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ABSTRACT

DEVELOPMENT OF HIGH ANGULAR RESOLUTION DIFFUSION IMAGING

ANALYSIS PARADIGMS FOR THE INVESTIGATION OF NEUROPATHOLOGY

Luke Bloy

Ragini Verma

Diffusion weighted magnetic resonance imaging (DW-MRI), provides unique insight into the

microstructure of neural white matter tissue, allowing researchers to more fully investigate

white matter disorders. The abundance of clinical research projects incorporating DW-MRI

into their acquisition protocols speaks to the value this information lends to the study of

neurological disease. However, the most widespread DW-MRI technique, diffusion tensor

imaging (DTI), possesses serious limitations which restrict its utility in regions of complex

white matter. Fueled by advances in DW-MRI acquisition protocols and technologies, a

group of exciting new DW-MRI models, developed to address these concerns, are now

becoming available to clinical researchers.

The emergence of these new imaging techniques, categorized as high angular resolution

diffusion imaging (HARDI), has generated the need for sophisticated computational neu-

roanatomic techniques able to account for the high dimensionality and structure of HARDI

data. The goal of this thesis is the development of such techniques utilizing prominent

HARDI data models. Specifically, methodologies for spatial normalization, population at-

las building and structural connectivity have been developed and validated. These methods

form the core of a comprehensive analysis paradigm allowing the investigation of local white

matter microarcitecture, as well as, systemic properties of neuronal connectivity. The ap-

plication of this framework to the study of schizophrenia and the autism spectrum disorders

demonstrate its sensitivity sublte differences in white matter organization, as well as, its

applicability to large population DW-MRI studies.
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CHAPTER 1 : Introduction

The human brain consists of approximately 100 billion neurons, organized into a vastly

complex network of interconnections. This network, consisting of both local neural circuits

and long distance fiber pathways, is thought to provide the anatomical substrate allowing

for the distributed interactions between brain regions [70, 128, 157]. While neural anatomy

has been extensively studied using cerebral dissection [66, 144], relatively little is known

about this complex set of connections which mediate brain function and give rise to the

richness of human behavior and experience. Chemical tracing, where markers are locally

injected into the cortex and their subsequent distribution is observed, has facilitated the

probing of this network yielding connectivity information in many animal models [110, 145].

However, the invasiveness of this technique precludes its use in human subjects particularly,

within a clinical setting.

More recently, diffusion weighted magnetic resonance imaging (DW-MRI) has emerged as

the prominent noninvasive methodology able to quantitatively probe neuronal white mat-

ter (WM), enabling the in-vivo investigation of tissue microstructure and organization.

By describing the average molecular diffusion of water molecules, DW-MRI probes tissue

structure at biological scales typically unavailable to noninvasive imaging techniques. The

fact that water molecules in highly organized fibrous tissues, such as neuronal WM, diffuse

preferentially along fibers, allows DW-MRI to obtain information related to the local tissue

architecture. This knowledge of the local WM organization can also be extrapolated to

infer global patterns of neuronal connectivity, previously available only via dissection, as in

Figure 1.1, or chemical tracing techniques. The ability to investigate both local architecture

and global structural connectivity, in-vivo, has garnered DW-MRI an important place in

many clinical studies focused on evaluating WM tissue structure, fidelity and development.

As a field of research, DW-MRI is relatively new. While diffusion sensitivity has long been

used within magnetic resonance (MR) spectroscopy [158, 159], it was not until the mid

1980s [23, 115, 184] that it began to be used to study neuronal WM. Since that time, the
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Figure 1.1: Illustrations by Friedrich Arnold [10] of gross dissections of the cerebral hemi-
sphere. From [145, Schmahmann2007a].

complexity of the mathematical models used to represent the diffusion signal has continually

increased. Initially a single scalar, the apparent diffusion coefficient (ADC) [23], was used

to measure the degree of diffusion at each voxel. Subsequent improvements in MR hardware

and image acquisition have led to improved signal to noise (SNR), enabling a more formal

treatment of in-vivo diffusion, the diffusion tensor (DT) model [17], to be developed.

The use of a Gaussian distribution of molecular displacements allows diffusion tensor imag-

ing (DTI) to model molecular diffusion in three dimensions enabling researchers to quantita-

tively investigate the amount of diffusion per voxel (the ADC), its anisotropy (the acuteness

of its directionality), as well as its spatial orientation. The more robust information avail-

able from the DT model has proved to be very useful in the study of both normal and

pathological brains, as discussed in section 2.4. DTI is now routinely included in research

protocols studying a range of pathologies, such as multiple sclerosis [35, 75], schizophrenia

[96], autism [26, 87], as well as normal development [64].

Despite the growing foothold of DTI within the imaging community, the DT model is not
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without limitations. Most importantly, its dependence on a single Gaussian distribution

limits its ability to model architectures with multiple fiber orientations. Voxels with a more

complex microarchitecture, such as fiber crossings or fanning configurations, are thus poorly

characterized. This represents a serious limitation, as it is currently thought that between

one and two thirds of the WM voxels [21], at the current clinical resolutions of 1-3 mm

isotropic, show evidence of complex fiber organization [133, 174]. The recognition of this

limitation has led to the development of a group of more complex diffusion models that are

better able to describe the complexities of these tissue architectures.

Diffusion spectrum imaging (DSI) exploits the Fourier relationship [172, 183, 181] between

the DW-MRI signals and the underlying diffusion process to compute a three dimensional

probability distribution function (PDF), at every imaging voxel, describing the local dif-

fusion process. In an attempt to reduce the high data acquisition requirements of DSI,

other models have been introduced that have lower acquisition requirements. The most

prominent, the orientation distribution function (ODF) [2, 47, 170, 173] and the fiber orien-

tation distribution (FOD) [8, 168], require a single shell DW-MRI acquisition and are often

referred to as high angular resolution diffusion imaging (HARDI) [173] diffusion models.

The anatomical differences that occur in many neurological disorders, particularly neu-

ropsychiatric disorders, are often subtle and diffuse in nature and requires the use of large

group studies to identify them. With as many as two thirds of the WM voxels consisting of

complex architectures, the improved modeling ability offered by these new techniques will

presumably translate to benefits in quantifying group differences and improved understand-

ing of neurological disorders. The achievement of such gains necessitates the development

of high throughput processing and analysis methods and algorithms capable of leveraging

this additional information. Much of the research effort to date has concentrated on the de-

velopment of these diffusion models and on the acquisition schemes that facilitate their use.

Unfortunately, the development of analytic tools, required for population studies, has not

kept pace with the improved higher order data acquisition, greatly limiting their adoption

for studying neural pathologies and diseases.
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The focus of this thesis is the development of such an analysis framework. Two types of

analysis are enabled by the methods developed here. First, local features derived directly

from the diffusion models can be used to investigate regional differences in WM architecture.

This necessitates the establishment of the spatial correspondence between the WM anatomy

of each subject, which is accomplished through the developed HARDI-based spatial nor-

malization process. Homogeneous WM regions of interest (ROIs) can then be defined by

parcellating the WM volume based on its local architecture, thereby enabling the generation

of population specific atlases and facilitating regional statistics. The second type of analysis,

is achieved through the development of a structural connectivity algorithm. Registration is

again used to establish spatial correspondence between subjects, in this case between the

gray matter (GM) nodal regions. This correspondence enables the direct statistical analysis

of the connection strengths, in addition to the analysis of the global topological features

of these networks. Combined, these tools form the core of a HARDI neuroimaging toolkit,

from which more complex statistical analysis methods can be developed in the future.

In designing any analysis framework, care must be taken with the initial decision of which

data models will be utilized going forward. The framework being presented in this thesis

is based around diffusion models that can be expressed as real-valued symmetric functions

defined on the unit sphere. This includes three of the most prominent HARDI models,

the ADC profile, the ODF and the FOD. These functions are naturally represented by

their real spherical harmonic (RSH) expansions, allowing for the development of a general

framework based solely on the properties of the real spherical harmonics. While algorithms

presented here are applicable to any diffusion model representable in the RSH, the FOD

was utilized both in their individual validation, as well as, in the clinical applications that

were performed. A number of factors contributed to this choice. Principal among them

is the interpretability of the FOD, as describing the orientation of fibers, as well as its

applicability to a wide range of b-values as can be seen in Figure 1.2 adapted from [168].
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Figure 1.2: Orientation distribution function (QBI) and FODs computed with spherical
deconvolution and constrained spherical deconvolution, are shown for a range of b-values.
The CSD produces more robust profiles then either the QBI or the SD. Adapted from [168,
Tournier 2008].

Organization and Contributions of this Thesis

The following chapter discusses the development of DW-MRI modeling leading to the

HARDI diffusion models that are used in this work, including some of the insights that

have been gained through the application of DTI to a number of different clinical pop-

ulations. This overview allows us to identify the key algorithms required for successful

population studies which are currently lacking in the HARDI community. The mathemat-
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ics of the RSH basis functions, that form the core of our analysis methods, are discussed in

Appendix B. In combination, these present the requisite background information required

to place the remainder of this work in context. The main contributions of the thesis are

then presented as independent chapters.

The spatial normalization method, presented in Chapter 3, utilizes the RSH coefficients

of the FOD data model to inform a diffeomorphic Demons registration framework used

to align each subject’s anatomy with that of a template subject. The method is a two

phase framework, using an orientation invariant approach in the initial phase followed by

an orientation sensitive secondary phase. Simulation studies show that this overall approach

is able to maintain the registration accuracy achieved from the more intensive orientation

sensitive method, in reduced computational time. The proposed approach is also compared

with state of the art DTI-based registration techniques, illustrating the ability of the HARDI

based approach to better align the WM anatomy, as indicated by lower population variances,

lower residuals and improved overlap of the population’s WM volumes.

Chapter 4 describes a data-driven WM parcellation algorithm which utilizes local variations

in an FOD image to delineate regions of homogeneous tissue architecture. This approach

allows the generation of population specific atlases at various levels of granularity, enabling

researchers to tailor the process to their specific application. The use of a local similarity

measure and an iterative process, focused on minimizing regional variance, yields ROIs that

are more homogeneous then those typically available from anatomically defined atlases.

The final methodological development, presented in Chapter 5, revolves around the use of

network models to represent the structural connectivity of an individual. The HARDI-based

method utilizes efficient algorithms and physiologically inspired constraints to compute

network models from the FOD images of each subject. These models are shown to be highly

repeatable within the same subject while retaining that ability to discriminate between the

connectivity patterns of different individuals, a critical trait for any measure to be used to

differentiate clinical populations.
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It should be noted that while the above methods were all developed and validated using

the FOD diffusion model, they can be seamlessly applied to any spherical diffusion model

possessing a representation in the RSH basis. This ability provides a simple means for

evaluating the utility of the alternate diffusion models within the context of a group study,

while controlling for the analysis methods being used.

Finally, the utility of these methodologies to elucidate group differences is demonstrated

through the investigation of two disorders, schizophrenia and autism, thought to possess

a degree of aberrant connectivity. These studies illustrated the ability of the proposed

methods to localize differences in both the WM microstructure and in the patterns of

structural connectivity. While these preliminary findings are intriguing, additional studies

with larger numbers of subjects are needed to replicated them. None the less, these studies

serve as validation that the proposed methods are able to capture group differences and

provide a solid basis from which additional analysis may be performed.

Software Contributions

The overarching goal of the project is the development of methodologies enabling the use

of HARDI within clinical group studies. As such, the dissemination of these tools and ideas

both to our clinical collaborators and to the medical image analysis community as a whole,

is of importance. In order to facilitate this process, the software developed as part of this

project utilizes available open source software libraries [132] where possible. The majority

of the algorithms presented in this manuscript are now available upon request.
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CHAPTER 2 : Diffusion Weighted MRI in Neuroimaging

The focus of this thesis is the development of an analysis framework enabling the use of

HARDI diffusion models within research studies of human WM and neuropathology. It

is important to recognize that since DW-MRI became a viable in-vivo imaging modality

in the early 1990s, the mathematical tools being used to investigate and model diffusion

in the brain have undergone continuous development. The purpose of this chapter is to

present this development with a particular focus on those models that are applicable to

the framework developed in this thesis. Additionally, we present some of the insights that

have been garnered using DTI within population studies, suggesting areas where the more

complex HARDI modeling may be particularly beneficial.

2.1. Principles of DW-MRI

All particles, at temperatures above absolute zero, undergo random Brownian motion.

Within populations or ensembles of particles, this random motion results in a diffusion

process, where the population of particles gradually spreads. When concentration gradients

exist this process explains the net movement of particles from regions of higher concen-

tration to those of lower concentrations, although diffusion also occurs in the absence of a

concentration gradient.

Statistically, the diffusion process has been well characterized by Einstein [53], who de-

scribed diffusion in a free medium, using basic linear differential equations, showing that

molecular displacements (x) in a given time frame obey a three dimensional Gaussian dis-

tribution governed by the diffusion coefficient, D. The diffusion coefficient is affected by

the particle’s size and temperature, as well as the viscosity of the surrounding medium.

In the absence of a concentration gradient the average particle displacement, 〈x〉, is zero.

However the average mean squared distance that each particle travels in a time (τd), is

8



Figure 2.1: The Stejskal and Tanner pulsed gradient spin echo sequence. Adopted from
[185, Westin2002]

directly related to the diffusion coefficient:

〈
x2
〉

= 6Dτd

DW-MRI’s sensitivity to the diffusion process is due to the introduction, by Stejskal and

Tanner [158], of a series of diffusion encoding pulse sequences prior to either a spectroscopic

readout or an imaging pulse sequence. The most basic pulse sequence demonstrating this

pre-encoding block, is the pulsed gradient spin echo (PGSE) sequence (seen in Figure 2.1).

The diffusion sensitivity is due to a pair of balanced linear gradients separated by a 180◦

pulse. These gradient pulses, separated by a time ∆, are applied along the direction u with a

strength g for a duration of δ. The first gradient imparts each spin with a phase proportional

to its location along the encoding direction. The 180◦ pulse inverts the spins allowing the

second gradient, balanced in respect to time and magnitude, to refocus the spins. Those

spins that do not experience any displacement along u, during the time separating the

two gradient lobes, are completely refocused. However, those that have diffused along

u experience a slightly different field strength during the second gradient lobe than was

experienced during the first resulting in an incomplete rephasing and a subsequent signal

loss.

If we assume that water molecules undergo ’free’ diffusion, meaning that it can be well

described by a three dimensional Gaussian with a constant diffusion coefficient, D, then the

9



subsequent signal can be expressed by the common form of the Stejskal-Tanner equation:

S(u) = S0e
−bD (2.1)

where S(u) is the measured signal resulting from a gradient direction of u, S0 is the signal

in the absence of diffusion sensitive gradients (often referred to as a b0 image in DW-MRI).

D is the diffusion coefficient or when used to describe the average response from a DW-MRI

voxel, the apparent diffusion coefficient (ADC). The ’b-value’ [23],

b = γ2δ2

(
∆− δ

3

)
g2

is related to the gradient strength (g), the gyromagnetic ratio of water protons (γ) as well as

the pulse duration (δ) and separation (∆). Typical DW-MRI acquisitions utilize ∆s on the

order of 30-60 ms, meaning that DW-MRI is probing the tissue microstructure on length

scales in the 23–32 µm range (assuming a D = 3x10−3mm/s), a scale much smaller then

those available from other in-vivo imaging modalities.

It is important to note that each diffusion weighted image (DWI) is sensitive to a single

diffusion direction, however, diffusion is a three dimensional process and water displacements

may not be uniform in all directions [122]. This anisotropic diffusion may be due to the

local tissue organization, such as membranes or other obstacles impeding diffusion in certain

directions. The desire to account for this phenomenon has led to the development of a

diffusion model capable of capturing the true anisotropic nature of the water diffusion in

biological tissue, the DT model [17].

2.2. The Diffusion Tensor Model

At the present time, the most widely accepted form of DW-MRI, utilizes the DT data model

to represent the diffusion process at each location. The DT model treats the diffusion process

10



within each imaging voxel as full three dimensional Gaussian process of the form:

P (x, τ) =
1

4πτ3|D|
e
−1
4τ
xtDx (2.2)

where the probability of a displacement, x, occurring in a time τ is controlled by a symmetric

3x3 covariance matrix describing the Brownian motion of water molecules at each imaging

voxel, the diffusion tensor (D). Using this form, the solution to the Stejskal-Tanner equation

is:

S(u) = S0e
−butDu (2.3)

The symmetric nature of the DT means that it posseses six unknown elements that must

be estimated from the DWIs, requiring a minimum of six DWIs be acquired using non-

colinear gradient directions, in addition to a single b0 image. Estimating the DT from

these measurements has been extensively studied, with proposals ranging from traditional

linear least squares approaches, to more sophisticated methods that account for the strict

positivity of the diffusion process [11, 54].

The largest benefit of the DT model is its ability to characterize the local diffusion pro-

cess using measures beyond the ADC, which can be computed as 1/3 of the trace of the

DT. An eigensystem analysis can be used to diagonalize the DT, identifying the principal

diffusion directions (the eigenvectors), as well as, the diffusivity in those directions (the

eigenvalues, λs). This yields information concerning both the shape and orientation of the

diffusion process. Additionally, many scalars have been introduced to quantify the amount

of anisotropic diffusion that is present in each voxel. For instance, the linear anisotropy

(CL), planar anisotropy (CP), and spherical anisotropy (CS), have been proposed [185] to

measure different types of anisotropy in each voxel. However, the most widely accepted

measure remains the fractional anisotropy (FA) [19]. The FA measures the severity of the

anisotropy of the DT by:

FA =

√
3

2

(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

(2.4)
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DT

ADC ODF
Fiber Directions

Figure 2.2: A simulated example of a simple crossing geometry where two fiber pathways
intersect at 90◦. As can be seen the DT model is able to identify the fiber plane but is
unable to distinguish the individual peaks representing each fiber population whereas the
HARDI models, ODF and ADC, are better able to capture the complex structure. Only
the peaks of the ODF align with the simulated fiber directions.

where λ1, λ2 and λ3 are the eigenvalues of the DT.

In addition to providing a mathematical treatment of diffusion anisotropy in biological

tissue, the DT model allowed researchers to begin to quantitatively investigate the local

orientation of the tissue architecture. The most obvious utilization of this is the devel-

opment of tractography algorithms, that utilize this orientational information to trace the

anatomical fiber bundles that connected the brain. The first approaches [101, 118] used sim-

ple propagation algorithms, that generate streamlines from the principal diffusion directions

at each voxel. Later, probabilistic methods were introduced [22, 73], which account for the

uncertainties in determining the principal diffusion direction. These algorithms provided

the first steps toward the in-vivo investigation of the network of anatomical connections

that make up the brain.
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The improved modeling fidelity of the DT has led to the increased ability to discern dif-

ferences in WM structure, which in turn has benefited the study of many neurological

processes, discussed below in Section 2.4. Despite this, the DT model is not without lim-

itations. Most critically, the underlying assumption of a single diffusion Gaussian PDF

(equation 2.2), limits the DT’s ability to model WM geometries with more than one prin-

cipal diffusion direction. Figure 2.2 illustrates this example for a simple crossing geometry,

where two fiber pathways intersect at 90◦. As can be seen, the DT model is able to identify

the fiber plane but is unable to distinguish the individual peaks representing each fiber

population. In contrast, the more complex HARDI models are better able to capture this

complex structure. This limitation hinders the DT’s ability in modeling voxels with com-

plex geometries, such as crosses, branchings, fannings, etc., prompting the need for improved

modeling approaches.

2.3. Beyond the DT Model

While many of the limitations of the DT model were understood early in the adaptation

of DTI, it wasn’t until 1999 that they were first illustrated within human WM tissue [174].

Since that time, a large effort has gone into the development of more complex higher order

models of diffusion, as well as, the acquisition strategies to provide the data they require.

2.3.1. Q-Space Imaging

While the signal models of DTI and ADC imaging (equations 2.3 and 2.1) utilize a Gaussian

approximation (Equation 2.2) of the diffusion process at each voxel to model the DW-MRI

signal, it is possible to utilize DW-MRI in a model free way. If the width of each gradient

lobe is assumed to be small compared to the separation of the lobes (δ << ∆) then the

signal resulting from a PGSE sequence (S(q, τ)) can be expressed as the 3-dimensional

Fourier transform F of the diffusion PDF, P ,

S(q, τ) = S0

∫
R
P (x, τ)e−2πiqtxdr = F[P (x, τ)] (2.5)
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where q = γδu/2π, with γ being the water proton gyromagnetic ratio, and u the direction

of the applied gradient. The Fourier relationship between the measured signal intensity

and diffusion PDF implies that by performing many measurements with different gradient

orientations and strengths, fully sampling the 3-dimensional q-space, researchers can use

the inverse Fourier transform to investigate the local diffusion process in a model free way

[33].

Single dimensional q-space imaging (QSI), where measurements are acquired only in the

radial direction, has been used to investigate the local geometry of porous materials [32], as

well as, the axonal architecture (principally the axon diameter) [15, 125]. Full 3-dimensional

acquisitions requiring a large number of radial and angular measurements, along with the 3-

dimensional Fourier transform, have been performed under the name of DSI [106, 172, 182].

While in many ways this approach represents the most theoretically complete form of DW-

MRI, its data requirements currently make it ill suited for use within clinical research

studies. The key drawback is the requirement of a rectilinear sampling of q-space, which

requires many measurements with very large gradient strengths. Current research into

compressed sensing [48, 99, 114] has shown promise at reducing these requirements but

has yet to develop into a reliable alternative. Other attempts to deal with this practical

limitation have prompted the development of approaches that utilize data acquired on a

single shell of q-space but with a higher angular resolution (HARDI) than was typically

utilized in DTI.

2.3.2. Single Shell HARDI

The data acquisition scheme underlying HARDI is relatively straight forward. Essentially,

a large number of DWIs are acquired, all with the same b-value, with the gradient di-

rections chosen to evenly sample a sphere. In fact, DTI acquisitions are single shell ap-

proaches, although generally the term HARDI is reserved for acquisitions that use b-values

above 1500 s/mm2. The b-values typically used in HARDI acquisitions range between

b = 2000 s/mm2 and b = 4000 s/mm2, although HARDI data models have successfully
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been applied to lower b-value (b = 1000 s/mm2) datasets. The use of smaller b-values,

relative to those used in DSI (b = 20000 s/mm2 [182]), combined with the lower required

number of samples makes these data acquisitions more feasible within a clinical setting. A

number of higher order diffusion models have been developed to take advantage of this type

of data. The most prominent are discussed below.

The Apparent Diffusion Coefficient Profile

One of the first uses of DW-MRI was the characterization of the diffusion process by the

ADC value (equation 2.1). This approach can be extended by treating the ADC as a

continuous function as opposed to a constant, leading to the following definition of the

ADC profile:

D(û) = −1

b
Log

S(û)

S0

There are 2 common and equivalent representations of the ADC profile. First is the repre-

sentation of the ADC profile as an lth order fully symmetric Cartesian tensor [126]. This

representation reduces to the DT model when l = 2. The second representation is as a RSH

series [3, 57]. There are a number of drawbacks to the ADC model, mainly the extraction

of orientation information is hindered by the fact that the maxima of the ADC profile (see

Figure 2.2) do not necessarily coincide with the underlying fiber directions [195], preventing

its clear interpretation in terms of physiology.

Q-ball imaging

In contrast to QSI or DSI where the Fourier relationship between the signal and the diffusion

PDF is used to compute the complete PDF in 3-dimensions, q-ball imaging (QBI) [172]

attempts to compute only the radial projection of the PDF, the ODF, from a HARDI

dataset. The ODF describes the probability that a water molecule will diffuse along a

particular direction. A number of estimation strategies have been proposed. The most

popular utilize the Funk-Radon transform in spherical coordinates [47, 83] to relate the

ODF to the measured signals. Recently improved techniques have been proposed [2, 170]
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to better marginalize the ODF yielding a sharper profile. Unlike the ADC profile, the

correspondence between the peaks of the ODF and the principal directions of the underlying

fibers, has been established experimentally [130].

Fiber Orientation Distribution

The FOD HARDI data model [8, 167] represents the DW-MRI signal as the spherical

convolution of the FOD and a fiber impulse response (FIR). The FIR describes the DW

signal that would be measured for a single fiber or fiber bundle aligned along the z-axis, and

is computed from the subject’s DW-MRI data. The FOD contains information relative to

both the orientation of any fiber bundles that may be present and partial volume fractions

relating these different fiber populations.

Since the FOD is of particular interest to the work presented here, its estimation is discussed

in additional detail. The FOD estimation is based on the process of spherical deconvolution

(SD) [78, 166, 167]. The coefficients of the DW-MRI signal’s RSH expansion (S̃) are related

to those of the FOD (F̃ ) by S̃ = HF̃ , where H is a square matrix representing the lth order

rotational harmonic decomposition of the FIR. The FOD can be computed as F̃ = H−1S̃.

The FIR is determined for each subject, by first finding the voxels with high fractional

anisotropy (> 0.6). The directionality of the diffusion process is removed from S̃ by aligning

the major eigenvector of a diffusion tensor model with the z-axis. The signal profiles are

then averaged to create the FIR.

A drawback of the spherical deconvolution method is that H is often ill-conditioned, making

the deconvolution process unstable in the presence of noise. To counter this, a constrained

spherical deconvolution (CSD) method [166] is often used to compute the FOD. The CSD

recognizes the fact that the FOD is a positive function. It iteratively performs the SD

process, where constraints are added to H, at each iteration, to encourage positivity.
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Mixture Models

In addition to the estimation methods mentioned above, a number of researchers have pro-

posed the utilization of mixture models [113, 138] to describe the diffusion process at each

imaging voxel. The most popular of these are the multi-tensor models [95, 129] where the

DW-MRI signal is modeled as a linear combination of different DTs. An advantage of this

approach is that common terms, such as FA, are directly applicable. They do typically

require the number of components being modeled to be fixed, resulting in possible inaccu-

racies when modeling voxels with a different configuration. An example of such a situation

would be the modeling of a single fiber bundle by a three tensor model. Additionally these

approaches require multiple b-value acquisitions to fully determine multiple tensors in a

single voxel [142, 143].

2.4. Applications of DW-MRI in Clinical Populations

Since its introduction, DW-MRI has offered researchers unique insight into the structure

and fidelity of neuronal WM. As it has matured the percentage of neuroimaging research

protocols that include a form of DW-MRI, has continued to increase. While the majority of

these studies utilize DTI to characterize the local diffusion process, the proportion of studies

including HARDI acquisitions is beginning to rise. Here we highlight some of the central

findings of these studies illustrating DW-MRI’s potential to elucidate group differences in

the local and global architecture of the human brain.

2.4.1. Stroke

By far the most clinically significant application of DW-MRI has been in the realm of

identifying acute brain ischemia and managing the care of stroke patients. Cat models were

initially used to demonstrate water diffusivity decreases of 30% – 50% [116, 121] in ischemic

tissue within minutes of the occlusion of the middle cerebral artery. This finding was

confirmed in other animal models [155] and later in human stroke patients [154]. The ability

to identify ischemia during this early window, is particularly critical as many treatment
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options are only viable within this early time frame. While the physiological interpretation

of this decrease is not completely understood [155], DW-MRI remains the main imaging

modality used to monitor patient progress and predict clinical outcome.

2.4.2. Neural Development

The investigation of normal development of the brain has been a recent topic of study.

While longitudinal studies are still rare, there have been a number of cross sectional studies

to investigate WM development. DTI lifespan studies have shown that FA values in WM

increase during adolescence and early adulthood, peaking roughly around 33 years of age

[76]. This parabolic increase is followed by an equally gradual decrease. Not all fiber path-

ways develop with identical FA trajectories, pathways connecting the frontal and temporal

lobe develop latest [102], while those thought to involve more critical processing, such as,

the corpus callosum (CC), the inferior longitudinal fasciculus (ILF) and the fornix develop

earlier.

Structural connectivity models have also been utilized to study differences in the organi-

zational properties of the neural networks with age. Gong et al. [64], focused on changes

across the entire lifespan (19 – 84 years) finding decreases in cortical regional efficiency, par-

ticularly in the parietal and occipital neocortex with increases in the frontal and temporal

regions. Global efficiencies did not show significant changes. Hagmann et al. [72], focused

on adolescent development (2 – 18 years), finding increases in global efficiency, node strength

and decreases in clustering coefficient. This suggests that the overall effect of development

on network properties is increased network integration and decreased segregation.

2.4.3. Schizophrenia

One of the more dominant hypotheses concerning the etiology of schizophrenia centers on

disruptions of neuronal connectivity [29, 58]. Due to this fact, DTI has been extensively used

to study schizophrenia’s affect on neuronal WM. The majority of these studies have shown

local decreases in FA in a variety of regions [164]. The most consistent of these findings are
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decreases in the cingulate, the CC and frontal WM [96, 186], while the superior longitudinal

fasciculus (SLF), the inferior fronto-occipital fasciculus (IFOF) and the uncinate have also

been implicated. It is important to note that these finding have not been consistent in

all studies [186], however the general theme of these results indicate a reduction in WM

integrity, as measured by FA. Connectivity analysis has demonstrated altered topological

properties of the brain networks of schizophrenic patients as compared to controls. Again the

overall picture resulting from these studies is one of a decrease in global network efficiency

[179, 194] with decreases in regional efficiency found in frontal [175, 179, 194] regions and

limbic regions [194].

2.4.4. Autism

The autism spectrum disorders (ASDs) are developmental disorders characterized by im-

paired social interaction, impaired communication abilities and repetitive behaviors. In-

creasingly, they are being viewed as disorders of functional networks suggesting that DW-

MRI may provide critical insights into their neuropathology. In the last 5 years, DTI has

been increasingly used to study children diagnosed with autism spectrum disorder (ASD).

This work suggests reduced FA and increased ADC, often referred to as mean diffusivity, in

subjects diagnosed with ASD. While there has been some variability in reported findings,

the predominant pattern is one of compromised WM of the frontal and temporal lobes

[6, 104, 161]. Tract and region based analysis has implicated the ILF, the IFOF and the

SLF [123, 150, 151], as well as, the CC and cortical spinal tract (CST). The more complex

structural connectivity models are just now beginning to be used to study ASD, hoping to

further inform the concept of ASD being a connectivity disorder [42].

2.4.5. Other

The pathologies discussed in the preceding sections are by no means exhaustive. DW-

MRI has been used to study numerous other disorders such as Dyslexia, Attention deficit

hyperactivity disorder and mood disorders (see [24, 51, 164, 186] for reviews). It has also
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been utilized in identifying WM lesions due to multiple sclerosis and cardiac disease, as well

as in the study of brain tumors and neurosurgical planning [103, 120, 148].

2.4.6. Summary

These studies illustrate the unique ability of DW-MRI in providing in-vivo information

related to the organization and structure of neuronal WM as it relates to disease. Despite

these successes, there are a number of areas where the improved contrast offered by the

HARDI data models may be particularly beneficial. The principal hindrance of the DT

model is its inability to model multiple fiber populations in a single imaging voxel. The most

immediate benefit of models that can describe multiple fiber populations, are the studies

based on fiber tracking and connectivity. By being able to accurately track through fiber

crossings, these improved models should offer more robust connectivity results in many of

the pathologies mentioned above. Additionally, many of the regions identified as abnormal

in the disease populations, consist of regions that traverse multiple fiber architectures and

are thus poorly modeled by DTI. This fact may be result in the variability of findings seen

in these regions suggesting the possibility of more robust and reliable findings when using

improved modeling techniques.

2.5. The Anatomy of a Population Study

Clearly DW-MRI, in its present form of DTI, offers researcher a unique and valuable tool

with which to study neural development and disease. With the exception of using ADC

measurements to characterize acute brain ischemia, the majority of the analysis performed

in the above mentioned studies can roughly be grouped into five categories:

1. Voxel-Based: The most common approach to DTI analysis is the voxel-based in-

vestigation of scalar images, generally FA or ADC, derived from the DT images of

each subject. These approaches require that each image be spatially normalized into

a standard template space prior to being subjected to statistical analysis.
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2. Manual ROIs: A more time intensive approach involves the manual determination of

individual WM ROIs in each subject and the subsequent statistical analysis of scalars

extracted from each of these ROIs. An advantage of the manual ROI approach is that

each region is determined based on the individual anatomy of the subject, perhaps

reducing inter-subject variability in the ROI definition. This comes at the expense of

the time consuming manual delineation step, which often limits the number of regions

being investigated, resulting in studies that are highly hypothesis driven as opposed

to being more exploratory.

3. Atlas ROIs: An alternative to the use of manually defined ROIs is the use of a WM

atlas that has already been parcellated into regions. Each subject is then spatially

normalized into the atlas space and regional measures are extracted and subjected to

statistical analysis. The utilization of this approach clearly rests on the availability of

a suitable WM atlas (defined on a similar population, containing regions that are of

interest, etc) as well as, a reliable spatial normalization algorithm.

4. Track-Based: These approaches are in someways a variant of the manual ROI-

based approaches. Essentially, fiber tracking algorithms are used to identify particular

structures that are of interest. Scalars can then be computed along the points of each

fiber track and investigated to determine how they vary as the fiber track advances

through the anatomy [41, 65]. Alternatively, the voxels that these fibers pass through

can be accumulated into an ROI allowing for statistical analysis similar to the previous

two approaches.

5. Connectivity: The most recent analysis tool utilized in DW-MRI studies, uses fiber

tractography to model the structural connectivity network. This analysis allows re-

searches to investigate the pattern of interconnections between brain regions at a

system-wide/whole brain level. The majority of this work has focused on investi-

gating topological properties derived from these networks but the hope is that more

in-depth analysis will identify specific circuits or functional systems that are affected
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by pathology.

The success of these analysis approaches in elucidating the affects of pathology on neuronal

WM, has been enabled by the development of image analysis methodologies that take full ad-

vantage of the DT data model. These include methods for spatial normalization/registration

[68, 88, 188, 191, 197], spatial smoothing [54], tractography [18, 21, 22, 40, 101], as well as,

the availability of DTI-based WM atlases [119, 124, 178].

While the HARDI data models, discussed in the Section 2.3, have improved our ability to

model complex WM, their utility in the study of WM disease cannot be fully appreciated

until similar analysis methods have been developed to take advantage of this improved WM

contrast. For this reason, the focus of this thesis has been the development of methods

critical to these analysis paradigms. Specifically, the development of HARDI-based spatial

normalization and WM parcellation algorithms (Chapters 3 and 4) enable both voxel-based

and atlas-based analyses, while the development of an algorithm (Chapter 5) used to ex-

tract structural connectivity measures enables the investigation of pathology effects on the

connectivity patterns. The culmination of this work is the creation of analysis pipelines

that will enable to the use of the prominent HARDI diffusion models within the clinical

populations.
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CHAPTER 3 : HARDI Spatial Normalization

3.1. Introduction

The process of spatial normalization, or image registration, lies at the center of large pop-

ulation based studies. Its ability to capture individual anatomical variation allows both

the direct exploration of geometric and volumetric anatomical differences, as well as, the

establishment of a standard coordinate frame where scalar features, such as those derived

from the diffusion models (FA for instance), can be subjected to statistical analysis. The

process of spatial normalization attempts to determine the anatomical correspondence be-

tween the brains of two subjects (or a subject and a template) by minimizing the differences

between the two images. A direct analysis of the parameters of the spatial transforms per-

mits a quantification of the geometric differences [13, 14, 45] between subjects, while the

registered images allow for the investigation of differences not attributable to differences in

geometry.

It is worth noting that the use of anatomical landmarks to achieve spatial correspondence

and subsequently performing measurements on the registered images, rests on two basic

assumptions. First, it assumes a relationship between global anatomy (the region’s loca-

tion) and the function of each region. Secondly, it assumes that this structure/function

relationship is conserved between individuals. While both of these assumptions are lacking

in some cases, such as in the presence of large focal pathologies such as tumors or stroke,

in cases where differences due to pathology are thought to be less extreme, this approach

offers the only way to address the statistical analysis of large population studies.

The imaging contrast available from structural magnetic resonance imaging (MRI) has been

widely used to inform the spatial normalization process. This approach has had great success

in measuring volumetric differences in GM regions, by examining the deformations directly,

or in elucidating functional differences between groups via functional magnetic resonance

imaging (fMRI) at either the regional or voxel level. While structural MRI provides excellent
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contrast between GM, WM and cerebrospinal fluid (CSF) yielding detailed information

concerning cortical anatomy, it provides considerably less information about WM anatomy

[165], thereby severely limiting its use in aligning WM anatomy.

Alternatively, by providing an in-vivo WM contrast, DW-MRI can be used to distinguish

WM structures, providing detailed anatomical information that is unavailable from struc-

tural MRI. The use of DW-MRI within a spatial normalization framework is complicated

by the inherent high dimensionality of the data (diffusion models typically consist of more

than a single intensity), as well as, the orientational nature of the data. This second issue

requires an additional reorientation step that is not required when performing structural

MRI registration. DTI-based spatial normalization [36, 88, 189, 191, 196] has been an active

area of research and has shown to improve the alignment of WM structures over comparable

structure based registration.

The DTI based approaches inherit, from the DT modeling, the difficulty in describing

complex WM. Thus it could be expected that the use of more complex HARDI based

diffusion models within the registration framework, would further improve the registration

result. This chapter describes a spatial normalization framework that makes use of the

FOD diffusion model but could be trivially expanded to utilize other RSH based diffusion

models.

3.2. FOD-based Non-Linear Spatial Normalization

The goal of the proposed spatial normalization framework is to determine the spatial cor-

respondence between two subjects by using the FOD image of each. This will enable the

computation of an average FOD image suitable for parcellation or the computation of

regional scalar measurements on each individual. A number of spatial normalization algo-

rithms have been developed, in parallel to the one presented here, that make use of HARDI

data models. These methods can be differentiated based on their treatment of orientational

information.
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The first group of algorithms use orientation invariant (OI) scalar measures to define image

similarity measures, that are invariant to the orientation of the diffusion model. These

image similarities are used to drive the registration framework to determine a spatial trans-

formation relating the two images. Once the transformation is determined, it is applied to

the subject image with a suitable reorientation strategy. OI representations and similarity

measures that have been investigated and used for registration include the T2-weighted

signal (b0) [85], the regional diffusivity and anistropy derived from each voxel’s ADC pro-

file [190]. A second group of methods utilize similarity measures defined on the models

themselves and are implicitly sensitive to orientation; for instance, the L2 norm of the RSH

coefficients of the ODF [59] or the norm and the cross correlation of the FOD coefficients

[135].

The algorithms which utilize OIs tend to be faster and less computationally complex, as

they only perform a single reorientation step after the spatial transformation has been deter-

mined. In contrast, the orientation sensitive (OS) methods must incorporate reorientation

into the optimization problem used to determine the optimal spatial transform and there-

fore presumably benefit from access to this additional information yielding a more accurate

result. The proposed method seeks to utilize both OI and OS approaches into a single

two-phase framework.

Diffeomorphic Demons FOD Registration

The registration framework is designed to incorporate valuable orientational information,

while attempting to limit the computation cost of performing many reorientation opera-

tions, by utilizing a two-phase approach (Figure 3.1). In Phase I we compute orientation

independent feature maps of both the moving (Subject) and fixed (template) FOD images.

A multichannel Demons [176, 163] registration algorithm is then utilized to compute the

deformation between these feature maps. Since these maps do not depend on orientation,

there is no need to incorporate a reorientation step during the Phase I optimization. The

resultant deformation field is then used to initiate the second registration phase. Phase II
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Figure 3.1: FOD registration is accomplished using a two phase registration scheme. First
spectral power features are computed and registered. This registration is then improved
during a second registration phase where the FODs are directly registered, while reorienting
the FOD at each iteration.

utilizes a multichannel Demons registration framework to minimize the difference between

the complete FOD images, represented by their RSH coefficients. This representation is

dependent on the FOD orientation requiring the finite strain (FS) reorientation method

(discussed below) to be used to reorient the FODs at each iteration of the registration pro-

cess. The utilization of the two phase process reduces the computational complexity and

convergence time, by removing the need to reorient the images in half of the iterations,

without sacrificing the accuracy garnered from the inclusion of orientation information.

In phase I, both the fixed and moving images are represented by their RSH spectral power

images (discussed in Section B.3) which are rotationally invariant. These images are com-

prised of feature vectors of the form vl =
∑

m(f̃l,m)2, where f̃ are the RSH coefficients

of the FOD at the particular voxel. The Diffeomorphic Demons framework minimizes the

L2 metric between the given images thus the phase I registration seeks to minimize the
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(a) (b)

Figure 3.2: Images of the posterior corpus callosum, with (a) and without (b) finite-strain
reorientation of an FOD image following a 45 degree rotation. Note that without reorien-
tation, the principal directions of the FODs do not coincide with the underlying anatomy.

following metric between the moving and fixed FOD images at each voxel,

√√√√ lMax∑
l=0,l even

(
∑

(f̃l,m)2 −
∑

(g̃l,m)2)

where f̃ and g̃ are the RSH coefficients of corresponding voxels in F and M .

Phase II uses the full vector of RSH coefficients to represent the FOD at each voxel, mini-

mizing the L2 metric in the full RSH space,

√√√√ lMax∑
l=0,l even

l∑
m=−l

(f̃l,m − g̃l,m)2 =

∫
dωf(θ, φ)− g(θ, φ) (3.1)

This metric measures the total amplitude difference between the two spherical functions,

f and g, and is inherently sensitive to the orientations of both. Owing to this sensitivity,

during the Demons optimization process, we reorient the moving image, using the finite

strain reorientation scheme [4], when applying the transformation at the current iteration.

Finite Strain FOD Reorientation

Based on the work that has been done within the DTI community [4, 188], we utilize the

finite strain (FS) algorithm [4] to estimate the rotational component (R) of the transform

based on its Jacobian at a particular location. The FS algorithm was chosen due to its
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computational simplicity, as well as, its unbiased treatment of the maxima of the data model.

Thus at each voxel, the FOD (f) is replaced by f ′ = f ◦ R−1. In the RSH representation,

this takes on the form of f̃ ′ = R̃−1f̃ , where R̃−1 is the matrix representation of R−1 in the

RSH space, the details of which are discussed in Appendix B.2. The effect and need for

performing reorientation can be seen in Figure 3.2.

Multichannel Diffeomorphic Demons

The multichannel diffeomorphic Demons algorithm forms the central mechanism that drives

both phases of our registration method. It seeks to determine a correction to the current

spatial transformation, s, of the form exp(u). This update minimizes a global energy

functional defined in terms of the fixed and moving image, F and M ,

Es(u) =
∑
p∈Ω

||F (p)−M ◦ s ◦ exp(u(p))||2L2 +

(
σi
σx

)2

||u||2

where p are points in Ω, the domain of the fixed image, F . While the σi
σx

term accounts

for image noise and interpolation error and acts, as can be seen from equation 3.2, as a

regularizer for determining the update field. We can linearize the image similarity term in

the region of u = 0 as:

F (p)−M ◦ s ◦ exp(u(p)) = F (p)−M ◦ s(p) + Jpu

In the case where F and M are images of vectors, Jp is the Jacobian matrix. With the

above linearization, the energy functional simplifies to

Es(u) =
∑
p∈Ω

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
F (p)−M ◦ s(p)

0

+

 Jp
σi
σx
I

u(p)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

L2

If we make the assumption that the voxels are independent, which is not strictly true when

performing reorientations, the optimization of Es(u) can be broken up in to individual
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equations for each point p.

F (p)−M ◦ s(p)

0

+

 Jp
σi
σx
I

u(p) = 0

which simplifies to

(J tpJp +
σi
σx
I)u(p) = −J tp(F (p)−M ◦ s(p))

yielding following update step

u(p) = −(J tpJp +
σi
σx
I)−1J tp(F (p)−M ◦ s(p)) (3.2)

In our application, we have chosen to use the symmetric computation of the Jacobian,

Jp = −Jp(F )+Jp(M◦s)
2 , where Jp(F ) and Jp(M◦s) are the Jacobians of the fixed and deformed

moving images at the point p.

Each iteration of the multichannel diffeomorphic Demons method can be summarized as

follows

1. compute an update step u using equation 3.2

2. smooth u with a Gaussian filter

3. s← s ◦ u

4. deform the moving image using s

5. apply reorientation if using OS features (Phase II)

This process is repeated either until the update steps no longer substantially reduce the

image difference or for a prescribed number of steps.

In summary, our method consists of two applications of the multichannel Demons algorithm.

In the first phase, it is applied to align the orientation invariant RSH power spectrum images
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computed from the fixed and moving images. The resultant transformation is then used as

the initial transformation for the second phase, which uses the entire RSH representation

of the FOD images and necessitates a reorientation at each iteration.

3.3. Validation: Simulated Experiments

The proposed method was validated by comparing it to each of its constituent registration

processes (Phase 1 and Phase 2) as well as to a scalar Demons algorithm that utilizes

the non-diffusion weighted (T2 weighted) images from the DW-MRI datasets to drive the

registration. These four methods (Phase 1, Phase 2, Combined, T2) were applied to a

simulated dataset to evaluate their ability in registering prominent WM structures.

Simulated Datasets

A DW-MRI dataset was acquired on a healthy human using a Siemens (Siemens Medical

Systems, Iselin, NJ) Verio 3T scanner and a spin-echo, echo-planar imaging sequence, TE =

106ms, TR = 16.9s, 2mm isotropic voxels, b = 3000 s/mm2 and 128 gradient directions with

4 images, with no diffusion weighting (b0). An FOD image, of order 12 (91 components),

was computed using the CSD method. This would serve as the template image. A T1

structural image was also acquired. Prominent WM regions of interest (corpus callosum,

corona radiata, internal capsule) were determined by registering the template T1 image

with the Eve atlas [124]. A WM mask was created using the FSL’s FAST algorithm [198].

The template b0 image was registered, using a scalar Demons algorithm, to the b0 image of

10 subjects, yielding 10 deformation fields from the subject space into the template space.

The 10 deformation fields were then applied to the template FOD image using the finite

strain reorientation strategy. This process yielded 10 simulated subject datasets along with

deformation fields describing the transformation from the subject space to the template

space.
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Figure 3.3: Average displacement error is shown for prominent white matter regions (Corpus
Callosum, Internal Capsule, Corona Radiata) and whole brain white matter, for each of the
registration methods.

Results

The four registration algorithms (Phase 1, Phase 2, Combined and T2) were then per-

formed on these 10 datasets. The resultant deformations were subtracted from the known

deformations yielding a displacement error vector at every voxel. The magnitude of the

displacement error vectors were then averaged within the ROIs and across subjects.

All methods were robust and produced reliable results for all simulated datasets. Figure 3.3

shows the average displacement error within the ROIs and in the whole brain WM. There are

three things to note from Figure 3.3. First, the inclusion of orientational information (Phase

2 and Combined) improves the registration accuracy compared with the other methods.

Second, there is no significant difference between results of the Phase 2 method and the

combined method. Finally, the decrease in accuracy when using the Phase 1 method as

compared to the T2 method is surprising, although it may be attributed to the fact that

the T2 method was used to initially create the simulated datasets.

The primary computational cost of including orientational information in the similarity

measure, is the need to perform a reorientation operation at each iteration of the Demons
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Figure 3.4: A: Average registration error for the internal capsule as a function of the RSH
order of the FOD fit. B: Computation time for each registration as a ratio to the T2
registration method.

algorithm. As discussed in Section B.2, reorientation is a linear operation in the RSH space,

and as the dimension of this space, determined by the order of the RSH fit, increases the

complexity of determining the reorientation operator also increases. Figure 3.4 shows the

average registration error for the internal capsule for the Phase 2 and combined registration

methods, as well as the computation time relative to the T2 registration method. The

internal capsule was chosen for its small size and thus its susceptibility to registration errors.

Even at the lowest order tested (l = 4), we see that both the Phase 2 (0.162mm error) and

the combined (0.165 mm error) registration methods out perform the T2 (0.29 mm) and

Phase 1 methods (0.8 mm). As the fit order is increased we see a growing separation in

computational time between the Phase 2 and combined methods while we see no difference

in accuracy improvement between the two. This suggests that it isn’t until the higher order

fits (l > 4) are being used that the befits of the combined approach be come significant.

3.4. Validation: In-vivo Experiments

In order to evaluate the utility of the proposed FOD registration algorithm within DW-

MRI population studies, it was compared with state of the art DTI based registration

techniques in a population of typically developing adolescents. Within the same scanning

session, optimized HARDI (b = 3000 s/mm2) and DTI (b = 1000 s/mm2) datasets were

acquired on each subject. Once corrected for imaging artifacts and motion, these different
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DW-MRI modalities offer different representations of the same anatomy. Thus, the best

spatial normalization should correctly align both images. The registration algorithms are

evaluated based on the their ability to adequately register the DTI, FOD and WM images

of the population.

The subjects used for the experiment were the 27 typically developing controls acquired as

part of the ASD dataset. A description of this imaging dataset can be found in Section

A.1.1. Both the HARDI and DTI datasets were corrected for Rician noise and eddy current

artifact. FOD and DTI images were then fit to their respective datasets. A WM image was

determined using tissue segmentation performed on each subject’s structural MP-RAGE

image. All three images were then aligned to the FOD image, resulting in co-registered

FOD, DTI and WM images for each subject. The details of these procedures can be found

in Section A.2.

Registration Results

For each subject, three spatial transformations are computed, registering their anatomy to

that of a 10 year old male chosen to act as a template subject. This process begins with

both the FOD and DTI images of each subject being linearly registered to the template

space via an affine transformation, computed using the subject’s b0 image. These linearly

registered images serve as the starting point for the three registration procedures.

First, the subject’s FOD image is registered to that of the template subject using the

proposed non-linear registration process, referred to as FOD-Demons. The DTI image of

each subject is then registered into the template space using the DTI-Droid registration

algorithm [88] as well as a DTI based version of the Demon’s method presented in Section

3.2, referred to as DTI-Demons. Phase I of the DTI-Demons method uses FA as the

rotationally invariant DT feature, while Phase II uses the log-Euclidean [11] representation

of the DTs and a finite strain reorientation strategy.

At the culmination of this process, there are three non-linear transformations (FOD-Demons,

DTI-Droid and DTI-Demons) relating the anatomy of each subject to the anatomy of the
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template subject. These deformations are then applied to both the FOD and DTI images

of each subject, generating registered images. Residual images, consisting of the voxel-wise

difference between the subject’s registered image and the template, are also computed, for

each registration method and for each modality. The RSH L2 distance (equation B.5) was

used to measure the voxel-wise difference of the FOD images while the Log-Euclidean metric

[11] was used for the DTI images.

In addition to computing residual images, population variance images were computed for

both the FOD and DTI contrasts, for all three registrations, using equation 3.3 at each voxel

x, where fi(x) is the model of interest and n is the number of subjects in the population.

Again when computing the DTI variance the Log-Euclidean metric was used as the distance

measure (d(., .)), while the L2 RSH distance (equation B.5) was used when computing the

FOD variance.

V (x) =
1

n

n∑
i

d(fi(x), µ)2 (3.3)

Figure 3.5 shows representative slices of the population variance FOD and DTI images

computed using each of the three registration techniques. When examining Figure 3.5 it is

important to recognize that the FOD and DTI variances are scaled differently since they

are computed from inherently different modalities. However, the same scaling is used across

the registration types (rows of Figure 3.5).

There are a number of conclusions that can be drawn from this figure. Firstly, the highest

variances, in both modalities and across all registration techniques, occurs in the splenium

of the CC. This is likely caused by that region’s proximity to the ventricles, coupled with

the highly curved structure of the CC in that region. Secondly, all three transformations

perform similarly when the DTI variance is used to compare them, suggesting that the

contrast provided by the FOD modeling is sufficient to align the DTI images. However,

this is not the case when using the FOD variance images as a point of comparison. There

are clear areas, highlighted in green in Figure 3.5, showing increased variance as measured

by the FOD images, when registered by the DTI based registration techniques, than is
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Figure 3.5: Representative slices of the FOD and DTI population variance images com-
puted for each registration method, DTI-Droid, DTI-Demons and FOD-Demons. Each row
is scaled independently since different difference metrics, the Log-Euclidean for DTI and
equation B.5 for FOD, are used within equation 3.3 to compute the respective variances.
The FOD-Demons registration method is able to minimize both the DTI variance as well as
the FOD variance suggesting that it better captures the true anatomical differences between
subjects better.

observed using the FOD based technique.

To better quantify these differences, the residuals were submitted to t-tests seeking to

identify regions where residuals computed using the proposed FOD-Demons registration

technique were lower than those computed using the DTI based methods. Representative

slices from these statistical maps are shown in Figure 3.6, thresholded at an FDR (False

Discovery Rate) [60] corrected p-score of 0.001. From this, it is clear that the FOD-based

registration produces significantly lower residuals than either DTI-based techniques when

the FOD residual is used, while performing similarly when compared using the DTI residual.
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Figure 3.6: Statistical maps determined by four t-tests, performed to identify regions where
the registration methods yield different FOD and DTI residuals. Representative slices,
thresholded at an FDR correct p-score of 0.001, are shown. The FOD based registration
performs significantly better, i.e. yields lower residuals, than either DTI-based technique
when the FOD residual is used, while performing similarly when compared on the DTI
residual.

A final point of comparison is the ability to register WM volumes of the population. Figure

3.7 shows the population averaged WM masks created by transforming each subject’s WM

mask, using each of the three registration techniques. The values of this image at each voxel

are the proportion of the subjects where that voxel is considered WM. Thus, higher values

signify a greater overlap of the population’s WM masks, indicative of superior registration

accuracy in these regions. The WM mask of the template subject is shown as a comparison.

Again the similarity between the two DTI based registration techniques is clear, as is the

improvement, evident in the higher values in the cortical WM regions, achieved using the

registration technique based on the FOD contrast.
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Figure 3.7: Representative slices of WM masks averaged over the population for each of the
registration methods overlaid with the template WM mask (red contour). Higher values in
these maps signify a higher degree of overlap in the registered WM masks of the population.
Areas where the FOD-Demons registration results in improved alignment of cortical WM
structures are indicated in green.

3.5. Conclusions

The general aim of performing spatial normalization, within neuroimaging, is to capture

the spatial relationship between the neuroanatomy of different subjects. Once this informa-

tion is captured, it can be exploited to either study the geometric (volumetric) differences

between the anatomy of individual subjects [13, 14, 45], or to study the population within

a standard reference frame using other modalities, such as fMRI or DW-MRI. The work

contained in this thesis focuses primarily on examining group differences in regional WM

architecture, as represented by diffusion models. Thus we are principally concerned with

establishing a correspondence at the voxel level between the WM anatomy of different sub-

jects. This necessitates the use of registration techniques that utilized modalities sensitive

to differences in WM anatomy, namely those derived from DW-MRI.

In this chapter, we presented one such method which utilizes the FOD HARDI diffusion

model to drive the registration. It should be noted that the formulation of the method does

not explicitly depend on the FOD model and could therefore be applied to any diffusion
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model representable in the RSH basis. The method presented is a two phase diffeomor-

phic Demons based framework, using an orientation invariant approach in the initial phase

followed by an orientation sensitive secondary phase. Simulation studies show that this over-

all approach is able to maintain the registration accuracy achieved from the more intensive

orientation sensitive method, in reduced computational time (Figures 3.3 and 3.4).

Additionally, the proposed method was compared with the DTI-Droid based registration al-

gorithm as well as a DTI version of the proposed algorithm (DTI-Demons), in a population

of 27 typically developing children. An analysis of both the FOD and DTI population vari-

ances (Figure 3.5) computed by these techniques indicate that the proposed FOD method

is better able to align the anatomy of these subjects, since it better minimizes both forms

of variance, while increasing the overlap of cortical WM (Figure 3.7). The FOD-Demons

technique is able to significantly (p < 0.001) reduce the population residuals (Figure 3.6) of

the FOD images, when compared to either of the DTI based techniques. However, all the

methods were able to adequately reduce the DTI residuals, indicating that by considering

the additional information content, available from the FOD modeling, the proposed method

is able to better capture the geometric differences in the population.

Although the endpoints of many population studies are not directly related to spatial nor-

malization, it is none the less of critical importance to their success. As DW-MRI methods

continue to advance, the need for population analysis methodologies, and therefore regis-

tration methods, that take full advantage of this additional information will grow. The

proposed method is one of the first such methods, that utilizes the FOD diffusion model to

perform image registration and serves as a foundation for much of the work that follows.
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CHAPTER 4 : White Matter Parcellation

4.1. Introduction

The use of brain atlases in neuroimaging studies allows researchers to register, identify and

perform measurements on individual subjects within a common spatial coordinate system

enabling large scale group studies. Such studies leverage their greater statistical power

to elucidate smaller or more subtle anatomical differences that exist in specific diseases.

Since the introduction of the Talairach [162] human cortical atlas, a number of MRI atlases

have been introduced to assist with these measurement issues. T1-weighted MRI atlases

[12, 39, 98, 97, 111, 112] have been used extensively to illustrate differences in gray matter

anatomy as well as to localize functional signals within these structures. While T1-weighted

MRI provides detailed information concerning cortical anatomy, it provides considerably

less information concerning white matter anatomy [165], thus these atlases have focused

primarily on the identification of GM regions and possess limited detail concerning WM

regions.

By providing an in-vivo WM contrast mechanism, DW-MRI has reinvigorated the study of

WM pathologies. More recently, DTI-based anatomical atlases [119, 124, 178] have been

introduced to address the relative lack of information provided by the existing cortical

atlases. While DTI is able to model WM regions possessing a single fiber population, it

is ill-suited to model areas of more complex WM, such as fiber crossing. This limitation

makes delineating boundaries within these regions difficult and the labeling within them

suspect. HARDI data models, such as the FOD, provide contrast in areas of fiber crossing

and orientation change that is unavailable from conventional DTI and better reflects the

underlying structure of the WM tissue.

This chapter proposes a novel methodology for building WM atlases by utilizing the contrast

within a population average HARDI image to identify and automatically label regions of

homogenous WM. The utilization of an automated data driven clustering algorithm for
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region labeling, permits the generation of population/study specific atlases without the

need for manual delineation of anatomical regions.

In general, atlases identify spatial regions consisting of voxels that meet some conceptual

criterion of sameness. The majority of imaging atlases attempt to label regions based on

named neuroanatomical constructs, such as the prefrontal cortex or the internal capsule.

This typically requires a neuroanatomist/neuroradiologist to manually label a template im-

age to identify each region. A process that is inherently variable, due to the underlying vari-

ability of human neuroanatomical boundaries, resulting in different labellings by different

neuroanatomists [46, 180]. Recent work within the registration community [74, 79, 80, 196]

suggests that choosing a registration template from the population under study, improves

the accuracy of spatial normalization. However the labor intensive labeling process makes

the accurate transfer of atlas defined regions to a population specific atlas difficult, a partic-

ularly acute issue when the population has unique characteristics (such as being of a younger

age than the anatomical atlas) or when the new imaging modalities, such as HARDI, are

being used.

Another important consideration, is whether labeling based on anatomical boundaries pro-

vide sufficient demarcation, particularly in areas of complex WM, for applications such as

ROI based WM statistical analysis. For instance, most large fiber bundles such as the CC

or SLF, sensible targets for anatomical ROI labeling, are known to traverse a variety of WM

architectures and thus may not be well suited for ROI studies where they are represented

by a single average diffusion model or a single scalar feature derived from the entire region.

To address the limitations of existing WM atlases, we propose the use of an automated

data driven clustering routine to generate a population-specific HARDI atlas. A popula-

tion averaged FOD image is generated by spatially normalizing each subject to a template

subject, using the method described in Chapter 3, and then averaging the FOD images.

The clustering routine is then applied to create a large number of spatial regions, each

consisting of homogeneous WM architecture, as measured by the FOD image. As regional
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homogeneity is the driving force behind the clustering process, each region can be confi-

dently represented by its average. This makes these regions ideal for ROI statistical studies

or for the extraction of spatial WM features for use in a classification framework.

While neuroanatomical labeling may not provide suitable delineation of boundaries needed

to identify homogeneous WM regions, it does aid in interpretability by providing researchers

and clinicians with a means of investigating the structure and function of these regions and

providing a comparative basis to other published studies. To improve the interpretability

of our regions, we assign each homogeneous WM region with neuroanatomical labels based

on its spatial overlap with an existing WM atlas. While not designed merely to identify

these named anatomical constructs, the neuroanatomical relabeling of the data-based atlas,

allows for describing the ROI as belonging to the anatomical region, thereby instilling it

with joint information of the underlying fiber orientation as well as the global anatomy and

function, thereby facilitating interpretability.

We demonstrate the application of our framework by generating an atlas from a dataset con-

sisting of typically developing pediatric and young adolescent subjects, although the method

is generalizable to any population under study. By comparing regional FOD spatial vari-

ances in anatomical labels to the variances computed from the regions determined by our

clustering method, we demonstrate the ability of our algorithms to generate atlases consist-

ing of homogeneous WM regions well beyond what is achievable using the neuroanatomical

labeling available in existing WM atlases. Average measures in these homogenous regions

can then be used for subsequent statistical analysis and as the basis for between group

and longitudinal within-group investigations. Anatomical interpretability of these study

specific atlases generated by our method is imparted by establishing a correspondence with

an existing atlas such as the EVE-DTI [124] atlas in the presented case. Which could in

principle, be replaced by any anatomical atlas deemed of importance by the hypotheses of

the study for which the atlas is being created.
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Algorithm 1 Spatially Coherent Normalized Cuts

Require: Initial ROIS: C
Require: N-CUTS parameters: σf , σs
Require: Stopping criteria: ε
Ensure: Final ROIS: C ′

C ′ ← C
while maxR∈C′Φ(R) > ε do

Identify the region, Ci, with the maximal degree of non-uniformity.
Remove Ci from collection C ′.
Partition Ci using normalized cuts into Ci,1 and Ci,2.
Extract all the spatially connected regions from both Ci,1 and Ci,2.
Add new spatially connected regions to collection C ′.

end while

4.2. White Matter Parcellation

WM regions, that are defined anatomically either based on fiber bundles such as the SLF or

the CST, or based on their spatial location such as the internal capsule (IC) or the sagittal

stratum (SS) often extend through a range of diverse WM architectures (orientations, cross-

ings etc). This heterogeneity is problematic, particularly when using robust WM features

such as the DT or the FOD diffusion models in subsequent analysis, as it makes the repre-

sentation of these ROIs, by their averages, suspect. These anatomical ROIs are intended to

represent anatomical structures and are therefore often not uniform in the feature space of

interest. This non-uniformity is the main trait we would like to avoid when defining regions.

To address this, we utilized an approach similar to that of the superpixel [117] methodology.

Within this framework, a single WM region or a set of anatomically or otherwise defined

regions are iteratively divided into spatially connected subregions, using a normalized-cut

clustering routine and a seed growing algorithm to enforce spatial connectedness.

Spatially Coherent Normalized Cuts for WM Clustering

The proposed method takes an FOD image, either a population average or that of a single

subject, and a collection of initial regions and partitions these ROIs into spatially connected

regions based on the similarity between the FODs making up the output regions. The input
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ROIs are supplied as a labeled image, with each label specifying a unique ROI.

The initial step of the algorithm is to parse the supplied labeled image into a collection

of fully connected regions. Any region that contains more than one spatially connected

component, is divided into those components. This process yields a collection, C, of fully

spatially connected regions derived from the supplied labeled image. From C, we identify

the region which is most heterogeneous with respect to the FODs it contains. A region’s

heterogeneity is represented by the average squared distance (equation 4.1) between the

mean FOD (µ) and the FOD (fi) of every voxel in the region. This measure has an

interpretation similar to a variance.

Φ(R) =
1

n

∑
i∈R

d(fi, µ)2 (4.1)

For the purposes of clustering we utilize the L2 metric on the RSH coefficients of the

normalized FODs, equation B.6, to measure the distance between pairs of FODs (d(·)).

Once the region with the highest non-uniformity (Φ(R)) is determined, it is partitioned in

two using the normalized cuts (N-Cut) algorithm, discussed below. This process is medi-

ated by the chosen form of the similarity function (equation 4.2). We make the canonical

choice of a Gaussian kernel over the FOD domain, with standard deviation σf and another

Gaussian kernel (standard deviation σs) over the spatial locations, to describe the similarity

between two WM voxels. The N-Cuts algorithm has no explicit criteria for enforcing spatial

connectedness. Therefore the two resultant clusters are further partitioned into spatially

connected subcomponents using the seed growing algorithm, also described below. Thus

at each iteration, the region with the highest non-uniformity is replaced by a number of

spatially compact subregions. This process is repeated until every region is below a pre-

defined non-uniformity threshold ε, or until the number of clusters exceed a user defined

value. Finally these regions are used to generate an output label map.
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Normalized Cuts

The normalized cuts (N-Cut) algorithm [136, 149] is a means of partitioning a set of data

points x, in our case a set of WM voxels, based on a predefined similarity measure k(., .).

Using the similarity measure, we build an affinity matrix such that Ki,j = k(xi, xj). The

affinity matrix describes the weights of a fully connected undirected graph using elements

of x as the nodes. The N-cut algorithm labels each node, dividing the vertices into 2

sets A and B. The cost Cut(A,B) is the sum of all connections between elements of A

and elements of B. The goal is to find the labeling that minimizes the normalized cut,

Cut(A,B)
(

1
V ol(A) + 1

V ol(B)

)
where V ol() is the sum of the weights within a set.

The labeling is found via a relaxation to the above problem by finding the second largest

eigenvector, v, of the matrix D−
1
2KD−

1
2 , where D is a diagonal matrix whose iith element

is the sum of all elements in the ith row of K. The labels are determined by examining the

sign of v. For a complete description please see [136, 149].

Our application of the N-Cut algorithm, concerns the ability to label WM voxels based on

their FOD. As discussed above, we use a Gaussian kernel with standard deviation of σf

as the basis of our similarity measure. When working without initial anatomic regions our

datasets can be on the order of 80,000 elements making storage of the K matrix infeasible.

In order to increase the sparsity of K, we can optionally include a second Gaussian kernel

sensitive to the spatial locations of the voxels, yielding the following similarity measure:

k(xi, xj) =


e

−d(fi,fj)
2

2σ2
f σs = 0

e

−d(fi,fj)
2

2σ2
f e

−||pi−pj||2
2σ2s σs > 0

(4.2)

where xi and xj are WM voxels with fi, fj , pi, and pj being the corresponding FODs and

spatial locations and d(·) being the L2 metric on the RSH coefficients of the normalized

FODs, equation B.6.

Given a collection of WM voxels, we compute the affinity matrix, K, using the above
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Algorithm 2 Seed growing algorithm to extract spatially connected components
Require: List of voxels X
Ensure: List of labels L

labelValue = 1
labelMembers = ∅
for all x ∈ X do

if x is not labeled then
add x to labelMembers
repeat
y = next element of labelMembers
L[y] = labelValue
add all unlabeled neighbors to labelMembers

until all members of labelMembers have been visited
labelValue = labelValue+1
labelMembers = ∅

end if
end for

similarity function. To further increase sparsity any elements of K, that are less than 10−2

are set explicitly to 0. We then compute the matrix D and determine the second largest

eigenvector, v, of D−
1
2KD−

1
2 using the SLEPc [81] software package. Two new regions are

determined based on the sign of v.

Connected Component Extraction

In order to extract all spatially connected subcomponents of a region, we use a simple seed

growing algorithm. A supplied region consists of a set of voxels, that are initially unlabeled.

These voxels are then labeled using the seed growing algorithm described in algorithm 2.

Each unique label is then used to create a new spatially connected region.

Anatomical Labeling

It is advantageous, for instance when interpreting the location of abnormalities, to know

the anatomical label of a specific region. This requires the additional step of labeling each

of these data-defined ROIs with anatomical labels, provided by a co-registered anatomi-

cal atlas. We accomplish this by using an existing WM anatomical atlas, for instance the

ICBM-DTI-81 [119] or EVE-DTI [124] atlases, to provide anatomical labels to each of the

homogeneous WM regions that are determined. This is accomplished by using non-linear
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registration to spatially normalize the atlas structural image to the population average

structural image. The percent overlap between each WM region and the existing anatom-

ical atlas regions are computed. For each WM region any anatomical label with greater

than a 10% overlap is assigned to that WM region, allowing for the possibility of multi-

ple anatomical labels being assigned to regions that span the boundaries of anatomically

defined regions.

The final result of the entire parcellation algorithm is a hierarchical two level WM atlas.

Each WM voxel is first assigned a label representing the data driven ROI to which it belongs.

Secondly, each of these ROIs is assigned a combination of anatomical labels based on the

regional overlap to an existing anatomical atlas. The finer data driven ROIs are designed

to consist of homogenous WM, as measured by a low FOD variance (equation 4.1) and may

be useful for statistical analysis or to extract regional features to comprehensively represent

a subjects WM architecture. The anatomical labels provide a more global anatomical

context to each ROI allowing both the location and in some cases function of each ROI to

be ascertained and communicated to other researchers.

4.3. Validation: Simulated Experiments

Simulated Fiber Cross

A 64 direction, b = 3000 s/mm2, DW-MRI dataset, with Rician noise (σ = 0.05), was sim-

ulated using the Numeric Fibre Generator (NFG) [37]. A fiber crossing between a straight

and curved fiber bundle was modeled. Each bundle was segmented into smaller fibers,

each modeled as a diffusion tensor with fractional anisotropy of 0.8 and mean diffusivity

of 0.0009 mm2/ s. FODs were computed using constrained spherical deconvolution [166] to

estimate an order 8 FOD at each voxel and the parcellation method was applied using the

following parameters, σf = 0.3, σs = 0 and ε = 0.1. Other parameter sets were used but

with negligible difference.

46



A B
Figure 4.1: A) Simulated crossing fiber bundles generated by Numeric Fiber Generator [37], B)
WM parcellation with variance below ε = 0.1, generated via the proposed method using a Gaussian
kernel (σf = 0.3) to measure FOD similarity. The area containing the fiber crossing is clearly
distinguished, as are regions with similar orientations.

Results

The regions determined by the method can be seen in Figure 4.1. A single ROI was deter-

mined for the fiber crossing region as well for the remaining portions of the horizontal fiber

bundle. The curved fiber bundle is separated into a number of regions containing similarly

oriented FODs. For each of these ROIs, we would have confidence that the average FOD is

a good representation of the region’s WM architecture. Contrast this with anatomical ROIs

defined by the actual fiber bundles. Since both bundles pass through the crossing region,

the FODs of the cross would contaminate the averages of both bundles. More problemati-

cally, the FODs being averaged for the curved fiber bundle have a wide range of orientations

obfuscating any directional information. These factors would cause neither fiber bundle to

be well represented by its average.

4.4. Development of a Adolescent WM Atlas

The problem of atlas generation or ROI delineation occurs in any population study where

regional imaging measures serve as the basis of group comparison, such as ROI statisti-

cal analysis or subject based classification. The problem is most acute when new imaging

modalities, such as HARDI, are being utilized (for which no anatomical atlases exist) or

when the population under study has not been used for generating atlases previously (such
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as in a younger population). For this reason, we illustrate the application of our WM par-

cellation technique by creating a population atlas from a dataset of typically developing

adolescent and pre-adolescent healthy subjects (6 – 18 years). This specific population is

of interest to many WM researchers involved in studies of younger populations, at varying

developmental stages, specifically those studying autism spectrum disorder and schizophre-

nia, which are believed to effect WM architecture and development [96, 177]. This is an

illustrative atlas to demonstrate the methodology. The intended usage of the framework

is the generation of study specific atlas which may need to be regenerated with a larger

sample size, or to suit specific clinical purposes.

Forming the Population Averaged FOD Image

The dataset consisted of 23 typically developing children (TDC) between the ages of 6 and

18 years (mean 11.2 ± 2.7 years) chosen from the ASD control population (Section A.1.1).

FOD images were computed following eddy current and Rician noise reduction. A co-

registered WM mask was also computed via tissue segmentation of the subject’s structural

image. Please see Section A.2 for a description of these procedures.

The FOD image of each subject was then non-linearly registered, via the method described

in Chapter 3, to that of a 10 year old male, who was chosen to serve as the template subject.

Once this process was completed for each of the 23 subjects, a population average FOD

image was computed by averaging each RSH component of the registered subject FOD im-

ages individually. Using the computed deformation fields, each subject’s WM segmentation

mask was deformed into the template coordinate frame and then averaged and thresholded

to yield a binary WM mask describing the voxels that were considered WM in over 40% of

the subjects. These 2 images, the population average FOD image and the population WM

mask are then used to determine the atlas regions.

Region Delineation

The key aspect of the atlas generation framework is the method, described in Section 4.2,

used to delineate regions of spatially homogeneous WM. Our automated WM parcellation
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Figure 4.2: As the stopping variance threshold, ε, is decreased, the expected decrease in the
regional FOD variance is seen. This decrease coincides with an increase in the number of
regions, as well as, an increase in the coarseness of the parcellation results.

method was applied, using the population average FOD image to model the WM architec-

ture and using the population WM mask to identify WM voxels.

An investigation of the parameters used to define the WM similarity kernel, σs and σf , as

well as the stopping variance threshold, ε, was performed. Adjusting the σf and σs param-

eters had the expected behavior of controlling the spatial smoothness of the determined

regions. Similar results, in terms of both the number of regions, average region size, and

average regional FOD variance were found when varying σs in the 0.1 – 0.3 range and σf

in the 6mm – 10mm range. Adjusting ε has the most direct effect on the resulting parcel-

lations as it determines at what point the subdivision process is halted. Figure 4.2 shows

the results of our method as ε is changed between 0.06 and 0.1. As ε is decreased there

is a clear decrease in the regional variance as well as an increase in the number of regions

determined, resulting in finer regional delineation. This relationship, between the achieved

regional variance and the number of regions, suggests that in practice this parameter must

be tailored to the population under study as well as to the intended use of the derived atlas

regions.

Based on these results, two atlases were generated. A coarse atlas generated using the

parameters σs = 6mm, σf = 0.3 and ε = 0.15 and a finer atlas using a lower halting

49



A B

Figure 4.3: The general anatomical bilateral symmetry is apparent in the atlas regions. At
a higher stopping variance of ε = 0.15 (A), this symmetry is more apparent than in the
finer regions obtained using a lower stopping variance of ε = 0.08 (B) where the division
of complex regions is more heavily influence by the local characteristics of the data. For
instance the two regions circled in panel B correspond to a single contralateral region.

threshold of ε = 0.08. The iterative nature of the parcellation algorithm yields a hierarchical

relationship between these atlases, with the ε = 0.15 regions being supersets of the ε = 0.08

regions. The finer atlas consists of 379 spatially compact regions with an average regional

size of 105 (2mm)3 voxels and a mean regional FOD variance of 0.06, while the coarse atlas
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Figure 4.4: Population Atlas generated from 23 young adolescents generated using the
parameters σs = 6mm, σf = 0.3 and ε = 0.08. Representative slices are shown of the label
map identifying homogenous WM regions (A) and the corresponding FOD variance (B)
images.
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Figure 4.5: Representative slices of the EVE-DTI atlas’ anatomically defined regions and
their corresponding regional FOD variances are shown in panel A, compared with the data
defined WM regions generated using two stopping variances ε = 0.15 and 0.08. The EVE-
DTI anatomical regions are conspicuously more heterogeneous, indicated by high regional
variance, even in central WM areas. A table listing characteristics of each parcellation is
shown in panel B.

consists of 94 regions with an average regional size of 423 (2mm)3 voxels and mean regional

FOD variance of 0.10. Representative coronal slices of the coarse and fine atlases are shown

in Figure 4.3. The rough bilateral symmetry of the regions is clearly visible in the coarse

atlas, while at the finer scale the bilaterality is less apparent particularly in complex WM

regions. Figure 4.4 shows representative slices of the finer atlas and corresponding regional

variance maps. The orientation sensitive aspect of the similarity kernel groups voxels with

similar orientation, as seen in the genu and splenium of the corpus callosum, while sensitivity

to the WM complexity aids in parcellating the cortical WM.

We utilized the EVE-DTI atlas to create an anatomical WM parcellation that would be used

both as a comparison as well as to provide our data defined regions with anatomical context.

This was achieved by using a nonlinear spatial normalization algorithm to transform the

structural, T1 weighted image provided as part of the EVE-DTI atlas into the space defined

by the group average T1-weighed image (T1-weighted images were used for registration as

this was the common modality between the HARDI population and the DTI anatomical
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atlas). Using this deformation field, the anatomical labels provided by the EVE-DTI atlas

were then transformed into the template space yielding an alternative parcellation. Figure

4.5 shows a comparison between the population atlases, generated using ε = 0.15 and ε =

0.08, and the anatomical regions inherited from the EVE-DTI atlas. A clear improvement

in regional FOD variance is achieved using the ε = 0.15 data driven atlas regions, with a

further improvement at the expense of generating a moderately larger number of regions

when using the finer atlas (ε = 0.08).

4.5. Conclusions

The proposed automated atlas building procedure utilizes HARDI data and the FOD diffu-

sion model, to provide improved contrast in complex WM regions using a novel data-driven

WM parcellation algorithm. This algorithm allows automated regional labeling based on

models of the local WM architecture, as opposed to the traditional time consuming anatom-

ical labeling. The automatic nature of these methods permits researchers to generate their

own atlas based on the datasets of their specific study. This overcomes many issues that

occur when attempting to use published atlases, such as different clinical populations (ages)

or different imaging protocols being utilized to generate the atlas.

Similar to the cytoarchitectural mapping of the brain [27], where local variations in cell type

are used to delineate cortical regions, our method uses the FOD as a non-invasive imaging

measure of local tissue architecture to delineate WM regions. Through the application of

this methodology to the problem of generating an age specific population atlas, adolescent

and pre-adolescent healthy subjects in our case, we show that these regions are more ho-

mogenous, with respect to WM orientation and complexity, than the regions inherited from

an existing DTI based anatomical atlas. This suggests that these regions are better suited

for regional statistical analysis or the extraction of regional features of WM architecture to

be used in subsequent applications such as pattern classification and are thus perhaps more

faithful to the overall goal of identifying regions of biological homogeneity.

The generation of the illustrative WM atlas (Section 4.4) demonstrates that the proposed
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WM parcellation method outperforms the typical processing methods that are generally

utilized for determining WM atlases. A comparison between the anatomical regions of the

EVE-DTI atlas and those determined by our method, shown in Figure 4.5, demonstrate the

benefit of using data-driven regions to represent local WM architecture, through the marked

decrease in regional FOD variance. This decrease suggests that the data determined regions

are more tightly related to the local WM anatomy, which may have significant benefits

when examining clinical populations (e.g., schizophrenia, autism spectrum disorder). While

bilateral symmetry is not considered in the region delineation process, the roughly bilateral

nature of WM anatomy is still clearly apparent in the data defined regions, shown in Figure

4.3, particularly at the coarser spatial scalars.

The proposed framework provides three parameters which effect the regions that are deter-

mined. Of these three, the stopping criterion, ε, has the most pronounced effect on both

the number of regions determined and, more significantly, the regional variances of these

regions. The other two parameters, σs and σf , determine the kernels used in the similarity

functions, effecting the smoothness of the ROIs, in the spatial and feature domain and in

turn, the number and size of the resulting regions, but have little effect on the regional

variances of the regions. In practice, selection of ε should be based on the desired degree

of uniformity required for the regions while the other parameters are best set based on

qualitative assessment of the resulting atlas. This process need only be done once for a

new population and requires little effort, particularly when compared with the process of

manually correcting anatomical regions.

The stability of the clustering, in terms of specific boundary locations, is mainly governed

by the robustness of the population average. For this reason it is important to ensure that

a sufficient number of subjects are used to make up the population average. If this number

is suitably large the effect of additional subjects on the population average and thus on

the parcellation results will be negligible. In practice, the study specific atlas is generated

when the study is ready for a statistical analysis, having reached a suitable sample size

determined by the study’s power calculations, and reflects the local variation in the specific
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dataset.

The fact that a general atlas generation methodology is described as opposed to simply the

description of a single population HARDI atlas, like the ICBM-DTI-81 [119], is indicative

of the belief that optimal results from a group study are obtained when the specific traits

of the population and data are utilized. While we have focused on WM, developing novel

clustering methods based on the state of the art modeling of WM architecture, the central

theme of this work is applicable to many other atlas building problems. For instance GM

regions could be parcellated based on their structural and functional connectivity profiles,

ostensibly generating regions that more closely respect the structure/function relationship

within the population under study.
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CHAPTER 5 : Structural Connectivity

5.1. Introduction

The in-vivo mapping of brain connectivity, either structurally or functionally, is now often

included in research studies investigating neuronal development [72], as well as specific

diseases such as attention deficit hyperactivity disorder [94] and schizophrenia [192]. This

new analysis paradigm seeks to utilize fiber tracking algorithms and diffusion weighted

DW-MRI, to elucidate the anatomical connections that exist between various brain regions.

With this goal in mind, there are two traits which could be expected from a structural

connectivity framework. First, while DW-MRI possesses information concerning the orien-

tation of the local WM anatomy, it cannot distinguish between afferent and efferent axonal

fiber bundles. Thus the functional directionality of the axonal fiber bundles connecting two

regions cannot be determined and one should expect a symmetric structural connectivity

measure between any pair of regions (the measure from A to B should equal that from B to

A). Secondly, the anatomical connections we would like to model, namely axons, originate

and terminate from neurons located within the GM. While many of these are commissural

or long association tracks, others are short range connections between regions within the

same gyrus or neighboring gyri. Thus we would expect that contrast provided by the paths

of the connections to be somewhat evenly balanced between the major central WM tracks

and the more cortical WM.

The most prominent work on structural connectivity [70, 71, 193] rely on whole brain

tractography to provide a single set of fiber streamlines that are used to represent the axonal

fiber bundles of the brain. Connectivity weights between GM regions are determined by

counting the number of streamlines whose endpoints lie within those regions, sometimes

normalized by the length of the tracks. These streamlines can also be used to generate fiber

or track density imagings (TDIs) [31] providing a WM contrast by counting the number

of streamlines passing through each voxel. Thus both the track density images and the
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connectivity weights between GM nodes are descriptions of the same set of fiber tracks used

to represent structural connectivity.

These methodologies, by using fiber streamlines as surrogate fiber bundles, achieve the

symmetry expected from a structural connectivity measure. However, the use of every voxel,

either white or gray matter, as a fiber tracking seed causes an oversampling of large central

fiber bundles that traverse many voxels. In the process, shorter U-fibers or association fibers

are under sampled, which might be problematic for studies of pathologies such as autism,

that may require the investigation of short as well as long range connectivity.

Alternative approaches have been proposed that track directly from the GM nodal regions.

Robinson et al. [140] uses a probabilistic monte-Carlo (MC) based fiber tracking [22] strat-

egy, where the paths of individual particles are tracked, to determine the connecting fibers

between regions. Gong et al. [63, 64] use MC fiber tracking to compute the connection

probability between two nodes. The inherent dependence on the seed region generates

a non-symmetric connectivity measure which is also difficult to attribute a physiological

meaning to.

Several approaches have been proposed that combine anisotropy measures with fiber track-

ing methods, to produce a connection weight between nodes. The authors of [89, 90] de-

termine the most probable path connecting any two nodes. The connection weight is then

determined as the lowest anisotropy along that path. Similarly, Robinson et al. [140] inte-

grate the anisotropy along MC generated paths yielding a connection weight. An additional

confound of the MC based methods is the dependence on the number of particles used in the

model. The use of smaller GM nodal regions necessitates an increased number of particles

per region, placing an additional computational burden on the model.

The goal of this work is to present a structural connectivity framework designed explic-

itly around the physiological constraints discussed above. The method utilizes a discrete

stochastic tractography algorithm, similar to [86], to model the transition of particles

through the neuronal WM volume. The efficiency of this approach allows the investigation
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of large networks of small nodal regions, yielding a more detailed description of a subject’s

connectivity, while removing the dependence on the number of particles, as required for

modeling by the MC techniques. Using the discrete stochastic tractography algorithm, we

compute a conditional probability matrix relating the GM regions that serve as nodes in

the structural connectivity network. The network nodes are defined along the boundary

of the WM volume, avoiding the preferential sampling of larger fiber bundles that occurs

when seeding directly in WM voxels.

From the conditional probability matrix, we determine the nodal connection density (nCD),

defined as the steady state distribution of particles terminating at each nodal region. The

nCD is computed by an optimization framework incorporating physiologic constraints,

namely the conservation of structural connections, as well as, the expected symmetry of

the final structural connectivity matrix. This provides an in-vivo contrast for GM regions

that may prove interesting in investigating pathologies which affect local connectivity and

cytoarchitecture. The structural connectivity matrix is then computed by combining the

nCD and the conditional probability matrix. This removes the conditional dependence on

the seeding regions, while imparting the connectivity measure with a physiological inter-

pretation, proportionality to the number of physical connections between regions. Finally,

the nCD can be mapped back into the WM voxels yielding a WM connection density image

whose contrast is based on the number of particles traversing each voxel. This image pro-

vides a means to investigate spatial differences in WM integrity and, perhaps, focal effects

of pathology.

5.2. An Integrated Structural Connectivity Framework

Our method is built upon a similar foundation of other probabilistic fiber tracking tech-

niques. Namely, we compute a probability distribution function at every voxel of a subject’s

DW-MRI dataset, describing the orientation of the anatomical fibers. In this work, the nor-

malized FOD function is used for this purpose, although other models could be used. From

the FOD field and a parcellation of the brain identifying the GM nodes and the WM voxels,

57



Figure 5.1: The framework utilizes a set of GM nodal regions and an FOD image to de-
termine three features related to the structural connectivity of the subject: 1) a structural
connectivity matrix (only left hemisphere is shown) describing the number of connections
between each pair of nodes, 2) the nCD, describing the proportion of connections terminat-
ing in each node, and 3) a connection density image describing the density of connections
as they traverse the WM.

we seek to determine a measure proportional to the number of physical connections between

the GM nodes, culminating in the creation of the structural connectivity matrix. In doing

so, two other connectivity features are computed: the nodal connection distribution and

the connection density image. These three elements, seen in Figure 5.1, possess different

information concerning the structural connectivity of the individual and could potentially

be useful for a variety of tasks, ranging from characterizing and localizing group differences,

to identifying novel structural and functional parcellations of the cortex. The details of

procedure are discussed below.

Conditional Probability Matrix Computation

The first part of the framework is the computation of the conditional probability matrix

(C). This matrix describes the likelihood that fibers terminate in a specific GM node, given

that the other end is known to terminate in another specified GM node. This is accom-

plished by modeling the transport of particles assumed to travel along anatomical fiber

pathways through the WM. The method determines each element of this matrix, (Cij) ,

as the proportion of particles injected into the system from the jth node, that traverse the

WM volume and exit into the ith node. This approach shares the basic assumption of the
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Figure 5.2: States are defined as directed
voxel edges. Sj describes particles traveling
from voxel A to B, while Si describes those
moving from B to C. The transition prob-
ability between these states (Tij) is defined
by integrating the product of the FOD, at
the intermediate voxel (voxel B) evaluated at
the acceptance angle (ωin) and the outgoing
angle (ωout) and a directional coupling term
(c(ωin, ωin)), which penalizes large deviations.

MC fiber tracking approaches [22, 64], namely that particles will travel along the under-

lying anatomical fibers. However, as opposed to modeling the transport of each particle

individually, making the accuracy dependent on the total number of particles simulated,

a Markov process is used to model the transport of a population of particles through the

WM, allowing the conditional probability matrix to be efficiently computed.

The efficiency of this approach derives from the discretization of the states that particles

traversing the WM volume can take. The collection of these states (S) make up the state

space of the Markov process. A state is defined as a directed edge of the WM voxels (see

figure 5.2), and is, therefore, fully described by its base voxel and its target voxel. A state,

Sj in Figure 5.2 for instance, representing particles moving from voxel A into voxel B, would

have a base voxel A and target voxel B. In order to aid in determining feasible connections

between states, each state is labeled based on the tissue types it connects. The available

labels are WM-internal (WM to WM transitions), CSF-boundary (WM to CSF transitions),

GM-out (WM to GM transitions) and GM-in (GM to WM transitions).

For each voxel in the WM region, 26 states are formed, connecting the WM voxel to its

26 spatial neighbors. Each of these states is formed by the WM voxel acting as the base

voxel and the neighboring voxel acting as the target voxel. These states are labeled as WM-

59



internal, CSF-boundary, or GM-out based on the segmentation label of the target voxel.

Once all the WM voxels and neighbors have been visited, we determine the GM-in states

by inverting the base and target voxel of each GM-out states. The GM-in and GM-out

states are then investigated to identify which GM nodes they are interacting with. This

information is used to build two linear operators that map from the state space (S) to the

space defined by the GM nodes (N). The first operator, B, describes the mapping from

N to the incoming GM boundary states of S. While the second operator, L, describes the

mapping from the outgoing GM boundary states to the GM nodes. For instance, if g is a

distribution of particles in the GM nodes (a vector in N), then Lg represents those particles

entering into state space of the system. Similarly, if s is a distribution of particles in the

state space, then Bs yields the number of particles that are transitioning out of the WM

system into each of the GM nodes.

With the state space fully defined, we can describe how a distribution of particles (rep-

resented as a state vector) evolves in time. This evolution is governed by the transition

matrix (T), where the ijth element, Tij , is the probability that particles in the jth state

will be in the ith state at the next time point. Once T is defined, the dynamics of the

system are expressed as, st = Tst−1 where st and st−1 are state vectors at time step t and

t− 1 respectively.

The computation of each Tij is made simpler by considering the tissue types connected

by the first state. For instance, if Sj is a GM-out state, then its particles are leaving the

WM system and not transitioning to other states, resulting in Tij = 0 for all possible

target states(Si). Alternatively if Sj is either a WM-internal or GM-in state, then Tij is

computed only for situations, like those shown in figure 5.2, where the transition from Sj to

Si represents a continuous trajectory, meaning that the base voxel of state Si is the target

voxel of Sj . Transitions to non connected states cannot occur, resulting in a transition

probability of zero.

Figure 5.2 demonstrates a case where the transition probability is non-zero. In this case,
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the transition probability is the likelihood that fibers travel from voxel A through voxel B

and then into voxel C. The possible incoming particle trajectories connecting B and A are

designated by the solid angle, Ωin. Similarly, Ωout describes the possible exit trajectories

into voxel C. Thus a possible trajectory through voxel B consists of a pair of incoming

and outgoing directions, ωin and ωout. The likelihood that a particle would take that path

through the voxel, is the product of voxel B’s normalized FOD, f , evaluated at those two

directions, multiplied by a coupling or inertia term (c(·)) that penalizes large turning angles.

By integrating this product over the incoming and outgoing solid angles we arrive at the

final transition probability connecting Sj to Si:

Tij =
1

N

∫
Ωin

∫
Ωout

f(ωin)f(ωout)c(ωin, ωout) dωout dωin (5.1)

whereN =
∫

Ωout
f(ωin)f(ωout)c(ωin, ωout) dωout normalizes the transition probabilities. Mak-

ing columns of T sum to 1 ensures that every particle that enters a state, transitions to a

subsequent state in the next time point.

In this work, c(·) is chosen to have the form of rejecting turns greater than 60◦, which has

the desired result of greatly reducing particle deflections greater than 90◦. Other cutoffs are

possible; however, preliminary results indicated that variations of up to 10◦ had little effect

on the final connectivity result. Finally, because physiological fibers do not terminate in

the CSF, the CSF boundary is treated as a particle sink, absorbing all particles that enter

it, by zeroing the transition probabilities into states connecting WM and CSF voxels and

then renormalizing the transition probabilities of those states.

With the dynamics of particle transport defined, the steady state behavior of the system

under a constant input can be examined. Let b be a state vector describing a distribution

of particles being injected into the system from the GM nodes. The dynamics of the system

are captured by st+1 = Tst + b, allowing for the computation of the equilibrium state
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vector (x) as

x = Tx + b (5.2)

x = (I−T)−1b (5.3)

This approach possesses a number of advantages over methods which track the progression

of a single bolus of particles [86]. First, by utilizing the equilibrium behavior of the system,

as opposed to tracking an initial impulse of particles, this method is immune to geometries

where particles exit the system very slowly, such as circular paths or loops. Secondly, while

the matrix (I − T) is not easily invertible, due mainly to its high dimensionality, robust

software tools [16, 82] exist for efficiently solving such systems. Finally, this approach allows

us to directly express a formula for the conditional connectivity matrix (C) relating the GM

nodes

C = L (I−T)−1 B (5.4)

where B is used to map a distribution in the space of GM nodes (N) into the state space

or the system (S), (I − T)−1 determines the equilibrium behavior and finally L maps the

outgoing particles of the equilibrium state into their destined GM nodes. In this way, Cij

is the proportion of particles injected into the system from the jth node that exit the WM

volume into the ith node and is equivalent to a conditional probability.

The algorithm used for computing C solves for each column individually, essentially solv-

ing for the conditional connectivity of each GM node individually. The first step of this

procedure is to compute an ILU preconditioner for the operator (I − T). Then for each

column of B, we use an iterative solver to compute x = (I − T)−1 B:i, where B:i is the

ith column of B. Both the preconditioner and the iterative solver are supplied as part of

the Trilinos [82] software package. Once x is determined, the corresponding column of C is

filled with Lx. This approach can be fully parallelized, allowing for multiple columns of C

to be determined simultaneously.
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Nodal Connection Density and the Connectivity Matrix

The columns of C describe the proportions of particles traveling from one GM node to

another. For instance, if Cij = 0.25, then one quarter of the particles entering the WM

from the jth node, exit into the ith node. Under the assumption that particle traffic between

nodes is proportional to the number of anatomical connections between those nodes, this

implies that a quarter of the connections that terminate at the jth node have their other

endpoint in the ith node. If the distribution of connections across the GM nodes, the

nCD, is known, it can be combined with the conditional probability matrix (C) yielding a

connectivity matrix, M, where each element is proportional to the number of connections

between each pair of nodes.

M:i = C:i di (5.5)

M = MD (5.6)

where D is a diagonal matrix with the nCD, d, along the diagonal.

The nCD is computed via an optimization problem that stipulates that the number of

incoming connections from the other nodes must equal the number of connections outgoing

from that node. As this may not lead to a unique solution, we also require that M, computed

by equation 5.5, is symmetric. Thus d should obey the following relations

d = Cd (5.7)

M = Mt (5.8)

These constraints, combined with the non-negativity of d (di ≥ 0; for alli) and the re-

quirement that the elements of d sum to 1, form a convex quadratic optimization problem

which is solved using the cvxopt1 software package.

1http://abel.ee.ucla.edu/cvxopt/
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White Matter Connection Density Maps

Once the nCD has been computed, the Markov model can be used to map those connections

from the nodes back into the WM volume, generating an image displaying the concentration

of connections as they traverse the WM. This is accomplished by using the steady state

model to map nCD (d) into the states space via

s = (I−T)−1 Bd (5.9)

The connection distribution in the state space, s, is then mapped into the image space using

the base index of each state as the imaging voxel containing those connections, resulting in

an image of the spatial distribution of connections throughout the WM volume.

In summary, the presented framework represents the structural connectivity of an individual

using three interconnected measures: the nCD describing the percentage of connections

terminating in each of the GM nodal regions, the connection density images describing

these connections as they traverse the WM and finally the structural connectivity matrix

representing the interconnections between all of the GM nodes in a holistic fashion.

5.3. Validation: In-vivo Human Datasets

There are two traits that are critically important to the utility of any proposed measure of

anatomy or biology. First, a measure must be reliable, meaning that if two measurements

are performed sufficiently close in time, such that one could expect no anatomical difference,

these two measurements should be the same. Secondly, in order to be of use, a measure

must be sensitive to the biological variation that exists between individuals. The sensitivity

and repeatability of the proposed method was evaluated on a DW-MRI dataset consisting of

imaging 9 subjects (2 Female/7 Male, Age 31.25 ± 4.2 years) at two time points separated

by two weeks. A full description of the imaging parameters can be found in Section A.1.3.

The FOD image for each subject was computed using the procedures described in Section
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A.2. The nonlinear, FOD based, spatial normalization method, discussed in Chapter 3,

was used to register each subject’s FOD to that of a template FOD image, where nodal

regions were defined. The registered FOD images where then normalized yielding an image

of FODs each with unit integral to be used to compute the transition probabilities.

Nodal regions were determined within the template coordinate system by first segmenting

the structural image of the template, into GM, WM, CSF using Freesurfer [55]. The set of

GM nodes was determined by downsampling the GM tissue segmentation, to an isotropic

resolution of 8mm. Each of these GM voxels were then given a unique label and then

resampled at the native 2mm resolution. This yielded a set of 2744 unique GM nodes com-

prised of both cortical and sub-cortical regions. Additionally each GM node was assigned

an anatomical label from the Desikan atlas [50].

Using this set of 2744 GM nodes, a structural connectivity matrix, a node connection

distribution and a connection density image were computed for each subject. In order

to aid in visualization and provide a means of comparability to published methods, the

connectivity matrices were downsampled to the anatomical nodes defined in the Desikan

atlas. Each of the 2744 nodes corresponding to the same anatomical label, had its rows and

columns summed to create a connectivity matrix in the coarser GM node space.

Repeatability of Measures

Two measures, the Pearson’s correlation coefficient and the average percent error, were used

to measure the reliability of each of the three components of the proposed framework. For

each WM voxel, the connection densities at time point 0 were correlated to those at time

point 1, yielding a correlation coefficient at every voxel. Similarly, the values of the nodal

distribution and of the non-zero weights of structural connectivity matrix, determined by a

student’s t-test thresholded at p < 0.025, can be used to generate correlation coefficients for

each of these measures. These are shown in Figure 5.3-A, along with a box plot illustrating

the spread of these correlation coefficients. Similarly, Figure 5.3-B, displays the percent

error of these measures computed at each WM voxel, GM node and connectivity weight.
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Figure 5.3: Results from a test/retest study performed on nine subjects scanned at two
time points two weeks apart. Pearson’s correlation coefficients computed from each WM
voxel’s connection density value, each GM node’s nodal distribution value, and each non-
zero (p < 0.025) connection weight, are shown in A. B shows the percent error of each
of these measures. The high correlation coefficients, typically above 0.75, and low percent
errors (≤ 5%) are indicative of a highly repeatable measure.

The majority of measures obtained correlation coefficients above 0.75 and errors below 5%,

demonstrating the high degree of repeatability of the proposed method.

The sensitivity of the proposed framework to differences in individual anatomy was inves-

tigated by quantifying the degree that each of these measures can be used to differentiate

between subjects. For each measure the difference between any two subjects was computed

using the L2 difference of the measures. The difference between the connection density

images of two subjects was computed as the square root of the sum of squared difference

in connection density of every WM voxel. Similarly the differences in nCD and structural
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Figure 5.4: Boxplots indicating the average L2 difference between connection density images,
nodal distributions and connectivity matrices derived from the same subject (’Within’) and
different subjects at each time point (’Between TP1 and TP2’). The average difference
between subjects is roughly 4 times higher than the difference within the same subject,
indicating that these measures are able to capture individual anatomy and may be able to
reveal group differences.

connectivity matrix were computed as the square root of the sum of squared difference of

the nCD at every node and the difference of each non-zero connection weight respectively.

Non-zero connection weights were determined by a student’s t-test thresholded at p < 0.025.

Boxplots showing the average inter (between) and intra (within) subject differences for each

of these measures are shown in Figure 5.4.

Population Averages

In order to demonstrate the contrasts provided by the three measures computed as part

of the proposed method, population averages were computed using the DW-MRI data of

each subject’s first time point. The high repeatability of the measures suggest that either

time point would have sufficed to illustrate these principles, thus the use of the timepoint 0

dataset is justified. For the remainder of this section, unless otherwise specified, the term

population average refers to the average computed only from the initial timepoint.

While the utilization of smaller nodal regions provides useful information (Figure 5.5-B), the
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Figure 5.5: The average connectivity matrix (A), computed using the Desikan atlas. A
large number of self connections (along the diagonal) are evident. The average connectivity
matrix in the 8mm nodes (B) for a section (green inset) of the larger network consisting
of the fusiform (FUS), the inferior parietal (InfPar) and inferior temporal (InfTmp) lobes,
the lateral occipital (latOcc), lateral oribital frontal (LatOF) and lingual (Ling) cortices
and the middle temporal (Mtmp) lobe. A clear structure of inter-regional connections is
evident within these larger anatomical nodes, as well as, in the connections between them.
An example of such a network involving the latOcc is highlighted in blue.

direct visualization and interpretation of entire structural connectivity network consisting

of 2744 GM nodes is difficult. As many of the published works have been on smaller

anatomically defined node definitions, we downsampled the connectivity matrices. Figure

5.5-A shows the population average connectivity matrix downsampled to the anatomical

(Desikan) nodes. Figure 5.5-B shows a portion of the higher resolution connectivity matrix

for 7 anatomically defined nodes, highlighted in green, in Figure 5.5-A.

The population average nCD, computed from the 2744 GM regions, mapped to the surface

separating cortical gray and white matter of the template subject, is shown in Figure 5.6-A.

The population histogram (Figure 5.6-B) of the coefficients of variation (the ratio of the

standard deviation to the mean) of the nodes, shows all values to be below 0.55 with the

majority below 0.25. The peak of the histogram of coefficients of variation occurs around

0.15 indicating that for most GM nodes the population average nCD value is 6.5 times its
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standard deviation in the population.

The CC is one of the few pieces of neuronal WM anatomy where research has focused on
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histopathology [84]
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quantifying, via histology, the number of axons that pass through it. The spatial distri-

bution of connections passing through the mid-sagital CC was computed by summing the

connection density images within each component of the CC thereby providing a means to

compare the proposed method with the more invasive histological methods that have been

used previously. The population average, for both timepoints, can be seen in figure 5.7-A,

while the population average connection density images, as well as, the 9 sub-regions of the

CC can be seen in figure 5.7-B.

Additionally, a comparison of the connection density images to an existing method was

preformed. Track density images (TDI) were generated using a probabilistic tracking al-

gorithm seeded in all brain voxels (TDI-WholeBrain), as well as, when seeded only in

the GM (TDI-GM) nodal regions. TDI images were computed using a set of streamlines

(N = 750, 000) determined via probabilistic tractography using the MRtrix (Brain Research

Institute, Melbourne, Australia, http://www.brain.org.au/software/) software and the pa-

rameters specified in [31]. The stopping threshold was decreased from 0.1 to 0.05, to better

fit our datasets. The coefficient of variation (CV), the ratio of the standard deviation to

the mean, was computed for each WM voxel yielding a CV image for each of these three

images (connection density, TDI-WholeBrain and TDI-GM). Representative slices of the

differently seeded TDI images, as well as, a histogram of their CV values can be seen in

Figure 5.8. A contour of CV = 0.25 is overlayed on each image, indicating areas that have

a low population variance to mean ratio. The TDI-wholebrain CV histogram consists of

lower values indicative of a signal more conserved throughout the population. Population

average TDI-WholeBrain and Connection Density images can be seen in figure 5.9-A. To

provide a comparable contrast, these images were normalized by their average values in the

mid-sagital corpus callosum prior to performing the averaging. The CV histogram of these

images, prior to the normalization, can be seen in 5.9-B.
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Figure 5.8: Population averaged
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probbalisitic tracking methods
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5.4. Discussion

As the use of structural connectivity to investigate population differences becomes more

common place, the need for reliable, efficient and interpretable structural connectivity mea-

sures and methods will grow. The goal of this work is to present a methodology for investi-

gating the structural connectivity of an individual that meets these standards. The method

strives to produce results with a clear physiological underpinning, an interpretation based

on the basic assumption equating particle trajectories with underlying anatomical pathways

and the incorporation of physical constraints that reflect both the physiology, as well as,

the information content of the imaging modality.

Our approach requires the explicit determination of the proportion of connections with an

end point in each node, a process based in the physiological expectations of connection

symmetry and the conservation of connections. It is important to note that DW-MRI,

and thus the structural connectivity methods based upon it, have no means to distinguish

between afferent and efferent axonal fiber bundles. Thus the expectations of symmetry

are not based on ideas of functional connectivity and directionality of information transfer,

but are basic physical constraints. Thus, symmetry of connection strength implies that the

number of fibers, both afferent and efferent, connecting nodes A and B, should be the same

as that found connecting B to A. Similarly conservation of connections implies that the
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Figure 5.9: Population averaged track density images generated by seeding in the whole
brain and connection density images are shown in A. Note that for visualization purposes
each image was scaled by the number of connections passing through the mid sagittal corpus
callosum prior to computing the average. These results indicate the more even contrast
between the cortical and central WM pathways of our method.

number of fibers terminating in node A should be equal to the number modeled exiting it.

For each subject, the method produces three features related to the structural connectivity:

1) The structural connectivity matrix, describing the proportion of connections between pairs

of nodes, 2) The nodal connection distribution, describing the proportion of connections

that terminate in each node and 3) the connection density image, which describes density

of connections as they traverse through the WM. These features demonstrate a high degree

of reproducibility of their respective components, connectivity weights, GM nodes and WM

voxels. This is evident by high ( > 0.75 ) correlation coefficients and low ( < 5% ) percent

error, seen in Figure 5.3. Additionally, for each of these three measures, the difference

between the same subject at two time points (Within) is roughly a quarter of the difference

between different subjects (Between) at the same time point, indicating that these measures

are specific to the individual. The population averages of these differences can be seen in

Figure 5.4. When taken in concert these indicate measures that are both highly reliable

and sensitive; thus are well suited to exploring population differences due to pathology.

72



The population average connectivity matrix, downsampled to the anatomical nodes (Figure

5.5), displays the expected bilateral symmetry and is qualitatively similar to those found

in the literature [64, 193]. It is dominated by the diagonal elements, suggesting a high rate

of short range self connections, when nodes are defined anatomically. At the higher reso-

lution node parcellation, clear sub-circuits (Figure 5.5-B) are visible, which are unavailable

with the more typical anatomical nodes. For instance, the connections between the lateral

occipital cortex (LatOcc) and the fusiform gyrus stem form a clearly defined subnetwork,

highlighted in blue.

The ability to efficiently measure structural connectivity, with a high spatial resolution,

offers a number of intriguing avenues of future research. Such high resolution connectiv-

ity profiles may prove useful in providing contrasts to cortical registration algorithms that

currently only utilize geometric features of the WM/GM boundary to drive the registra-

tion process. Similarly, they may enable improving cortical parcellations, providing better

understanding of the structural/functional relationships between different regions and yield-

ing more informative cortical atlases. This increase in spatial resolution does come at the

expense of increasing the dimensionality of the connectivity matrix, causing statistical chal-

lenges when testing for group differences. However sophisticated dimensionality reduction

techniques, such as manifold learning or sparse matrix decomposition, may be used to

mitigate the loss of statistical power.

The nCD describes the proportion of connections that terminate in each node relative to

the total number of connections in the connectivity network. Conceptually, it is similar to

the nodal weighted degree or nodal strength that has been used in other network analysis

[141]. The difference stems from the role that the nCD plays in determining the structural

connectivity. As opposed to the nodal strength which is computed from the structural

connectivity matrix and is thus a feature of the network, the nCD is explicitly computed

from the conditional probability matrix and plays a key role in imparting the framework on

a whole with its physiological interpretation. The population average nCD, seen in Figure

5.6-A, displays a general bilateral symmetry that would be expected from a measure of
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anatomy. Variation in the nCD is visible with bilateral increases in regions of the superior

temporal lobe. While an explicit verification of the spatial pattern is not possible here, the

population histogram (Figure 5.6-B) of the coefficients of variation of the nodes indicates

that it is relatively well preserved throughout the population. Additionally, this spatial

contrast in connections lends credence to the idea that there exists topographical variability

in the GM cytoarchitecture, such as the density of mini-columns [34], which may affect the

connectivity of various regions, suggesting that the nodal connection distribution may prove

useful in localizing group differences or serving as a feature used to improve GM parcellation

schemes.

Finally, the connection density images provide a means to investigate and localize structural

connectivity differences within WM volume, possibly enabling the identification of focal WM

differences that may affect connections between a broad range of nodes. Figure 5.7 shows the

connection densities of the mid-sagittal slice of the CC. The majority of the CC connections

pass through the splenium and the genu, with a lower number in the mid-body. This spatial

pattern has been seen in existing studies of CC which make use of histological fiber counting

techniques to quantify the number of connections, as can be seen by comparing this result

to figure 5 of [84] or Figure 1 of [1].

When investigating the connection density in the whole of the WM, we see that the proposed

method has low CV values, indicative of low population variance. The CV histograms of

the connection density and TDI-wholebrain images, seen in Figure 5.9-A, indicate that the

connection density histogram is more concentrated in the lower ranges (CV < 0.5) indicating

a tighter spread in the connection density values across the population than in either of the

TDI approaches. Images of the population average TDI-WholeBrain and connection density

image, 5.9-B, illustrate that the TDI-WholeBrain images yield higher connection density

in central WM pathways than in the cortical WM, whereas the contrast in the connection

density image is much more balanced. This emphasizes both the central pathways as well

as the association or U fibers located in the cortical WM regions. It should be noted that

the track density images presented here were generated using the tractography algorithm of
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MRtrix. Other tractography algorithms [49, 109] could be utilized and may give different

results.

It is important to note that without ground truth it is difficult to quantitatively validate

these or any method that attempts to quantify structural connectivity. The qualitative

findings are, however, encouraging and indicate that testable hypothesis could be garnered

from the spatial patterns of nCD (Figure 5.6-A), as well as from the connection density

images (Figure 5.9-B). One of the many strengths of this work is the presentation of an

integrated structural connectivity framework, where connection density images and connec-

tivity matrices are products of a single methodology. Thus future corroborating evidence,

validating aspects of the methodology, such as the spatial patterns evident in the nCD or

the connection density images, would lend support to the framework as a whole. A fact

that is particularly important, considering the difficulty in validating whole brain structural

connectivity matrices. The results of the test/retest reliability, as well as, the consistency

of the results within the population, indicates the potential of the framework in elucidating

group differences and in providing a unique means of identifying structurally homogenous

GM regions.

By providing a representation of the physical connections between GM regions, structural

connectivity networks provide a scaffold on which functional signals derived from fMRI

or magnetoencephalography can be understood. The use of a single cohesive framework

improves the ability of researchers to distinguish between different causes of connectivity

deficits, such as focal changes in the underlying WM architecture (accessible by the con-

nection density images) or by changes in the nodal connection patterns (obtained via an

examination of the nodal connection distribution and connectivity networks). The ability of

the framework to efficiently work with large networks, allows for higher spatial sensitivity,

enabling finer node parcellations and a more detailed view of connectivity in the human

brain.
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CHAPTER 6 : Applications

6.1. Introduction

The methodological development of the last three chapters was motivated by the need for

HARDI analysis methods that could be used within a clinical context to elucidate group

differences.

The spatial normalization method plays a central role in all of the statistical analysis that

are performed. The alignment of each subject’s anatomy into a common template reference

frame permits the investigation of HARDI based scalar measures at the individual voxel

level. It also enables the computation of a population averaged HARDI data model that

can be used by the WM parcellation algorithm to determine regions of homogeneous WM

architecture, thereby facilitating regional statistics. Together these approaches allow the in-

vestigation of the local WM tissue architecture, at either voxel or regional level, as measured

by the more complex HARDI data models. An additional analysis approach, enabled by

these methods, is the statistical investigation of structural connectivity networks. Topologi-

cal properties computed from these network models, in addition to the specific connections,

can be examined to identify differences, at the global and network level, between the clinical

populations under study.

In this chapter, we apply these analysis paradigms to the investigation of two pathologies

thought to possess aberrant connectivity, schizophrenia (SCZ) and the autism spectrum

disorders (ASDs). This is done with two aims in mind. First, how do the FOD-based

scalars compare with the more traditional DTI-based scalars for the task of differentiating

the groups under study? Secondly, and more critically, are our methods, specifically the

connectivity framework, able to illustrate group differences in systems thought to be affected

by pathology?

It should be stressed that both of these studies are exploratory in nature, meant to illustrate

the ability of our methods to extract meaningful information from the WM. Population
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studies striving to achieve true statistical group differences must typically be hypothesis

driven to account for the small sample sizes available from imaging studies. The work

here is meant to illustrate the breadth of problems addressable using our methodologies, as

opposed to focusing specifically on areas of interest to each pathology.

6.2. Analysis Framework

The goal of both studies is the identification of population level differences in WM orga-

nization. This is facilitated through two analyses paradigms. The first strives to identify

differences in the local WM architecture, while the second, utilizes network models of brain

connectivity to identify differences in structural connectivity patterns and topology. Each

of these approaches is described below, as is the model fitting procedure that serves as the

starting point for both paradigms.

6.2.1. Imaging Datasets

The imaging dataset used in the SCZ study consists of a 64 direction, b = 1000 s/mm2,

DW-MRI acquisition acquired on 66 patients (37 Males/29 Females) diagnosed with SCZ as

well 66 (37 Males/29 Females) age-matched control subjects. While the low b-value is not

ideal for HARDI modeling, this approach provides a unique ability to compare and contrast

the ability of each model for identify group differences in-vivo.

The ASD dataset consists of two DW-MRI acquisitions acquired on 39 subjects diagnosed

with ASD (30 Males/9 Females) as well as 27 (14 Males/13 Females) age-matched typ-

ically developing children (TDC). The first acquisition, an optimized 30 direction, b =

1000 s/mm2, DTI acquisition was acquired enabling the computation of DTI images for

each subject. The second was a 64 direction, b = 3000 s/mm2 acquisition, facilitating the

computation of the FOD in a more optimal setting. Structural MP-RAGE acquisitions were

also performed on each subject, in both studies, facilitating tissue segmentation. Please see

Sections A.1.1 and A.1.2 for complete descriptions of the two datasets.
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6.2.2. Model Fitting & Registration

Images from each subject underwent the preprocessing and model fitting procedures, dis-

cussed in Section A.2. Briefly, this process consisted of Rician and eddy current correction

performed on each DWI dataset, followed by DT and FOD model fitting. In the case of the

SCZ dataset both models were fit to the b = 1000 s/mm2 set of DWIs, whereas in the ASD

study, the FOD was fit to the set of b = 3000 s/mm2 DWIs. Structural images were first

corrected for field inhomogeneity and segmented into WM, GM and CSF. The resulting

images were rigidly registered to the FOD space, yielding co-registered, DT, FOD image

and tissue segmentation images for each subject.

A single subject from each study was chosen to act as that study’s template. A 37 year old

male subject was chosen to act the registration template for the SCZ study and a 10 year

old male was chosen for the ASD study. The FOD-Demons registration method described

in Chapter 3 was used to align the FOD images of both populations while the DTI-DROID

[88] registration algorithm was used to align the DT images.

6.2.3. Regional WM Architecture

From the registered DTI and FOD images of each subject, a number of scalar measures

can be computed and used to represent the local WM architecture at each location. From

the FOD images, we compute the spectral power of each of the five orders (l levels) of the

RSH expansion of the FOD, using equation B.3, yielding five scalar images, P0, P2, P4,

P6 and P8, corresponding to the even RSH orders. Additionally the generalized fractional

anisotropy (GFA) [172] of the FOD at each voxel, x, is computed as:

GFA(x) =
std(f)

rms(f)
=

√
n
∑n

i=1(f(ui)− f̄)2

(n− 1)
∑n

i=1 f(ui)2
(6.1)

where {ui} are a set of (n = 1000) sampling directions, f(ui) and f̄ , are the FOD values in

the ui
th direction and the average value of f . This yields six scalar images computed from

each subject’s FOD images.
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ASD Atlas SCZ Atlas

Figure 6.1: Population atlases generated from the control populations of the ASD and SCZ
studies. Different parameters were used to compute the voxel similarities (equation 4.2)
to control for difference characteristics of the population averaged FOD images. The ASD
atlas was generated using σf = 0.08 and σs = 6 mm, while the SCZ atlas used σf = 0.12
and σs = 6 mm.

To serve as a comparison, two common DTI-based scalars were also computed:

FA(x) =

√
3

2

(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

TR(x) = 3ADC(x) = 3 λ̄ = λ1 + λ2 + λ3

where λ1, λ2 and λ3 are the eigenvalues of the DT at voxel x.

WM Atlas Generation

For both control populations, average FOD images were computed and parcellated using the

method described in Chapter 4. The process generated two atlases, each consisting of 500

ROIs. The generation of both atlases used σs = 6 mm to control the spatial component of the

similarity kernel (Equation 4.2). However different values of σf were chosen to account for

the different characteristics, due to the difference in b-value, of the population average FOD

images. The SCZ atlas used σf = 0.12, while the ASD atlas used σf = 0.08. Representative

slices of each can be seen in Figure 6.1. For each ROI defined, regional averages of the

above computed scalars were collected into a feature vector used to represent the particular
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ROI. This process reduces the dimensionality of each subject’s representation from 8 scalar

images of roughly 80,000 voxels to 500 feature vectors, each vector representing a single

ROI.

6.2.4. Structural Connectivity

Structural connectivity networks are computed by first defining, in the template space,

the GM regions that will serve as network nodes. This was accomplished by segmenting

each study’s template structural image, into GM, WM, CSF, using Freesurfer [55] software

package. This process also segments the cortical and sub-cortical GM into regions defined

in the Desikan atlas [50]. Connectivity networks, using these 86 regions as nodes, were then

generated using the methods developed in Chapter 5.

From these networks, five global scalars are computed1 and used to capture the topological

properties of the structural connectivity networks:

1. The characteristic path length is the average shortest path length between all pairs

of nodes and is commonly used as a measure of network integration.

2. Global efficiency is defined as the average inverse shortest path length. Like the

characteristic path length, global efficiency is a measure of network integration. It is,

however, more heavily influenced by shorter paths than the characteristic path length

which is heavily influenced by long paths.

3. Network Density is the ratio of number of present connections to possible connections

and is a measure of the overall degree of connectivity in the network.

4. Modularity quantifies the degree to which the network can be subdivided into clearly

delineated non-overlapping groups. This approach seeks to define modules that max-

imize the number of intra-module edges and minimize inter-module edges.

1Topological features are computed from their weighted undirected definitions, using the brain-
connectivity- toolbox [141]
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5. Transitivity is a simpler approach to quantitate the modularity of a network. It is

based on the average number of triangles, occurring when a node’s connected neighbors

are also connected to one another.

6.2.5. Processing Summary

These two processing approaches allow the connectivity of each subject to be investigated at

a number of levels. At the voxel and regional level, the WM architecture can be investigated

using the five spectral powers of the FOD and the GFA. At a global or systems level, the

network connectivity structure can be investigated based on the topological properties or

on the basis of individual network connections.

6.3. Schizophrenia: Results and Discussion

Schizophrenia (SCZ) is a chronic and disabling psychiatric disorder affecting approximately

1.1% of the adult population2. While its precise etiology is unknown, there is growing ev-

idence suggesting that it arises from abnormal connectivity in the brain [29, 58]. Network

based analysis of SCZ, using both functional connectivity [107, 192] and networks derived

from cortical thickness measurements [20], have illustrated the different topological proper-

ties of the schizophrenic brain. When viewed in conjunction with evidence from task based

fMRI [69], these findings are clearly suggestive of a failure of functional integration in SCZ.

Studies using DTI, see Section 2.4, have focused primarily on identifying local differences in

WM. These finding have been somewhat varied, but the general picture is one of decreased

local FA, in a number of WM areas.

The DW-MRI dataset used here to investigate schizophrenia, is a typical DTI acquisition,

acquired with a low b-value by HARDI standards. While not ideal for HARDI modeling, it

does provide a means to evaluate the role of modeling within this type of acquisition and

the potential benefits that such modeling has over the more common DT modeling.

2Source: National Institute for Mental Health
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Figure 6.2: Representative slices of thresholded (p < 0.01, cluster size> 50 voxels) statistical
maps indicating areas of difference between male schizophrenic patients and age matched
controls. The three DW-MRI scalars are largely in agreement, with the most prominent
difference being observed in the Corpus Callosum. The FOD spectral powers indicate a
larger affected area of the CC, than FA.

6.3.1. Statistical Analysis

In order to account for the established role that gender [105] plays in the presentation

of SCZ, the dataset was divided in two, based on gender. Thus males and females were

investigated independently. Each of the scalar maps, FA, TR, GFA and the RSH powers

(P0, P2, P4, P6, P8) were computed and spatially smoothed, using a Gaussian kernel with

a full width half max (FWHM) of 4mm. Voxels outside of the WM, as determined by the
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template’s WM mask, were not included in the smoothing kernel, ensuring that only WM

voxels contributed to each smoothed scalar image. Voxel-wise t-tests were then performed

on each smoothed scalar image using the Afni [44] software package. Representative slices

of these t-tests can be seen in Figures 6.2 and 6.3, for the male and female populations

respectively. In the male population, patients were found to have diminished FOD spectral

powers and FA in the anterior aspects of the CC midbody. Differences in GFA and TR

failed to survive thresholding (p < 0.01, cluster size greater than 50 voxels). Interestingly,

the areas of difference in the female population were focused in an area of complex WM,

the superior longitudinal fasciculus (SLF). Patients had lowered P0 and P4 spectral powers

and higher TR values in this region. The other spectral powers show similar spatial patters

to P4 but with lower significance. Findings in GFA and FA did not survive thresholding.

Regional features were extracted from registered DTIs (FA and TR) and FOD images (P0

and P2) from each subject. A multivariate Hotelling T2 statistical test was then performed

on each ROI to indicate regions of group difference. Images of these t-scores are shown

in Figure 6.4. In males, both the DTI and FOD statistics indicate abnormalities in the

frontal and temporal WM, with the differences being more significant when using the DTI

measures. In females, the spatial pattern of FOD differences shift away from the frontal

WM, and become greatly reduced when using the DTI measures.

Analysis of structural connectivity was performed at two levels. T-matrices were determined

for each group (males and females), using a two sided t-test at each edge of the connectivity

network. These matrices were then thresholded at T=2.5 (p < 0.01) to indicate the indi-

vidual connections, between the 86 nodal regions, that display a group difference. They can

similarly be colored to indicate the magnitude of group difference between the populations.

Figure 6.5 displays the average connectivity matrix for each group, in addition to maps indi-

cating the nodes higher in controls than in patients and vice versa. Connections displaying

the largest group difference, indicated in red in Figure 6.5 are listed in Table 6.1. Topological

properties were similarly tested for group difference. Of the five global network properties,

two (density and global efficiency) were found to be significantly higher (p < 0.05) in male
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Figure 6.3: Representative slices of thresholded (p < 0.01, cluster size> 50 voxels) statistical
maps indicating areas of difference between female schizophrenic patients and age matched
controls. FOD spectral powers (orders 0 and 4) indicate a large portion of the SLF is
affected in females. The mean diffusivity, as measured by DTI, is seen to increase in a
portion of this area.

patients and only transitivity was significantly lower in male patients. Similar trends were

found in the female topological properties, but failed to reach significance.

WM-Atlas Males T2 < 4 
(p> 0.05)

T2

MalesFemales Females

DTI - Statistics FOD - Statistics

T2 > 12
(p<0.005)

Figure 6.4: Hotelling T2 tests were performed on each ROI defined in the WM atlas. For
the DTI image, MD and FA were used as features, while the 0th and 2nd order spectral
powers were used as features of the FOD images. Both the DTI and FOD based approaches
indicate group differences in the Frontal WM in males. However, only the FOD based
statistics indicate group differences in females.
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Males

Node 1 Node 2

Lobe Area Lobe Area Difference

R Temporal Superior Temporal R Subcortical Caudate Cnts>Pats
R Temporal Transverse Temporal R Subcortical Thalamus Cnts>Pats
R Temporal Insula R Subcortical Accumbens Cnts>Pats
R Temporal Bankssts R Subcortical Thalamus Cnts>Pats
R Temporal Superior Temporal R Subcortical Thalamus Cnts>Pats
R Temporal Insula R Frontal Pars Triangularis Cnts>Pats
R Frontal Lateral Orbito Frontal R Subcortical Accumbens Cnts>Pats
R Frontal Pars Triangularis R Frontal Rost Mid Frontal Cnts>Pats
R Subcortical Caudate R Subcortical Putamen Cnts>Pats
L Parietal Posterior Cingulate R Frontal Superior Frontal Cnts>Pats
L Frontal Superior Frontal R Frontal Anterior Cingulate Cnts>Pats

L Temporal Inferior Temporal L Parietal Sup. Parietal Pats>Cnts
R Temporal Isthmus Cingulate R Temporal Parahippocampal Pats>Cnts
R Temporal Fusiform R Parietal Precuneus Pats>Cnts
R Parietal Precuneus R Subcortical VentralDC Pats>Cnts
R Frontal Pars Opercularis R Frontal Pars Orbitalis Pats>Cnts

Females

R Temporal Fusiform R Subcortical Amygdala Cnts>Pats
L Temporal Fusiform L Subcortical Amygdala Cnts>Pats
L Temporal Middle Temporal L Temporal Trans. Temporal Cnts>Pats
L Frontal Rostral Middle Frontal R Frontal Lat. Orb. Frontal Cnts>Pats
L Subcortical Thalamus L Subcortical Putamen Cnts<Pats
L Frontal Lateral Orbito Frontal L Subcortical Caudate Cnts>Pats
L Subcortical Thalamus L Subcortical Pallidum Cnts>Pats

R Frontal Pars Opercularis R Frontal Superior Frontal Pats>Cnts
R Frontal Pars Opercularis R Frontal Pars Triangularis Pats>Cnts
R Frontal Medial Orbito Frontal R Frontal Superior Frontal Pats>Cnts
R Frontal Pars Opercularis R Parietal Post. Cingulate Pats>Cnts
R Temporal Entorhinal R Subcortical Hippocampus Pats>Cnts
R Temporal Inferior Temporal R Parietal Precuneus Pats>Cnts
L Parietal Supramarginal L Subcortical VentralDC Pats>Cnts
L Parietal Supramarginal L Subcortica Hippocampus Pats>Cnts
L Occipital Lingual L Parietal Superior Parietal Pats>Cnts

Table 6.1: Structural connections showing group differences in SCZ. Represented as red
lines in Figure 6.5.
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Figure 6.5: Statistics were performed on each network connection using a student’s t-
test. Edges with T-score magnitudes above 2.5 are shown separately for both males and
females and for two cases: Controls having higher connections than patients and vice-versa.
Connections are colored by the difference between the two groups, with blue connections
being lower, by two orders of magnitude, than the largest group connection difference. A
Table of the red connections can be found in Table 6.1.

6.3.2. Discussion

One of the prominent hypotheses in SCZ research revolves around its characterization as a

connectivity disorder. The findings presented here clearly support the existence of altered

structural connectivity in schizophrenic subjects. In males, this manifests as decreases in

FA and in the spectral powers of the FOD, in the CC and the frontal/temporal WM. The

FOD spectral powers indicate a slightly larger affected region of the CC than is found in FA.

These local effects manifest in the global connectivity analysis in a number of ways. The
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connections that are lower in patients tended to involve stronger connections and to occur

between regions that are thought to be affected by schizophrenia. These areas include the

Thalamus [30, 147], the Caudate [156], the Insular cortex [62, 127] and the Cingulate [56].

Interpretation of the increased patient connection strengths of certain connections is more

difficult, but supports the premise of dysconnectivity [29, 58, 160], as opposed to purely

diminished connectivity, in schizophrenia.

Perhaps the most striking facet of these results is the effect of gender on the patterns of

group difference. The principal area of difference between female patients and controls was

found in the left SLF. This difference is robustly shown by the spectral powers and to a

certain extent in the TR. When using the DTI-based regional statistics very little difference

was observed between the groups. The regional FOD statistics (Figure 6.4) indicate similar

frontal WM patterns to those seen in males, but display a strong group difference in the

left SLF regions.

The growing consensus, supported by this study, is that the integration of the various

functional units making up the human brain, is altered in schizophrenia. Our findings

suggest that while there are deficiencies in the structural connectivity of particular areas,

there are also connections that are strengthened. In both genders, although more strongly in

males, we see increases in global connection density and decreases in transitivity, implying a

more connected but less organized connectivity pattern in schizophrenia. Moving forward,

the joint analysis of functional and structural connectivity may offer significant insights

into the role altered structural connectivity has on functional connectivity perhaps signaling

areas where functional deficiencies are due to local differences in synaptic plasticity [58, 160]

as opposed to anatomical (axonal) connectivity differences.

6.4. Autism: Results and Discussion

The autism spectrum disorders (ASDs) are a set of complex, heterogeneous neurodevelop-

mental disorders. They are defined by clinical assessment in three core domains: social
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interaction, communication or language use and restricted or repetitive behaviors and in-

terests. Deficits in all three domains are required for a classical autism diagnosis, whereas

individuals diagnosed on the spectrum, reflect varying degrees of the abnormalities in each

of the three domains.

Structural MRI studies have identified altered brain growth trajectories [43] in subjects di-

agnosed with ASD. This altered developmental trajectory, characterized by an early rapid

overgrowth in total volume followed by a plateau and possible decline to normal volumes,

is not uniform across all parts of the anatomy. The most consistent findings indicate volu-

metric changes in the frontal and temporal lobes [28, 77] with a particular increase in the

cortical WM volume of the frontal lobe. These areas have also been implicated in recent DTI

studies [6, 104, 161]. Functional connectivity [93, 171, 187] studies have indicated decreases

in long range connectivity and increases in short range connectivity commensurate with the

hypotheses of overgrowth in short range cortical fiber pathways. The culmination of this

evidence has led to an understanding of the ASDs as connectivity disorders, characterized

by particularly aberrant connectivity patterns involving the frontal and temporal lobes.

This study focuses on the ability of our HARDI tools to elucidate these connectivity dif-

ferences. A high b-value (3000 s/mm2) DW-MRI acquisition was used to provide optimal

data for the FOD modeling. Traditional DTI acquisitions (b = 1000 s/mm2) were also per-

formed, providing a comparison of our methods with the DTI techniques that are currently

being utilized in clinical research studies.

6.4.1. Statistical Analysis

Statistical analysis proceeded along similar lines to those used in the SCZ study. The

principal difference is the inclusion of age as a cofactor in our statistical analysis of ASD.

While the ASD and TDC groups are age matched, both groups encompass a wide age range

(6-16 years). Early adolescence is a time of rapid development, thus the inclusion of age as

a co-factor was deemed prudent. Analysis of each scalar map, FA, TR, GFA and the RSH

powers (P0, P2, P4, P6, P8), was performed by first smoothing each using 4mm FWHM
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Figure 6.6: Representative slices of thresholded (p < 0.01, cluster size > 50 voxels) statisti-
cal maps indicating areas of difference between subjects diagnosed with ASD and typically
developing controls. The HARDI based scalars, specifically P0, capture differences in sagit-
tal stratum of the temporal lobe.

Gaussian kernel. The template WM mask was used to ensure only WM voxels contributed

to the resulting images. These images were then analyzed using multiple linear regression

to determine the diagnoses effect independently from the effect of age. Bilateral decreases,

see Figure 6.6, in ASD were observed in the FA, TR and the RSH powers of SS and parts of

the SLF. Differences in WM architecture of the posterior internal capsule was found using

GFA, but were not observed in the other scalars.

Analysis of the global topological features computed from the structural connectivity ma-

trices showed no significant difference when corrected for age. Each connection of the struc-

tural connectivity networks were analyzed using an analysis of covariance3. These were

3Analysis of covariance was performed using the Mancovan Matlab toolbox [5]
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Figure 6.7: Statistics were performed on each network connection. Edges with T 2-scores
above 3 are shown. Red lines indicate connections where patients have a decreased connec-
tivity weight, while green indicates the reverse. A 3D rendering illustrates the connections
between the frontal and temporal and parietal lobes. A table of these connections can be
found in Table 6.2.

collected into a T 2-matrix, thresholded at T 2 > 9.0 to indicate the individual connections

that display a prominent group difference. Figure 6.7 displays the average connectivity

matrix for the control group, as well as network representations of connections indicating a

group difference. Table 6.2 lists the connections with T 2 values above 9.

6.4.2. Discussion

The diverse behavior and cognitive symptomatologies associated with the ASDs, likely

indicate a heterogeneous patient population, with perhaps a number of different etiologies.

Despite this, the role of abnormal frontal and temporal connectivity is becoming more

prominent [34, 42, 43]. The voxel-wise statistics, seen in Figure 6.6, indicate clear decreases

in the FOD spectral powers of the SS region of the temporal lobe and in aspects of the SLF.

These differences co-localize with decreases in the FA of the SS and with increases in trace

of the SS and SLF, in agreement with reported [6, 123] increases in the mean diffusivity

(1/3 of the trace) of the SLF.
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Node 1 Node 2

Lobe Area Lobe Area Difference

R Frontal Pars Orbitalis R Temporal Bankssts Cnt > Pat
R Frontal Pars Triangularis R Temporal Bankssts Cnt > Pat
R Frontal Pars Triangularis R Parietal Inferior Parietal Cnt > Pat
R Temporal Insula R Parietal Inferior Parietal Cnt > Pat
R Temporal Insula R Parietal Superior Parietal Cnt > Pat
L Frontal Pars Opercularis L Temporal Inferior Temporal Cnt > Pat
L Frontal Pars Opercularis L Temporal Middle Temporal Cnt > Pat
L Frontal Pars Opercularis L Temporal Bankssts Cnt > Pat
L Frontal Pars Opercularis L Parietal Inferior Parietal Cnt > Pat
L Frontal Pars Opercularis L Parietal Supra Marginal Cnt > Pat
L Frontal Rostral Middle Frontal L Parietal Supra Marginal Cnt > Pat
L Frontal Rostral Middle Frontal L Parietal Post Central Cnt > Pat
L Temporal Parahippocampal R Parietal Superior Parietal Cnt > Pat

L Occipital Pericalcarine R Occipital Lingual Pat > Cnt

Table 6.2: Structural Connections showing group differences in ASD. Of particular interest
are the nodes comprising the language areas, the Pars Opercularis and Pars Triangularis
(Broca’s area) and the posterior banks of the superior temporal sulcus (Bankssts), where
Wernicke’s area is located.

As a number of the major temporal WM tracks, IFOF, ILF and the inferior aspects of

SLF, pass through SS, local WM deficiencies there would have implications for much of

the connectivity of the temporal lobe. The results of our structural connectivity analysis

(Figure 6.7 and Table 6.2) indicate that 60% of the connections shown to be lower in

ASD involve the temporal lobe. Of particular interest are those connections involving the

language regions of the brain, as communication/language use is one of the core domains

affected in ASD. Our findings indicate lower connectivity strengths between the orbital

part of inferior frontal gyrus (containing the Pars Opercularis, Pars Triangularis and Pars

Orbitalis) to the temporal lobe, particularly the posterior banks of the superior temporal

sulcus (Bankssts) in both the right and left hemisphere. This suggests that even in this

population, which did not present as specifically language impaired, the language pathways

are affected in ASD. As this is an ongoing multi-modality study, it will be interesting to see

how the functional modalities, specifically those focused on language processing [139, 146],

correlate with these differences in structural connectivity.
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6.5. Conclusion

The goal of this chapter was to illustrate the application of our HARDI analysis framework

to the study of a clinical population. These preliminary studies illustrate that the proposed

methodologies are able to identify differences in WM architecture beyond what is currently

available using DTI-based approaches. In male SCZ subjects and in ASD subjects the

HARDI-based scalars identified larger affected regions than those found using either of the

DTI scalars investigated. Whereas in female SCZ subjects, the HARDI measures were able

to distinguish differences in complex regions that the DT model did not capture.

From examining the voxel statistics in both studies, Figures 6.2, 6.3 and 6.6, it is clear the

RSH powers of the FOD are not simply better versions of FA or trace, but are sensitive to

different aspects of the WM architecture. The 0th order spectral power (P0) is the integral

of the FOD over all directions, suggesting that decreases in P0 could be due to decreases

in local fiber density. As discussed in Section B.3, higher order powers are required to

represent both complex fiber configurations, as well as, sharp focused peaks. This makes

their physiological interpretation difficult, although, we suspect that as with other scalar

measures of diffusion their interpretation will develop as their utilization increases.

Clearly, these studies demonstrate the ability of our tools to find group differences in bio-

logically meaningful regions and systems. In SCZ, we show connectivity deficits in known

systems, such as the cortical-thalamic connections [108, 134], but also increases in connec-

tivity in regions less well understood in SCZ. Further investigation of these connections

via functional connectivity is certainly warranted. Similarly, the analysis of structural con-

nectivity in ASD indicated deficiencies between the frontal, temporal and parietal lobes as

well as deficiencies in connectivity between prominent language areas, fitting closely to the

current understanding of ASD pathology.
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CHAPTER 7 : Conclusion

The utilization of neuroimaging to study neuropsychiatric disorders is a difficult undertak-

ing. These disorders typically do not present as clear focal abnormalities, such as tumors or

WM lesions, but instead are often characterized by subtle and diffuse differences through out

the brain. The hope is that by identifying intermediate imaging-based phenotypes, osten-

sibly due to degenerative and/or altered developmental mechanisms, researchers will gain

valuable insight into the mechanisms of the pathology while also highlighting the affected

functional systems. Possible uses of these phenotypes include providing a quantitative mea-

sure that may correlate with behavior markers, aid in diagnosis [87, 100] or may be useful

in predicting the effectiveness of various treatments.

Increasingly the role of structural and functional neural connectivity is being viewed as cen-

tral to our understanding of the brain and the disorders that affect it. At present DW-MRI

is the sole imaging modality able to investigate structural connectivity in-vivo and is now

being routinely used, in the form of DTI, to investigate a wide range of neuropathologies.

While the limitation of the DT diffusion model has spurned the development of a number

of more complex HARDI models, little focus has been placed on the development of analy-

sis methodologies utilizing this improved contrast which are required for population based

group studies. Addressing this need has been the central focus of this thesis.

Three HARDI-based image analysis algorithms have been developed in this work, a spa-

tial normalization algorithm, a WM parcellation algorithm and a method for quantifying

structural connectivity. In Chapter 3 we described and validated our spatial normalization

algorithm. This method makes use of the RSH coefficients of the diffusion model, the FOD

in our case, to align each subjects’ anatomy with that of a template. Simulation stud-

ies were performed to demonstrate the accuracy and efficiency of the proposed method.

Similarly, the proposed approach was compared with state of the art DTI-based registra-

tion techniques, illustrating its ability to better align the WM anatomy, as indicated by
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lower population variances, lower residuals and improved overlap of the population’s WM

volumes.

A data-driven WM parcellation algorithm was discussed in Chapter 4. This process uses

local variations in an FOD image to delineate regions of homogeneous tissue architecture,

facilitating the generation of population specific atlases. The data-driven nature of these

atlases provide control of the granularity of the resulting ROIs, while maintaining lower

regional variances compared with traditional anatomically defined ROIs. The HARDI-

based structural connectivity methodology, presented in Chapter 5, utilizes efficient algo-

rithms and physiologically inspired constraints to compute highly reliable network models

of anatomical connectivity from the FOD images of each subject. These models are shown

to be highly repeatable within the same subject while retaining that ability to discriminate

between the connectivity patterns of different individuals, a critical trait for any measure

to be used to differentiate clinical populations.

Individually each of these developments represent the state of the art in DW-MRI analy-

sis methods, while together forming the core of a comprehensive HARDI analysis toolkit.

Specifically, the development of these methods directly facilitates two analysis approaches

for the investigation of WM pathologies. The first uses local features of WM integrity, de-

rived directly from the HARDI diffusion models, to investigate regional differences in WM

architecture. This requires spatial normalization to establish the spatial correspondence be-

tween the WM anatomy of each subject and WM parcellation to generate population specific

atlases and facilitate regional statistics. The structural connectivity algorithm developed

enables the second analysis approach, wherein population level differences are investigated

at both the global level and at the individual connection level.

These analysis paradigms were applied to two disorders, schizophrenia and autism, demon-

strating the ability of our methods to elucidate physiologically relevant group differences. In

both studies the HARDI-based analysis of the local WM architecture was able to indicate

levels of population difference above those found using current DTI-based approaches. Sim-
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ilarly, our structural connectivity methods were able to demonstrate altered connectivity

patterns within systems thought to be affected by pathology, suggesting that a component

of the functional abnormalities in these systems may be due to aberrant axonal connectivity.

It should be stressed that while these findings are intriguing additional studies are needed

to replicate these findings.

Future Directions

The methodological development, contained in this thesis, presents a number of interesting

avenues for further development. The most immediate path forward is the investigation of

HARDI based scalar measures able to discriminate between normal and pathological WM

tissue. It is clear from the voxel statistics presented in Chapter 6, that the RSH spectral

powers possess discriminating power above those offered by DTI. However, their in depth

study in relation to underlying tissue structure has not yet been fully explored. Other

promising scalars [25, 61, 137] have focused on characterizing individual peaks within each

voxel. The ability to extract peak related measures will offer a continuous representation

of fiber integrity, allowing researchers to investigate how these measures vary as the fiber

pathway passes though various architectures, such as fiber crossings etc. Such representa-

tions may offer a unique insight into the characterization of particular fiber bundles and

how they are affected by pathology.

The clustering technique used to identify homogeneous WM regions offers a number of

possible extensions. The proposed method relies on the FOD model to define the similarity

between WM voxels. The extension of this definition to include additional information

available from either structural connectivity or fiber tracking could feasibly increase the

specificity of the determined ROIs. Such a similarity measure would better capture the

role that each ROI plays in the global connectivity of the brain, providing the regions with

additional anatomical meaning. One of the drawbacks of the clustering approach is that

ROIs are generated from a population average or a template subject, requiring accurate

registration to establish correspondence between subjects. An intriguing alternative is to
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use registration and the proposed method to generate population level ROIs which are then

mapped back into the subject space. The boundaries of the ROIs can then be adjusted to

better match the individual boundaries of the subject’s anatomy. In this way correspondence

between ROIs would be maintained but the individual boundaries would be based on the

specific subject.

The use of structural and functional network models to quantitatively investigate neuronal

connectivity continues to grow. One critical area of these models that is just now beginning

to garner attention, is the way that the GM nodal regions are defined. Most structural

connectivity methods, including ours, rely on registration to establish correspondence be-

tween the anatomically defined nodal regions. Typically, registration is based on cortical

features, such as sulcal and gyral patterns, or using volumetric registration, as is done here.

Such approaches fail to account for the variability in size and location of functional regions

[7, 199]. An alternative approach attempts to directly parcellate the cortex [38] into func-

tionally coherent regions using functional or structural connectivity. The efficient nature

of our structural connectivity method facilitates the computation of high spatial resolution

structural connectivity networks allowing for the development of clustering methods, such

as those utilized to parcellate the WM, to be applied to the cortex. Such methods would

identify GM regions that have similar connectivity profiles, which could be construed as

representing a functional unit.

The final area where research focus is needed, centers on the need to develop sophisticated

statistical approaches able to efficiently analyze structural connectivity matrices. The in-

crease in the spatial resolution of the GM nodal regions comes at the expense of increasing

the dimensionality of the connectivity matrix, which causes statistical challenges when test-

ing for group differences. While improved regional delineation, via methods like those

discussed above, may somewhat ameliorate this issue, the development of sophisticated

dimensionality reduction techniques, such as manifold learning or sparse matrix decompo-

sition, will be needed to mitigate the loss of statistical power.
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Summary

DW-MRI has emerged as a powerful tool enabling the quantitative analysis of neuronal

WM and connectivity. The recent development of advanced diffusion modeling techniques

allows for improved modeling fidelity in regions of complex WM, which is unavailable from

the DT model used commonly today. To date these improved methods have mainly been

utilized within individuals, a fact partially owing to the lack of analysis tools necessary for

successful population-level analysis. This thesis presents a core set of tools, built around

the HARDI diffusion models, that enables the use of these complex diffusion models within

a clinical research setting. As MR acquisition techniques, such as compressed sensing,

continue to lower the acquisition times for DW-MRI pulse sequences, the clinical use of

these new models will increase, as will the utility and necessity of analysis methods such as

those presented here.
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APPENDIX A : Datasets and Common Preprocessing

This appendix describes the three datasets that were used to validate the methods presented

in this thesis, as well as, the preprocessing and model fitting pipelines, that serve as the

initial steps of the analysis framework.

A.1. Imaging Datasets

There are three datasets that are used throughout this thesis. The first focuses on investi-

gating subjects diagnosed with an ASD, using a high b-value HARDI acquisition and low

b-value DTI acquisition (Chapter 6). The TDCs, used as control subjects for this study,

were also used to validate the registration and WM parcellation algorithms, presented in

Chapters 3 and 4 respectively. The second dataset was used to evaluate the repeatability

and sensitivity of the proposed structural connectivity framework, discussed in Chapter

5. Lastly, a low b-value dataset was acquired to investigate the utility of the proposed

framework in subjects diagnosed with schizophrenia.

A.1.1. ASD Imaging Dataset

The ASD dataset consisted of 39 subjects diagnosed with ASD (30 males and 9 females)

and 27 TDCs (14 males and 13 females) serving as control subjects. The groups did not

differ in age (TDC: 11.3 ± 3.0 years, ASD: 11.7 ± 3.2 years). All participants were carefully

screened, using parent report questionnaires and a telephone interview, to ensure that they

did not have a history of current or prior neuropsychiatric symptomatology. Moreover,

structural images were evaluated clinically by a board certified neuroradiologist and all

participants were found to be completely anomaly free.

All imaging was performed using a Siemens 3T VerioTMscanner using a 32 channel head

coil. Structural images were acquired on all subjects using an MP-RAGE imaging sequence

(TR/TE/TI = 19s/2.54ms/.9s, 0.8mm in plane resolution, 0.9mm slice thickness). Addi-
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tionally two DW-MRI acquisitions were acquired:

1. A DTI acquisition was performed using single shot spin-echo, echo-planar imaging se-

quence with the following parameters: TR/TE = 11.0s/75 ms, b-value of 1000 s/mm2,

isotropic 2mm resolution and 30 gradient directions as well as a single b = 0 s/mm2

(b0) image.

2. A HARDI acquisition was also performed using a monopolar Stejskal-Tanner diffu-

sion weighted spin-echo, echo-planar imaging sequence with the following parameters:

TR/TE=14.8s/110ms, b = 3000 s/mm2, 2mm isotropic resolution, and 64 gradient

directions as well as two b0 images.

A.1.2. Schizophrenia Imaging

The SCZ dataset consisted of 66 controls and 66 patients. The dataset was divided based

on gender and each gender group was analyzed separately, to control for the established

differences observed in SCZ between the two genders [105]. The female group consisted of

29 patients and 29 controls while the group of males consisted of 37 controls and 37 pa-

tients. The groups did not differ in age (female controls: 36.6 ± 12.0 years, female patients:

40.2 ± 11.2 years, male controls: 36.3 ± 11.4 years, male patients: 36.0 ± 11.3 years) or

in education. The clinical condition of the patients was evaluated by a psychiatrist and

diagnosed as schizophrenia or schizoaffective type disorder. The University of Pennsylva-

nia institutional review board approved all procedures, including recruitment and consent.

Written informed consent or assent was obtained from participants.

Imaging was performed using a Siemens TrioTM3T scanner with a 12 channel head coil.

Structural images were acquired on all subjects using an MP-RAGE imaging sequence with

the following parameters TR/TE/TI = 1630ms/3.87ms/1.1s, 0.9375mm in plane resolution,

1mm slice thickness. A single shot spin-echo, echo planar imaging (TR/TE=6400/97ms,

1.7mm inplane resolution and 3mm contiguous slices), with 64 diffusion directions with a

b-value of 1000 s/mm2, six b0 images were also acquired on each subject.
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A.1.3. Test-Retest Imaging Dataset

Imaging was performed on 9 subjects (2 Female/7 Male, Age 31.25 ± 4.2 years) at two

time points separated by two weeks. All participants were carefully screened to ensure that

they did not have a history of current or prior neuropsychiatric symptomatology. For each

subject at each timepoint, a whole brain HARDI dataset was acquired using a Siemens

3T VerioTMscanner using a monopolar Stejskal-Tanner diffusion weighted spin-echo, echo-

planar imaging sequence (TR/TE=14.8s/111ms, 2mm isotropic voxels, b = 3000 s/mm2,

number of diffusion directions=64, 2 b0 images, scan time 18 minutes). A structural image

was acquired, using an MP-RAGE imaging sequence (TR/TE/TI = 19s/2.54ms/.9s, 0.8mm

in plane resolution, 0.9mm slice thickness) to facilitate tissue segmentation.

A.2. Processing Pipeline

Two types of processing pipelines are utilized in these studies. One begins with a subject’s

DW-MRI dataset and culminates in the generation of either an FOD image or a DT image.

The second is used to identify the WM and GM volumes of the subject via the segmentation

of the MP-RAGE structural image.

DWI Processing

Each subject’s DWI datasets were submitted to an analysis pipeline consisting of:

• Artifact Removal: The DW-MRI images for both acquisitions of each subject were

filtered using a joint linear minimum mean squared error filter for removal of Rician

noise [169].

• Eddy Current Correction: was then performed using affine registration of each

DWI volume to the unweighted b0 image [92].

• DT Fitting: The subject’s DT image was fit to dataset using linear least squares

fitting routine
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• FOD Fitting: Central WM voxels were first determined via affine registration to an

atlas image. From these WM voxels, those with a high FA (generally 0.6) were chosen

to compute the FIR. The CSD method [166] was then used to compute FOD images

of order 8 (lmax = 8) from the subject’s DW-MRI dataset and their FIR.

Tissue segmentation

White matter volumes were determined from each subject’s structural MP-RAGE image

using the following procedure. Skull-stripping and bias field correction were performed using

the BET [153] tool and N3 bias correction [152]. Tissue segmentation was then performed,

to identify CSF, GM and WM voxels, using an adaptive K-means clustering [131]. A rigid

body registration, between the HARDI b0 image and the bias corrected structural image was

performed. Using this deformation field, the WM segmentation mask was then resampled

into the diffusion space yielding a WM segmentation mask for each subject co-registered to

the FOD image.

Full Pipeline

These pipelines are used in concert resulting in the following preprocessing steps:

1. FOD images are computed using the DWI processing pipeline, this is only mitigated

by the choice of FA threshold used to determine the FIR.

2. If required by the specific study, DT images are also computed using the DWI pro-

cessing pipeline.

3. WM and GM masks are computed using the tissue segmentation pipeline.

4. All output images are co-registered using a rigid body registration into the space of

the FOD images using the FLIRT [91] software.

At the culmination of this pipeline, a subject’s imaging dataset consists of co-registered

FOD, WM and GM images, as well as an optional DT image.
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APPENDIX B : The Real Spherical Harmonics

B.1. Mathematical Definition

The complex spherical harmonic functions (Y m
l ) are solutions to the spherical part of the

Laplace equation computed in spherical coordinates and form a complete orthonormal basis

for complex valued functions on the sphere.

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ

The odd ordered spherical harmonics are not antipodally symmetric, thus are often not

included in expansions of symmetric functions such as those used as HARDI data models.

HARDI models are also real-valued functions, thus the real spherical harmonic functions

provide a more intuitive basis for functions of this type.

We use the normalized real spherical harmonics in order to maintain orthonomality. The

basic definition of our basis set is as follows:

Rml (θ, φ) =


Y m
l (θ, φ) m = 0 , l even

√
2ReY m

l (θ, φ) m < 0 , l even

√
2 ImY m

l (θ, φ) m > 0 , l even

(B.1)

A representation of a real-valued spherical function, f , can be obtained using its projection

into each of these basis functions. These projections yield a succinct representation of f

using its real spherical harmonic (RSH) coefficients (f̃).

Often there are operators that have been defined in the complex spherical harmonics, such

as rotation, that are needed in the RSH space. For this reason it is also often useful to

express Rml directly in terms of the Y m
l functions. Allowing us to describe a change of basis

operation (M) between the two functional basis sets directly. Using the following identity
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for the complex conjugate of Y m
l ,

Y m
l = (−1)mY −ml

ReY m
l and ImY m

l can be expressed as follows:

ReY m
l =

1

2

(
Y m
l + Y m

l

)
=

1

2

(
Y m
l + (−1)mY −ml

)
ImY m

l =
1

2i

(
Y m
l − Y m

l

)
=
i

2

(
−Y m

l + (−1)mY −ml

)
This yields the following expression of equation B.1:

Rml (θ, φ) =


Y m
l (θ, φ) m = 0 , l even

√
2

2

(
Y m
l + (−1)mY −ml

)
m < 0 , l even

√
2i
2

(
−Y m

l + (−1)mY −ml

)
m > 0 , l even

Our implementation of the complex spherical harmonics does not include the Condon-

Shortley phase [9] which is included in the definition of the associated Legendre polynomials

(Pml ). This definition yields the final RSH basis used in this work

Rml (θ, φ) =



√
(2l+1)

4π P 0
l (cos θ) m = 0 , l even

√
2
√

(2l+1)
4π

(l−m)!
(l+m)!P

m
l (cos θ) cos(mφ) m < 0 , l even

√
2
√

(2l+1)
4π

(l−m)!
(l+m)!P

m
l (cos θ) sin(mφ) m > 0 , l even

(B.2)

B.2. Rotations in the RSH basis

In order to represent a rotation operator R in R3, we are interested in knowing the RSH

representation of f ◦ R, where f is a given spherical function. It is well known that using

the complex spherical harmonic (SH) representation f̂ ◦R can be expressed as R̂ f̂ , where
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R̂ is a block diagonal matrix and f̂ are the SH coefficients of f . Each block of R̂, there is

one block matrix for each order (l) of the SH expansion, consists of a Wigner D matrix, Dl

[52], that can be best described using Euler angles, Dl(α, β, γ) = Dl
z(α)Dl

y(β)Dl
z(γ), where

Dl
z(α) is a diagonal matrix whose diagonal elements are e−imα, while the elements of Dl

y(β)

can be expressed as

Dl
y(β)[m′,m] = [(l +m′)!(l −m′)!(l +m)!(l −m)!]

1
2∑

σ

(−1)l−m
′−σ(cos β2 )2σ+m′+m(sin β

2 )2l−2σ−m′−m

(m−mp− σ)!(l −m′ − σ)!(l −m− σ)!

Clearly the computation of Dl
y is more extensive then that of Dl

z, so in applications where

many reorientations must be performed, such as spatial normalization, it is advantageous

to decompose Dl
y(β) into rotations about y and z

Dl
y(β) = Dl

z(
π

2
)Dl

y(
π

2
)Dl

z(β)Dl
y(−

π

2
)Dl

z(−
π

2
)

allowing Dl
z(
π
2 ), Dl

y(
π
2 ), Dl

y(−π
2 ) and Dl

z(−π
2 ) to be precomputed, leaving only the diagonal

matrices Dl
z(α), Dl

z(β) and Dl
z(γ) to be computed for each rotation operation performed.

Once R̂ is computed the rotation operation in RSH space (R̃) can be expressed as R̃ =

M−1R̂M , where M is the change of basis operation from the RSH basis to the SH basis.

B.3. Spectral Powers of the RSH

As discussed above the basis functions of each RSH order (l level) span a subspace which

is closed under rotations [52, 57, 67], since R̂ is block diagonal. This allows us to compute

the spectral power within each order as a rotational invariant feature vector v of a function
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f :

vl =
∑
m

(f̃l,m)2 (B.3)

where f̃ are the RSH coefficients of f . This orientation invariant representation is used a

number of places throughout this thesis, most crucially in the spatial normalization methods

(Chapter 3) and in preforming voxel and regional statistics (Chapter 6).

The interpretation of the RSH spectral powers is of particular interest due to their sensitivity

to the shape of the underlying diffusion model. The most straight forward interpretation

derives from the basis functions that make up each RSH order. The 0th order basis is

isotropic, while the basis functions of the 2nd, 4th and 6th orders respectively have 2, 3

and 4 antipodally symmetric peaks. This certainly encourages the interpretation that the

spectral powers above the 2nd order represent increases in the amount of complex structure.

It is important to consider that, similar to the linear harmonics where higher frequencies

are required to represent shaper features, higher orders of the RSH basis are required to

model sharper, more anisotropic, peaks. For instance, the highest regions of all spectral

powers of the FOD diffusion model, occur in the CC.

B.4. Established Metrics

From an analysis perspective, the utility of the RSH derives from the fact that it provides

a simple linear space to represent many of HARDI diffusion models. This permits the

development of analysis methods which can be applied to any DW-MRI model provided it

is a spherical function.

The inner product provided by the RSH functions

〈f, g〉 =

∫
S
dθdφf(θ, φ)g(θ, φ) =

∞∑
l=0,l even

l∑
m=−l

f̃lm g̃lm (B.4)

allows the definition of two metrics that are used in the various analysis methods presented
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in this thesis

df (f, g) =
√
〈f − g, f − g〉 =

√√√√ ∞∑
l=0,l even

l∑
m=−l

(f̃l,m − g̃l,m)2 (B.5)

dN (f, g) =

√√√√ ∞∑
l=0,l even

l∑
m=−l

1

2
√
πf̃0,0

f̃l,m −
1

2
√
πg̃0,0

g̃l,m)2 (B.6)

dOI(f, g) =

√√√√ ∞∑
l=0,l even

(
∑

(f̃l,m)2 −
∑

(g̃l,m)2) (B.7)

The first of these, equation B.5, is the L2 distance between the RSH coefficients and is thus

sensitive the all aspects of the diffusion model being represented. The second, equation B.6,

is the L2 distance between the RSH coefficients of the normalized functions, and is thus

more sensitive the shape and orientation of the functions than to there overall size. The

L2 distance in the spectral power space, equation B.7, is invariant to the orientation of the

functions and only sensitive their respective shapes.
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Acronyms

ADC Apparent Diffusion Coefficient
ASD Autism Spectrum Disorder

CC Corpus Callosum
CSD Constrained Spherical Deconvolution
CSF Cerebrospinal Fluid
CST Cortical Spinal Tract

DSI Diffusion Spectrum Imaging
DT Diffusion Tensor
DTI Diffusion Tensor Imaging
DW-MRI Diffusion Weighted Magnetic Resonance

Imaging
DWI Diffusion Weighted Image

FA Fractional Anisotropy
FIR Fiber Impulse Response
fMRI Functional Magnetic Resonance Imaging
FOD Fiber Orientation Distribution
FS Finite Strain

GFA Generalized Fractional Anisotropy
GM Gray Matter

HARDI High Angular Resolution Diffusion Imaging

IC Internal Capsule
IFOF Inferior Fronto-occipital Fasciculus
ILF Inferior Longitudinal Fasciculus

MC Monte-Carlo
MR Magnetic Resonance
MRI Magnetic Resonance Imaging

nCD Nodal Connection Density

ODF Orientation Distribution Function
OI Orientation Invariant
OS Orientation Sensitive

PGSE Pulsed Gradient Spin Echo

QBI Q-ball Imaging
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QSI Q-space Imaging

ROI Region of Interest
RSH Real Spherical Harmonic

SCZ Schizophrenia
SD Spherical Deconvolution
SLF Superior Longitudinal Fasciculus
SNR Signal to Noise
SS Sagittal Stratum

TDC Typically Developing Children
TDI Track Density Imaging

WM White Matter
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