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A physically meaningful analogy is drawn between the ordering and dynamical behavior of molecular 
rotations in solid hydrogen and the ordering and dynamical behavior of magnetic spin systems. 
In solid hydrogen the magnitude J of the rotational angular momentum is a good quantum number. 
Molecules having J = 1 resemble spin one magnetic moments, whereas those with J =0 are "non­
magnetic." Solid solutions of these two species are analogs of magnetic alloys. The thermodynamic 
properties, in particular the order parameter, the specific heat, and the nuclear magnetic resonance 
properties are similar to those of magnetic systems. As for the dynamics, the small librations about 
the ground state are analogs of spin waves, and the interactions between the librational excitations 
are similar to. but larger than. the usual spin-wave interactions. This circumstance enables the direct 
observation of the two-Iibron spectrum and also leads to large anharmonic shifts in the single-Iibron 
spectrum. 

I. INTRODUCTION 

The analogy between spin waves in magnetic systems 
and molecular rotations in solid hydrogen, while only 
qualitative, is nevertheless very direct and physically 
revealing. The purpose of this paper is to develop this 
analogy in detail. We shall discuss several properties of 
solid hydrogen with respect to which it is truly an 
ideal "magnetic" system. 

This paper is aimed at "magneticians" and it is 
hoped that the analogy mentioned above will provide a 
readily understandable and esthetically pleasing intro­
duction to molecular rotations in solid hydrogen. 
Accordingly, although familiarity with concepts of 
magnetism is taken for granted, no prior knowledge of 
solid hydrogen will be assumed. The necessary back­
ground material is presented in Sec. II. The analogy 
between solid hydrogen and magnetic systems is 
described more fully in Sec. III, and in Secs. IV and V 
this analogy is used to discuss the static and dynamic 
properties of solid hydrogen. Section VI contains con­
cluding remarks. 

II. PROPERTIES OF HYDROGEN MOLECULES 

substates, M = ± 1 or 0, and thus look exactly like 
magnetic spins with S= 1. They can be aligned by 
orientational interactions just as magnetic spins are 
aligned by exchange interactions. 

For H2 the Pauli exclusion principle dictates that for 
(J =0) molecules the nuclear spins of the protons are 
antiparallel, i.e., that their resultant nuclear spin is 
1=0, whereas for (J = 1) molecules the nuclear spins 
are parallel, i.e., they have 1=1. Molecular levels with 
J> 1 are not populated at low temperature. Even in 
the solid J remains a good quantum number, because 
the anisotropic interactions between molecules are 
small compared to the separation between J levels. 
There is a continual conversion of (J = 1) molecules 
into (J=O) molecules, since the latter have lower 
energy. This conversion is rather slow, as it involves a 
change of nuclear spin. As a result, experiments may be 
done on samples containing an arbitrary fixed concen­
tration x of (J = 1) molecules. It is clear that such an 
alloy is analogous to a magnetic alloy containing a 
concentration x of spin 1 and I-x of spin O. In contrast 
to the magnetic case, however, alloys in solid hydrogen 
involve an insignificant variation in force constants and 
no mass defect. In this sense solid hydrogen indeed 

The purpose of this section is to review some of the constitutes an ideal "magnetic" alloy. A simplified 
fundamental properties of hydrogen molecules. phase diagram for alloys of solid H2 is shown in Fig. 1. 

First let us discuss the rotational motion of a free The phase diagram for alloys of solid Dz is similar. For 
hydrogen molecule. The hydrogen molecule is very more details on these two solids, consult Refs. 7, 8, 
nearly a rigid rotator, and as such its orientational 17, and 18. 
wavefunctions are the spherical harmonics YJM(fJ, cp), Let us now discliss the molecules in the solid. They 
where fJ and cp are the angular coordinates of the are virtually undistorted from free molecules.! They 
molecular axis. Since YOO(fJ, cp) is a constant, we see that interact mainly via weak long range forces such as 
(J=O) molecules are to all intents and purposes van der Waals interactions.!·2 It is these forces which 
spheres, rather than dumbbells, as one might have determine such bulk properties as the compressibility 
thought! Thus, an orientational potential will not or the cohesive energy. The orientational interactions 
affect these molecules, and they are analogous to are weaker and are mainly due to the interaction 
nonmagnetic ions. Molecules with J = 1 have three between the static electric quadrupole moments of the 
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molecules.2 Thus a reasonable model of the orientational 
state of solid hydrogen includes only electrostatic 
quadrupole-quadrupole (EQQ) interactions on a rigid 
lattice. 

To understand these interactions it is useful to 
compare them to the more familiar dipole-dipole 
interactions. Whereas the latter are scaled by J.N R3, 
where J.I. is the dipole moment and R the separation, 
the EQQ interactions are scaled by e2Q2/ R5, where eQ 
is the quadrupole moment of the hydrogen molecule. 
The EQQ interaction XEQQ is of the form2 

XEQQ= L r(Rii)f(Wi, Wi), 
i<i 

(1) 

where r(R) =6e2Q2/25R5 is the EQQ coupling constant 
andf(wi, Wi) is a function of order unity of the orienta­
tions Wi and Wi of the interacting molecules. In order to 
visualize the EQQ interaction we show in Fig. 2 the 
interaction of two linear quadrupoles compared to that 
of two dipoles. Note that whereas two dipoles have 
highest and lowest energy when they are parallel or 
antiparallel, the EQQ energy is minimized when the 
molecules are perpendicular to one another and is 
maximized when they are parallel to one another. 

These properties enable us to make several important 
observations about the ordering of molecular axes in 
solid hydrogen. First, we can estimate the ordering 
temperature, T~, to be roughly of order kT~"'zro, 
where z is the number of nearest neighbors and ro= 
r(Ro) , where Ro is the nearest-neighbor separation. 
In this regard ro is analogous to the exchange integral J 
in magnetic systems. It is worth noting, however, that 
while J is a phenomenological parameter which is 
normally not calculated from first principles, ro is so 
calculable, since the quadrupole moment of the hydrogen 
molecule has been evaluated rather accurately.3 Thus, 
any many-body effects, such as phonon renormaliza­
tions,4 which alter the value of ro are potentially 
observable. Moreover, knowing the microscopic inter­
actions as a function of separation enables one to 
calculate further neighbor interactions,5 which are 
nonnegligible, since r", R-5. Finally, since it is im­
possible to construct a close-packed lattice in which 
all pairs of molecules are perpendicular, the lowest­
energy configuration of a lattice of quadrupoles is not 
obvious. However, Nagai and Nakamura6 found that 
the classical ground state for an fcc lattice is one in 
which there are four sublattices. All molecules on a 
given sub lattice are parallel and point along one of the 
four different [111] directions. We shall refer to this 
state as the "Neel state." 

w 

FIG. 1. The simplified phase ~ 3 
diagram of solid H2• The ~~ 2 DIS~~~ERED 
orientationally disordered ~ - 1 
(ordered) phase has hcp (fcc) ~ o!:-----,,-';;'------;-' 
structure. ... 0 0.5 1.0 

(J.1) CONCENTRATION 

FIG. 2. The high- and low-energy 
configurations for linear quadrupoles 
(left) and for dipoles (right). 
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In conclusion we note a few of the bulk properties of 
solid hydrogen. It crystallizes in an hcp lattice at about 
14 K and is a very compressible solid: even moderate 
pressures produce significant increases in roo As indi­
cated in Fig. 1, the order-disorder transition is accom­
panied by a change in crystal structure.7 ,8 However, for 
simplicity we shall ignore the influence of lattice struc­
ture on this transition. 

III. SOLID HYDROGEN AS A MAGNETIC ANALOG 

In this section we describe the analogy between the 
ordering and dynamical motion of spins in magnetic 
systems and the ordering and dynamical motion of 
molecular axes in solid hydrogen. In later sections this 
analogy is used as a physical basis for understanding 
the properties of solid hydrogen. 

Let us first consider the ordering processes in the two 
systems. In the magnetic case the alignment of spins at 
high temperature is essentially random. Similarly, the 
alignment of the molecular axes in solid hydrogen is 
essentially random at temperatures well above the 
order-disorder transition. In both cases there is a 
transition temperature where the alignment has 
anomalous behavior. For the magnetic case the order 
parameter u is simply the sublattice magnetization: 

u(T) = (Sz)T, (2) 

where ()T indicates a thermal average, whereas in 
solid hydrogen the order parameter is defined by 

u(T)=(3cos28~1)T, (3) 

where 0 is the angle between the molecular axis and the 
preferred axis of alignment. Schematic diagrams of the 
temperature dependence of the order parameter are 
presented in Fig. 3. For hydrogen in the "paramagnetic" 
regime u(T) does not vanish, in contrast to the mag­
netic case. 

The analogy described above also applies to dy­
namical properties. In magnetic systems the elementary 
excitations are spin waves in which the spins perform 
small oscillations about their equilibrium orientation. 
Likewise in solid hydrogen there exist librational 
waves9 ,10 in which the molecular axes perform small 
torsional oscillations about their equilibrium orienta­
tions. These ideas suggest that such torsional oscillations 
(called librons) might be viewed as optical phonons. 
As we have noted, however, the total angular momen­
tum J of a molecule in the solid is a good quantum 
number, and hence J is analogous to the spin quantum 
number in magnetic systems. The fact that there are 
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HYDROGEN ANTI FERROMAGNET 

u(T) u(T) 

b.-T t+T 
FIG. 3. The temperature dependence (schematic) of the 

order parameter for solid hydrogen (left) and for an antiferro­
magnet (right). 

2J + 1 rotational states in which the molecule can 
"rotate" suggests intuitively an analogy with the 
precessional motion of a spin within its 2S + 1 quantum 
states. 

IV. STATIC "MAGNETIC" PROPERTIES OF 
SOLID HYDROGEN 

In this section we treat in detail the analogy between 
solid hydrogen and magnetic systems with regard to 
their static properties, viz. the order parameter, the 
specific heat, and the properties of isolated pairs of 
Hmagnetic" molecules. 

A. The Order Parameter 

Let us discuss the long-range order parameter. We 
have seen in Fig. 3 the qualitative similarity between 
the ordering of magnetic systems and of molecular 
rotations. It is interesting that the order parameter is 
measured via nearly identical NMR techniques in the 
two cases. In magnetic systems the nuclear spins 
interact with the electron spins via the hyperfine inter­
action AI·8, where I is the nuclear spin and A is a 
constant. The hyperfine field the nuclear spin sees is 
simply A (8 )T, since fluctuations in 8 are too rapid for 
the nuclear spin to follow. Thus, measurement of liT, the 
NMR frequency at temperature T leads to a deter­
min a tion of 0" ( T) 11 : 

(4) 

A similar method can be used for solid hydrogen.12 

Consider first a nonrotating H2 molecule. The hyperfine 
field, Hhf, at one of the protons is given by 

(5) 

where Ho is the applied magnetic field and Hd is the 
dipolar field due to the other proton in the molecule: 

Hd= (iJ./a3) (3 cos20n -1), (6) 

where iJ. is the proton magnetic moment, a the distance 
between protons in the molecule, and On the angle 
between Ho and the molecular axis. Since the choice of 
sign in Eq. (5) depends on the orientation of the 
nuclear spin of the other proton relative to Ho, one 
expects two NMR frequencies. In the solid the molecule 

rotates too rapidly for the nuclear spin to follow, and 
as a result we set 

(7) 

so that H d is proportional to 0" ( T) . 
This method is not ideal for solid H2, because the 

NMR lines are severely broadened by the random 
dipolar interactions between protons in different 
molecules. For D2 the hyperfine field is relatively larger 
than the intermolecular dipolar interaction, and hence 
more precise measurements can be made in this case. 
Thus, Maraviglia et al.13 were able to determine the 
critical index for 0" as a function of T. Since 0" is the 
analog of the magnetization, one writes 

(8) 

and the experimental result is ,8=0.33±0.06. This 
value is close to those for magnetic and other systems.14 

Above the ordering temperature the separation of 
the two NMR lines is smaller than their width, and 
hence O"(T) is determined,15 albeit rather inaccurately, 
via the temperature-dependent contribution to the 
NMR linewidth.12 

It is also interesting to study the order parameter of 
(J=0)-(J=1) alloys. At zero temperature the con­
centration dependence of the order parameter and of 
the transition temperature Tx (see Fig. 1) are similar. 
In this behavior solid hydrogen resembles an anti­
ferromagnetic alloy in which magnetic spins are 
randomly replaced by nonmagnetic ions. This replace­
ment weakens the resistance of the spins to zero-point 
fluctuations. Thus, as the concentration x of magnetic 
spins decreases, 0" decreases, until at some critical value 
of concentration X=Xc long-range order disappears. 
Analogous behavior occurs in solid hydrogen for the 
same reason. Due to zero-point fluctuations the true 
ground state of the orientational system in solid hy­
drogen differs from the "Neel state" in which each 
molecule is aligned in its molecular field. As (J = 1) 
molecules are replaced, by "nonmagnetic" (J = 0) 
molecules, the fluctuations increase, just as in the 
magnetic case. The results of Ref. 16 represent an ideal 
case, since, as noted above, the absence of mass defects, 
etc. makes solid hydrogen an ideal magnetic alloy. 

B. The Specific Heat and (ap/aT)v 

We first consider the relation between the specific 
heat at constant volume Cv and (ap/aT)v. On dimen­
sional grounds we write the rotational free energy F 
in terms of a function q, of ro/kT: 

F= kTq,(ro/kT). (9) 

Within the spirit of the rigid lattice approximation the 
free energy depends on the volume only through the 
volume dependence of the EQQ coupling constant roo 
It then follows that there is a contribution to the 
pressure due to molecular rotation. In fact, one can 
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derive from Eq. (9) the relation17 ,18 

(ap/aT)v= - (a InrojaV) Cv= 'YrotCV/V, (10) 

where 'Yrot is a "rotational" Grlineisen constant. Since 
ro"'R-5, we see that 'Yrot should be about 5/3. Of 
course, in this relation p and Cv refer only to orienta­
tional contributions. They may be determined from the 
total pressure and total specific heat by subtracting off 
the lattice contributions which are measured separately 
in the pure (J = 0) solid. 

In principle the same technique can be applied to 
magnetic systems. In practice the separation of lattice 
and magnetic contributions is usually difficult. An 
important exception is solid He3, which is an ideal 
Heisenberg antiferromagnet with a Neel temperature 
of order 10-3 K. There the "exchange" Gruneisen 
constant analogous to 'Yrot in Eq. (10) is very large, and 
it is possible to effectively measure the high-tempera­
ture specific heat for T»TN very precisely.19 

Let us now consider the high-temperature orienta­
tional specific heat of solid hydrogen. The calculations, 
based on high-temperature expansions in the parameter 
(ro/kT), are similar to those for magnetic systems 
where the comparable parameter is (J / kT). It was 
found,20 using a series of four terms in (ro/kT) , that a 
Pade approximate fits the data for both D221 and H222 
reasonably well. As in magnetic systems,23 the "high­
temperature" regime (where the first term is dominant) 
corresponds to surprisingly large values of T/T).. 

Due to the difficulty in subtracting off the lattice 
specific heat, high-temperature determinations of J 
have usually involved measurement of the magnetic 
susceptibility. In solid hydrogen the analogous quantity 
is the electric polarizability, a. For an H2 molecule a is 
anisotropic, having the value all or a.l. depending on 
whether the applied electric field E is parallel or 
perpendicular to the molecular axis n. For general 
orientations we have 

a=tall+ja.l.+Hall-a.l.) (3 cos2(JB-1), (11) 

where 6B is the angle between E and n. Thus, in principle 
measurement of the polarizability yields (3 cos26B-1 )T, 
which is proportional to the order parameter. 

C. Pair Interactions 

Since solid hydrogen is such an ideal magnetic alloy, 
the strength of pair interactions between (J = 1) 
molecules determined at very low (J = 1) concentration 
is relevant to the entire range of concentration. In 
contrast, the interactions vary with composition in the 
mixed rare-earth garnets.24 The same problem occurs in 
more severe form for Jahn-Teller systems,25 since there 
the concentration dependence of the strains is crucial. 
Accordingly, it would be delightful if the energy levels 
of an isolated pair of (J = 1) molecules surrounded 
only by "nonmagnetic" (J =0) molecules could be 
observed directly using optical or resonance techniques, 

(21 

FIG. 4. The non inter­
acting libron spectrum for 
k along a [l00J direction. 
These results were obtained 
in Ref. 9 assuming nearest 
neighbor EQQ interactions 
only. 
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as Birgeneau et al.26 have done for the analogous 
magnetic case (see Note added in proof). 

An alternative method is to measure the thermo­
dynamics properties of an isolated pair of (J = 1) mole­
cules. This has been done both by (ap/aT)y17,18 and 
by NMp27 measurements. As we have said, the former 
is essentially equivalent to the specific heat. The NMR 
measurement determines the order parameter, which 
for a pair of (J = 1) molecules is (3 cos26p-1 )T, where 
6p is the angle between one of the molecular axes and 
the vector connecting the two molecules. Since the 
energy levels of a pair of (J = 1) molecules are well 
known, it is easy to calculate the specific heat and the 
order parameter as a function of the variable (ro/kT). 
By fitting the experimental datal8 ,27 to such calculations 
the value of ro for H2 was found to be about 0.57 cm-I • 

The fact that the lattice is not rigid probably explains 
the discrepancy between this value and that (0.698 
cm-I ) predicted for a rigid lattice using the first­
principles calculations of the quadrupole moment eQ. 

Experiments on very dilute (J = 1) hydrogen can 
also be used to determine the "single-ion" crystalline 
field. In the hcp lattice the crystalline potential is 
of the form 

(12) 

which would remove the threefold rotational degeneracy 
of a (J = 1) molecule even in tht! absence of EQQ inter­
actions. It can be shown that at temperatures which are 
large in comparison to the magnitude of the crystalline 
field energy, the dipolar field Hd appearing in Eq. (5) 
is proportional to Ve, which scales the crystalline field. 
Using the approach, Hardy and Gaines28 have deter­
mined that I Ve/k I is of order 10-2 K. Thus the crystal­
line field is only important at extreme dilution when 
the EQQ interactions become weak. 

V. DYNAMICAL PROPERTIES 

Let us see how the analogy we have been describing 
leads to an understanding of the dynamical properties 
of solid hydrogen. We consider the following dynamical 
properties: (1) the lib ron spectrum, (2) the specific 
heat of librons, and (3) the nuclear spin-lattice re­
laxation time T!. 

A. The Libron Spectrum 

The elementary excitation spectrum for rotations in 
solid hydrogen is analogous to that of an anisotropic 
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antiferromagnet. In both systems the approximate 
ground state is one in which each spin or molecule is 
aligned in its own molecular field. In the simple anti­
ferromagnet there are two spins per unit cell and hence 
two spin deviation operators per unit cell. As a result 
the antiferromagnetic spin-wave spectrum has two 
branches. For solid hydrogen, as we have seen, the 
"Neel state" is one wherein each unit cell contains four 
molecules, each of which can librate in either of two 
perpendicular directions. Hence the librational wave 
(libron) spectrum has eight branches.9.l0 For the anti­
ferromagnet the presence of an anisotropy energy 
destroys the rotational invariance and leads to a gap in 
the spin-wave spectrum. For solid hydrogen the EQQ 
interactions are already very anisotropic, and hence the 
libron spectrum has a large energy gap. The non­
interacting libron spectrum calculated in Ref. 9 is 
shown in Fig. 4. 

Let us now discuss the interaction between the 
elementary excitations. Ever since Dyson's famous 
paper29 on this subject in 1956, great efforts have been 
made to observe spin-wave interactions. They are 
usually small, and in particular they vanish in the zero­
wave vector limit and, for the ferromagnet, in the 
zero-temperature limit. For the antiferromagnet at 
zero temperature they lead to small apparent changes30 

in the exchange constant J. However, since J is a 
phenomenological parameter, it is hard to verify this 
renormalization experimentally. The interactions be­
tween librons is a larger and experimentally more 
accessible effect for several reasons. First, since the EQQ 
interaction is not rotationally invariant, the zero­
wave vector librons are not perfect modes, and hence 
libron-libron interactions do not vanish in the zero­
wave vector limit. Second, the effects of zero-point 
motion lead to renormalizations in r o, a parameter 
which is not only calculable from first principles, but 
also observable independently in other ways. Finally, 
the cubic anharmonic term in the EQQ interaction is 
fortuitously very large.31 

Now we discuss the effect of libron-libron inter­
actions on the single-libron spectrum. It is instructive 
to recall the results for magnetic systems. We note that 
in the random phase approximation (RPA) each spin 
precesses in the average un correlated field of its neigh­
bors. As a result, the spin-wave energy Ek is scaled by 
(Sz). Thus for an antiferromagnet at zero temperature 
the RPA gives 

(13) 

where Eko is the spin-wave energy in the absence of 
zero-poin t motion and (5 z) is the average of 5 z in the 
true ground state. Due to zero-point motion (5 z )= 
5(1-5), so that 

(14) 

A similar argument holds when the RPA is used to 
treat the libron spectrum in solid hydrogen. Here 

(5 z )/5 is replaced by (u)/uo, where uO is the value of 
the order parameter in the molecular field ground state, 
i.e., in the "Neel state," and (u), the value of the order 
parameter in the true ground state, is smaller then UO 

due to zero-point motion. 
The above results are incorrect, and use of either 

Dyson's formalism,29 Oguchi's method,30 or Keffer and 
Loudon's physical argument32 shows that the spin-wave 
energy is approximately scaled by the internal energy 
rather than by the magnetization. Thus in place of 
Eq. (13) we estimate 

(15) 

where E is the true ground-state energy and EO is the 
energy of the Neel state. Since 1 E 1 > 1 EO I, we see 
that due to zero-point motion we have 

(16) 

The same effect occurs for the quartic libron-libron 
interactions in solid hydrogen, and hence they tend to 
increase the single-libron energy in accord with Eq. 
(16). However, unlike the Heisenberg Hamiltonian, 
the EQQ interaction has cubic anharmonic terms, which 
are large and which are completely ignored by the RPA. 
They lead to substantial downward shifts in the lib ron 
energies, and the net result is that the perturbed lib ron 
energies are smaller than those found using noninter­
acting librons.31 As can be seen in Fig. 5, inclusion of 
lib ron-lib ron interactions markedly improves the 
fit to the single-lib ron Raman spectrum.33 In addition, 
the value of r o, viz. ro=0.79 cm-I , obtained by fitting 
the anharmonic calculations to the observed spectrum 
is much closer to the theoretically expected value and 
agrees better with other determinations. Thus the effect 
on the elementary excitations of lib ron-lib ron inter­
actions is experimentally confirmed to a much greater 
degree than has heretofor been possible for spin-wave 
interactions in magnetic systems. 

Undoubtedly the best way to observe the single­
lib ron spectrum is via the inelastic scattering of neutrons. 
The experiment is more difficult for solid hydrogen than 
for magnetic systems,34 however. We note that because 
of its low (J = 1)~(J =0) conversion rate and larger 
fraction of coherent scattering solid D2 is to be preferred 
over solid H2 for such experiments. The cross section for 
the inelastic scattering of neutrons will provide a 
determination of the full frequency and wavevector­
dependent "susceptibility" of librons. In this way the 
energy, Ep(k), and the decay rate, 'Yp(k) , can be deter­
mined for all the lib ron modes, p= 1-8. In addition, the 
scattering cross section will display the two-libron 
effects mentioned below. 

Let us now consider the Raman processes33 ,35 in which 
a long-wavelength photon is scattered and elementary 
excitations are created in the system. For antiferro­
magnets the one-magnon process, analogous to that for 
librons in solid hydrogen shown in Fig. 6(b), is for-
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bidden by symmetry, and hence the lowest-order 
process is that in which two magnons with total momen­
tum zero are created on neighboring sites.36 [See Fig. 
6(a).] For solid hydrogen this process is unimportant,37 
but the same net effect is realized31 by creating a virtual 
libron which decays into two final-state librons due to 
the large cubic anharmonic terms mentioned above 
[see Fig. 6(c)]. Whereas the microscopic mechanism 
for the two-magnon process is unclear,36 the matrix 
elemen ts for all processes in Fig. 6 are known for solid 
hydrogen, since the interaction of the hydrogen mole­
cule with photons (through its polarizability) and the 
cubic libron-libron interactions due to Eoo. anhar­
monicity are known. The theoretical relative intensities31 

for the Raman spectrum of solid hydrogen are in good 
agreement with the experiment.33 

Elliott and Thorpe36 have shown that the two-magnon 
spectrum has a peak which is shifted from that of two 
non interacting magnons by their binding energy. This 
binding energy can be evaluated within the Ising model, 
where it is the decrease in energy of two spin reversals 
when they are on neighboring sites. A similar cal­
culation31 yields a two-libron spectrum for solid hy­
drogen in agreement with the Raman data.33 

B. Specific Heat of Librons 

Although direct optical observation, where possible, 
is the most sensitive way to observe spin-wave excita­
tions, they can also be detected via their specific heat. 
In the iron garnets both techniques have been lIsed to 
detect the acoustic and low-lying optical spin-wave 
modes.38 ,39 For solid hydrogen Ramm et al. 17 have 
essentially measured the libron specific heat via the 
technique of ap/aT)v measurement discussed above. 
To fit their results they scaled the theoretically cal­
culated density of states for noninteracting librons,1° 
by treating the average libron energy d as an adjustable 
parameter. Their results over a wide range of tem­
perature and concentration, x, of (J = 1) molecules give 

d(X) = do(2.0x-1.0), (17) 

where do= 21.2ro. For x~1 one might have expected 

d(X) =Xdo. (18) 

Since solid hydrogen is truly an ideal magnetic alloy, 
the result in Eq. (17) poses a clear challenge to theo­
reticians. 

OBSERVED FIG. 5. The Raman spectrum D, 
of orientationally ordered solid ~----1La..---HA-R-M-ON-ICo----1 
D2 (top) compared to non- D. fa '0.64em·' 
interacting libron theory ~_-lLl.._~ ____ --' 
(middle) and anharmonic ANHARMONIC 
libron theory (bottom). The D, fo • o 79 em" 
heights of the lines indicate L-!-----1~_----..J!.---.IL-~_---' 
their intensity. 0 10 20 30 

FREQUENCY (em-I) 

(0) (b) (e) 

X y X k -k k=O 
k -k 

FIG. 6. Various Raman processes. Wiggly lines represent 
photons and plain lines magnons or librons. In (c) the three-libron 
ver~ex represents the cubic anharmonic term in the EQQ inter­
action. 

C. Nuclear Spin-Lattice Relaxation Rates 

The nuclear spin-lattice relaxation rate, T1-I, is a 
measure of the magnitude of fluctuations in the "lattice" 
at a frequency coincident with the NMR frequency woo 
This is reasonable, as spin-lattice relaxation involves 
converting Zeeman energy into lattice fluctuations of 
the same frequency. In the magnetic case the "lattice" 
is the magnetic spin system which is essentially always 
in equilibrium with the phonon bath. For solid hydrogen 
the "lattice" is the system of molecular rotations which 
is likewise in equilibrium with the phonon bath. Since 
fiwo is negligible in comparison to J or r o, we may say 
that T1-I is a measure of the zero-frequency magnetic 
fluctuations: 

(19) 

where V is the matrix element for the hyperfine inter­
action and .g(O) is the density of magnetic fluctuations. 

To be more specific, in magnetic systems where the 
hyperfine interaction is of the form AI·S, one has40 

T1-I=tA2kTx+ _"(wo)/wo. (20) 

Here x+ -" (wo) is the absorptiv~ part of the transverse 
susceptibility, so that kTx+ -"(wo)/wo is the density of 
transverse fluctuations. In most models this density is 
assumed to be either Gaussian "'T exp( -!W02T2) or 
Lorentzian "'T/ (1 +W02T2 ) , where T is the correlation 
time. In the infinite-temperature limit a dimensional 
argument shows that the correlation time is roughly 
T",h/J, whence TC I .-...A2/J. As the temperature 
decreases, ; increases, and as a result, TI-I increases, 
reaching a maximum at the transition temperature. 
Below the transition, where spin-wave modes develop, 
any disturbances require exciting a spin wave. But since 
the resonant energy of a spin wave is much larger than 
liwo, x+ -"(wo)/wo must involve the nonresonant 
excitation of a spin wave. This process occurs infre­
quently, and hence T1-I decreases rapidly as the zero­
temperature limit is approached. 

The same qualitative features obtain for solid hy­
drogen. Here the hyperfine interaction contains two 
terms, one of the form cI· J, and the other of the form 
5d[il ·i2-3(h·1/,)(i2·n)], where c and d are known 
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constants. Thus we have40 

T1-l = (1611"3/3) [c2Jh (Wo) +9d2c\h(wo)]. (21) 

Here woJ1L(wo) plays the role of a generalized suscepti­
bility for Y LM (8, <p) and is analogous to the usual 
susceptibility for the transverse spin component. Thus, 
since the correlation time here is of order T'" h/ro at 
high temperature, we have 61L(WO) '" r o- 1 and hence 
T1-l", (c2+d2) fro at high temperature. As the tem­
perature decreases T increases, and as a result T1-l 
increases, until the order-disorder transition is reached. 
Below the transition the occurrence of low frequency 
fluctuations is strongly inhibited by the large lib ron 
energy gap .l. Thus, in the ordered phase we havel5 •41 

T1-l",[ (c2+d2) fro] exp( - .l/kT), (22) 

as one finds for magnetic systems when kT is less than 
the spin-wave energy gap.42 

These qualitative features have been confirmed by 
experiment. The increase in T1-l with decreasing 
temperature in the "paramagnetic" regime was observed 
in H2 by Amstutz et al.43 The anomalous increase in Tl 
at the transition, indicated by Eq. (22) has been 
observed by Smith et al.44 in D2• 

VI. CONCLUSION 

We have seen that most of the orientational proper­
ties of solid H2 and solid D2 in their various alloys of 
(J = 0) and (J = 1) modifications have very direct 
analogies with properties of magnetic systems. We have 
attempted to exploit this analogy in order to provide 
magneticians with a convenient introduction to the 
orientational properties of solid hydrogen. This is a 
worthwhile objective, because it is likely that there are 
valuable techniques commonly used in magnetism which 
have yet to be applied to solid hydrogen. From the 
examples discussed here we conclude that solid hy­
drogen is at least as ideal a system for study as the 
more familiar magnetic systems. 

. Vote added in proof: Such an experiment has been 
reported by 1. F. Silvera, W. N. Hardy, and J. P. 
McTague, Bull. Am. Phys. Soc. 15, 1622 (1970). 
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