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Abstract 

We explore data-driven methods for gaining insight into the dynamics of a two 
population genetic algorithm (GA), which has been effective in tests on constrained 
optimization problems. We track and compare one population of feasible solutions and 
another population of infeasible solutions. Feasible solutions are selected and bred to 
improve their objective function values. Infeasible solutions are selected and bred to 
reduce their constraint violations. Interbreeding between populations is completely 
indirect, that is, only through their offspring that happen to migrate to the other 
population. We introduce an empirical measure of distance, and apply it between 
individuals and between population centroids to monitor the progress of evolution. We 
find that the centroids of the two populations approach each other and stabilize. This is a 
valuable characterization of convergence. We find the infeasible population influences, 
and sometimes dominates, the genetic material of the optimum solution. Since the 
infeasible population is not evaluated by the objective function, it is free to explore 
boundary regions, where the optimum is likely to be found. Roughly speaking, the No 
Free Lunch theorems for optimization show that all blackbox algorithms (such as Genetic 
Algorithms) have the same average performance over the set of all problems.  As such, 
our algorithm would, on average, be no better than random search or any other blackbox 
search method.  However, we provide two general theorems that give conditions that 
render null the No Free Lunch results for the constrained optimization problem class we 
study.  The approach taken here thereby escapes the No Free Lunch implications, per se.   
Keywords: Constrained optimization, Heuristics, Blackbox search, No free lunch   
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1  Introduction 
 
This paper introduces and discusses empirical techniques for gaining insights into the 
dynamics of genetic algorithms (GAs) for constrained optimization. The techniques apply 
to GAs and more generally to evolutionary algorithms (EAs, roughly, any metaheuristic 
that is population-based). Given the present state of analytic results for understanding 
GAs (and EAs), and the No Free Lunch theorems, limiting all blackbox algorithms 
(Wolpert and Macready, 1995, 1997), empirical investigations of these metaheuristics are 
desirable, even unavoidable, if we are to understand them better. Additional research is 
desirable both from an analytic and from an empirical perspective.  Indeed, the two 
approaches should be seen as complementary. In this spirit, we nibble from both sides at 
the problem of understanding GAs.  In what follows, we provide general results that 
show the No Free Lunch theorems do not apply in our setting.  Having accomplished this, 
we discuss data-driven methods for obtaining insight into the evolutionary dynamics of 
the FI-2Pop GA (a variety of GA explained below) that has proven effective for 
interesting constrained optimization problems.  
 
Among other methods, we introduce and report here an empirical method involving 
distances between population centroids evolving during a run of the GA. Our discussion 
hardly exhausts the scope of our distance-based method, let alone empirical methods 
generally. Even so, insights or at least intriguing hypotheses are produced. The 
contribution here is by its nature something of a case study, yet it adds to the long-term 
accumulation of evidence on how GAs work.  

2  Context and Background 

Genetic algorithms meliorize. Heuristics, including GAs and the more general category 
of evolutionary algorithms (EAs), seek better and better decisions for a given objective. 
In doing so, they offer neither a practical guarantee that an optimal decision will be 
found, nor an ability to recognize one if it were found. These properties are 
disadvantages, compared to many optimization procedures established in the Operations 
Research (OR) literature. On the other hand traditional OR solvers also have these 
disadvantages, when problems are nonlinear and have mixtures of boolean, integer and 
real number decision variables. In any event, there is the question of what value GAs 
(and EAs) bring to the table as a practical matter in solving difficult optimization 
problems. But it is often the case that using heuristics, including GAs, is the only 
workable approach. More generally, there is a case to be made for the deployment and 
use of a GA if a GA can get a better decision, even if it takes longer, or if a GA can get 
an equally good decision faster, or if a GA can provide valuable decision making 
information not otherwise readily available.  
 
In all these ways, GAs are promising, are contenders. Constrained optimization, 
however, presents a fundamental impediment to their deployment and use. The difficulty 
is that the genetic operations—including mutation and crossover—are not guaranteed to 
preserve feasibility. A single mutation in a highly-fit individual can, and often in practice 
will, result in an infeasible individual. Similarly, offspring produced by crossover from 
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two highly-fit parents may be infeasible. We give, in §3, a brief introduction to constraint 
handling in GAs. Further elaboration would divert us from the main purposes of this 
paper (but see references cited). In a nutshell, although the matter of constraint handling 
is a severe one for GAs and although much attention has been given to this issue, no 
generally accepted solution has emerged.  
 
Recent work, however, has shown promise and prowess for a feasible-infeasible two-
population (FI-2Pop) genetic algorithm for constrained optimization (Kimbrough, et al. 
2002, 2003, 2004a, 2004b). The FI-2Pop GA has beaten standard methods for handling 
constraints in GAs (Kimbrough, et al. 2002); has regularly produced better decisions for 
comparable computational effort than GENOCOP, a high-quality GA solver engine for 
constrained optimization problems (Kimbrough, et al. 2003, 2004b); has produced 
excellent decisions for problems that cannot be handled by GENOCOP (Kimbrough, et 
al. 2004a, 2004b); and has produced better decisions than GAMS solvers, including a 
case in which GAMS could only solve a relaxed version (Kimbrough, et al. 2004a,).  
 
Promising as these results appear, the No Free Lunch (NFL) theorems for search 
(Wolpert and Macready, 1995, 1997) prove that all blackbox algorithms have the same 
average performance over the set of all problems.  Like most GA (or EA) algorithms FI-
2Pop GA appears to be a blackbox algorithm. If so, FI-2Pop GA would, on average, be 
no better than random search or any other blackbox search method.  We provide two 
general theorems (Theorems 4 and 5) that give conditions that render null the NFL results 
under certain assumptions for the constrained problems we study.  Using these we show 
the approach taken by FI-2Pop GA escapes the NFL implications, per se.  So, in our 
setting, it is possible for one algorithm to dominate another. 
 
Given these (and other) results, it is fair to conclude that the FI-2Pop GA has something 
going for it on constrained optimization problems and merits further investigation. Piling 
up results from new, wider, more difficult tests is, of course, necessary and always 
welcome. Complementing this is the need to understand, to have insight into, when and 
why the FI-2Pop GA should work well and indeed to better understand how it works. 
This latter goal, of understanding the algorithm better, is the focus of this paper.  

3  Constraint Handling in Genetic Algorithms 

The difficulty that arises in using GAs for constrained optimization problems is that 
feasible parents may give rise to infeasible offspring. Considerable attention has been 
paid to treating constraints in constrained optimization problems (see Bäck 1996, Bäck  et 
al. 2000, Coello 1999, Coello 2002 Eiben 2001, Michalewicz et al. 1996, Michalewicz 
1995, 1996, 1997, 2000, Michalewicz and Fogel 2002 (chapter 9), Sarker 2002 and Smith 
and Coit 1997 for excellent reviews and treatments; there is even a dedicated Web site 
Coello, 2003). But no consensus method has emerged.  
 
For example, one useful approach is repair, that is, some process for making infeasible 
individuals become feasible. A second approach is to modify the operators of the GA 
(mutation, crossover, etc.) so that infeasible offspring are less often produced. A third 
approach is to use decoders, which translate any genotype into a feasible phenotype.  
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There are other methods as well. (See Michalewicz (1996) and Eiben and Smith (2003) 
for detailed discussions of  established constraint handling methods.) 
 
Another natural approach does not require problem-dependent knowledge and is the most 
commonly used approach. This is the approach of penalizing each infeasible individual in 
proportion to the size of its constraint violations. A feasible individual is not penalized; 
an infeasible individual is penalized as a function of the magnitude of the violation(s) of 
the constraint(s). Putting this more formally, here is the general form of a maximization 
constrained optimization problem.  
 

max ( ) subject to ( ) ( )
i ix S

Z x F x b G x
∈

c, ≤ , =   (1) 

  
Here, ( )Z x  is the objective function value produced by the candidate solution x (a vector; 
b and c are also vectors; our discussion is limited to the single-objective case).  and  
each yield zero or more constraint inequalities or equalities. Taken as functions, in the 
general case 

F G

Z F G, ,  can be any functions at all (on x) and in particular need not be 
linear.  is the set of permitted values for the iS ix s (the components of the vector x ), 
which are called the decision variables for the problem.  may consist of boolean, real 
value, or integer variables. Problems of the form of expression (1) are not directly 
translatable into the linear encodings normally used for EA (including GA) solutions.  

iS

 
The purpose of a penalty function formulation is to produce a representation of the 
problem that can be directly and naturally encoded as an EA/GA. To illustrate a penalty 
function representation, let x be a solution to a maximization constrained optimization 
problem. Its value, , in the presence of penalties for constraint violation is ( )W x

( ) ( )Z x P x−  and the COP (constrained optimization problem) is replaced by:  
 

 max ( ) ( ) ( )
x

W x Z x P x= −      (2) 

 
where  is the total penalty associated with constraint violations (if any) by x. This 
new value is used in calculating fitness by the GA. Problems representable as in 
expression (2) are directly and naturally encoded as EAs. If an EA finds a solution x that 
is feasible ( ) and has a high value for , then we may congratulate ourselves 
on the successful application of this EA metaheuristic.  

( )P x

( ) 0P x = ( )W x

 
Typically, and by design, the penalty imposed on an infeasible solution will severely 
reduce the net fitness of the solution in question, leading to quick elimination of the 
solution from the EA population. This may be undesirable and it may be responsible for 
the often weak performance of EAs for constrained optimization problems. (The extreme 
form of this policy is to remove infeasible solutions whenever they appear. Many authors 
have discouraged this policy, e.g., Michalewicz (1995a).) 
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4  The Feasible-Infeasible Two-Population GA and 
Intuitions on Its Workings 

The key to our approach is the following.  Conventionally, we select feasible individuals 
with the goal of increasing payoff, while disregarding potential constraint violations. 
Unconventionally, we select infeasible individuals with the goal of repairing them, while 
disregarding potential payoffs. (Details of our algorithm are given in Appendix A.) 
 
The mechanics of the Feasible-Infeasible Two-Population (FI-2Pop) genetic algorithm 
for constrained optimization are as follows. Two populations are provided at initialization 
and maintained throughout the run of the GA. The feasible population contains only 
feasible individuals (aka: solutions, decisions) and the infeasible population contains only 
infeasible individuals. Every individual is tested for feasibility and placed in the 
appropriate population. Individuals in the feasible population are selected by fitness with 
respect only to their objective function values. Individuals in the infeasible population are 
selected by fitness with respect only to a function of their constraint violations. Following 
selection, individuals are created using genetic operators (we use mutation and 
crossover). They are tested for feasiblity and placed in the appropriate population.  That 
is to say, within each population we operate a rather standard GA.  
 
Often in our experiments with various models, simply finding any feasible solution 
whatsoever is a difficult task. It is one of the virtues of the FI-2Pop GA that it can be 
initialized with an empty feasible population and run with the prospect of eventually 
finding feasible solutions. The paper by Kimbrough, Lu and Safavi (2004) presents a 
detailed case study of a good success in which no feasible solutions were found until after 
more than 2500 generations.  
 
We note that there are other varieties of two-population GAs.  The FI-2Pop GA is 
distinct, so far as we know, in maintaining a crisp distinction between evaluation of a 
feasible solution by the objective function and evaluation of an infeasible solution by 
constraint violations. SGGA is a GA that maintains two violation-penalized populations, 
using different penalty functions, and crossbreeds between them (Le Riche, et al., 1995a 
and 1995b). GENOCOP III is based on repair and maintains two populations. The FI-
2Pop GA resembles GENOCOP III in maintaining two populations, one feasible and one 
infeasible (or “not fully feasible” in the case of GENOCOP). GENOCOP repairs 
infeasible solutions and the FI-2Pop GA evolves infeasible solutions towards feasibility. 
See Michalewicz (1996) for a review of both SGGA and GENOCOP. Chu and Beasley 
(1997, 1998) have explored a single-population GA in which each solution receives two 
fitness scores, one on the objective function (or ‘fitness’), one on infeasibility (or 
‘unfitness’). Parents are selected for breeding based only their ‘fitness’ values; 
individuals are removed from the population in order of their ‘unfitness’ values. Yuchi 
and Kim (2004) report success with a two-population scheme in which a portion of the 
infeasible solutions are probabilistically accepted for breeding each generation, based on 
their objective function values. BenHamida and Schoenauer (2000, 2002) have originated 
and explored an approach that, of all of these, is perhaps closest to the FI-2Pop GA. In 
this approach (called ASCHEA), both feasible and infeasible individuals may co-exist in 
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a single population, and the selection operator is designed to encourage both kinds of 
solutions.  
 
The FI-2Pop GA was conceived as a principled response to the known limitations of 
using penalty functions on constraints (described above), and to the tempting view that 
“The ideal way of handling constraints is to have the search space limited to the feasible 
space” (Michalewicz, 1996). We have been motivated by the sentiment of ``Do not kill 
unfeasible individuals’’ (Michalewicz, 1995a), since they may well contain information 
valuable enough for them to be preserved. Penalty functions (using constraint violations) 
are problematic for a number of reasons. First, and most obviously, there is no known 
way to compute the size of the penalties from basic principles. Completely eliminating 
infeasible decisions is generally recognized to produce poor performance. Very high 
penalties are tantamount to eliminating infeasible decisions. Very low penalties lead to 
misdirecting the GA’s search by seeding the population with infeasible decisions that 
score well on the objective function. A middling degree of penalization would seem to be 
called for, but on what scale is it to be measured? No principled answer has been 
forthcoming and penalty-function approaches are generally thought to perform less well 
than systems such as GENOCOP, which use forms of repair and other devices.  
 
Second, and more fundamentally, penalty function approaches conflate objective function 
evaluation and constraint violation evaluation. If these could be separated by applying 
one or the other, then arguably or at least intuitively, it would be possible to do better at 
each. The FI-2Pop GA can be seen as achieving this, at least approximately. Feasible 
decisions are evaluated only with regard to the objective function, infeasible decisions 
only with regard to the constraints. In a penalized approach, an infeasible decision is 
subjected to evaluation with regard to both its objective value and its constraints, thereby 
reducing the effect of selection for feasibility.  
 
Third, optimal solutions to constrained problems are either in the interior of the feasible 
region or they are on or near the boundary of the feasible region. Selection on the 
infeasible population in the FI-2Pop GA will drive the population to, and eventually over, 
the boundary. If the optimal solution is on or near the boundary, this represents enhanced 
exploration. The infeasible population will tend to probe the neighborhood of the 
boundary of the feasible region (or boundaries; nothing in this argument requires a 
connected boundary). Feasible children of infeasible parents will tend to resemble them 
(as all children do), and hence tend to be near by. Because the infeasible parents were 
selected without regard to their objective functions, mutation and crossover will tend to 
create feasible solutions that presumably are somewhat different than those already in the 
main population. These solutions either succeed or fail; in either case they contribute to 
an exploration of the feasible region. Thus, if the optimal solution is on or near the 
boundary, one would expect that the infeasible population would contribute to finding it.  
 
On the other hand, if the optimal solution is in the interior, away from the boundary, the 
infeasible population may not be useful; the result is merely a slower, but otherwise 
unimpeded GA on the feasible population. The quality of the decisions found may not be 
affected. Further, it might seem that maintaining a progressively diminishing population 
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of infeasible solutions is wasteful if the optimal solutions are far from the boundary. 
However, for problems where it happens to be difficult to obtain feasible solutions the 
breeding of infeasible solutions near the boundary may be a useful, even primary, source 
of feasible solutions.  
 
Of course, in the special case of a problem having its optimal solutions in the interior, and 
also having near-optimal solutions near the boundary, one might expect the FI-2Pop GA 
to be deceived and to settle on these near-optimal, near-boundary solutions.  Perhaps this 
is a case in which the death penalty approach would perform better. 
 
We are pleased to note that we are hardly the first to have the intuition that probing the 
boundary of the feasible region of a constraint set is likely to yield useful information.  In 
the evolutionary computation community, important early work by Schoenauer and 
Michalewicz (1996, 1998) recognized the value of boundary exploration. Their work 
presented techniques by which GAs may explore the boundary of the feasible region.  
These techniques achieved excellent results in certain cases.  As noted by these authors 
themselves and in a review by Coello, these particular approaches are unlikely to be the 
final word on the subject. 
 

The main drawback … is that the operators designed are either highly 
dependent on the chosen parameterization…, or more complex 
calculations are required to perform crossover and mutation.  Also, many 
problems have disjoint feasible regions and the use of operators of this sort 
would not be of much help in those cases since they would explore only 
one of those feasible regions. (Coello 2002) 

 
In any event, it is well worth investigating multiple approaches by which GAs may probe 
boundaries between feasible and infeasible regions for a COP. 
 
In sum, by separating objective function evaluation and feasibility evaluation the FI-2Pop 
GA circumvents the problem of misdirecting the genetic search by infelicitous 
compromise between criteria for the objective function and for the constraints. Further, 
the infeasible population serves as a reservoir of genetic information that probes the 
boundary region of the feasible region, and contributes variation to the feasible 
population. And variation is a prerequisite for selection.  
 
We admit these are intuitive arguments, however plausible at some level. But they are 
testable. Let us see if there are data that corroborate them.   However, we first contend 
with possible a priori reasons for rejecting our intuitive arguments – the NFL theorems. 
 

5  No Free Lunch and Penalty Function Search 

 
Wolpert and Macready (1995, 1997) introduced the No Free Lunch theorem for search 
which shows that any two blackbox algorithms (deterministic or stochastic) have the 
same average performance over all possible problems.  Some implications of this result 
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are that (1) all blackbox algorithms have the same average performance as random search 
over all problems and (2) showing that one’s favorite blackbox algorithm dominates 
another on a subset of problems is also showing its inferiority averaged over the 
remaining problems. 
 
Using a new characterization of NFL given by Schuhmacher, Vose and Whitley (2001), 
Koehler (2004) looked at three types of combinatorial problems and determined when the 
NFL results do not apply.  Igel and Toussaint (2003) provided another approach for 
deciding when NFL does not apply.  This section continues that line of inquiry while 
allowing constraints to be combined with objective values (as discussed in Section 3 
above) or to be used separately (as discussed in Section 4).  
 
Let  be a finite search space, Y  a finite set of objective values and  be the 
set of all possible discrete objective functions for this problem class.  We consider non-
repeating, blackbox algorithms (henceforth, called just algorithms) that, after t steps, 
choose a new point, , from the search space depending on the history of prior 
points examined,  and any function on them, including the objective function.  
Genetic Algorithms, Simulated Annealing, and Tabu Search largely fall into this 
category. 

X XF = Y

t+1x ∈ X

t1x , ..., x

 
Let α  represent an algorithm, t the number of iterations or steps so far,  the 
particular objective function being optimized and the history of objective values as 

f ∈ F

( ) ( ) ( )t1Y f, t, = f x f xα , ..., .   
A performance measure, ρ , maps ( )Y f, t,α  to the real numbers.  Wolpert and Macready 
(1995, 1997) proved the following No Free Lunch theorem.   
 
Theorem 1 (NFL-1): 

For any two algorithms 1α  and 2α , any { }t 1, ...,∈ X , any , and any 
performance measure, 

z ∈ℜ
ρ , 

 ( )( )( ) ( )( )( )
f f

z, Y f, t, = z, Y f, t,
∈ ∈
∑ ∑1 2

F F

δ ρ α δ ρ α . 

 
Here ( )δ  is the usual Kronecker delta function.  This theorem states precisely the 
informal characterization above, viz., that any two algorithms, 1α  and 2α , will have the 
same performance when averaged over all possible problems. 
 

Remark (Technicalities):  The NFL model applies also to (1) algorithms that can revisit 
already observed points by recording all discovered points and outputting only newly 
discovered ones (Wolpert and Macready 1997); (2) stochastic algorithms, which in 
practice use pseudorandom number generators, so including these with an initial seed 
converts a stochastic algorithm to a deterministic one (Radcliffe and Surry 1995); (3) 
algorithms that stop since they can be restarted with a randomly chosen new point in the 
search space; and (4) continuous problems if they are run on finite computing machines.  
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This last point pertains to the problem we study later in this paper. 
 
A common criticism of NFL-1 is that one does not usually claim their algorithm is able to 
solve “all instances of problems” better than some other method and so NFL may not 
apply.  Schuhmacher, Vose and Whitley (2001) examined whether subsets of  could 
also have such implications.  While affirming this they present an alternative 
characterization of NFL that we find useful. Let 

F

π  be a permutation mapping of  (i.e., X
π →: X X ) and  be the set of all permutation mappings of X .  That is, if one 
considers  as an ordered set,  

( )Π X
X π  is a reordering of the set.  A set  is “closed 

under permutation of ” (or “F is cup” for short) if for any 
F ⊆ F

X ( )π Π∈ X  and any f F∈  
then f g Fπ ≡ ∈ .  
 
Theorem 2 (NFL-2): 

For any two algorithms 1α  and 2α , any { }t 1, ...,∈ X , any , any  
and any performance measure, 

z ∈ℜ F ⊆ F
ρ , 

 ( )( )( ) ( )( )( )
f F f F

z, Y f, t, = z, Y f, t,
∈ ∈
∑ ∑1 2δ ρ α δ ρ α  

if and only if F is cup. 

 
We now operationalize the idea of “cup” to examine constrained problems handled using 
penalty functions.  Suppose Z  is a finite set of non-negative values and .  One 
interpretation might be that g  specifies the level of infeasibility for each entry of X  
(a zero level means the related point is feasible).  For example, this might arise in a 
problem having just one constraint or many constraints mapping to some overall measure 
of infeasibility (say by a linear combination).   

XG = Z
∈G

 
As discussed earlier, there are several approaches used by blackbox algorithms to handle 
infeasibilities.  A common approach to solving constrained problems (whether by 
blackbox algorithms or some other approach) is to convert them into unconstrained 
problems.  Two approaches in our context are immediate.  In the first approach, we can 
redefine  to include only feasible points.  For example, when using genetic algorithms 
as a search engine, some problems naturally having infeasibilities can be searched using 
operators that maintain feasibility.  Operators such as cycle crossover, order crossover 
and partially matched crossover (see Goldberg 1989) maintain the feasibility of tours in 
traveling salesman problems.  However, these problem sets may still fall under the NFL 
results. 

X

 

A second approach is to keep the original search space, X , but incorporate penalties into 
the objective function for violations of the constraints.  For an objective function f ∈ F ,  
and infesibility measure , and , a standard penalty function objective value 
looks like  for 

g ∈G λ > 0
( ) ( ) ( )p x = f x - λg x x ∈ X .  Suppose  and  where both F 

and G are cup.  Let 
F ⊆ F G ⊆G
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{ }λ = f - λg : f F g G∈ ∈P , .   

Clearly  is also cup and the NFL results would hold.  So, even allowing any penalty 
function appears to suffer the same fate as the original algorithm.  

λP

 
Suppose, however, that the infeasibility measure g ∈G  is fixed and has at least two 
different values (e.g., there is at least one feasible and one infeasible point of ).  
Define 

X
( ) { }λ g = f - λg : f F∈P .  We will show that ( )λ gP  cannot be cup and, hence, 

that the No Free Lunch results do not apply on .  Before giving this result, we give a 
matrix interpretation  of cup. 

X

 
Let F  be an X  by F  matrix formed using the elements of F as columns, we have the 
following  alternative definition.   
 

Definition (Closed under Permutation) 
F is cup if and only if for any row permutation matrix P there is a column 
permutation  such that PQ PF = PFQ . 

 
With this view of cup, we have the following useful result. 
 
Lemma 3:   
 If F is cup then Fe = βe  for some  where e is a vector of ones of size β F . 
 
Proof: 

For any permutation matrix P, PFe = PFQ e = PFe .  Then Fe  must have identical 
row elements. 

� 
 
The following shows that ( )λ gP  cannot be cup when g has at least two distinct values 
even though F is cup.  In the following, the transpose of a vector (say x) is given as . x'
 
Theorem 4: 

Suppose F is cup.  For fixed g with at least two different values and any non-zero 
, λ ( )λ gP  is not cup. 

 
Proof: 

Suppose ( )λ gP  is cup.  Then for any f F∈  and permutation matrix, P, 
( )λPf - λPg g∈P .  Then the columns of F - λge'  are the elements of ( )λ gP  

where e is a vector of ones of size F .  Since ( )λ gP  is cup, for any permutation 
matrix P there is a column permutation  such that  PQ

( ) PPF - λPge' Q = F - λge' . 
Summing over all P gives 
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 ( ) ( )P
P

PF - λPge' Q = ! F - λge'∑ X . 

Postmultiplying by vector e and dividing both sides by X ! gives 

 ( )1 ee'Fe - λee'ge'e = Fe - λge'e
X

. 

(Note, ( )
P

P = - 1 ! ee'∑ X ).  Noting that Fe = βe  for some β , since F is cup, 

and collecting terms gives 
  γe = λg
for some .  Since λ  this gives that g is proportional to the vector of ones.  
However, this contradicts the requirement that g has at least two different values.  
Hence, 

γ 0≠

( )λ gP  is not cup. 
� 
 
Remark:  The motivation for assuming there is a fixed g comes from considering a 
search space that has additional structure (such as constraints) that are immutable 
regardless of the particular objective values.  So Theorem 4 shows that the NFL theorems 
do not apply to any blackbox algorithm searching over X  using penalty functions 

( )λp ∈P g  when g has at least two different values. 
 
FI-2Pop GA does not directly use penalty functions but rather operates over two 
populations that are subsets of X .  The feasible population has members, x, where 

 and fitness function ( )g x = 0 ( )f x .  The infeasible population has members with non-
zero  and greater fitness based on smaller ( )g x ( )g x  values.  When the two populations 
evolve, they may produce members for the other population.  We contend that this 
procedure will also escape the NFL curse.  
 
To capture the driving objective of FI-2Pop GA, we first form a composite search 
function representing the two parts of the FI-2Pop GA approach.  We also use the 
standard GA view of fitness where more is better.   For any f F∈  define a related 
function f  defined by 

 ( )
( ) ( )

( ) ( ) ( )

M - λg x g x > 0
f x

f x - λg x g x = 0

⎧
⎪= ⎨
⎪
⎩

 

where  and .  This function captures the effective overall search 

function used in FI-2Pop GA.  Let  be the set of these functions for a fixed M, g and 
. 

( )
x

M > λmax g x
∈X

λ > 0

M,g,λF
λ > 0
 
Remark:  Typically GA fitness values are required to be positive so selection operators, 
such as the roulette method (Goldberg , 1989), don’t lead to divisions by zero.  Provided 

 has positive entries, the choice of M above is sufficient to guarantee a positive fitness 
measure.   
Y
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As was done earlier with F, we find it useful to have a matrix counterpart for .  For 
fixed  let 

M,g,λF
g ∈G

( )
( )

( )

1 g x >
g x

0 g x =

⎧
⎪= ⎨
⎪
⎩

0

0
 

We can write a matrix of  functions as M,g,λF

 ( )F - d g F + Mge'  
where ( )d g  is the diagonal matrix having diagonal g . 
 
The following shows that these  functions also escape NFL. M,g,λF
 
Theorem 5: 

Suppose F is cup.  For fixed g with at least two different values and positive , 
 is not cup. 

λ
M,g,λF

 
Proof: 

Suppose  is cup.  Since  is cup, for any permutation matrix P there is a 
column permutation  such that  

M,g,λF M,g,λF

PQ
( )( ) ( )PPF - Pd g F + PMge' - λPge' Q = F - d g F + Mge' - λge' . 

Summing over all P, postmultiplying by vector e and dividing both sides by X ! 
gives 

 ( )( ) ( )ee' Fe - d g Fe + Mge'e - λge'e = Fe - d g Fe + Mge'e - λge'e
X

. 

Noting that Fe = βe  for some β , since F is cup, and collecting terms gives 
 γe = Mg - λg  
for some .  Let such that γ ∈1 2x ,x X ( ) ( )g g≠1x x2 .  There are three cases.   

 ( )g 1x  ( )g 2x  Implication 
0 1 ( )M = λg 2x  
1 0 ( )M = λg 1x  
1 1 ( ) ( )λg λg=1 2x x  

 
All three lead to contradictions.  In the first two cases the contradiction arises 
from the fact that 

( ) ( )kx
M > λmax g x g x

∈
≥

X
  

for k=1,2. In the third case the contradiction comes from the fact that 
.  Hence  is not cup. ( ) (g g≠1x x )2 M,g,λF

� 
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As noted, when any constraint set is possible, the resulting problem class 

{ }λ = f - λg : f F g G∈ ∈P ,  still falls under NFL.  That is for any subset G of G for 
which one’s algorithm does better than random search, then on the complement subset 
the algorithm must do worse than random search.  Theorem 5 shows that the NFL results 
do not apply to constrained problem classes involving “fixed constraints”.  Many 
practical problems have constraints that reflect domain structure (like routes or 
relationships) that do not change very often, so considering settings with fixed constraints 
is not unreasonable.   
 
When the constraints are fixed and NFL does not apply, a given algorithm may be better 
or worse on average than random search.  FI-2Pop GA is one such algorithm.  Whether it 
performs better or worse than random search for a fixed constraint set, on average, is 
unknown.  So we turn to empirical insights.  Let us see if there are data that corroborate 
them for the Yuan problem.    
 

6  Example Problem: Yuan 

Empirical investigations are by nature focused on particulars.  We discuss results for a 
single constrained optimization problem, called Yuan, as it is solved by the FI-2Pop GA. 
The particular results we present for Yuan are entirely typical and representative in our 
experience.  Generalization to other constrained optimization problems is, of course, 
more problematic. But one has to begin somewhere and finding felicitous ways of 
empirically examining particular cases is surely among the foundational elements of the 
enterprise. 
 
Yuan, the model for our case study, is discussed in Floudas, et al. (1999), page 266 and 
was originated in Yuan et al. (1988). The model is nonlinear (quadratic and logarithmic) 
in the objective function and quadratic in the constraints. Moreover, it is a mixed-integer 
model, with three continuous variables and four binary variables. Genocop III is unable 
to handle models of this sort (Michalewicz, 2003). Yuan’s formulation is as follows.  
 
Objective function:  

      2 2
1 2 3min ( 1) ( 2) ( 1)

,
= − + − + −

x y
z y y y 2

2    (3) 2 2
4 1 2 3ln( 1) ( 2) ( 2) ( 3)− + + − + − + −y x x x

 
Constraints:   

      (4) 1 2 3 1 2 3 5+ + + + + ≤y y y x x x

 
2 2 2 2
3 1 2 3 5 5+ + + ≤ .y x x x     (5) 

 1 1 1 2+ ≤ .y x      (6) 
 2 2 1 8+ ≤ .y x      (7) 

 3 3 2 5+ ≤ .y x      (8) 
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 4 1 1 2+ ≤ .y x      (9) 

 
2 2
2 2 1 64+ ≤ .y x      (10) 

 
2 2
3 3 4 25+ ≤ .y x      (11) 

  
2 2
2 3 4 64+ ≤ .y x      (12) 

 
 

 1 2 3 0, , ≥x x x      (13) 
 1 2 3 4 {0 1}, , , ∈ ,y y y y     (14) 

 
 
As reported by Floudas, et al. (1999), page 266 and Yuan et al. (1988), the value of the 
objective function at optimality is , with the decision variables set at 

 and .  
4 5796∗ = .z

' '(0 2 0 8 1 908)∗ = . , . , .x ' '(1 1 0 1)∗ = , , ,y
 
We describe now results from one quite typical run of the FI-2Pop GA on the Yuan 
problem. (The FI-2Pop GA quite reliably solves Yuan, at least to a close approximation, 
regardless of  which (pseudo) random stream is used to drive the algorithm.  In general, 
we have found the FI-2Pop GA to be robust to mutation rate, crossover rate, and random 
number streams. We have not systematically investigated changing the population sizes 
from 50, which we use here, as does GENOCOP.) At the end of 5,000 generations of 
alternating feasible and infeasible genetic exploration (fitness evaluation effort equivalent 
to 10,000 generations in an ordinary GA), +z , the objective function value of the best 
solution found, is 4.579588292413069. The variable settings in this solution are 

, ' (1 1 0 1)= , , ,y 1 =x  0 199998178908325. , 2 0 799999776184869= .x , 
.  3 1 90787728616851= .x

 
Table 1 presents selected summary data from the feasible population, and Table 2 
presents corresponding data from the infeasible population. Table 3 is a statistical 
summary, comparing the feasible and infeasible populations during this (typical) run. 
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Gen avg ( )z   med ( )z   best ( )z   Out  
0  12.69753170008833  12.398377718036665 7.298187351684621  0   
1  10.52503068528554   7.630487622288854 7.298187351684621  9   
         

132  5.36305664951297  4.610611805470927  4.610611805470927  6   
133  4.99901681120808  4.610611805470927  4.610611805470927  7   
134  4.81104648604527 4.610611805470927  4.603632841228659  4   

135  4.96313052073980  4.610611805470927  4.603632841228659  6   

136  5.26538645226870  5.079621323943361  4.603632841228659  6   

         
4995 4.68126360720397  4.579599345059113  4.579591950631037  5   

4996 4.60738886320887  4.579603549120526  4.579591799618665  4   

4997 4.62737103827847  4.579599499443619  4.579589330419115  3   

4998 4.73349190807531  4.579603549120526  4.579588292413069  1   

4999 4.59961540370377  4.579597549265095  4.579588292413069  2   

Table 1. By-generation summary of the feasible population in a typical run of Yuan. 
Gen=generation. avg ( )z =average objective function value by generation. med ( )z =median 
objective function value by generation. best ( )z =best solution found so far. Out=number of 
infeasible progeny produced by generation. 

6.1. Evaluation of the Feasible Population 

The feasible population rather quickly finds solutions within 0.5% of optimal by 
generation 136. Table 3 shows a subsequent slow, steady improvement in z+ on the 
average. The variance of the feasible population appears to stabilize (Table 3, column 7), 
but cannot go to zero because of mutation and continuing immigration.  In any event, the 
two-population GA evidences excellent performance on this challenge problem from the 
literature, which is nonlinear in both the objective function and the constraints, and has a 
mixture of integer and real (floating point) decision variables. 

6.2. Evolution of the Infeasible Population 

As seen in Table 3, the average infeasibility of solutions in the infeasible population 
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becomes closer to 0 as the run progresses. In the run under display here, the average 
infeasible solution moved towards feasibility from a distance of 0.2005 during 
generations 900 through 999, to a distance of 0.0126 during generations 4900 through 
4999.  (Distance is measured as the sum of constraint violations.) 

The infeasible solutions are not subjected to selection with regard to the z (objective 
function) values. Most interestingly, the z values in the infeasible population nevertheless 
clearly move towards z+ (or z*) as the run progresses. In the end, the best infeasible z 
values are not far from the optimal value, z*. Compare the rightmost two columns of 
Table 3. Note that there is an overall reduction in the variance in z in the infeasible 
population as the generations progress. This is in contrast to the variance in z for the 
feasible population, which does not appear to decline during the last 1000 generations. 

 
Gen avg ( )z   med ( )z   avgInfeas  Out 

0  8.143224744257274  8.368698923454343 -1.847537037871579  0  
1  8.397975429018375  9.022887244519183 -1.117432495052733 1  
        

132  6.962531847852802  6.519229712067366 -0.2484526749970332 5  
133  7.267970477305616  6.823406269075488 -0.1299943868051112 2  
134  7.706505082745875  6.038927899546921 -0.0885399858116163 1  
135  6.521347185201272  5.257514914110913 -0.1733602611829584  5  
136  7.175989168243694  7.516553449635433 -0.1418062323207774 6  

        
4995 5.715105134746020  4.926231680014258 -3.1601861983921E-6  0  

4996 5.516678970813462  4.926229526679555 -0.0159576078217629  0  

4997 5.890533806672197  4.926189743129405 -0.0159577549401262  1  
4998 6.115080232697109  5.079615346523230 -2.3668425574097E-6  2  

4999 5.742802940813199  4.926184475169487 -0.0159587755577582 0  

Table 2. By-generation summary of the infeasible population in a typical run of Yuan 
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6.3. Mixing between the Feasible and Infeasible Populations 

The infeasible population can produce offspring that are feasible. Although this might 
seem to be unlikely, our example data show the infeasible population was steadily 
producing feasible solutions. See the InF→Fea column in Table 3. We also note some 
indication of modestly declining productivity as the run progressed.  

Column Fea InF in Table 3 shows the feasible population produced infeasible offspring 
at roughly double the rate InF→Fea of the infeasible population. Fea→ InF may, 
however, be declining more rapidly than InF→Fea.  

→

These data support a consistent picture of what is happening in the two-population GA 
data (in this typical run for this problem, but in our experience it is representative). 
Selection is driving the feasible population closer to the boundary of the feasible region. 
Not only is there improvement in z+ over time; there is steady but fluctuating 
improvement in the average z each generation. Similarly, selection is driving the 
infeasible population closer to the boundary separating the feasible and infeasible 
regions.  

 
Generations Infeasibility InF Fea → Fea InF → +z   med InFz 2

Feazσ  2
InFzσ

0–99  -0.2824 3.5400 7.3000 5.222503 7.123 2.302 6.839 

900–999  -0.2005 3.4100 6.6200 4.594130 6.577 0.840 8.928 

1900–1999  -0.0453 3.3100 6.4000 4.581232 9.468 1.015 7.713 

2900–2999  -0.0858 3.0400 6.4800 4.579938 5.926 0.426 3.302 

3900–3999  -0.0501 2.7000 6.3300 4.579845 5.103 0.251 1.775 

4900–4999  -0.0126 3.2900 4.8200 4.579653 5.245 0.253 0.948 

Table 3. Yuan Results: Averages over 100 generations. Infeasibility= sum of absolute 
violations of constraints (averaged over each solution for 100 generations). InF→ Fea=number of 
feasible offspring from the infeasible population (by generation, averaged over 100 generations). 
Fea InF =number of infeasible offspring from the feasible population (by generation, averaged 
over 100 generations). =best solution found in the feasible population (by generation, averaged 
over 100 generations). med =median objective function value in the infeasible population (by 

generation, averaged over 100 generations). 

1− ⋅

→
+z

InFz
2

Feazσ =variance of objective function values in the 

feasible population (averaged over all solutions in 100 generations). =variance of objective 
function values in the infeasible population (averaged over all solutions in 100 generations). 

2
InFzσ
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1x   2x   3x   1y 2y  3y  4y  
0.019176639369240966 0.12188533340384183 1.5120185756147242 1 1  0  1   

Table 4. Gen=20, z=8.010270704398303, sumSlack= 10.515981932347778. First appearance of  
(1, 1, 0, 1) in the feasible population. 

 

6.4  Genetic Benefits of Population Immigration 
The ebb and flow of offspring from one population to the other has two benefits. First, 
useful genetic materials are less likely to be lost than in a one-population GA. Second, 
these useful materials tend to diffuse into both populations.  
 
Detailed examination of the run reveals that alleles and patterns of alleles (building 
blocks) will often arise in one population, quickly move to the other, and then be 
maintained indefinitely in both populations. Consider, for example, the pattern 

 that appears in . As shown in Table 4, this pattern first appears in the 
feasible population in generation 20. It is lost to the feasible population, but reappears 
beginning in generation 26 of the infeasible population and is present in generally 
increasing numbers for the remainder of the run.  

' (1 1 0 1)= , , ,y ∗z

 
As shown in Table 5, starting in generation 26 this pattern maintains its presence in most 
of the remaining generations of the infeasible population. The floating point ix  variables 
evidence a similar dynamic. All of this supports the hypothesis that both populations are 
actively exploring valuable genetic material.  
 

1x  2x  3x  1y 2y  3y  4y  
1.0255729805767875 0.556585764572967 1.5120185756147242 1 1 0  1   

Table 5. Gen=26, z=5.605040171124676, sumInfeas = -1.7453232819180533. 
First appearance of (1, 1, 0, 1) in the infeasible population. 

6.5  Potential Tradeoffs Revealed in Infeasible Population 
At generation 236, there appears in the infeasible population a solution with z = 
4.47002605609438, which is much better (smaller) than the optimal solution . This 
infeasible solution is at: 

*z
1 0.195462908809646x = , 2 0.795752247026746x = , 

,  and 3 1.96768190221611x = 1 2 4 1y y y= = = 3 0y = . All the variable values in this 
solution are close to their correspondents in +z  (and ), except *z 3x .  Further, only one 
constraint is violated, ( ), which comes in at 4.871772068.  2 2

2 3 4.64y x+ ≤
 
This is potentially valuable information. Constraints may often be relaxed, for a price. 
This infeasible solution at generation 236 provides a specific measure of the shadow 
price for constraint ( ). If the benefit achieved by improving (here, 2 2

2 3 4.64y x+ ≤

 18



reducing)  is greater than the cost of relaxing this constraint enough to make this 
solution feasible, then the decision maker has been presented with an opportunity 
discovered by the algorithm. Such opportunities often occur in practice. Hundreds if not 
thousands of specific potential such opportunities are apparent from the data in the 
infeasible populations of this typical run. (We note that this concept is explored, but in 
the context of a conventional single-population GA in Kimbrough et al. (1993, 1994) and 
Branley et al. (1997). Kimbrough and Wood (2006) explore the concept in the context of 
the FI-2Pop GA.) 

+z

7  Distance Tracing: Yuan 

7.1 Distance Metric 

Much can potentially be learned about the operation of the FI-2Pop GA by viewing 
decisions (aka: solutions, i.e., settings of the decision variables) as points in decision 
space and by measuring distances between decisions or populations of decisions. Given 
two decisions, x and y, quite a few distance measures have appeared in the literature, but 
the square of the Euclidean distance between x and y is natural and robust, 
 

( ) ( )'x y x y− −  
 
and it is what we have used in our investigations. We have focused on comparing 
populations, and have represented the centroids of the populations as the averages of the 
solution vectors in each population.  For our two populations we denote these averages as 
the vectors xμ  and yμ . 
 
Two complications intervene. First, as in Yuan, decision variables may be integers, and 
may thus have non-integral means. We simply treat all decision variables as real numbers 
for the purpose of computing distances. Second, distance metrics are sensitive to scale. It 
is appropriate, even mandatory, to convert all decision variables to a common scale for 
proper comparison. Further, it is desirable (for treating each decision variable equally) to 
remove linear associations between decision variables. To this end, we rescale our data 
with an inverse covariance matrix obtained from a large sample of both the feasible and 
infeasible populations. Specifically, we sample both populations every 25 generations, 
combine the results, and calculate 1C−  the inverse covariance matrix of the sample. 
Incorporating this rescaling, using the covariance matrix, our scaled distance function is 
the square of the Mahalanobis distance measure (Mahalanobis 1936): 
 

( ) ( ) ( )1, 'x y x y xd C yμ μ μ μ μ μ−= − − . 
 
We shall now discuss some of what may be learned using this distance metric.  
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7.2  Plots with the Metric 
Figure 1 presents two dimensions of information about the evolution of the system as it 
confronts the Yuan problem. The density plot displays the distances between the 
centroids of the feasible (ordinate, vertical dimension) and infeasible (abscissa, horizontal 
dimension) populations for the first 200 generations of the run. Darker cells indicate 
smaller distances, lighter cells, larger distances. There are two lighter-colored bands, one 
running horizontally, one vertically (and somewhat less pronounced). The darker squarish 
area near the origin, in the southwest corner, evidences very little pattern, indicating no 
very clear trends during the first 25 or so generations. The horizontal lighter-colored band 
indicates that after about 30 generations every infeasible population is comparatively far 
away from the feasible populations of the first 25 generations or so. A similar 
interpretation in stronger form attends the horizontal band. North of the horizontal band 
and east of the vertical band lies most of the territory during the first 200 generations. 
This area is remarkably uniform. It does not get discernibly darker as it moves east, 
indicating little if any movement of the two populations towards each other. Most 
interestingly, however, the area is replete with vertical stripes, suggesting a function of 
one variable, and in particular suggesting that after roughly 30 generations every feasible 
population is essentially equidistant from every infeasible population (older than roughly 
30 generations). Put more carefully, if we fix on any infeasible population (older than 
roughly 30 generations), then every feasible population (older than roughly 30 
generations) is nearly equally distant from it. Recall that distances are for population 
centroids. What this indicates is that the centroid of the feasible population quickly settles 
down and remains fairly stable, while the centroid of the infeasible population is moving 
about.  

  
*** Insert Figure 1 about here *** 
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Figure 1. Yuan Plot. First 200 generations. Feasible population: abscissa. Infeasible population: ordinate. 
Light=further apart. Dark=closer.  

 
Figure 2 reinforces Figure 1 by plotting the distance between the feasible and infeasible 
populations (sampled every 25 generations) over the entire run. (The run lasted 5000 
generations, so sampling every 25 generations produces 200 data points.) Clearly, there is 
a strong trend of diminishing distances between the centroids of the two populations even 
though the two populations are being selected with quite distinct fitness functions.  As 
measured by their centroids, the feasible and infeasible populations are getting closer to 
each other. 
 

*** Insert Figure 2 about here *** 
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Figure 2. Yuan Plot. Distances between the feasible and infeasible populations, sampled every 25 
generations. 

Figure 3 also reinforces Figure 1. It plots the distances from the feasible population, 
sampled every 25 generations, to the infeasible population of the final generation (5000). 
Not much trend is apparent, indicating that the centroid of the feasible population moves 
very little and implying, in conjunction with Figure 2, that it is the infeasible population 
that does most of the moving.  
 

*** Insert Figure 3 feasVsInfeas200.pdf about here *** 

 

 
Figure 3. Yuan Plot. Distances between the feasible population and infeasible population at 

generation 5000 (=25*200), sampled every 25 generations.  
 
So far, we have demonstrated that for this run of Yuan the infeasible population is 
moving its centroid much more than the feasible population. But is the feasible 
population moving at all? Figure 4, which shows the distances of the feasible 
populations, sampled every 25 generations, from the feasible population at generation 
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5000 (=200*25), establishes that it does.    
 

  
*** Insert Figure 4 ListPlotYuanFeaFea200Every25.pdf about here *** 

 
Figure 4. Yuan Plot. Every 25 generations. Feasible population: abscissa. Distance to Feasible 

population at generation 5000 (=200*25): ordinate.  
 
Figure 5 is the analog of Figure 4, but for the infeasible populations instead of the 
feasible populations. Again, the same general pattern obtains in the two figures. What is 
different is the scale on the ordinate, demonstrating that the centroid of the feasible 
populations has moved little compared to the movement of the centroid of the infeasible 
populations.  
 

*** Insert Figure 5 ListPlotYuanInFeaInFea200Every25.pdf about here *** 

 
Figure 5. Yuan Plot. Every 25 generations. Infeasible population: abscissa. Distance to Infeasible 

population at generation 5000 (=200*25): ordinate.  
 
Now we divide the feasible population into incumbents (offspring of feasibles) and 
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immigrants (offspring of infeasibles). Note that in many generations there were no 
feasible children of the infeasible population that survived initial selection in the feasible 
population. In these generations the distance between the daughters of the feasible and 
the daughters of the infeasible were stipulated to be -10. The effect of this is evident in 
Figure 6, in which we discern a modest trend of ever closer resemblance between the 
incumbents and the immigrants.  
 

*** Insert Figure 6 ListPlotFeaInctVSFeaImgtEvery25.pdf about here *** 

 
Figure 6. Yuan Plot. Every 25 generations. Feasible population, average distances between 

incumbents and immigrants by generation. Generation: abscissa. Incumbent-immigrant average 
distance: ordinate.  

 
It is important to note that the daughters of the infeasibles showing up here have survived 
a competitive process in the feasible population. A feasible population (of 50) is created, 
then the infeasible population is processed. Any resulting feasible offspring are put into 
the feasible population, which is then reduced to the standard size (here 50) by fitness-
proportional selection (with 1 elitism). Thus, the feasible daughters showing up have, 
probabilistically, competitive fitnesses in the feasible population. They are also, as the 
figure shows, atypical. In short, immigrants from the infeasible population succeed in the 
feasible population and introduce considerable variation - a healthy situation indeed for a 
genetic system under selection. Immigration in the opposite direction (from the feasible 
to the infeasible population) also occurs (but is not charted here) and indeed the feasible 
population is more prolific in spinning off emigrants (see also Table 3.)  
 
As a final comment, we note what typically happens if we initialize a run but remove the 
initial feasible population: the overall behavior strongly resembles the charts displayed 
here. 

8  Discussion and Conclusion 

We began this investigation with (i) the presupposition that the FI-2Pop GA has a 
credible record in solving constrained optimization problems and (ii) intuitions regarding 
why this might be so. The challenge, however, is to understand the FI-2Pop GA (as well 
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as other metaheuristics). To this end we have here shown that the NFL results do not 
apply to the context (optimization with fixed constraints) in which the FI-2Pop GA is 
applied and we have undertaken a detailed case study of a single problem, Yuan. In §6 
we reported on various summary statistics and patterns found in the data for a single run. 
§7 describes and exploits a method introduced here—distance tracing with the inverse 
covariance transform—for describing behavior by populations of decisions in an 
evolutionary computation. We can, in summary, make the following observations on this 
case: 
 

1. The centroids of both the feasible and the infeasible populations move during 
the course of the GA’s runs, with the infeasible population moving much 
more than the feasible.  

 
2. The centroids of both populations move towards each other, and are quite 

close by the end of the runs.  
 

3. The infeasible population is a continuing source of variation in the feasible 
population, throughout the runs.  

 
4. Both populations become more homogeneous (are reduced in variance), the 

feasible population much faster than the infeasible population.  
 
5. The infeasible population is, on average, just barely infeasible towards the end 

of the run, indicating that its members are all close to the boundary between 
the feasible and infeasible regions.  

 
6. Starting the FI-2Pop GA with either an empty feasible population or an empty 

infeasible population has little effect on the macro behavior of the system.  
 
 

This leads to the following description of what is happening as the FI-2Pop GA solves 
the Yuan problem. The feasible population rather quickly undergoes a significant 
reduction in variance, and concentrates in a region near or including , the best solution 
it will find. After that, the centroid of the population moves steadily but slightly in 
magnitude, along with steady but modest improvements in the best decision found. 
Emigration from the feasible population is substantial throughout the run.  Approximately 
15 to 20 percent of children with feasible parents are infeasible and hence emigrate to the 
infeasible population each generation. Because children will resemble their parents and 
because the feasible population is comparatively narrow in its range, the decisions it 
introduces into the infeasible population will also be near the region of concentration of 
the feasible population. This trend is reinforced by the GA’s use of nonuniform mutation: 
mutation sizes (but not frequencies) are reduced for the real-valued variables as the run 
progresses.  

z+

 
Interestingly, the infeasible population is also an ongoing contributor to the feasible 
population and to its variance. Selection on the infeasible population drives it towards the 
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boundary. Selection can have no direct effect on the objective function values of the 
infeasible decisions. Yet, strong indirect influences are observed on both variance and 
objective function values. This is due to immigration from the (increasingly concentrated) 
feasible population, which clusters nearer and nearer the feasible-infeasible boundary. 
Infeasible solutions comparatively far from the feasible population occasionally give rise 
to feasible descendants, resulting in the parent(s) being removed from the infeasible 
population. Thus, the infeasible population becomes increasingly concentrated (in the 
case of Yuan) near to the feasible population. Overall, the two populations continue to 
exchange solutions throughout the run. As the run progresses, the two populations are 
increasingly concentrated near to each other, resulting in a focused exploration in the 
region of , and characterizing convergence of the algorithm. z+
 
That is (much of) the story for Yuan and the FI-2Pop GA. The story is a happy one in this 
case, and it would appear that the behavior of the algorithm is felicitous, rather than 
merely fortuitous. Finding the neighborhood of the optimum (as it apparently does), and 
focusing exploration there surely has much to recommend it as a strategy. Yuan, 
however, is just a particular case. To see what this may tell us in general, we need to 
consider the FI-2Pop GA in light of the exploration–exploitation dilemma for 
optimization and indeed for learning. The No Free Lunch theorems tell us that the 
dilemma is fundamental unless some domain specific knowledge is incorporated into the 
search. Fortunately, FI-2Pop GA incorporates enough problem specific information (i.e., 
which points are feasible and which are not) to nullify the NFL implications (as shown in 
Theorems 4 and 5).   
 
Even had the NFL results not been nullified, is there anything useful to say in general 
about the FI-2Pop GA, or any other metaheuristic for that matter? There is.  
 
Reverting now to a more general focus, consider standard GAs from the perspective of 
the exploration–exploitation dilemma. Selection is inherently exploitive, although 
stochastically selecting a population based on fitness admits a degree of exploration. The 
selection operator can be restrained in its greed. Conversely, mutation and crossover are 
predominantly exploratory operators, admitting a degree of exploitation by being 
restricted to higher fitness individuals. The FI-2Pop GA adds to this mixture of factors. 
The FI-2Pop GA is a source for additional variance, in both populations. As such, it adds 
tilt towards exploration. Of course, it cannot be guaranteed that the FI-2Pop GA will add 
variance to the two populations. It can be expected, however, that feasible offspring from 
infeasible parents will typically be somewhat different from feasible offspring of feasible 
parents, since the respective parents have survived in two very different selection 
regimes. A similar argument applies to the infeasible population.  
 
Of course, and to repeat, there is no guarantee in general that variance will in fact be 
added or that if added it will prove useful. If the FI-2Pop GA fails to add variance (fails 
to produce feasible offspring from the infeasible population, or the feasible offspring fail 
to survive or survive but are not different), the resulting system is in effect operating a 
death penalty regime on the feasible population. If the FI-2Pop GA adds variance, but the 
variance is not useful, the system becomes somewhat noisier. None of these failure 
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conditions would appear to vitiate the search. They would tend to reduce the 
effectiveness of the search, but would not threaten its ultimate success, given additional 
resources (more generations or larger populations). In this regard, we note that the 
pressure of fitness proportional selection is proportional to the standard deviation of the 
population, which is itself proportional to the square root of the size of the population. 
Thus, doubling (or halving) the size of the population will less than double (or halve) the 
rate of response to selection.  Further, as we noted above, the FI-2Pop GA made also add 
value by continuing to discover feasible solutions for a problem in which they are hard to 
find.  It is not inaccurate to think of the FI-2Pop GA as including an evolutionarily-
directed repair of infeasible solutions. 
 
On the other hand, there will surely be many cases in which additional variance 
introduced by the FI-2Pop GA will be useful. This is of course an empirical matter, but 
we note that over-convergence (premature lack of variance in a population of solutions) 
is a well-known bugbear for GAs. The FI-2Pop GA has in fact a strong track record of 
avoiding this. Our thesis is that this strong track record may be explained in part by the 
additional variance created by the FI-2Pop GA. In this regard we note the following 
points, all of which are illustrated by the Yuan case. 
  

1. Immigrants into the feasible population will have ancestors selected (with 
varying degrees of rigor) for proximity to the boundary of the feasible region. 
Especially if created by mutation, the immigrants will have a tendency to 
locate near their ancestors, and hence near the boundary, but on the feasible 
side. This is a desirable property if the optimum decisions (or even many of 
the very good decisions) are on or near the boundary.  

 
2. We note as well that the algorithm’s treatment of infeasible solutions may be 

viewed as a generic repair mechanism. Repair is the objective of selection 
pressure towards feasibility acting on the infeasible population. 

 
3. Earlier on in a run, immigrants into the feasible population will tend not to 

have, and hence tend not to resemble, feasible ancestors. This will tend to 
introduce a larger variance into the feasible population.  

 
4. Later on in a run, many immigrants into the feasible population will have, and 

will resemble, feasible ancestors, and thus will introduce less absolute 
variance into the feasible population. The effect is to localize the added 
variance in a region of concentration of the feasible population. If indeed a 
region of concentration is the neighborhood of good decisions, the effect is to 
intensify the local search.  

 
5. The distributions of the feasible and infeasible solutions, including their 

trajectories over time, may be diagnostic and yield some degree of assurance 
that the best solutions found are near-optimal. In particular, the convergence 
of the algorithm may be judged by the extent to which both populations tend 
to concentrate in specific region(s). In the Yuan runs, the tight clustering near 

 27



one another of the feasible and infeasible populations suggests that the 
algorithm has indeed discovered a region of the previously-published optimal 
solution for the problem. 
 

In conclusion, the FI-2Pop GA is seen, both from first principles and from the run data 
analyzed above, to systematically introduce variance into the feasible population in ways 
not available to the conventional penalty function approaches. Whether this additional 
variance often proves useful must be determined by experience. To date, that experience 
is favorable and the FI-2Pop GA is a credible distinct option, perhaps as part of a suite of 
approaches, for solving constrained optimization problems with other evolutionary 
algorithms (EAs). The distance mapping technique for studying the performance of EAs, 
introduced here, offers the prospect of insight into alternate methods, which insight will 
complement experience from benchmark testing.  
 
In general, we have also shown that any blackbox algorithm escapes the NFL 
implications if it optimizes a penalty function with immutable constraints (where there is 
at least on feasible and one infeasible point).  This carries over to settings (like FI-2Pop 
GA) where a penalty function is implicitly used to drive the search. 
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A  Specifics of the Feasible-Infeasible Two-Population GA 
 
We describe here key details of the two-population GA for constrained optimization used 
in the work reported in this paper. The algorithm is essentially that used in the previous 
constrained optimization studies (Kimbrough, et al. 2002, 2003, 2004a, 2004b). All key 
parameters were set ex ante, were not tuned for any of the problems, and were set 
identically for all problems. Two populations of solutions are created at initialization and 
maintained throughout a run: the feasible population consists of only feasible solutions to 
the constrained optimization problem; the infeasible population consists of only 
infeasible (constraint-violating) solutions. Each population is initialized to a size of 50 
and, with a qualification described below, this size is maintained throughout the run. The 
number of generations was 5,000 for each population, corresponding to 10,000 
generations in a normal GA. Floating point encoding, rather than binary encoding, is used 
for real-valued alleles.  
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Initialization proceeds one population at a time, beginning with the feasible population. A 
solution is randomly generated and its feasibility determined. If it is feasible the solution 
is placed into the feasible population; otherwise it is discarded. This continues until 50 
feasible solutions are obtained or 5,000 attempts have been made. The algorithm 
proceeds even if fewer than 50 feasible solutions are found. The analogous process is 
conducted to initialize the infeasible population.  
 
The two-population GA maintains 4 collections of solutions at each generation: the 
feasible population, the feasible pool, the infeasible population, and the infeasible pool. 
Creation of the next generation begins by processing the feasible population of the 
current generation. Fitness (as objective function value) is calculated for each member of 
the population and 50 new solutions are generated using the genetic operators (in order): 
fitness-proportional selection of parents, crossover (probability 0.4, single-point), and 
mutation (at probability 0.4), non-uniform mutation for floating point alleles, with 
degrees (b in Michalewicz’s (1996) formula pages 103 and 111-2) equal to 2. The 
feasibility of each of the 50 solutions is determined and each solution is placed in one of 
two pools, either a (next generation) feasible pool or an infeasible pool, as appropriate. 
The current generation infeasible pool is added to the just-created infeasible pool. (Thus, 
the ‘infeasible population’ at generation 0 is really the infeasible pool at generation 0.) 
Fitness (as sum of constraint violations) is then calculated for each member of the current 
infeasible pool. If necessary, the size of the infeasible pool is reduced to 50, based on 
fitness. The result is the next generation infeasible population. Using the next generation 
infeasible population, 50 new solutions are generated as before. Feasible results are 
placed in the next generation feasible pool. If necessary, the size of the feasible pool is 
reduced to 50, based on fitness. The result is the next generation feasible population. 
Infeasible results are placed in the next generation infeasible pool and the contents of the 
next generation infeasible population are also placed into the next generation infeasible 
pool. This completes one generation. Processing continues until 5,000 generations have 
elapsed.  The parameter values, such as crossover probability, mutation rate, b, 
population size, and number of generations, were not tuned for the Yuan problem. They 
were set antecedently, based on a number of criteria, both pragmatic and performance.  
Other parameter settings may well result in better performance, but finding best 
performance of the FI-2Pop GA is not a main subject of this paper. 
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