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Abstract. A new technique is introduced to abstract and edit motion
capture data with spatial constraints. Spatial proximities of end-effectors
with tagged objects during zero-crossings in acceleration space are used
to isolate significant events and abstract constraints from an agent’s ac-
tion. The abstracted data is edited and applied to another agent of a
different anthropometric size and a similar action is executed while main-
taining the constraints. This technique is specifically useful for actions
involving interactions of a human agent with itself and other objects.

1 Introduction

When one person mimics the actions of another, the two actions may be similar
but not exact. The dissimilarities are mainly due to the differences in sizes be-
tween the two people, as well as individual performance or stylistic variantions.
In this paper, we address the first of these issues, namely, controlling virtual
humans of various sizes who imitate the action of a motion captured subject.

A subject, called the primary agent, is motion captured executing a specific
action. We are mainly interested in movements involving interactions with other
objects (e.g., drinking from a cup, digging with a shovel, etc.). The imitators,
referred to as secondary agents, try to execute the same action by interacting
with the objects in a similar fashion. As the body sizes and segment lengths of the
primary and secondary agents are likely to differ, the motion imitation may not
be successful or satisfactory. The thesis of this paper is that relationships between
the world, the body, and the end-effectors (hands, eyes) of the primary agent have
been overlooked and are of considerable importance in reconstructing correctly
scaled motions. Often the objects being held are simply wielded for effect, such
as holding a shield or slashing with a sword. Keeping feet in contact with the
ground plane is one frequently encountered problem, but usually only vertical
displacements are moderated: the actual horizontal step position may be input
to inverse kinematics procedures to keep the body from floating or sinking. The
issue of changing the step locations is related to the motion mimicry problem,
but we do not address it here. In this paper, we assume that maintaining spatial
constraints for hands and eyes — such as grasping a cup at the correct place and
bringing it to the mouth for a drink — is more important than maintaining a
similar trajectory or motion style between the various spatial constraints. Style
integration will be considered in subsequent efforts.



Several types of motion editing techniques have been developed in the past
few years for different purposes. Some of the techniques [1, 7, 21, 23] use signal
processing methods to edit and modify the actions for the same agent. A few
techniques [6, 15, 18, 19, 22] try to replicate the motions of a person on different
sized avatars in real time. The techniques described in [9, 11] use optimization
methods to modify the original motions in the presence of space-time constraints.
As explained in [9], space-time refers to “the set of all DOF (joint angles and
figure position) over the entire animation sequence.” In [17], a new set of transi-
tion motions are created between two basis motions using space-time constraints.
All these techniques treat the problems of mapping motions to other agents, of
modifying the nature or style of the motions, and of modifying the motions
while maintaining space-time or spatial constraints as separate problems and
solve them individually. In [13], constraint based motions are adapted to other
agents, but they do not consider interactions between objects and self. In [12],
optimization techniques are used to retarget the motions to other agents during
object interaction. But a very simple human model is used and the problem
of visual constraints is not considered. In this paper, we introduce a technique
to automatically recognize such spatial and visual alignment constraints from
captured motions. Maintaining these constraints is the basis of motion mapping
from the primary agent to secondary agents.

The problem of recognizing motion events directly from (synthetic) image
sequences was first studied by Badler [4]. We update these notions to abstract
information about significant events and spatial constraints from 3D motion
captured data. We begin by generating motion for the primary agent from the
motion capture data by using real-time optimization techniques [20, 24] to solve
for the kinematic constraints imposed by the data itself. During the execution of
the action, we use the concepts of zero-crossing and co-occuring spatial proximi-
ties of end-effectors with interacting objects to recognize the spatial constraints.
We then modify the original motion to fit another agent of a different size while
maintaining the same spatial constraints. We also abstract the line of attention
of the primary agent during significant events. We then impose this as an addi-
tional spatial constraint to be solved during motion generation for the secondary
agents. This alignment constraint forces the secondary agent to look at the same
objects. This provides a very natural affect as, in general, people tend to look
at an object while interacting with it [8].

The rest of the paper is organized as follows. Section 2 describes the human
body model and the technique used to derive the motions for the primary agent
from the motion capture data. Section 3 describes the technique to recognize the
spatial constraints and Section 4 explains the method to compute the locations
of the constraints. Section 5 describes the technique to map the motions to other
agents and Section 6 describes a simple technique to recognize the visual atten-
tion of the primary agent. Section 7 presents the results and Section 8 discusses
the impact of this approach.



2 Deriving Motions from Motion Capture Data

We have implemented this technique completely within the Transom Jack® [3]
software. The human model we use is highly articulated and has 68 joints and
135 degrees of freedom.

The technique introduced in this paper can be applied to data from any
source - motion capture, keyframe or procedural. We have chosen to use only
motion captured data. We use the CyberGlove from Virtual Technologies and the
MotionStar system from Ascension Technology. The CyberGlove has 24 sensors
and generates the joint angles for all the fingers. The MotionStar system consists
of one Extended Range Controller (ERC), one Extended Range Transmitter,
and 12 Bird units, each controlling a single receiver (referred to as a sensor in
the remainder of this paper). The two systems are calibrated separately but
synchronized together to generate data at a frequency of 60Hz.

As a preliminary, off-line step in deriving motions from motion capture data
for the primary agent, an avatar is built to the size of the subject and is calibrated
by placing one of the sensors of the MotionStar system on the lower back of the
subject roughly corresponding to the L5 segment of the spine (sacro-iliac). In the
human model, a corresponding site! (FOBpelvic) is created in the L5 segment
of the spine. The transformations between the MotionStar reference frame and
the Jack reference frame are calculated by positioning the pelvic sensor at the
FOBpelvic site. All the sensors are then mapped correctly onto the human model
in the Jack environment. Next, using the data from all the sensors for the first
frame, the human model is postured correctly to match the initial posture of the
subject. Finally, sites are automatically created within the human model at the
locations where the sensors lie on the body.

To generate the motions, kinematic constraints are established between the
newly created sites corresponding to the sensor positions on the model and the
sensors themselves. As the sensors move, the human model moves with them
along trajectories computed subject to the constraints [5]. This process easily
creates motions in real-time while interacting with an object for a similarly-sized
avatar. To recreate the same motions for a different-sized agent while maintaining
the spatial constraints, we first need to post-process the data to recognize the
spatial constraints and map the newly derived data to the secondary agents.

3 Recognition of Spatial Constraints

During interactions with objects, the spatial constraints between the agent and
the objects are in general defined by the proximities of the end-effectors and
the objects. End-effectors correspond to sites in the human model that are con-
strained to follow the sensors in the motion capture system. Hence, assuming
that the inverse kinematic routines solve the constraints exactly, the sensors
themselves can be used to keep track of end-effector locations.

! Sites are oriented co-ordinate triples.



One method for recognizing spatial constraints is to use fast collision detec-
tion methods [10, 14] between different objects in the environment to compute
the exact time of initial contact. An alternative method (which we use here) is
to compute the spatial proximities of each of the end-effectors with the different
objects in the environment. A spatial constraint is recognized when the objects
first come in contact with each other (in the collision detection method) or when
the computed proximal distance is less than some pre-specified value, e. It would
be possible, though computationally inefficient, to compute these collisions or
proximities at every frame of the animation. In this section, we describe the
various computational simplifications that we use while still being able to derive
all the necessary information to recognize the spatial constraints.

3.1 Zero-Crossing

In computer vision, zero-crossings of the second derivative are commonly used
for edge detection [16] in static images. For example, the Marr-Hildreth operator
uses the zero-crossings of the Laplacian of the Gaussian and the Canny operator
uses the zero-crossings of the second directional derivative.

In motion analysis, we can use the zero-crossings of the second derivative of
the motion data to detect significant changes in the motion. The zero-crossing
point in a trajectory implies changes in motion such as starting from rest, coming
to a stop, or changing the velocity direction. These events were noted to have
descriptive significance in [4]. When the zero-crossing point also coincides with
an end-effector being proximal to another object, it implies contact of the end-
effector with the object. In motion studies, this further implies that the primary
agent came in contact with the object and suggests creating a spatial constraint
to mark this occurrence. We record the corresponding global location of the
sensor and mark it as a constraint point for the corresponding end-effector of a
secondary agent. The zero-crossings enable us to compute the proximities only
at possibly relevant frames.

3.2 Tracking Sensors

For an action, it is not necessary to track the zero-crossings of all the sensors
on the human model. So, for each action, the user can specify the few specific
sensors that need to be tracked. For example, in drink from a mug, only the
sensor on the hand needs to be tracked for zero-crossings. In all actions, the
sensor on the head is used as a tracking sensor for capturing the primary agent’s
attention.

3.3 Tag Objects

For an action, it is again not necessary to compute proximities of the tracking
sensors with all the objects in the environment. As this entire technique is done
as a post-process of the motion-capture session, the specific objects that are



involved in the action are already known. Using this knowledge, the user can
specify the few objects in the environment that need to be used for computing
the proximities. To use these, we introduce tag objects.

A tag object is associated with a site, figure, type and status. A 3D object
in our environment can have a number of sites defined on it for various pur-
poses. Each tag object has a tag site associated with it which is actually used for
computing the proximities to the end-effectors. The tag figures refer to the 3D
object (or parts of the 3D object) itself. This enables us to have tag sites which
are not associated with the tag figure. For example, in the action of touch the
table, the tag site may be a site on the sensor used to obtain the position on the
table. But the tag figure would refer to the table itself. We can define tag objects
on parts of the human model, thus allowing us to track body/self interactions.
For example, in drink from a mug, one of the tag objects would refer to the mug
with a tag site defined on the handle of the mug, and another tag object would
refer to the head of the human model with the corresponding tag site defined at
the mouth.

The tag objects may be of different types:

SELF: The tag figure is a part of the human model itself - e.g., head.
FIXED: The tag figure does not move in the environment - e.g., table.
MOBILE: The tag figure can be moved in the environment. e.g., mug.

In examples considered here involving mobile objects, we assume that the agent
interacts with them by grasping or holding them and moving them to another
place. In other words, for at least part of the action, the mobile object is con-
strained to move with an end-effector of the agent. In such cases, the status flag
of the tag object indicates if the tag object is CONSTRAINED to the agent or
if it is FREE.

3.4 Spatial Constraint

The process of automatically recognizing a spatial constraint can be summarized
as follows: For each tracking sensor, Euclidean distances are computed, at every
zero-crossing frame, between the tracking sensors and each of the tag sites. If
any of these distances is less than some predefined value, €, a spatial constraint is
said to exist between the tracking sensor and the corresponding tag object. The
exact location of the spatial constraint to be used for another agent depends on
the type of the tag object and its status (if it is a mobile object). This is discussed
in detail in the next section. Figure 1 shows the trajectory of the hand tracking
sensor for the example touch the table and Figure 2 shows the corresponding
plots of the distance between the tracking sensor and a tag site (sensor on the
table) and the zero-crossings of the accelerations. It can be clearly seen that a
spatial constraint is established when the zero-crossings coincide with the close
proximity of the tracking sensor and a tag object.



Fig. 1. Trajectory of the tracking sensor in the example Touch the Table

Fig. 2. Plots of spatial proximity and zero-crossings



4 Determination of Spatial Locations of Constraints

The spatial proximity of each tracking sensor from each tag site is computed at
the zero-crossings of the tracking sensor. If a spatial constraint is recognized as
outlined above, then the global locations of the constraint need to be used as
a constraint location during the secondary agent’s action. The global location
of the constraint is computed based on the type of the associated tag object. If
the tag object is of type FIXED or MOBILE, then it refers to an external 3D
object and the absolute location of the tracking sensor is used as the location
of the constraint. But, if the tag object is of type SELF, then the relative global
location of the tracking sensor is used as the location of the constraint. The
relative global location is computed by taking into account the size (lengths
of the different segments) of the secondary agent. For example, in drink from
a mug, for the first spatial constraint established during grasping the mug to
pick it up, the absolute global location of the hand sensor at the time of first
contact with the mug is used as the location of the constraint. For the second
spatial constraint (of the same action) established during holding and bringing
the mug to the mouth, the relative global location of the hand sensor when the
mug comes in contact with the lips is used. This will cause the secondary agent
to grasp the mug at the same location as the primary agent but will hold the
mug to his mouth correctly, which may be at a different global location based
on the difference in sizes between the two agents.

5 Mapping Motions to Other Agents

Once the locations of the spatial constraints are determined, a combination of dif-
ferent techniques may be employed to generate the movements for the secondary
agent. To generate efficient motions, the optimization techniques described in
[9, 13, 12] may be used. Here, we describe a simple technique to generate the
motions. We decompose the joints in the human body into different kinematic
joint chains (Fig. 3). We consider each joint chain separately. For the set of joints
which are not contained in the same hierarchical chain as any of the tracking
sensors, the joint angles computed for the primary agent may be proportionally
mapped to the secondary agent. This is possible as they do not have additional
constraints imposed on them. All the other joints are driven by the new spatial
constraints computed above. As each joint chain is treated separately, it is very
important to achieve global synchronization between the different joint chains
during the entire action. To do this, we preserve the same timing information
i.e., the second agent takes the same amount of time as the primary agent to
complete the action. In an effort to maintain the same action style (frame-wise
variations in the angular velocity), we modify the speed transform method used
in [1].

To solve for the new spatial constraints, a trajectory has to be traced for each
joint in the chain containing the tracking sensors. For this, we first use inverse
kinematics [20] to solve for the spatial constraints at each of the zero-crossing



Fig. 3. Sets of joint chains defined in the human model

proximal frames. We then do a linear or spherical linear interpolation in the
joint angle space for each time period defined between any two successive zero-
crossing proximal frames. The interpolating factor § is derived by computing
the normalized distance moved in the joint space by the primary agent at each
frame during the corresponding time period:

5 = / 16(r)|dr (1)
0

where t is time, s is the angular distance moved along the trajectory, and 6(t)
is the velocity vector of the joint. The data is normalized along the trajectory:

3 16(7)|dr
Joemt(6(r)|dr

§ =

2)

where te,q is the duration of the basic period. These interpolating values help
maintain the angular velocity profile of the primary agent during the course of
the action and is independent of the difference in spatial distance covered during
each time period by the two agents.

6 Visual Attention Tracking

Capturing and maintaining visual attention is very important for movement
realism in the secondary agent. Without it, actions appear unnatural even if



all the other constraints are correctly satisfied. For example, while picking up
an object, the secondary agent would look extremely unnatural if she looked at
some other point in space. Here, we use the above technique to easily address
the visual attention constraint.

During interaction with objects, we tend to always look at the object that
we are interacting with (at least when we first come in contact with it). This
direction is automatically captured for the primary agent by the sensors on
the head. If we naively map head motions of the primary agent to a different
secondary agent, this gaze direction will be lost and cannot be re-captured by
simple signal processing techniques. Instead, we define the sensor on the head
as a tracking sensor. The zero-crossings in the acceleration space of the head
sensor indicate a change in gaze direction or indicate gaze at a specific point in
space. During these zero-crossings, we check for visual attention constraints by
using the line of sight of the agent. For efficiency, we compute the intersections
of the line of sight with the bounding boxes of the tag objects only. If there is
any tagged object in the direction of the line of sight, the global location of the
point of attention is calculated and used as the visual (alignment) constraint for
the secondary agent during its motion computation. We use a head-eye tracking
model to solve for the joint angles in the eyes, head, and neck at the gaze
direction zero crossing frames. For the remainder of the frames, we use joint
angle interpolation while maintaining the angular velocity profile as outlined
above.

7 Results

We have tested this technique by mapping the actions of an adult to the virtual
model of a nine year old child. We have captured touching a table which involves
only a FIXED tag object and drinking from a mug which involves a MOBILE ob-
ject. In both cases, we were able to successfully recognize the spatial constraints
and map the motions correctly to the second agent. Of these, the example of
drink from mug is more complicated and we discuss this in detail here.

In the example of drink from mug, the primary agent bends over, picks up
a mug from the table, drinks from it and places it back on the table. Figure 4
shows the the plots of the trajectories of the hand end-effector of the secondary
agent before and after abstraction. Before abstraction, the trajectory obtained
is the result of direct mapping of the joint angles of the primary agent to the
child model. It can be clearly seen that the constraint of picking the mug can-
not be satisfied. But after the automatic recognition of spatial constraints and
subsequent remapping of the motions as outlined in this paper, the motion of
the secondary agent is corrected as can be seen by the modified trajectory.

Figure 5 shows the various stages of the drinking motion as captured for the
primary agent. Figure 6 shows the various stages of the drinking motion after
abstraction and mapping have been applied.



New trajectory after abstraction

ry before abstraction

Fig. 4. Trajectory plots of the secondary agent’s hand end-effector (corresponding to
the tracking sensor on the hand of the adult) before and after abstraction

8 Conclusion

We have presented a new technique to automatically recognize and map spatial
and visual constraints to other different sized virtual humans. This could be
the basis of a very useful tool for motion capture and animation that enables
automatic semantically consistent modification of captured data involving inter-
actions with space and self. The potential exists for extending this technique to
real-time (on-line) execution.

We have used simple interpolation techniques to generate the trajectories. We
currently do not consider collisions of the new trajectory with other objects in
the environment. For example, there is a possibility of collision of the secondary
agent’s hand with the table while reaching for the mug although there was no
collision in the path of the primary agent’s reach. This could be easily modified
by imposing additional constraints during the trajectory generation [2].
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