how they are ordered. Semantics, on the other hand, is concerned with the meanings produced by choosing to

use certain elements rather than others The discussion of the syntax of MODEL data declaration relies heavily on
EBNF notation (Section 4.2.) Therefore, make sure you understand how these diagrams are read before you go on.
In the following sections syntax rules will be applied in examples to help give you some idea about how best to use
the options in data declaration to solve particular problems.

5.2. MODEL HEADER
MODEL specifications start with a program header. The header has three naming functions: It names the

specification, source files, and target files. These naming functions are carried out by using different statements as
expressed in the syntax diagram of Figure 5.1.

1 <header statements> ::= <MODULE statement> [<SOURCE FILE statement>]
[<TARGET FILE statement>]

2 <MODULE statement> ::= <MODULE> : <name>;

3 <MODULE> : : = MODULE 1 MOD

2 <SOURCE FILE statement> : : = SOURCE [FILE I FILES] : <name> [, <name>] *;

2 <TARGET FILE statement> ::= TARGET [FILEIFILES]: <name> [, <name>]*;

FIGURE 5.1: Syntax of Header Statement

An example of a MODULE statement would be:

MODULE: FRED;

In this example the word MODULE is a MODEL keyword, The keyword MODULE is used to name a
specification. The example tells that FRED is the name of the specification. (Each specification can have only one
name.) It is important to note that all MODEL statements, end with a semi-colon.

The source file statement gives the names of source files. These serve as input files containing the data to be
used in the specification. They are typically read in from external devices.

Examples of legal source file statements would ber

SOURCE: RALPH;
SOURCE: RALPH, NORTON;
SOURCE FILE: NORTON;
SOURCE FILES : NORTON, RALPH;

It is possible to create a MODEL specification that does not have source files if you define all the dependent
variables in your equations in terms of constants, or variables that already have been defined in terms of constants.
For example, the specification in Figure 5.2, will produce a series of 12 numbers in which each number is equal to
the sum of the two previous numbers in the series. (This is known as the Fibonacci series.) It was necessary to

define only the first two members of the series using constants; this provided enough information to define the
others.

MODULE: SUM;
TARGET: OUTPUT;

1 OUTPUT I S FILE,
2 RECOU (1 2) I S REC,

3 E I S FLD (PIC ' 229 ') ;

I I S SUBSCRIPT;

E (1) = I F I = 1 THEN 1 ELSE
I F I 2 THEN 1 ELSE E (1 - 1) + E (1 - 2) ;

Figure 5.2

Example of a Specification Without a SOURCE FILE

Target files are the output from running the program produced from your specification, generally to be stored on
some external device. The syntax of target file statements is similar to source file statements.

Examples of legal TARGET FILE statements would be:

TARGET: ALICE;
TARGET FILE: TRIXI;

It is possible to use the same FILE as both SOURCE and TARGET. To do this, you include the same file name
in both the SOURCE FILE and TARGET FILE statements. You then only have to declare the structure of the FILE
once. Later, you specify which FILE a particular variable in your equations belongs by adding the qualifying
prefixes OLD for source, or NEW for target, as described in Section 4.6.

5.3. DATA DECLARATION SYNTAX
Data declaration in MODEL allows you to express the hierarchical organization of your variables. Data

declaration statements express several pieces of information. They tell the name of each variable and whether it
refers to an elemental unit of data, such as a field, an aggregation of fields and other units, such as a record or group,
or the highest level, a file. Two variables in the samefile should not be given the same name. Data declarations also
denote the relative positions of variables in the data tree, that is, which group is above which record, etc. For
variables below the level of FILE, data declaration statements may give repetition counts, with the option of leaving
them unspecified. A FILE declaration may have optional information about external devices; a FIELD declaration
gives the data type length and scale attributes.

The structure of a whole data tree is described in a single statement ending with a semi-colon. Variables are
declared in depth-fmt order in the data tree, with the declaration of each variable delimited by a comma. The
syntax diagram is shown in Figure 5.3.

1 <data declaration statement >::=

2 <level-number>::+unsigned integer,

3 < repetition> ::= *
I < unsigned integer >
I < min repetition >:< mar repetitions>

4 < min repetition> ::= < unsigned integer >
4 < max repetition> ::= < unsigned integer >

Figure 5.3: Syntax of Data Declaration Statement

A data declaration statement consists of one or more phrases, one phrase for each variable in the data tree. The
phrases must be ordered depth first, left to right, according to the position of the respective variable in the data tree.
Each phrase consists essentially of four parts. The level number gives the distance from the apex of the tree. For
interim data, the level number may be omitted if only the terminal leaf of the tree is declared. The rest of the tree is
then filled automatically. (For non-interim data, the level number is mandatory. The level number is followed by
the name of the variable. A variable name is followed by a repetition count. The repetition part must be omitted if
the variable does not repeat (has one occurrence only). If a non-one repetition count is given then this means that
the variable is a vector. It may be an element in a vector parent thus giving it two dimensions, etc. The number of
repetition gives the range of the respective dimension. If it is to be determined based on the data itself, this is
denoted by using an * or giving a minimum and maximum. If this option is used it will be necessary to defme the
range by an equation.

This is followed by a choice of keywords IS, ARE, or =, followed by indicating the tree level, which is denoted
by choice of a keyword: FILE, GROUP, RECORD or FIELD. FILE is the apex of the tree. RECORD is a structure
that is communicated as one unit to or from external devices, such as a record in a database or a line to the printer.
GROUP is any other non leaf node in the tree and FIELD is the leaf node. Finally this is followed by an argument
for a file-node describing its organization, and for a field-node describing its data type length and scale. This
completes the phrase for each variable. All phrases, except the last one, are terminated by a comma (,) , with the last
one terminated by a semicolon(;).

Figure 5.4 contains an example of data declaration syntax. Indenting of lines is not necessary, but can probably
help you keep better track of the relationships between your variables. Subsequent sections describe in further detail

the semantics of each of the above described phrases.

1 SCORE IS FILE,
2 TEST-SCOELE(3) IS RECORD,

3 STUDENT (12) IS FIELD (PIC ' 99') ;

1 STAT IS FILE,
2 TEST-STAT(3) IS RECORD,
3 (MEAN - TEST, STD-TEST) IS FIELD (PIC ' ZZZgV. 9999') ;

1 INT IS FILE,
2 INT TEST(3) IS GROUP,

3 (ETEST, S-TEST) (12) IS FIELD (PIC 9999~. 9999') ;

Figure 5.4

DATA DECWLRATION SAMPLE

5.4. FILE DECLARATION STATEMENTS
All external data must be declared as part of Source or Target files. Source, Target, and Interim files are all

declared the same way. Figure 5.5 shows the syntax for the File declaration phrase shown in Figure 5.3).

A FILE declaration phrase gives the name of the File and optionally describes the File's organization. A File's
organization refers whether the file uses a sequential access method (SAM) or an indexed sequential access method
(IS AM).

A SAM file cannot be referenced by key, i.e. the computer has to search from the beginning of the file, record by
record, until the appropriate record is found.

An ISAM (or VSAM) file may be referenced by key. Keys in ISAM files act like catalogue numbers in a library
which allow particular books to be found without having to search through all the shelves (see below).

A MAIL file is communicated to another specification without intermediate storage on an external device.

A POST file is similar to MAIL, only it includes the address of its destination as a KEY.

Figure 5.5 shows the syntax of a FILE phrase:

1 <FILE declaration phrase> ::= 1 <variable> [<IS>] <FILE>
GI= argument>;

2 <FILE> : := FILE I FILES
2 <FILE argument> ::=

3 <FILE description> : : = [KEY [<IS>] name>] [ORG [ANIZATION]
[<IS>] <TYPES>]

4 <TYPE> : : = SAM I SEQUENTIAL I ISAM 1 MAIL 1 POST

Figure 5.5

Syntax of the FILE Declaration Phrase

5.5. GROUP AND RECORD DECLARATION PHRASES
Groups and Records are the intermediate level of the data tree, with substructures below then Records are the

unit of physical transfer of information between internal and extemal data storage, while Groups are intermediate
data structures. Groups can be above or below Records in the data tree. A Group of Records represents one or
more units of physical transfer of data Groups below Records represent logical subdivisions of the Record.

Groups can be above or below other Groups, for example ,GI.
5 TONY (7) IS GROUP,

6 MARIA IS GROUP
7 ... FIELD

6 JETS (3) IS GROUP,
7 ... FIELD;

L - i
Each FELD or piece of data, except for interim Fields, must have only one Record above it in the File. (Interim

Fields need not be in Records).

5.6. FIELD DECLARATION STATEMENTS AND DATA TYPES
FIELDS are the parts of the data tree which hold the values of individual pieces of data. Each FIELD contains a

particular data type. In this section, we will explain the characteristics of each data type and examine how to
represent them

Fields are at the lowest level of the data tree. The FIELD declaration statement contains a <data type
definition> syntax element which is unique to FIELDS (see Figure 5.6). This element gives the Field's data type.
There are six main data types which can be used in MODEL Fields: character string, bit string, numeric string,
decimal, binary,and picture. The decimal and binary data types further divide into fixed and floating subtypes.
Each of these data types will be explained in turn.

1 <FIELD declara t ion Phrase> ::= [<level number>] <variable> [<IS>] <FIELD>
[(1 <data type de f in i t ion> [) 1

[<on conversion error>];
2 <FIELD> ::= FIELDlFIELDSlFLDlFLDS
2 <data type de f in i t ion> ::= <character s t r ing> I Bit s t r i n g > I

<decimal>) B i n a r y > I <picture>
3 <character s t r i n g > ::= CHAR[ACTER] < s t r i n g format>

4 < s t r i n g format> ::= [(I <no. of elements> I <minimum no. of
elements> : <maximum no. of elements> [)]

5 <no. of elements> ::= tunsigned in teger>
5 <minimum no. of elements> ::= <unsigned integer>
5 <maximum no. of elements> ::= <unsigned in teger>

3 <<bi t s t r i n g > ::= B I T [(I <no. of elements> [)]
3 <numeric s t r i n g > ::= NUM [(I <no. of elements> [) I
3 <decimal> ::= DEC[IMAL] (fixed format> I <f loa t ing format>

4 <fixed format> : := [FIXCEDI] [(1 <no. of elements> [) 1
4 <f loa t ing format> ::= FLOAT [(I <precision> [) I

5 <precision> ::= <unsigned in teger>
3 <binary> ::= BIN[ARY] <fixed format> I < f loa t ing format>
3 <pic ture> ::= PIC[TURE] [[(<no. of repet i t ions>)]

9l~l*IYI-ItI/IBlSl+l-I$ITIIIRIEIXIA I*'
4 <no. of repet i t ions> ::= <unsigned integer>

2 <on conversion error>::= ON-CNVERR [:] <stop o r subs t i tu te>
3 <stop o r subst i tu te>: := STOP

<constant>

Figure 5.6

Syntax of the FIELD Declaration Statement

Data types used in MODEL fall into two classes, printable and non-printable. Printable data types, that is,
character string, numeric string, and picture, are stored in the form of conventional characters and digits.

Non-printable data types, that is, decimal, binary, and bit, are represented by the computer in a compact form
taking up less room in memory. If you try to view information in this form, you will see what appears to be a
mixture of random characters which you will be unable to read. However, you will want to use non-printable data
types for certain applications, such as in applications with many calculations, because they will be processed more
quickly than the printable data types.

Manually entered data and printed reports should use printable data types. You can use non-printable data types
in interim FIELDS for calculations, and then write equations declaring the variables as non-printable and then
define the latter in tenns of printable target file variables, so that you will get readable output.

5.6.1. CHARACTER STRING VARIABLES
Character string variables are strings of characters. They are made up of combinations of any characters which

your keyboard will print including numbers and letters. Character string variables, like character string constants,
can be used with the concatenation operator (Section 4.8) and string functions (See Chapter 11) as parts of string
expressiuns (Section 4.9).

When you declare a character string variable, you must specify its length. You have two options for doing this.
One option is to declare a specific number of characters that you expect your character string variable to be, as in,

10 WANDA IS FIELD (CHARACTER (10)) ;

The other alternative is to enter a minimum and maximum expected length for the character string variable, as in,

l o GLENDA I S FIELD (CHAR (3 : 7)) ;

In this case you must include an equation to &fine the length of the character string variable using a control
variable with a LEN prefm. For example you could write

LEN.GLENDA = GLEN-INFO;

where GLEN-INFO is a numeric variable which contains the length of the field GLENDA.

E x a m p l e 1
NAME is field (c h a r (1 0)) ;
NAME='Bi11 B l a s s t ;

I n target, NAME would appear as - - - B i l l B l a s s

E x a m p l e 2
NAME is field (c h a r (10)) ;
NAME='Miker ;

I n target, NAME w o u l d appear as ---MikeBBBBBB (w h e r e B i s a b l a n k s p a c e)

E x a m p l e 3
NAME is field (c h a r (1 0)) ;
NAME-,Bobby Jonest;

I n target, NAME w o u l d appear as ---Bobby Jone (r e s u l t is t r u n c a t e d)

5.6.2. BIT STRING VARIABLES
Like bit suing constants, bit string variables can be used with logical operators as operands in logical

expressions. They can also be used in string expressions like character string variables. Unlike bit string constants,
bit string variables must be base 2. Unlike character suing variables, the length cannot be specified as a range. An
example of a bit suing declaration is

l o HENRY I S F I E L D (BIT (3)) ;

5.6.3. NUMERIC STRING VARIABLES
Numeric string variables may be used in arithmetic expressions with arithmetic operators. Numeric string

variables are unsigned integers. When they are declared, you should specify the number of expected digits, as in

5 HERO I S FIELD (NUM (6)) ;

E x a m p l e 1
INT is field (num 7) ;
INT=3100;

In target, INT w o u l d appear as 0003100

5.6.4. DECIMAL AND BINARY VARIABLES
Decimal and binary variables are arithmetic variables, also used in arithmetic expressions with arithmetic

operators. These types also allow you to use a "floating point" feature which allows your specification to handle
very large or very small numbers with many digits to the right or left of the decimal point. The binary data type is
preferred to the decimal when you perform complex arithmetic computations. Binary data is stored more compactly

in the memory of the computer than decimal data. Arithmetic operations are more efficient using binary operands.

Decimal and binary data types can both be expressed in a fixed or floating format. In fured format, you tell the
computer how many digits you expect there to be in your data variable. For example,

6 LISA (4) I S FIELD (DECIMAL FIX (5)) ;

tells the computer that LISA consists of four five-digit numbers.

Since arithmetic variables store numeric values, there is a ffite range of values that a variable can assume. This
range is determined by two attributes of an arithmetic variable, size and scale. Together, size and scale are known as
the precision of a number.

Decimal and binary data can also be expressed in floating format. In this case the computer keeps track of where
the decimal point should be placed for each piece of data. In floating format, data is expressed as a number
containing a certain number of digits multiplied by 10 raised to a particular power. This data type can save a lot of
space in the computer's memory for very large or very small numbers.

In floating format notation, the number is called the mantissa The number of digits in the mantissa is its
precision. The precision represents the number of digits (called significant digits) that you want the computer to
keep track of, and it is specified as part of the declaration of each floating point variable. You can specify up to a
maximum precision of 34 for floating point decimal and 113 for floating point binary. An example of a floating
point declaration would be

lo STAN I S FIELD (DECIMAL FLOAT (2 5)) ;

When doing calculations if the result has more significant digits than the precision you specified, the computer will
round the result.

5.6.5. PICTURE VARIABLES
The picture data type is used for either character or arithmetic data The presence of an 'A' or 'X' picture symbol

defines a Field to be for character data; otherwise, it is numeric and may be used in arithmetic expressions with
arithmetic operators.

You declare a picture variable in terms of a series of symbols through which you specify what characters will be
allowed in each position in the variable. A Z means that a leading zero should be omitted and printed as a blank, an
S holds a space for a positive or negative sign, an A represents a space where a letter can be inserted, and so on (see
Figure 5.7 below).

By putting these symbols in the proper order, you can exercise control over how your data will be read and
printed. For example

10 MEAN-TEST I S FIELD (PIC ' ZZZ9V. 9999')-;

The 9's here stand for decimal digits. The Z's also stand for digits, but indicate that leading Zero's should be
printed as blanks. The period shows where the decimal point is positioned, and the V shows that it should be printed
as part of the number. In total, ZZZ9V.9999 means that there are four possible digits to the left and to the right of
the decimal point, and leading Zero's are not to be printed.

A Picture repetition factor specifies the number of repetitions of the picture symbol which immediately follows.
A Picture repetition factor must be an integer enclosed in parentheses. The following Picture Fields would result in

the same description.

BOB is F i e l d (P i c ' 999V. 99') ;
BOB is F i e l d (P i c ' (3) 9V.2 (9)') ;

When a decimal point follows the 'V' (as in above example), it indicates, if the field is for a source file, the decimal
point is present in the stored data. If for a tarset file, the decimal point is to be printed.

The symbols used for picture in the author's implementation of MODEL are explained in Figure 5.7. Your
system may allow different symbols. Therefore, you may want to check the User's Guide for the version of PUI
implemented on your system.

X stands f o r any character. A picture variable of a l l X ' s is just l i k e a
character s t r i n g variable.

A stands f o r any alphabetic character o r a blank character.
9 stands fo r a decimal d i g i t i n a given posit ion.
2 also stands f o r a decimal d ig i t , except t h a t zeros on the l e f t w i l l not

be printed. For example, 0064 would be printed as 64 i f the field
w e r e declared as ZZZZ.

* also stands f o r a decimal d ig i t , but the leading zero is replaced with
an a s t e r i sk instead of being omitted. Hence **64.

Y stands f o r a decimal d ig i t , except t ha t a spac w i l l be printed f o r
any zero i n any position.
(n) can be used t o indicate a number of repet i t ions of t h e following
character. For example, (3)9 indicates 3 decimal d i g i t s . In some
versions of PL/I it may cause problems i f you t r y t o show tha t a
character is repeating 1 0 o r E D r e times.

T stands f o r a d i g i t o r a plus sign o r minus sign, i f there is one.
I is the same, except t h a t only a plus sign w i l l be printed. Negative

numbers w i l l be printed without a minus sign.
R is t h e same, except t h a t it pr in t s a minus when the number is negative,

but no plus when it is posit ive or zero.
. indicates t he posit ion i n which a variable's decimal point is expected

t o appear.
V indicates t he posit ion where you would l i ke a decimal point t o be placed

when a s t r i n g of numbers is read, without your having t o actual ly type
the decimal point in . I f no V character is used, t h i s t e l l s t h e
computer t h a t t he decimal point is on the r ight ; t ha t is, the picture
variable is seen a s an integer. I f you use V followed by a period, ".",
t h i s w i l l cause a decimal point t o be inserted, and l a t e r printed out
a s par t of the variable.

, is the posit ion f o r a comma t o be inserted.
$ is the posit ion f o r the do l la r sign. When leading zeros a r e omitted,

the do l la r sign w i l l be moved up next t o the leftmoat printed d i g i t .
This symbol cannot occur i n t h e middle of a f i e ld .

+ is the posit ion f o r a plus sign. This is l i k e I except t h a t the sign
is placed next t o the leftmost d i g i t . This symbol cannot be used
i n t he middle of a f i e l d .

- is the same, f o r a minus sign, i n case the number is negative. This
symbol cannot occur i n the middle of a f i e l d .

S w i l l p r in t e i t h e r sign, l i k e T I but next t o the leftmost d i g i t . This
symbol cannot occur i n the middle of a f i e ld .

E indicates the posit ion of the exponent i n a f loat ing point number.
For example, 4E3 is 4 time ten t o the th i rd , o r 4,000. Likewise,
5E-4 is 5 t h e 1 0 t o the minus fourth, o r .0005.

Figure 5.7: Symbols Used i n the Picture Data Type

5.6.6. ON CONVERSION ERROR
Errors in data type of incoming data are frequently discovered on the input of the data and its conversion to the

specified data type. This occurs frequently especially in dynamic testing of programs. The detection of bad data
defines automatically a qualified variable MALDATAR, where R is the name of the SOURCE RECORD which
includes the bad data (see section 8.5). The user can declare, with a source FIELD, the disposition of a data type
error. There are three options: a) the default is to defme the MALDATAR variable as true and continue with the
program b) declare that the program should stop or c) declare to substitute for the FIELD The value of a constant

and continue the program. The syntax is shown in Figure 5.6. An example is as follows:

A I S FIELD (PIC ' 9 9 9 ') ON-CNVERR: 0;

If the field A is detected on input to have other than a three digit integer than it will be defined as having the value
of zero, and the program will continue.

5.7. SHORTCUTS IN DECLARATION OF DATA STRUCTURES
If you want to include the same data structure in two or more separate FILES, then MODEL allows you to declare

the redundant data structure only once. For example, you can declare two or more FILES in one statement, as in:

1 (MICKEY, PLUTO) ARE FILES etc.

When two or more FILES are declared together by enclosing the names of the FILES in parentheses, separated by
commas, The GROUPS and other child variables below them need to be declared only once and will be made part of
both FILES, with the same names, repetition counts, and other arguments.

The advantage of using this shortcut is that you only have to describe a particular complex data FILE structure
once. Two FILES having the same data structure do not necessarily contain the same data.) Note that in doing this,
you create several variables with the same name, which causes ambiguity. Variables with the same names must be
distinguished in equation statements by giving them a prefix of the name of their parent file, (see section 4.6)

You can also create sibling FIELD variables of the same data type and length in the same declaration, as in:

15 (CASPER, WENDY) ARE FIELDS (PIC 'ZZ9V. 99') ;

Their names will be sufficient to distinguish them from each other, within a single FILE. However, you can't
declare multiple RECORDS or GROUPS at one declaration, because the names in the data structures under these
RECORDS or GROUPS will be made the same. You would end up with variables with the same name in the same
FILE, and you wouldn't be able to use the name of the parent FILE as a prefix to separate them

5.8. DECLARING REPETITIONS AND OPTIONAL DATA STRUCTURES
In MODEL data declaration there are three options for expressing the repetition counts of GROUPS, RECORDS,

and FIELDS.

These options are as follows:

1) If you h o w how many repetitions a particular variable will have, then you can enter that number as the
repetition count. So, to indicate that there are 12 STUDENT Fields for each TEST-SCORE Record we write

3 STUDENT (1 2) I S FIELD (PIC '99') ;

2) You can enter a minimum-maximum range on the number of expected repetitions of a variable. This method
may be your best compromise in saving space. An example of using a repetition range, would be

2 PRODUCT (1 : 8) I S RECORD

3) If you do not h o w the maximum and minimum repetitions of a variable, then you can use an asterisk in place
of a number for the repetition count, as in

1 DEPT I S FILE,
2 PRODUCT (*) I S RECORD

Whenever you use an asterisk in place of a repetition count, then the MODEL system will try to optimize the use of
memory space. If optimization is not possible and all the repetitions of a variable have to be in memory, then space
is directly available for up to 9999 repetitions. You will get a warning message in your report. Giving more
specific information, if you know it, will save space, and allow higher repetition counts.

If you decide to use either an asterisk or a minimum-maximum range when declaring the repetition count of a
variable, you must be sure that your specification includes information for specifying that variable's range. Such
information might be ENDFILE markers, range propagation, or control variables with a SIZE or END prefix. See
Sections 7.3,8.2 and 8.3 for detailed discussion of these options.

When you use a repetition range whose minimum is 0, you are defining an optional data structure. This means
that the relevant variable and all its child variables (if it is not a Field) may or may not exist at all.

5.9. DECLARING INTERIM DATA STRUCTURES
Interim data structures are associated with interim fields. The values they contain are only present during the

execution of the program. Afterwards, they are not available, as target file fields, for further processing.

Interim structures may be handled in three ways:

1- The entire structure may be coded, with Groups with repetition
counts and Fields and their attributes.

2- The Fields and their attributes may be coded without the structure,
i . e . without the Groups with repetition counts.

3- The Fields may be omitted entirely.

In the case of options 2 and 3, the MODEL system will be making assumptions to fill in missing information. It
will use equations defining the variables to try to determine the structure and will choose a field attribute if the Field
was omitted entirely.

5.10. VARIABLE RANGE DEFINITION
The range of a rightmost dimension of a structure corresponds to the number of repetitions of the structure. It

may be a constant or it may vary. If it is constant, it can be speczed in the declaration of the strcuture.

For example:

A (10) IS GROUP

If the range is a variable then this is expressed in the data declaration in either of two ways. Either by specifying
the repetitions by (*) or by giving the minimum and maximum, i.e. (minimum maximum). For example:

A (*) IS GROUP or A(1:1000) IS GFZOUP.

The MODEL compiler will attempt to assign as little memory for the respective dimension as possible. However,
if the maximum is known, it is a good practice to provide it, otherwise if the MODEL compiler determines that it
cannot allocate less memory it will use by default a maximum repetitions of 9999.

If the range is a variable then it must be defined elsewhere. Following are the ways to define the range.

1. Use of Conml Variables (see chapter 8).

a By defining the range variable as a qualified variable prefixed by the keyword SIZE and the variable whose
range of the rightmost dimension is to be defined For example:

S1ZE.A = I F B THEN 10 ELSE 20;

The SIZE prefixed qualified variable must have a lesser dimensionality than the suffix variable, always omitting
at least the rightmost dimension of the suffix variable.

b. By defining the condition of the last element in a dimension to be represented by a qualified variable, using the
prefix END and as suffix the name of the variable whose range of'the rightmost dimension is defined.

For example:

E N D . A (I) = A (I) = 'LAST'.

This variable has the same shape as the variable in the suffix.

2. By default

If the last element of the dimension could be deduced from an end-of-file marker or from the end-of-record
information, then there is no need to specify the range.

3. By propagation

The MODEL compiler attempts to deduce the range from anyone of the other variables whose range is given.
This is based on the position of a variable in a tree, on referencing the variable using global subscripts or on the
variables participating in an equation. Thus, generally, if there are a number of variables with a dimension of the
same range, it should be sufficient to define the range for only one of the variables. If this is not adequate the
MODEL compiler will solicit additional range definitions.

6. EQUATIONS

6.1. OVERVIEW
Equations define all the FIELD variables and control variables making up your interim and TARGET data

structures. Each equation statement &fines one dependent variable placed on the left-hand-side of an equals sign.
This variable is &fined as equal to an expression on the right-hand-side composed of constants, operators, variables,
and functions.

As stated previously, in MODEL each variable can have only one value. Therefore each FIELD to be defined
with a different value has to have a unique name or distinguishing subscript Since MODEL is non-procedural, you
don't have to worry about the order in which y o u variables are defmed. You just have to make s u e to write an
equation to define every field in your TARGET and interim data sauctures.

In some cases you can optionally omit subscripts when writing equations. (The conditions for subscript
omission, as well as other aspects of using subscripts, will be explained in the next chapter.) This is meant to be a
shortcut in writing rather than in thinking. Keep in mind that subscripts are implied, when you write equations using
variables with omitted subscripts.

The objective of this Chapter is to present the syntax of equations statements along with examples. Equation
statements in MODEL may be either simple or conditional, as shown by the following syntax diagram:

<equation statement> ::= <simple equation statement> I <conditional
equation statement>

A simple equation defines the value of the dependent variable on the left side of the equation in terms of a single
expression on the right side. An example is

A = B + 3

Conditional equation defines a dependent variable as equal to one of several expressions, depending on the value
of a condition. An example of a conditional equation is

A = IF B > 2 THEN 7 ELSE 12;

In the previous Chapter we explained how you have the option of leaving certain amibutes of your SOURCE
data, such as variable ranges, unspecified in data declaration. You must then defme these attributes in your equation
statements using control variables (introduced in Section 3.6). For example, suppose you declared a FIELD
variable ALBATROSS to have an uncertain number of repetitions, as follows

ALBATROSS(*), IS FIELD . . .
You could then define the range of ALBATROSS in an equation, such as

Control variables, such as SIZE.ALBATROSS, may then be used as independent variables in defming other
variables in other equations. The uses of the various iypes of control variables will be explained in the Chapter 8.

6.2. SIMPLE EQUATIONS
As stated previously, equations in MODEL are of two kinds, simple and conditional. Simple equations contain

only one expression to define the dependent variable. This expression may be a logical, arithmetic, Boolean, saing,
or comparison expression, as described in Chapter 3. The syntax diagram for simple equations is shown in Figwe
6.1.

1 <simple equation statement> ::= <subscripted variable> = <any expression>;
2 <subscripted variable> ::= <name> [(<subscript expression>

I, <subscript expression>] *) 1 I
(<name> [(<subscript expression>
[, <subscript expression>] *) 1
[,<name> [(<subscript expression>
[, <subscript expression>] *) 1 1)

3 <subscript expression> ::= <arithmetic expression>
2 <any expression> ::= <logical expression> I <arithmetic expression> 1

<string expression> I <Boolean expression> I
<comparison expression>

Figure 6.1

Syntax of Simple Equation Statements

The dependent variable in a simple equation statement may take subscripts, and may be a qualified name
variable. (The use of subcript expressions is described in detail in the next chapter.) Two or more dependent
variables can also be defined in one equation statement, as long as each receives the same definition. In that case,
the list of variable names must be enclosed in parentheses, with individual names separated by commas. You can
define the dependent variable in terms of an expression containing qualified name variables, constants, non-qualified
variables (with or without subscripts), and functions.

Some examples of legal simple assertion statements are as follows:

6.3. CONDITIONAL EQUATIONS

6.3.1. OVERVIEW
Conditional equations are more complicated than simple equations, because the choice of defining expression

depends on the value of a condition. The dependent variable in a conditional equation is defined in terms of one
expression if the condition is me, and in terms of another if the condition is false. This condition is a Boolean
expression. A Boolean expression, as defined in Section 3.9, is an expression which has a binary truth value of true
or false. For example, the comparison (Boolean) expression "A > 7" must be either true or false, when A is an
arithmetic variable.

The process works as follows. In the conditional equation

MONTANA = IF A > 7 TXEN 5 ELSE 12;

the dependent variable MONTANA will be &fined as equalling 5 if the condition A > 7 is true, or as 12 if the
condition is false. The part of the above statement containing the keyword IF, followed by the conditional Boolean

expression, is called the IF-clause. The fmt defining expression for the dependent variable in a conditional
equation, 5 in the above case, is preceded by the keyword THEN. The second defining expression, 12 above, is
preceded by the keyword ELSE. A more complex conditional equation statement may contain more than one
IF-clause and more than two defining expressions (see below).

The syntax diagram for conditional equatiuns is shown in Figure 6.2.

1 <conditional equation statement> ::= <subscripted variable> =
<conditional expression>;

2 <conditional expression> ::= <IF-clause> THEN <conditional>
[ELSE <conditional> I

3 <IF-clause> ::= IF <Boolean expression>
3 <conditional> ::= <conditional expression> (<any expression>

Figure 6.2

Syntax of Conditional Equation

6.3.2. NESTED CONDITIONAL EQUATIONS
As stated previously, conditional equations allow you to write equations containing several conditions and

defining expressions. Suppose, for example, we wanted to write a specification to keep track of how much we
should pay various employees in our company. We can use the variable PAY(1) to keep track of paychecks, with
the subscript I referring to each individual (e.g. by their number on the payroll). Amount of pay to each person
depends on two factors, job-type and number of hours worked, which we can call JOB(1) and HOURS(I),
respectively. We will also assume that there are three possible types of jobs in our company: executive vice-
president in charge of advertising, programmer-analyst, and janitor. We can write an equation to &fine a pay
amount for each individual (in terms of what they're worth) as follows:

PAY (I) = IF JOB (I) = ' PROG-R-ANALYST'
THEN 50.00*HOURS (I)
ELSE IF JOB (I) = JANITORr

THEN 12.50*HOURS (I)
ELSE 2.17 *HOURS (I) ;

That the executive vice-president in charge of advertising should be the one making $2.17/hour is understood. (It's
the only job-type left.)

The above example, shows the nesting of an additional condition and two additional defining expressions within
the ELSE part of a conditional equation. The example is relatively simple, because the choice of the expression
used to define a value for PAY(1) always depends on a single condition. A more complex situation occurs when the
choice of defming expression depends on the truth value of two or more conditions. Extending the above example,
the amount of pay within each job type could also vary depending on how long the person was with the company.
To keep track of this we need a new variable called YEARS(1). When the number of years someone is with our
company reaches 10, that person will get a raise.

The expanded equation to calculate pay could be as follows:

PAY (I) = IF JOB (I) = 'PROGRAMMER-ANALYST'
THEN IF YEARS (I) < 10

THEN 50.00*HOURS (I)
ELSE lOO.OO*HOURS (I)

ELSE IF JOB (I) = 'JANITOR'
THEN IF YEARS(1) < 10

THEN 12 .SO*HOURS (I)
ELSE 15.OO*HOURS(I)

ELSE IF YEARS(1) < 10
THEN 2 .17 *HOURS (I)
ELSE 2.18*HOURS (I) ;

This new example, shows the nesting of an additional condition and two defming expressions within each
defining expression of the fmt example, which nested an additional condition and two defining expressions within
the first ELSE expression. The choice of which expression is used to define the dependent variable depends on two
conditions. (When writing your own nested conditional expressions, you'll fmd it helpful, as shown above, to
indent, so that conditions and defining expressions at the same level of depth are vertically aligned.)

6.33. SIMULTANEOUS EQUATIONS
A MODEL specification may include equations that form a set of simultaneous equations that define variables of

any shape and use any operations or functions. These equations may be linear or non-linear. The MODEL compiler
identifies these equations and implements their solution by incorporating in the produced program a Gauss-Seidel
iterative solution method. By arranging the equations in a block, the user can optionally provide guidance to the
compiler in how to make the application of the iterative solution method more efficient

The syntax is shown in Figure 6.3.

<simultaneous equations block>::=

BLOCK <name>,
[[SOLUTION] METHOD <IS> GAUSS-SEIDEL,]
[[MAX [IMUM] ITER [ATIONS 1 <IS> <number>, 1
[[RELATIVE] ERR [OR] <IS> <fraction>] ;

[<equations>] *
[<simultaneous equation block>]*
[<equations>] *

END <name>;

Figure 6.3: Syntax of a Simultaneous Equation Block

<initial value equation> ::=
INITIAL.<variable nams%expression>

Figure 6.4: Syntax of initial value specification

The user provides first a BLOCK declaration giving a name to the block of simultaneous equations. This may be
followed optionally by declaring the choice of the solution method to,be employed by the compiler. The maximum
number of iterations in the iterative method- after which the solution will stop - can also be provided optionally.
The &fault value is 100. The Iterations stop also if convergence is achieved. A convergence condition can be
defined optionally by giving a fraction by which new solution values would differ in ratio from the previous
iteration. The default value of the fraction is 0.001 - namely of a final solution differs by less than 111000th of its
value from the preceeding iteration value. This then is followed by the simultaneous equations. The substitution of
vaIues in the iterative solution method will then proceed in the order of the equation. This order may be important
in achieving the convergence faster. Simultaneous equation solutions may be nested one within the other to
accelerate and make more efficient the solution process. This is shown by the nesting of simultaneous equation

blocks. Finally the block ends with an END statement.

Figure 6.4 shows how the iterative solution method can optionally start with specified initial values of the
variables. The initial value is represented by a qualified name variable, with the p r e f ~ INITIAL and the variable
name as a suffur. The INITIAL. <variable name> defining equations can be placed anywhere in a specification, not
necessarily together with the simultaneous equation block. The default is having the value 1 as initial value.

Consider the following example of a nested simultaneous equation block.

BLOCK SIMEQ1,
SOLUTION GAUSS-SEIDEL,
ITERATIONS 50,
ERROR 0.005;

A = C 1 * B + C 2 * C + C 3 * D ;
BLOCK SIMEQ2

ERROR 0.01;

END SIMEQ2,

END SIMEQ1;

There are four variables A,B,C,D and respective defining equations. The C1 to C9 coefficients are defined
elsewhere. The nested block with equations for B and C is to be solved iteratively within the nesting (outside)
block. Only A is given an initial value. By default the initial values of the other variables would be 1. If the
BLOCK, END and INXTL4L.A statements are omitted then the compiler would generate a procedure to solve
iteratively the five equations, using 1 as initial value for all five variables. The convergence error would be less than
.001, and the iterations would stop after 100 iterations if convergence has not been attained previously.

7. USING SUBSCRIPTS IN EQUATIONS

7.1. OVERVIEW
Whenever we mentioned subscripts earlier in this text, we were really talking about subscript expressions.

Subscript expressions specify which elements of a subscripted variable are to be used in an equation as independent
or dependent variables. We express a subscripted variable by following the name of a repeating data structure
(usually a FIELD) with one or more subscript expressions, separated by commas. The following is a sample of the
variety of legal subscript expressions used in subscripted variables:

HAWKEYE (I, J)
BJ (I, J+3)
RADAR (KLINGER (K))
HOT-LIPS (FOR-EACH .BURNS)

Subscript expressions are arithmetic expressions, as defined in Section 3.9.3. These expressions give integer
values corresponding to the postions of elements in a data array or tree, with one subscript expression for each
dimension or subscript (see Section 2.2). (The word index is also used to stand for the value of a subscript
expression.) If the values of the subscript expressions of a subscripted dependent variable are constants, then the
definition will apply only to the element with those indices. For example, the statement

defines the second element of the subscripted variable ALBERT as equal to 3, but does not affect the value of any of
the other elements.

An equation like the one above, which defines only one element of an array is very inefficient. When a
subscripted variable contains a subscript expression that can take on a range of values, an equation can
simultaneously define values for all the elements of that array variable whose index values are in that range. In an
equation such as

a l l elements of the dependent variable BEAN(1) are given the same value. Alternatively, if both independent and
dependent variables are subscripted, then each element of the dependent variable can be defined differently,
depending on the value of the corresponding element of the independent variable. For example, in

WILMA (I) = FRED (I) ;

each element of -(I) is defined as equal to the element of FRED0 with the same index value of I.

By including conditions, you can limit which elements of subscripted independent variables will be used to define
the dependent variable. For example, in

BETTY(1) = IF I < 4 THEN 0 ELSE BARNEY(I)*17;

only elements of BARNEY(1) with subscripts of 4 or greater will be used in defining values of BE'ITY(1). If a
variable in the defining expression is subscripted, ;but the dependent variable is not, then you must include
conditions to defme the dependent variable in terms of only one of the elements of the independent variable.
(Ohenvise, you violate MODEL assumptions.) An example would be,

ROCKY = IF I = 4 THEN BULLWINKLE(1) ;

Although BULLWTNKLE(1) can contain many elements, only the fourth one will be used to define the scalar
ROCKY. (Alternatively, you could have written

ROCKY = BULLWINKLE(4);)

The definition of all the elements of an array in a single equation, is done through the use of subscriut variables.
A subscript variable is an arithmetic variable which can take on any integer value ftom one up to the total number of
elements of a subscripted variable (along a particular dimension). MODEL allows the use of global and local
subscript variables. A global subscript variabie takes the same range in all the assertions in which it is used
throughout the specification, while a local subscript variable may take on a different range in each assertion.
Global and local subscript variables are discussed in more detail in Section 7.3. A subscript expression may contain
a subscript variable by itself, or as part of a complex arithmetic expression containing constants, functions, and
variables, which may themselves be subscripted. The next section will examine how the different types of subscript
expressions are classified

7.2. TYPES OF SUBSCRIPT EXPRESSIONS AND THEIR USES
Subscript expressions in MODEL can be categorized according to their form. The MODEL processor compiles

some forms more efficiently than others, so that these are preferred. The types of subscript expressions are as
follows:

1) 1,
2) I-K, where K > 0,
3) none of the others (e . g . , constant

variables or other expressions),
4) X (I) , where X (I) is sublinear

indirect indexing vector,
5) X (I-C) -K, where X (1) is a sublinear index

and C + K =>I,
The preceding description of types of subscripts uses the following nomenclature:

I is a subscript variable which can take on any integer value in the range of the variable for which it is an index.

C and K are integer constants.

X is a sublinear indirect indexing vector (see below).

The MODEL compiler generates a more efficient program when you use Type 1 or 2 subscript expressions, then
when you use Type 3. An indirect indexing vector is a subscripted variable which is used in the subscript expression
of another subscripted variable. The use of indirect indexing vectors as subscript expressions is optimized when
those indirect indexing vecton are sublinear, as illustrated by Type 4 and 5 subscript expressions above.

Sublinear indirect indexing variables are used when we want to define an may variable as consisting of selected
elements of another array variable, where the selected elements in these arrays are in the same order. In the case
where both arrays are one dimensional, we use only the sublinear indirect indexing variable. The MODEL system
implements a much more efficient computation using these two types (4 and 5 above) of indirect indexing variable
than those with subscripts of type 3 for such transfomtions.

7.2.1. SUBLINEAR INDIRECT INDEXING
X(1) is a sublinear indirect indexing vector if it is defined by an assertion of the form:

X(1) = IF I = 1
THEN IF<Boolean Expression 1> THEN 1 ELSE 0

ELSE IF <Boolean Expression 2>
THEN X(1-1)
ELSE X(1-1) + 1;

Alternately X(l) may be defined by the SUBLINEAR function:
X (I) = SUBLINEAR (<Boolean Expression I>,

<Boolean Expression 2>;

In words, this says that X(1) is equal to either 1 or 0, when I is equal to 1. When I is greater than 1, the value of X(1)
for each I, is defmed as equal to either the value of X(1-1) or X(1-1) plus 1, depending on a condition of whether the
respective element is or is not selected. The effect is that the sublinear indirect indexing vector X(1) always takes
integer values and is monotonically increasing with I. It is also less than or equal to I, for any I, because I always
increase. by 1 (linearly), while X(1) increases by 0 or 1 (less than linearly or sublinearly). If X(1) is used in the
subscript position for a dimension of any other variable then the range of the dimension must not be specified, as it
is dependant on the range of I.

The usefulness of sublinear indirect indexing vectors in business applications is illustrated by the following
specification, displayed in Figure 7.1. We start with a FILE of life insurance information. The FILE is called
DATA. Each RECORD in the FILE contains three FIELDS: the first to give the year of birth of the policy-holder,
the second to give his or her name, and the third to give the amount he or she pays each year. The three FIELDS are
called BIRTH, NAME, and PREMIUM, respectively. We decide to separate the RECORDS into three distinct
TARGET FILES based on year of birth, so that we can be sure everyone is paying the appropriate premiums.
(These TARGET FILES will have the same data structure, except for number of RECORDS, as the original
SOURCE FILE.) We want the RECORDS of everyone born before 1920 to go into the fmt TARGET FILE,
OLDER, the RECORDS of people born from 1920 to 1950 to go into the second FILE, MIDDLE, and the
RECORDS of people born after 1950 to go into the third, YOUNGER.

MODULE: INSURANCE;
SOURCE: DATA;
TARGET : OLDER, MIDDLE, YOUNGER;

1 (DATA, OLDER, MIDDLE, YOUNGER) ARE FILES (R (*)) ;
2 (*) R IS RECORD;

3 BIRTH IS FIELD (PIC ' 9999') ;
3 NAME IS FIELD (CHAR (20));
3 PREMIUM IS 20 (PIC ,2299,) ;

1 INT IS FILE
2 DATE1 (*) IS FIELD (NUM (5)) ;
2 DATE2 (*) IS FIELD (NUM (5)) f
2 DATE3 (*) IS FIELD (NUM (5)) ;

I IS SUBSCRIPT;

DATEl(1) = IF DATA.BIRTH(1) < 1920
THEN IF I = 1

THEN 1
ELSE DATE1 (1-1) + 1

ELSE IF I = 1
THEN 0
ELSE DATE1 (1-1) ;

DATE2(I) = IF DATA.BIRTH(1) >c 1920 & DATA.BIRTH(1) <= 1950
THEN IF I = 1

THEN 1
ELSE DATE2 (1-1) + f

ELSE IF I = 1
THEN 0
ELSE DATE2 (1-1) ;

DATE3(I) = IF DATA.BIRTH(1) > 1950
THEN IF I = 1

THEN 1
ELSE DATE1 (1-1) + 1

ELSE IF I = 1
THEN 0
ELSE DATE3 (1-1) ;

FIGURE 7.1 CONTINUED NEXT PAGE

0LDER.BIRTH (DATE1 (I)) = IF I = 1 & DATE1 (I) = 1
THEN DATA. BIRTH (I)
ELSE IF DATE1 (I) > DATE1 (1-1)

THEN DATA. BIRTH (I) ;

OLDER.NAME(DATEl(1)) = IF I = 1 & DATEl(1) = 1 THEN DATA.NAME(1)
ELSE IF DATE1 (I) > DATE1 (1-1) THEN DATA.NAME (I)

OLDER. PREMIUM (DATE1 (I)) = IF I = 1 & DATE1 (I) = 1 THEN DATA. PREMIUM (I)
ELSE IF DATE1 (I) > DATE1 (1-1) THEN DATA.PREMIUM (I) ;

MIDDLE .BIRTH (DATE2 (I)) = IF I = 1 & DATE2 (I) = 1 THEN DATA-BIRTH (I)
ELSE IF DATE2 (I) > DATE2 (1-1) THEN DATA.BIRTH (I) ;

MIDDLE.NAKE(DATE2 (I)) = IF I = 1 & DATE2 (I) = 1 THEN DATA.NAME (I)
ELSE IF DATE2 (I) > DATE2 (1-1) THEN DATA.NAME (I) ;

MIDDLE. PREMIUM (DATE2 (I)) = IF I = 1 & DATE2 (I) = 1 THEN DATA. PREMIUM (I)
ELSE IF DATE2 (I) > DATE2 (1-1) THEN DATA. PREMIUM (I) ;

YOUNGER. BIRTH (DATE3 (I)) = IF I = 1 & DATE3 (I) = 1 THEN DATA. BIRTH (I)
ELSE IF DATE3(I) > DATE3(I-1) THEN DATA.BIRTH(1) ;

YOUNGER.NAME(DATE3(I)) = IF I = 1 & DATE3(I) = 1 THEN DATA.NAME(1)
ELSE IF DATE3 (I) > DATE3 (1-1) THEN DATA. NAME (I) ;

YOUNGER. PREMIUM (DATE3 (I)) = IF I = 1 & DATE3 (I) = 1 THEN DATA. PREMIUM (I)
ELSE IF DATE3 (I) > DATE3 (1-1) THEN DATA. PREMIUM (I) ;

Figure 7.1

Sample Specification Using Sublinear Indirect Indexing Vectors

We can accomplish this task using three sublinear indirect indexing vectors: DATEl(I), DATE2(1), and
DATES(I), to keep track of the FIELDS to be placed into the three TARGET FILES. (Figure 7.2 shows sample
values of the three sublinear indexing vectors for different values of I and DATA.BIRTH(I).) We defined
DATEl(1) as follows:

DATE1 (I) = IF DATA.BIRTH(1) < 1920
THEN IF I = 1

THEN 1
ELSE DATE1 (1-1) + 1

ELSE IF I = 1
THEN 0
ELSE DATE1 (1-1) ;

so that it only increases when I corresponds to a RECORD containing a BIRTH FIELD with a value less than 1920.
We then wrote the equation

OIsER.BIRTH(DATEl(1)) = IF I = 1 & DATEl(1) = 1
THEN DATA. BIRTH (I)
ELSE IF DATE1 (I) > DATE1 (1-1)

THEN DATA.BIRTH (I) ;

using DATEl(I) as a subscript expression, to keep track of the BIRTH FIELDS entered into the TARGET FILE
OLDER. When DATA.BIRTH(1) has a value greater than 1920, and DATEl(1) doesn't change, then nothing is

added to the new FILE. However, every time DATEl(I) is increased by 1, the FIELD BIRTH (which has the index
I in the FILE DATA and the index DATAl(1) in FILE OLDER) is added to TARGET FILE OLDER.

I 1 I I
I I DATA.BIRTH(1) 1 DATEl(1) I DATE2 (I) I DATE3(I)

I I I I
I I I I

1 I 1915 I 1 I 0 I 0
I I I I

2 1 1930 I 1 I 1 I 0
I I I I

3 1 1947 I 1 I 2 I 0
I I I I

4 1 1953 I 1 I 2 I 1
1 I I I

5 I 1918 I 2 I 2 I 1
I I I I

- 1 I I I
. I I I I
. I I I I

I I I I

Figure 7.2

Sample Values for Several Sublinear Indirect Indexing Vectors

DATEl(I) is used in the same way to keep track of the of the FIELDS DATA.NAME(1) and
DATAPREMWhcl(I). We write equations to add them to the FILE OLDER when the value of DATEl(1) increases.
Similarly, we can defme the sublinear indirect indexing vectors DATE2(I) and DATE3(1) as increasing for values of
DATA.BIRTH(1) in the ranges 1920 to 1950 and greater than 1950, respectively. This allows us to write equations
defining the values of MIDDLE.BIRTH(DATE2(1)), MIDDLE.NAME@ATJ52(1)).
MIDDLEPREMlUM@ATE2(1)), YOUNGER.BIRTH@ATE3(1)), YOUNGER.NAME(DATE3(1)), and
YOUNGERPREMIUM@ATE3(1)).

Note that the range of the records of source file DATA.R, is not defined, and by implication it is given by the
end-of-file of the DATA file. The ranges of OLDER, MIDDLE and YOUNGER are implied from the equations for
DATEI, DATE2, and DATE3 which select the elements of DATAR. Therefore, these ranges must not be
specified Namely, data indexed by sublinear indirect indices must not have a range specification. The equations
with variables on the left hand side which use the sublinear indirect index (e-g. BIRTH, NAME, PREMIUM) can
actually be much simpler by omitting the conditions on the right hand side as they are always inserted automatically
by the MODEL compiler. Namely these equations may be

OLDER. BIRTH (DATE1 (I)) = DATA. BIRTH (I) ;
OLDER. NAME (DATE1) I)) = DATA. NAME (I) ;
OLDER.PREMIUM(DATE(1)) = DATA.PREMIUM(1); etc.

The implications in the above equations is that if there exists an ambiguity, where the left hand variable appears to
be defined multiple times, for several values of I, then only the defmition with the lowest value of I applies.

The sublinear index may appear on the right hand of equations as well in expressions of the form X(1-C)-K where
C+K=>l. (see type 5 above)

The equation defining a sublinear index must be stated in the fom

X(1) = IF I a 1 THEN[IF CONDITION 1 THEN 0 ELSE11
ELSE IF ANY CONDITION 2 THEN X(1-1)+1

ELSE X (1-1) ;

or alternately by using the SUBLINEAR function, as stated above.

7.3. SUBSCRIPT VARIABLES
Subscript variables in MODEL fall into two classes, global and local. They differ in their scope of applicability

throughout the specification. The two types of subscript variables are defined syntactically in Figure 7.3.

1 <subscript variable> ::= <global subscript variable> I
<local subscript variable>

2 <global subscript variable> ::= <nams> I FOR-EACH.<name>
2 <local subscript variable> ::= SUB1 1 SUB2 I SUB3 I SUB4 I SUBS 1

SUB6 I S W 7 I SUB8 I SUB9 I SUB10
Figure 7.3 \ N \ ' 3 7 +-

6 - * ;
Types of Subscript Variables j, R I" ' , t , { 8 , b * -

C 3 C r L O C f & P i . ([> < - . @ a : - . ' - - l ' . . \J

A global subscript has the same range in all the assertion statements in which it is used. For example, the global
subscript variable I, once it has been declared in a statement like

I IS SUBSCRIPT (10) ;

can be used in different assertions as part of the subscript expressions of different variables, and it will always take
the same range (see example below).

CffESTER(1) = JESSICA (I) - DONAKUE (I) ;
CORRINE (I) = EUNICE (11-1) ;

There are two types of global subscript variables. The fmt is declared in a subscript declaration statement. The
second is a qualified name variable of the form FOR-EACH.X, where X is the name of a data structure. The
syntax for declaring global subscript variables in a subscript declaration statement is shown in Figure 7.4. The
following are examples of legal subscript declaration statements:

ROBIN IS SUBSCRIPT;
(BATMAN, SUPERMAN) ARE SUBSCRIPTS ;
FLASH SUB (15);

The examples show that more than one global subscript variable can be declared in the same statement Also,
declaring ranges for global subscript variables is optional in certain situations (see below).

1 <subscript declaration statement> ::=
<variable> [<IS>] <SUBSCRIPT> [(<range of subscripts>)];
2 <SUBSCRIPT> ::= SWSCRIPTISWSCRIPTSISUBISUBS
2 <range of subscripts> ::= <unsigned integer>

Figure 7.4

Syntax for Global Subscript Declaration

Global subscript variables do not always need to be declared, and if declared, their ranges do not always need to
be specified in subscript declaration. The MODEL compiler can sometimes calculate a range for a global or local
subscript variable which was not declared, as long as the variable is used as part of a subscript expression in an
equation. Range propagation is the process of automatically assigning ranges (or repetition counts) to global and
local subscript variables. This can be done because each specification contains several sources of information about
ranges. For example, if the range of a subscript variable is not declared, but the subscript variable is used with a
SOURCE FILE or TARGET FILE variable with a declared range, then the subscript variable will automatically

take this range in all other equations in which it appears. Once the range of a subscript variable is set, then the
MODEL compiler will know this to be the range of every other variable using it as a subscript, even ones whose
ranges weren't specified. Assertions that define control variables, prefixed with SIZE or END, and the positions
of.ENDFILE markers are additional sources of information used in range propagation as well (see Sections 8.2,8.3
and 8.10).

Another way to create a global subscript variable is to add the prefix FOR-EACH to the name of a data
saucture. A qualii5ed name global subscript variable, such as FOR-EACH.KIRK, will have the same range as the
rightmost subscript dimension of the variable, KIRK, whose name it incorporates. Once a qualified subscript is
defined, it can be used as a subscript for other variables with the same range. If SPOCK had the same range as
KIRK in its righunost subscript dimension, then SPOCK(F0R-EACH.SPOCK) and SPOCK(F0R-EACH.KIRK)
would be equivalent.

Predefined local susbscriDt variables named SUBl, SUB2, ..., SUB10 are available in the MODEL system. Each
of these local subscript variables may have a different range in each equation in which it is used. Note that if the
same local subscript variable is used in the subscript expressions of several variables in the same equation, then it
will have the same range in all of those variables. The ranges of local subscript variables are not declared, but
instead are derived by the MODEL compiler through range propagation.

7.4. CONVENTIONS FOR SUBSCRIPT OMISSION
As explained previously, variables in MODEL equations are always FIELD variables. For a FIELD variable of n

dimensions, it takes n subscript expressions to distinguish each individual element However in an equation
containing several subscripted variables, copying long lists of subscripts after each variable can get quite tedious.
Therefore MODEL has a convention for omitting subscripts. Subscript expressions to be omitted must have the
following characteristics:

1) They are conrmon to all variables in an equation.
2) They are Type 1 subscript expressions (as defined in Section 7.2).
3) They are not used as independent variables in the equation,

as in:

4) They are in the same order in each variable from which they are
removed.

5) They are on the left of other subscript expressions
(or have no subscript
expressions to the right) .

If all the subscript expressions in an assertion have the above characteristics, then they can be omitted, without
changing the meaning of the equation, as in,

A(IrJ,K) = 2 * B(I,JIK) + C(1,J); subscripts I,J can be omitted
A(J,K) = 2 * B(J,K) + C(J); subscript J can be omitted
A(K) = 2 * B(K) + C; subscript K can be omitted

8. CONTROL VARIABLES

8.1. OVERVIEW
This Chapter will explain how to use control variables. Control variables allow you to use equations to define

data attributes that you chose not to specify in data declarations, such as the range of a subscripted variable, the
length of a piece of data, or the POINTERS for the RECORDS of an ISAM FILE. When you define a control
variable, you can use it as an independent variable in &fming expressions or conditions. In these ways, control
variables increase your flexibility in setting up your specifications.

Control variables are qualified name variables, which means they are constructed by attaching MODEL keyword
prefixes to variable names. (The prefix is attached to the variable name by using a period, as in SIZE.CHARLES;
see Section 3.6 for more information.) Although the keyword prefixes of control variables may be attached to the
names of GROUPS or RECORDS (as in POINTER.X), the control variables themselves act as FIELDS, each
holding an individual piece of data. The MODEL control variable keyword prefixes to be discussed in this
chapter are SEE, END, LENGTH, NEXT, SUBSET, POINTER, FOUND, ENDFILE and EMPTY.

8.2. S1ZE.X
SIZE is one of two keyword prefixes in the MODEL language used to define the range of a dimension of an

array variable, if that range was not specified in data declaration. The other prefix used for this purpose is END,
discussed in the next section. If X is a subscripted FIELD, GROUP, or RECORD variable, then S1ZE.X may be
used to define and represent the number of elements in the rightmost subscript dimension of X in tenns of an
arithmetic expression whose value is an integer. S1ZE.X may be defined equal to 0; see Section 4.4 on optional data
structures. For example, suppose X was declared as follows:

3 X (*) IS FIELD (PIC '99') ;

A equation of the form

S1ZE.X = 10;

will set the range of X to 10. (If the range of I was declared in a subscript declaration statement, then an equation
defining SIZE.X is unnecessary, because X(1) is given the same range as I through range propagation, as explained
in Section 7.3.)

If X has more than one subscript, then S1ZE.X may have subscripts as well, although the total number will always
be at least one less than in X. This is because we can define the number of elements in a one-dimensional vector
with a zero-dimensional scalar, as the above example shows. If S1ZE.X is subscripted, then each of its elements will
give the range of a vector in X (see below).

If variable X has n subscripts, we can define S1ZE.X variables having from 0 to n-1 subscripts, as illustrated in the
following example. Consider FILE Z, declared in Figure 8.l(a), which contains RECORDS Y and FIELDS X. Y
and X repeat an unknown number of times. Subscript I is used to distinguish the elements of Y, and subscript J
distinguishes the elements of X. Figures 8.l(b) and 8.l(c) display two possible data arrays which are consistent with
this declaration. In the fitst, each RECORD contains the same number of FIELDS, while in the second, the number
of FIELDS vary between RECORDS. Our goal is to write equations to define the ranges of X and Y for each of the
two arrays.

1 Z IS FILE,
2 Y(*) IS RECORD,

3 X(*) I S FIELD (PIC ' 9 ,) ;
I I S SUBSCRIPT;

J I S SUBSCRIPT;

(a) D e c l a r a t i o n of FILE z

(b) P o s s i b l e S t r u c t u r e for X (I , J)

(c) A n o t h e r S t r u c t u r e for X (I , J)

Figure 8.1

Data Sauctures for FILE Z

RECORD variable Y(1) is one-dimensional, so that its range can be defmed with a scalar in a simple equation
such as:

S1ZE.Y = 2; for the first array (F i g u r e 8 . l (b)) , and

S1ZE.Y = 3; for the second (F i g u r e 8 . 1 (c)) .

FIELD variable X(1J) is two-dimensional. In the fmt array, the range of J is the same no rnaaer what the value
of I. In this situation, we can write a simple equation on to defme one range which holds for the whole FILE Z, as
in

S1ZE.X = 3;

In the second array, the range of J changes for each RECORD, as the value of subscript I changes. The range
can no longer be defined in a simple equation. Instead a conditional equation is required, for example

SIZE.X(I) = IF I = 2 THEN 2 ELSE 3;

In this case, a vector is needed to &fine the range of the rightmost dimension of X(I J), because the range of J
depends on the value of I.

We saw in the above example that we could completely define the range of the doubly subscripted X(I J) with
either the singly subscripted SEE.X(I) or the non-subscripted SIZE.X, depending on the structure of X(I 3). These
principles generalize to the writing of equations using SIZE qualified control variables to define the range of data
arrays containing many more dimensions and susbscripts. If S1ZE.X has m subscripts and X has n subscripts, then 0
<= m < n. Always the nth dimension in X must be omitted in SIZE.X.

8.3. END.X
The MODEL keyword prefix END provides an alternative to SIZE in forming a control variable to define ranges.

Unlike S1ZE.X END.X is a Boolean variable (defmed in Section 3.9.6), and takes the same number of subscripts as
repeating variable X. Each element of END.X consists of a single bit value of true or false. An element of ENl3.X
(distinguished by n supscripts) is defined as true when the rightmost subscript of X takes its maximum value.
Otherwise, each element of END.X is defined as false.

The array END.X is usually defined in terms of a comparison expression which will be true only when the
rightmost subscript takes its maximum range. To define the range of a vector S(1) as equal to some constant K, we
could write

END.S(I) = I = K;

END.S(I) would be true when I equals K and false otherwise, thereby defining the range of S(1) as K.

IF X contains two or more dimensions, then the array END.X can be used to define the range of the rightmost
dimension. For example, to define the range of variable X(I,J) from Figure 8.l(b), we could write the simple
equation

thereby defining the range of X(1J) as 3, irrespective of the value of I. The values of the Boolean elements of
END.X(I J) based on the above assertion are shown in Figure 8.2(a).

(a) Values of Elements of END. x (I, J)
for Figure 8.1 (b) .

(b) Values for Elements of END. X (I, J)
for Figure 8.1 (c)

Figure 8.2

Values of Elements of END.X(IJ)

However, sometimes the range of a variable in a particular dimension may change depending on the value of a
subscript for a higher dimension in the array. This is the case for the range of X(1J) as illustrated in Figure 8.l(c).
To define the range of the three vectors X(1 J) for I equalling 1,2, and 3 we need to write a conditional equation in
which the value of END.X(I J) depends on both the value of I and the value of J. Such an equation would be

END.X(I,J) = IF I = 2 THEN J = 2 ELSE J = 3;

The values of the elements of END.X(I J) &fined by this equation are shown in Figure 8.2(b). END.X(I,J) is
defined as true when J equals 3 for the first vector, when J equals 2 for the second, and when J equals 3 for the third.

As an alternative, you can make range defmition via an EM) qualified control variable depend on the value of the
elements of the original variable, rather than their subscripts. You do this by setting up the data so that the last'
element of the subscripted variable with an -unspecified range is given a unique value, such as 999, making it a
termination marker. You can then write an equation like

END.2 (I) = Z(1) = 999;

This will define ENDZ(1) as true when Z(1) equals the termination value of 999.

You can also use an expression containing an END qualified control variable in the condieion in a conditional

equation. This way you can make the value of a dependent variable depend on whether the END control variable is
me. For example, we could write

A(1) = IF END.Y(I) THEN 6 ELSE 8;

This defines the value of A(1) as 6 when END.Y(I) is true (at the maximum range of Y(I)), and 8 otherwise.

Sometimes, defming unspecified variable ranges through SIZE or END qualified control variables is not
necessary, even if they cannot be inferred from subscripts through range propagation. This occurs when variable
ranges may be obtained by the MODEL compiler from an ENDFILE marker. Whenever a set of data is read from
a data FILE, the last element of that FILE is automatically marked. This last element can be used by the compiler
to define the range of a subscripted varible, just as you would define it using an END control variable. This
repeating variable can be a RECORD or GROUP. The restrictions are that there can be only one subscripted
variable (with uncertain range) in the FILE, and that the last element of this repeating variable has to occur at the
end of the FILE. When these restrictions are satisfied, the unspecified range of the subscripted variable will be
defined automatically. Otherwise, range definition through SIZE or END control variables are required.

8.4. LEN.X
The LEN.X control variable is used to define the length (number of characters) in FIELD variable X, when this

information is left unspecified in data declaration. (As described in Section 4.6.1, the length of a FIELD variable of
character data type may be declared as a minimum-maximum range.) If X is subscripted, then LEN.X will have the
same number and range of subscripts, for example

LEN.MARIAN = 7;
LEN.EVE(1) = IF I < 5 THEN 9 ELSE 12;

Each element in LEN.X(I) defines the length of the element of XU) with the corresponding subscript in terms of
any arithmetic expression whose value is an integer. The only restriction is that the value of LEN.X cannot depend
on the value of any FIELDS physically positioned after FIELD(S) X in the same SOURCE FILE RECORD.

8.5. MALDATA.X
MALDATA.X is a Boolean variable which takes the same number of subscripts as repeating SOURCE RECORD

X. If a conversion error occurred when reading in a FIELD of X, then the element of MALDATA.X corresponding
to that RECORD is &fined as true. Otherwise, each element of h4ALDATA.X is defined as false.

8.6. Nl3XT.X
If X is a FIELD in a sourcefile RECORD, then NEXT.X has a value equal to the contents of the corresponding

FIELD in the same position in the following RECORD in the FILE. (This will be the RECORD with the next
higher RECORD-level subscript, unless it is the last RECORD in a GROUP, in which case the next RECORD will
be the fmt one in the next GROUP.) Nl3XT.X can be of any data type, depending on the data type of X

We can use NEXT.X to &fine the range of a GROUP of RECORDS by making the definition of the END of the
GROUP contingent on the Boolean value of an expression comparing X and NEXT.X. For example, Figure 8.3
shows the data declaration of a FILE (named SALES) where RECORDS (named INVOICE) are placed in GROUPS
(named PRODUCT), but the number of RECORDS in each GROUP is unspecified. Each RECORD contains an
identifying FIELD called PIN, short for product identification number, which has a common value for all the
RECORDS in any one GROUP, but is different among GROUPS. By writing an equation like

we can define the Boolean variable END.INVOICE(1 J) as me, specifying that a particular RECORD is the last one
in a PRODUCT GROUP, when the value of PIN is different in the following RECORD. This allows the number of
INVOICE RECORDS in each PRODUCT GROUP to be determined.

1 SALES I S FILE,
2 PRODUCT (4 1) I S GROUP,

3 INVOICE(*) I S RECORD,
4 PIN I S FIELD (PIC ' 999999') ,

4 QUANT I S FIELD (PIC ' 9 9 9 g f) ,
4 PRICE I S FIELD (PIC '999V.99') ;

I I S SUBSCRIPT;
J I S SUBSCRIPT;

Figure 8.3

Data Declaration of FILE SALES

NEXT.X cannot be used for RECORDS in ISAM FILES. A second restriction is that the number of FIELDS to
the left of FIELD X should be fixed in the RECORD. If there are a varying number of FIELDS to the left of
FIELD X in each RECORD, then the NEXT.X FIELD will not be located correctly. There is no problem, however,
if there is a varying number of FIELDS to the right of X in each RECORD.

8.7. SUBSET.X
SUBSET.X is a Boolean control variable in which each'element corresponds to an element of subscripted

RECORD variable X. You can def111e each element of SUBSET.X as m e or false, depending on whether you want
the RECORD from X with the corresponding subscripts to be included in a TARGET FILE. For example, to omit
the second of the three RECORDS in TARGET FILE E, declared below in Figure 8.4, you could write

The above equation defines a value of true for all the elements of SUBSET.F(I), except the second. Those
RECORDS of F(1) for which SUBSET.F(I) is true will be included in TARGET FILE E; the second RECORD, for
which SUBSET.F(I) is false, won't be.

1 E I S FILE,
2 F (3) I S RECORD,

3 OUT I S FIELD (PIC ' 9 ,) ;
I I S SUBSCRIPT;

Figure 8 . 4

TARGET FILE to Demonstrate the Use of SUBSET

E must be a target file and can be either sequential or index sequential organization. The use of SUBSET does
not affect computations. End as TARGET data. For example, you could define a FIELD in another TARGET
FILE in terms of omitted FIELD OUT(2). Therefore you must be sure to declare the full range of RECORDS for
your TARGET FILE, including those to be omitted.

When SUBSET prefixes a record name in a target index sequential (ISAM) file, it denotes whether the respective
record is to be retained (or deleted) from the file (see further discussion in Sections 8.8 and 8.9).

8.8. P0INTER.X
The next two keywords, POINTER and FOUND, are used with keyed FILES. Section 5.4 describes how each

RECORD, X, in a keyed FILE has a FIELD, called a KEY, which contains a unique identifying alphanumeric string.
The control variable PO1NTER.X contains an array of these strings, called POINTERS, as elements. When you
define the strings making up POINTER.X, you simultaneously define the desired organization of RECORDS of the
keyed FILE. The keyed FILE is rearranged, in terms of number and ranges of dimensions, so that the positions of
the RECORDS, as identified by their KEYS, match up with the positions of the corresponding POINTERS in
PO1NTER.X. For example, the assertion statement

POINTER.X(I) = Y (I) ;

would shape the RECORDS of the keyed FILE into a one-dimensional vector, while the statement

PO1NTER.X (I, J) = Z (I, J) ;

would reorder them into a two-dimensional matrix. RECORDS from the keyed FILE having KEYS for which there
are no corresponding POINTERS will be excluded from the reorganized FILE.

P0INTER.X is usually defined in terms of an array of FIELDS taken from a separate reference SOURCE FILE.
Once the RECORDS of the keyed FILE are given the structure of this array, you can use subscripts to refer to
specific FIELDS from keyed RECORDS as independent or dependent variables in your assemon statements. In this
way, you can use a keyed FILE as a SOURCE FILE, a TARGET FILE, or as both a SOURCE and TARGET FILE.
In the last case, as explained below, you can use POINTER and FOUND to easily update certain RECORDS in a
keyed FILE while leaving others unchanged.

For example, Figure 8.5 illusirates the specification you would write to define the FIELDS of a TARGET FILE in
terms of the FIELDS from a keyed SOURCE FILE. SOURCE FILE E is declared as ISAM, with single RECORD.
SOURCE FILE, B, contains a two-dimensional FIELD variable, D(IJ), which gives the values of the POINTERS
we will use to restructure FILE E. The elements of D(1,J) are shown in Figure 8.6(b).

We then use the statement

to defme the shape of keyed RECORDS as the two-dimensional matrix. The FIELD OUT2 of the keyed RECORD
variable FT can then be described in terms of this structure, allowing the FIELD variable K(I,J) in TARGET FILE
G to be &fined. The values of the elements of TARGET FIELD K(I J), defined from SOURCE FIELD OUT2(IJ),
are shown in Figure 8.6(c).

MODULE: A;
SOURCE: B,E;
TARGET: G;

1 B I S FILE,
2 C(*) IS RECORD,

3 D (*) I S FIELD (PIC ' 9 ') ;

1 E I S FILE KEY I S OUTl ORG I S ISAM,
2 FT I S RECORD,

3 OUTl I S FIELD (PIC ' 9 ') ,
3 OUT2 I S FIELD (P I C ' 2 9 9 ') ;

1 G I S FILE,
2 H(*) IS RECORD,

3 K(*) I S FIELD (PIC '299 ') ;

I I S SUBSCRIPT (2) ;
J I S SUBSCRIPT (3) ;

F i g u r e 8.5

Example U s i n g POINTER with Keyed FILE as SOURCE

If the POINTER variable contains an identifying saing which is not a KEY for any RECORD in the keyed FILE,
then the message

RECORD NOT FOUND I N FILE filename WITH KEY k e y - v a l u e

is printed. (see discussion of FOUND in next section) Also, if the KEY of a particular RECORD from the keyed
FILE is not included in the POINTERS from the reference FILE, then the FIELDS of that RECORD will not be
used to define the values of FIELDS in the TARGET FILE. For example, elements of SOURCE FIELD OUT2
from RECORDS of ISAM FILE E with KEY values of 7, 8, and 9, as shown in Figure 8.6(a), will not be used to
define TARGET FIELD K(1J).

ICeY FIE= OUT1 FIELD OUT2

4 33
5 6 4
7 9 5
8 12 8
9 43
1 2 9
2 203

(a) Contents of ISAM SOURCE FILE E

Figure 8.6 Continued Next Page

(b) Contents of D (I, J)

(c) Contents of K (I, J)

Figure 8.6

Contents of Data Structures in Specifcation of Figure 8.5

Using a keyed FILE as TARGET is an easy way to fill an empt'y SAM or ISAM FILE with data. For example,
Figure 8.7 shows the specification you would write to define the FIELDS of keyed ISAM TARGET FILE M. (Here
the RECORDS of the keyed FILE will be shaped into a vector rather than a matrix.) Whenever the POINTER gives
a KEY that is not already contained in the keyed TARGET FILE, then a new RECORD for that FILE is &fmed,
with its KEY equal to the value of the POINTER FIELD. (This method could also be used to add RECORDS to an
already existing keyed FILE.) When the POINTER gives a KEY value which corresponds to a RECORD already
contained in the TARGET FILE, nothing is changed and the message

FILE filename IS TARGET ONLY,
RECORD UPDATE WITH KEY key-value IS IGNORED

is printed.

MODULE : A;
SOURCE: B;
TARGET: M;

1 B IS FILE,
% C(*) IS RECORD,
3 D IS FIELD (PIC 9') ,
3 G IS FXELD (CHAR (5));

1 M IS FILE KEY IS OUTl 0% IS ISAM,
2 F IS RECORD,

3 OUTl IS FIELD (PIC 'g'),
3 FIELD .(CHAR (5)) ;

I I S SUBSCRIPT:

POINTER. FT (I) = D (I) ;

OUT2 (I) = G (1) ;
OUT1 (I) = D (I) ;

F i g u r e 8 . 7

Example Using POINTER with Keyed FILE as TARGET

The most common usage of the POINTER control variable is with a keyed FILE which is used as both SOURCE
and TARGET. This allows you to alter certain RECORDS in the keyed FILE while not changing others. For
example, you could update the RECORDS of those items in a stock inventory which just arrived in a shipment,
while not affecting the RECORDS of your other items. Figure 8.8 shows the ISAM FILE E used as both a
SOURCE FILE and a TARGET FILE. This example is basically similar to the two previous ones What is different
is that every time one of the variables from the ISAM FILE is mentioned in an equation, it must be accompanied
by a keyword prefix NEW or OLD to tell if it refers to the variable before or after the ISAM FILE was updated.
(See Section 3.6 for a discussion of the use of the keywords NEW and OLD.) RECORDS with KEYS not included
among the list of POINTERS will not be updated before being entered into the TARGET FILE. Unless redefined
in an additional assertion, the KEY FIELDS will also be the same in both the SOURCE and TARGET versions of
the keyed FILE.

MODULE: A;
SOURCE: B,E;
TARGET : E:

1 B I S FILE,
2 C(*) I S RECORD,

3 D I S FIELD (PIC , 9 ') ,
3 G I S FIELD (PIC 2 9 9 ') ;

1 E I S FILE KEY I S OUTl ORG I S ISAM,
2 FT I S RECORD,
3 OUTl I S FIELD (PIC ' 9'1,
3 OUT2 I S FIELD (PIC ' 2 9 9 ,) ;

I I S SUBSCRIPT;

POINTER.OLD .FT (I) = D (I) ;

NEW.OUT2 (I) = OLD.OUT2 (I) + G (1) ;

Figure 8.8

Example with POINTER Using Keyed FILE as both SOURCE and TARGET

8.9. F0UND.X
F0UND.X is a Boolean variable with the same size and shape as POlNTER.X, that is, with the same range and

number of dimensions. It is also used with keyed FILES, which usually have INDEX SEQUENTIAL organization.
A element of F0UND.X contains a value of true, if the corresponding RECORD, whose KEY is given in
POINTER.& actually exists in the keyed FILE. If the RECORD does not exist, then the value of the element of
F0UND.X with corresponding subscripts is false.

An example of the use of F0UND.X is the following assertion which can be added to the specification in Figure
8.7. The assertion is

and it uses both FOUND and SUBSET control variables. The effect of the assertion is to delete from the updated
I S M FILE all RECORDS which weren't changed (whose KEYS weren't pointed to and found). Only old
RECORDS which were included in the update will remain in the keyed TARGET FILE.

The FOUND prefmed variables are defined automatically and there is no need to write an equation to define
them Thus they are referenced in equations only on the right-hand side of the equal sign, i.e. only as independent
variables.

8.10. ENDF1LE.R
Consider for example a SOURCE file that has RECORD arrays R1, R2 and R3. Then the MODEL system will

define automatically arrays of respective shapes (dimensionality and ranges) ENDFILE.Rl, ENDFILE.R2 and
ENDFILE.R3. Each element of the latter arrays denotes if the corresponding record is the last in the file. Thus the
ENDFILE prefixed variables are Boolean. They are defined automatically and there is no need to define them by
equations. They can be referenced as independent variables in equations.

8.11. EMPTY$
The keyword EMPTY can be used to prefix a SOURCE file name, e.g. EMP"IY.F. It denotes whether the

s u f f ~ e d SOURCE file is empty, namely has no RECORDS in it. Such variables are Boolean and are defined
automatically. They can be referenced as independent variables in equations. They are used mainly to define other
attributes of data, such as ranges.

9. DEBUGGING AND DOCUMENTING MODEL
SPECIFICATIONS

The topic of debugging in MODEL is very closely related in many respect. to progressive modular development.
Specifications which have been processed by the MODEL compiler receive information in the output reports and
error messages which aid the user in proceeding to the next level of analysis. Whether this information is an
indication that the system design has inconsistencies or it is telling the user of an error or oversight (for example a
specification statement is missing a semi-colon), helshe must know how to understand the messages and reports so
that the prototyping proceeds.

In this chapter we'll discuss three different aspects of debugging. Fit, a high-level view of the structure of the
MODEL compiler with the goal of assisting the user in hislher debugging of MODEL specifications. The compiiing
process goes through many stages, and the informational, error and warning messages which the compiler generates
originate from a particular part in the compilation process. Knowing something of this process will help the user
identify the areas of concern in the specification.

Next, we'll discuss the reports generated by the compiler and what information each contains.

And finally, we will introduce the parameters of the MODEL Control File. These may be manipulated by the
MODEL specification designer to request or suppress the various reports and/or options available in the MODEL
system.

The chapter ends with a discussion of the Test-&ta Generation facility of MODEL used for development and
testing.

9.1. DEBUGGING A MODEL SPECIFICATION

9.1.1. ERROR MESSAGES
Every time a specification is run through the MODEL compiler an "Error" file is created. This file contains

messages from the MODEL system which supply the user with valuable information.

Each message issued by MODEL is proceeded by a message type followed by a four character error code. The
different message types are:

Messaue T w e Explanat ion

Error

Failure

Limit

A problem in the specification was so
severe that MODEL could not continue processing
reliably. No code was generated. Correct the
error and try again.

The specification uncovered a problem
internal to the compiler. Contact your repre-
sentative for assistance. Save the offending
specification for your representative,.

The specification requires an alloca-
tion beyond what is presently allowed. Contact
your representative to determine if the limit
can be increased.

Warning The compiler made an assumption about
the specification. Verify the cause of
the warning and determine whether the assump-
tion is the intended meaning. Modify and re-
compile accordingly.

The message type is followed by a four character error code. It is an abbreviation for procedures within MODEL
and indicates which issued the message.

The four stages of the MODEL compiler include:

1) Syntax Analysis
2) Precedence Analysis and Dimension Propagation
3) Range Propagation
4) Scheduling and Code generation

If an error is detected in a specification, the compiler stops execution at the end of the stage in which the error
occurred. The four or five character error codes contain a three character mnemonic which can be used to determine
in which stage of the compilation process the message was issued. (A discussion of each of the four stages follows.)
In figure 9.1 we have listed the three character prefmes alphabetically along with the stage of the compiler which
issues these messages.

MESSAGE MNEMONIC

APD
ASS
BKT
BTC
CDG
CHX
CLS
CRD
CRE
D m
EED
EHR
EMD
E m
ENP
EVL
FED
FIR
FLM
FPK
FSB
GAS
GDL
GI0
HSR
I IX
INA
IN1
ISF
ITF
LEX
MIN
MNT
NRC
RGP
RTB
RTV
SAP
Scn
SFD
SFL
SPS
SVF
SVT
WID
WPL
XRF

(Note: above stages refer to the following:
1) Syntax Analysis
2) Precedence Analysis and Dimension Propagation
3) Range Propagation
4) Scheduling and Code generation)

Fig. 9.1: Procedures issueing messages and respective stages

9.1.2. THE STAGES OF THE MODEL COMPILER
We have chosen an example of a specification to illustrate the types of error messages generated by MODEL and

what the corresponding equations which trigger these messages look like. The specification illustrated below may
be used to sort a Source file with up to 9,999 records. It accomplishes this through creating a two dimensional
Interim file with sorted columns. When end-of-file is reached in the Source file, the last column of the Interim file is
used to give values to the Target file.

Module: Sort;
Source: Datain;
target: Sorted;

1 Datain is file,
2 Datarec (*) is record,

3 key-fld is field (char (5));

1 Sorted is file,
2 Sortrec (*) is record,

3 sort-fld is field (char (5)) ;

1 inter is file,
2 rows (*) is group,

3 column (1: 9999) is record,
4 interf ld is f ld (char (5)) ;

(i, j) are subscripts;
interfld(i,j)= if i=l then key-fld(1) else

if j<i then
if interf ld (i-1, j) < key-f ld (i) then interf ld (i-1, j) else
if j-1 then key-fld(i) else
if interfld(i,j-1)< key-fld(i) then key-fld(i) else

interf ld (i-1, j-1)
else
if interfld (i, j-1) <key f ld (i) then key-f ld (i) else -

interfld(i-1, j-1) ;

file-size=if endfile.datarec(i) then i;

size. column (i) xi;
size.sortrec=file-size;

sort-f ld(j) =if i=f ile-size then interfld (i, J) ;

9.1.3. STAGE ONE: SYNTAX ANALYSIS
Before any equations, header statements, data declarations or equations are broken down and examined for

underlying relationships, every statement in the specification is tested for syntax correctness.

Errors in syntax usually cause the MODEL compiler to terminate without further processing. They may be
caused by a missing semicolon, a misspelled key word or any other violation of the rules for syntax.

The error message will contain a reference to the statement number in the specification where the error occurred.
This number points to a line in the listing file which was created at compilation time.

In the following example, modifications causing errors have been ma& to the specification "Sort".

Module: Sort;
Source: Datain-file;
target : Sorted;

1 Datain-file is file,
2 Datarec (*) is record,

3 key - fld is field (char (5))

1 Sorted is file,
2 Sortrec (*) is record,

3 sort-fld is field (char (5)) ;

1 inter is file,
2 rows (*) is group,

etc .
We have broken two syntax rules in this specification: First, we have violated the syntax for source file names by
making it greater than seven characters. Second, we omitted the semicolon at the end of the data declaration for the
same source file.

Upon running the MODEL compiler, the following messages were generated:

ERROR ISF1: SOURCE FILE NAME "DATAIN FILE1* IS LONGER THAN 7 CHARACTERS.
ERROR SAP74: MISSING I ; ' AT END OF STATEMENT AT LINE: 6 OF STMT: 4, AT

SYMBOL "1".
STATISTICS: 0 WARNING(S) AND 2 ERROR(S) DETECTED IN SYNTAX ANALYSIS

*-*JOB ABORTED DUE TO THE ERROR(S) NOTED ABOVE.

The second message points to line 6 of statement 4. The next step is to consult the generated listing shown in
figure 9.2.

...
* *
* SORT MODULE SPECIFICATION *
* *
...

1 MODULE: SORT;
2 SOURCE: DATAIN FILE;
3 TARGET : SORTED:

...
* *
* FILE DESCRIPTIONS: *
* *
...

...
* *
* DESCRIPTION OF DATAIN-FILE FILE *
* *
...

4 1 DATAIN-FILE IS FILE,
4 2 DATAREC (*) IS RECORD,
4 3 KEY FLD IS FIELD (CHAR (5)) -
4 1 SORTED IS FILE,
4 2 SORTREC (*) IS RECORD,
5 3 SORT - FLD IS FIELD (CHAR (5)) ;

...
* *
R DESCRIPTION OF INTER FILE *
* *

1 INTER IS FILE,
2 ROWS (*) IS GROUP,

3 COLUMN (1: 9999) IS RECORD,
4 INTERFLD IS FLD (CHAR (5)) ;

(I, J) ARE SUBSCRIPTS;
INTERFLD (I, J) = IF I=l THEN KEY-FLD (1) ELSE

IF J<I THEN
IF INTEWLD(1-1, J)< KEY-FLD(1) THEN INTERFLD(1-1, J) ELSE
IF -1 THEN KEY FLD (I) ELSE
IF INTERFLD(I,J-~)< m z ~ FLD(I) THEN KEY - FLD(I) ELSE

INTERFLD (1-1, J-1)-
ELSE
IF INTERFEB (I, J-1) <KEY FLD (I) THEN KEY - FLD (I) ELSE

INTERFLD (I-1,;-1) ;

8 c) FILE - SIZE=IF ENDFILE.DATAREC (I) THEN I;

11 SORT - FLD (J)=IF I=FITS-SIZE THEN INTERFLD (I, J) ;
Fig. 9.2: Specification listing for "Sort".

Notice that the compiler is unable to determine the end of statement 4. The Target file SORTED is included in
this statement. In this particular case the compiler is confused with its sequencing. It gives a lot of information and
it is up to the user to find the exact location of the error. -MISSING ';' AT END OF STATEMENT AT LINE: 6 OF
STMT: 4, AT SYMBOL "1"- The best indicator is the SYMBOL "1" at line 4 of statement 4. This is the symbol
which tells the compiler that a semicolon was missing.

9.1.4. STAGE TWO: PRECEDENCE ANALYSIS AND DIMENSION PROPAGATION
In MODEL, the sequence of program events is not given by the user. Instead, it is determined by the MODEL

processor. How this is accomplished is a complex series of evehts, but there are certain occurrences of which the
user should be aware to help in debugging of specifications.

This stage creates a dictionary of all data and equation elements in the specification. Source and Target files are
considered external files and any data strucrure which is not in Source or Target is assumed by the compiler to be an
Interim structure.

If an interim field is not &fined by any equation, an error message is sent to inform the user. It is probable that
the user forgot to write the equation. However, if a field in a Target file is not defined explicitly, the MODEL
prccessor will try to find an implicit source, through name matching, to define that field. The MODEL processor
tolerates this kind of incompleteness and saves the user work of writing assertions for merely copying fields from a
Source file to a Target Ne.

The user is allowed to omit subscripts in equations in certain cases which do not lead to ambiguity. These are
tolerated by the MODEL processor and are resolved by the process known as Dimension Propagation. The number
of dimensions of a data element is defined by counting the number of ranges between it and the FlLE statement.
Any divergence from this number of subscripts in equations causes this stage to determine whether subscripts were
omitted in a logical fashion and if so, the subscripts are implicitly added

In the following example, the equation for INTERFLD in the specification SORT was modSed to introduce an
error in Dimension Propagation.

interfld(i, j) = if i=l then key-fld(1) else
if j<i then

if interf ld(i-1, j) < key-fld (i) then interf ld (i-1) else
if j-1 then etc .

Although INTERFLD has two dimensions, the final reference to it is INTERFLD(i-1), implying that there is only
one dimension.

After running this specif~cation through the MODEL compiler, the following error message was generated:

ERROR DMP1: CONTRADICTION IN DIMENSIONALITY
DETECTED IN THE DATA ELEMENT 1NTER.INTERFI.D WITH 2 DIMENSIONS.
AASS8 APPEARS TO HAVE 0 DIMENSIONS OMITTED.
SO, THE DATA ELEMENT 1NTER.INTERE'LD MUST HAVE 1 DIMENSION.
AGAIN, AASS8 APPEARS TO HAVE 0 DIMENSIONS OMITTED.
THEREFORE, THE DATA ELEMENT 1NTER.INTEWI.D HAS 2 DIMENSIONS.

The message points to field INTERFLD within statement 8, (AASSS), and indicates confusion in dimensionality.
At this point the user should consult the listing to &tennine which statement that is (in this case it is the one we
mM1ed) and carefully examine all subscript expressions to determine whether or not a dimension was accidently
omitted.

9.15. STAGE THREE: RANGE PROPAGATION
If no range is specifled for the rightmost dimension of a Source file, the system will assume this to be endof-fde.

If two data elements are in the same equation with the same global subscripts, then the system will assume they have
the same ranges.

The ranges of an equation's subscripts restrict the number of instances the equation will be executed. A criterion
for placing a number of equations in the scope of one loop is that they all have subscripts of the same range. In
order to develop a high degree of efficiency in the generated PUI program, the MODEL compiler identifies all
subscripts of the same range.

9.1.6. STAGE FOUR: SCHEDULING AND CODE GENERATION
Most of the error messages which users will encounter come from the fmt three stages. The final stage executes a

series of complex analyses to set up a highly efficient PUI program. Having begun with a non-procedural
specification, this stage takes all the information which the MODEL compiler has determined and initiates the task
of structuring and generating the PL/I program.

We are now in a position to understand all the Warning messages generated by the specification "Sort". These
messages are:

--- ERROR (S) /WARNING (S) DETECTED FOR SORT. INP : ---

WARNING CRD9: A DECWLRATION HAS BEEN SUPPLIED FOR THE UNDECLARED VARIABLE
"FILE SIZEn.

WARNING IIX~: SOME SVBSCRIPTS APPEAR ON THE RIGHT---SIDE BUT NOT ON THE
LEFT-HAND-SIDE OF AN ASSERTION. SELECTION IS IMPLIED FOR ",In IN
ASSERTION AASS12.

WARNING 11x1: SOME SUBSCRIPTS APPEAR ON THE RIGHT-HAND-SIDE BUT NOT ON THE
LEFT-HAND-SIDE OF AN ASSERTION. SELECTION IS IMPLIED FOR ",I" IN
ASSERTION AASS9.

WARNING - 7 : "INTER.CO%UMN,Pw AND "SORTED.SORTREC,ln USED AS LEFT-HAND-SIDE
VARIABLES, HAVE INCOMPATIBLE RANGES; THEY CANNOT SHARE THE SAME
SUBSCRIPT.

"WARNING* RGP1: DIMENSION 1 OF "DATAIN.KEY - FLD" IN RANGE SET NUMBER 1 DOES.NOT
HAVE AN EXPLICIT RANGE.

WARNING EVLl: THE RANGE FOR DIMENSION 1 OF "DATAIN.DATARECW NEEDS AN UPPER
BOUND AND HAS BEEN ASSUMED TO BE 9999.

STATISTICS: 6 WARNING(S) AND 0 ERROR(S) DETECTED IN SEMANTIC ANALYSIS

First note that there are no syntax errors. Had there been any, the compiler would have stopped processing.

The CRD and IIX messages are from STAGE TWO. The undeclared variable FILE-SIZE was given a
declaration automatically during Precedence Analysis. In statements 9 and 12, (the equations for FILE-SIZE and
SORT-FIB respectively), all fields had complete and correct subscript expressions, however the compiler is
indicating to the user that there is a dimension mismatch between the two sides of the equation.

The RGP messages are from STAGE THREE. In order to fully understand these messages the user must look at
the Range Table for this specification. There it will be found that the compiler had to set up separate ranges for the
Target file and the Interim file second dimension even though they share a global subscript and have the same range.

Finally, the EVL messages come from STAGE FOUR. In this stage, the Scheduler determined that the generated
PUI code would need an upper limit to compile successfully and therefore inserted 9999 into the data declaration
for DATAREC.

9.2. REPORTS PRODUCED FOR DOCUMENTING A SPECIFICATION
The MODEL compiler produces a series of reports with the dual objective of serving as reference in debugging

and providing automated documentation for future maintenance of the specification. In addition to the error and
warning messages illustrated above, there are seven reports described below.

The fmt report - Specifiation Listing was illustrated in figure 9.2. This report assigns numbers to statements,
which are used in error and warning messages to point to respective problem areas.

The other reports are illustrated below through the "Sort" example and briefly described in the following.

The Cross Reference report is illustrated in figure 9.3. It lists all the variables in the specification, showing for
each where it has been declared and where it is referenced. It is useful, for instance, if you have a problem with a
variable, to fmd where the variable is declared and referenced In this way you can evaluate all the involvements of
the variable in the specification.

The Flowchart Report is illustrated in figure 9.4. It is not used in debugging a specification for correctness, but
only for attempting to make a specification more efficient. This is described in section 10.3. The report shows in a
linear flowchart-like form all the events in the program. It is produced at the end of the SCHEDULING STAGE and
reports the decisions made by the compiler in the detailed design of the program.

The Range Table Report is illustrated in figure 9.5. It may be produced twice- once before the SCHEDULING
STAGE as an aid to debugging if an error is detected prior to scheduling, and once after the SCHEDULING STAGE
to indicate final program design decisions. The &rt fmt shows the distinct ranges found by the compiler in the
specification. This is followed by showing for each variable its dimensions, numbered from left to right, the range
of the dimensions, whether the memory allocation is virtual or physical, and its window size.

Figure 9.6 illustrates the Formatted Report. It is a restatement of the Specification Listing with all omitted
information filled in. Further, an indentation scheme is used for easy readability. Also the statements are reordered,
starting with source declarations and following with intermediate and target declarations - each with the defining
equations for its variables. This report is intended solely for program documentation.

The generated PU1 program is illustrated in figure 9.7. The user need not understand the generated PUl code.
However, messages issued when the program is executed may include a PUl statement number. This may occur
especially in dynamic debugging of the program with test data. In such a case you will fmd at the beginning of the
PUl statement, which is identified by its corresponding number in the PUl Compiler listing and consequently the
message during execution, a reference to the number of the respective equation statement in the MODEL
specification (indicated as a number within a comment; i.e. I* 8 *I). The latter is the statement that needs to be
analyzed to find the cause of the problems.

Finally, the File Information report is illustrated in figure 9.8. This is a separate report from the others and is
documentary information on file and record sizes by aggregates from their fields. It is useful in determining offset
boundaries and record lengths.

***** CROSS REFERENCE AND ATTRIBUTES REPORT *****

WHERE
NAHE DECLARED ---- -------- ATTRIBUTES ----------

STATEMENT NO.
REFERENCE ----------------

COLUMN 6 RECORD, (1 SUB-MEMBERS), IN FILE INTER 6, lo, 14

DATAIN
DATAREC

4 FILE,SOURCE,UNSORTED 2, 15
4 RECORD, (1 SUB-MEMBERS) , IN FILE DATAIN 4 I 9, 15

FILE-SIZE 13 FIELD, GENERIC [INTERIM]
I 7 SUBSCRIPT

INTER
INTERFLD

12
6 FILE, UNSORTED 14
6 FIELD, CHARACTER(5) IN FILE INTER 6 8, 12

J 7 SUBSCRIPT 8, 12
KEY-FLD 4 FIELD, CHARACTER(5) IN FILE DATAIN 4 I 8

ROWS 6 GROUP, (1 SUB-MEMBERS), IN FILE INTER 6

SORT
SORTED
so~~riec

1 MODULE NAME
5 FILE,TARGET,UNSORTED 3
5 RECORD,(1 SUB-MEMBERS), IN FILE SORTED 5, 11

SORT-FLD 5 FIELD, CHARACTER(5) IN FILE SORTED 5 , 12

(ENDFILE)
. DATAREC ---- DATA STRUCTURE PARAMETER
(SIZE)
. COLUMN ---- DATA STRUCTURE PARAMETER
. SORTREC ---- DATA STRUCTURE PARAMETER

Fig. 9.3: Cross Reference and Attributes Report for "Sortw.

***** FLOWCHART REPORT *****

NAME ----
SORT
DATAIN

DATAREC
[ENDFILE] -V

DATAREC
AASSlO
KEY FLD
AASz9
[SIZE] -V

COLUMN

AASSll
[SIZE] -v
SORTREC

AASS8
INTERE'LD
COLUMN

ROWS

INTER

SORT-FLD
SORTREC

SORTED
SYSGENI
SYSGEN2

NEST
LVL : DESCRIPTION EVENT -----

MODULE NAME PROCEDURE HEADING
FILE OPEN FILE

1 ITERATION: RANGE NO. 1 FOR $11 UNTIL END OF FILE
RECORD IN FILE DATAIN READ RECORD

SPECIAL NAME
EQUATION
FIELD IN RECORD DATAREC
EQUATION

SPECIAL NAME
1 END ITERATION
FIELD
EQUATION

SPECIAL NAME
1 ITERATION: RANGE NO. 1
2 ITERATION: RANGE NO. 2
EQUATION
FIELD IN RECORD COLUMN
RECORD IN FILE INTER

2 END ITERATION
2 ITERATION: RANGE NO. 3
EQUATION

2 END ITERATION
GROUP IN FILE INTER

1 END ITERATION
FILE

1 ITERATION: RANGE NO. 3
FIELD IN RECORD SORTREC
RECORD IN FILE SORTED

1 END ITERATION
FILE
GROUP
GROUP
END

TARGET OF EQUATION: AASS9
FOR $11
TARGET OF EQUATION: AASSlO

TARGET OF EQUATION: AASSll
FOR $11 UNTIL END OF FILE
FOR $12 UNTIL S1ZE.X SPECIFIED

TARGET OF EQUATION: AASS8
WRITE RECORD
FOR $12
FOR $12 UNTIL S1ZE.X SPECIFIED

FOR $12

FOR $11
CLOSE FILE
FOR $11 UNTIL S1ZE.X SPECIFIED
TARGET OF EQUATION: AASS12
WRITE RECORD
FOR $11
CLOSE FILE

Fig. 9.4: Flowchart Report for "Sort".

1-E NO. I RANGE DEFINITION WHERE DEFINED
- - - -

1 1 I ENDOFFILE DATAIN. DATAREC
I 2 1 SIZE INTER. COLUMN
1 3 1 SIZE SORTED.SORTREC

***** RANGE TABLE *****
..
I I RANGE NO. I
I 1 1 2 3 1

I NODE NAME I DIMENSION NO. (

I *ASSERTION (S) : I
I 10 1 1v I
1 12 I 2v 1v I
I 8 I 1v 2v I
1 9 I 1V I
1 *QUALIFIED-NAME : (DATAIN.) I
I DATAREC I av I
1 KEY FLD I 1p I
I*QUZIFIED - NAME: (ENDFILE-DATAIN.) I
I DATAREC 1 lv 1
1 *QUALIFIED - NAME : (INTER.) I
1 COLUMN 1 IV 2v I
(INTERE'LD 1 1V2 2P I
1 ROWS I lv I
I *QUALIFIED - NAME : (SIZE. INTER.) 1
1 COLUMN 1 1p I
I *QUALIFIED-NAME : (SORTED.)
I SORTREC I 1V
(SORT-FLD I 1P
/*GLOBAL SUBSCRIPT:
I I I 1v
I J I 1V

NOTE: ENTRY COL-1-DIMENSION NUMBER
2-PHYSICAL (P) /VIRTUAL (V) DIMENSION
3-WINDOW SIZE, IF MORE THEN ONE

Fig. 9.5: Range Table for "Sort".

***** FORMATTED REPORT *****

...
* *
* SORT MODULE SPECIFICATION R

* *
...

MODULE: SORT;
SOURCE : DATAIN;
TARGET: SORTED;

...
* *
* DATA DESCRIPTION : *
* *
...

...
* *
* DESCRIPTION OF DATAIN *
* *
...

1 DATAIN IS F I L E ,
STORAGE NAME I S NSTGNMl
ORG IS SAM,
2 DATAREC IS RECORD ,

3 KEY-FLD I S FIELD (CHAR(5)) ;

...
* *
* INTERIM SPECIFICATION *
* *
...

1 INTER I S F I L E ,
STORAGE NAME I S NST-
ORG IS SAM,

2 ROWS I S GROUP ,
3 COLUMN IS RECORD ,

4 INTERFLD I S FIELD (CHAR(5)) ;
1 FILE-SIZE I S FIELD (FLOAT BINARY(S3)) ;

/* ASSERTION(S) FOR INTERIM(S) */

/*9*/
F I L E S I Z E =
IF &FILE. DATAIN. DATAREC (I)
THEN I ;

/*8*/
INTERFLD (I , J) =
IF I =1
THEN DATAIN. KEY FLD (1) -

ELSE
IF J <I
THEN
IF INTER. INTERFLD ((I -1) , J) <DATAIN. KEY-FLD (I)
THEN INTER.INTEWLD ((I -1),J)
ELSE

IF J =1
THEN DATAIN. KEY-FLD (I)
ELSE
IF INTER. INTERFLD (I , (J -1)) <DATAIN .KEY - FID (I)
THEN DATAIN. KEY-FLD (I)
ELSE 1NTER.INTERFLD ((I -1), (J -1))

ELSE
IF INTER.INTERFLD (I , (J -1))<DATAIN.KEY - FLD (I)
THEN DATAIN. KEY-E'LD (I)
ELSE INTER-INTERFLD ((I -1),(J -1)) ;

...
* *
* SUBSCRIPT (S) SPECIFICATION t

* *
...

I SUBSCRIPT;
J SUBSCRIPT;

...
* *
* DESCRIPTION OF SORTED *
* *
...

1 SORTED IS FILE,
STORAGE NAME IS NSTGNM2
O R . IS SAM,
2 SORTREC IS RECORD ,
3 SORT-FLD IS FIELD (CHAR (5)) ;

/ * ASSERTION (S) FOR FILE (SORTED) */

/*12*/
SORT-E'LD (J) =
IF I =INTERIM.FILE SIZE
TIEEN INTER-INTERFLB (X ,J 1;

* END OF FORMATTED REPORT R

* *
...

Fig. 9.6: Fonnatted Report for "Sort".

.......................................
/* PL/I PROGRAM * /

SORT : PROCEDURE OPTIONS (MAIN) ;
DCL SMALSTR CHAR(1) ;
DCL DATAINS RECORD SEQL INPUT;
DCL SFSTDATAINS BIT (1) INIT (11 B) ;
DCL ENDFILE$DATAINS BIT (1) INIT (' 0' B) ;
DCL $FB36 CEIlLR(5) VARYING INIT (I I) ;
DCL SFX36 FIXED BIN(31,O) ;
DCL $RV37 m (5) VARYING;
DCL $RX37 FIJ(ED BIN(31,O) ;
DCL $EOF37 FIXED BIN(31,O) ;
DCL $RV47 CHAR (5) BASED (ADDR (SORTED)) ;
DCL $W $D43(2) FIXED BIN(31,O);
CALL $?NITWIN (SW-~~43, 2) ;
DCL SORTEDT RECORD SEQL OUTPUT;
DCL SFSTSORTEDT BIT (1) INIT (' 1' B) ;
OPEN FILE (SORTEDT) OUTPUT;
DCL $ERROR BUF CHAR(270) VAR;
DCL ERRORF-FILE RECORD OUTPUT;
DCL ERRORF BIT BIT (1) STATIC INIT ('1'B) ;
DCL $ERROR-FIXED BIN (15, 01 INIT (o) ;
DCL $NOT-DONE (2 o) BIT (1) ;
DCL $T.t4PTMPVAL FLOAT BIN;
DCL ($RD-LP$, $R-L) LABEL;
DECLARE

1 DATAIN,
2 DATAREC,
3 KEY-FLD(9999) CHAR(5) ;

DECLARE
1 INTER,
2 ROWS,
3 COLUMN,
4 INTERFLD(9999,2) CHAR(5) ;

DECLARE
1 SORTED,
2 SORTREC,
3 SORT-FLD CHAR (5) ;

DECLARE
1 INTERIM,
2 SIZE$D49 FIXED BIN(31,O) ,
2 FILE SIZE BIN FLOAT (53),
2 SYSG~I,
3 SIZE$D50 (9999) FIXED BIN (31,O) ,
2 $YSGEN2,'
3 ENDFILE$DSl BIT(1) ;

DCL $11 FIXED BIN (31,O) ;
DCL $12 FIXED BIN(31,O);
DCL (TRUE, SELECTED) BIT (1) INIT (I 1, B) ;
DCL (FALSE, NOT-SELE, NOT-SELECTED) BIT (1) INIT (I Or B) ;
$ROTATE : PROCEDURE (WIN-WC, LEN) ; / * $START$ * /
/*$PARMS: 01,9,9 */
DCL WIN-VEC (*) FIXED BIN;
DCL (I,=, TEMP) FIXED BIN;

TEMP=WIN-VEC (1) ;
DO I = 2 TO LEN;
WIN-VEC (1-1) =WIN-VEC (I) ;

END;
WIN VEC (LEN) =TEMP;

END SOTATE; /* END */
SINITWIN: PROCEDURE(WIN_VEC,LEN) ; /* $START$ */
/*$PARMS: 01,9,9 */
DCL WIN-VEC (*) FIXED BIN;
DCL (II LEN) FIXED BIN;
DO I=l TO LEN;
WIN - VEC(I)=I;

END;
END SINITWIN; /* END */
ON ENDFILE (DATAINS) BEGIN;
ENDFILE$DATAINS=~ 1' B;
$FB36=COPY(' ',5);
END ;
DCL LRD$37 BIT(1) INIT('OrB);
ON UNDEFINEDFILE (ERRORE') ERRORE' BIT=' 0 ' B ;
DECLARE PLI$ CNVERR GLOBALREF vEWE FIXED BIN (31) ;
DECLARE RMS$;RLK GLOBALREF VALUE FIXED BIN (31) ;
ON ERROR BEGIN;
IF ONCODE()=RMS$-RLR THEN GOT0 $RD-LP$;
IF SERROR-O THEN CALL RESIGNAL();
IF ONCODE()=PLI$ - CNVERR THEN DO;

 ERROR=^ ;
IF ERRORF - BIT & $ERRO-0 THEN WRITE FILE(ERR0RF) FROM ($ERROR-BUT?);

END;
ELSE CALL RESIGNAL () ;

END;
OPEN FILE (DATAINS) INPUT SEQL RECORD;
$11 30;
DO ~ I L E (^ENDFILE$DATAINS) ;

$11 = $11 +I;
IF A SFSTDATAINS THEN READ FILE (DATAINS) INTO ($RV37) ;
IF ENDFILESDATAINS THEN GO TO $m37;
$RX37-1;
$ERRORRBUF=$RV37;
$RV37=$RV37 1 1 COPY (' ' , 5) ;
IF ENDFILESD51 THEN;
ELSE ENDFILE$D51= LRD$37;
LRD$37=ENDFILE$DATAINS;
IF SFSTDATAINS THEN SFSTDATAINS = '0'8;
/* 9 */IF ENDFILESDSl THEN INTERIM.FILESIZE=$I~;
ELSE ;

DATAIN.KEY-FLD($Il)=SUBSTR($RV37,$RX37,5) ;
$RX37=$RX37+5 ;
/* 10 */SIZE$D50 ($11) ~$11;

END;
$LB37:$EOF37=$11;
/* 11 */SIZE$D49=INTERIMSFILE - SIZE;
DO $I1 =1 TO SIZE$D49;

$12 =o;
DO $12 = 1 TO $EOF37;

/* 8 */IF $I2=l THEN INTER.INTERFLD($T2,$W - $D43(2))=
DATAIN. KEY FLD (1) ; -

ELSE IF $11<$12 THEN IF INTER.INTERFLD($I~-lI$WW$D43(2))<
DATAIN.KEY FLD($I2) THEN INTER.INTERFLD($I~,$w-$D43(2))=
INTER. INTEGLD ($12-1, WWD43 (2)) ; ELSE IF $11~1 THEN
INTER.INTERE'LD($I~, $ W W $ D 4 3 (2)) = ~ A T A ~ ($ 1 2) ; ELSE IF
INTER.INTERFLD($I~,$W-$D~~(~))<DATAIN.KEY-FLD($I~) THEN
INTER. INTERFLD ($12 , $W-$~43 (2)) =DATAIN. KEY-ETD ($12) ; ELSE
INTER. INTERFLD ($12, $W $D43 (2)) =INTER. INTERFLD ($12-1, $W-$D43 (1)) ;
ELSE IF INTER.MTERE'~($I~,$W-$D~~(~))<DATAIN.KEY~FLD($I~) THEN
INTER. INTERE'LD ($12, $W-$D43 (2)) =DATAIN. KEY-FLD ($12) ; ELSE
INTER. INTERFLD ($12 , WWD43 (2))=INTER. INTERFLD ($12-1, WWD43 (1)) ;
/* 12 */IF $I~=IN!J!EEUZ~.FILE_SIZE THEN SORTED.SORT-FWD=
INTER.INTERE'LD($I2,$W-$D43(2)) ; ELSE ;

END ;
WRITE FILE (SORTEDT) FROM ($RV47) ;
CALL $ROTATE ($W-$D43,2) ;

END ;
$11 -0;
DO $11 = 1 TO $EOF37;
DO $12 -1 TO SIZESDSO ($11) ;
END;

END ;
CLOSE FILE (SORTEDT) ;
RETURN;
END SORT;

Fig. 9.7: PL/1 Listing for "Sort".

MODULE: SORT
SOURCE: DATAINS SEQL LENGTH: 5 TYPE: F

DCL MAX
LEVEL NODE NAME TYPE REPEAT LENGTH INDEX ..
1 DATAIN FILE * * R

2 DATAREC RECD 1 5 1
3 KEY-FLD FLD 1 5 1

TARGET: SORTEDT SEQL LENGTH: 5 TYPE: F

DCL
LEVEL NODE NAME

MAX
TYPE REPEAT LENGTH INDEX

1 SORTED
2 SORTREC
3 SORT-FLD

- -- -

FILE * * *
RECD 1 5 1
FLD 1 5 1

Fig. 9.8: Bile Information Report for "Sort".

9.3. PARAMETERS OF THE MODEL COMPILER
The MODEL compiler and its outputs are controlled via a System Input (SYSIN) Control File. It contains a

series of control words, or parameters, which activate or inhibit certain stages and/or outputs of MODEL. There is
also a means for the System Managers to "watch" the compiler as it executes; although you'll probably never use
this feature, it is helpful to know it exists and it can aid in debugging strange or complex problems.

The parameters, separated by commas, appear on the fmt few lines of the SYSIN control file with explanatory
notes (never recognized by MODEL) on the latter lines. MODEL only recognizes those parameters in upper case.
The upperflower case toggle provides a convenient, easy means for activating(upper case) or &activating(lower
case) control options and allows storage of all parameters for quick reference and usage. These parameters and their
effects are described in Figure 9.9.

AUTODOCU

BPTYPERR

DATA

DEBUG= ()

NOASSMEM

NODEBUG

NOFLOW

NOLIST

NOPROG

NORNGTAB

NOXREF

RDEBUG

Activates production of the File Information
report.

Allows generation of PL/1 code even though
the data-type checking phase reported
errors.

Activates the Test-data generator (discussed
in section 9.4).

For System Manager's use; allows trace
of compiler execution by phases (the phases
being identified by a numeric code in the
parentheses) .
Inhibits production of the Formatted Report.

Disables the internal System Manager's
trace.

Inhibits production of the Flowchart Report.

Inhibits production of the PL/1 listinq.

Inhibits generation of the PL/1 prouram.

Inhibits production of the Range Table
report.

Inhibits production of the Cross Reference
report.

Activates a Run-time debugging mechanism
which adds tracing statements to the
generated PL/1 code (for severe debugging
purposes in a MODEL specification utilizing
advanced features of the system).

Activates optimization of windowed variables
and loop control. This option should
normally be used.

Fig. 9.9: MODEL Control Parameters and their Effects.

9.4. THE TEST-DATA GENERATOR
For purposes of testing a developed MODEL specification, there is a mechanism for generating testing data.

Before activating this mechanism, it is necessary to modify your specification slightly (for test-data generation
m. First, delete all current Target and Interim data: file names, declarations, and defining assertions (don't
wony about subscripts); next, make all current Source file names Target names keeping any range definitions and
adding any range definitions required either with constants or assertions (for instance, source file records often have
a (*) repetition indicating end-of-file; this will cause an error since that range will be undefined when associated
with a target file - use of a constant or range-defining assertion will be needed); finally, add any equations to define

the variables in the files. There are a series of functions in Figure 9.1 1 which are useful in the definition of data. If
no equations are added, the compiler randomly creates values to assign to the new target data.

Figure 9.10 illustrates the "Sort" example as it might appear modified to generate testing data. Notice that the (*)
originally specified for Datarec has been changed to a constant If the range had not been specified in some way, an
error message would have been issued and processing stopped. After the modifications are made, we must add the
control parameter "DATA" to the SYSIN file and execute the MODEL compiler. The generated PUl code can then
be executed to produce a file (or files) of test data.

Module: Sort;
Target : Datain;

1 Datain is file,
2 Datarec (100) is record,

3 key-f l d is f i e l d (char (5)) ;

(if j) a r e subscr ipts ;

/**NOTE: This is ac tua l ly enough f o r t h e generator, but below is an
a s se r t i on i l l u s t r a t i n g t h e use of two cont ro l l ing functions. **/

key-f l d (i) = i f i<10 then randomchar (5)
else choose (I JANRY, FEBRY,WUCHI APRIL') ;

Fig. 9.10: "Sortn modified f o r t h e Test-data Generator.

Function Name Description

RANDOMINDEX (n) Creates a random in teger from 1 t o n.

RANDOMCHAR (n)

RANDOMBIT (n)

CHOOSE (s)

Creates a random character s t r i n g
n characters i n length (n mus t be between
1 and 100).

Creates a random b i t s t r i n g of length n
(n being an in teger between 1 and 16) .

Chooses a phrase from a, where s is a
sequence of characters separated by commas
which form phrases of 32 characters maximum,
with a l i m i t of 32 phrases.

Fig. 9.11: Controll ing functions f o r Test-data Generator.

10. RESTATING A SPECIFICATION TO IMPROVE
EFFICIENCY OF PRODUCED PROGRAMS

10.1, USER'S GUIDANCE ROLE IN PRODUCING EFFICIENT
PROGRAMS

The MODEL compiler generates highly efficient programs based on the specification provided by a user.
However, the compiler does not have information on the environment in which the produced program is intended to
operate, especially the values of the expected input data. The compiler must therefore assure that all the produced
programs will operate correctly independently of the external environment. This limits the ability of the compiler to
optimize the produced programs. The compiler must adhere closely to the submitted specification. Different
statements of the same problem may produce programs with differing efficiencies. This chapter discusses how the
user can modify the specification to provide the compiler with guidance that will result in further improving
efficiency of the generated program.

As noted previously, composition of a MODEL specification can be carried out progressively, first composing
individual parts, and then merging the respective parts. Further, each part can be developed in two steps: first
obtaining a correct specification and only later proceeding with modif~cations which lead to improved efficiency.

The optimization of program memory is a major component of the MODEL compiler. This is where you can
have most impact on efficiency by refining your specification. The other optimization activities of the MODEL
compiler - input-output and computations - are impacted less by changes in the specification.

This chapter discusses three areas in which a specification can be further refmed:
1. Through simplifying the specification and using fewer variables and equations, or variables with fewer
. dimensions or fewer elements.

2. Through choice of forms of subscript expressions and choice of types of conml variables that allow a
generated program to pass over dimensions of arrays in uniform order. In passing over the dimension
the program can retain in memory, at any time, only a small window of the elements along the
dimension. A dimension of a variable which is only partially retained in memory is shown in the
Range Report as being virtual(V), otherwise it is shown as physical(P). Your role is to investigate,
and if possible modify the specifications so that a dimension of a variable previously noted as physical
is changed to virtual.

3. Finally, when a program must contain in memory large tables which require excessive space, it is
possible to use external ISAM files for holding and updating the respective tables.

10.2. REDUCING THE NUMBER OF VARIABLES AND EQUATIONS IN
A MODEL SPECIFICATION

Simplicity and elegance in stating a specification are important not only for ease of understanding and
maintaining the specification, but also for its efficiency. A MODEL specification, in addition to source and target
data, typically consists of chains of interim arrays which are transformed through equations. Your objective should
be to make these chains as short as possible and specify transformations only when values of some elements are
modified. Especially copying values is wasteful. The fewer variables and fewer equations the more readable and
efficient is your specification. Also the less dimensions or smaller range of a dimension the more efficient is the
produced program On the first approach you would typically allow redundancy or excess of variables and
equations in your specification and focus only on correcmess. It is a good idea then to review your initial approach
and reduce the number of interim variables and equations or their dimensions and ranges as much as possible.

10.3. ATTAINING VIRTUAL DIMENSIONS OF VARIABLES

10.3.1. USE OF APPROPRIATE SUBSCRIPT EXPRESSIONS
The MODEL compiler attempts to optimize memory only of those dimensions of array variables that are

referenced with subscript expression of the following two forms

I-K
X(I - Kl) - K2
I is a subscript variable
X(1) is a sublinear subscript variable
K, K1, or K2 are 0 or positive integers

Examples are A(I), A(1-5), A(X(I-2)-1).

The MODEL compiler does not attempt to optimize memory use of variable dimensions which are referenced
with other forms of subscript expressions. The other forms are called general subscript expressions. Examples are
V(I+2), V(5) etc.

Consider the following example.

X (lo) IS FIELD (NUM(4)) ;
X(l) = 1;
X (I+1) = IF I< 10 THEN (I+l) * X(1) ;
Y ' SUM (X (I) , I) ;

Y is the sum of ten products X(I) of all the positive integers from 1 to I. Thus X(l)=l, X(2)=2, X(3)-X(2)*3, etc.,
up to I= 10.

Since X is referenced with the general subscript expression I+1, it will be allocated by the MODEL compiler 10
elements in memory and will be reported in the Range Report as having a physical dimension. However the above
example can be restated without using a general subscript expression as:

X (10) IS FIELD (NUM(4)) ;

X(1) = IF 1=1 THEN 1
ELSE I*X(I-1) ;

This will allow X to have a virtual dimension memory, allocating only two elements (reduced to one element in
further optimization).

To obtain a more memory-eff~ient program you will have to examine your use of subscript expressions and
wherever possible reform them to avoid use of general subscript expressions.

10.3.2. USE OF APPROPRIATE RANGE SPECIFICATIONS
You can defme a variable range of Y(J) in the specification by composing an equation that defines either the

variable END.Y(J) or the variable S1ZE.Y. Use of S1ZE.Y appears more efficient as it has one less dimension than
END.Y(J). However, in some cases this may cause Y(J) to become physical. This is because Y(J) is dependent in
its entirety on SIZE.Y, while individual elements of Y(J) are dependent only on corresponding elements of
END.Y(J). The latter allows us a single pass on the elements of Y(J) to determine their value and range
simultaneously.

This is illustrated in the following example.

MOD: EXAMPLE;
SOURCE: FIN;
TARGET: FOUT;

1 FIN IS FILE,
2 RIN IS REC,
3 X(1:lOO) IS FIELD (CHAR(4)) ;

1 FOUT IS FILE,
2 ROUT IS REC,
3 Y (1 : 100) IS FIELD (CHAR(4)) ;

/*Eql/ Y(J)=X(J);
1,s ARE SUBSCRIPTS;

Consider the alternatives

/* Altl*/ S1ZE.Y = IF X(1) = 'LAST' THEN I;

Y is a vector with the last element containing the value 'LAST;. X is a vector of equal or greater range than Y. If
we use the equation Altl that defines SIZE.Y, then it will be necessary to pass on X twice, fmt to find the value of
SIZE.Y, which must precede evaluation of Y and then a second time to define the respective elements of Y from
equation Eql. This will force X to be physical. However this is not so if we use equation Alt2 to define END.Y(J).
In this case in a single pass on X it is possible to define both the range of Y and its respective elements.

The flowchart report of both cases is shown below.

Alternative 1 :

FIN
RIN

+------ ITERATION ON I

I X
I Altl
+------ END ITERTAION ON I

SIZE. Y
+------ ITERATION ON J

I Eq2
I Y
+------ END ITERATION ON J

ROUT
FOUT

Alternative 2 :

FIN
RIN

+------ ITERATION ON J

I X
I Eq2
I Y
I Alt2
I END. Y
+------ END ITERATION ON J

ROUT
FOUT

10.3.3. FINDING THE EQUATIONS TO BE MODIFIED
After compiling a specification you should review the range report to verify which variable dimensions are

physical. The checking for general subscript expressions was described above but there may be also precedence
conditions that caused a variable dimension to become virtual. At this point you may investigate whether the
equations in the specification can be changed to allow the respective variable dimension to become virtual. The
problem is that the specSiation may be very large and it is difficult to fmd which equations should be modified.
The Flowchart Report can help you. If the variable dimension is physical then the produced flowchart must have
more than one iteration shown for that dimension. Locate these iterations in the flowchart, then one or more of the
variables listed between the iterations are the ones that caused the splitting of the iterations and also the making of
the respective variable dimension physical.

As an example examine the flowcharts above. In Alternative 1, the flowchart shows SIZE. is between the two
iterations. In Alternative 2 obtained by replacing the equation Altl with Alt2 (that defines, END.Y(J)), we obtained
a single iteration on J. Upon examining the Range Report we would fmd that the dimension of X has been changed
from physical to virtual for alternative 2.

10.4. REPLACING LARGE PHYSICAL DIMENSION TABLES BY ISAM
FILES.

Some applications require referencing variables that have a very large number of elements. Such a table
sometimes can be referenced only through use of a general subscript expression, and therefore the respective
dimension must by physical. The table may be so large as to make the entire specification impractical. In such
cases it is generally possible to place the table in an ISAM file. References to this file are replaced by inputloutput
operations.

This is illustrated in the example below. Consider source data consisting of item numbers of merchandize that
must be priced. The price table is enormous, consisting of 100,000 prices in a file called PRICE-TABLE, order by
item number.

Two alternatives are shown. The entire specification is shown under Alternative 1. In statement 5, the
PRICECETABLE.PRICE(ITEM - NUMI) is referenced with a general subscript expression. Therefore it will be
allocated a physical dimension in memory (shown in the Range Report).

In Alternative 2 we make three changes. First, the PRICE TABLE file is changed from SEQ to ISAM file
organization. Second, we add a POINTER.RTAB variable i & f m e the value of the key to the table. Then
statement 5 can be modify to eliminate the need to use a general subscript expression.

This technique can be used quite generally, whenever the memory space for a physical variable dimension is not
acceptable.

Alternative I

MOD : PRICING :
SOURCE : IN, PRICE TABLE; -
TARGET: OUT;

STMT

1 1 IN IS FILE,
2 RIN(*)IS REC, IS FIELD
3 ITEM-MTMI(NUM (5)) ;

2 1 PRICE-TABLE IS FILE,
2 RTAB (100000) IS REC,

3 ITEM-NUMR IS FIELD (NUM (5)) ,
3 PRICE IS FIELD (PIC' $ZZZZ .V9 9') ;

3 1 OUT IS FILE,
2 ROUT(*) IS REC,
3 ITEM NUMII IS FIELD (NUM(5)) ;
3 PRIG IS FLD (PIC szzzz .v9gr) ;

4 I IS SUBSCRIPT;

5 OUT. PRICE (I) = PRICE - TABLE. PRICE (ITEM-NUMI) ; ,

Alternative 2

Add to first line statement 2

ORG = ISAM, KEY = ITEM NUKR, -
Add statanent

POINTER. RTAB (I) = ITEM-MTM (f) ;

Change statement 5 to

OUT. PRICE (I) = PRICE-TABLE . PRICE (I)

11. MODEL FUNCTIONS

11.1. LIST OF FUNCTIONS IN MODEL
Section 4.10 discussed the syntax for using functions in MODEL. It also explained how users of MODEL can

create their own functions for general use.

The present chapter lists the functions and gives a brief description of what each one does. The functions are
discussed in two sections: The first describes functions which are also used in the PIA programming language.
These are known as "Built-in PUI functions. (Further documentation on these functions may be found in a PUI
programming manual). Functions to be discussed in this section include:

FUNCTION PURPOSE OF FUNCTION

ABS

ACOS

ADD

Absolute value

Arc Cosine

Addit ion

ASIN Arc Sine

AT AN Arc Tangent

BIT

CEIL

CHAR

COPY

cos

Conversion from Character to Bit

Next highest integer

Conversion from Arithmetic to Character

Copy and concatenate strings

Cosine

DATE Returns current date, (yymcndd)

DECIMAL Conversion from Arithmetic to Decimal

DIVmE Division

EXP base e raised to a power

FIl[ED Conversion from Arithmetic to Fixed

FLOAT Conversion from Atithmetic to Float

FLOOR Next lowest integer

HIGH Returns string of High-values

INDEX position of substring within string

LENGTH Length of string

LOG Natural Logarithm

MAX

MIN

MOD

MULTIPLY

ROUND

SIGN

SIN

SUBSTR

TAN

TIME

TRANSLATE

VNSPEC

VERIFY

Larger of two expressions

Smaller of two expressions

Modulo function

Multiplication

Rounds fixed point decimal

Returns +I, -1 or 0 for arithmetic

Sine

Substring

Tangent

Time of day, (hhnmrsshh)

Replace string occurrences with translation

Conversion to binary

Compare two strings for inequalities

The second section describes those functions which were developed for use with the MODEL system, but which
are not found in the W I language. These include.

FUNCTION PURPOSE OF FUNCTION

AMAX

AMIN

CHOOSE

DEPENDS-ON

EXIST

FALSE

RANDOM8 IT

RANDOMCHAR

RANDOMINDEX

RWNSUM

SUBLINEAR

SUM

Maximum value in an array of elements

Minimum value in an array of elements

Random choice from a list

To indicate dependence on record arguments.

Test for presence of condition along a dimension

value ' 0 B

To generate random bits

To generate random characters

To generate random integer

Cumulative totals along dimension

Define sublinear index

Sum of elements along a dimsnsion

TRUE value '1 'B

WHICH To identify index
when condition is met along a dimension

The last section is this chapter discusses definition of additional function by the user.

11.2, BUILT-IN PLII FUNCTIONS

11.2.1. ARITHMETIC FUNCTIONS

W)
ABS returns the absolute value of a given expression x. (it is the positive value of x)

ACOS (x)

The ACOS function returns a floating-point value that is the arc (inverse) cosine of an arithmetic expression x,
where x is a number between -1 and +l. The result is a floating-point value in radians.

ADD (xl,x2,p,q)

The ADD function returns the sum of two arithmetic expressions, x l and x2, with a specified precision p and a
scale factor q.

xl first value to be summed

x2 second value to be sr-rmmad

p An unsigned integer constant between 1 and 31. This number represents
the total number of decimal digits used to represent the result.

q An integer less than or equal to p. This number represents the number
of fractional digits in the result.

The ASIN function returns a floating-point value that is the arc (inverse) sine of an arithmetic expression x, where
x is a number between -1 and +l. The result is a floating-point value in radians.

ATAN (x)

The ACOS function returns a floating-point value that is the arc (inverse) tangent of an arithmetic expression x.
The result is a floating-point value in radians.

CEIL (x)

CEIL RhlnS the smallest integer greater than or equal to a given value x.

COS (x)

The COS function retums a floating-point value that is the cosine of an arithmetic expression x, where x
represents an angle in radians.

DECIMAL (x)

DECIMAL returns the decimal representation of a given value x.

x value t o be converted t o decimal base.

The precision of the result is determined from the rules for base conversion.

DIVIDE (xl, x 2 , ~ , q)

The DIVIDE function returns the quotiend of two arithmetic expressions, xl and x2, with a specified precision p
and a scale factor q. (Note: For greatest precision, it is recommended that this function be used for dl non-floating
point variables).

xl f i r s t value t o be divided

x2 second value t o be divided

p An unsigned in teger constant between 1 and 31. This number represents
t h e t o t a l number of decimal d i g i t s used t o represent t he r e s u l t .

q An in teger less than o r equal t o p . This number represents t h e number
of f r a c t i o n a l d i g i t s i n t h e r e s u l t . (Note: I f xl o r x2 i s f loa t ing point ,
q must be 0).

The EXP built-in function returns a floating-point value that is the base e to the power of an arithmetic expression
X.

FIXED (xl, x2. x3)

FIXED returns the fixed-point representation of a given value xl with a precision specified by x2 and x3.

x l value t o be converted t o fixed-point sca le .

x2 unsigned decimal in teger constant specifying
t h e precis ion. Range, 0 t o 31.

x3 decimal in teger constant, specifying t h e
s ca l e f a c t o r of t h e r e s u l t . Range, 0 t o 31.

FLOAT (xl , x2)

FLOAT returns the floating-point representation of a given value xl with a precision specified by x2.

x l value t o be converted t o floating-point s ca l e .

x2 unsigned decimal in teger constant specifying t h e
t o t a l precis ion of t h e r e s u l t . Range, 1 t o 34.

FLOOR (x)

FLOOR returns the largest integer less than or equal to a given value x.

LOG (x)

The LOG built-in function returns a floating-point value that is the base e (natural) logarithm of an arithmetic
expression x. The expression x must be greater than zero.

MAX (x l , x2)

MAX returns, from a set of two arguments, the value of the argument with the larger value.

x1,x2 list of values from which the
la rger is t o be returned.

MIN (xl , x2)

MIN returns, from a set of two arguments, the value of the argument with the smaller value.

xl,x2 list of values from which the smallest is t o be returned.

MOD (x l , x2)

MOD returns the smallest non-negative value, R, such that:

(xl-R)/x2 = n where n is an integer.

R is the smallest non-negative value that must be subtracted from a given value x l to make it exactly divisible by
the given value x2.

If x l is positive, R is the remainder of the division of xl and x2; if x l is negative, R is the modular equivalent of
this remainder.

If x2 is zero, the ZERODIVIDE condition is raised.

MULTIPLY (xl,x2,p,q)

The MULTIPLY function returns the production of two arithmetic expressions, x l and x2, with a specified
precision p and a scale factor q.

x l f i r s t value t o be multiplied

x2 second value t o be multiplied

p A n unsigned integer constant between 1 and 31. This number represents
the t o t a l number of decimal d i g i t s used t o represent the resu l t .

q A n integer less than or equal t o p. This number represents the number
of f rac t ional d i g i t s in the resu l t . (Note: If xl o r x2 is f loa t ing point,
q m u s t be 0) .

ROUND (xl, x2)

ROUND returns the given value x l rounded at a digit specified by x2.

x l the value t o be rounded.

x2 decimal integer constant, specifying the
d i g i t a t which rounding is t o occur. If x2 is positive, it is
t h e (x2)th d i g i t t o the r ight of t h e point; i f negative, it
is t h e (x2+l) st d i g i t t o the left of t h e point.

If x l is floating-point, x2 is ignored; the rightmost bit of the mantissa is set to 1.

Note that the rounding of a negative value results in the rounding of its absolute value, then the sign is replaced.

S I G N (x) Arithmetic

SIGN returns a default-precision frxed-point binary integer that indicates whether a given value x is positive, zero,
or negative. The value returned is as follows:

value of x value returned

SIN (x)

The SIN built-in function returns a floating-point value that is the sine of an arithmetic expression x, where x is an
angle in radians.

B u d

The TAN built-in function returns a floating-point value that is the tangent of an arithmetic expression x, where x
is an angle in radians.

11.2.2. STRING-HANDLING FUNCTIONS
BIT (x)

Bit returns a bit string representation of a given value x.

x expression to be converted.

CHAR returns a character string representation of a given value x.

x expression to be converted.

COPY (x l , x2)

The COPY built-in function copies a given shing x l a specified number of times and concatenates the result into
a single string.

xl Any bit- or character-string expression. If the
expression is a bit string, the result is a bit
string. Otherwise, the result is a character string.

x2 Any expression that yields a nonnegative integer.
The specified count controls the number of copies of
the string that are concatenated, as follows:

Value of Count String Returned

0 a null string
1 the string argument
e concatenated copies of the

string argument

Example

The function reference

returns the character-string value ' 1 2 1 2 1 2 ' .

HIGH (x)

HIGH returns a character string of length x where each character is the highest character in the collating sequence
(hexadecimal FF).

x expression specifying the length.

INDEX (xl , x2)

INDEX returns a fmed-point binary integer indicating the starting position of a substring identical to string x2
within the string x 1.

xl s t r i n g t o be searched

x2 object of search

If x2 does not occur in xl, the value zero is returned.

LENGTH (x)

LENGTH returns a fixed-point binary integer specifying the current length of a given string x.

STJBSTR(xl,x2 [, d l)

SUBSTR turns a subsaing of the given string xl.

xl s t r i n g from which the substring is t o be extracted.

x2 an integer specifying the position of the f i r s t character
of the substring i n x l .

x3 an integer specifying the length of the substring t o
be extracted. I f x3 is omitted, the substring
returned is posi t ion x2 i n x l t o the end of x2.

TRANSLATE (XI, ~ 2 , ~3)

TRANSLATE returns a string the same length as a given string xl where all or some of the characters may have
been changed. Characters are changed according to a look-up table provided by strings x2 and x3.

The function operates on each character of xl as follows:

If a character in x3 is found in xl, then the character in x2 that corresponds to the one in x3 is copied to the result;
otherwise, the character in x l remains.

x l character s t r i n g t o be searched f o r possible t rans la t ion of a l l
o r some of its characters.

x2 character s t r i n g containing the t rans la t ion values of characters.

x3 character s t r i n g containing the characters t h a t a re t o be translated.

Strings x2 and x3 should be the same length; otherwise x2 is padded with blanks, or truncated, on the right to
match the length of x3.

UNSPEC (x)

UNSPEC returns a bit string that is the binary form of a given value x.

x expression of any data type

The length of the retumed bit-string depends on the attributes of x.

The bit string is padded, if necessary, on the right with zeros to match the length of the\variable.

VERIFY (x l , x2) Strinq-handlinq

VERIFY returns a fixed-point binary integer indicating the position in the given string x l of the fmt character or
bit that is not in the given string x2. If all the characters or bits in x l do appear in x2, a value of zero is returned.

xl string t o be scanned for any character not i n x2.

x2 the verification string, consisting of a set of
characters i n any order.

11.2.3. SYSTEM FUNCTIONS
DATE

DATE returns a character string of length six, in the form yymrndd, where:

yy the current year
nun the current month
dd the current day

TIME -
TIME returns a character string of length nine, in the form hhmmssttt, where:

hh the current hour
nmr number of minutes
8s number of seconds
ttt number of milliseconds

11.3. BUILT-IN MODEL FUNCTIONS
AMAX (XI I , FOR EACH. X2] *)

Finds the maximum value of an m y of elements. This function can be used across records. The optional
FOR-EACH.= identitles the subscript on which the maximization is carried out. In the absence of any subscript
the rightmost subscript of x l is used.

AMIN(X1I.FOR EACH.X23*)

Finds the minimum value of an array of values. This function can be used across records. The optional
FOR EACH.= identifies the subscript on which the minimization is carried out. In the absence of any subscript
the rightmost subscript of XI is used.

CHOOSE ('strinql, strinq2, . . . ')

The CHOOSE function will return a random selection from the choice of strings which it is given as arguments.

stringl12,etc any string expression. The maximal
length of each section is 32.

For example, CHOOSE('MON,TUES,WED,THURy) will randomly return one of the fmt four days of the week.

DEPENDS ON (R)

The argument R must be a RECORD structure. This function is used to indicate an external dependency (due to
- activities outside the specification) between records. It needs to be used when a - v e t (output) record must precede

a source (output) rewrd. the case for instance if a source (input) record. ' This is the case for instance if a _ _ - - - -
source record is a response to a target record. Let SR be a vector of source records and TR be a target record vector,
both subscripted by I.

SR (I) = DEPENDS - ON (TR(1-1))
means that an external receiver of TR(1-1) produces SR(1).

EXIST (BOOL1, FOR EACH. xl)

The EXIST function will return a value or 1 or 0 based upon the presence of a condition in a certain dimension to
be tested.

BOOLl any boolean expression. Will generally contain
variables subscripted by 'FOR-EACH.xlr

FOR-EACH-x1 A global subscript. (does not have to use
the 'FOR-EACHr prefix).

For example, the following specification tests whether any record in the source fde has a numeric field greater
than 0.

modu1e:tryfun;
source:in;
target:out;
1 in is file,
2 inr(*) is record,
3 N x f ld is field (num) ;

1 out is file,
2 our is record,
3 existf ld is field (num) ;

i is subscript;

existf ld=exist (N-f ld (i) >O , i) ;
Note that the resultant variable has one less dimension than the condition.

FALSE

The FALSE function may be used to represent a value of 'O'B. It may be coded in conditional assertions such as,
for example:

COND(I)=IF A(I)=l then '1'B ELSE FALSE;

This expression would be the same if the 'O'B were actually coded.

RANDOMBIT (xl)

The RANDOMBIT function returns a string of random bits. xl must be an integer less than 16. The function will

return a random sequence of as many ones and zeros as are specified by xl.

RANDOMCHAR (xl)

The RANDOMCHAR function returns a string of random characters. xl must be an integer less than 100. The
function will return a random sequence of as many characters as are specified by xl.

RANDOMINDEX (xl)

The RANDOMBIT function returns a random integer from 1 to xl.

RUNSUM (X I [, FOR EACH X2 1 *)

This function is identical in syntax and execution to that of SUM. The difference between them is that SUM
accumulates the sum of the elements over the complete range of the subscripts implied while RUNSUM yields at
any point the cummulative sum so far. Consider the two following examples:

I. For an input file containing a single field A in each record it is required to return a single record containing a
field B which is the sum of all the fields A in the input file:

IN IS FILE (RECORD IS IN-R) (*)) ;
IN R IS RECORD (A) ;
A I S FIELD;

OUT IS FILE (RECORD IS 0-R) ;
OUT R IS RECORD (B) ;
B FIELD;

B = SUM (A) ;
The last assertion can also be written as:

B = SUM (A, FOR-EACH . IN-R) ;
B = SUM (A (FOR-EACH . IN-R)) ,
B = SUM (A (FOR-EACH . IN-R) , FOR - EACH. IN - R) ;

11. consider now the case that for the same input file we wish an output file with an output record for each input
record The fields in this record are C which is a copy of A, and D is the cumulative sum of all the A fields to this
point.

IN IS FILE (RECORD IS IN-R) (*)) ;
IN-R IS RECORD (A) ;
A IS FIELD;

OUT IS FILE (RECORD IS OUT-R) (*)) ;
0-R IS RECORD (C,D) ;
C IS FIELD;
D IS FIELD;

C = A;
D = RUNSUM(A)

The last assertion can also be written as:
D = RUNSUM(A, FOR-EACH. IN-R)
D (FOR-EACR . IN-R) = RUNSUM (A, FOR-EACH. IN-R)

etc.

The SeJBLINEAR function may be used to have the system automatically genearate sublinear index equation in a
specification.

PAR1 The conditional expression which will
determine whether the sublinear
variable will begin from a value of 1 or 0 .

PAR 2 The conditional expression which will
determine whether the sublinear variable will
remain at current value or be incremented by 1.

If you write

name (expl, exp2, . . . ,ind) =SUBLINEAR (parl, par21
the MODEL system sees

nama(expl,exp2,. . .,ind)= IF ind=l THEN
IF parl THEN 1 ELSE 0

ELSE IF par2 THEN nanre (expl, exp2, . . . ind-1) +l
ELSE nama(expl,e~rp2, ... ind-1);

If you wish the sublinear to alway begin from 1, then the key-word, TRUE, may be used for parl.

X1 may be a variable or a subscripted variable. The X1 are summed. FOR-EACH.X2 is a subscript. In the
absence of any FOR-EACH.X2 parameters the summation is performed on the righunost subscript of XI. Note
that in the presence of several subscripts as parameters a multiple level summation is performed.

TRUE

The TRUE function may be used to represent a value of 'l'B. It may be coded in conditional assertions such as, for
example:

COND (I)=IF A(I)=l then TRUE else 'OrB;

This expression would be the same if the ' 1'B were actually coded.

WHICH (BOOL1, m, I)

The EXIST function will return the number of the index value along a certain dimension at the time of the first
occurrence of a condition.

BOOLl any boolean expression. Will generally contain
variables subscripted by 'FOR-EACH.xlr

atarting value for the search. If specified, the
test for the condition will begin when
the global subscript has a value of m.

X A global subscript.

For example, the following specifcation returns a value of the fvst record in the source file which has a numeric
field greater than 0. It begins testing right at the start of the source file, (i.e. m=l).

module : t ryf un ;
source : in;
target:out;
1 in is file,
2 inr (*) is record,
3 N-f ld is field (num) ;

1 out is file,
2 our is record,
3 whichf ld is field (nun) ;

i is subscript;

whichf ld-hich (Num-f 1d (i) >O , 1, i) ;

Note that the resultant variable has one less dimension than the condition.

11.4. FUNCTIONS DEFINED BY USERS
In addition to the above enumerated built-in functions, a user may define additional function in MODEL, have the

respecitve programs generated automatically and placed in the MODEL compiler library. See section 4.10 for
details of syntax and description of method.

Message
Identifier

A pendix I
ERROWWARNIN~ MESSAGES IN MODEL

Message

L APD1: MODEL COMPILER ERROR: DICXIONARY ENTRIES EXCEED LIMIT OF 20,000.

E ASS1: INCONSISTENT USE OF LEFT-HAND-SIDE VARIABLE IN A CONDITIONAL
ASSERTION AT LINE line-nwnber-within-statemew OF
STATEMENT statement-number. THE ORIGINAL LEFT-HAND-SIDE
IS "name-1" BUT "name-2" IS USED LATER.

F ASS2: MULTIPLE ASSERTION ANALYSIS FAILURE. UNABLE TO BUILD THE PARSING
TREE FOR ASSERTION IN S T A T E m statement-number.

W BKT1: IN STATEMENT statement-number, MAXIMUM ITERATION HAS BEEN
CHANGED TO maximum-iteration-number.

W BKT2: NO OPEN BLOCK IN STATEMENT statement-number. END STATEMENT IS
IGNORED.

W BKT3: END BLOCK LABEL "name" IN STATEMENT statemenf-number DOES
NOT MATCH CURRENT BLOCK LABEL "name" DEFINED IN
STATEMENT block-stateme&-number.

F BTC1: MODEL COMPILER ERROR: GENIOCD (BYTE-CALC) - ILLEGAL TYPE IN CALL
OF PROCEDURE "BYTE - CALC.

W CDG 1: variable-name IS INITIALIZED TO ONE IN BLOCK block-name.

F CDG3: MODEL COMPILER ERROR: NO SUBSCRIlT FOUND FOR VARIABLE "name"
AT DIMENSION position-number.

F CDG4: NO MODULE NAME FOUND FOR THIS SPECIFICATION.

L CDGS: MODEL COMPILER LIMIT: IN GENERATION OF "FINFO" REPORT, INDEX OF
"name" EXCEEDS 7 DIGTTS.

L CDG6: MODEL COMPILER LIMIT: IN GENERATION OF "FINFO" REPORT, REPETITION
OF "nume" EXCEEDS 5 DIGITS.

L CDG7: MODEL COMPILER LMIT IN GENERATION OF "FINFO" REPORT, LEVEL OF
"name" EXCEEDS 3 DIGITS.

L CJX8: MODEL COMPILER LIMIT: ASSERTION TEXT LENGTH EXCEEDS 5000
CHARACTERS.

W CHK1: CONDITIONAL STATEMENT "assertion-number" HAS A NON-BOOLEAN
EXPRESSION.

E CHK1: CONDITIONAL STATEMENT "assertion-number" HAS A NON-BOOLEAN
EXPRESSION.

E CHK2: CONDITIONAL STATEMENT "assertion-number" HAS DIFFERENTLY TYPED
RIGHT-HAND-SIDES TO BE EQUATED TO A SINGLE LEFT-HAND-SIDE.

E CHK3: INVALID OPERAND(S) FOUND FOR OPERATOR "operator" IN ASSERTION
assertion-number. THEIR TYPES ARE: "data-type" AND
"data-type".

W -4: A "data-typew-TYPED VARIABLE IS CONVERTED TO "FIXED BIN" IN
ASSERTION assertion-number.

E CHKS: INCOMPATIBLE OPERAND(S) FOUND FOR OPERATOR "operator" IN
ASSERTION assertion-number.

E -6: WRONG NUMBER OF ARGUMENTS FOUND FOR FUNCTION "j?unction-name"
IN ASSERTION assertion-number.

E -7: FUNCnON "ficnction-namew IS INVOKED WlTH AN INVALID DATA-TYPE
ARGUMENT IN ASSERTION assertion-number. THE DECLARED
TYPE IS "data-type]", THE INVOKED TYPE IS
"data-typeZn.

W CHK8: VARIABLE "name" TYPE "data-type" IS
CONVERTED TO "FIXED BIN" IN ASSERTION assertion-number.

W CHK9: IMPLICIT CONVERSION BETWEEN VARIABLES OF TYPE "data-type" AND
"data-type'' IN ASSERTION assertion-number.

D CHK10: MODEL COMPILER ERROR INVALID TYPE ASSIGNMENT IN TYPE PROPAGATION.

W CHKl2: CONFLICT IN -TIC, CHARACER, AND/OR BIT STRING USAGE OF
VARIABLE "name". FLOAT BIN(53) HAS BEEN SELECTED FOR
ITS DATA-TYPE.

W CHKl3: CONFLICT IN ARITHMETIC AND/OR BIT STRING USAGE OF VARIABLE
"name". FLOAT BIN(53) HAS BEEN SELECTED FOR ITS
DATA-TYPE.

E CHK14: UNARY OPERATOR "operator" IS USED WlTH AN INVALID DATA-TYPE
VARIABLE IN ASSERTION assertion-number.

W -15: CONFLICT IN ARITHMETIC AND/OR CHARACTER USAGE OF VARIABLE
"name". FLOAT BIN(53) HAS BEEN SELECTED FOR ITS
DATA-TYPE.

E CHK16: A NON-FIEIl> VARIABLE WAS USED IN ASSERTION assertion-number.

F CHK17: MODEL COMPILER ERROR: MALFUNCTION IN THE "CHECKER PHASE.

W CHK18: USER FUNCTION "function-name" HAS NO PARAMETER CHECKS.
ARGUMENT & DATA TYPE CHECKING WILL BE BYPASSED.

W CHK19: PARAMETER CHECK STATEMENT MAY BE INVALID IN USER FUNCTION
"fwction-name" .

W CHK20: INVALID PARAMETER CHECK STATEMENT FOUND IN USER FUNCIION
"fimction-name". CHECKING WILL, BE BYPASSED.

W CHK21: PARAMETER CHECK STATEMENT INVALID FOR "RETURN" VALUE IN USER
FUNCTION "$unction-name". "RETURN" CHECKING WILL BE
BYPASSED.

F CLS1: MODEL COMPILER ERROR: MALFUNCTION IN MSCC ANALYSIS.

W 0 1 : "name" IS CONTAINED IN MORE THAN ONE PARENTAL STRUCTURE.

W CRD2: THE FOLLOWING QUALIFIED NAME-name HAS AN UNDEFINED SUFFIX.

F 0 3 : "node-nume" IS MULTIPLY DECLARED WITHIN A DATA STRUCTURE.
C

E CRD4: ILLEGAL ISAM KEY DEFINITION "name". A KEY MUST BE IMMEDIATELY
UNDER A SINGLE "RECORD" STRUCTURE IN AN ISAM FILE.

F CRDS: MEMBER "name" IN FILE "J'ile-nume" IS UNDECLARED.

E CRDQ "nume" SHOULD NOT BE DECLARED AS A GLOBAL SUBSCRIPT.

E CRD7: THE ISAM FILE "file-name" HAS AN UNMATCHED KEY. "Key-name"
IS NOT FOUND WITHIN THE FILE STRUCTURE.

D CRD8: MODEL COMPILER ERROR: "rype" IS AN ILLEGAL STATEMENT TYPE.

W CRD9: A DECLARATION HAS BEEN SUPPLIED FOR THE UNDECLARED VARIABLE
"name".

E CRE 1: INVALID QUALIFIED NAME "name". WRONG FILE PREFIX SPECIFIED.

E DMP1: CONTRADICTION IN DIMENSIONALITY

W EEDI: INVALID SUFFIX FOR "FOUND". "node-~me" DOES NOT BELONG TO A

SOURCE FILE.

EED2: INVALID SUFFIX OF "SUBSET" no&-name. IT SHOULD BELONG TO A
TARGET FILE.

EED3: INVALID USE OF CONTROL VARIABLE "node-name". IT SHOULD CONTAIN
A ".".

EED4 "node-name" REFERS TO AN UNRECOGNIZED VARIABLE.

EEDS: INVALID CONTROL VARIABLE "no&-name" .

EED6: ERROR(S) OCCURRED IN ENTERING EXPLICIT DEPENDENCIES. COMPILATION
DISCONTINUED.

EED8: INCOMPATIBLE WIT-HAND-SIDES FOUND IN ASSERTION
assertion-number.

EED9: MODEL BUILTIN FUNCTION USED AT AN INTERNAL LEVEL IN ASSERTION
assertion-number.

EED 10: VARIABLE NAME OR SUFFIX "variable-name" IS UNRECOGNIZED IN
ASSERTION assertion-number.

EED 11: A FUNCTION "function-name" IS NOT RECOGNIZED IN ASSERTION
assertion-number.

EED12: "SIZE" OR "END" SUFFIX "node-name" IS NON-REPEATING.

EED13: THE "POINTER" SUFFIX "no&--" IS A NON-KEYED RECORD.

EED 14: THE "NEXT" SUFFIX "node-name" IS NOT AN INPUT FIELD.

EEDlS: THE "SUBSET" SUFFIX "node-name" IS NOT A VIRTUAL RECORD.

EED16: THE "INITIAL" SUFFIX "node-name" IS NOT A FIELD.

EED17: THE CONTROL VARJABLE "NEXT" REFERS TO FIELD "target-name"
WHICH DOES NOT HAVE A CORRESPONDING FIELD IN EACH RECORD.

EED17: THE CONTROL VARIABLE "NEXT" REFERS TO FIELD "target-name"
WHICH DOES NOT HAVE A CORRESPONDING FIELD IN EACH RECORD.

EED18: THE "MALDATA" SUFFIX "node-name" DOES NOT BELONG TO A
SEQUENTIAL SOURCE FILE.

EED19: NUMBER OF TARGET FILES EXCEEDS 100. PLEASE INFORM IMPLEMENTERS.

EED20: NUMBER OF SOURCE FILES EXDEEDS 100. PLEASE INFORM IMPLEMENTERS.

EED21: UNDEFINED FIELDS OVER 2000. PLEASE INFORM THE INPLEMENTERS.

W EHR1: RESERVED PREFIX "NEXT" APPEARS AS A DATA NAME: "name".

E EHR2: "ENDFILE" PREFIXES A NON-EXISTENT INPUT REC0RD:"record-nume".

E EHR3: A STARRED DIMENSION WTI'HIN A FIXED REPETITION DIMENSION OCCURRED IN
VARIABLE "name".

F EHR4: MODEL COMPILER ERROR: "name" HAS A STATEMENT TYPE OF
"statement-type", WHICH IS AN ILLEGAL TYPE.

E EHRS: NON-STANDARD FILE STRUCTURE. NO RECORD HAS BEEN FOUND BETWEEN
"name" AND ITS FIELD(S).

E EHR6: NON-STANDARD FILE STRUCTURE. MORE THAN ONE RECORD HAS BEEN FOUND
BETWEEN "name" AND ITS FIELD(S).

W EHR7: INAPPROPRIATE DATA STRUCTURE. MORE THAN ONE DIMENSION WlTH UNKNOWN
REPETlTION BETWEEN "name" AND ITS FIELD(S). THIS MAY
CAUSE AN EXCESSIVE AMOUNT OF MEMORY TO BE USED BY THE
GENERATED PROGRAM.

E EHR8: THERE ARE NO FIELDS BELOW "name".

E EHR9: THE ISAM FILE "name" HAS AN INVALID STRU-. ONLY ONE RECORD
STRUCTURE IS ALLOWED.

E EHR10: THE ISAM FILE "name" HAS AN INVALID STRUCTURE. THE RECORD
CANNOT BE REPEATING.

W EHR11: INVALID "MALDATA" SUFFIX "name". IT WILL BE IGNORED.

W EHR12: INVALID "MALDATA" SUFFIX "name". IT WIU BE IGNORED BECAUSE IT
IS AN INTERIM VARIABLE.

W EHR13: GENERIC VARIABLE "name" WAS FOUND WITH AN UNDEFINED DATA-TYPE.

W EMD1: INCOMPLETENESS BETWEEN "source-field-name" AND
"target-field-name"

F EMT1: MODEL COMPILER ERROR: "pre&cessor-nume" IS NOT IN THE
DICTIONARY.

F EMT2: MODEL COMPILER ERROR: "successor-nume" IS NOT IN THE
DICTIONARY.

E ENP1: THE "POINTER" SUFFIX "name" DOES NOT POINT TO A RECORD NAME.

E ENP;?: THE "FOUND" SUFFIX "nume" DOES NOT REFER TO A KEYED INPUT
RECORD.

E ENP3: ARGUMENT "name" TO FUNCTION "EXIST" IS NOT A REPEATING GROUP OR
RECORD.

W EVL1: THE RANGE FOR DIMENSION range-number OF "nume" NEEDS AN
UPPER BOUND AND HAS BEEN ASSUMED TO BE 9999.

E EVL2: MODEL PROCESSOR ERROR: THE position-number DIMENSION OF
"name" SHOULD NOT USE WINDOW SCHEME.

E EVL3: NO RANGE DEFINlTION FOUND FOR RANGE range-number IN THE RANGE
TABLE.

E EVL.4: MISSING RANGE DEFINITION FOR MAJOR RANGE range-number IN
THE RANGE TABLE.

W EVLS: SUB-RANGE sub-range number OF RANGE range-nwnber IS
INVOLVED IN BOTH MAJOR-RANGE AND SUB-RANGE CALCULATIONS.

W FEDI: END STATEMENT GENERATED FOR BLOCK "name" AT STATEMENT
statement-number.

E FIRI: INCOMPLETENESS: NEED TO KNOW HOW TO OBTAIN "target-field-name".

W FIR2 ASSERTION GENERATED: "target-fild-name =
source-field-name;"

W FIR3: AMBIGUOUS SOURCE FIELD FOR TARGET FIELD "target-freld-name".
SOURCE FILES WlTH THIS FIELD ARE: "source-files".

F FLM1: MODEL COMPILER ERROR: ERROR MESSAGE STACK UNDERFLOW. COMPILATION
DISCONTINUED.

E FLM2: END-OF-FILE ENCOUNTERED WHILE LOOKING FOR SEMICOLON. LAST STATEMENT
NUMBER ENCOUNTERED WAS statement-number

E FPK1: NO LENGTH DEFINITION FOR THE FlELD "file-namen.

F FPK2: ISAM FILE INVOLVED INSIDE OF AN MSCC.

E FSB 1: "node-nume" IS DEFINED AS HAVING dimension-number
DIMENSION(S), BUT DOES NOT HAVE THAT MANY REPEATING
ANCESTORS.

E FSB2: "node-numen OF TYPE "type" SHOULD HAVE DIMENSION 0 BUT HAS
BEEN ASSIGNED DIMENSION dimension-nmkr.

E FSB3: EDGE OF ILLEGAL TYPE "edge-type" ENCOUNTERED BETWEEN
"source-namen AND "target-nume".

E FSB4: EDGE OF TYPE "edge-type" CONNECTS "source-name" OF
DIMENSION dimem'on-number TO "target-na?nen OF
DIMENSION dimension-number.

E FSBS: EDGE OF TYPE "edge-type" CONNECTS "source-name" TO
"target-name", BUT "target-name" IS PART OF A
PHYSICAL STRUCTURE

E FSB6: EDGE OF TYPE "edge-ope" CONNECTS "source-nume" TO NODE
"target-name", BUT "source-name" IS PART OF A
PHYSICAL STRUClVRE.

F FSB7: MODEL COMPILER ERROR. INVALID "ENDFILEln SUFFIX "target-nume".
THE LAST RECORD OF THE FILE SHOULD BE USED.

E GAS1: VARIABLE "nume" IN THE ASSERTION "node-name" CONTAINS AN
INAPPROPRIATE SUBSCRIPT EXPRESSION IN POSITION
position-number.

E GDL1: "POINTER" SUFFIX "name" IS NOT AN IS AM RECORD NAME.

E GDI.2 "POINTER SUFFIX "nume" HAS NO ISAM KEY VALUE.

E GIO1: NO POINTER DEFINITION FOR THE KEYED RECORD "no&-name".

E GI02: WRONG UO CASE AT RECORD "no&-nume".

E GI03: KEYNAME "key-nume" IS NOT IN THE ISAM FILE "file name".

W GI05 OUTPUT RECORD "record nume" IS TOO LARGE. THE MAXIMUM IS
32767 BITS.

W GI06: OUTPUT RECORD "record nume" IS TOO LARGE. USER DEFINED
SIZE rec - size WILL BE USED.

W G107: USER DEFINED "REC SIZE" IS VALID ONLY WHEN MAXIMUM RECORD LENGTH
EXCEEDS 32767 BITS.-

F HSR1: MODEL COMPILER ERROR: "target-field-nume" IS NOT IN DICl7ONARY.

W 11x1: SOME SUBSCRIFI'S APPEAR ON THE RIGHT-HAND-SIDE BUT NOT ON THE
LEFT-HAND-SIDE OF AN ASSERTION. SELECTION IS IMPLIED FOR
"subscript-listn IN ASSERTION assertion-number.

W 11x2: A GENERAL EXPRESSION APPEARS AS A LEFT-HAND-SIDE SUBSCRIPT IN
ASSERTION usertion-number.

E 11x3: TEE ASSERTION assertion-number IS NElTHER OF THE SIMPLE NOR OF
THE IF ASSERTION TYPE.

F IIX4: MODEL COMPILER ERROR: INVALID TARGET FIELD IN ASSERTION
assertion-number.

F IIX5: MODEL COMPlLER ERROR: INVALID CONSTRUCT FOUND IN ASSERTION

assertion-number.

W 11x6: Number found of SAWTOOTH ARRAYS. THIS EXCEEDS THE LIMF OF
20.

F INA1: MODEL COMPILER ERROR: DICI'IONARY OVERFLOW.

F INII: MODEL COMPILER ERROR: MAXIMUM NUMBER OF FUNCTIONS (100)
EXCEEDED.

E ISF1: SOURCE FILE NAME "name" IS LONGER THAN 7 CHARACIXRS.

L ISF2: MODEL COMPILER LIha: NUMBER OF SOURCE FILES GREATER THAN 20.
PLEASE USE MULTlPLE "SOURCE" STATEMENTS.

E ITF1: TARGET FILE NAME "nume" IS LONGER THAN 7 CHARACTERS.

L lTF2: IMPLEMENTATION LIMIT REACHED. NUMBER OF TARGET FILES GREATER THAN
20. PLEASE USE MULTIPLE TARGET STATEMENTS.

W LEX1: TEXT "token ..." AT LINE line-number-within-statement OF
STATEMENT statement-number HAS BEEN TRUNCATED TO
maximum-qualijied-name-length CHARACTERS.

F LEX2: MODEL COMPILER ERROR: END OF SPECIFICATION REACHED WITH AN OPEN
COMMENT. LAST VALID STATMENT WAS NUMBER
statement-number.

F LEX3: MODEL COMPILER ERROR: END OF SPECIFICATION REACHED WHILE LOOKING
FOR SEMICOLON. THE LAST VALID STATEMENT WAS NUMBER
statement-number.

F LEX4: MODEL COMPILER ERROR: WRONG MODEL SPECIFICATION FILE NAME.

F LEXS: MODEL COMPILER ERROR: END OF SPECIFICATION REACHED WHILE LOOKING
FOR SINGLE QUOTE MARK. THE LAST VALID STATEMENT WAS NUMBER
statement-number.

E MINI: RECORD OR GROUP NAME "name" IS RESERVED. USED IN LINE
line-number-within-statement OF STATEMENT
statement-number.

E MlN2: THE FIRST LEVEL OF A HIERARCHIAL DECLARATION STATEMENT CANNOT
REPEAT. PLEASE ADD AN ADDITIONAL LEVEL OF DECLARATION. USED
IN LINE line-number-within-statemenr OF STATEMENT
statement-number.

E W 3 : ISAM FILE? "name" HAS NO KEY DEFINED.

E MIN4: ILLEGAL FILE NAME. "name" IS RESERVED.

E MIN6: INVALID DECLARATION STATEMENT. THE LAST LINE IS
line-number-within-statement OF STATEMENT
statement-number. NOTE THAT RECORDS, GROUPS, AND FIELDS
AT THE SAME LEVEL SHOULD HAVE THE SAME LEVEL NUMBER.

W MIN7: FIELD "field name" HAS A (*) REPETITION WHICH MAY
REQUIRE EXCESSIVE MEMORY AT RUNTIME. IN STATEMENT
statement-number.

E MIN8: INVALID REPETITION SPECIFICATION OF (minimum:maximum),
AT LINE line-number-within-statement
OF STATEMENT statement-number.

L MIN9: MODEL COMPILER LIMIT: FIRST LEVEL MEMBERS OF A hierarchial
STRUCTURE "name" EXCEEDS 100.
PLEASE SEPARATE BY ADDING A DUMMY NON-REPEATING GROUP
STRUCTURE.

L MINIO: MODEL COMPILER LIMIT: FIRST LEVEL MEMBERS OF FILE "i[file name]"
EXCEEDS 100. PLEASE SEPARATE BY ADDING AN ADDITIONAL FILE
DECLARATION.

E MIN 11: INVALID FIELD STATEMENT AT LKNE line-number-within-statement
OF STATEMENT statement-number. ITS DEPENDENT(S) ARE
"@ld names".

E MIN12: INVALID STRUCl'URE DECLARATION IN STATEMENT statement-number. A
FILE MAY ONLY BE DECLARED AS THE TOP MOST LEVEL IN THE
STRUCTURE.

F MNT1: NO CODE GENERATED DUE TO DATA TYPE ERROR(S).

F MNT2: MODEL SPECIFICATION FILE NOT FOUND.

W NRC 1 : "token" AT LKNE line-number-within-statemew OF STATEMENT
statement-number IS TRUNCATED TO maximum-name-length
CHARACTERS.

F PND1: MODEL COMPILER LIMIT ASSERTION TEXT LENGTH EXCEEDS 5000
CHARACTERS.

F PRS1: MODEL COMPILER LIMIT: ASSERTION TEXT GREATER THAN 5000 CHARACTERS.

W RGPl: DIMENSION dimemion-number OF "name" IN RANGE SET NUMBER
range-set-number DOES NOT HAVE AN EXPLICIT RANGE.

W RGP2: DIMENSION dimension number OF "namel" AND DIMENSION
dimension number OF "name2" HAVE INCOMPATIBLE
RANGES, THUS THEY CANNOT SHARE THE SAME SUBSCRIPT.

E RGP3: INVALID SUBSCRIPT EXPRESSION IN A VIRTUAL DIMENSION. SUBSCRIPT IS
"name" IN A DEPENDENCY OF "target-name" ON

"source-name".

RGP4: MULTIPLE RANGE CRITERIA FOR VARIABLE "name". BOTH "name"
AND "name" HAVE BEEN SPECIFIED.

RGPS: NO RANGE DEFINITION NEEDED FOR THE SUBLINEAR RANGE DESCRIBED BY
"name".

RGP6: MODEL COMPILER ERROR: "name" IS REFERENCED BUT NOT DEFINED.

RGP7: "Namel, dimension-number" AND "name2, dimension-number"
USED AS LEFT-HAND-SIDE VARIABLES, HAVE INCOMPATIBLE RANGES.

RTB 1: NO IMPLICIT RANGE HAS BEEN FOUND FOR RANGE NUMBER
range-set-number IN THE RANGE TABLE. PLEASE CHECK RANGE
DEFINITION(S) .

RTBT DEFINITION FOR SUBRANGE range-set-number MAY BE DISCARDED IF
THE STRUCTURE IS VIRTUAL.

RTB3: NO DEFINlTION FOUND FOR SUBRANGE range-set-number. NOT NEEDED
IF THE STRUCTURE IS VIRTUAL.

RTB4: MODEL COMPILER LIMIT: NUMBER OF RANGES EXCEEDS 160. THE RANGE TABLE
WOULD BE PRINTED INCORRECTLY.

RTBS: INVALID RANGE DEFINlTION FOR SUBRANGE range-set-number. A
CONSTANT WAS SPECIFIED IN "name" DEFINING THIS RANGE.

RTV1: MODEL COMPILER ERROR: INVALID LOGICAL EXPRESSION "symbol".

RTVT MODEL COMPILER LIMIT: MAXIMUM RETRIEVALS EXCEEDED array-bound.
LAST LOGICAL EXPRESSION WAS "symbol".

SAP001: BIT STRING CONTAINS CHARACTER OTHER THAN 0 OR 1 AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP002 COLON MISSING AFTER THE WORD "BLOCK" AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP003: BADLY FORMED BOOLEAN EXPRESSION AFTER IF IN-STATEMENT AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP004. MISSING OR INVALID NUMERIC CONSTANT IN ITERATIVE COUNT SPEC AT
LINE line-number-within-stdement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAPOOS: MISSING OR INVALID NUME.RIC CONSTANT IN RELATIVE ERROR SPEC AT
LINE line-number-within-statement OF STATEMENT '

statement-number AT SYMBOL "symbol".

SAP007: ORGANIZATION TYPE MISSING OR ILLEGAL IN DISK STATEMENT AT LINE
line-nwnber-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP009: TYPE DISK MISSING OR ILLEGAL IN DISK STATEMENT AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP012 MISSING ELSE IN CONDITIONAL EXPRESSION AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP014 ASSERTION MISSING AlTER THE KEYWORD "THEN AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP018: NO BOOLEAN EXPRESSION AFTER THE KEYWORD "IF" AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP022: NO EXPRESSION AFl'ER LEFT' PARENTHESIS AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP023: KEYWORD "a" IS MISSING AT LINE line-number-within-statement
OF STATEMENT statement-nwnber AT SYMBOL "symbor'.

SAP024: RIGHT PARENTHESIS MISSING AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP026: STRING MISSING AFlTR QUOTE AT LINE
line-number-within-statemenr OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP033: ERROR IN RECOGNITION OF RIGHT HAND SIDE OF AN ASSERTION AT LINE
line-number-within-statement OF STATEMENT
statement-nwnber AT SYMBOL "symbol".

SAP038: KEYWORD "THEN" IS MISSING AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP039: RECORD OR GROUP KEYWORD EXPECTED AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol'@.

SAP042 RECORD NAME MISSING OR ILLEGAL IN FILE OR REPORT STATEMENT AT
LINE line-number-within-stdement OF STATEMENT
statement-number AT SYMBOL wsymbol'@.

SAP044 MEDIUM NAME MISSING OR ILLEGAL IN FILE OR REPORT AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP045 KEYNAME MISSING IN FILE OR REPORT STATEMENT AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP046: MAXIMUM LENGTH MISSING OR ILLEGAL IN VARIABLE LENGTH IN FIELD
STATEMENT AT LINE line-nwnber-within-statement OF
STATEMENT statement-number AT SYMBOL "symbol".

SAP047: INVALID OR MISSING FIELD TYPE IN FIELD/INTERIM STATEMENT AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP048: MISSING OR INVALID LENGTH IN FlELD/INTE.RIM STATEMENT AT LINE
line-number-within-statema OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP049 MISSING RIGHT PARENTHESIS AFI'ER FIELD-TYPE IN FIELDIINTERIM AT
LINE line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP05O: MINUS SIGN IS NOT FOLLOWED BY AN INTEGER AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAPO51: MISSING/INVALID MAX NUMBER OF OCCURRENCES OF ITEMS. AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symboP'.

SAP052: NAME MISSING OR ILLEGAL IN ITEM LIST AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP053: MISSING PARENTHESIS IN LINE SPEC AT LINE
line-nwnber-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP054: MISSING INTEGER IN LINE SPEC AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP055 MISSING RIGHT PARENTHESIS IN LINE SPEC AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

~ ~ ~ 0 5 6 : M I S S I N G ~ A L I D FILE NAME AFER KEYWORD FILE AT LINE
line-number-within-statemenr OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP057: FORMAT MISSINGIMISSPELLED AFlTB RECORD IN STORAGE STATEMENT AT
LINE line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP058: MISSING/INVALID TAPE LABEL AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP059 KEYWORD "RECORDSIZE" MISSING OR MISSPELLED "MAX" AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP060: MISSINGANVALID VOLUME NAME (EXTERNAL OR INTERNAL) AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP061: MISSINGIINVALID DEVICE TYPE AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP062: MISSINGIINVALID ITERATIVE SOLUTION METHOD AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP063: COLON MISSING AFTER KEYWORD "MODULE" AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP064: NAME MISSING OR ILLEGAL IN MODULE STATEMENT AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP065: ERROR IN ASSEMBLY OF A NUMBER CONSTANT AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP066: TAPE SPEC PARAMETER MISSING OR ILLEGAL AT LINE
line-number-within-statemenr OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP067: ERROR IN PICTURE SPEC AT LINE line-nwnber-within-statement OF
STATEMENT statement-number AT SYMBOL "symbol".

SAP068: QUALIFIED NAME ILLEGAL AT LINE line-number-within-statement
OF STATEMENT statement-number AT SYMBOL "symbol".

SAP069: RECORD FORMAT MISSING OR ILLEGAL AT LINE
line-number-within-statem OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP070: KEYWORD "BLOCKSIZE" MISSING IN RECORD FORMAT SPEC AT LINE
line-number-within-statemenl OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP07 1: BLOCKSIZE VALUE MISSINGUGAL IN RECORD FORMAT SPEC AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP072: RECORD SEE VALUE MISSINGIUGAL IN RECORD FORMAT SPEC AT LINE
line-number-within-statemeru OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP074: SEMlCOLON MISSING AT END OF STATEMENT AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP075: COLON MISSING AFTER KEYWORD "SOURCE" AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP076: NAME MISSINGUGAL IN SOURCE FILE LIST AT LINE

line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

E SAP077: COLON MISSING AFTER KEYWORD "TARGET' AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

E SAP078: NAME MISSING/ILLEGAL IN TARGET FILE LIST AT LINE
line-number-within-statement OF STATEMENT
statemen f-number AT SYMBOL "symbol".

E SAP079: MISSING "THEN" IN CONDITIONAL EXPRESSION AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

E SAPO80: UNRECOGMZABLE STATEMENT AT LINE line-number-within-statement
OF STATEMENT statement-number AT SYMBOL "symbol".

E SAP081: BADLY FORMED ARTITMETIC EXPRESSION AT LINE
line-number-within-statemenr OF STATEMENT
statement-number AT SYMBOL "symbol".

E SAP082: BADLY FORMED BOOLEAN EXPRESSION AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

E SAP083: BADLY FORMED BOOLEAN TERM AT LINE
line-number-within-sratemnt OF STATEMENT
statement-number AT SYMBOL "symbol".

E SAP084: BADLY FORMED CONCATENATION OF EXPRESSIONS AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

E SAP085 BADLY FORMED FACTOR AT LINE line-nwnber-within-statement OF
STATEMENT statement-number AT SYMBOL "symboP .

E SAP086: BADLY FORMED PRIMARY AT LINE line-number-within-statement OF
STATEMENT statement-number AT SYMBOL "symbol".

E SAP087: BADLY FORMED TERM AT LINE line-number-within-statemnt OF
STATEMENT statement-number AT SYMBOL "symbol".

E SAP090: LEFT PARENTHESIS MISSING IN COLUMN SPEC AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

E SAP091: INTEGER MISSING IN COLUMN SPEC AT LINE
line-n&r-within-statement OF STATEMENT
statement-number AT SYMBOL "symbo1".

E SAP092 RIGHT PARENTHESIS MISSING IN COLUMN SPEC AT LINE
line-number-wethin-sratement OF STATEMENT
statement-number AT SYMBOL "symbol".

E SAPlO1: LENGTH OF PICTURE SPECIFICATION IS TOO SMALL AT LINE
line-number-within-statemenr OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP102. SPECIFIED LENGTH IS INAPPROPRIATE FOR SPECIFIED TYPE OF DATA AT
LINE line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAPlW SPECIFIED MAXIMUM LENGTH IS INAPPROPRIATE OR TOO SMALL AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAPlOS: FRACTION POINT OFFSET IS OUTSIDE OF BOUNDS -128<P<127 AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP106: BAD REPETITION SPECIFICATION AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP107: ILLEGAL CHARACTER IN PICTURE SPECIFICATION AT LINE
line-number-within-statemew OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP108: EXPEClTNG A LEVEL NUMBER IN A STRUCTURED DATA DESCRIFTION
STATEMENT AT LINE line-number-within-statement OF
STATEMENT statement-number AT SYMBOL "symbol'.

SAP109: LENGTH OF PICTURE SPECIFICATION IS TOO BIG AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP1 10: ILLEGAL BlT STRING IN "ON-CERR" CLAUSE AT LINE
line-nwnber-within-statement OF STATEMENT
statement-number AT SYMBOL "qwzbol".

SAP1 1 1: INCONSISTENT USE OF "ON-CERR" CLAUSE AND THE A'ITRIBUTE OF THE
FIELD AT LINE line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol'.

SAP1 12: INVALID SPECIFICATION IN "ON-CERR" CLAUSE AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP1 13: ILLEGAL B2 CONSTANT AT LINE line-number-within-statement OF
STATEMENT statement-nwnber AT SYMBOL "symbol".

SAP1 14: ILLEGAL B3 CONSTANT AT LINE line-number-within-statement OF
STATEMENT statement-number AT SYMBOL "symbol".

SAP1 15: ILLEGAL B4 CONSTANT AT LINE line-number-within-statemerrt OF
STATEMENT statement-number AT SYMBOL "symbol".

SAP120: MORE THEN ONE SOURCE FILE IN FUNmON SPECIFICATION AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP121: MORE THEN ONE TARGET FILE IN FUNmON SPECIFICATION AT LINE
line-der-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

SAP122. MORE THEN ONE RECORD IN FUNCTION FILE DEFINlTION AT LINE
line-nwnber-within-statement OF STATEMENT

statement-number AT SYMBOL "symbol".

E SAP123: GROUPS ARE NOT ALLOWED IN FUNCTION FILE DEFINITIONS AT LINE
line-number-within-statement OF STATEMENT
statement-number AT SYMBOL "symbol".

W SCD1: THE FOLLOWING ASSERTIONS ARE CONSIDERED AS SIMULTANEOUS EQUATIONS:

W SCDT ALL OLD RECORDS IN THE ISAM FILE "file-name" ARE REFERENCED IN
ONE OPERATION.

W SCD3: CYCLE CONTAINS THE FOLLOWING ELEMENTS:

E SCD4: NO RANGE DETERMINED FOR LOOP VARIABLES AT LEVEL
loop-level-number IN CYCLE:

E SCD5: NO RANGE DEFJNXTION FOUND FOR RANGE range-number.

E SCD6: MORE THAN ONE OCCURRENCE OF THE "DEPENDS-ON" FUNCTION HAS BEEN
FOUND IN THE SAME LEVEL OF AN MSCC:

F SCD7: MODEL COMPILER ERROR: (SIM-BLK) THIS MSCC DOES NOT FORM A SET OF
SIMULTANEOUS EQUATIONS.

E SCDS: (SIM-BLK) THIS MSCC DOES NOT FORM A SET OF SIMULTANEOUS EQUATIONS.

W SQD9: RANGE OF "name" NEEDS AN UPPER BOUND AND HAS BEEN ASSUMED TO BE
9999.

F SCD10: MODEL COMPILER ERROR: NO SUBRANGE CAN BE FOUND.

W SCDl1: SUB-RANGE sub-range number OF RANGE range number IS
INVOLVED IN BOTH MAJOR-RANGE AND SUB-RANGE CALCULATIONS.

E SFD1: INVALID FIELD NAME AT LINE statement-number. "name" IS
RESERVED.

E SFDl : INVALID FlELD NAME AT LINE statement-number. "name" IS
RESERVED.

W SFLl: DEVICE-TAPE, FILE ORGANEATION IS DEFINED AS ISAM, BUT HAS BEEN
CHANGED TO SAM AT LINE line-number-within-stalement OF
STATEMENT statement-number.

W SFL2: DEVICE-DISK, TAPE A m U T E (S) IGNORED, AT LINE
line-number-within-statemenf OF STATEMENT
statement-number.

W SFL3: DEVICE=TAPE. DISK A'ITRlBUTE(S) IGNORED, AT LINE
line-number-within-statement OF STATEMENT
statement-number.

SFIA: UNIDENTIFIED FILE TYPE FOR FILE "name", AT LINE
line-number-within-statement OF STATEMENT
statement-number.

SFLS: FILE NAME "token" IN DATA DESCRIPTION IS LONGER THAN 7
CHARACTERS. TRUNCATED TO "name".

SPS1: NO SOURCE FILE DECLARED, FUNCTION IS WITHOUT PARAMETERS.

SPS2: NO TARGET FILE DECLARED, FUNCTION WILL RETURN NO VALUE.

SPS3: ONLY ONE RETURN PARAMETER ALLOWED, BUT MORE THAN ONE FIELD IS
DECLARED IN THE TARGET FILE.

SPS4: SUBSCRIPTED PARAMETERS IN FUNCTIONS ARE NOT ALLOWED.

SPSS: SUBSCRIPTED RECORD OF PARAMETERS IN FUNCTIONS IS NOT ALLOWED.

SPS6: MAXIMUM OF 20 PAR4hETERS PER FUNCTION ALLOWED.

SVF1: ISAM FILE "nume" HAS NO KEY DEFINED.

SVF2: INVALID FILE NAME AT LINE line-nrunber-within-statement OF
STATEMENT statement-number. "name" IS RESERVED.

SVF3: FILE NAME "name" LONGER THAN 7 CHARACTERS.

SVF4: IMPLEMENTATION LIMIT REACHED. FIRST LEVEL MEMBERS OF FILE
"name" EXCEEDS 100. PLEASE SEPARATE BY ADDING AN
ADDITIONAL FILE DECLARATION.

SVT1: THE SUM, EXIST, AND WHICH FUNCTIONS CAN ONLY BE USED AS A SINGLE
EXPRESSION ON THE RIGHT-HAND-SIDE OF AN ASSERTION. STATEMENT
statement-number VIOLATES THIS RULE.

SVT2. MODEL COMPILER LIMIT: NUMBER OF DESCENDENTS EXCEEDED 500.

SVT3: MODEL COMPILER LIMIT: ASSERTION statement-number IS TOO LONG.

SVT3: MODEL COMPILER LIMIT: ASSERTION statement-number IS TOO LONG.

SVT4: MODEL COMPILER LIMIT: NUMBER OF MULTIPLE TARGETS EXCEEDS 26**2.

WID1: WINDOWING ERROR FOR VIRTUAL DIMENSION dimension-number OF
"mad"' WINDOW HAS A WIDTH OF width.

WIO1: MODEL COMPILER LIMIT: ONLY 1000 WINDOW VARIABLES CAN BE
ANALYZED.STACK OPTIMIZATION DISABLED.

F WL1: MODEL COMPILER ERROR: BAD PARAMETER FOR ROUTINE WRT.

E XRF 1: INCONSISTENCY. CONTRADICTORY DESCRIPTIONS OF "key-name" .

L XRF2: MODEL COMPILER LIMIT: ITEM "key-nume" IS DEFINED IN MORE THAN
12 FILES.

Index
ALGOL 63
ARITHMETIC CONSTANT 36
Arithmetic Constants 36
ARITHMETIC EXPRESSION 39,42,68,79
Arithmetic Expressions 39
Arithmetic Functions 1 15
Arithmetic operators 37
ARITHMETIC VARIABLE 68
ARRAY 10,11,12,13,67,68,75,76,77,78,81
h y s 10

BINARY 11,36,37,39,40,41,42,45,51.52,53,54,62
BIT 35,36,37,38,40,41,45,51,52,53,77
Bit String 35.53
BIT STRING CONSTANT 35
BOOLEAN EXPRESSION 41.62
Boolean Expre~ions 40
BOOLEAN VARIABLE 34,37,40,41,77,79,80,8!5
Built-In Model Functioas 120

CHARACTER 9,11,31,32,33,35,36,40,41,42,45,51,52,53,56,79
CHARACTER SET 32
Character String 35.52
CODE GENERATION 94
Comments 32
COMPARISON EXPRESSION 62,78
Comparison Expressions 41
COMPARISON OPERATOR 44
C o ~ s o n o p e n t o r s 37
COMPILER 6,32,38,68.73,74,79
CONCATENATION 35.39.40.52
CONDITIONAL ASSERTION 45,61.62,63.76,78
CONDITIONAL EQUATIONS 62
CONSTANT 35,36,39,40.77
C o ~ t s 35
CONTROL PARAMETERS 104,105
CONTROL VARIABLE 53,75,77,78,79,80,81,85
Contrd Variables 74
Conversion 56
Conversion Enor 56
Conversion of Data Types 45
CROSS REFERFNCE REPORT 96

Data Declaration 48
DATA STRUCWRE 12,57,58,69,73
DATA TREE 11,48,51,58
DATA TYPE 37,45,51,53,54 57.79
Data Types 44
DEBUGGING 87
DECIMAL 9,36,37,39,42,45,51,52,53,54
DEFINING EXPRESSION 62,63,64,67,75
Delimitera 32
DEPENDENT VARIABLE 61,62,67,79
Depends-% 121
DIGIT 56
DIMENSION 13,34,67,68,74,75
DIMENSION PROPAGATION 93
DISK 4,6

EBNP 31,47
Efkiency of Produced Programs 107
Empty 86
END 33,58,74.75,77,78,79
Endfile 25,58,74,79
Endf11e.R 86
Equations 13.59
ERROR MESSAGE 6,37,38
ERROR MESSAGE MNEMONICS 89

ERROR MESSAGES 87
Exist 121
EXPONENT 36,39,56
Expressions 37,38
EXTERNAL DEVICE 9.48

FIELD 31,3~33,34,35,50,51,52,53,54,5~57,58,61,67,70,71,72,74,75,79,80,81,82,84,85
FIELD DECLARATION 51.52
FILE 9,13,14,31,32,34,35,47,48,50,51,57,69,70,71,72,73,75,76,79,80,81,82,83,84,85
File Declaration 50
FILE INFORMATION REPORT 103
Files 9
nOWCHARTREPORT 97
FOR-EACH 33,73,74
FORMAT 32,52,54
FORMATED REPORT 99
FOUND 33,75,81,82,85,86
FUNCTION 32,35.39,40,42,45
FUNCTIONS 42.106

GLOBAL SUBSCRIPT 34.73.74
GROUP 31,37,50,61,75,79,80

HEADER 31.47

IF-CLAUSE 62
INDEPENDENT VARIABLE 67
INDEX SEQUENTIAL 50.85
Indirect Indexing 68
INDIRECT INDEXING VECTOR 68.69
INTEGER 36,52,67,68,73,75,79
INTERIM 14,50,51,52,58,61
ISAM 34.48, SO, 75,80,81,82,83,84,85,86,110

KEY 85
KEYWORD 33,34 47,6563.75.77.85

LEN 33.53.79
LENGTH 13,34,35,40,41,53,57,75,79
LOCAL SUBSCRIPT 68,73,74
Logical Expressions 40
Logical operators 37

MALDATA 33,79
Ma1data.R 56
MATRIX 12,13,81,82,84
Model Functions 1 13
MODEL SYSTEM 4,7,31,38,42,44,74
MODULE 47,48,82,84,85

NESTING 63,64
NEW 33.34,48,85,86
NEXT 33,34,75,79,80
NON-PROCEDURAL 61
NUMERIC STRING 3639.455 1,5153

OLD 33,34,48,85,86
OPERATOR 35,36.37,39.40,41.44,45,52
Operators 36
OPIIONAL DATA SlXU(JT[IRE 58
Opional Data S t N d m s 57

PARENTHESES 38
PIC 48,50,54,5'7,70.75,80,82,84,85
PICTURE 36,39,42,51,52,54,56
PUl PROGRAM LISTING 101
PLlI 4,6,7,9,36,38,42,52,55
POINTER 33,34,75,80.81.82.84,85
PRECEDENCE ANALYSIS 93
PROGRAM 4,6,9,48,68

QualifiedName 33
QUALIFIED NAME VARIABLE 33.34.62.73

RANGE 9,12,13,33,34,57,58,61, a, a, 73,74,75,76, n, 78,79,80, ss, 108
Range Definition 58
RANGE PROPAGATION 74.75.79.94
RANGE TABLE REPORT 98
RECORD 31,33,34 50,69,70,71,75,76,79,80,81,82,84,85
Record Declaration 50
REPEATING VARIABLE 12,34,77,79
REPETlTIONCOUNT 10,48.57
REPORTS 95
Requirement 21
Requirements 13

SAM 50
SCALAR 11,75,76,79
SCHEDULING 94
SEMANTIC 6
SEQUENTIAL 50,85
SIMPLE ASSERTION 61,62,76,77
Simple Equations 61
Single Values 14
SIZE 11,13,33,58,61,74,75,76,77,79,85
SOURCE 6,13,14,17,31,34,35,47,48,50,52,58,61,69,79,81,82,83,84,85
SOURCE DATA 6.61
SOURCE FILE 13,34,35,47,48.52,69,79,81,83,85
Source files 47
SPECIFICATION 4,6,7,9,10,13.15,31,32,42,47.48.54.58.63,68.69,71,73,81.84.86
SPECIFICATION LISTING 92
SPECIFICATION, 13
STAGES OF MODEL 88.89.90
STORAGE 51
STRINGEXPRESSION 42
String Expressions 40
STRING OPERATOR 37
String-Handling Functions 118
Sublinear 23,68,69,71,72,122
SUBSCRIPT 6,9, 10, 12, 14,34,39,48.61,63,67,68,70,71,73,74,75,76,77,78,79,80, 82.85
SUBSCRIPT EXPRESSION 67,68,71.73
subscript Expressions 68,108
SUBSCRIPT OMISSION 61.74
SUBSCRIPT VARIABLE 68,73,74
Subscript Variables 73
SUBSCRIPED VARIABLE 12.14,67.78,79
Subscripts 9,65
SUBSET 33,34,75,80,86
SYNTAX 4,6,31,32,33,38,39,40,41,42,47,48,50,51,61,62,63,73
SYNTAX ANALYSIS 90
SYNTAX DIAGRAM 31,33,38,39,40,41,42.47,51,61,62,63

TAPE 4.31
TARGET 6,13.14,31,34,35,47,48. 50, 61,69,71,73,80,81,82,84,85,86
TARGET DATA 6,61,80
TARGET FILE 13,14,35,48,71,73,80,81,82,84,85,86
Target files 47
TEST-DATA GFiNERATOR 105,lM
TREE 11,48,51,58,67
Trces 10

UNSPECIFIED RANGE 78
Usa-Defined M o n s 42

VariPbleNames 32
Variables 9
=OR 12,13,42, a, 69,7s, n. 78.81.84
VirtuPl 107

WARNING 58
Which 123

