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ABSTRACT
We are considering the challenges that regulators face in
approving modern medical devices, which are software in-
tensive and increasingly network enabled. We then consider
assurance cases, which offer the means of organizing the ev-
idence into a coherent argument demonstrating the level of
assurance provided by a system, and discuss research direc-
tions that promise to make construction and evaluation of
assurance cases easier and more precise. Finally, we discuss
some recent trends that will further complicate the regula-
tory approval of medical cyber-physical systems.

General Terms
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K.4.1 [Computers and Society]: Public Policy Issues—
human safety,regulation; J.3 [Computer Applications]:
Life and medical sciences

Keywords
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1. INTRODUCTION
Modern clinical practice relies on a wide variety of med-

ical devices to assist in the treatment of patients. Many of
these devices perform functions that are critical to patients’
lives. It is extremely important that these functions are
performed in a safe manner. Like most other safety-critical
systems, medical devices are regulated by government agen-
cies. In the Unites States, for example, the Food and Drug
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Administration (FDA) is responsible for approving all med-
ical devices for marketing.1

In this paper, we discuss challenges that regulatory agen-
cies face in certifying modern medical devices. Medical de-
vices and systems are a tough domain to regulate. On the
one hand, there is a high degree of awareness that medical
devices immediately affect patients’ well-being and life, so
they are expected to be very safe. At the same time, a de-
vice can be made “too safe” and interfere with the practice
of medicine by the doctors. That is, if a doctor needs to
induce a device to perform a potentially unsafe operation to
save a patient’s life, the safety functions of the device should
not prevent him or her from performing this operation, even
if this operation is considered unsafe under normal operat-
ing conditions. From the regulator’s perspective, there are
also conflicting perspectives to take into account. If a po-
tentially unsafe device is approved for use, patients may be
harmed by the device. On the other hand, if a device is not
approved because of a safety concern that may never mate-
rialize in practice, many more patients may be harmed since
an effective treatment will not be available.

Assessing safety of medical devices is particularly difficult
because they typically operate in a highly unpredictable en-
vironment. The largest source of uncertainty are patients
themselves. Even within the same target group of patients
– such as children or the elderly – there is a tremendous
variation of physiological parameters. Elderly patients, in
particular, often have multiple conditions that interact with
each other in unpredictable way. Accurately predicting pos-
sible interactions between a device and a patient is extremely
challenging. Clinical trials, an accepted way of evaluating
safety of drugs, are difficult and expensive to arrange, espe-
cially for implantable devices.

Another source of unpredictability in the environment comes
from caregivers. Doctors and nurses operate under a lot of
stress; their primary concern is patients, not devices. Treat-
ment guidelines for the same condition differ significantly
from hospital to hospital, and caregivers are highly creative
in adapting the use of devices to the needs of their work-
flows and finding workarounds for restrictions imposed by a
device. Predicting the ways in which a device will be used
in the hospital is quite a challenge.

The challenges posed by the unpredictable operational en-
vironment of medical devices are, of course, not new and

1FDA policy is making a distinction between certification
and approval, and the FDA mandate involves only approval
of medical devices. In this paper, for brevity, we use certifi-
cation to apply to both activities.



both device manufacturers and regulators are acutely aware
of them. Recent technological advances, however, are intro-
ducing a host of additional challenges. Most of these chal-
lenges come from interactions between devices. More and
more medical devices are network-enabled and can commu-
nicate during treatment with other devices, forming medi-
cal cyber-physical systems (MCPS). Communication allows
MCPS to implement functionality, such as continuous care,
that was not possible with stand-alone devices. At the same
time, communication within an MCPS brings new hazards
to patient safety and needs to be considered in certification.
In addition to network failures, there are now security and
privacy concerns to address. Furthermore, unlike systems
in other safety-critical domains (e.g., aircraft), MCPS often
need to be assembled at the patient’s bedside using the de-
vices required for a particular clinical scenario; devices that
typically come from several vendors that may not have de-
veloped the devices to operate in concert. This requirement
brings new regulatory challenges that seem to be unique to
the medical domain.

In addition to the inherent problems with medical de-
vice systems, there are two industry trends that add addi-
tional challenges to an already challenging problem. First,
in an effort to reduce development time and more cost effec-
tively develop high-quality medical devices, there is a cur-
rent trend in the medical device industry to adopt model-
based development techniques and rely more on automa-
tion, for example, modeling, automated verification, code
generation, and automated testing. The reliance on tools
rather than people, however, introduces new and poorly un-
derstood sources of problems, such as the level of trust we
can place in the results of such automation. Second, the
move towards electronic health care records and the inte-
gration of medical devices and medical information systems
is another source of concern. This integration, for example,
integration of infusion pumps with medical records where
the pump takes dosage information directly from the pa-
tient’s electronic health record, makes the medical informa-
tion system part of the medical device. Unfortunately, there
is no established safety culture in the medical information
systems domain. Incorrect or corrupted data provided to
critical medical devices through this integration could have
catastrophic and widespread consequences; techniques to as-
sure the validity and integrity of the data provided by med-
ical information systems are needed.

2. CHALLENGES IN SOFTWARE CERTI-
FICATION

Conventional notions of certification, applied to physical
systems, are usually product based. By this we mean that
safety of the product is assessed based on measurements per-
formed on the product with desired level of confidence. By
contrast, objective measurement-based evaluation technol-
ogy for assessing software does not exist. Software does not
fail like physical devices; when software “fails,” it is a result
of a design fault introduced somewhere during the software
development process. Thus, the thinking has been that if
we just improve our processes to eliminate design faults, the
software will be of high quality. Therefore, most widely used
standards, for example, IEC 61508 [9], IEC 62304 [10], DO-
178B [26], and the former (British) Defence Standards 00-55
and 00-56 [24, 25], are focused on the development process

and either recommend or require various development and
assessment techniques. The IEC 62304 standard, in partic-
ular, defines the life cycle requirements for medical device
software. It outlines processes, activities, and tasks in order
to establish a common framework for the development of
safe medical device software. Similarly, the regulatory ap-
proach for software-based devices taken by the FDA is based
on design control provisions outlined in the Title 21 Code
of Federal Regulations (CFR) Part 820 (21 CFR 820.30).
These standards aim to provide good processes that help to
introduce fewer problems during the development as well as
detect and eliminate more problems in the process.

There are doubts, however, if there is really a correlation
between the quality of the software produced and the prac-
tices required by a standard [22]. Although the observations
are largely anecdotal, there are some indications that devel-
oping software to a higher “safety level” (in this case to the
DO-178B Level-A classification) does not necessarily lead to
lower failure rates [28] as compared to software developed to
a lower classification (Level-B). Such findings casts doubt on
the general approach of process oriented standards.

Furthermore, since process standards are prescriptive, adop-
tion of new, potentially much more effective, techniques can
be severely hindered; why would a manufacturer deviate
from accepted practices when such deviation will carry a
significant regulatory risk?

To address this problem we believe a move to an evidence
based approach to certification and approval is in order. One
such approach is to organize evidence using the concept of a
safety case or, more generally, assurance case. The concept
of a safety case is not new. In [2], a safety case is defined as“a
documented body of evidence that provides a convincing and
valid argument that a system is adequately safe for a given
application in a given environment.” An assurance case ex-
tends the argument to other system properties as well. For
example, since FDA approves devices based on their safety
and effectiveness, it may make sense for the assurance case
for a device to cover both. Currently, however, this is not
required. FDA is currently evaluating the use of assurance
cases in the approval process. A draft guidance document
has been issued as part of the Infusion Pump Improvement
Initiative [30]. The document expresses the FDA expecta-
tion that applications for new infusion pumps will include an
assurance case arguing that the new device is “substantially
equivalent” to existing devices on the market.

2.1 Model-Based Development
Software development in critical medical device systems is

a largely a manual process. Validation that we are building
the right system has been achieved through requirements
and design inspections and reviews. Verification that the
system is developed to satisfy its requirements is archived
through inspections of design artifacts and extensive test-
ing of the implementations. This is a costly process and
if we could devise techniques to help us reduce the cost of
development and time to market, significant competitive ad-
vantages could be gained. One current trend of interest in
the medical device domain is model-based development as
an attempt to decrease cost and reduce development cycle
time.

In model-based development, the development effort is
centered around a formal or semi-formal model of the pro-
posed software system. Through manual inspections, formal



verification, and simulation and testing we convince our-
selves that the model possesses desired properties. Ideally,
the implementation is then automatically and correctly gen-
erated from this model and little or no additional testing of
the implementation is required.

There are several commercial and research tools that aim
to provide part or all of these capabilities, for example,
Simulink and Stateflow from Mathworks [20, 21], Esterel
and SCADE from Esterel Technologies [4, 5], and various
UML tools from a collection of vendors.

Reliance on modeling and automation gives rise to several
new challenges for certification and approval. Naturally, it is
now imperative that the model serving as the basis for the
development is correct and the increased reliance on tools
requires that they can be trusted so that the results can be
used as evidence in certification.

The model validation problem has received relatively little
attention and the sufficiency of the validation activities has
been largely determined through ad-hoc methods. The fun-
damental problem is how to evaluate model fidelity and the
appropriate level of abstraction used in the model. Several
questions have to be addressed to adequately address this
issue: How do we know when we have provided enough val-
idation? How can we catch unstated requirements that are
not captured in the model? What techniques are acceptable
for model validation? A natural first step to address this
problem is to adapt the elicitation and validation techniques
developed in the requirements engineering community [3] for
the model-based domain.

We have taken initial steps and investigated how to use
formal verification techniques to aid in the validation of nat-
ural language requirements, the formalized version of those
requirements, and the models [23]. Whalen et al. have inves-
tigated if the notion of test-adequacy coverage criteria can
be extended to apply directly to the requirements of a model
as opposed to the model itself [32]. Nevertheless, the crucial
validation problem necessitates further investigation.

With respect to the use of automated tools in the cer-
tification and approval process, the community has largely
ignored addressing the issue of how we will be able to trust
our powerful automated techniques enough to allow us to
use them as a replacement for traditional testing and in-
spections.

Problems with automation can manifest itself in many
places. For example,

• If the model execution environment and analysis tools
misrepresent the semantics of the modeling language,
all testing and verification done in the model domain
is invalid.

• If the code generation is incorrect, the resulting im-
plementation could be incorrect, and the problem may
not be caught since we are now reducing testing in the
code domain.

• If any of our analysis tools applied in the model domain
provide false negatives (i.e., they fail to catch a faulty
model), we may mistakenly accept a model as correct
and use it for code generation (again, this problem is
unlikely to be caught with the reduced code testing).

Solutions to such problems must be provided before we
can confidently use extensive automation in the development
of critical systems as well as evidence in certification.

A potential weakness of model-based development and in-
creased use of automated techniques is the possible loss of
“collateral validation”. In the current process, experienced
professionals provide informal validation of the software sys-
tem while designing, developing code, or defining test-cases;
if there is a problem with the specified functionality of the
system, they have a chance of noticing and taking correc-
tive action. As we move towards more automated processes,
there may be fewer opportunities for such informal valida-
tion. Currently, we do not have direct evidence on the loss of
collateral validation. We have limited knowledge on how well
the current manual processes work, or how error prone the
current tools are. Without it, it is hard to be confident that
model-based processes are improving the effectiveness of val-
idation. Much analytical and empirical research is needed
to help answer these questions.

3. MAKING ASSURANCE CASES WORK
We note that, by themselves, assurance cases do not solve

the problem. Ensuring that the argument presented by an
assurance case is valid remains a significant challenge. Ex-
isting languages for constructing assurance case, such as the
Goal-Structuring Notation (GSN) [16], allow us to represent
the argument as a graph of interdependent goal, strategy,
and evidence nodes. Goals specify claims made in the argu-
ment, strategies describe how subgoals are tied together to
demostrate larger claims, with evidence demonstrating satis-
faction of claims. Such organization brings out the structure
of the argument and makes it easier to evaluate it.

Nevetheless, goals and strategies are specified using the
natural language, opening the door to inconsistencies in ar-
guments. A study by Greenwell [7] has shown that logical
fallacies are common in assurance cases. It is desirable to
have means of checking logical consistency of an argument.
Complete formalization of the claims in an assurance case
is unlikely to be achieved. However, a more lightweight ap-
proach, which does not capture the meaning of the argu-
ment, but only its logical structure, may be possible. Such
a lightweight formalization will be able to capture logical fal-
lacies, that is, inconsistent arguments that cannot be true
regardless of what is being argued. We are currently explor-
ing the use of multi-sorted first-order logic for such formal-
ization. The work is in its early stages, however, and much
further research is needed.

3.1 Evaluation of Assurance Cases
A separate challenge lies in the evaluation of the level of

confidence in the claims justified by the evidence used in the
assurance case and matching this level of confidence against
the safety risks posed by the device. There are several fac-
tors that affect the level of confidence. One factor is the
confidence in the available evidence. Testing results, for ex-
ample, may not give high enough confidence since testing
typically addresses only a small subset of the system’s be-
havior. Correct-by-construction development, on the other
hand, may provide precise guarantees, but it usually relies
on a set of assumptions and we may not be completely con-
fident that these assumptions hold, or that all assumptions
have been identified. Another factor is the confidence in
strategies being used in the argument. That is, whether
evidence is properly used to support a claim and whether
claims are properly decomposed into sub-claims. Finally,
there is always uncertainty in whether the argument is“good



enough.” That is, whether the level of assurance delivered
by the argument is commensurate with the risks.

A recent approach proposed in [8] partially addresses this
problem. There, an assurance case is complemented by a
separate confidence case. A confidence case argues, sepa-
rately for each claim in the assurance case, that there is suf-
ficient confidence in support of the claim. Note that this ap-
proach addresses only the first two factors identified above.
The “good enough” aspect is still left for the evaluator to
assess. Moreover, it seems that the evaluator now needs to
make separate decisions on whether each claim in the confi-
dence case is indeed sufficient. We believe that there should
be a more systematic, and hopefully more quantitative, way
of evaluating the adequacy of claims in an assurance case.
However, much more research is needed to achieve this goal.

3.2 Assurance Case Patterns
Developing a high-quality assurance case from scratch is

a challenging task. At the same time, similar claims and
argument strategies appear in many assurance cases over
and over again [15]. A pattern can reduce the effort to de-
velop an assurance case and create a record of successful
arguments for future applications. At the same time, it is
important that developers use the pattern that fits the ar-
gument and do not attempt to twist the argument to fit a
chosen pattern [14]. We believe that additional research is
needed to develop guidance for the appropriate selection and
interpretation of assurance case patterns.
Pacemaker project. In our prior work, we have developed
a partial assurance case for a software controller for an im-
plantable pacemaker [11]. The case study was motivated by
the Pacemaker Challenge, the certification challenge prob-
lem issued by the Software Certification Consortium [29].
The challenge involves the development of pacemaker con-
troller software that is formally verified for compliance with
the timing requirements released by Boston Scientific. Since
our case study started with the requirements and not with
hazard analysis, our assurance case did not include the argu-
ment that requirements are adequate for mitigating all the
hazards. However, we believe that the safety argument in
this case would decompose nicely around the requirements:
the argument about requirements adequacy would form a
separate branch in the assurance case.

One of the goals of the project was to develop an assur-
ance case pattern for system constructed through the model-
based development process. The process we followed in-
volved formal modeling of the pacemaker controller using
timed automata, followed by formal verification by the UP-
PAAL model checker and code generation by the TIMES
tool (see [12] for more detail). Our premise was that sys-
tems developed using similar process would rely on a simi-
lar safety argument. The proposed assurance case template
was making the argument by requirements satisfaction. We
claimed that the model was correct with respect to every re-
quirement, using the verification result as evidence. Then,
we claimed that the platform-independent code generated
by the TIMES tool was preserving behavioral properties of
the model, using correctess proof of the code generation al-
gorithm as evidence. In addition, we claimed that the glue
code added to port the code to the chosen platform had
no side effects and thus did not interfere with the proper-
ties of the generated code. The evidence was the outcome
of the glue code inspection. Finally, we claimed that every

requirement was satisfied with the prescribed tolerance by
appealing to the test results.

The resulting assurance case captured our understanding
of the guarantees provided by the model-based process we
used. However, we had no clear way of evaluating, how con-
vincing the assurance case was, in particular because we had
no frame of reference. We therefore felt the need to explore
other ways to structure assurance cases, such as the ALARP
(“as low as reasonably practicable”) pattern [15], for a sys-
tem constructed through a similar development process. We
are currently in the pursuing this direction as part of the
GPCA project [17]. The project aims to develop a generic
patient-controlled analgesic (PCA) infusion pump based on
the safety requirements developed in conjunction with re-
searchers at the FDA [1]. We followed a similar model-driven
process based on timed-automata modeling and code gener-
ation. While this is a work in progress, we believe that by
comparing the resulting assurance cases we would be able
to evaluate the relative effectiveness of the patterns.

4. CERTIFICATION OF VIRTUAL DEVICES
Medical devices are increasingly capable of interacting

with each other by exchanging data and, possibly, control
commands. A collection of devices that is used together to
treat a patient, from a regulatory perspective, constitutes a
medical device that needs to be certified or approved as a
whole.

A distinguishing aspect of safety-critical systems in the
medical domain is the dynamic nature of medical device sys-
tems. Given a patient with a complicated condition, care-
givers need to enact a clinical scenario that fits the condition.
For this, they utilize medical devices from the set of available
equipment in the hospital. The resulting ad hoc system can-
not be realistically certified in advance because of the large
number of possible combinations of devices. Moreover, if the
devices used in this collection are built by different manufac-
turers, it is not clear who is the “manufacturer” of the sys-
tem to bring the case up to the regulatory authorities. Yet,
a poor choice of devices can adversely affect patient safety,
even though each device may be individually approved for
use.

A new and somewhat extreme idea is to certify common
scenarios based on types of devices that are included in the
scenario. A scenario would act as a virtual medical device
(VMD). We believe that a VMD can be approved instead of
every possible instantiation of the VMD using different phys-
ical devices. Assuming certain capabilities of the devices and
properties of interconnections between them, a safety of the
scenario can be assessed. Then, when devices for a scenario
are assembled together at the hospital, checking that the
selected devices satisfy the assumptions made for the sce-
nario, we will ensure that patient safety is guaranteed. The
approach advocated by the Medical Device Plug-and-Play
(MD PnP) interoperability initiative [6] would automate this
assumption checking, further improving patient safety. The
MD PnP architecture incorporates a centralized supervisor
module in an implementation of any clinical scenario. The
supervisor includes a specification of the scenario and its
assumptions. Devices connecting to the supervisor would
announce their capabilities, allowing the supervisor to check
the assumptions before allowing the scenario to proceed.

Of course, for this procedure to be sound, we need to
ensure that instantiation of a VMD is performed in a safe



manner. In particular, a VMD instantiation needs to be sup-
ported by a network infrastructure that will manage devices
used in the scenario, ensure that flows of data between de-
vices are as prescribed by the scenario, and failures of devices
and communication links are detected and brought to the
attention of caregivers. The infrastructure, together with
the supervisor, needs to be approved as a medical device,
since its operation directly affects patient’s safety. We are
designing a prototype of such a network infrastructure [19,
18] and expect to use it in developing approaches to VMD
certification.

Foundations for this approach can be traced to the notion
of modular assurance cases [13]. An assurance case module
has an interface that specifies which claims made inside the
module are public, that is, can be used in other modules
and, conversely, which claims are assumed to be argued in
other modules. Similarly, an assurance case for a VMD will
rely on claims made in assurance cases for the individual
devices. However, a significant difference is that modular
assurance cases are intended to argue about concrete system
implementations. By contrast, the composition of assurance
claims for a VMD occurs when an instantiation of the VMD
is assembled. One can imagine that a device carries a record
of its public claims. These claims will be delivered to the
supervisor for assessing the VMD instantiation. A similar
vision has been put forth by Rushby [27]. However, much
research is needed before this vision can be realized, and the
notion of dynamic certification remains controversial.

The notion of approving a VMD separately from its phys-
ical realization may sound extreme. However, we note that
medical “apps” that are intended to be executed on mobile
platforms such as cell phones are gaining popularity with
physicians. These apps are software applications that are
able to utilize the sensors available on a mobile platform to
perform functions that, until now, were performed only by
medical devices. For example, a microphone can be used to
turn a cell phone into a stethoscope. A recent draft guidance
issued by the FDA [31] identifies many such apps as med-
ical devices and discusses the regulatory approach for such
virtual devices. Given that mobile platforms are rapidly
evolving and an app is likely to run on multiple versions
of a platform, we believe that approval of mobile apps will
encounter similar challenges to the ones facing VMDs.

5. CONCLUSIONS
We have presented a set of challenges that face the regula-

tory approval of MCPS. Some of these challenges are similar
to other safety-critical industries, while others appear to be
specific to the medical device industry. Regulators are well
aware of these challenges and are interested in finding scien-
tifically sound solutions to them. This offers an opportunity
to the research community to get involved in this intellectu-
ally deep and societally important problem.
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