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We study patient abandonment from a hospital emergency department queue. We �nd that patients are

in�uenced by what they see around them in the waiting room: waiting room census, arrivals, and departures.

Patients are also sensitive to being "overtaken" in the line. Lastly, patients also appear to make inferences

about the severity of the patients around them and respond di�erently to people more sick and less sick

moving through the system. The fact that patients respond to visual stimulus suggests that in order to

reduce patient abandonment hospitals should actively manage what patients see and what information they

have regarding the wait.
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1. Introduction

The body of knowledge on queuing theory is voluminous and spans more than half a century of

research. However, one of the least understood aspects of queuing theory is human behavior in the

queue. Understanding the human element is crucial in designing and managing service-system queues

such as quick-serve restaurants, retail checkout counters, call centers, and emergency departments.

Speci�cally, queue abandonment (also known as reneging) is one aspect of human behavior that

is poorly understood. Abandonment is undesirable in most service settings because it leads to a

combination of lost revenue and ill-will. In a hospital emergency department (ED), abandonment

takes on the added dimension of the risk of a patient su�ering an adverse medical event. While

the hospital may or may not be legally responsible for such an event, it is certainly an undesirable

outcome.

Prior literature has explored psychological responses to waiting and has generally found that

people are happier and waiting seems less onerous when people are kept informed of why they are

waiting and how long the wait will last (Larson 1987). Given these �ndings, it seems almost trivial

that it is bene�cial to provide waiting customers with as much information as possible about the

wait. In practice, however, we observe many service systems, such as call centers and emergency
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departments, which provide limited or no information to waiting customers. Thus, it is an open

question as to which is better: a hidden queue, a fully visible queue, or some middle-ground, semi-

visible queue. This is an active area of analytical queuing theory research (e.g. Guo and Zipkin 2007,

Armony et al. 2009), but there is limited empirical work on the subject.

We examine this question in the setting of a hospital emergency department. Most EDs are

naturally semi-visible in that waiting patients can observe the waiting room but they cannot observe

the service-delivery portion of the system (the treatment rooms). Additionally, even though patients

can observe the waiting room, it is not at all clear what they can learn from what they observe.

Factors such as arrival order, priority level, assignment to separate service channels, and required

service time of others is not readily apparent. Interestingly, most EDs provide no queue-related

information to the patients. The position of the American College of Emergency Physicians is that

providing queue information might have �unintended consequences� and lead to patients leaving

who need care (ACEP 2012). However, this position does not account for how patients respond to

the information they do have: what they see.

In this paper, we focus speci�cally on how what the patient observes during the waiting phase

of the queuing encounter impacts the abandonment decision. We perform a detailed econometric

study of patient queuing behavior in an ED. Using data from the electronic patient tracking system,

we are able to identify factors both before and during the queuing encounter which impact the

abandonment decision. We make the following three contributions:

1. We show that observed queue length has an e�ect on abandonment separate from its direct

e�ect on wait time.

2. We show that the observed �ow of patients in and out of the waiting room has an e�ect on

abandonment. Furthermore, we show that patients respond di�erently to out�ows that maintain

priority based �rst-come-�rst-served order and those that do not.

3. We show that patients respond to more than just the �facts� that they observe. They make

assumptions about the severity of other patients and respond di�erently to the �ow of more and

less severe patients.

Taken together, these contributions show that patient abandonment behavior is a�ected by what

the waiting patients observe. However, since the patients do not have full knowledge of the system

state or design, they may respond in ways that bias them toward excessive abandonment.

2. Clinical Setting

Our study is based on data from a large, urban, teaching hospital with an average of 4,700 ED

visits per month over the study period of January, 2009 through December, 2011. The ED has 25

treatment rooms and 15 hallway beds for a theoretical maximum treatment capacity of 40 beds.
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However, the actual treatment capacity at any given moment can �uctuate for various reasons.

The hospital also operates an express lane or FastTrack (FT) for low acuity patients. The FT is

generally open from 8am to 8pm on weekdays, and from 9am to 6pm on weekends. The FT operates

somewhat autonomously from the rest of the ED in that it utilizes seven dedicated beds and is

usually sta�ed by dedicated group of Certi�ed Registered Nurse Practitioners (CRNP) rather than

Medical Doctors (MD)1 .

We focus solely on patients that are classi�ed as �walk-ins� or �self� arrivals, as opposed to

ambulance, police, or helicopter arrivals. This is because the walk-ins go through a more standardized

process of triage, waiting, and treatment, as described below. In contrast, ambulance arrivals tend

to jump the queue for bed placement, regardless of severity, and often do not go through the triage

process or wait in the waiting room. More than 70% of ED arrivals are walk-ins.

The study hospital operates in a manner similar to many hospitals across the United States. Upon

arrival, patients are checked in by a greeter and an electronic patient record is initiated for that

visit. Only basic information (name, age, complaint) is collected at check-in. Shortly thereafter, the

patient is seen by a triage nurse who assesses the patient, measures vital signs, and records the

o�cial chief complaint. The triage nurse assigns a triage level, which indicates acuity, using the

�ve-level Emergency Severity Index (ESI) triage scale with 1 being most severe and 5 being least

severe (Gilboy et al. 2011). Patients are generally not informed of their assigned triage level. The

triage nurse also has the option of ordering some diagnostic tests, for example an x-ray or a blood

test.

After triage, patients wait in a single waiting room to be called for service. Patients are in no

way visibly identi�ed, thus a waiting patient cannot be sure which people in the waiting room are

patients (versus family and friends), or what triage level other patients have been assigned. Further,

patients can sit anywhere in the waiting room, thus there is no ready visual signal of arrival order.

Patients are called for service when a treatment bed is available. If only the ED is open, patients

are generally (but not strictly) called for service in �rst-come-�rst-served (FCFS) order by triage

level. If the FT is open, then the FT will serve triage level 4 and 5 patients in FCFS order by triage

level and the ED will serve patients of triage levels 1 through 3 in FCFS order by triage level. These

routing procedures are �exible, however. For example, the ED might serve a triage level 4 patient if

the patient has been waiting a long time and there are not more acute patients that need immediate

attention. Similarly, the FT might serve a triage level 3 patient if the patient has been waiting a

long time and the patient's needs can be met by the nurse practitioners in the FT.

1We interchangeably use the term ED to refer to the entire Emergency Department inclusive of the FastTrack or to
just the main emergency department treatment area exclusive of the FastTrack. The use is generally clear from the
context, but we use the term �main ED� to clarify and indicate the primary ED treatment space when necessary.
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Most patients likely have little or no understanding that the ED and FT exist and work as separate

service channels. Further, since patients go through the same doors to begin service in either the

ED or the FT, there is no visual indication to other waiting patients as to which service channel a

patient has been assigned.

Once a patient is called for service, a nurse escorts the patient to a treatment room and the

treatment phase of the visit begins. When treatment is complete, the patient is either admitted to

the hospital or discharged to go home. If a patient is not present in the waiting room when called

for service, that patient is temporarily skipped and is called again later, up to three times. If the

patient is not present after a third call, the patient is considered to have abandoned, the patient

record is classi�ed as Left Without Being Seen (LWBS) and is closed out. The time until a record

is closed out as LWBS is usually quite long, with a mean time of over four hours (about triple the

mean wait time for those who remain).

3. Literature Review

The classical queuing theory approach to modeling queue abandonment is the Erlang-A model �rst

introduced by Baccelli and Hebuterne (1981). In the Erlang-A model, each customer has a maximum

time he is willing to wait, and he waits in the queue until he either enters service or reaches his

maximum wait time, at which point he abandons the queue. The maximum wait times are usually

assumed to be i.i.d. draws from some distribution, commonly the exponential (Gans et al. 2003).

Examples of work using the Erlang-A model include Garnett et al. (2002), Brown et al. (2005),

and Mandelbaum and Momcilovic (2012). Modeling abandonment in this way provides analytical

tractability, but does not shed light on the actual drivers of customer behavior.

An alternative view of queue abandonment is based on customer utility maximization. In such

models, customers are assumed to be forward-looking and balance the expected reward from service

completion against the expected waiting costs. Thus, there are three terms of interest in these

models: the reward for service, the instantaneous unit waiting cost, and the residual waiting time

(Shimkin and Mandelbaum 2004).2

There is a rich literature of studies which use such utility-based models. For example, Mandelbaum

and Shimkin (2000) considers customer abandonment from a system with a �fault state� in which

service will never be initiated. Customers continuously update their expected residual wait time and

eventually conclude that they are likely in the fault state and thus abandon. Likewise, in Hassin and

Haviv (1995) the reward from service may drop to zero thereby inducing abandonment. See Hassin

and Haviv (2003) for a review of various assumptions that lead to rational abandonments.

2 Some models also include a discount rate, which adds another term of interest.
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A related avenue of active queuing research addresses queues with various levels of information.

Much of this work is motivated by the call-center industry and determining what information a

call center should provide to its customers. For example, Guo and Zipkin (2007) compare M/M/1

queue performance when no, partial, and full information is revealed. They �nd that providing infor-

mation always either improves throughput or customer utility, but not necessarily both. Similarly,

Jouini et al. (2009) and Armony et al. (2009) both examine the impact of delay announcements on

abandonment behavior in multi-server, invisible queues and �nd that providing more information

can improve system performance with little customer loss. Plambeck and Wang (2012) show that

if customers exhibit time-inconsistent preferences through hyperbolic discounting, then hiding the

queue may be welfare maximizing while being suboptimal for the service provider.

Related questions of what to tell waiting customers and when to tell them have also been explored.

Many papers have focused on developing wait time estimators under various queuing disciplines

that can be used to provide customers credible information Whitt (1999), Ibrahim and Whitt

(2009, 2011b,a). Given an estimated wait time distribution, Jouini et al. (2011) explores what value

from the wait time distribution should be provided to the customer to balance the customers'

balking probability with the provider's desire for high throughput. Allon et al. (2011) considers the

�what� question under the assumption of strategic behavior by both customers and providers. Allon

and Bassamboo (2011) shows that providers can bene�t from delaying information announcements

because doing so allows the provider more time to observe the state of the system.

There are many empirical studies from �elds such as marketing and behavioral studies which

identify drivers of queue abandonment. While they generally do not explicitly mention the three

terms of the utility function, they can be mapped to this framework to aid in understanding their

contributions and di�erences. For example, Larson (1987) discusses such issues as perceived queue

fairness and waiting before or after service initiation, both of which likely impact expected residual

time. Janakiraman et al. (2011) studies the psychological phenomena of goal commitment and

increasing �pain� of waiting which are equivalent to increasing service reward and increasing waiting

costs respectively in the utility framework. Bitran et al. (2008) provides a survey of other such

�ndings from the marketing and behavioral studies domains.

The medical literature contains several empirical studies on drivers of abandonment from emer-

gency departments. Demographic factors (e.g., age, income, and race), institutional factors (e.g.,

hospital ownership and the presence of medical residents), and operational factors (e.g., utilization

level) have all been shown to in�uence patient abandonment (Hobbs et al. 2000, Polevoi et al. 2005,

Pham et al. 2009, Hsia et al. 2011).

Two recent papers in the Operations Management literature study customer queue behavior

empirically. Aksin et al. (2012) uses a structural model to estimate the underlying service reward



Batt and Terwiesch: Waiting Patiently (Working Paper)
6

and waiting cost values for customers calling into a bank call center. Under the assumptions of an

invisible queue and linear waiting costs, the study �nds that customers are heterogeneous in their

parameter values and that ignoring the endogenous nature of abandonment decisions may lead to

misleading results in various queuing models.

Lu et al. (2012) examines how elements of a visible queue, such as queue length and number

of servers, e�ect customer purchase behavior at a grocery deli counter. One of the key �ndings of

this paper is that customers are in�uenced by line length but are largely immune to changes in

the number of servers, even though the number of servers has a large impact on wait time. Stated

di�erently, customers do not appropriately incorporate all available information into their balk or

abandon decisions.

Our work di�ers from these two related works in several ways. First, our setting is di�erent in that

we examine a semi-visible queue; in the ED, the waiting room is visible but the service area is not.

Further, patients do not know the characteristics of the other waiting patients. Thus, patients have

access to some information about the queue, but it may be of limited value. Second, because we

have more granular than in Lu et al. (2012), we can allow for more factors, such as the �ow of other

patients (customers), to in�uence the abandonment decision. Lastly, in terms of methodology, we

use reduced form models since we are not estimating any latent structural parameters as in Aksin

et al. (2012). We hope our work will continue to expand the understanding of customer behavior

while waiting in line.

4. Framework & Hypotheses

The underlying operative question that we explore is, �Should hospitals provide queue-status in-

formation to waiting patients?� As mentioned in Section 1, the default stance in many EDs is to

provide no information. Patients are not informed of such things as their own triage level, the triage

level of others, the queue length, the expected wait time, or whether or not there is a FastTrack. Two

reasons for this behavior are that providing accurate information, especially wait time predictions,

can be di�cult, and that patients may respond to perceived bad news by abandoning. This logic is

in line with a key �nding in the �queues with information� literature; when providers and customers

have di�erent objectives, there can be incentives to hide the queue. For example, in Guo and Zipkin

(2007), the provider maximizes throughput and the customer maximizes personal utility. Under this

assumption, the provider may have an incentive to hide the queue when the queue length is longer

than the customers' uninformed expectation of queue length. Hiding the queue e�ectively tricks cus-

tomers, who would otherwise abandon if they had full information, into staying. Or, as mentioned in

Section 3, Plambeck and Wang (2012) shows that hiding the queue can be welfare-maximizing even

if it does not maximize customers' short-term utility. In essence, hiding the queue fools customers

into doing what is best for themselves in the long run, even if they do not recognize it at the time.
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This literature highlights the need to de�ne each party's objective. For the patient, we assume a

desire to maximize personal utility. As described in Section 3, the utility function is comprised of

three terms: the reward for service, the instantaneous unit waiting cost, and the residual waiting

time. For the hospital, the objective is less clear. Revenue maximization suggests serving everyone

who walks in the door. Likewise, a belief in a moral obligation to serve all comers leads to a desire

to eliminate abandonment. Welfare maximization suggests providing full information if the hospital

believes that patients can accurately evaluate their own utility. However, if the hospital believes that

patients can not accurately assess their need for treatment, then the hospital may withhold infor-

mation. Finally, pro�t maximization suggests selectively serving only the most pro�table patients

while somehow avoiding serving the less pro�table ones.

In our study hospital, the expressed objective is to minimize abandonment, largely out of a sense

of duty to serve anyone seeking care. This is also a reasonable objective because the Centers of

Medicare and Medicaid Services will soon require hospitals to report ED performance measures such

as median wait time, median length of stay, and LWBS percentage (Centers for Medicare & Medicaid

Services 2012). Eventually, target values will be established and hospitals will be reimbursed based

on their performance relative to the targets. Thus, hospitals will be looking to reduce abandonment

at least to the target levels. Therefore, for our study we assume that the hospital is seeking to

minimize abandonment.

With the objective de�ned as minimizing abandonment of utility maximizing patients, the ques-

tion of interest becomes, �Does the current policy of providing no queue-status information serve

to minimize abandonment?� However, to be clear, just because the hospital does not provide queue

status information does not mean that the patients are completely in the dark. The ED is not an

invisible queue. Recall from Section 2 that the patients all wait in a single waiting room and are

able to observe what goes on around them. If they choose to, patients can be aware of the number

of people in the waiting room and the �ow of patients in and out of the waiting room. Thus, we are

interested in whether patients are responding to this visual stimulus and if doing so leads to higher

or lower abandonment. Understanding the impact of these visual cues on abandonment will help

identify possible ways to modify the information available to patients. Our hope is that this empir-

ical study will provide the justi�cation necessary to receive approval from the Institution Review

Board for a controlled experiment in the ED.

We focus on the impact of four categories of variables created by the permutations of two pairs

of conditions: stocks and �ows, and observed and inferred. The key �stock� of interest is the waiting

room census, while the key ��ows� are the arrivals and departures from the waiting room. By

observed and inferred we mean that some things can be objectively observed, such as the number of
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arrivals to the ED, while others can only be inferred, such as the number of patients in the waiting

room with a higher triage classi�cation than one's own.

Waiting room census is the �rst, and perhaps most salient, visual cue that a waiting patient

observes. If patients behave according to the Erlang-A model, such that wait time is the only de-

terminant of abandonment, then waiting room census should have no impact on abandonment,

controlling for wait time. However, if patients behave in a utility maximizing way, as described

earlier, then the waiting room census likely impacts the patient's residual time estimate and aban-

donment behavior just as in Guo and Zipkin (2007) and Plambeck and Wang (2012). This leads to

our �rst hypothesis.

Hypothesis 1. Abandonment increases with waiting room census.

At our study hospital, arrivals and departures are quite easy to observe, if a patient chooses to do so.

There is a single entry door for walk-in patients, and there is a single door that leads into the clinical

treatment area. If the ED were a pure �rst-come �rst-served (FCFS) system, then one would expect

arrivals to have little or no e�ect on abandonment. However, since the ED is a priority-based system,

new arrivals may well jump the line and be served before currently waiting patients. Therefore,

arrivals may cause waiting patients to increase their residual time estimate upward leading to more

abandonment.

Hypothesis 2. Abandonment increases with observed arrival rate.

We de�ne departures from the waiting room to include only departures to begin treatment (we

address abandonments later). Patients that observe a high departure rate may take this as a signal

that the system is moving quickly and therefore adjust their residual time estimate downward,

leading to less abandonment. However, if a departure is a �jump,� that is Patient A arrives before

Patient B but Patient B enters service before Patient A, then this provides a mixed signal to the

observer. It signals system speed, which presumably reduces the residual time estimate. However,

the jump departure does not move the observer any closer to service, and thus the reduction in

residual time estimate is less than for a regular departure. Further, the observer may view the jump

as unfair and be more likely to abandon. These possibilities lead to the following two hypotheses.

Hypothesis 3. Abandonment decreases with observed departure rate.

Hypothesis 4. Jump departures decrease abandonment less than regular departures.

The above hypotheses consider the patient response to observable stock and �ow variables. We

now consider how patient inferences might modify behavior. While patients may not have a full
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understanding of the ED queuing system, they are likely aware that the ED operates on a priority

basis rather than a FCFS basis. In fact, there are multiple placards in the waiting room explaining

this point. Thus, patients may recognize that the presence of sicker patients may impact their wait

time di�erently than less sick patients. However, since all patient information is kept con�dential,

patients are left to infer relative acuteness by simply observing the other waiting patients. Certainly,

this is an inexact process at best, but likely not a pointless endeavor.

If patients are inferring relative acuteness of other patients, then this leads to a much more

complex set of hypotheses that essentially splits each of the above hypotheses into two parts, one

for more acute and one for less acute patients. For example, arrivals of more sick patients will likely

increase abandonment since waiting patients may fear that the new arrivals will jump them in line

for service. In contrast, arrivals of less sick patients may have no impact on abandonment since they

presumably will be served later than the current waiting patients. The presence of the FastTrack,

and most patient's lack of awareness of such, further complicates the picture. For example, an ESI 4

patient may observe the arrival of a much sicker looking ESI 2 patient and be tempted to abandon

thinking that his own waiting time just got longer. However, if the FastTrack is open, that ESI

4 patient is likely to be served in the FastTrack and the arrival of an ESI 2 patient will have no

impact on his wait. So, a knowledgeable patient would react one way to an arrival and an ignorant

patient would react another. Rather than enumerate all the potential responses to the inferred stock

and �ow variables, we simply state the following general hypothesis and discuss the speci�cs in

Section 7.2.

Hypothesis 5. Abandonment behavior is a�ected di�erently by relatively higher and lower acuity

patients.

5. Data Description & De�nitions

Our data include patient level information on over 180,000 patient visits to the ED including de-

mographics, clinical information, and timestamps. Patient demographics include age, gender, and

insurance classi�cation (private, Medicare, Medicaid, or none). Clinical information includes pain

level on a 1 to 10 scale (10 being most severe), chief complaint as recorded by the triage nurse, and

a binary variable indicating if the patient had any diagnostic tests, such as labs or x-rays, ordered

at triage. Timestamps include time of arrival, time of placement in a treatment room, and time of

departure from the ED. Table 1 provides descriptive statistics of the patient population by triage

level3.

3We do not include ESI 1 patients because these patients never abandon. However, we include ESI 1 patients in all
relevant census measures.
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Table 1 Summary Statistics

ESI 2 ESI 3 ESI 4 ESI 5
Age 49.8 39.0 34.7 34.2

(0.11) (0.07) (0.07) (0.14)
%Female 54% 66% 58% 51%

(0.003) (0.002) (0.002) (0.005)
Pain (1-10) 4.5 5.5 5.4 4.1

(0.03) (0.02) (0.02) (0.04)
%FastTrack 2% 3% 68% 67%

(0.001) (0.001) (0.002) (0.005)
Wait Time(hr.) 1.0 1.9 1.3 1.3

(0.01) (0.01) (0.01) (0.01)
Service Time(hr.) 3.7 4.0 1.8 1.2

(0.02) (0.01) (0.01) (0.01)
Census at Arrival 13.9 11.7 11.9 11.4

(0.06) (0.04) (0.05) (0.09)
%LWBS 1.7% 9.5% 4.7% 7.4%

(0.001) (0.001) (0.001) (0.003)
N 27,538 65,773 39,878 10,509
Means shown. Standard error of mean in parentheses

Performing empirical analysis on customer abandonment is inherently challenging due to the cen-

sored or missing nature of the data. Ideally, one would observe each customer's maximum willingness

to wait and the actual wait time if he stayed. But, only the minimum of these two is ever realized,

leading to censored data. Further, in our data, actual abandonment times are not observed, leading

to missing data for all patients who abandon. We know neither when they left, nor how long their

wait would have been had they stayed for service. We address this missing data problem in two

ways. In Section 7.1 we follow Zohar et al. (2002) and take averages across time to estimate the

system waiting time. In Section 7.2 we use the wait times of similar patients who arrived in temporal

proximity to create an estimated wait time for those who abandon.

For the regression models, we are interested in how the o�ered wait time impacts the abandonment

decision. The o�ered wait is the wait time had the patient remained for service. For patients who did

remain, we calculate this directly from the timestamps. For patients who abandon, we must estimate

the o�ered wait with what we refer to as i± 1estimation. We sort the patients into chronological

order of arrival within each triage class. Then for each abandoned patient, we calculate the average

of the wait times of the two chronologically adjacent patients (one before and one after) who did not

abandon. More speci�cally, we de�ne the variable WAITi as the observed wait time for patient i of

triage level Ti. For patients that abandoned, this value is missing (NA). We then calculate �carry

forward� and �carry backward� variables as

WAIT_cfi =

{
WAITi ifWAITi 6=NA

WAIT_cfi−1 ifWAITi =NA
(1)
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Figure 1 Histogram of Accuracy of Imputed Wait Time
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WAIT_cbi =

{
WAITi ifWAITi 6=NA

WAIT_cbi+1 ifWAITi =NA
(2)

From these we calculate the imputed wait time for all patients as

ŴAIT i =
1

2
(WAIT_cfi+WAIT_cbi) (3)

To get a sense of the accuracy of the imputed wait time, we examine the deviation between

ŴAITi and WAITi for all patients that did not abandon. Figure 1 shows a histogram of this

di�erence across all patients for whom a wait time is observed. The deviation has a mean of 0.00

and a standard deviation of 1.1 hours. 50% of the values are are between ±0.3hours, and more

than 80% of the values are between ±1hour. Thus, the imputed wait appears to be unbiased, and

is relatively close to the true value.

We then de�ne the o�ered wait time as follows

OWAITi =

{
WAITi ifWAITi 6=NA

ŴAIT i ifWAITi =NA
(4)

Another key independent variable of interest is the waiting room census. To calculate this census

measure, we divide the study period into 15-minute intervals labeled t, and we use the patient visit

timestamps to generate the census variable CENSUSt as the number of patients in the waiting

room during interval t. We also decompose the census measure into the waiting room census of each

of the �ve ESI triage classes (CENSUSt,T , T ∈ {1,2,3,4,5}) for later use. We assign a census value

to each patient (LOADi) based on the time of arrival. For example, for patient i who arrives at

time interval t, LOADi =CENSUSt.
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In order to test Hypothesis 5, we would ideally decompose LOADi into those patients whom

patient i perceives to be more sick and less sick than herself. However, since these perceptions are not

observed, we proxy for them by using the triage classi�cation of the waiting patients to calculate the

census of those ahead of and behind patient i assuming a priority queue system without preemption

that serves patients on a FCFS basis within a priority level. Therefore, any waiting patient of equal

or higher priority (lower ESI number) is considered as ahead of the arriving patient, and any waiting

patient of lower priority (higher ESI number) is considered as behind the arriving patient. These

de�nitions are expressed as follows for patient i of ESI triage level Ti who arrived at time t.

LOAD_AHEADi =

Ti∑
j=1

CENSUSt,j (5)

LOAD_BEHINDi =
5∑

j=Ti+1

CENSUSt,j (6)

The �ow variables are constructed from the patient timestamps. For each patient visit we cal-

culate the number of arrivals (ARRIV Ei), nonjump departures (NONJUMPi), and jump de-

partures (JUMPi) that occur within one hour of patient i's arrival. As with the census variable,

we also decompose the �ow variables by triage level (ARRIV Ei,T , NONJUMPi,T , JUMPi,T ,

T ∈ {1,2,3,4,5}). We also split each �ow variable into two parts based on those ahead and behind

the given patient based on the triage level-based priority queuing. For arrivals, only those in higher

priority classes are considered ahead of patient i since they should be the only patients that have

the potential to jump ahead of patient i.

ARRIV E_AHEADi =

Ti−1∑
j=1

ARRIV Ei,j (7)

ARRIV E_BEHINDi =
5∑

j=Ti

ARRIV Ei,j (8)

For nonjump departures, patients of the same triage classi�cation or higher are classi�ed as ahead

of patient i since these patients should be served before patient i according to the assumed priority

queuing discipline. Patients of lower triage score are classi�ed as behind patient i.

NONJUMP_AHEADi =

Ti∑
j=1

NONJUMPi,j (9)

NONJUMP_BEHINDi =
5∑

j=Ti+1

NONJUMPi,j (10)
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Lastly, jump departures of higher triage class than patient i are classi�ed as ahead since the prior-

ity queuing discipline would have them be served �rst. Patients of equal or lower triage classi�cation

are classi�ed as behind patient i.

JUMP_AHEADi =

Ti−1∑
j=1

JUMPi,j (11)

JUMP_BEHINDi =
5∑

j=Ti

JUMPi,j (12)

6. Econometric Speci�cation

We now develop the econometric speci�cations for testing our hypotheses. Since we are studying

the behavior of individuals making a binary choice, we turn to models of binary choice that can

be interpreted in a random utility framework. Such models include logit, probit, skewed logit, and

complimentary log log (Greene 2012, p. 684; Nagler 1994). These models model the di�erence in

utility between two possible actions as a linear combination of observed variables (xβ) plus a random

variable (ε) that represents the di�erence in the unobserved random component of the utility of

each option. Since ε is stochastic, these models can only predict a probability of choosing one action

over the other. The choice of distribution of ε determines the functional form of the response of

the prediction to a change in an independent variable. Choosing either the logistic or the normal

distribution leads to the well known logit and probit models, respectively. Assuming ε follows a

complementary log log distribution (F (xβ) = 1− exp[− exp(xβ)]) leads to the cloglog model. The

Burr-10 distribution (Burr 1942) assumes ε is distributed with cumulative distribution function

F (xβ, α) = 1− 1/{1+ exp(xβ)}α. As a regression model, it is referred to as the skewed logistic or

scobit model. Note that the logit model is a special case of the scobit model with α= 1.

Selecting the best model a priori is di�cult because each has theoretical or practical advantages

and disadvantages. The logit and probit models are the most commonly used binary models and are

quite similar, especially in the middle of the probability range. The logit has the further advantage

of coe�cients that can be immediately interpreted as impacts on odds-ratios. However, the logit

and probit models are symmetric about xβ = 0, which imposes the restriction that observations

with predicted probabilities close to 0.5 are most impacted by a change in the linear predictor.

Since abandonment is a rare event (less than 10% of arrivals result in abandonment), the asym-

metric cloglog and scobit models likely provide a better �t. Unlike the logit and probit models, the

asymmetric models have a di�erent �t depending on whether staying or abandoning is coded as

�success.� Thus we have at least six models to consider: logit, probit, cloglog coded two ways, and

scobit coded two ways.



Batt and Terwiesch: Waiting Patiently (Working Paper)
14

We �t all models and �nd that indeed the the asymmetric models generally provide the best �t

based on the Bayesian Information Criterion. However, for the coe�cients of interest, all models

come to essentially the same conclusions in terms of which coe�cients are signi�cant and the signs

of those coe�cients. All models also return similar predicted values over the range of interest.

Therefore, for the body of the paper we present the results from the logit model because the results

have a direct odds-ratio interpretation and because the reader is likely most familiar with this type

of model. See Section 8 for comparison of the other models.

We de�ne the variable LWBSi to equal 1 if patient i abandons and 0 otherwise. We parametrize

the basic logit model as follows

logit [Pr (LWBSi)] =β0 +β1OWAITi+β2LOADi+β3OWAITi×LOADi

+XiβP +ZiβT

(13)

Xi is a vector of patient-visit speci�c covariates including age, gender, insurance type, chief

complaint, pain level, and a dummy variable indicating if any diagnostics are ordered at triage. Zi

is a vector of time related control variables including year, a weekend indicator, indicators for time

of day by four-hour blocks, and the interaction of the weekend and time-of-day block variables. We

estimate the model separately for each triage level between 2 and 5.

The OWAIT variable is a bit di�erent from all the other variables in the model in that it is

not actually observed by the patient. Even for served patients, the o�ered wait is not known until

service begins, at which point LWBS is not an option. This variable should be thought of as an

exposure variable. The o�ered wait is the maximum time a patient can spend in the system �ipping

a mental coin deciding whether to stay or abanon. The Erlang-A model is built around this idea

that the longer a person is in the system, the higher his total probability of abandoning. Thus, the

OWAIT variable picks up this e�ect, that patients who are given the opportunity to be in the

system longer are more likely to abandon, even though the actual o�ered wait value is not observed

by the patient.

Our identi�cation strategy is based on the assumption that OWAIT and LOAD are not perfectly

correlated and both contain some amount of exogenous variation. Essentially we rely on the fact

that treament in the ED is a highly complex process with many �moving parts� (e.g., sta�ng levels,

auxilliary services, coordination of many tasks and resources, etc.). This leads to high exogenous

varaition in treatment times for each patient, and this translates into high varaince in o�ered wait

times for waiting patients.

One potential concern with this model speci�cation is the collinearity between OWAIT and

LOAD. In fact, the pairwise correlation between OWAIT and LOAD is roughly 0.72, which is high

enough to be of concern. However, the Variance In�ation Factors (VIF) for the model in Equation 13



Batt and Terwiesch: Waiting Patiently (Working Paper)
15

range from 3.2 to 8.9 across triage levels, which is below the commonly accepted cuto� of 10 (Hair

et al. 1995). Still, to be conservative, we mean center all census variables used in all models. When

we do this for Equation 13, the VIFs now range from 2.4 to 3.2, well within the acceptable range of

collinearity.

As we examine each of the hypotheses, we gradually add more variables to the model of Equa-

tion 13. For instance, we replace LOADi with the the pair of variables LOAD_AHEADiand

LOAD_BEHINDi. We do this both without and then with the interaction of the load variables

with the OWAITi variable.

Once we add the �ow variables to the model, we must restrict the sample. If we include all patients

in the �ow analysis we will get results that are di�cult to interpret because a patient who spends

only a short time in the waiting room may observe very few arrivals or departures simply because

she was not exposed to the system for very long. In contrast, a patient who is in the waiting room

for several hours has much more opportunity to observe the system and be in�uenced by the �ows.

To account for this, we restrict the sample to only patients with an o�ered wait of greater than one

hour. Recall from Section 5 that the �ow variables (ARRIV Ei, NONJUMPi, JUMPi, etc.) are

de�ned as the �ows during the �rst hour after arrival of patient i. Thus, we are e�ectively asking

the question, �what is the e�ect of �ow during the �rst hour on patients who stay at least an hour,�

rather than the more broad ideal question of, �how does observed �ow a�ect abandonment?� This

sample restriction reduces the sample size by about half, and makes a signi�cant �nding less likely.

Another challenge of the sample restriction is that we do not know when abandoning patients

abandon. We restrict the sample to patients with an o�ered time of greater than one hour, but it

is possible that those who abandon do so quickly and are not actually in the waiting room for an

hour to observe the �ows. However, if patients abandon quickly before observing many arrivals or

departures, this should bias our results toward the null hypothesis of no e�ect. Thus, any signi�cant

results are likely conservative estimates of the impact of the �ow variables.

Because some patients in our data have multiple visits to the ED during the study period, the

data could be considered unbalanced panel data and analyzed using binary panel data methods.

However, since about 40% of the patients have only a single visit, models such as the �xed-e�ects

logit would only be estimable for the patients with multiple visits and who sometimes stay and

sometimes abandon. Therefore, rather than use panel methods we use the Huber/White/sandwich

cluster robust standard errors clustered on patient ID (Greene 2012). This adjusts the covariance

matrix for the potential correlation in errors between observations for a single individual. It also

adjusts for potential misspeci�cation of the functional form of the model.
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Figure 2 Pr(LWBS) vs. Wait Time
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7. Results
7.1. Overview Graphs

It is informative to begin by using scatter plots to visualize the relationship between abandonment

and wait time, following the example of Zohar et al. (2002). If patients behave in accordance with

the Erlang-A model such that wait time is the sole determinant of abandonment, then there should

be a linear increasing relationship between expected wait time and probability of abandonment

(Brandt and Brandt 2002, Zohar et al. 2002). Figure 2 shows the relationship of the probability of

LWBS to the mean completed waiting time. Each dot represents a given year/day-of-week/hour-of-

day combination. For example, one of the dots represents the mean wait and LWBS proportion of

patients that arrived on Tuesdays of 2009 during the 4pm hour. Each graph has approximately 504

points (3 years × 7 days × 24 hours=504). However, points that represent less than 10 observations

have been dropped. For example, there are not many ESI 5 patients at 4am on Mondays and that

point has been dropped. Each plot of Figure 2 is for a given triage or ESI level. In summary, each

dot shows the average wait time and percent of people who abandoned for patients that arrived at

a given year/day/hour.

We observe several interesting features in Figure 2. First, there is an increasing linear trend for

all triage levels (Table 2). This is di�erent from Zohar et al. (2002), in that Zohar et al. (2002) �nds

the surprising result that the probability of abandonment does not increase with expected wait (the

linear �t is �at). This suggests that customers become more patient when the system is busy. We

�nd no such evidence in the ED. We point out our �unsurprising� result here because we refer back

to it and build upon it later.
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The second feature we observe in Figure 2 is that the dispersion from the linear trend increases

with decreasing patient acuteness. Table 2 quanti�es this e�ect by the root mean squared error

(RMSE) for linear regressions for each of the graphs in Figure 2. Further, from the R2 values in

Table 2 Model Fit Measures of Regressing Pr(LWBS) on Wait Time

Slope RMSE R2

ESI 2 0.021 (0.002) 0.016 0.238
ESI 3 0.057 (0.001) 0.026 0.874
ESI 4 0.064 (0.003) 0.033 0.598
ESI 5 0.079 (0.005) 0.071 0.369

Table 2, we conclude that mean wait time is a very good predictor of abandonment probability for

ESI 3. However, for ESI 4 and 5 patients, there appear to be other factors driving abandonment that

wait time does not capture. ESI 2 appears somewhat di�erent. While ESI 2 displays a positive linear

trend with little dispersion (signi�cant positive slope and low RMSE in Table 2), the model has the

lowest R2 indicating that wait time explains very little of the the variation in ESI 2 abandonment

probability. These di�erences in response across triage levels are particularly noteworthy when we

recall that patients are not informed of their triage classi�cation. Thus, the ESI triage system is

doing a remarkable job of classifying people not only by medical acuity, but also by queuing behavior

(an unintended result).

Given that wait time only partially explains the observed abandonment behavior, we now turn

to logistic regression models to better understand the operational drivers of abandonment and the

di�erences across triage classes.

7.2. Regression Analysis

The graphs in Section 7.1 were based on means calculated by aggregating across year/day/hour

combinations. We now drill down a level and use the logistic regression models described in Section 6

to examine the hypotheses. Working at the patient level allows us to control for patient speci�c

covariates such as age, gender, and insurance class, that we can not do as easily with the consolidated

data in Section 7.1. For clarity, we focus on results for triage level ESI 3. We select ESI 3 because

it has the largest number of observations, the highest abandonment rate, and the largest spread of

wait times. We present comparisons across triage levels at the end of the section.

Table 3 shows the results of estimating Equation 13 (model 3), as well as two simpler models

(models 1 and 2) and two more complex models (models 4 and 5). All of these models are without

�ow variables and thus are estimated on the full sample.

Model 1 establishes the expected baseline result that abandonment increases with o�ered wait

just as the Erlang-A model suggests. The logit coe�cient can be directly interpreted as the change
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Table 3 E�ect of Wait Time and Census on Pr(LWBS) [ESI 3]

(1) (2) (3) (4) (5)
O�ered Wait 0.33∗∗∗ 0.21∗∗∗ 0.37∗∗∗ 0.20∗∗∗ 0.36∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
Load 0.06∗∗∗ 0.14∗∗∗

(0.00) (0.00)
Wait x Load -0.02∗∗∗

(0.00)
Load(Ahead) 0.07∗∗∗ 0.17∗∗∗

(0.00) (0.00)
Load(Behind) 0.02∗∗∗ 0.05∗∗∗

(0.00) (0.01)
WaitxLoad(Ahead) -0.03∗∗∗

(0.00)
WaitxLoad(Behind) -0.01∗∗∗

(0.00)
N 65,622 65,622 65,622 65,622 65,622
McFadden's R2 0.17 0.19 0.21 0.19 0.21
BIC 34,513 33,792 32,890 33,723 32,766

Cluster robust standard errors in parentheses

Controls not shown: Age, Gender, Insurance, Pain, Year, Weekend×Block of Day
∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

in the log odds of abandonment with a change in the independent variable, or the exponentiated

coe�cient is factor of change of the odds ratio with a change in the independent variable. Thus,

Model 1 shows that the log odds of abandoning increase by 0.33 if the o�ered wait increases by 1

hour. Likewise, the odds ratio of abandonment increases by 39% (exp(0.33) = 1.39) if the o�ered

wait goes up by 1 hour. Note that this suggests that patients are not all abandoning immediately,

for if they were the o�ered wait coe�cient would be insigni�cant.

In Model 2, we add in the load or census variable as an explanatory variable. Both o�ered wait

and load are positive and signi�cant which supports Hypothesis 1, that the census level increases

abandonment. This shows that the Erlang-A model alone does not fully explain abandonment

behavior. If it did, census should have no e�ect, controlling for wait time. While it appears that

O�ered Wait has a larger impact on abandonment, we must be cognizant of the scaling of the

explanatory variables. O�ered wait is in units of hours with a mean of 2.1 and a standard deviation

of 2.1, and Load is in units of people with a mean of 11.7 and a standard deviation of 9.0. Thus a

one standard deviation change in O�ered Wait leads to a .41 increase in log odds of abandonment

while a one standard deviation increase in Load leads to a 0.6 increase in log odds of abandonment.

Model 3 adds in the interaction of O�ered Wait and Census. The increased McFadden's R2 and

decreased Bayesian Information Criterion (BIC) indicate that Model 3 is a better �t than Models 1

& 2. The �rst-order terms of O�ered Wait and Load are remain positive and signi�cant (β1, β2 > 0),
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Figure 3 Predicted Pr(LWBS) as a function of O�ered Wait and Load
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but the negative interaction coe�cient makes interpreting marginal e�ects more di�cult. Predicted

values will be more informative.

Figure 3 shows the predicted abandonment probabilities at three levels of wait time and wait

census. O�ered Wait is on the x-axis and the three test points (0.11, 1.29, 5.30 hours) are the

10th 50th, and 90th percentiles for ESI 3 patients. Each line on the graph represents the predicted

probability of abandonment for a given Load level. The three lines are the 10th, 50th, and 90th

percentile Load levels (1, 10, and 25 people). The error bars represent the 95% con�dence interval

for the prediction. The upward slope of all of the lines conforms to the standard theory that longer

waits lead to increased probability of abandonment. The vertical separation of the lines, however,

indicates that patients are responding to the load level as well as the wait time. For example, a

patient that arrives when the waiting room is relatively empty and experiences a 1.29 hour wait has a

predicted probability of abandonment of 2%. However, if the waiting room is relatively crowded and

all other covariates are held constant, the same patient has a predicted probability of abandonment

of almost 17%. Thus, Figure 3 shows that patients respond to both increasing wait time and waiting

room census with increased abandonment.

The large gap between the median and 90th percentile census points even for very short waits

suggests that large crowds lead to rapid abandonment even when the actual wait time is low. This

also explains why the slope of the 90th percentile census line is relatively �atter. Many people

are abandoning sooner and are not sticking around to be impacted by the experienced wait. In

contrast, for low to mid crowding, the e�ect of long wait times becomes much larger as the wait

times approach several hours.
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Models 4 and 5 of Table 3 begin to explore Hypothesis 5 by using the variables LOAD_AHEAD

and LOAD_BEHIND in place of the single LOAD variable used in the �rst three models. Model

4 shows that the presence of �sicker� people has more than three times the impact on abandonment

as does the presence of �healthier� people. Recall, that patients are not told which waiting patients

are ahead or behind in line, so the fact that the coe�cients for Load(Ahead) and Load(Behind) are

signi�cantly di�erent is strong evidence that patients are able to visually infer the relative status of

those in the waiting room. Model 5 includes the interactions of O�ered Wait and the load variables.

While this model provides the best �t (lowest BIC), like Model 3 it is di�cult to directly interpret

the coe�cients. We again turn to predicted values.

Table 4 Predicted Pr(LWBS) for ESI 3 Patients (O�ered Load �xed at mean)

Load(Behind)
1 5 10

L
oa
d
(A

h
ea
d
) 1 0.03 0.03 0.04

5 0.05 0.05 0.06
10 0.08 0.08 0.09
15 0.12 0.14 0.15
20 0.20 0.21 0.24

Table 4 shows the predicted abandonment probability as a function of the load ahead and behind.

Just as with Model 4, we see that the marginal e�ect of a person ahead is larger than the marginal

e�ect of a person behind. This concurs with intuition that those who are less sick and are thus

behind in line have less impact on the behavior of a given patient. The fact that Load(Behind)

has any impact is likely due to the imperfect nature of inferring the relative status of those in the

waiting room.

To examine Hypotheses 2, 3, and 4, we now include �ow variables in the analysis. Recall that to

do so, we restrict the sample to those patients with an o�ered wait of greater than one hour, which

reduces the sample size by almost half. Model 1 of Table 5 is the same as Model 3 from Table 3

but with the restricted sample. Note that the coe�cients in the two models are identical in their

sign and somewhat similar in magnitude, which suggests that the patient behavior of the restricted

sample is similar to that of the full sample.

Model 2 adds in variables for the number of arrivals and the total number of departures into service

(regardless of jump or nonjump status). The positive and signi�cant coe�cient on Arrivals supports

Hypothesis 2 that arrivals lead to more abandonments. The negative and signi�cant coe�cient

on Departures supports Hypothesis 3 that observing departures leads to reduced abandonment.

Figure 4 plots predicted abandonment probabilities for 10th, 50th, and 90th percentile values of

both arrivals and departures and gives a sense of the magnitude of the impact of these variables.
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Table 5 E�ect of Wait Time, Census, and Flow on Pr(LWBS) [ESI 3]

(1) (2) (3)
O�ered Wait 0.21∗∗∗ 0.20∗∗∗ 0.20∗∗∗

(0.01) (0.01) (0.01)
Load 0.11∗∗∗ 0.11∗∗∗ 0.12∗∗∗

(0.00) (0.00) (0.00)
Wait x Load -0.02∗∗∗ -0.02∗∗∗ -0.02∗∗∗

(0.00) (0.00) (0.00)
Arrivals 0.02∗∗∗ 0.02∗∗∗

(0.01) (0.01)
Departures -0.05∗∗∗

(0.01)
Departures(nonjump) -0.05∗∗∗

(0.01)
Departures(jump) -0.02

(0.02)
N 35,855 35,855 35,855
McFadden's R2 0.10 0.10 0.10
BIC 28,782 28,727 28,735

Cluster robust standard errors in parentheses

Controls not shown: Age, Gender, Insurance, Pain,

Year, Weekend, Block of Day
∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

Figure 4 E�ect of Arrivals and Departures of Pr(LWBS)
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Model 3 of Table 5 splits the Departures variable into nonjump and jump departures. The coef-

�cient on nonjump departures is signi�cant and negative while the coe�cient on jump departures

is insigni�cant. This supports both Hypothesis 3 and Hypothesis 4. The negative coe�cient on

nonjump departures shows that waiting patients view these departures as a good sign of processing

speed and progress towards service, thus people are less likely to abandon. In contrast, the insignif-
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icant e�ect of jump departures shows that any positive information about system speed is negated

by the fact that the patient is getting jumped and is not moving closer to the head of the line.

Table 6 E�ect of Ahead/Behind variables on Pr(LWBS) [ESI 3]

(1) (2) (3)
O�ered Wait 0.21∗∗∗ 0.19∗∗∗ 0.19∗∗∗

(0.01) (0.01) (0.01)
Load(Ahead) 0.14∗∗∗ 0.14∗∗∗ 0.14∗∗∗

(0.01) (0.01) (0.01)
Load(Behind) 0.02 0.02∗ 0.02∗

(0.01) (0.01) (0.01)
WaitxLoad(Ahead) -0.02∗∗∗ -0.02∗∗∗ -0.02∗∗∗

(0.00) (0.00) (0.00)
WaitxLoad(Behind) -0.00 -0.00 -0.00

(0.00) (0.00) (0.00)
Arrival(Ahead) 0.08∗∗∗ 0.09∗∗∗

(0.01) (0.01)
Arrival(Behind) 0.01 0.01

(0.01) (0.01)
Depart(Ahead) -0.06∗∗∗

(0.01)
Depart(Behind) -0.02∗

(0.01)
Depart(Nonjump-Ahead) -0.05∗∗∗

(0.01)
Depart(Nonjump-Behind) -0.02∗

(0.01)
Depart(Jump-Ahead) -0.10∗∗∗

(0.03)
Depart(Jump-Behind) -0.01

(0.02)
N 35,855 35,855 35,855
McFadden's R2 0.10 0.11 0.11
BIC 28,671 28,607 28,625

Cluster robust standard errors in parentheses

Controls not shown: Age, Gender, Insurance, Pain,

Year, Weekend, Block of Day
∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

Table 6 parallels Table 5 with the change that each stock and �ow variable is now split into its

ahead and behind components. We continue to restrict the sample to those with an o�ered wait of

greater than one hour. Model 1 of Table 6 is the same as Model 5 of Table 13 but with the restricted

sample. Not surprisingly given the large drop in sample size, we �nd fewer coe�cients to be signif-

icant in the restricted model. Those coe�cients that are signi�cant (O�ered Wait, Load(Ahead),

WaitXLoad(Ahead)) maintain the same sign and similar magnitudes. Comparing the models in

Table 6 with the parallel models in Table 5 we note that the models in Table 6 with variables split
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by Ahead/Behind all show a lower BIC indicating a better �t despite the fact that several variables

are not signi�cant. Thus, this further supports Hypothesis 5 that patients respond di�erently to

patients they perceive as ahead or behind them in line. More speci�cally, we see in all the models

in Table 6 that it is the �Ahead� variables that have the largest impact on abandonment behavior,

which is consistent with rational behavior ignoring those behind them in line. Again, it is the fact

that patients are able to detect priority line order with a reasonable amount of accuracy that is

perhaps most interesting.

Table 7 E�ect of Ahead/Behind variables on Pr(LWBS)

(1) (2) (3) (4)
ESI 2 ESI 3 ESI 4 ESI 5

O�ered Wait 0.31∗∗∗ 0.19∗∗∗ 0.28∗∗∗ -0.01
(0.10) (0.01) (0.03) (0.05)

Load(Ahead) 0.31∗∗∗ 0.14∗∗∗ 0.07∗∗∗ 0.08∗∗∗

(0.04) (0.01) (0.01) (0.01)
Load(Behind) 0.06∗∗∗ 0.02∗ 0.16∗∗∗

(0.02) (0.01) (0.05)
WaitxLoad(Ahead) -0.04∗∗∗ -0.02∗∗∗ -0.01∗∗∗ -0.00

(0.01) (0.00) (0.00) (0.00)
WaitxLoad(Behind) -0.01 -0.00 -0.01

(0.01) (0.00) (0.01)
Arrival(Ahead) 0.24 0.08∗∗∗ 0.05∗∗∗ 0.05∗∗∗

(0.26) (0.01) (0.01) (0.02)
Arrival(Behind) 0.01 0.01 0.02 -0.04

(0.02) (0.01) (0.02) (0.06)
Depart(Ahead) -0.16∗∗∗ -0.06∗∗∗ -0.05∗∗∗ -0.05∗∗∗

(0.05) (0.01) (0.01) (0.02)
Depart(Behind) -0.04 -0.02∗ -0.11∗∗ 0.02

(0.03) (0.01) (0.05) (0.39)
N 8,974 35,855 19,745 5,213
McFadden's R2 0.10 0.11 0.14 0.11
BIC 2,673 28,607 9,564 3,581

Cluster robust standard errors in parentheses

Controls not shown: Age, Gender, Insurance, Pain,

Year, Weekend, Block of Day
∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

We conclude this section with Table 7 showing the results for all triage levels of the best �tting

model (Model 2 from Table 6). The results are similar across triage levels in terms of which coe�cient

are signi�cant and the sign of those coe�cients. At �rst glance, there appear to be two unexpected

results in ESI 4 (Model 3). The Load(Behind) coe�cient is larger than the Load(Ahead) coe�cient,

and the Depart(Behind) coe�cient is larger than the Depart(Ahead) coe�cient. This would seem

to suggest that ESI 4 patients are somehow more sensitive to those behind than in front of them.

However a Wald test for coe�cient equality shows that the two Load coe�cient are not signi�cantly
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di�erent, nor are the two Depart coe�cients. Thus, the correct interpretation is that ESI 4 patients

do not appear to di�erentiate between those ahead of and behind in line at least with regard to

census level and departures.

Triage level 5 is the most dissimilar of the four models. Observe that the O�ered Wait has an

insigni�cant e�ect on abandonment while Load(Ahead) continues to lead to greater abandonment.4

Without additional data on actual abandonment times, we are unable to determine if this result is

because ESI 5 patients are truly insensitive to waiting time, or because they abandon so rapidly

that the o�ered wait is irrelevant. Either way, it appears that for ESI 5 patients there is not much

value in improving the wait time.

8. Robustness Analyses

In this section we provide results of various alternative assumptions model speci�cations for the

sake of establishing the robustness of the presented results.

As mentioned in Section 6, there are several binary outcome models to choose from. Table 8

compares six such model speci�cations for the baseline model with o�ered wait, load, and the

interaction for ESI 3 (cross-reference Table 3, model 3). The top panel of the table shows estimated

Table 8 Comparing Binary Response Models [ESI 3]

(1) (2) (3) (4) (5) (6)
logit probit cll-lwbs cll-stay scobit-lwbs scobit-stay

Coe�cients

O�ered Wait 0.37∗∗∗ 0.20∗∗∗ 0.32∗∗∗ -0.16∗∗∗ 0.63∗∗∗ -0.17∗∗∗

(0.01) (0.00) (0.01) (0.00) (0.04) (0.01)
Load 0.14∗∗∗ 0.07∗∗∗ 0.12∗∗∗ -0.05∗∗∗ 0.21∗∗∗ -0.06∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.01) (0.00)
Wait x Load -0.02∗∗∗ -0.01∗∗∗ -0.02∗∗∗ 0.01∗∗∗ -0.03∗∗∗ 0.01∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
alpha 0.123 11.2

(0.015) (5.43)
Marginal E�ects

O�ered Wait 0.023∗∗∗ 0.026∗∗∗ 0.021∗∗∗ -0.030∗∗∗ 0.032∗∗∗ -0.029∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Load 0.006∗∗∗ 0.006∗∗∗ 0.005∗∗∗ -0.007∗∗∗ 0.007∗∗∗ -0.007∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N 65,622 65,622 65,622 65,622 65,622 65,622
log-likelihood -16,262 -16,201 -16,314 -16,183 -16,177 -16,181
BIC 32,890 32,767 32,995 32,733 32,731 32,739

Cluster robust standard errors in parentheses

Controls not shown: Age, Gender, Insurance, Pain, Year, Weekend, Block of Day
∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

4 The variable LOAD_BEHIND is not included in the ESI 5 because ESI 5 is the lowest priority level.
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coe�cients for the variables of interest. The middle panel shows marginal e�ects of the variables

of interest at their respective means. The bottom panel gives model �t statistics. We see that all

the models are similar in terms of �t as indicated by both the log-likelihood and the BIC. The

scobit-lwbs model provides the best �t.

Comparing coe�cient estimates across models is of limited use since the models are parametrized

di�erently. However, we do see that all coe�cients are signi�cant and the signs are all in agreement.

Further, comparing coe�cients of the two versions of the cloglog model and the scobit model we

see that the coe�cients are dramatically di�erent depending on whether stay or LWBS is coded as

�success.� This indicates that the data is skewed to one side, as we expected.

Comparing marginal e�ects, we see again that the models all give similar results. A one hour

increase in o�ered wait leads to a two to three percent increase in abandonment, while a one unit

increase in load leads to a 0.5% to 0.7% increase in abandonment. Note that the logit model,

which we used for the presentation of main results in Section 8, underestimates the marginal e�ect

of o�ered wait and load relative to the better �tting models. Thus, the results we presented are

conservative.

There is a potential endogeneity problem with the inclusion of the dummy variable indicating

whether diagnostic tests were ordered at triage. The concern is that triage testing is not randomly

assigned, but rather is assigned by a triage nurse based on the condition of the patient. It is possible

that there are unobserved variables, for example pallor, that are common, or at least correlated,

to both the triage test decision and the abandonment decision. For example, a patient who arrives

feeling terrible and looking terrible might be more likely to receive triage testing and less likely to

abandon. This can bias not only the estimate of the coe�cient of the triage test variable in the

abandonment model, but can also bias all of the estimated coe�cients.

One way to control for potential correlated omitted variables is with a simultaneous equation

model such as the bivariate probit model (Greene 2012). This model parametrizes both the triage

test decision and the abandonment decision as simultaneous probit models with error terms ε1 and

ε2 respectively. ε1 and ε2 are assumed to be standard bivariate normally distributed with correlation

coe�cient ρ. If ρ = 0, this indicates that the control variables are adequately controlling for the

endogenous triage testing and the models can be estimated separately without signi�cant bias.

Table 9 compares the results of a regular probit model to a biprobit model for ESI 3 and 4.

For ESI 3, the estimated correlation coe�cient (ρ) is signi�cant indicating correlation in the error

terms. Despite this signi�cant correlation, the coe�cients of the o�ered wait and load terms are

essentially the same between the models. What does change dramatically is the coe�cient on the

Triage Test dummy variable. Without controlling for the correlated errors, one would conclude that

triage testing leads to a large reduction in abandonment. However, once we control for the correlated
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Table 9 Comparing Probit and Bivariate Probit Models

(1) (2) (3) (4)
ESI 3 ESI 3 ESI 4 ESI 4
Probit Biprobit Probit Biprobit

O�ered Wait 0.195∗∗∗ 0.192∗∗∗ 0.220∗∗∗ 0.227∗∗∗

(0.005) (0.005) (0.012) (0.012)
Load 0.072∗∗∗ 0.068∗∗∗ 0.042∗∗∗ 0.041∗∗∗

(0.002) (0.002) (0.002) (0.002)
Wait x Load -0.011∗∗∗ -0.011∗∗∗ -0.006∗∗∗ -0.006∗∗∗

(0.000) (0.000) (0.001) (0.001)
Triage Test (Y/N) -0.511∗∗∗ -0.068 -0.466∗∗∗ -0.348∗∗

(0.019) (0.056) (0.036) (0.151)
ρ -0.27 ∗∗∗ -0.10

(0.031) (0.087)
N 65,622 65,631 39,806 39,806

Cluster robust standard errors in parentheses

Controls not shown: Age, Gender, Insurance, Pain,

Chief Complaint, Year, Weekend, Block of Day
∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

errors, that e�ect disappears and we see that triage testing is not a cause of abandonment for these

patients. In contrast, for ESI 4 patients, ρ is insigni�cant indicating that we need not worry about

estimating the two equation model. Also note that the coe�cients of o�ered wait, load, and even

the triage test dummy are all quite similar between the two ESI 4 models. Thus we conclude that

for our purposes of examining the e�ects of wait and load on abandonment, the single equation

model, which is simpler to estimate and work with, is su�cient.

9. Summary & Future Work

This study contributes to the understanding of customer waiting behavior by examining the queue

abandonment behavior of patients waiting for treatment at a hospital emergency department. We

con�rm prior study �ndings that wait time is a determinant of abandonment. More interestingly,

we also �nd that the queue length (waiting room census, in our study) is predictive of abandonment

separate from wait time. This shows that in queues that are at least partially visible, the Erlang-A

model does not fully capture abandonment behavior. Beyond just the queue length, we �nd that

patients respond to other visual aspects of the queue in very sophisticated ways. For example,

patients respond di�erently to observing exits that maintain versus violate �rst-come �rst-served

order. Further, waiting patients appear to infer the relative health status of those around them

and respond di�erently to those more sick and less sick. For example, we �nd that arrival of sicker

patients increases abandonment more so than does the arrival of less sick patients. This is presumably

because patients recognize that sicker patients will likely be served �rst.

The essence of our contribution is in providing evidence that waiting customers (patients) glean

information from watching the queue around them. While prior work has shown abandonment to
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be in�uenced by such things as playing music and providing distractions, ours is the among the

�rst to show customers responding to the actual functioning of the queue, to the operational state

variables of the system. This is managerial relevant for any organization that wants to actively

manage customer abandonment. In the ED, where the goal is minimization of abandonment, our

results suggest that the status quo of providing no information to the patients may not be optimal.

Patient abandonment increased substantially with queue length, regardless of wait time, and thus

either hiding the queue or providing wait time estimates may serve to reduce abandonment.

Future work should take these �ndings and use them to motivate and inform a series of controlled

experiments. The experiments could focus on how providing additional information modi�es the

patient response to observed queue behavior. For example, it would be interesting to compare the

e�ectiveness of providing a wait time estimate versus providing the patient's queue position verses

providing full queue status. It is not a priori obvious what intervention of information will result

in abandonment reduction. Another avenue for experimentation would be to explore how obscuring

queue information a�ects abandonment. Presumably, obscuring the queue would shift the behavior

toward the Erlang-A model, but this should be explored empirically.
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