
DIFFERENTIAL PRIVACY

BEYOND THE CENTRAL MODEL

Matthew Joseph

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2020

Supervisor of Dissertation

Aaron Roth
Associate Professor
Computer and Information Science

Graduate Group Chairperson

Rajeev Alur, Professor
Computer and Information Science

Dissertation Committee
Michael Kearns, Professor and National Center Chair, Computer and Information Science
Anindya De, Assistant Professor, Computer and Information Science
Sampath Kannan, Henry Salvatori Professor, Computer and Information Science
Toniann Pitassi, Professor and Bell Canada Chair in Information Systems, Department of
Computer Science at University of Toronto

Acknowledgements

Many people have helped make this dissertation possible. I first thank Aaron Roth for

being an outstanding advisor. Spending five years learning from and working with Aaron

has been one of the great bits of luck in my life.

I thank the rest of my Dissertation Committee: Anindya De, Sampath Kannan, Michael

Kearns, and Toniann Pitassi. I especially thank Michael for his additional mentorship.

I thank Jamie Morgenstern for providing all the one-on-one research meetings, helpful ad-

vice, and vegetarian cooking information that a first-year graduate student could want. I

thank Bo Waggoner for teaching me the basics of differential privacy and how to throw

a frisbee. I thank Jieming Mao for teaching me about probability, information theory,

programming problems, and other things he learned in primary school.

I thank both Jana Kulkarni and Kareem Amin for hosting me for fun and productive

summer internships at, respectively, Microsoft Research and Google.

I thank John Boller, Risi Kondor, and Maryanthe Malliaris for encouraging me to pursue

graduate school during my time at UChicago. I particularly thank Risi for patiently working

with such an ill-prepared undergraduate as a research collaborator.

I thank those of my collaborators not mentioned above: Shahin Jabbari, Seth Neel, Jonathan

Ullman, and Zhiwei Steven Wu.

More personally, I thank my parents and sister for their continuous support. Many other

people have helped me, but in the spirit of this dissertation, I leave these hard-for-an-

adversary-to-infer individuals unnamed. However, I must thank Marcella.

ii

ABSTRACT

DIFFERENTIAL PRIVACY

BEYOND THE CENTRAL MODEL

Matthew Joseph

Aaron Roth

A differentially private algorithm adds randomness to its computations to ensure that its

output reveals little about its input. This careful decoupling of output and input provides

privacy for users that contribute input data, but the nature of this privacy depends on

the model of differential privacy used. In the most common model, a differentially private

algorithm receives a raw database and must produce a differentially private output. This

privacy guarantee requires several assumptions. There must exist a secure way of sending

the data to the algorithm; the algorithm must maintain a secure state while carrying out

its computations; and data contributors must trust the algorithm operator to responsibly

steward their raw data in the future. When these three assumptions hold, differential

privacy offers both meaningful utility and privacy. In this dissertation, we study what is

possible when these assumptions fail.

Pan-privacy weakens the first two assumptions and removes the third. Local differential

privacy removes all three. Unfortunately, this flexibility comes at a cost. Pan-privacy often

introduces more random noise, and local differential privacy adds more noise still. This

reduces utility in the forms of worse accuracy and higher sample complexity. Motivated

by this trade-off between privacy and utility, it is important to understand the relative

powers of these models. We approach this question in two ways. The first part of this

dissertation focuses on connections between different models: we show that in some settings,

it is possible to convert algorithms in one model to algorithms in another. The second part

of this dissertation complements these connections with separations: we construct problems

where algorithms in different models must obtain different performance guarantees.

iii

Table of Contents

Acknowledgements . ii

Abstract . iii

List of Tables . vi

List of Illustrations . vii

Chapter 1 : Introduction . 1

1.1 Our Contributions . 3

1.2 Related Work . 4

Chapter 2 : Preliminaries . 7

2.1 Differential Privacy . 7

2.2 Pan-Privacy . 8

2.3 Local Differential Privacy . 10

Chapter 3 : Connection: Pan-Privacy and Local Privacy 14

Chapter 4 : Connection: Fully and Sequentially Interactive Local Privacy 20

4.1 Additional Preliminaries . 22

4.2 Step 1: Bayesian View . 24

4.3 Step 2: Rejection Sampling . 26

4.4 Step 3: Randomizer Decomposition . 29

4.5 Complete Simulation . 32

Chapter 5 : Polynomial Separation: Central vs. Local Privacy 39

5.1 Simple Hypothesis Testing . 39

5.2 One-Dimensional Gaussian Estimation . 46

iv

Chapter 6 : Exponential Separation: Fully vs. Sequentially Interactive Local Privacy 59

6.1 Additional Preliminaries . 59

6.2 Reduction and Separation . 61

6.3 Separating Sequential and Full Interactivity 68

Chapter 7 : Polynomial Separation: Fully vs. Sequentially Interactive Local Privacy 74

7.1 Additional Preliminaries . 74

7.2 Multi-Party Pointer Jumping . 75

7.3 Separating Sequential and Full Interactivity (Again) 77

Chapter 8 : Polynomial Separation: Central, Pan-, and Local Privacy 95

8.1 Additional Preliminaries and Related Work 95

8.2 Pan-Private Upper Bound . 96

8.3 Pan-Private Lower Bound . 108

8.4 Locally Private Lower Bound . 120

Chapter 9 : Folklore and Future Directions . 128

9.1 Pan-Privacy Folklore . 128

9.2 Future Directions . 129

Bibliography . 131

v

List of Tables

TABLE 1 : A comparison of upper bounds in Gaboardi et al. [39] and here. In

all cases, Gaboardi et al. [39] use (ε, δ)-locally private algorithms

and we use (ε, 0). Here, R denotes an upper bound on both µ and

σ. In our setting, the upper bound on µ is O(2nε
2/ log(n/β)), lead-

ing the unknown variance protocol of Gaboardi et al. [39] to round

complexity potentially as large as Ω̃(nε2/ log(1/β)). 48

TABLE 2 : A comparison of the uniformity testing sample complexity bounds

given in this and previous work. “SI” is sequentially interactive and

“NI” is noninteractive. 97

vi

List of Illustrations

FIGURE 1 : From left to right, examples of noninteractive, sequential, and full

interaction. In each illustration, x variables are user data, and

y variables are privatized user responses. In the noninteractive

model, each privatized response yi is a function only of the user’s

data xi (and their internal randomness). In the sequential model,

each yi is a function of xi and previous responses y1, . . . , yi−1. In

the full model, each yi,t is a function of xi and any yi′,t′ for any t′ < t. 13

FIGURE 2 : A simplified instance of the hidden layers problem. Each node

is labeled 0 (left) or 1 (right). For layers a and b, these labels

correspond to the correct child node. Leaves 4 and 6 are thus the

only two leaves consistent with the hidden layers a and b. Note

that a true instance of the hidden layers problem is much larger. . 69

FIGURE 3 : Multi-party pointer jumping . 77

vii

Chapter 1

Introduction

Differential privacy [34] is a mathematical guarantee that forces an algorithm’s output to be

relatively insensitive to small changes in its input. This obscures the presence or absence of

any one data contributor. Rigorous privacy guarantees and practical solutions for a variety

of problems have in turn driven adoption of differential privacy by industry [9, 14, 30, 43],

government [41], and researchers [52, 54].

In this work, we consider three models of differential privacy: central differential privacy,

pan-privacy, and local differential privacy1. Central differential privacy [34] grants an algo-

rithm free access to a raw database and only requires the algorithm to produce a differen-

tially private output. Of the three models, central differential privacy always offers the best

utility — any algorithm in the other two models can always be simulated by a centrally

differentially private algorithm — but this flexibility comes at the cost of three assumptions.

First, the algorithm’s “central” access to the raw database requires users to trust the algo-

rithm’s data collection process. Second, the algorithm’s internal state during computation

is unconstrained. As a result, intrusion on the algorithm’s internal state mid-computation

may reveal arbitrary information about the data. This further requires users to trust the

security of the algorithm operator. Third, differential privacy makes no promises about

future stewardship of data. A differentially private algorithm may faithfully produce dif-

ferentially private outputs, but nothing prevents the algorithm operator from using the

algorithm’s raw data for other purposes in the future. It follows that users must trust the

algorithm operator to use their data responsibly even after the computation has finished.

In total, central differential privacy offers an algorithm operator the highest utility, but it

also requires the most trust from the users providing data.

1For brevity, we often refer to these models as simply central, pan-, and local privacy.

1

A pan-private [36] algorithm receives a stream of raw data, one element at a time, and

maintains a differentially private internal state while processing that stream. This models

an algorithm operator that acquires data over time. Gradual data acquisition weakens

the first assumption of central differential privacy. However, pan-privacy does assume that

the stream itself is transmitted through a secure channel, and differential privacy is only

guaranteed against an adversary who intrudes on the internal state at most once. The

differential privacy of the internal state also weakens central differential privacy’s second

assumption and enables pan-privacy to drop the third assumption completely. This is

because differential privacy’s post-processing guarantee (see Fact 1) ensures that a pan-

private algorithm only preserves a differentially private summary of the data it has seen.

This prohibits the storage of any raw data, so users need not trust the algorithm operator

to steward data in the future. Pan-privacy thus requires less trust from users, but it also

places more restrictions on the algorithm operator.

A locally differentially private [34, 38, 50] algorithm does not see any raw data. Instead, the

database remains distributed among users on their devices. The algorithm must learn by

interacting with these users in a public yet privacy-preserving way. Because the interaction

is public, local privacy requires none of central differential privacy’s three assumptions. In

local privacy, secure channels are unnecessary, algorithmic state may equivalently be public

as well, and there is no raw data that the operator must safeguard in the future. Moreover,

because users add randomness to their communications from their own devices, they are in

full control of their own privacy and need not trust any other party.

Central, pan-, and local privacy are thus ordered by decreasing user trust. A user who

trusts the algorithm operator both today and in the future will accept a central privacy

guarantee; a user who only trusts the algorithm operator today will accept a pan-privacy

guarantee; and a user who does not trust the algorithm operator at all will only accept a

local privacy guarantee.

2

1.1. Our Contributions

In this dissertation, we study the relationships between these three models and their sub-

classes. We primarily focus on pan-privacy and local privacy. At a high level, we divide our

results into connections and separations. Connections (Chapters 3 and 4) are transforma-

tions between algorithms in different model classes. They provide ways of porting certain

kinds of algorithms with one privacy guarantee to algorithms with another. Separations

(Chapters 5 through 8) instead provide problems where these transformations are impos-

sible, and the models must obtain different sample complexity guarantees. Informally, we

show:

1. Pure pan-privacy against multiple intrusions is equivalent to the local privacy where

each user participates at most once (“sequential interaction”) [8] (Chapter 3).

2. At a controlled cost, one can convert any pure locally private algorithm into a sequen-

tially interactive equivalent [47] (Chapter 4).

3. The problems of simple hypothesis testing [47] and one-dimensional Gaussian estima-

tion [46] polynomially separate central and local privacy (Chapter 5).

4. By a connection between communication complexity and local privacy, the hidden

layers problem exponentially separates fully interactive (each user may participate

arbitrarily many times) and sequentially interactive local privacy [48] (Chapter 6).

5. A second lower bound, which does not rely on the aforementioned communication

connection and instead uses a direct proof for a similar problem, shows that the cost

of the full-sequential conversion of Chapter 4 is tight (Chapter 7).

6. The problem of uniformity testing polynomially separates central, pure pan-, and

sequentially interactive local privacy [8] (Chapter 8).

Note that our separations fall into two rough categories. Chapters 5 and 8 give separations

3

for the learning problems of, respectively, simple hypothesis testing and uniformity testing.

Chapters 6 and 7 instead use communication problems, which — though still valid tasks

for locally private protocols — have more artificial structures.

We conclude with some folklore results in pan-privacy and possible directions for future

work (Chapter 9).

1.2. Related Work

We begin with basic background information relating the three models, with a focus on pan-

privacy and local privacy. More problem-specific related work appears in later sections.

Dwork, Naor, Pitassi, Rothblum, and Yekhanin [36] introduced pan-privacy and gave algo-

rithms for several different counting problems over streams. This original definition of pan-

privacy is different than the one we consider here. In particular, their definition promises

user-level rather than event-level privacy (for details, see the discussion in Chapter 2.2).

This makes their lower bounds weaker and their upper bounds stronger relative to ours.

Since we focus on event-level privacy, we shorthand their formulation as “user-level pan-

privacy” and ours as “pan-privacy”. With this definition, Dwork et al. [36] separated

user-level pan-privacy against one and multiple intrusions by showing that estimating the

number of distinct elements in a stream is much harder with multiple intrusions. Second,

they showed that inner-product counting is easier under user-level pan-privacy than non-

interactive local privacy. Mir, Muthukrishnan, Nikolov, and Wright [53] extended these

results to new counting problems and dynamic streams permitting element deletions. They

also showed that user-level pan-private algorithms cannot additively approximate distinct

element count to o(
√
|X|) accuracy for data universe X (in fact, this lower bound extends

to our notion of pan-privacy as well). This improved the previous Ω

(√
|X|

log(|X|)

)
lower bound

given by McGregor, Mironov, Pitassi, Reingold, Talwar, and Vadhan [51] for two-party

privacy (a weaker notion of privacy than pan-privacy), which may be viewed as the first

separation between central and pan-privacy. Dwork, Naor, Pitassi, and Rothblum [35] also

4

studied a variant of pan-privacy with the additional constraint of continual observation,

which requires the algorithm to provide accurate answers after every stream element. They

and Chan, Shi, and Song [25] gave both upper and lower bounds for counting problems

under continual observation.

The first result in this dissertation differs from those above by showing that pure pan-privacy

against multiple intrusions is equivalent to a different model, sequentially interactive local

privacy (Chapter 3). In contrast, Dwork et al. [36] showed that user-level pan-privacy

against multiple intrusions is worse for the specific problem of counting distinct elements.

We also separate pan-privacy from sequentially interactive local privacy for the problem of

uniformity testing (Chapter 8).

We now turn to local privacy. A series of works [34, 38, 50] introduced and formalized the

basics of local privacy, and Duchi, Jordan, and Wainwright [33] first defined noninteractive,

sequentially interactive, and fully interactive algorithms. Most local privacy lower bounds

apply only to the noninteractive or sequentially interactive models, but there are a few

exceptions. For the problem of summing n bits, Beimel, Nissim, and Omri [13] showed

that o(
√
n) additive accuracy is impossible in a limited number of rounds. Chan, Shi,

and Song [26] extended this result to an arbitrary number of rounds. The aforementioned

lower bound of Mir et al. [53] also separates central and local privacy for the problem of

counting distinct elements. Kasiviswanathan, Lee, Nissim, Raskhodnikova, and Smith [50]

constructed an equivalence between local privacy and SQ learning and used it to show that

learning d-parity is hard for sequentially interactive protocols with poly(d) users and fully

interactive algorithms using 2o(d
1/3) randomizer calls. They also separated noninteractive

and sequentially interactive learning for the similar problem of d-masked parity. Daniely

and Feldman [28] gave a similar but more general separation for concept classes with high

margin complexity. Most recently, Duchi and Rogers [31] extended the results of Duchi

et al. [32] to fully interactive algorithms for problems admitting strong data processing

inequalities. These results certify the optimality of certain noninteractive solutions, but

5

they do not give any examples where noninteractivity is necessarily suboptimal.

The second result in this dissertation shows how to (at a cost) convert fully interactive

algorithms into sequentially interactive equivalents (Chapter 4). This differs from the results

above, which come closest when showing that interactivity offers no benefits for certain

problems. We also separate centrally and locally private hypothesis testing (Chapter 5)

and, as a corollary, one-dimensional Gaussian estimation (Chapter 5). Because it applies

even to approximate local privacy and incorporates a dependence on ε, this separation is

more general than those given above. We also give the first separations between fully and

sequentially interactive local privacy (Chapters 6 and 7).

6

Chapter 2

Preliminaries

This section covers basic definitions for the rest of this work. Where appropriate, specific

additional definitions appear in later sections.

2.1. Differential Privacy

A randomized algorithm is differentially private if its output distribution is relatively in-

sensitive to small changes in its input. We define this insensitivity at the granularity of

replacing a single element in the database. Because the output distribution of differentially

private A is agnostic to the presence or absence of any one datum (as parameterized by ε

and δ), an adversary can infer only a carefully prescribed amount of information about any

one record from the output of A.

Definition 1 ([34]). Given data universe X and two databases D,D′ ∈ X n, D and D′

are neighbors if they differ in ≤ 1 element. Given algorithm A : X n → Y , A is (ε, δ)-

differentially private if for all subsets S ⊂ Y ,

PA [A(D) ∈ S] ≤ eεPA
[
A(D′) ∈ S

]
+ δ.

When δ = 0, we say A is ε-differentially private.

The case where δ > 0 is also called approximate privacy, with the case where δ = 0 called

pure. Two fundamental lemmas about differential privacy will be useful. References for

these results appear in Chapters 2 and 3 of the survey of Dwork and Roth [37]. First,

differential privacy is resilient to post-processing: any function applied to a differentially

private output inherits the same privacy guarantee.

Fact 1. For (ε, δ)-differentially private algorithm A : X n → Y and arbitrary random func-

tion f : Y → Y ′, f ◦ A is (ε, δ)-differentially private.

7

Informally, this is because post-processing cannot “undo” the randomness added in the

computation of A(D)1. Second, differential privacy guarantees “add up” when composed.

Fact 2. For (ε1, δ1)-differentially private A1 and (ε2, δ2)-differentially private A2, A3 de-

fined by A3(D) = (A1(D),A2(D)) is (ε1 + ε2, δ1 + δ2)-differentially private.

Together, post-processing and composition guarantees enable us to handle differentially

private algorithms in a modular way: we can cut and paste them together in a pipeline and

obtain a privacy guarantee for the pipeline as a whole by appropriately adding up individual

privacy guarantees.

Note that Definition 1 makes a few assumptions. First, including D as an input to A means

that the algorithm has secure access to raw data. Second, because the constraint applies

only to the output of A, it assumes that algorithm’s internal state during computation is

safe from intrusion. Third, differential privacy does not on its own prevent the operator

of A from using D for some other purpose in the future. For example, the operator could

repeatedly compute A on D and — as the privacy parameters grow through composition —

eventually make the privacy guarantee vacuous. We will primarily differentiate pan-privacy

and local privacy from central privacy using these three assumptions.

2.2. Pan-Privacy

In the pan-private model, the algorithm A receives the database D as a stream of elements,

typically denoted S for clarity. Upon receiving an element St, A updates its internal state,

deletes the element, proceeds to the next element in the stream St+1, and eventually pub-

lishes some output when the stream ends. This models a gradual data acquisition process

where the database is acquired over time.

Pan-privacy strengthens central differential privacy by requiring privacy of A’s internal

state. An adversary that intrudes upon the internal state of A at any single time t should

not be able to determine if A received stream St or neighboring stream S′t. We formalize

1For an alternative view, this is conceptually similar to propagation of measurement error.

8

this below.

Definition 2 ([36]). Let X be a data universe, and let S = XN be the set of streams from

X . Two streams S, S′ ∈ S are neighbors if there exists index t such S and S′ differ only at

index t.

A pan-private algorithm consists of an internal algorithm AI and an output algorithm AO.

A maps streams to internal states by repeated application of AI , which maps an internal

state and element of X to an internal state, AI : I ×X → I. At some time the stream ends

and A publishes a final output AO(i) where i is the internal state of A at the end of the

stream. For stream S, let AI(S) denote the internal state of A after processing S, and let

S≤t denote the first t elements of stream S. A is (ε, δ)-pan-private if, for any neighboring

streams S and S′, any time t, any E ⊂ I ×O,

PA [(AI(S≤t),AO(AI(S))) ∈ E] ≤ eεPA
[
(AI(S′≤t),AO(AI(S′))) ∈ E

]
+ δ. (2.1)

When δ = 0, we say A is ε-pan-private.

Pan-privacy thus protects against an adversary that sees any single internal state of A as

well as its final output. The second requirement implies that any pan-private algorithm is

also differentially private; the key additional contribution of pan-privacy is the maintenance

of the differentially private internal state2.

We also note that this definition of pan-privacy differs from past definitions [36, 53] by

guaranteeing event-level privacy (uncertainty about the presence of any single stream ele-

ment) whereas previous works guarantee user-level privacy (uncertainty about the presence

of any one data universe element). The main reason for this change is that Dwork et al.

[36] originally intended pan-privacy for streams where users might contribute many data

points. We instead assume that each user contributes at most one data point. This is the

2Pan-privacy also assumes that the process of receiving a stream element, updating internal state, and
deleting the stream element from memory is atomic. This means that an adversary cannot interrupt the
process. Without this assumption, nothing prevents an adversary from seeing a stream element in the clear,
and privacy is impossible.

9

most common assumption in most works on differentially privacy (for example, it is implicit

in Definition 1). We therefore shorthand the “event-level” pan-privacy of Definition 2 as

simply“pan-privacy”.

Recall the three assumptions made for central privacy. By gradually acquiring the raw

database D in a stream S, pan-privacy weakens the first assumption of secure access to D

in its entirety. Pan-privacy’s tolerance of any one intrusion on its internal state also weakens

the second assumption of a completely secure internal state. Finally, by the post-processing

guarantee of Fact 1, the operator of pan-private A may only access a differentially private

summary of past data after proceeding to the next stream element. Users therefore need

not trust the operator after it has moved on to acquiring other data.

Finally, to generalize Definition 2 to c > 1 intrusions, we can replace inequality 2.1 with

PA
[
(AI(St)tct=t1 ,AO(AI(S))) ∈ E

]
≤ eεPA

[
(AI(S′t)

tc
t=t1

,AO(AI(S′))) ∈ E
]

+ δ

where E ⊂ Ic ×O. This generalization will only be relevant when proving our equivalence

between multi-intrusion pan-privacy and sequentially interactive local privacy (Chapter 3).

2.3. Local Differential Privacy

Our final privacy model is local differential privacy. Variants on this model date back to

the simplest form of Warner’s randomized response [62] and more generally the notion of γ-

amplification defined by Evfimieski, Gehrke, and Srikant [38]. Dwork et al. [34] also touched

on this local restriction, but the first focused study of local differential privacy is the work

of Kasiviswanathan et al. [50].

Local differential privacy does not assume any access to raw data or any limit on intrusions

into an algorithm’s internal state. Moreover, it strictly limits even the algorithm operator’s

knowledge of the database D. Rather than view A as an algorithm receiving input and

producing output, we view A as a protocol that coordinates public communication among

10

users. A thus has no special information access privileges relative to users.

The primary role of the protocol is to assign randomizers to users. A randomizer is a differ-

entially private function of the user’s input. By communicating through randomizers, users

add randomness to all of their communications, and this randomness ensures privacy. By

choosing randomizers carefully, the protocol can still extract useful aggregate information

from the users as a whole.

Definition 3. An (ε, δ)-randomizer R : X → Y is an (ε, δ)-differentially private function

taking a single data point as input.

A simple but useful (ε, 0)-randomizer is randomized response [62], denoted RR (·, ε). Given

a bit x and privacy parameter ε, randomized response outputs x with probability eε

eε+1 and

outputs 1− x with probability 1
eε+1 .

Since the protocol learns from users through randomizer calls, we need to formalize the way

we represent this information. The record of users, randomizers, and messages over time is

a transcript.

Definition 4. A transcript π is a vector of tuples (it, Rt, yt) indicating the user queried,

randomizer used, and output produced at each time t.

We can therefore define a protocol as a function that assigns randomizers to users based on

the transcript so far or halts. We typically refer to locally private algorithms as protocols

to emphasize their distributed and cooperative nature.

Definition 5. Let Sπ denote the collection of transcripts, [n] the collection of users, and

SR the collection of randomizers. Then a protocol A is a function A : Sπ → [n]×SR∪{⊥}

that maps transcripts to users and randomizers (or halts (denoted ⊥).

We now have all the definitions to define a locally differentially private protocol.

Definition 6. A protocol A : Sπ → [n]× SR ∪ {⊥} is (ε, δ)-locally differentially private if

11

for all neighboring (distributed) databases D and D′ and subsets S ⊂ Sπ,

P [T (A(D)) ∈ S] ≤ eεP
[
T (A(D′)) ∈ S

]
+ δ

where T is the random variable for the transcript generated by A. If δ = 0, we say A is

ε-locally differentially private.

Note that while this definition views a protocol A as a function on the data D, A may only

interact with D by querying randomizer outputs from users holding the data from D. In

this sense, A never “sees” D.

SinceA is a protocol that communicates with users, we can also distinguish between different

classes of locally private protocols based on interaction. A noninteractive protocol makes

all randomizer assignments before seeing any responses.

Definition 7. A protocol A is noninteractive if, at each round t, as random variables,

(it, Rt) is conditionally independent of Π<t given t.

Note that some works [4, 6] have studied an even stronger private-coin model of noninter-

action. Informally, our public-coin model allows for an additional “half step” of interaction

over the private-coin model because the protocol may coordinate randomizer choices across

users. In contrast, the private-coin model forbids this. Some of our noninteractive protocols

(for example, the simple hypothesis tester of Chapter 5) fit directly into the private-coin

model, but in general this distinction makes our upper bounds relatively weaker and our

lower bounds relatively stronger.

More generally, a sequentially interactive protocol can make randomizer assignments adap-

tively, but may still only query each user at most once.

Definition 8 ([32]). An algorithm A is sequentially interactive if, at each round t, it 6=

it−1, . . . , i1.

Most generally, a fully interactive protocol may make adaptive randomizer assignments and

12

query each user arbitrarily many times; its only constraint is the local privacy guarantee of

Definition 6.

For any locally private protocol, we refer to the number of users n that it queries as its

sample complexity. For fully interactive protocols, the total number of rounds — which we

denote by T — may greatly exceed n. In contrast, for both noninteractive and sequentially

interactive protocols, T ≤ n. Illustrations of these models appear in Figure 1.

x x2 x3

. . .
y1 y3y2

x x2 x3

. . .
y1 y3y2

x x2 x3

. . .
y1,1 y3,4y2,2

y1,3

Figure 1: From left to right, examples of noninteractive, sequential, and full interaction. In
each illustration, x variables are user data, and y variables are privatized user responses. In
the noninteractive model, each privatized response yi is a function only of the user’s data
xi (and their internal randomness). In the sequential model, each yi is a function of xi and
previous responses y1, . . . , yi−1. In the full model, each yi,t is a function of xi and any yi′,t′

for any t′ < t.

13

Chapter 3

Connection: Pan-Privacy and Local Privacy

We now give the first of two connections by connecting pan-privacy and local privacy [8].

Specifically, we show that any algorithm that is (pure) pan-private against multiple intru-

sions has a sequentially interactive locally private equivalent (Theorem 1). The main idea

is that the operator of a pan-private algorithm A2P cannot know when two intrusions will

occur. In particular, if the two intrusions occur at times t and t+1 — respectively, immedi-

ately after A2P processes the tth and (t+ 1)th stream elements — then failure to randomize

the internal state between t and t+1 may reveal element st+1. The operator must therefore

re-randomize the state at every time step.

We briefly sketch the proof of Theorem 1. First, we show that any A2P that is ε-pan-

private against two intrusions can be modified into an algorithm A1P that maintains all of

its internal states thus far and still remain ε-pan-private against one intrusion (Lemma 1).

Because this single intrusion may come at the end of the stream, the complete list of internal

states during the stream must be an ε-differentially private function of the stream. We can

therefore simulate this procedure in the sequentially interactive local model and have the

transcript generate this complete list of internal states (Lemma 2).

In the other direction, we convert any sequentially interactive ε-locally private protocol AL

to A2P , which is ε-pan-private against two intrusions. A2P simulates AL and stores the

transcript so far as its internal state. Since the AL is ε-locally private, its public transcript

is an ε-differentially private function of the data. A2P is therefore ε-pan-private against an

arbitrary number of intrusions onto its internal state.

Before stating and proving the result, note that in this section we may distinguish between

random variables and realizations of streams. Thus we typically denote the stream random

variables by S and the stream realizations by s.

14

Theorem 1. For every A2P that is ε-pan-private against two intrusions and generates

output distribution O given input stream s, there exists AL that is sequentially interactive

ε-locally private and generates transcript distribution O given s, and vice-versa.

Proof. ⇒ (pan to local): We start by converting from pan-privacy against two intrusions

to pan-privacy against one intrusion while preserving all internal states.

Lemma 1. Suppose A2P is ε-pan-private against two intrusions, and let I2,t be the random

variable for the internal state of A2P after stream element t. Then there exists A1P that is

ε-pan-private against one intrusion such that, for analogously defined I1,t, for any stream

s≤t, the concatenation I2,1 ◦ I2,2 · · · ◦ I2,t is distributed identically to I1,t.

Proof. We first define A1P . For j ∈ {1, 2}, define ij,t to be the realized internal state of

AjP after seeing the tth stream element. Each internal state i1,t of A1P is a concatenation

of internal states i2,1 ◦ · · · ◦ i2,t, and for any internal state i of A1P we let i−1 denote the

most recently concatenated state. For example, for i = i2,1 ◦ · · · ◦ i2,t, i−1 = i2,t
1. We then

define the internal algorithm of A1P by A1P,I(i, x) = i ◦ A2P,I(i
−1, x). Finally, we define

the output algorithm of A1P by A1P,O(i) = A2P,O(i−1). As a result, A1P,O(A1P,I(s)) =

A2P,O(A2P,I(s)), and A1P and A2P have identical output distributions.

We will prove this result for discrete state spaces; a similar approach works for continuous

state spaces if we replace probability mass functions with densities. To prove ε-pan-privacy

of A1P against one intrusion, it suffices to fix neighboring streams s and s′, internal state

set i, output state set o, stream position t, and show

PA1P
[A1P,I(s≤t) = i]PA1P

[A1P,O(A1P,I(s)) = o | A1P,I(s≤t) = i]

PA1P

[
A1P,I(s′≤t) = i

]
PA1P

[
A1P,O(A1P,I(s′)) = o | A1P,I(s′≤t) = i

] ≤ eε.
1We assume that it is possible to separate a concatenation into states of A2P after the fact. This

assumption is easily (but less neatly) removed using a separator character ⊥.

15

First, by the definition of A1P , it suffices to show

PA1P
[A1P,I(s≤t) = i]PA2P

[
A2P,O(A2P,I(s)) = o | A2P,I(s≤t) = i−1

]
PA1P

[
A1P,I(s′≤t) = i

]
PA2P

[
A2P,O(A2P,I(s′)) = o | A2P,I(s′≤t) = i−1

] ≤ eε. (3.1)

Suppose streams s and s′ differ at time t∗, i.e. st∗ 6= s′t∗ . If t∗ > t, then we immediately have

PA1P
[A1P,I(s≤t) = i] = PA1P

[
A1P,I(s

′
≤t) = i

]
, and

PA2P [A2P,O(A2P,I(s))=o|A2P,I(s≤t)=i
−1]

PA2P

[
A2P,O(A2P,I(s′))=o|A2P,I(s′≤t)=i

−1
] ≤

eε follows from the ε-pan-privacy of A2P . Thus Inequality 3.1 holds.

The remaining case is when t∗ ≤ t. Here,
PA2P [A2P,O(A2P,I(s))=o|A2P,I(s≤t)=i

−1]
PA2P

[
A2P,O(A2P,I(s′))=o|A2P,I(s′≤t)=i

−1
] = 1, and

we need to upper bound
PA1P [A1P,I(s≤t)=i]
PA1P

[
A1P,I(s′≤t)=i

] . Since A1P,I(s≤t) is conditionally independent

of A1P,I(s≤t∗−1) given A1P,I(s≤t∗), it suffices to show that
PA1P [A1P,I(s≤t∗)=i]
PA1P

[
A1P,I(s′≤t∗)=i

] ≤ eε. Recall

that Ij,t is the random variable for the internal state of Aj after seeing the tth stream

element. Then it is equivalent to show
PA1P [I1,t∗=i|S≤t∗=s≤t∗]
PA1P

[
I1,t∗=i|S≤t∗=s′≤t∗

] ≤ eε.
We introduce some additional notation to prove this claim. i is an internal state for A1P

and is therefore a concatenation of internal states for A2P . Let ia denote the ath state in

the concatenation i, and let ia:b = ia ◦ ia+1 ◦ · · · ◦ ib, the concatenation of states ia through

ib. Then
PA1P [I1,t∗=i|S≤t∗=s≤t∗]
PA1P

[
I1,t∗=i|S≤t∗=s′≤t∗

]

=
PA1P

[I1,t∗−1 = i1:t∗−1 | S≤t∗ = s≤t∗] · PA2P
[I2,t∗ = it∗ | S≤t∗ = s≤t∗ , I2,t∗−1 = it∗−1]

PA1P

[
I1,t∗−1 = i1:t∗−1 | S≤t∗ = s′≤t∗

]
· PA2P

[
I2,t∗ = it∗ | S≤t∗ = s′≤t∗ , I2,t∗−1 = it∗−1

]
=

PA2P
[I2,t∗ = it∗ | S≤t∗ = s≤t∗ , I2,t∗−1 = it∗−1]

PA2P

[
I2,t∗ = it∗ | S≤t∗ = s′≤t∗ , I2,t∗−1 = it∗−1

]
=

PA2P
[I2,t∗ = it∗ | St∗ = st∗ , I2,t∗−1 = it∗−1]

PA2P
[I2,t∗ = it∗ | St∗ = s′t∗ , I2,t∗−1 = it∗−1]

where the second equality uses the fact that s<t∗ = s′<t∗ , and the third equality uses

I2,t∗ ’s conditional independence from S≤t∗−1 given I2,t∗−1. Now, since I2,t∗−1 and St∗ are

16

independent, we multiply by 1 =
PA2P [I2,t∗−1=it∗−1|St∗=st∗]
PA2P [I2,t∗−1=it∗−1|St∗=s′

t∗]
to get

PA2P
[I2,t∗ = it∗ | St∗ = st∗ , I2,t∗−1 = it∗−1]

PA2P
[I2,t∗ = it∗ | St∗ = s′t∗ , I2,t∗−1 = it∗−1]

=
PA2P

[I2,t∗ = it∗ , I2,t∗−1 = it∗−1 | St∗ = st∗]

PA2P
[I2,t∗ = it∗ , I2,t∗−1 = it∗−1 | St∗ = s′t∗]

≤ eε

since A2P is ε-pan-private against two intrusions.

Next, we show how to convert this pan-private algorithm A1P into an equivalent locally

private algorithm AL.

Lemma 2. Let A1P be an ε-pan-private algorithm as described in Lemma 1. Then there

exists sequentially interactive ε-locally private algorithm AL whose transcript distribution

Πt is identical to the A1P ’s state distribution It at each time t.

Proof. At each time t, A1P computes a function A1P (it−1, st) of its current state and the

current element in the stream and concatenates it to its current state. We define AL to use

A1P (it−1, ·) as a randomizer, add the result A1P (it−1, st) to the transcript, and continue.

AL is sequentially interactive because we take a single pass through the stream. Further-

more, because A1P is ε-pan-private and maintains all previous states, the transcript Πt of

AL is an ε-differentially private function of the user data. Thus AL is ε-locally private.

Finally, recalling that Definition 4 defined a transcript to record not only outputs but the

randomizers used as well, let Π−Rt denote Πt with the randomizers omitted. Then for any

input stream s, Π−Rt is distributed identically to It.

We now combine Lemma 1 and Lemma 2: any A2P that is ε-pan-private against two

intrusions yields a sequentially interactive ε-locally private AL such that for any input

stream s and time t, I2,t is distributed identically to Π−R,−1
t , the most recent addition to

the transcript.

17

⇐ (local to pan): Let AL : Π → R be a sequentially interactive ε-locally private protocol

mapping transcripts to randomizers, and let AI : I × X → I be A2P ’s internal algorithm

with initial state ∅. We define AI(∅, x1) = (∅,AL(∅),AL(∅)(x1)) and define other internal

states i by AI(i, x) = i ◦ (AL(i),AL(i)(x)), the concatenation of the existing state i and

the (randomizer, output) pair (AL(i),AL(i)(x)). Thus It = Πt at each time t. Finally, we

define the output algorithm to be the identity function AO(i) = i.

SinceAL is ε-locally private, its final transcript Π is an ε-differentially private function of the

stream: for any transcript realization π and neighboring streams s and s′,
PAL [Π=π|S=s]

PAL [Π=π|S=s′] ≤

eε. Letting I∗ be a random variable for the final internal state of A2P , it follows that

PA2P
[I∗=π|S=s]

PA2P
[I∗=π|S=s′] ≤ e

ε. Thus the final internal state I of A2P is also an ε-differentially private

function of the stream. Moreover, because it is a transcript, I∗ includes a record of all

previous internal states. Thus the additional view of any two internal states (in fact, any

number of internal states) is still an ε-differentially private function of the stream: fixing

times t1, . . . , tc and corresponding internal states π1, . . . , πc,

PA2P
[It1 = π1, . . . , Itc = πc, I

∗ = i | S = s]

PA2P
[It1 = π1, . . . , Itc = πc, I∗ = i | S = s′]

≤ eε.

Finally, since the output of A2P is the final state I∗, A2P is ε-pan-private against arbitrarily

many (and, in particular, two) intrusions.

We view this result as dictating the scope of when pan-privacy is reasonable. If a user

requires privacy against multiple intrusions, then the operator suffers no utility loss (and

users enjoy privacy gains) by using an algorithm that is locally private instead of an al-

gorithm that is pan-private against multiple intrusions. However, there are cases where a

user may be satisfied with pan-privacy against a single intrusion. To see why, we use the

following simple fact.

Fact 3. Suppose a user’s datum is element st of an (ε, δ)-pan-private algorithm A’s stream.

We say an intrusion occurs at time t if the intrusion occurs immediately after A updates

18

its internal state to it after seeing element st. If

1. the first intrusion (possibly of many) occurs at time t′ ≥ t, or

2. all intrusions occur at times t′ < t,

then the intruder’s view is an (ε, δ)-differentially private function of st.

Proof. Pan-privacy guarantees that it is an (ε, δ)-differentially private function of st. In

Case 1, the adversary only sees a post-processing of it. Differential privacy’s resilience to

post-processing (Fact 1) implies that this view is (ε, δ)-differentially private in st. In Case

2, the adversary’s view is independent of st, so (ε, δ)-differential privacy is immediate.

By Fact 3, if A is pan-private against a single intrusion, then it guarantees privacy for

users who either contribute data before the first intrusion or after all intrusions. However,

pan-privacy is not sufficient to protect a user’s privacy if the operator has already been

compromised and may be compromised again. The key parameter for pan-privacy is there-

fore the user’s trust in the operator when the user contributes their data. This motivates

the trust model described in the introduction: if a user trusts the operator today, but

wants to “future-proof” themselves for tomorrow, then pan-privacy is a reasonable privacy

guarantee.

19

Chapter 4

Connection: Fully and Sequentially Interactive Lo-

cal Privacy

We now turn to our second connection, between fully and sequentially interactive local

privacy [47]. We show that for any ε-locally private protocol, we can exhibit a sequentially

interactive 3ε-locally private protocol inducing exactly the same transcript distribution1.

Thus for any task for which the original protocol was useful, the sequentially interactive

protocol is just as useful. The cost of this transformation is an increase in sample complexity

proportional to both ε and the compositionality of the original fully interactive protocol.

Informally, a protocol with high compositionality (Definition 10) solicits many outputs

from users but still guarantees a low privacy parameter because few of the outputs reveal

information.

Our proof is constructive; given an arbitrary k-compositional ε-locally private protocol we

show how to simulate it using a sequentially interactive protocol that induces the same joint

distribution on transcripts. The “simulation” is driven by three main ideas:

1. Bayesian Resampling: The dataset used in a locally differentially private proto-

col does not change after the protocol starts. However, we consider the following

thought experiment: whenever a user sends data through a randomizer, they first

resample their datum from the posterior distribution on their datum conditioned on

the transcript so far. This induces exactly the same joint distribution on datasets and

transcripts upon completion of the mechanism. The remainder of this experiment

therefore seeks to simulate this Bayesian resampling mechanism.

1Formally, for any loss function defined over a data distribution D and a transcript Π, when data points
xi are drawn i.i.d. from D, the two protocols induce exactly the same distribution over transcripts, and
hence the same distribution over losses. This is the sense in which the two protocols are equivalent.

20

2. Rejection Sampling: Local privacy ensures that the posterior on a user’s datum

conditioned on the transcript so far must be close to their prior (otherwise, the tran-

script reveals too much information). Thus, it is possible to sample from this posterior

distribution by first sampling from the prior, and then applying a rejection sampling

step that is both a) likely to succeed, and b) private. It is easy to sample from the prior

by simply querying a new user, but it is not obvious how users can rejection sample

without knowing the underlying data distribution D. We show that an application

of Bayes rule, together with a data independent rescaling, can be used to re-write

the required rejection probability using only quantities that each user can compute

from her own data point and the transcript. A similar use of rejection sampling ap-

pears in the simulation of locally private algorithms by statistical query algorithms

in Kasiviswanathan et al. [50].

3. Randomizer Decomposition: The two ideas above suffice to transform a fully

interactive mechanism into a sequentially interactive mechanism, with a blowup in

sample complexity from the original sample complexity n to the original round com-

plexity T . To mitigate this, we generalize a recent result of Balle, Bell, Gascón, and

Nissim [11] to show that any εi-private randomizer can be described as a mixture

between a data independent distribution and an ε-private andomizer for any ε > εi.

The key element of this decomposition is that the weight on the data independent

distribution is roughly (for small constant ε) 1 − εi/ε. Thus we can simulate each

local randomizer while only needing to query a new user with probability εi/ε. This

dependence on εiε — roughly, the privacy of the isolated randomizer output relative

to the privacy of the protocol as a whole — leads to our use of compositionality. We

show that if the original protocol is k-compositional, then k users are required in ex-

pectation to carry out the sequential simulation, and the realized sample complexity

concentrates sharply around its expectation.

21

4.1. Additional Preliminaries

We start with some additional formalism that will be useful in constructing our transfor-

mation. We will speak separately of protocols and experiments. While the protocol A is

a function mapping transcripts to users and randomizers, the experiment is the interac-

tive process that maps a protocol and collection of users drawn from a distribution D to a

finished transcript. This will allow us to modify protocols in transformations.

In the simplest case, FollowerExpt (Algorithm 1), the experiment exactly follows the outputs

of its protocol. However, experiments may in general heed, modify, or ignore the outputs of

their input protocol. We delineate the privacy characteristics of experiment-protocol pairs

and protocols in isolation below. Here and throughout, the dataset is not viewed as an input

to an experiment, but is drawn from D by the experiment-protocol pair. Drawing a fresh

user ∼ D corresponds to adding an additional data point, and so the sample complexity of

an experiment-protocol pair is the number of draws from D over the run of the algorithm.

For the simple algorithm FollowerExpt(A) defined above, the sample complexity is always

n. Although the distribution D and the sample complexity n are inputs to the experiment,

for brevity we typically omit them and focus on the protocol A; e.g. writing Expt(A) rather

than Expt(A,D, n).

Algorithm 1

1: procedure FollowerExpt(A,D, n)
2: Draw n users {xi} ∼ Dn
3: Initialize transcript π0 ← ∅
4: for t = 1, 2, . . . do
5: if A(π<t) =⊥ then
6: Output transcript π<t
7: else
8: (it, Rt, εt, δt)← A(π<t)
9: User it publishes yt ∼ Rt(xit , εt, δt)

Definition 9. Experiment-protocol pair Expt(A) satisfies (ε, δ)-local privacy if it is (ε, δ)-

differentially private in its transcript outputs.

This experiment-protocol formalism will be useful in constructing the full-to-sequential re-

22

duction later in this section; elsewhere, we typically elide the distinction and simply reason

about FollowerExpt(A) as “protocol A”.

At each round t of a fully interactive ε-locally private protocol, we know that the privacy

parameter εt of any randomizer used in that round is ≤ ε. For many protocols, we can say

more about how the εt parameters relate to ε:

Definition 10. Consider an ε-locally private protocol A where A is not ε′-locally private for

ε′ < ε. Let {εt}Tt=1 denote the minimal privacy parameters of the local randomizers Rt se-

lected at round t considered as random variables. We say the protocol A is k-compositionally

private if for all i ∈ [n], with probability 1 over the randomness of the transcript,

∑
t:it=i

εt ≤ kε.

If k = 1, a protocol is simply compositional private.

In fact, all of our results hold without modification even under the weaker condition of av-

erage k-compositionality. For a protocol A with sample complexity n, A is k-compositional

on average if ∑
t

εt ≤ kεn.

For brevity, we often shorthand “k-compositionally private” as simply “k-compositional”.

Informally, a compositionally private protocol is one in which the privacy parameters for

each user “just add up.” Almost every locally private protocol studied in the literature (and

in particular, every protocol whose privacy analysis follows from the composition theorem

for pure differential privacy) is compositionally private2. They are so ubiquitous that it is

tempting to guess that all ε-locally private protocols are compositional. However, this is

false: for every k and ε, there are ε-locally private protocols that fail to be k-compositionally

private. The following example shows that by taking advantage of special structure in the

2This simple compositionality applies even if {εt}Tt=1 are chosen adaptively in each round (see Theorem
3.6 in the work of Rogers, Roth, Ullman, and Vadhan [58]).

23

data domain and choice of randomizers it is possible to achieve ε-local privacy, even as the

sum of the round-by-round privacy parameters greatly exceeds ε.

Example 1 (Informal). Let the data universe X consist of the canonical basis vectors

e1, . . . , ed ∈ {0, 1}d, and let each x1, . . . , xn be an arbitrary element of X . Consider the d

round protocol where, for each round j ∈ [d], every user i with xi = ej outputs a sample

from RR (1, ε), and the remaining users output a sample from Ber (0.5). As RR (·, ε) is an

ε-local randomizer which each user employs only once, and remaining outputs are data-

independent, this protocol is ε-locally private. But the protocol fails to be k-compositional

for k < d/2.

The preceding example demonstrates that the careful choice of local randomizers based

on the data universe structure can strongly violate compositional privacy. Seen another

way, when multiple queries are asked of the same user, there are situations in which the

correlation in privatized responses induced by being run on the same data element can lead

to arbitrarily sub-compositional privacy costs. The main result of our paper is that the

additional power of a full interactivity on top of sequential interactivity is characterized by

its compositionality.

Finally, since it will be useful to explicitly specify privacy parameters in these transforma-

tions, in this section we view the parameters as explicit outputs of A, rather than encoding

them in each randomizer R. A thus outputs a tuple (it, Rt, εt, δ) rather than just (it, Rt s

in Definition 5.

4.2. Step 1: Bayesian View

The first step of our construction is to observe that for any locally private protocol A, the

experiment-protocol pair BayesExpt(A) induces exactly the same distribution over tran-

scripts as FollowerExpt(A). The difference is that BayesExpt(A) does not follow A as

FollowerExpt(A) does. Instead, between each interaction with a given user i, BayesExpt(A)

has user i resample xi from the posterior distribution on their data conditioned on the

24

transcript so far. We prove in Lemma 3 that the two experiments produce exactly the same

transcript distribution.

Algorithm 2

1: procedure BayesExpt(A,D, n)
2: Initialize transcript π0 = ∅
3: for t = 1, 2, . . . do
4: if A(π<t) =⊥ then
5: Output transcript π<t
6: else
7: (it, Rt, εt, δt)← A(π<t)
8: Redraw xit ∼ Qi,t . Qi,t is the posterior on xit given π<t
9: User it publishes yt ∼ Rt(xit)

Lemma 3. For any protocol A, Let ΠF be the transcript random variable that is output by

FollowerExpt(A) and let ΠB be the transcript output by BayesExpt(A). Then

ΠF d
= ΠB

where
d
= denotes equality of distributions.

Proof. We show this by (strong) induction on rounds in the transcript. The base case t = 1

is immediate: for any index i1 selected by BayesExpt(A), the posterior distribution Qi,1 is

the same as the prior D.

Now suppose it is true through time t, i.e. ΠF
≤t

d
= ΠB

≤t. Then since the joint distributions

Π≤t+1 factor as (it+1, Rt+1, εt+1, δt+1, Yt+1|Π≤t)·Π≤t, it suffices to show that the conditional

distributions it+1, Rt+1, εt+1, δt+1, Yt+1|Π≤t coincide. Moreover, the conditional distribution

on it+1, Rt+1, εt+1, δt+1|Π<t+1 is given by A(Π<t+1) under both algorithms, and so it re-

mains only to show that Yt+1|it+1, Rt+1, εt+1, δt+1,Π≤t is identically distributed under both

algorithms. Under FollowerExpt(A),

Yt+1|it+1, Rt+1, εt+1, δt+1,Π≤t ∼ Rt+1(xit+1 , εt+1, δt+1|Π≤t)
d
= Rt+1(u, εt+1, δt+1),

where u
d
= xit+1 |Π≤t

d
= Qi,t+1 by definition, and we use the fact that after conditioning

25

on Π≤t, xit+1 is independent of εt+1 and δt+1. Redrawing u ∼ Qi,t+1 does not change

the marginal distribution of Rt+1(u, εt+1, δt+1), which is exactly the distribution under

BayesExpt(A), as desired.

With Lemma 3, our new goal will be to simulate the transcript distribution induced by

BayesExpt(A). This is useful because, intuitively, the repeated sampling of BayesExpt(A)

for each randomizer call is closer to a sequentially interactive protocol, which must query a

new user for each randomizer call. However, we still require a method for actually redrawing

each xit ∼ Qi,t in step 8 of Algorithm 2.

4.3. Step 2: Rejection Sampling

We now show how to replace step 8 in Algorithm 2 by selecting a new datapoint (drawn

from D) at every round and using rejection sampling to simulate a draw from Qi,t. The

result is a sequentially interactive mechanism that preserves the transcript distribution of

Algorithm 2 (and, by Lemma 3, of Algorithm 1), albeit one with a potentially very large

increase in sample complexity (from n to T). The rejection sampling step increases the

privacy cost of the protocol by at most a factor of 2.

We first review why it is non-obvious that rejection sampling can be performed in this

setting. We want to sample from the target distribution Qi,t, the posterior xti|π<t, using

samples from the original data distribution D. Let pQ denote the density function of Qi,t

and let p denote the density function of D. In rejection sampling, we would typically sample

u ∼ D, and with probability ∝ pQ(u)
p(u) we would accept u as a sample drawn from Qi,t, or

else redraw another u and continue.

This is not immediately possible in our setting, since the individuals (who must perform the

rejection sampling computation) do not know the prior density p and hence do not know

the posterior pQ. As a result, they cannot compute either the numerator or denominator

of the expression for the acceptance probability. We solve this problem by using the fact

26

that we are simulating a posterior with a prior distribution, and formulate the rejection

sampling probability ratio as a quantity depending only on a user’s private data point

and the transcript. Users may then compute this quantity themselves. Crucially, this

formulation relies on the local privacy of the transcript so far: because privacy bounds

the contribution of any one user’s datum to the transcript, any posterior data distribution

conditioned on the transcript is not far from the prior.

To define our transformed rejection sampler we set up some new notation: given a user i and

round t, let π<t,i denote the subset of the realized transcript up to time t that corresponds

to user i’s data, i.e. π<t,i = {(it′ , Rt′ , εt′ , δt′ , yt′) : t′ < t, it
′

= i}. Let Pxi [π<t,i] denote the

conditional probability of the messages corresponding to user i given the choices of privacy

parameters and randomizers up to time t:

P [π<t,i] =
∏

t′:it′=i

PRt′ [Rt′(xi, εt′ , δt′) = yt′] .

Using this notation, we define our rejection sampling procedure RejSamp in Algorithm 3.

Algorithm 3 Rejection Sampling

1: procedure RejSamp(i, π<t, ε, εt, Rt(·),D) . Publishing Π<t is ε-private
2: Initialize indicator accept← 0
3: while accept = 0 do
4: Draw a new user x ∼ D
5: User x computes px ← Px[π<t,i]

maxx∗ Px∗ [π<t,i]

6: User x publishes accept ∼ Ber (px/2)
7: if accept = 1 then
8: User x outputs Y ′t ∼ Rt(x, εt)

We now prove that RejSamp is private and does not need to sample many users.

Lemma 4. Let Yt
d
= Rt(x

′), where x′ ∼ Qi,t and let Y ′t be defined by the rejection sampling

algorithm RejSamp. Let the sample complexity N be the total number of new users x drawn

in step 4 of RejSamp. Then RejSamp is (ε+ εt, 0)-locally private, Yt
d
= Y ′t , and E[N] ≤ 2eε.

Proof of Lemma 4. We start with the privacy guarantee.

27

Claim 1. RejSamp is (ε+ εt)-locally private.

Proof. We first show that publishing a draw from Ber (px/2) is ε-locally private. For any

input x,

P [output 1 | x] =
px
2

=
Px [π<t,i]

2 maxx∗ Px∗ [π<t,i]
∈
[
e−ε

2
,
1

2

]
where the last step uses the ε-local privacy of π<t,i. Therefore for any inputs x, x′,

P [output 1 | x] ≤ eεP
[
output 1 | x′

]
.

Similarly,

P [output 0 | x] = 1− px
2
∈
[

1

2
,
2eε − 1

2eε

]
and by 1 + x ≤ ex, we get 1− ε ≤ e−ε, so 2− e−ε ≤ 1 + ε ≤ eε and

2eε − 1

2eε
≤ eε

2
.

Thus for any inputs x, x′,

P [output 0 | x] ≤ eεP
[
output 0 | x′

]
.

Finally, releasing Rt(x, εt) is εt-locally private, so by composition the whole process is

(ε+ εt)-locally private.

Next, we show that our rejection sampling induces the correct distribution.

Claim 2. Yt
d
= Y ′t

Proof. It suffices to show that x | accept = 1
d
= Qi,t. Fix any input x0. Then by Bayes’

28

rule in the first and second-to-last equalities,

P [x = x0 | accept = 1] = P [accept = 1 | x = x0] · P [x = x0]

P [accept = 1]

=
Px0 [π<t,i]

2 maxx∗ Px∗ [π<t,i]
· P [x = x0]∑

x′ P [x = x′]
Px′ [π<t,i]

2 maxx∗ Px∗ [π<t,i]

=
Px0 [π<t,i]P [x = x0]∑
x′ P [x = x′]Px′ [π<t,i]

=
Px0 [π<t,i]P [x = x0]

P [π<t,i]

= P [x = x0 | π<t,i]
d
= Qi,t.

Finally, since px/2 ≥ 1
2eε , the expected number of samples until accept = 1 is ≤ 2eε.

4.4. Step 3: Randomizer Decomposition

The preceding sections enable us to simulate a fully interactive k-compositional ε-locally

private protocol with a sequentially interactive (2ε, 0)-locally private protocol. However, our

solution so far requires sampling (in expectation) multiple new users for each query in the

original protocol. Since a fully interactive protocol’s query complexity may greatly exceed

its sample complexity, this is undesirable. To address this problem, we decompose each

local randomizer in a way that substantially reduces the number of queries that actually

require samples.

Let R : X → Y be an ε′-local randomizer, fix one arbitrary input element x0, and let x be

a given private input to R. Then Lemma 5.2 from Balle et al. [11] shows that we can write

R(x) as a mixture

R(x)
d
= (1− γ)w + γdx

where w is a data-independent distribution, dx is a data-dependent distribution, and 1−γ ≥

e−ε
′
. This suggests that we can use decomposition to answer a portion of queries from data-

29

independent distributions and reduce the final sample complexity of our solution.

Unfortunately, this approach encounters a problem: the data dependent distribution need

not be differentially private. In fact, the data dependent distribution often corresponds to

a point mass on the private data point. Thus the privacy of the mechanism above relies on

not releasing which of the two mixture distributions the output was sampled from.

We fix this problem by generalizing the result of Balle et al. [11]. We show that for any

ε ≥ ε′, we can write

R(x) = (1− γ)w + γR̃(x)

where R̃ is now a 2ε-local randomizer, and γ = e−ε
′−1

e−ε−1
(Lemma 5). The upshot of this

generalization is that even if we make public which part of the mixture distribution was

used, the resulting privacy loss is still bounded by 2ε. Larger values of ε increase our chance

of sampling from a data-independent distribution when simulating a local randomizer, while

increasing the privacy cost incurred by a user in the event that we sample from the data-

dependent mixture component. This trade-off between the number of new samples and the

privacy guarantee for the new samples will be crucial for us in the proof of our main result.

Lemma 5 (Data Independent Decomposition). Let R : X → Y be an ε′-local randomizer

and let ε ≥ ε′. Then there exists a mapping R̃ and fixed data-independent distribution w

such that R̃(·) is a 2ε−local randomizer and

R(x)
d
= (1− γ)w + γR̃(x),

where γ = e−ε
′−1

e−ε−1
.

Proof. Let ε ≥ ε′ > 0, fix single arbitrary input x0, let γ = e−ε
′−1

e−ε−1
, and let r(x) denote

the density function of the local randomizer R with input x implicitly evaluated at some

arbitrary point in the range, which we suppress. Since ε ≥ ε′ > 0, we get e−ε − 1 ≤

30

e−ε
′ − 1 < 0, so γ ∈ [0, 1] is a valid mixture probability. Thus we can write

r(x) = (r(x)− (1− γ)r(x0)) + (1− γ)r(x0)

and rewrite the first term as

r(x)− (1− γ)r(x0) = γ(r(x0) +
1

γ
(r(x)− r(x0))) = γr̃(x).

r̃ defines a new mapping R̃(·) by mapping x to the random variable R̃(x) with density

function r̃(x) = r(x0) + 1
γ (r(x)− r(x0)). Thus, it suffices to show that the mapping R̃(x) is

a 2ε-local randomizer.

We first show that for any x, r̃(x) is a well-defined density function. Since R is an ε′-local

randomizer, r(x)− r(x0) ≥ (e−ε
′ − 1)r(x0), and so

r̃(x) = r(x0) +
1

γ
(r(x)− r(x0))

≥ r(x0)

(
1 +

e−ε
′ − 1

γ

)

= r(x0)e−ε.

This establishes that r̃(x) is non-negative. Then since

∫
Ω
r̃(x) =

∫
Ω
r(x0) +

1

γ

∫
Ω

(r(x)− r(x0)) = 1 +
1

γ
(1− 1) = 1,

r̃(x) defines a valid density function for any x.

To see that r̃ is also a 2ε-local randomizer, fix any outcome o ∈ Y and any other input x′.

31

Since r is an ε′-local randomizer, r(x)− r(x0) ≤ r(x0)(eε
′ − 1) and we get

r̃(x) = r(x0) +
1

γ
(r(x)− r(x0))

≤ r(x0)

[
1 +

1

γ

(
eε
′ − 1

)]
= r(x0)

[
1 +

1− e−ε

1− e−ε′
(
eε
′ − 1

)]
= r(x0)

[
1 + eε

′ · 1− e−ε

1− e−ε′
(

1− e−ε′
)]

= r(x0)
[
1 + eε

′ ·
(
1− e−ε

)]
≤ r(x0)

[
1 + eε ·

(
1− e−ε

)]
= r(x0)eε.

We already showed r̃(x′) ≥ r(x0)e−ε, so

r̃(x)(o)

r̃(x′)(o)]
≤ eεr(x0)(o)

e−εr(x0)(o)
≤ e2ε.

4.5. Complete Simulation

Finally, we combine rejection sampling and decomposition to give our complete reduction,

Algorithm 4. We use rejection sampling to convert from a fully interactive mechanism to a

sequentially interactive one and use our data-independent decomposition of local random-

izers to reduce the sample complexity of the converted mechanism.

We now prove that Reduction has the desired interactivity, privacy, transcript, and sample

complexity guarantees. We again denote by N the number of samples drawn from the prior

D over the run of the algorithm, noting that sampling from the prior D simply corresponds

to using a new datum drawn from D. Fixing a protocol A, let ΠR denote the transcript

random variable generated by Reduction(A), and let ΠB denote the transcript random

variable generated by BayesExpt(A).

32

Algorithm 4 Reduction

1: procedure Reduction(Fully interactive ε−LDP Protocol A,D, n)
2: Initialize s1, . . . , sn ← 0. . indicator if user i has been selected yet
3: for t = 1 . . . do
4: if A(π<t) =⊥ then
5: Output transcript π<t
6: else
7: (it, Rt, εt)← A(π<t)
8: if sti = 1 then

9: Let γ ← e−εt−1
e−ε−1

10: Let Rt = (1− γ)Rt(x0) + γR̃t . Randomizer decomposition
11: Draw ρ ∼ Unif(0, 1)
12: if ρ ≤ γ then
13: Draw Yt ∼ RejSamp(it, π<t, ε, 2ε, R̃(·),D)
14: else
15: Draw Yt ∼ Rt(x0, εt) . Data independent distribution

16: else
17: Draw xit ∼ Qi,t = D, then draw Yt ∼ Rt(xit , εt) . Qi,t = D since sit = 0
18: Let sit ← 1

Theorem 2. Let A be a k-compositional ε-locally private protocol. Then

1. Reduction(A) is sequentially interactive,

2. Reduction(A) is 3ε-locally private,

3. ΠR d
= ΠB,

4. E[N] ≤ n(2eε·ε
1−e−εk + 1), and with probability 1− β, N = O(eε[nk +

√
nk log 1

β]).

Proof of Theorem 2. 1. Interactivity: Since each user i’s data is only used once (before

si is set to 1), Reduction(A) is sequentially interactive.

2. Privacy: Consider a data point x corresponding to an arbitrary user over the run of

Reduction(A). Then either x is drawn in line 18, or x is drawn during a rejection sampling

step. In the first case, x is only used once in step 18 as input to an εt-local randomizer.

This is ε-locally private since εt ≤ ε. If x is drawn during the rejection sampling step, then

it is used to simulate a draw from a 2ε-local randomizer R̃(·), where the input transcript

33

π<t has been generated ε-privately. The privacy of the input transcript is relevant because

it bounds the ε-local privacy of the user’s rejection sampling step. By composition and

Lemma 4, this is 3ε-private.

3. Transcripts: We prove this claim by a similar argument as that of Lemma 3: we show

by induction that the transcript distribution at each step t is the same for Reduction(A)

and BayesExpt(A). This is trivially true at t = 1. Now suppose it is true through time t, i.e.

ΠR
≤t

d
= ΠB

≤t. Then since the joint distributions Π≤t+1 factor as (it+1, Rt+1, εt+1, Yt+1|Π≤t) ·

Π≤t, it suffices to show that the conditional distributions on it+1, Rt+1, εt+1, Yt+1|Π≤t coin-

cide.

Under both Reduction(A) and BayesExpt(A), protocol A is used to select it+1, Rt+1, εt+1 as a

function of Π≤t, so we can condition on it+1, Rt+1, εt+1 as well, and need only show that the

distribution on Yt+1 is the same. Under BayesExpt(A), Yt+1 is drawn from Rt+1(u, εt+1), u ∼

Qi,t+1. There are two cases for Reduction(A):

• If st+1
i = 0, then under Reduction(A), Yt+1 is drawn in line 18 from Rt+1(u, εt+1), u ∼

Qi,t+1, as desired.

• If st+1
i = 1, then Reduction(A) uses Lemma 5 to write Rt+1(·) as a mixture. Hence if

we sample from the mixture with input u ∼ Qi,t+1, we sample from Rt+1(u), which

is the desired sampling distribution. To see that Reduction(A) does sample from the

target, we need only show that Yt+1 drawn in line 13 is sampled from R̃t(u) where

u ∼ Qi,t+1. This is true by Lemma 4.

4. Sample Complexity: We first bound the expected sample complexity.

Claim 3. E[N] ≤ n(2eε·ε
1−e−εk + 1).

Proof. Let Ni be the number of fresh samples drawn over all rounds t where it = i, i.e.

the number of samples drawn when simulating follow-up queries to i in A. Let N t
i be the

number of samples drawn during rejection sampling in round t (we imagine that regardless

34

of the coin-flip in line 11 of Reduction, N t
i is always drawn). Then by the expected rejection

sampling sample complexity from Lemma 4

E[Ni] =
T∑
t=1

γtE
[
NT
i

]
≤

T∑
t=1

γt2e
ε =

2eε

1− e−ε
T∑
t=1

(1− e−εt).

Since 1− x ≤ e−x, we get that 1− εt ≤ e−εt and so 1− e−εt ≤ εt. Hence

E[Ni] ≤
2eε

1− e−ε
T∑
t=1

εt ≤
(

2eε · ε
1− e−ε

)
k

by k-compositionality. Summing over i and including the ≤ n samples drawn in line 18

bounds the expected sample complexity by n((2eε·ε
1−e−ε)k + 1).

Next, we give the high probability sample complexity bound.

Claim 4. With probability 1− β, N = O(eε[nk +
√
nk log 1

β]).

Proof. We start with a multiplicative Azuma-Hoeffding Inequality which will drive the high

probability bound. The result is folklore, but we prove it here for completeness.

Lemma 6. Let {γt}Tt=1 be a collection of random variables in [0, 1], and let (Ft)Tt=1 be a

filtration such that σ(γ1, . . . γt−1) ⊂ Ft−1. Suppose there exists {µt}Tt=1 such that for every

t ∈ [T], E [γt | Ft−1] ≤ µt where
∑T

t=1 µt ≤ µ. Then for β ∈ [e−3µ/4, 1]

P

[
T∑
t=1

γt >
√

3µ log(1/β) + µ

]
≤ β.

35

Proof. Let ` ≥ 0. Then

E
[
e`γt | Ft

]
= E

[
(e`)γt | Ft

]
≤ 1 + (e` − 1)E [γt | Ft−1]

≤ 1 + (e` − 1)µt

≤ ee
`−1)µt (4.1)

where the first inequality uses the fact ax ≤ 1 + (a − 1)x and the last inequality uses

1 + x ≤ ex. Next, define Sj =
∑j

t=1 γt. Then

E
[
e`Sj

]
= EFj=1

[
E
[
e`Sj | Fj−1

]]
= E

[
e`γj | Fj−1

]
· EFj−1

[
e`Sj−1 | Fj−1

]
≤ E

[
e`Sj−1

]
e(e`−1)µt

where the last step uses Inequality 4.1. Inducting on j then gives

E
[
e`ST

]
≤ e(e`−1)

∑
t µt ≤ e(e`−1)µ

by
∑T

t=1 µt ≤ µ. Now for α > 0 we take ` = log(1 + α) > 1 and a = (1 + α)µ and get

P [S ≥ a] = P
[
e`S ≥ e`a

]
≤ e−`aE

[
e`S
]

≤ e−`a+(e`−1)µ

= e−µ([1+α] log(1+α)−α)

where the first inequality uses Markov’s inequality. Then since

[1 + α] log(1 + α)− α ≥ α2/3

36

for α ∈ [0, 3/2], we get

P [S ≥ (1 + α)µ] ≤ e−µα2/3

and setting α =
√

3 log(1/β)
µ gives the desired bound. Because α ∈ [0, 3/2], e−µα

2/3 is

minimized at α = 3/2, and we require β ≥ e−µ(3/2)2/3 = e−3µ/4.

We now use Lemma 6 to prove our overall claim. As in the proof for the expected sample

complexity, ≤ n users drawn in line 18 of Reduction, so it suffices to control the sample

complexity contributed by rejection sampling in line 13. For a given user i from A, the

sample complexity contributed in rounds where i is selected can be written as
∑T

t:it=i
γtNt

where γt ∼ Ber(e
−εt−1
e−ε−1

) and Nt
ind∼ Geom(Pt) for random variables pt ≥ e−2ε

2 and εt ≤ ε

depending on the current transcript Π<t. Thus we can write the total sample complexity

random variable for rejection sampling rounds as

S =
T∑
t=1

γtNt.

We now control S. First consider
∑T

t=1 γt. Let Ft be the σ-algebra generated as Ft =

σ(Π<t, εt, {γ`}t−1
`=1). Then

E [γt | Ft−1] =
1− e−εt
1− e−ε

.

Define µt = 1−e−εt
1−e−ε and µ =

∑T
t=1 µt ≤

nkε
1−e−ε by 1− e−x ≤ x and k-compositionality. Then

by Lemma 6, with probability 1− β/2, for β ≥ 2e−3µ/4

P

[
T∑
t=1

γt >
√

3µ log(2/δ) + µ

]
≤ β

2
. (4.2)

Let Eγ be the above event
∑T

t=1 γt ≤
√

3µ log(2/δ) + µ. Then for any a

P [S ≥ a | Eγ] ≤ P [Z ≥ a]

where we define Z to be the sample complexity of
√

3µ log(2/β) runs of rejection sampling,

37

Z =
∑√3µ log(2/β)+µ

t=1 N ′t for N ′t
iid∼ Geom(e

−ε

2). Define µ′ = E [Z] = 2eε(
√

3µ log(2/β) + µ).

Then by a tail bound for the sum of geometric random variables (see e.g. Theorem 2.1

from Janson [45]), for any b ≥ 1

P
[
Z ≥ bµ′

]
≤ e−e−εµ′(b−1−log(b))/2.

Setting b = 2
(

2eε log(2/β)
µ′ + 1

)
gives P [Z > 4 log(2/β)eε + µ′] ≤ β/2, so

P
[
S ≥ 2(log(2/β)2eε + µ′) | Eγ

]
≤ β

2
. (4.3)

Finally, we combine Inequalities 4.2 and 4.3 to get

P
[
S ≥ 2(log(2/β)2eε + µ′)

]
≤ P

[
S ≥ 2(log(2/β)2eε + µ′) | Eγ

]
P [Eγ] + (1− P [Eγ])

≤ β

2
+
β

2
= β.

We finish by substituting in

µ′ = 2eε(
√

3µ log(2/β) + µ)

= O

(
eε
√

ε

1− e−ε
·
√
nk log(1/β) +

eεε

1− e−ε
· nk

)
= O

(
eε[
√
nk log(1/β) + nk]

)
.

This completes the overall proof.

Theorem 2 thus establishes compositionality as a relevant parameter distinguishing sequen-

tial and full interactivity. In Chapter 6, we show that this dependence is tight up to

logarithmic factors.

in

38

Chapter 5

Polynomial Separation: Central vs. Local Privacy

We now turn from connections to separations. Henceforth, our results will be oriented

toward separating central, pan-, and local privacy (and subdivisions thereof). In this chap-

ter, we focus on separating central and local privacy. The first section shows that simple

hypothesis testing separates central and local privacy [47]. This is the first separation be-

tween central and local privacy for a problem other than summation. In the second section,

we build on this result to separate centrally and locally private one-dimensional Gaussian

estimation [48].

5.1. Simple Hypothesis Testing

We start by defining simple hypothesis testing.

Definition 11. Given known distributions P0 and P1 and access to i.i.d. samples from

unknown distribution Pj ∈ {P0, P1}, we say algorithm A is a simple hypothesis tester with

sample complexity n if, given ≥ n samples from Pj and ||P0 − P1||TV ≥ α, with probability

at least 2/3 A correctly identifies Pj.

The Neyman-Pearson lemma [55] establishes that the log-likelihood ratio test is optimal for

this problem absent privacy, and recent work by Canonne, Kamath, McMillan, Smith, and

Ullman [23] extends this idea to give an optimal centrally private simple hypothesis test1.

Both tests compute a variant of the log-likelihood ratio

∑
samples x

log

(
PP0 [x]

PP1 [x]

)

and compare it to some threshold. Intuitively, samples from P0 should produce a positive

sum and samples from P1 should produce a negative sum. In the centrally private case,

1This result extends to pan-privacy as well. See Chapter 9 for details.

39

the algorithm receives raw samples and must satisfy differential privacy when producing

its output decision. In the locally private case, the protocol must coordinate randomizer

outputs from users holding samples and use those outputs to make its decision.

5.1.1. Upper Bound

We now consider a simple (folklore) noninteractive ε-locally private version of the log-

likelihood test. Recall that for bit x, randomized response RR (x, ε) outputs x with prob-

ability eε

eε+1 and outputs 1 − x with probability 1
eε+1 . Our tester will have each user ran-

domized respond on which of the two distributions has higher likelihood to generate the

user’s datum: each user i with input xi outputs RR
(
arg maxj∈{0,1} Pj(xi), ε

)
. The protocol

processes these responses by taking the majority response as its answer.

Algorithm 5 ε-Locally Private Simple Hypothesis Tester A
1: procedure Noninteractive Protocol({xi}ni=1)
2: for i = 1 . . . n do
3: User i publishes yi ← RR

(
arg maxj∈{0,1} Pj(xi), ε

)
4: Protocol computes N̂0 ← |{yi | yi = 0}|
5: if N̂0 ≥ n/2 then
6: Protocol outputs P0

7: else
8: Protocol outputs P1

It is immediate that A is noninteractive and, since it relies on randomized response, sat-

isfies ε-local privacy. We can also bound its sample complexity by simple concentration

arguments.

Theorem 3. A is noninteractive ε-locally private and, with probability ≥ 2/3, distinguishes

between P0 and P1 given n′ ≥ n = O
(

1
α2ε2

)
samples.

Proof. Let j∗ ∈ {0, 1} index the true distribution. Since ||P0 − P1||TV ≥ α, over the

randomness of both the sample x and the randomizer,

P
[
RR

(
arg max

j∈{0,1}
Pj(x), ε

)
= j∗

]
≥ 1

2
+ Ω(αε).

40

This is equivalent to distinguishing Bernoulli distributions with parameters separated by

Ω(αε), so n′ = Ω
(

1
α2ε2

)
samples suffice.

In fact, we can show that the simple tester given above is optimal even among the much

larger class of fully interactive (ε, δ)-locally private tests.

5.1.2. Lower Bound

We prove a general lower bound that applies to both pure and approximate locally private

protocols. We start by revisiting the distinction between these two settings. In central

privacy, approximate privacy sometimes offers large utility improvements over pure pri-

vacy [44]. No such separation is known for local privacy. In fact, we can show that the two

models are essentially equivalent for sequentially interactive protocols.

First, combining (slightly modified versions of) Theorem 6.1 from Bun, Nelson, and Stem-

mer [19] and Theorem A.1 from Cheu, Smith, Ullman, Zeber, and Zhilyaev [27], we get the

following result2

Lemma 7. Given δ < min
(

εβ
48n ln(2n/β) ,

β
64n ln(n/β)e7ε

)
and sequentially interactive (ε, δ)-

locally private protocol A, there exists a sequentially interactive (10ε, 0)-locally private pro-

tocol A′ such that for any dataset U , ||A(U)−A′(U)||TV ≤ β.

Lemma 7 enables us to apply existing lower bound tools for ε-locally private protocols to

sequentially interactive (ε, δ)-locally private protocols. With this result in hand, we now

sketch the proof of our lower bound for locally private simple hypothesis testing.

Our proof relies on controlling the squared Hellinger distance between transcript distribu-

tions induced by an (ε, δ)-locally private protocol when samples are generated by P0 and

2 Bun et al. [19] and Cheu et al. [27] prove their results for noninteractive protocols. However, their
constructions both rely on replacing a single (ε, δ)-local randomizer call for each user with an (O(ε), 0)-local
randomizer call and proving that these randomizers induce similar output distributions. Since each user still
makes a single randomizer call in sequential interactive protocols, essentially the same argument applies. For
fully interactive protocols, a naive modification of the same result forces a stronger restriction on δ in terms

of the number of the maximum number of randomizer calls to any one user T , roughly δ = õ
(

εβ
max(n,T)

)
.

41

P1. Once we show that these distributions are “close together” in a way that depends on

ε, δ, and n, we can show that distinguishing the two settings forces a lower bound on n.

More specifically, we borrow a simulation technique used by Braverman, Garg, Ma, Nguyen,

and Woodruff [18] for a similar (non-private) problem and find that we can control this

squared Hellinger distance by bounding the KL divergence between a simpler, noninteractive

pair of transcript distributions. This transformation is important because it lets us employ

existing lower bound tools for noninteractive protocols [32].

Since our proofs rely on the squared Hellinger distance and KL divergence, we first recall

their definitions.

Definition 12. Let f and g be distributions over X . The squared Hellinger distance between

f and g is H2(f, g) = 1−
∫
X
√
f(x)g(x)dx.

Definition 13. Let f and g be distributions over X . The KL divergence between f and g

is DKL (f ||g) =
∫
X f(x) log

(
f(x)
g(x)

)
dx.

Next, some facts relating the two notions and total variation distance will be useful.

Fact 4. For any distributions f , g, and h,

1. H2(f, g) ≤ 2(H2(f, h) +H2(h, g)).

2. H2(f, g) ≤ ||f − g||TV .

3. H2(f, g) ≤ 1
2DKL (f ||g).

4. ||f − g||2TV ≤ 2H2(f, g).

We also recall Pinsker’s inequality.

Fact 5. For distributions f and g,

||f − g||TV ≤
√

DKL(f ||g)
2 .

42

We now have most of the tools necessary for our locally private simple hypothesis testing

lower bound.

Theorem 4. Let ||P0 − P1||TV = α and let A be an (ε, δ)-locally private simple hypothesis

testing protocol distinguishing between P0 and P1 with probability ≥ 2/3 using n samples

where ε = O(1) and δ < min
(

ε3α2

48n ln(2n/β) ,
ε2α2

64n ln(n/β)e7ε

)
. Then n = Ω

(
1

α2ε2

)
.

Proof. Let Π~0,Π~1, and Π~ei respectively denote the distributions over transcripts induced by

protocol A when samples are drawn from P0, P1, and xi ∼ P1 but the remaining xi′ ∼ P0.

Our goal is to upper bound H2(Π~0,Π~1). We begin with Lemma 8, originally proven as

Lemma 2 by Braverman et al. [18].

Lemma 8. H2(Π0̄,Π1̄) = O
(∑n

i=1H
2(Π0̄,Π~ei)

)
.

By Lemma 8, to bound H2(Π~0,Π~1) it now suffices to bound each H2(Π0̄,Π~ei).

Fix one such term i. Consider the following protocol: user i simulates A using draws from P0

for the inputs of other users and their input xi for input i. Since A is an (ε, δ)-locally private

protocol, this simulation can be viewed as a single (ε, δ)-local randomizer applied to xi. We

can therefore use the approximate-to-pure transformation of Lemma 7 to get a (10ε, 0)-

local randomizer A′ inducing distributions Π′~0 and Π′~ei such that ||Π′~0 −Π~0||TV ≤ α
2ε2 and

||Π′~ei−Π~ei ||TV ≤ α2ε2. We now upper bound H2(Π~0,Π~ei) in terms of α, ε, and H2(Π′~0,Π
′
~ei

):

H2(Π~0,Π~ei) ≤ 2(H2(Π~0,Π
′
~ei

) +H2(Π′~ei ,Π~ei)) (Fact 4, item 1)

≤ 4(H2(Π~0,Π
′
~0
) +H2(Π′~0,Π

′
~ei

)) + 2H2(Π′~ei ,Π~ei) (Fact 4, item 1)

≤ 4(||Π~0 −Π′~0||TV +H2(Π′~0,Π
′
~ei

)) + 2||Π′~ei −Π~ei ||TV (Fact 4, item 2)

≤ 6α2ε2 + 4H2(Π′~0,Π
′
~ei

)

where the last inequality uses our upper bounds on ||Π′~0 −Π~0||TV and ||Π′~ei −Π~ei ||TV .

43

It now remains to bound H2(Π′~0,Π
′
~ei

). By Fact 4, item 3, 4H2(Π′~0,Π
′
~ei

) ≤ 2DKL

(
Π′~0||Π

′
~ei

)
.

As noted previously, the transcript distributions Π′~0 and Π′~ei can be simulated by noninter-

active (10ε, 0)-local randomizers. We can therefore apply Theorem 1 from Duchi et al. [32],

restated for our setting as Lemma 9.

Lemma 9. Let Q be an ε-randomizer and let P0 and P1 be distributions on X . Let x0 ∼ P0

and x1 ∼ P1. Then

DKL (Q(x0)||Q(x1)) +DKL (Q(x1)||Q(x0)) ≤ min(4, e2ε) · (eε − 1)2||P0 − P1||2TV .

Thus

DKL

(
Π′~0||Π

′
~ei

)
+DKL

(
Π′~ei ||Π

′
~0

)
= O(ε2 · ||P0 − P1||2TV) = O

(
ε2α2

)
.

It follows that H2(Π′~0,Π
′
~ei

) = O(α2ε2). Moreover, since our original choice of i was arbitrary,

tracing back to Lemma 8 yields H2(Π~0,Π~1) = O(α2ε2n). By Fact 4 item 4, H2(Π~0,Π~1) ≥
1
2 ||Π~0−Π~1||

2
TV = Ω(1) since A distinguishes between P0 and P1 with Ω(1) probability. Thus

α2ε2n = Ω(1), so n = Ω
(

1
α2ε2

)
.

For comparison, as observed by Canonne et al. [23], it is easy to obtain a superior centrally

private simple hypothesis tester using the subsample-and-aggregate framework [56]. By

folklore, m = Θ
(

1
H2(P0,P1)

)
samples are necessary and sufficient to test absent privacy. We

can therefore repeat this non-private test O
(

1
ε

)
times on disjoint data and output the result

of a random test. This ensures ε-central privacy because, while each tester is not necessarily

private, each user has a limited chance of contributing data to the final result. This requires

m = O
(

1
εH2(P0,P1)

)
samples and obtains the same accuracy as the non-private tester.

In contrast, by Fact 4 item 4, Theorem 4 implies that any such approximate locally private

hypothesis tester requires m = Ω
(

1
ε2H2(P0,P1)

)
samples. This separates central and local

privacy3.

3The true separation is actually even larger, because the subsample-and-aggregate approach is subopti-
mal [23]. However, the optimal central guarantee is more involved, so we omit it.

44

Moreover, we can also extend the reasoning above to (a restricted form of) compound hy-

pothesis testing. Here P0 and P1 are replaced by (disjoint) collections of discrete hypotheses

H0 and H1 such that

inf
(P,Q)∈H0×H1

||P −Q||TV ≥ α.

The goal is to determine whether samples are generated by a distribution in H0 or one in

H1.

Theorem 5. Let H0 and H1 be convex and compact sets of distributions over ground set

X such that inf(P,Q)∈H0×H1
||P − Q||TV ≥ α. Then there exists noninteractive ε-locally

private protocol A that with probability at least 2/3 distinguishes between H0 and H1 given

n = Ω
(

1
α2ε2

)
samples.

Proof. Let X be the ground set for distributions in H0 and H1, and consider the two-player

zero-sum game

sup
S∈∆(2X)

inf
(P,Q)∈H0×H1

EE∼S [P (E)−Q(E)] .

Here, the sup player chooses a distribution over events, and the inf player chooses distribu-

tions in H0 and H1. We will use (a simplified version of) Sion’s minimax theorem [60].

Lemma 10 (Sion’s minimax theorem). For f : A×B → R, if

1. for all a ∈ A f(a, ·) is continuous and concave on B,

2. for all b ∈ B f(·, b) is continuous and convex on A, and

3. A and B are convex and A is compact,

then

sup
b∈B

inf
a∈A

f(a, b) = inf
a∈A

sup
b∈B

f(a, b).

45

We first verify that the three conditions of Lemma 10 hold. Let

f(S, (P,Q)) = EE∼S [P (E)−Q(E)] .

Linearity of expectation implies that f(·, (P,Q)) is linear in ∆(2X) and f(S, ·) is linear in

H0 × H1. Therefore conditions 1 and 2 hold. Moreover, since ∆(2X) is convex and we

assumed H0 and H1 to be convex and compact — properties which are both closed under

Cartesian product — condition 3 holds as well. As a result,

sup
S∈∆(2X)

inf
(P,Q)∈H0×H1

EE∼S [P (E)−Q(E)] = inf
(P,Q)∈H0×H1

sup
S∈∆(2X)

EE∼S [P (E)−Q(E)] ≥ α

and there exists fixed distribution S over events such that for all (P,Q) ∈ H0 ×H1,

EE∼S [P (E)−Q(E)] ≥ α.

This leads to the following hypothesis testing protocol A: for each i ∈ [n], user i computes

yi = EE∼S [1 [xi ∈ E]] and publishes yi + Lap
(

1
ε

)
. This protocol is immediately noninterac-

tive, and since yi ∈ [0, 1], this protocol is (ε, 0)-locally private over {xi}ni=1. Finally, by the

same analysis used to prove Theorem 3 (replacing concentration of randomized responses

with concentration of Lap (1) noise [25]) it distinguishes between H0 and H1 with probability

at least 2/3 using n = Ω
(

1
ε2α2

)
samples.

Since Theorem 4 still applies, this establishes that the above noninteractive protocol is also

optimal.

5.2. One-Dimensional Gaussian Estimation

We can also use Theorem 4 to separate centrally and locally private one-dimensional Gaus-

sian estimation. Here, the goal is to use i.i.d. samples x1, . . . xn ∼ N(µ, σ2) to estimate µ

and σ2 while guaranteeing local privacy.

46

5.2.1. Lower Bound

For central privacy, Karwa and Vadhan [49] gave an algorithm that with probability 1− β

obtains accuracy

O

(
σ

√
log(1/β)

n
+

poly log(1/β)

εn

)
.

Note that the first term is necessary even without privacy, while the second privacy term

has an O(1/n) dependence. In contrast, we can use Theorem 4 to show that locally private

learners must suffer an Ω(1/
√
n) dependence.

Theorem 6. For a given σ and δ as in Theorem 4, there does not exist an (ε, δ)-locally

private protocol A such that for every µ = O
(
σ
ε

√
1
n

)
, given x1, . . . , xn ∼ N(µ, σ2), A

outputs estimate µ̂ satisfying |µ̂− µ| = o
(
σ
ε

√
1
n

)
with probability ≥ 15/16.

Proof. Let P0 = N(0, σ2) and P1 = N(M,σ2). Then since

DKL(N(µ1, σ
2)||N(µ2, σ

2)) ≤
(µ1−µ2

σ

)2
we get DKL(P0||P1) = O

(
M2

σ2

)
. Pinsker’s inequality (Fact 5) then implies ||P0 − P1||2TV =

O
(
M2

σ2

)
. Substituting this into Theorem 4, we get that distinguishing P0 and P1 with

constant probability and n samples requires n = Ω
(

σ2

ε2M2

)
, so M = Ω

(
σ
ε
√
n

)
.

In simultaneous independent work, Gaboardi, Rogers, and Sheffet [39] gave a stronger lower

bound for the same problem that incorporates the log(1/β) failure probability dependence.

However, their result does not extend to fully interactive protocols.

5.2.2. Upper Bound

We now spend the remainder of this section showing that the lower bound of Theorem 6 is

tight up to logarithmic factors. For brevity, we only consider the case where µ is unknown,

σ is known, and the protocol must is sequentially interactive. Gaboardi et al. [39] gave

similar upper bounds, albeit with much higher round complexity. A concise comparison of

47

Gaboardi et al. [39] This Work

Setting Accuracy α, Round
Complexity T

Accuracy α, Round Complexity T

Known σ,
adaptive

α =

O

σ
ε

√
log
(

1
β

)
log
(
n
β

)
log
(

1
δ

)
n


T = 2

α = O

σ
ε

√
log
(

1
β

)
n


T = 2

Known σ,
nonadap-

tive

– α = O

σ
ε

√
log
(

1
β

)√
log(n)

n


T = 1

Unknown
σ,

adaptive

α =

O

σ
ε

√
log
(

1
β

)
log
(
n
β

)
log
(

1
δ

)
n


T = Ω

(
log
(

R
σmin

))
α = O

σ
ε

√
log
(

1
β

)
log(n)

n


T = 2

Unknown
σ, non-

adaptive

–
α =

O

σ
ε

√
log
(
σmax
σmin

+1
)

log
(

1
β

)
log3/2(n)

n


T = 1

Table 1: A comparison of upper bounds in Gaboardi et al. [39] and here. In all cases,
Gaboardi et al. [39] use (ε, δ)-locally private algorithms and we use (ε, 0). Here, R denotes
an upper bound on both µ and σ. In our setting, the upper bound on µ is O(2nε

2/ log(n/β)),
leading the unknown variance protocol of Gaboardi et al. [39] to round complexity poten-
tially as large as Ω̃(nε2/ log(1/β)).

our results to those of Gaboardi et al. [39] appears in Table 1. Details for the other cases

displayed appear in the full paper [46].

We start by describing our protocol KVGausstimate. Throughout, we use phrases like

“the protocol computes”. Technically, this should be viewed as the protocol processing the

transcript to assign more randomizers or halt as specified in Definition 6. However, we treat

“the protocol” as an entity coordinating users for simplicity.

First, KVGausstimate splits users into halves U1 and U2. In round one, the protocol

queries users in U1 to obtain an O(σ)-accurate estimate µ̂1 of µ. In round two, the protocol

48

passes µ̂1 to users in U2, who respond based on µ̂1 and their own data. The protocol then

aggregates this second set of responses into a better final estimate of µ.

1: procedure KVGausstimate(ε, k,L, n, σ, U1, U2)
2: for j ∈ L do
3: for user i ∈ U j1 do
4: User i outputs ỹi ← RR1(ε, i, j)

5: Protocol computes Ĥ1 ← KVAgg1(ε, k,L, U1)
6: Protocol computes µ̂1 ← EstMean(β, ε, Ĥ1, k,L)
7: for user i ∈ U2 do
8: User i outputs ỹi ← KVRR2(ε, i, µ̂1, σ)

9: Protocol computes Ĥ2 ← KVAgg2(ε, n/2, U2)

10: Protocol computes T̂ ←
√

2 · erf−1
(

2(−Ĥ2(−1)+Ĥ2(1))
n

)
11: Protocol outputs µ̂2 ← σT̂ + µ̂1

First round of KVGausstimate

For neatness, let L = bn/(2k)c, Lmin = blog(σ)c, Lmax = Lmin − 1 + L, and L =

{Lmin, Lmin + 1, . . . , Lmax}. KVGausstimate splits U1 into L subgroups indexed by L

where each subgroup has size k = Ω
(

log(n/β)
ε2

)
. The protocol begins by iterating through

each subgroup j ∈ L. Each user i ∈ U j1 releases a privatized version of bxi/2jc mod 4

using a simple variant of randomized response (RR1): with probability eε/(eε + 3), user i

outputs bxi/2jc mod 4, and otherwise outputs one of the remaining elements of {0, 1, 2, 3}

uniformly at random.

KVGausstimate uses responses from group U j1 to estimate the jth least significant bit

of µ (rounded to an integer). It then uses “Known Variance Aggregation” (KVAgg1) to

aggregate and debias responses to account for added randomness.

1: procedure KVAgg1(ε, k,L, U)
2: for j ∈ L do
3: for a ∈ {0, 1} do
4: Cj(a)← |{ỹi | i ∈ U j , ỹi = a}|
5: Ĥj(a)← eε+3

eε−1 ·
(
Cj(a)− k

eε+3

)
6: Output Ĥ

49

The result is a collection of histograms Ĥ1. KVGausstimate uses Ĥ1 to binary search

for µ (EstMean). Intuitively, for each subgroup U j1 , if all multiples of 2j are far from µ

then Gaussian concentration implies that almost all users i ∈ U j1 compute the same value of

bx/2jc mod 4. This produces a histogram Ĥj
1 where most elements concentrate in a single

bin. The protocol in turn narrows its search range for µ. For example, if ĤLmax
1 concentrates

in 0, then the range narrows to µ ∈ [0, 2Lmax); if ĤLmax−1
1 concentrates in 1, then the range

narrows to µ ∈ [2Lmax−1, 2Lmax), and so on.

If instead some multiple of 2j is near µ, the elements of Ĥj
1 will spread over multiple

(adjacent) bins. This is also useful: a point from the “middle” of this block of bins is O(σ)-

close to µ. The protocol thus takes such a point as µ̂1 and ends its search. Our analysis

will also rely on having a bin with a noticeably low count that is not adjacent to the bin

containing µ. This motivates using 4 as a modulus.

1: procedure EstMean(β, ε, Ĥ1, k,L)

2: ψ ←
(
ε+4
ε
√

2

)
·
√
k ln(8L/β)

3: j ← Lmax

4: Ij ← [0, 2Lmax]

5: while j ≥ Lmin and maxa∈{0,1,2,3} Ĥ
j
1(a) ≥ 0.52k + ψ do

6: Protocol computes integer c such that c2j ∈ Ij and c ≡M1(j) mod 4
7: Protocol computes Ij−1 ← [c2j , (c+ 1)2j]
8: j ← j − 1

9: j ← max(j, Lmin)
10: Protocol computes M1(j)← arg maxa∈{0,1,2,3} Ĥ

j
1(a)

11: Protocol computes M2(j)← arg maxa∈{0,1,2,3}−{M1(j)} Ĥ
j
1(a)

12: Protocol computes c∗ ← maximum integer such that c∗2j ∈ Ij and c∗ ≡ M1(j) or
M2(j) mod 4

13: protocol outputs µ̂1 ← c∗2j

KVGausstimate therefore uses EstMean to examine ĤLmax
1 , ĤLmax−1

1 , . . . in sequence,

estimating µ from most to least significant bit. Crucially, the modulus structure of user

responses enables the protocol to carry out this binary search with one round of interaction.

Thus the first round of the protocol concludes with an O(σ)-accurate estimate µ̂1 of µ.

50

Second round of KVGausstimate

In the second round, the KVGausstimate passes µ̂1 to users in U2. Users respond through

‘Known Variance Randomized Response” (KVRR2), a variant of randomized response

based on an algorithm from the distributed statistical estimation literature [18]. In KVRR2,

each user i centers their point xi with µ̂1, standardizes it using σ, and randomized responds

by outputting RR (sgn ((xi − µ̂1)/σ) , ε). The protocol aggregates these responses by a de-

biasing process KVAgg2 akin to KVAgg1.

1: procedure KVAgg2(ε, k, U)
2: for a ∈ {−1, 1} do
3: C(a)← |{ỹi | i ∈ U, ỹi = a}|
4: Ĥ(a)← eε+1

eε−1 ·
(
C(a)− k

eε+1

)
5: Protocol outputs Ĥ

From this aggregation Ĥ2, the protocol obtains a good estimate of the bias of the initial

estimate µ̂1. If µ̂1 < µ, responses will skew toward 1, and if µ̂1 > µ responses will skew

toward −1. By comparing this skew to the true standard CDF using the error function erf,

the protocol recovers a better final estimate µ̂2 of µ (Lines 12-13 of KVGausstimate).

We now state the full guarantee for KVGausstimate.

Theorem 7. KVGausstimate is sequentially interactive ε-locally private and, given users

with data x1, . . . , xn ∼i.i.d. N(µ, σ2) where σ is known and n
log(n) = Ω

(
log(µ) log(1/β)

ε2

)
, with

probability 1− β outputs µ̂ such that |µ̂− µ| = O

(
σ
ε

√
log(1/β)

n

)
.

Proof. Privacy: Since each user produces exactly one output, using either RR1 or KVRR2,

it suffices to note that both RR1 and KVRR2 are ε-randomizers.

Utility: First, recall that Ĥ1 is the aggregation (via KVAgg1) of user responses (via RR1).

Let H1 be the “true” histogram, Hj
1(a) = |{yi | i ∈ U j1 , yi = a}| for all a ∈ {0, 1, 2, 3} and

j ∈ L. Since the protocol only has access to Ĥ1, we need to show that Ĥ1 and H1 are

similar.

51

Lemma 11. With probability at least 1− β, for all j ∈ L,

||Ĥj
1 −H

j
1 ||∞ ≤

(
ε+4
ε
√

2

)
·
√
k ln(8L/β).

Proof. Choose a ∈ {0, 1, 2, 3} and j ∈ L. E
[
Cj(a)

]
=

Hj
1(a)eε

eε+3 +
k−Hj

1(a)
eε+3 =

Hj
1(a)(eε−1)+k

eε+3 , so

by a pair of Chernoff bounds on the k users in U j1 , with probability at least 1− β/4L,

|Cj(a)− Hj
1(a)(eε−1)+k

eε+3 | ≤
√
k ln(8L/β)/2.

Then since Ĥj
1(a) = eε+3

eε−1 ·
(
Cj(a)− k

eε+3

)
, this implies

|Ĥj
1(a)−Hj

1(a)| ≤ eε + 3

eε − 1
·
√
k ln(8L/β)/2 <

(
ε+4
ε
√

2

)
·
√
k ln(8L/β)

where the last step uses eε+3
eε−1 <

ε+4
ε . Union bounding over a ∈ {0, 1, 2, 3} and all L groups

U j1 completes the proof.

Next, we show how the protocol uses Ĥ1 to estimate µ through EstMean. Intuitively, in

subgroup U j1 when user responses concentrate in a single bin mod 4, this suggests that µ lies

in the corresponding bin. In the other direction, when user responses do not concentrate

in a single bin, users with points near µ must spread out over multiple bins, suggesting

that µ lies near the boundary between bins. We formalize this intuition in EstMean and

Lemma 12.

Lemma 12. Conditioned on the success of the preceding lemmas, with probability at least

1− β, |µ̂1 − µ| ≤ 2σ.

Proof. Recall the definitions of ψ, M1(j), and M2(j) from the pseudocode for EstMean:

ψ =
(
ε+4
ε
√

2

)
·
√
k ln(8L/β),

M1(j) = arg max
a∈{0,1,2,3}

Ĥj
1(a),

52

M2(j) = arg max
a∈{0,1,2,3}−{M1(j)}

Ĥj
1(a).

We start by proving two useful claims.

Claim 1: With probability at least 1−β/5, for all j ∈ L where 2j > σ, if j′ = Lmax, Lmax−

1, . . . , j + 1 all have Ĥj′

1 (M1(j)) ≥ 0.52k + ψ, then µ ∈ Ij .

To see why, suppose 2j > σ and let x ∼ N(µ, σ2). Recall the Gaussian CDF F (x) =

1
2

[
1 + erf

(
x−µ
σ
√

2

)]
. Then for any a 6≡ bµ/2jc mod 4

P
[
bx/2jc ≡ a mod 4

]
≤ P

[
x 6∈ [µ, µ+ 3 · 2j)

]
< P [x 6∈ [µ, µ+ 3σ)] < 0.51

where the second inequality uses 2j > σ. Thus by a binomial Chernoff bound, the assump-

tion k > 5000 ln(5L/β), and Lemma 11, with probability ≥ 1− β/5L, Ĥj
1(a) < 0.52k + ψ.

Therefore if for some a we have Ĥj
1(a) ≥ 0.52k + ψ, a ≡ bµ/2jc mod 4. Moreover, if µ ∈ Ij

then letting c be the (unique) integer such that c ≡M1(j) mod 4 and c2j ∈ Ij (since Ij has

endpoints c12j and (c1 + 2)2j for integer c1) we get µ ∈ [c2j , (c+ 1)2j] = Ij . As µ ∈ ILmax

by our assumed lower bound on n, the claim follows by induction.

Claim 2: Let j be the maximum j ∈ L with Ĥj
1(M1(j)) < 0.52k + ψ, and let c∗ be the

maximum integer such that c∗2j ∈ Ij and c∗ ≡M1(j) or M2(j) mod 4. If 2j > σ, then with

probability at least 1− 4β/5, |c∗2j − µ| ≤ 2σ.

To see why, first note that by Claim 1, µ ∈ Ij . Let [c2j , (c+ 1)2j) be the subinterval of Ij

containing µ for integer c. Then as 2j > σ, for x ∼ N(µ, σ2), by another application of the

Gaussian CDF,

P
[
x ∈ [c2j , (c+ 1)2j)

]
> P [x ∈ [µ, µ+ σ)] ≥ 0.34.

Thus by the same method as above, using the assumption k > 5000 ln(5/β), with probability

53

at least 1− β/5, Ĥj
1(c mod 4) ≥ 0.33k − ψ. By similar logic, since

P
[
bx/2jc ≡ c+ 2 mod 4

]
< max

λ∈[0,2j]
P
[
x 6∈ [µ− 2j − λ, µ+ 2 · 2j − λ]

]
< P [x 6∈ [µ− σ, µ+ 2σ)] ≤ 0.19

with probability at least 1 − β/5, Ĥj
1(c + 2 mod 4) ≤ 0.2k + ψ. Next, consider Ĥj

1(c −

1 mod 4). If µ ≥ (c+ 0.75)2j , then

P
[
x ∈ [(c− 1)2j , c2j)

]
≤ P [x 6∈ [µ− 3σ/4, µ+ 9σ/4]] ≤ 0.24

so with probability at least 1− β/5

Ĥj
1(c− 1 mod 4) ≤ 0.25k + ψ < 0.33k − ψ ≤ Ĥj

1(c mod 4)

where the middle inequality uses k > 625
(
ε+4
ε
√

2

)2
ln(4L/β). Thus c ≡M1(j) orM2(j) mod 4;

the µ ≤ (c + 0.25)2j) case is symmetric. If instead µ ∈ ((c + 0.25)2j , (c + 0.75)2j) then by

similar logic with probability at least 1− β/5

Ĥj
1(c mod 4) ≥ 0.36k − ψ

so by ψ < 0.08k (implied by k > 40
(
ε+4
ε
√

2

)2
ln(8L/β)) c ≡M1(j) or M2(j) mod 4. It follows

that with probability at least 1 − 3β/5 in all cases c ≡ M1(j) or M2(j) mod 4. Moreover,

by a similar application of the Gaussian CDF, one of c − 1 mod 4 and c + 1 mod 4 lies in

{M1(j),M2(j)} as well.

Recalling that c∗ is the maximum integer such that c∗2j ∈ Ij and c∗ ≡M1(j) orM2(j) mod 4,

c∗− 1 mod 4 ∈ {M1(j),M2(j)} as well. Assume |c∗2j − µ| > 2σ. By above, µ ∈ [c∗2j , (c∗+

1)2j) or [(c∗ − 1)2j , (c∗2j)). In the first case,

P
[
bx/2jc ≡ c∗ − 1 mod 4

]
≤ P [x 6∈ [µ− 2σ, µ+ 2σ]] ≤ 0.05

54

so with probability at least 1−β/5, Ĥj
1(c∗−1) ≤ 0.06k+ψ, a contradiction of c∗−1 mod 4 ∈

{M1(j),M2(j)}. In the second case,

P
[
bx/2jc ≡ c∗ mod 4

]
≤ P [x 6∈ [µ− 2σ, µ+ 2σ]] ≤ 0.05

and with probability at least 1 − β/5, Ĥj
1(c∗) ≤ 0.06k + ψ, contradicting c∗ mod 4 ∈

{M1(j),M2(j)}. Thus |c∗2j − µ| ≤ 2σ.

We put these facts together in EstMean as follows: let j1 be the maximum element of L

such that Ĥj
1(M1(j)) < 0.52k − ψ. If 2j1 > σ, then by Fact 2 setting µ̂1 = c∗2j implies

|µ̂1 − µ| ≤ 2σ. If instead 2j1 ≤ σ, then any setting of µ̂1 ∈ Ij (including µ̂1 = c∗2j)

guarantees |µ̂1 − µ| ≤ 2j1+1 ≤ 2σ. Thus in all cases, with probability at least 1 − β,

|µ̂1 − µ| ≤ 2σ.

The results above give the protocol an (initial) estimate µ̂1 such that |µ̂1 − µ| ≤ 2σ. This

concludes our analysis of round one of KVGausstimate. Now, the protocol passes this

estimate µ̂1 to users i ∈ U2, and each user uses µ̂1 to center their value xi and randomized

respond on the resulting (xi− µ̂1)/σ in KVRR2. The protocol then aggregates these results

using KVAgg2. We now prove that this centering process results in a more accurate final

estimate µ̂2 of µ, which concludes the overall proof.

Lemma 13. Conditioned on the success of the previous lemmas, with probability at least

1− β KVGausstimate outputs µ̂2 such that

|µ̂2 − µ| = O

(
σ

ε

√
log(1/β)

n

)
.

Proof. The proof is broadly similar to that of Theorem B.1 in Braverman et al. [18], with

some modifications for privacy. First, by Lemma 12 µ − µ̂1 ∈ [−2σ, 2σ]. Letting µ̄ =

55

(µ− µ̂1)/σ we get that x′i ∼ N(µ̄, 1). Next, since E [yi] = 2P [x′i ≥ 0]− 1, and in general

Φµ,σ2(x) =
1

2

(
1 + erf

(
x− µ
σ
√

2

))

where Φµ,σ2 is the CDF of N(µ, σ2), by Φµ̄,1(0) = P [x′i ≥ 0] we get E [yi] = erf(µ̄/
√

2). Note

that we are analyzing the unprivatized values yi to start; later, we will use this analysis to

prove the analogous result for the privatized values ỹi.

A Chernoff bound then shows that, with probability at least 1 − β/2, for y = 2
n

∑
i∈U2

yi

we have

|y − erf(µ̄/
√

2)| ≤ 2
√

ln(4/β)/n

and by E [y] = erf(µ̄/
√

2) we get |y − E [y] | ≤ 2
√

ln(4/β)/n as well.

Since µ− µ̂1 ∈ [−2σ, 2σ], |erf(µ̄/
√

2)| ≤ erf(
√

2). Thus |E [y] | ≤ erf(
√

2), so by |y−E [y] | ≤

2
√

ln(4/β)/n we get

|y| ≤ erf(
√

2) + 2
√

ln(4/β)/n.

Using n > 20000 ln(4/β) we get 2
√

ln(4/β)/n < 0.01 and erf(
√

2) < 0.96, so |y| ≤ 0.97

and thus |y| < erf(1.6). Let M be an upper bound on the Lipschitz constant for erf−1 in

[−0.97, 0.97],

M = max
x∈[−0.97,0.97]

derf−1(x)

dx

= max
x∈[−0.97,0.97]

√
π

2
exp([erf−1(x)]2)

≤
√
π

2
exp([erf−1(0.97)]2) < 10.

Then for any x, y ∈ [−0.97, 0.97] we have |erf−1(x) − erf−1(y)| ≤ M |x − y|, so setting

56

T =
√

2erf−1(y),

|T − µ̄| = |
√

2(erf−1(y)− erf−1(E [y])| ≤ 10
√

2|y − E [y] |

≤ 20
√

2 ln(4/β)/n

using the bound on |y − E [y] | from above.

It remains to analyze the privatized values {ỹi} and bound |T − T̂ |, recalling that we set

T̂ =
√

2 · erf−1

(
2(−Ĥ2(−1) + Ĥ2(1))

n

)

in KVAgg1. By a Chernoff bound analogous to that of Lemma 11, with probability at

least 1− β/2

|T − T̂ | ≤
√

2

∣∣∣∣∣erf−1(|y|)− erf−1

(
|y|+

[
ε+ 2

ε

]√
2 ln(4/β)

n

)∣∣∣∣∣ .
Using n > 20000

(
ε+2
ε

)2
ln(4/β) (which implies

[
ε+2
ε

]√2 ln(4/β)
n ≤ 0.01) and the same

derivative trick as above on [−0.98, 0.98], we get

|T − T̂ | ≤ 14

[
ε+ 2

ε

]√
2 ln(4/β)

n
.

Therefore by the triangle inequality

|T̂ − µ̄| ≤
(

20 + 14

[
ε+ 2

ε

])√
2 ln(4/β)

n

and by σµ̄ = µ− µ̂1 we get

|σT̂ − σµ̄| = |(σT̂ + µ̂1)− µ| ≤ σ
(

20 + 14

[
ε+ 2

ε

])√
2 ln(4/β)

n
.

57

Thus by taking µ̂2 = σT̂ + µ̂1, we get

|µ̂2 − µ| = O

(
σ

ε

√
log(1/β)

n

)
.

This concludes the overall proof.

58

Chapter 6

Exponential Separation: Fully vs. Sequentially In-

teractive Local Privacy

The previous section focused on polynomial separations between central and local privacy.

We now proceed to an exponential separation between fully and sequentially interactive

local privacy [48]. The main tool that drives this result is a general connection between the

communication complexity of two-player problems and the sample complexity of sequentially

interactive locally private multi-player problems. Informally, we show that the “noise”

that must be added to ensure local privacy also makes it possible to convert the protocol

into a two-party protocol over a noisy channel, and vice-versa. In combination with past

work relating communication complexity over noisy and noiseless channels, this conversion

extends to noiseless channels as well (Theorem 8). This connection enables us to translate

existing communication lower bounds (here, for the “hidden layers” problem) into sample

complexity lower bounds for sequentially interactive locally private protocols (Corollary 1).

We also include a lower bound offering a polynomial separation between fully and sequen-

tially interactive local privacy (Theorem 11). This separation is smaller, based on a hidden

layers-style problem, and requires a much longer analysis. However, it does demonstrate

that the compositionality dependence of our full-to-sequential conversion (Theorem 2) is

tight.

6.1. Additional Preliminaries

Since our results rely on past work on two-party communication, we now define some of the

necessary terms.

Definition 14. In the two-party communication model, one player Alice receives input

x ∈ X , and the other player Bob receives input y ∈ Y. Alice and Bob want to jointly

59

compute some output z ∈ Z such that (x, y, z) satisfies some relation R ⊂ X × Y × Z.

To compute z, Alice and Bob coordinate their actions using a protocol.

Definition 15. Given a two-party communication model, a protocol A specifies a binary

output function that each player should apply to their data at each time step, as a function

of the time step, the transcript of previously released values and any shared randomness.

Note that, by our inclusion of shared randomness, all protocols we consider are public-coin.

Two salient protocol characteristics are the number of bits that must be exchanged and the

likelihood of a “good” outcome.

Definition 16. The communication complexity of a protocol A, denoted by CC(A), is the

maximum number of bits exchanged over all inputs (x, y) and all random coins. If on all

inputs x and y PA [(x, y, z) 6∈ R] ≤ γ, we say A computes R with error at most γ. The

randomized communication complexity with error γ of a relation R is then defined as

CCγ(R) = min
A:A computes R with error at most γ

CC(A).

We can also combine this communication model and the notion of protocol defined in

Chapter 2 to define a multi-party communication model.

Definition 17. In the multi-party communication model there exists an “Alice input”

x ∈ X and a “Bob input” y ∈ Y. Each of an unboundedly large number of players receives

an independent and uniformly random draw over {x, y}. The users’ goal is to output z ∈ Z

such that (x, y, z) ∈ R.

A multi-party protocol is defined as in the local privacy setting (and we will be interested

in local privacy as the primary constraint on multi-party protocols). As before, we will

quantify the likelihood that a multi-party protocol achieves a “good” outcome. Unlike

before, our metric of interest for a multi-party protocol is its sample complexity.

Definition 18. The sample complexity of a multi-party protocol A, denoted by SC(A),

is the maximum number of users appearing in the transcript over all inputs (x, y) and all

60

random coins. If on all inputs x and y PA [(x, y, z) 6∈ R] ≤ γ, we say A computes R with

error at most γ. The randomized sample complexity with error γ of a relation R is then

defined as

SCγ(R) = min
A:A computes R with error at most γ

SC(A).

Let SCε,N
γ (R),SCε,S

γ (R), and SCε,F
γ (R) denote the sample complexities of ε-locally private

protocols computing R with error γ under noninteraction, sequential interaction, and full

interaction respectively.

Our two-party models are defined by an input pair (x, y), and we deliberately constrain

our multi-party models to be defined by a pair (x, y) as well, where each party randomly

receives either x or y. Each user therefore has an equal chance of being an “Alice” or “Bob”

user. In this way, a given two-party problem on a pair of inputs induces a unique multi-

party problem on the same inputs, and vice-versa. We note that multi-party problems as

we define them are unusual statistical estimation problems: their primary use for us will be

in proving lower bounds.

6.2. Reduction and Separation

We now prove an equivalence between a two-party problem’s communication complexity and

the induced multi-party problem’s sample complexity for sequentially interactive locally

private protocols. We do so by using noisy two-party communication complexity as an

intermediary.

First, we give an equivalence between noisy two-party communication and locally private

multi-party communication. To convert a two-party protocol over an ε′-noisy channel into

an ε-locally private multi-party protocol, at each step of the protocol the next user will

imitate the action of Alice or Bob (depending on their own datum) in the two-party protocol,

all while using ε-randomized response. Because the original two-party protocol is intended

for a noisy channel, the multi-party protocol works like the two-party protocol as long

as users employ an appropriately calibrated ε for randomized response (Lemma 14). In

61

the other direction, it is possible to convert locally private multi-party protocols to noisy

two-party protocols by a similar idea (Lemma 15).

The results so far connect noisy two-party communication and locally private multi-party

communication. However, we are interested in using noiseless two-party communication

lower bounds. It therefore remains to connect noisy and noiseless two-party communication.

Fortunately, previous work has already accomplished this step. We recap these earlier

contributions in Lemma 18 and Lemma 20.

Finally, sequential interactivity means that each user in the multi-party protocol speaks

at most once. The number of users in the multi-party protocol is therefore connected to

the number of communications in the two-party protocol. This leads to the overall equiva-

lence between two-party communication and locally private multi-party sample complexity

(Theorem 8).

6.2.1. Noisy Two-party Communication

We start by connecting noisy two-party communication and locally private multi-party

communication. In the noisy two-party communication model, Alice and Bob may only

communicate over a binary symmetric channel that flips each transmitted bit with a certain

probability.

Definition 19. For ε ∈ (0, 1/2), a binary symmetric channel with crossover probability

ε, denoted BSCε, correctly transmits a bit b with probability 1/2 + ε and transmits 1 − b

with probability 1/2 − ε. We additionally suppose that the binary symmetric channel has

feedback: the sender always sees the received bit.

Let CCε
γ(R) denote the communication complexity of R with error γ under the additional

requirement that communication occurs over BSCε. We now show how to transform two-

party protocols over a binary symmetric channel into multi-party protocols.

Lemma 14. Let R be a relation for some communication problem, ε ≥ 0, ε′ = eε−1
4(eε+1) , and

γ ∈ (0, 1). Then SCε,S
γ (R) = O

(
CCε′

γ (R)
)

.

62

Proof. Let A2 be any protocol for the two-party problem over BSCε′ computing R with

error γ. Consider the first bit sent in A2. Without loss of generality, Alice sends this first

bit f(x), where x is Alice’s input. Since communication occurs over BSCε, with probability

1/2 + ε′ Bob receives f(x), and with probability 1/2− ε′ Bob receives its negation.

We will use A2 to build a multi-party protocol Am. To simulate this bit, Am selects a new

(previously un-selected) agent, and the new agent takes one of two actions. If the agent

has an Alice input x, then they send RR (x, ε). If instead the agent has a Bob input y, then

they send a uniform random bit. Thus the probability that the agent sends f(x) is

P [Alice input] · eε

eε+1 + P [Bob input] · 1
2 = eε

2(eε+1) + 1
4

= 2eε

4(eε+1) + eε+1
4(eε+1)

= 3eε+1
4(eε+1)

=2(eε+1)
4(eε+1) + eε−1

4(eε+1)

=1
2 + ε′.

It follows that the first bit of Am is distributed identically to the first bit of A2. Repeating

this process for each bit sent in A2, Am induces an identical distribution over the bits

output, and thus computes R with error γ. Since each bit sent in A2 used a new user in

Am, SC(Am) = O
(

CCε′(A2)
)

. Since randomized response satisfies ε-differential privacy,

the sequentially interactive mechanism Am is ε-locally private.

In the other direction, we now show how to transform locally private multi-party protocols

into two-party protocols over a binary symmetric channel.

Lemma 15. Let R be a relation for some communication problem, 0 < ε = O(1), ε′ =

eε−1
2(eε+1) , and γ, η > 0 such that γ + η < 1. Then CCε′

γ+η(R) = O
(

1
η · SCε,S

γ (R)
)

.

Proof. Here, we define ε′ = eε−1
2(eε+1) , which differs from our previous ε′ by a factor of 2.

63

Let Am be any sequentially interactive ε-locally private protocol for a multi-party problem

computing R with error γ and sample complexity n. By the following result from Bassily

and Smith [12], we can transform Am into a new, functionally equivalent protocol A′m in

which each user sends only one bit.

Lemma 16 (Theorem 4.1 in Bassily and Smith [12]). Given an ε-locally private protocol A

with expected number of randomizer calls T , there exists a sequentially interactive ε-locally

private protocol A′ with expected number of users eε · T where each user sends a single bit

(produced by a call to a single ε-local randomizer). Moreover, there exists a deterministic

function f on transcripts such that f(Π(A′)) = Π(A), where Π(·) denotes a distribution

over transcripts induced by a given protocol with randomness is over the protocol and its

samples.

Note that the deterministic function f is only technical bookkeeping to account for the

fact that Π(A′) and Π(A) do not have the same representation, but either one can still be

translated to the other. The cost is twofold. First, A′m requires O(n log(log(n))) bits of

public randomness. Second, A′m requires eεn users in expectation. By Markov’s inequality,

the number of users can be bounded by eεn
η at the cost of an η increase in failure probability.

We now transform A′m into a two-player protocol A2. The idea is that Alice and Bob

simulate A′m by randomly partitioning the users from the multi-party protocol between

themselves. Each then simulates the role of their assigned users. To see why this works,

recall that for multi-party communication problems, users are randomly assigned “Alice” or

“Bob” data points. It follows that this random partition will induce the same distribution

on data elements. Thus, A2 begins with Alice and Bob using their shared public randomness

to generate eεn
η coin flips determining who will simulate which agents.

Without loss of generality, suppose Alice simulates the first agent. Let

px = P [agent sends 1 | agent has Alice’s data x] ,

64

and let pmin = minx∈X px and pmax = maxx∈X px. Alice and Bob take one of two choices

depending on pmin and pmax.

Case 1: pmin + pmax ≤ 1. Then Alice sends 1 with probability 1
2 + px

2ε′(pmin+pmax) −
1

4ε′ and

sends 0 with the remaining probability. Since

1
2 + px

2ε′(pmin+pmax) −
1

4ε′ =1
2 + 2px−pmin−pmax

4ε′(pmin+pmax)

≤1
2 + pmax−pmin

4ε′(pmin+pmax)

=1
2 + eε+1

2(eε−1) ·
pmax−pmin
pmax+pmin

=1
2 + eε+1

2(eε−1) ·
[
1− 2pmin

pmax+pmin

]
≤1

2 + eε+1
2(eε−1)

[
1− 2

eε+1

]
= 1

(where both inequalities use the fact that the agent sends output from an ε-local random-

izer), and similarly

1
2 + 2px−pmin−pmax

4ε′(pmin+pmax) ≥
1
2 + eε+1

2(eε−1) ·
pmin−pmax

pmax+pmin

≥1
2 + eε+1

2(eε−1)

[
2

eε+1 − 1
]

= 0

these are valid probabilities. Next, as Alice sends the bit over BSCε′ , the probability that

the received bit is 1 is

(
1
2 + ε′

) (
1
2 + px

2ε′(pmin+pmax) −
1

4ε′

)
+
(

1
2 − ε

′) (1
2 −

px
2ε′(pmin+pmax) + 1

4ε′

)
= px

pmin+pmax
.

With probability pmin + pmax, Alice and Bob “use” the received bit: that is, they enter

this received bit into their transcript and continue the protocol. With probability 1 −

pmin − pmax Alice and Bob instead enter the bit 0 into their transcript (and omit the

true received bit from the transcript) and continue. Then P [enter 1 in transcript] (and

P [enter 0 in transcript]) are identical in both the two-party and multi-party protocols.

Case 2: pmin + pmax > 1. Then if we define p′min and p′max as 1 − pmin and 1 − pmax

65

respectively, we get p′min +p′max < 1. Let p′x = 1−px and have Alice send 0 with probability

1
2 + p′x

2ε′(p′min+p′max)
− 1

4ε′ , and Alice and Bob “use” the received bit (just as defined in Case

1) with probability p′min + p′max. Repeating the analysis from Case 1 for p′x, p′min, and p′max

yields that P [use 0] (and P [use 1]) are identical in both the two-party and multi-party

protocols.

Combining Cases 1 and 2, Alice and Bob produce the same distribution over the first bit

of the protocol in A2 and Am. Since we can repeat this process for subsequent bits, by

induction the distribution over transcripts (and thus answers) is identical. Therefore A2

also computes R with error γ. Moreover, there is a one-to-one correspondence between

users in Am and bits in A2, so by ε = O(1), CCε′
γ+η(R) = O

(
1
η · SCε,S

γ (R)
)

.

6.2.2. Relating Noisy and Noiseless Communication

Lemmas 14 and 15 relate the sample complexity of sequentially interactive ε-locally private

multi-party protocols and the communication complexity of noisy two-party protocols. The

remaining step is to relate the communication complexity of noisy and noiseless two-party

protocols.

The noisy-to-noiseless direction follows almost immediately from previous work by Braver-

man and Mao [16]. Note that, in one sense, it is trivial to simulate noisy communication

over a noiseless channel: the sender can simply simulate the binary symmetric channel by

adding noise to their own messages. The resulting protocol inherits the same functionality

and communication complexity as the noisy original. However, the Lemma 17 does better.

In particular, it takes advantage of the information loss of the noisy channel to reduce the

communication complexity when given a noiseless channel.

Lemma 17 (Theorem 3.1 in Braverman and Mao [16]). For every protocol A over BSCε

with feedback, there exists a protocol A′ over a noiseless channel that simulates A with

CC(A′) = O
(
ε2CCε(A)

)
. Here, CC (A′) is the maximum over all inputs (x, y) of the

expected number of bits exchanged over the randomness of A′.

66

By Markov’s inequality, we get a high-probability version of their result for our setting.

Lemma 18. Let R be a relation for a two-party communication problem. Then for γ, η > 0

where γ + η < 1, CCγ+η (R) = O
(
ε2

η · CCε
γ(R)

)
.

It remains to upper bound noisy communication complexity using noiseless communication

complexity. Schulman [59] first studied the problem of noisy interactive two-party commu-

nication. He showed how to simulate a noiseless channel using a binary symmetric channel

with small (< 1/240) crossover probability and a constant blowup in communication com-

plexity. Braverman and Rao [17] then improved this result to binary symmetric channels

with crossover probability bounded away from 1/8 by a constant.

Lemma 19 (Simplified Version of Theorem 2 in Braverman and Rao [17]). Let R be a

relation for a two-party communication problem, γ ∈ (0, 1), and 0 < p ≤ 1/8 − c where

c = Ω(1). Then CCp
γ(R) = O (CCγ(R)).

One obstacle remains: Lemma 19 requires a channel C with crossover probability bounded

away from 1/8, while our channel C ′ may have crossover probability ε-close to 1/2. We

therefore use a standard amplification argument, replacing each bit over C with Θ(1/ε2)

bits over C ′ and taking the majority as the transmitted bit. This yields Lemma 20.

Lemma 20. Let R be a relation for a two-party communication problem. Then CCε
γ(R) =

O
(

1
ε2
· CCγ(R)

)
.

6.2.3. Equivalence

The results above yield the following theorem. The proof is simply chaining together the

appropriate results in each direction.

Theorem 8. Let R be a relation for some communication problem. Then for any ε = O(1)

and 0 < γ, η = Ω(1) such that γ + η < 1, SCε,S
γ (R) = Θ

(
1
ε2
· CCγ+η(R)

)
.

Proof. We first show SCε,S
γ (R) = O

(
1
ε2
· CCγ(R)

)
. By Lemma 14, SCε,S

γ (R) = O
(
CCε1

γ (R)
)

where ε1 = eε−1
4(eε+1) . Then, by Lemma 20, CCε1

γ (R) = O
(

1
ε21
· CCγ(R)

)
. Since ε = O(1),

67

ε1 = Ω(ε), and tracing back yields the claim.

Next, we show CCγ+η(R) = O
(
ε2 · SCε,S

γ (R)
)
. Since γ, η = Ω(1), by Lemma 18 CCγ+η(R) =

O
(
ε2

1 · CCε1
γ+η/2(R)

)
where ε1 = eε−1

2(eε+1) . By Lemma 15, CCε1
γ+η/2(R) = O

(
SCε,S

γ (R)
)
.

Tracing back and using ε1 = O(ε) implies the claim.

6.3. Separating Sequential and Full Interactivity

The previous section showed that any two-party communication lower bound implies a

sequentially interactive locally private multi-party sample complexity lower bound. In this

section, we plug in a two-party communication lower bound for the hidden layers problem

to show that it is hard for sequentially interactive locally private protocols (Corollary 1).

In contrast, the same problem is much easier for fully interactive protocols (Theorem 9).

6.3.1. Hidden Layers Problem HL

We first formally recap the hidden layers problem that drives our results. While Braverman

[15] first proposed this problem, we imitate the presentation of Ganor, Kol, and Raz [40].

The hidden layers problem is essentially a search problem on a large tree. Alice and Bob

each have information about one “hidden layer” in the tree, and any correct solution must

agree with that information on both layers. Other layers do not affect the correctness of

the solution, so there are many correct answers. The problem is that the tree is so large

that neither Alice nor Bob can simply communicate their information to the other in o(2k)

bits.

More formally, the hidden layers problem is parameterized by k ∈ N and denoted HL(k).

It features a 24k-ary tree T with directed edges from root to leaves and 2rs + 1 layers where

r = 228k and s = 28k. T thus has a number of layers triply exponential in k and a number

of leaves quadruply exponential in k. Two players, Alice and Bob, each receive a small

amount of information about T . Alice receives (a, f) where a ∈ {0, 2, . . . , 2rs − 2} indexes

68

an even-numbered layer, and f labels each vertex in layer a of T with a single outgoing

edge. Similarly, Bob receives (b, g) where b ∈ {1, 3, . . . , 2rs − 1} indexes an odd-numbered

layer, and g labels each vertex in layer b with a single outgoing edge. Thus, Alice and Bob

each have information about one “hidden layer” of T . Letting v be a leaf of T , we say

v is consistent with (a, f) (or (b, g)) if the path from the root to v goes through an edge

identified by f (or g, respectively).

If at the end of protocol A Alice and Bob output different leaves, or at least one of them

outputs a leaf not consistent with at least one of (a, f) and (b, g), we say A errs. A simplified

illustration of the hidden layers problem appears in Figure 2.

0

01

1 1 00

a

b

X X X X X XX X

Figure 2: A simplified instance of the hidden layers problem. Each node is labeled 0 (left)
or 1 (right). For layers a and b, these labels correspond to the correct child node. Leaves 4
and 6 are thus the only two leaves consistent with the hidden layers a and b. Note that a
true instance of the hidden layers problem is much larger.

Ganor et al. [40] proved that the hidden layers problem has high communication complexity.

To do so, they constructed a specific distribution P over user inputs for their result. When

we want to specify the distribution P over user inputs, we write HL(k, P).

Lemma 21 (Theorem 1 in Ganor et al. [40]). There exists constant k′ and input distri-

bution P for ((a, f), (b, g)) such that, for every k ≥ k′ and protocol A with CC(A) ≤ 2k,

PP [A errs on HL(k, P)] ≥ 1− 2−k.

In particular, Lemma 21 implies that Ω(2k) communication is necessary to achieve constant

69

success probability for HL(k, P). Combining Theorem 8 and Lemma 21 gives the following

corollary.

Corollary 1. For ε = O(1) and γ = Ω(1), SCε,S
γ (HL(k, P)) = Ω

(
2k

ε2

)
.

6.3.2. Fully Interactive Upper Bound for HL

To finish our separation, we now provide a fully interactive protocol HLSolver that solves

HL(k) with poly(k) sample complexity. HLSolver works by greedily following a path from

the root to a leaf, querying users to guide its path as it descends the tree.

Concretely, the protocol starts at the root. Then at each vertex v encountered, for all 24k

children vj of v, the analyst “asks” all n users if (v, vj) is the labelled edge in that level. To

“answer”, each user xi compares the level ` of vertex v and edge (v, vj) to their own data

and replies using randomized response.

In the first case, xi,1 = ` and (v, vj) ∈ xi,2, i.e. user i’s hidden layer is `, and v is labelled

with the (v, vj) edge. Then the user “votes yes” and transmits a draw from RR (1, ε), i.e.

outputs 1 with probability eε

eε+1 and a 0 otherwise. In the second case, the user transmits

a draw from Ber (1/2). Based on the responses, the protocol then chooses an edge out of v

to follow, to obtain the next vertex in the path at level `+ 1. When the protocol reaches a

leaf, it proposes this leaf as the solution.

Note that any selection made by the protocol at a non-hidden layer is irrelevant: it can

follow any outgoing edge and still be on track to correctly solve the problem instance. To

argue correctness, all that is important is that for the two (unknown) levels that correspond

to hidden layers, the protocol correctly identifies the correct labeled edge. At each of those

levels, the bias induced by randomized response will be enough to identify the correct edge

with high probability.

While this protocol is run, each user answers a very large (triply exponentially many in

k) number of queries. But crucially, only one of those queries is their response sampled

70

Algorithm 6 HLSolver

1: procedure HLSolver(ε, n, T)
2: Initialize current node v ← root node
3: Initialize level `← 0
4: Set ε′ ← ε/2
5: while ` <= 2rs − 1 do
6: Initialize NextNodeFound ← 0
7: Initialize child index j ← 0
8: while not NextNodeFound and j <= 24k − 1 do
9: for users i = 1, 2, . . . , n do

10: Initialize bi ← 0
11: if xi,1 = ` and (v, vj) ∈ xi,2 then
12: User i outputs yi ∼ RR (1, ε)
13: else
14: User i outputs yi ∼ Ber (1/2)

15: ȳ ← 1
n

∑n
i=1 yi

16: if ȳ ≥ 0.6 or vj = v24k−1 then
17: Set new current node v ← vj
18: NextNodeFound ← 1
19: `← `+ 1

20: Output v

from RR (ε, 1). For all other queries, their response is sampled from Ber (1/2). Hence the

privacy loss over the whole protocol is constant and does not accumulate with the number

of queries. In contrast, a similar sequentially interactive protocol would require new users

for each of this large number of queries. In the language of Chapter 4, our fully interactive

solution is extremely compositional.

Note also that, by Theorem 2, any fully interactive protocol that uses r local randomizer

calls per user can be converted into a sequentially interactive protocol with an O(r) factor

blowup in sample complexity. Consequently, it is necessary that any protocol witnessing an

exponential separation between the sample complexities of fully and sequentially interactive

protocols must make at least exponentially many queries per user.

Theorem 9. HLSolver is ε-locally private and has constant success probability on HL(k)

given n = Ω
(
k
ε2

)
samples.

Proof. Privacy: Recall that each user draws one of two samples, (a, f) or (b, g). Accordingly,

71

each user has only a single point in the transcript where they output a sample from RR (ε, 1)

and the remaining outputs come from Ber (1/2). Thus, if we compare the transcript dis-

tributions (restricted to a single user with the specified data) of π(a, f) and π(b, g), there

are at most two points in the transcript where their output distributions are not identical.

Therefore for any single-user transcript output z,

P [π(a, f) = z]

P [π(b, g) = z]
≤

eε

2(eε+1)

1
2(eε+1)

≤ eε.

Accuracy: It suffices to show that whenever ` ∈ {a, b}, HLSolver chooses the correct

child node. Without loss of generality, consider level a. There are two conditions to verify.

First, HLSolver should not choose a child node in a before visiting the correct child. At

any incorrect child all users publish output from Ber (1/2). Thus by a Chernoff bound and

union bound, at all k − 1 incorrect children in level a, ȳ < 1
2 +

√
4k+log(1/β)

2n . Thus for

n ≥ 200k + 50 log(1/β), ȳ < 0.6 and so HLSolver chooses an incorrect child in a with

probability ≤ β.

Next, HLSolver should select the correct child when users vote on it. Since each user has

a 1/2 probability to know the correct child in level a, a Chernoff bound implies that at least

0.4n users know the correct child. By the same concentration argument, with probability

at least 1− β, for n = Ω
(
k+log(1/β)

ε2

)
, at the correct child ȳ ≥ 0.6. β = O(1) gives the final

result

Combining Corollary 1 and Theorem 9 yields an exponential (in k) separation between

sequentially and fully interactive protocols achieving constant success probability on HL.

We conclude this section by noting that our communication complexity-sample complexity

equivalence also recovers an exponential separation between 1) noninteractive and interac-

tive local privacy and 2) k-round and (k + 1)-round interactive local privacy. Both results

use pointer-chasing problems [48]. Past work gave similar separations for the problems of

72

masked parity [50] and learning decision lists [28] using the polynomial local privacy-SQ

learning equivalence of Kasiviswanathan et al. [50]. However, that equivalence extends to

fully interactive local privacy only in a restricted way: it shows a relationship between the

number of randomizer calls in the locally private protocol and the query complexity of the

SQ learner. This is crucial because the number of randomizer calls may greatly exceed the

number of users in (and only in) the fully interactive model. In particular, our separa-

tion between sequential and full interaction shows that this polynomial equivalence cannot

extend to full interaction.

73

Chapter 7

Polynomial Separation: Fully vs. Sequentially In-

teractive Local Privacy

Having just given an exponential separation between fully and sequentially interactive local

privacy, we now give a polynomial separation. At first glance, this is redundant. How-

ever, the goal of this separation is not a dramatic sample complexity difference. Instead,

the goal is to show that our full-to-sequential conversion from Chapter 4 is tight up to

logarithmic factors. Specifically, we show that any transformation from a fully interactive

k-compositional protocol to a sequentially interactive protocol must have a sample complex-

ity blowup of Ω̃(k) (Theorem 11). We place this result after the previous section because,

viewed simply as a separation, its proof is both much longer and less intuitive than that of

Corollary 1, and the sample complexity separation is weaker. However, only Theorem 11

shows that Theorem 2 is tight in terms of compositionality.

7.1. Additional Preliminaries

We prove our lower bound using information theory. We first recap some basic tools.

Definition 20. The entropy of a random variable X, denoted by H(X), is defined as

H(X) =
∑

x P [X = x] ln
(

1
P[X=x]

)
, and the conditional entropy of random variable X con-

ditioned on random variable Y is defined as H(X|Y) = Ey [H(X|Y = y)].

Next, we use entropy to define the mutual information between two random variables.

Definition 21. The mutual information between two random variables X and Y is defined

as I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X), and the conditional mutual information

between X and Y given Z is defined as I(X;Y |Z) = H(X|Z) − H(X|Y Z) = H(Y |Z) −

H(Y |XZ).

74

A few facts about mutual information will be useful.

Fact 6. Let X1, X2, Y, Z be random variables, we have I(X1X2;Y |Z) = I(X1;Y |Z) +

I(X2;Y |X1Z).

We also recall the definition of KL divergence, originally given as Definition 13 but given

again here. Note that, like the other definitions in this section, we use the natural logarithm.

This usage is specific to this chapter.

Definition 22. The KL divergence between two random variables X and Y is defined as

DKL (X||Y) =
∑

x P [X = x] ln
(
P[X=x]
P[Y=x]

)
.

The following fact connects KL divergence and mutual information.

Fact 7. For random variables X,Y, Z,

I(X;Y |Z) = Ex,z [DKL ((Y |X = x, Z = z)||(Y |Z = z))] .

7.2. Multi-Party Pointer Jumping

We prove our lower bound by defining a family of multi-party pointer jumping (MPJ)

problems such that for every k, there is a fully interactive k-compositional protocol that

can solve the problem with sample complexity n = n(k), but such that any sequentially

interactive protocol solving the problem must have sample complexity Ω̃(k · n).

An instance ofMPJ (d) is given by a complete tree of depth d. Every vertex of the tree is

labelled by one of its children. By following the labels down the tree, starting at the root,

an instance defines a unique root-to-leaf path.

It is instructive to distinguish MPJ from the hidden layers problem. First, there are no

more “hidden” layers. Instead, every layer has a correct child, and there is only one solution.

We define the user data distribution such that every layer is known by some users, and each

user knows about at most one layer.

75

We first show that there is a fully interactive protocol that can solve this problem with

sample complexity n = Õ(d2/ε2) (Theorem 10). The protocol is k-compositional for k =

Θ(d). The protocol (Algorithm 7) is similar to the fully interactive solution to the Hidden

Layers problem (Algorithm 6). The main difference is that the protocol now “asks one

question per level” to each of several groups, with each user only responsible for responding

about a single group-specific bit of the index for the correct child. The reason for this is

that we now need to be careful about identifying the correct child in every layer of the

problem, whereas in the Hidden Layers problem only two layers were relevant.

We will define a user data distribution with roughly Θ̃(
√
n/ε2) users with relevant data in

each level, out of n users total. It is therefore (just) possible to identify the child in question

subject to local differential privacy. Although every user applies an ε-local randomizer d

times in sequence, because each user’s data corresponds to only a single level in the tree, the

protocol is still ε-locally private. The difficulties faced by a sequentially interactive protocol

are similar to those for the Hidden Layers problem: every question must now be posed to

a new collection of users.

Our lower bound (Theorem 11) formalizes this intuition using induction on the depth of the

tree to bound the success probability of any protocol as a function of its sample complexity.

Additionally, the precise definition of MPJ (d) is somewhat more complicated: half of the

weight on the underlying distribution is assigned to “level 0” dummy agents whose purpose

is to break correlations between levels of the tree in the argument.

We now formally define multi-party pointer jumping

Definition 23. Given integer parameter d > 1, an instance of multi-party pointer jumping

MPJ (d) is defined by a vector Z = Z1 ◦ · · · ◦Zd, a concatenation of d vectors of increasing

length. Letting s = d4, for each i ∈ [d] Zi is a vector of si−1 integers in {0, 1, . . . , s − 1}.

For each Zi, Zi,j is its jth coordinate.

Viewed as a tree, Z is a complete s-ary tree of depth d where each Zi,j marks a child of

76

the j-th vertex at depth i. P = P (Z) then denotes the vector of d integers representing

the unique root to leaf path down this tree through the children marked by Z. Formally,

P is defined in a recursive way: P1 = Z1,1, ...,Pi = Zi,P1·si−1+P2·si−2+···+Pi−1+1,...,Pd =

Zd,P1·sd−1+P2·sd−2+···+Pd−1+1.

Finally, an instanceMPJ (d) defines a data distribution D. For each x ∼ D, with probabil-

ity 1/2, x = (0, ∅) is a “dummy datapoint”, and with the remaining probability x = (`, Z`)

where ` is a level drawn uniformly at random from [d]. A protocol solves MPJ (d) if it

recovers P using samples from D.

An illustration of MPJ (d) where s = 2 appears in Figure 3.

∅

0

00

...
1

0

...

01

...
...

P = 011...0

0

1

1

0

1

10

...
...

1

0

11

...

0

...
0

Depth d+ 1

...

Depth 3, Z3 = 0110

Depth 2, Z2 = 10

Depth 1, Z1 = 0

Figure 3: Multi-party pointer jumping

7.3. Separating Sequential and Full Interactivity (Again)

Our separation consists of a fully interactive solution (Theorem 10) and a sequentially

interactive lower bound (Theorem 11). We first give pseudocode for our fully interactive

solution in Algorithm 7.

77

Algorithm 7 A fully interactive ε-locally private protocol for MPJ (d)

1: Divide users into u = dln(s)/ ln(2)e groups each of m = 512d2 ln(d) · (eε+1)2

(eε−1)2
users.

2: Initialize Q← 0
3: for r = 1, 2, . . . , d do
4: Qr ← 0
5: for each group g = 1, 2, . . . , u do
6: for each user i = 1, 2, . . . ,m do
7: `i ← level of user xi
8: if `i = r then
9: bi,r ← g-th bit of binary representation of Zr,Q+1

10: User i publishes randomized response yi ∼ RR (bi,r, ε)
11: else
12: User i publishes yi ∼ Ber (0.5)

13: g-th bit of Qr ← majority bit of {yi}mi=1

14: Q← s ·Q+Qr

15: Output Q1 ◦ · · · ◦Qd

Theorem 10. Algorithm 7 is ε-locally private and, on any instance Z ofMPJ (d), correctly

identifies P (Z) with probability at least 1− 1/d with sample complexity

n = O

(
d2 log2(d)

[
eε + 1

eε − 1

]2
)
.

Proof. Privacy: Each user publishes at most one output using randomized response, and

the remaining outputs come from Ber (0.5). The privacy analysis is therefore exactly the

same as for Theorem 9.

Sample Complexity: The sample complexity is defined in line 1 of Algorithm 7: u =

O(log(d)) groups of O

(
d2 log(d)

[
eε+1
eε−1

]2
)

users gives the claim.

Accuracy: We first show that each group contains enough users from each level. For each

group g ∈ [u], define binary random variable Xi,g,r to be 1 if user i in group g has level r

and 0 otherwise. By definition, for any level r ∈ [d], P [Xi,g,r = 1] = 1/(2d). We therefore

have E [
∑m

i=1Xi,g,r] = m
2d , and by a Chernoff bound

P

[
m∑
i=1

Xi,g,r <
m

4d

]
≤ exp

(
− m

16d

)
≤ 1

d4
.

78

Define W to be the event that for every level r ∈ [d] and group g ∈ [u], there are ≥ m
4d users

in group g with level r. By a union bound, we know

P [W] ≥ 1− ud

d4
≥ 1− 1

d2

since u = O(log(d)). Thus with high probability we have enough users in each level in each

group.

We now analyze the quantities Qr. For each r ∈ [d], we want to show

P [Qr = Pr|Q1 = P1, ..., Qr−1 = Pr−1,W] ≥ 1− 1

d3
,

i.e. that the output Q actually matches P bit-by-bit. Conditioning on Q1 = P1, . . . , Qr−1 =

Pr−1 and W , Zr,Q+1 = Pr. Define binary random variable Yi,g,r to be 1 if the bit sent by

user i in group g is equal to the j-th bit of Pr and 0 otherwise. If the user i has level

r then they send their bit using randomized response. Thus P [Yi,g,r = 1] = eε

eε+1 . If the

user i’s level is not r, then they send a uniform random bit P [Yi,g,r = 1] = 1/2. Since we

conditioned on W , there are ≥ m
4d users in group g with level r. Thus

E

[
m∑
i=1

Yi,g,r

]
≥ m

4d
· eε

eε + 1
+
(
m− m

4d

)
· 1

2
. (7.1)

79

Then we have

P [Qr, Pr have the same g-th bit|Q1 = P1, ..., Qr−1 = Pr−1,W]

= P

[
m∑
i=1

Yi,g,r >
m

2

]

≥ P

[
m∑
i=1

Yi,g,r > E

[
m∑
i=1

Yi,g,r

]
+
m

2
− m

4d
· eε

eε + 1
−
(
m− m

4d

)
· 1

2

]
(Equation 7.1)

≥ P

[
m∑
i=1

Yi,g,r > E

[
m∑
i=1

Yi,g,r

]
− m

8d
· e

ε − 1

eε + 1

]

= 1− exp

(
− 1

2m
·
(
m

8d
· e

ε − 1

eε + 1

)2
)

(Chernoff Bound)

= 1− exp

(
−m · 1

128d2
· (eε − 1)2

(eε + 1)2

)
≥ 1− exp(−4 ln(d)) = 1− 1/d4

where the last inequality substitutes in the definition of m in Algorithm 7. Union bounding

over all u groups yields

P [Qr = Pr|Q1 = P1, ..., Qr−1 = Pr−1,W] ≥ 1− u

d4
≥ 1− 1

d3
.

Putting this all together, Algorithm 7 outputs P (Z) with probability at least

P [Q1 = P1, ..., Qd = Pd] ≥ P [W] · P [Q1 = P1, ..., Qd = Pd|W]

≥ P [W] ·
d∏
r=1

P [Qr = Pr|Q1 = P1, ..., Qr−1 = Pr−1,W]

≥
(

1− 1

d2

)
·
(

1− 1

d3

)d
≥
(

1− 1

d2

)
·
(

1− d

d3

)
> 1− 1

d
.

80

Note that Algorithm 7 is k-compositional only for k ≥ d. The lower bound in the next

section shows that any sequentially interactive protocol for the same problem must have a

larger sample complexity by a factor of Ω̃(d) = Ω̃(k). This shows that in general the sample-

complexity dependence on k of our original full-to-sequential transformation (Theorem 2)

cannot be improved.

We now prove our lower bound for sequentially interactive ε-locally private protocols; the

extension to approximate local privacy follows the outline given in Lemma 7.

Theorem 11. Let A be a sequentially interactive ε-locally private protocol that, for every

instance Z of MPJ (d), correctly identifies P (Z) with probability ≥ 2/3. Then A must

have sample complexity n ≥ d3

216(eε−1)2 ln(d)
.

Proof. We will prove that any sequentially interactive ε-locally private protocol with n =

d3

216(eε−1)2 ln(d)
samples fails to solve MPJ (d) correctly with probability > 1/3 when Z,

the collection of correct child labels for each node, is sampled uniformly at random. This

is a distributional lower bound which is only stronger than the worst-case lower bound

claimed. For notational simplicity, we assume in this argument that all local randomizers

have discrete message spaces. However, this assumption is without loss of generality and

can be removed (e.g. using Lemma 16).

We will prove our lower bound even for protocols to which we “reveal” some information

about the hidden instance Z and users’ inputs to the protocol and users. This only makes

our lower bound stronger, as the mechanism can ignore this information if desired. Before

the protocol starts, each user i publishes a quantity Ri. If `i 6= 0 — i.e., if user i is not

a “dummy” user — then Ri = `i, the user’s level. Otherwise Ri is set to be bd(i−1)
n c + 1.

At a high level, we reveal these {Ri}ni=1 to break the dependence between Zi’s during the

execution of the protocol (see Claim 5 for a formalization of this intuition). Throughout

the proof and its claims, we fix realizations R1 = r1, R2 = r2, . . . , Rn = rn. We will show

that even given such r1, ..., rn, any sequentially interactive ε-locally private protocol with n

81

users fails with probability more than 1/3.

For each i ∈ [n], denote by Πi the message sent by user i via their local randomizer. Note

that there is at most one such message since the protocol is sequentially interactive. We

begin with a result about how conditioning on messages and revealed values affects the

distribution of Z.

Claim 5. Suppose Z1, ..., Zd, the correct child node labels for each level, are sampled from

a product distribution. Conditioned on the messages Π1, ...,Πi of the first i users and the

revealed values R1, . . . , Rn, Z1, ..., Zd are still distributed according to a product distribution.

Proof. We proceed via induction on the number of messages i. The base case i = 0 is

immediate. Now suppose the claim is true for i − 1. Use D1 × D2 × · · · Dd to denote the

product distribution of Z1, ..., Zd conditioned on Π1, ...,Πi−1 and R1, . . . , Rn (all quantities

that follow are conditioned on R1, . . . , Rn, and so for notational simplicity we elide the

explicit conditioning).

Since the protocol is sequentially interactive, conditioned on Π1, ...,Πi−1, Πi depends only

on the correct child node labels at level ri (Zri), user i’s internal randomness, and their

level `i (recall that when ri = b i−1
n/dc + 1, it may be that `i = 0 or `i = ri). Therefore,

conditioned on Π1, ...,Πi, Z1, ..., Zd distribute as

D1 ×D2 × · · · × (Dri |Πi)× · · · × Dd,

a product distribution.

We also use induction over levels ` ∈ [d] to prove the overall theorem. For each such `, let

∆` be the following set of distributions on Z.

Definition 24. For each ` ∈ [d], the set ∆` is composed of distributions D on Z such that

1. D is a product distribution on Z1, ..., Zd,

82

2. for each i = 1, ..., d− `, Zi is deterministically fixed to be zi, and

3. since Z1, ..., Zd−` are fixed, by the definition of MPJ , P1, ..., Pd−` are also fixed to

some p1, ..., pd−`. The marginal distribution on Z|p1,...,pd−` is the uniform distribution.

In the induction step, we consider sequentially interactive locally private protocols with

fewer users. The idea is that for any sequentially interactive ε-locally private protocol on

n users, if we fix the messages of the first i users, then what remains is a sequentially

interactive ε-locally private protocol on n − i users. Accordingly, we want to lower bound

the failure probability of this remaining protocol. More concretely:

Inductive statement: Any sequentially interactive ε-locally private protocol with n · `d
users (the

(
n · d−`d + 1

)
-th user to the n-th user) fails to solve MPJ (d) correctly with

probability > 2
3 −

`
3d when the collection of correct child node labels Z is sampled from a

distribution in ∆`.

It will be easier to establish the inductive case first and then treat the base case afterward.

Induction step (` > 1): Assume the above statement is true for `− 1.

In this induction, let A be a sequentially interactive ε-locally private protocol with n · `d
users and let D be the distribution generating Z before A starts. Let Π be the messages

sent by the first n/d users of A (the
(
n · d−`d + 1

)
-th user to the

(
n · d−`+1

d

)
-th user) and let

Aπ be the sequentially interactive ε-locally private protocol with n · `−1
d users conditioned

on Π = π. For notational convenience, define n` = n · d−`d , Π<i = Πn`+1, ...,Πi−1 and

Π≤i = Πn`+1, ...,Πi.

For each prefix of messages, π, let D′(π) be some mixture of distributions in ∆`−1 (to be

specified later). By the induction hypothesis on `− 1,

PZ∼D′(π) [Aπ outputs P (Z)] <
1

3
+
`− 1

3d
.

83

Thus PZ∼D [A outputs P (Z)]

=
∑
π

P [Π = π] · PZ∼(D|Π=π) [Aπ outputs P (Z)]

≤
∑
π

P [Π = π] ·
(
PZ∼D′(π) [Aπ outputs P (Z)] + ‖(D | Π = π)−D′(π)‖1

)
<

1

3
+
`− 1

3d
+
∑
π

P [Π = π] · ‖(D | (Π = π))−D′(π)‖1 (7.2)

Recall that we want to show PZ∼D [A outputs P (Z)] ≤ 1
3 + `

3d . It therefore suffices to bound

the sum in Equation 7.2 as

∑
π

P [Π = π] · ‖(D | (Π = π))−D′(π)‖1 ≤
1

3d
.

We show this via Claims 6, 7, and 8. We finally define D′(π) in Claim 8.

First we define some notation for the path we need to reason about. Since D ∈ ∆`, by the

definition of ∆` we know that for Z ∼ D, the first d− ` levels of the tree Z1, ..., Zd−` deter-

ministically take fixed values z1, ..., zd−`. Thus, the first d− ` nodes in the path P1, ..., Pd−`

marked by Z are also fixed to take particular values p1, ..., pd−`. For the induction step, we

write P = P1, ..., Pd−`+1 to denote the first d − ` + 1 vertices of the path. Since Pd−`+1 is

the only value that is not fixed from ∆`, and the path is through an s-ary tree, P can take

on at most s different possible values and is determined by Zd−`+1.

In the first claim, we show that after observing the messages sent by n/d agents, uncertainty

still remains about P .

Claim 6. For i ∈ {n` + 1, ..., n` + n/d},

∑
π≤i

P [Π≤i = π≤i] ·
(

max
p

P [P = p | Π≤i = π≤i]

)
≤ 3

d4
.

84

Proof. Denoting by 1 [E] the indicator function for event E,

∑
π≤i

P [Π≤i = π≤i] ·
(

max
p

P [P = p | Π≤i = π≤i]

)

≤
∑
π≤i

P [Π≤i = π≤i] ·
(
1

[
max
p

P [P = p | Π≤i = π≤i] >
2

s

]

+ 1

[
max
p

P [P = p | Π≤i = π≤i] ≤
2

s

]
· 2

s

)
≤ 2

s
+
∑
π≤i

P [Π≤i = π≤i] ·
(
1

[
max
p

P [P = p | Π≤i = π≤i] >
2

s

])

≤ 2

s
+
∑
p

∑
π≤i

P [Π≤i = π≤i] ·
(
1

[
P [P = p | Π≤i = π≤i] >

2

s

])
. (7.3)

Now consider some specific path p. We know that

P [P = p | Π≤i = π≤i] =
P [P = p,Π≤i = π≤i]

P [Π≤i = π≤i]

= P [P = p] · P [Π≤i = π≤i | P = p]

P [Π≤i = π≤i]
(Bayes’ rule)

=
1

s
· P [Π≤i = π≤i | P = p]

P [Π≤i = π≤i]
. (Uniformity of P)

For j = n` + 1, ..., i, define random variable

Xj = ln

(
P [Πj | Π<j , P = p]

P [Πj | Π<j]

)
.

We want to upper bound the quantity in Equation 7.3. We do so using these Xj . Recall

that rj is user j’s level if that level is non-zero, i.e. user j is not a “dummy” user. Otherwise

rj is d − ` + 1 for j = n` + 1, ..., n` + n/d. If rj 6= d − ` + 1, by Claim 5, we know that

conditioned on Π<j , Πj is independent of P . Therefore when rj 6= d−`+1, Xj = ln(1) = 0.

If instead rj = d − ` + 1, we know the level `j of the user j is 0 with probability d
d+1 and

d− `+ 1 with probability 1
d+1 . If `j = 0, then the user is a “dummy”, has no private data

about P , and Πj is independent of P conditioned on Π<j . Call the input distribution of

the j-th user qj . Here, we give (a slightly modified version of) Lemmas 3 and 4 from Duchi

85

et al. [32].

Lemma 22. Let m1 and m2 be the output distributions of an ε-randomizer in a sequentially

interactive protocol given, respectively, input distributions qj | Π<j , P = p and qj | Π<j.

Then ∣∣∣∣ln(m1(z)

m2(z)

)∣∣∣∣ ≤ min(2, eε)(eε − 1) · ||(qj | Π<j , P = p)− (qj | Π<j)||TV .

We know that ||(qj |Π<j = π<j , P = p)− (qj |Π<j = π<j)||TV ≤ 1
d+1 , as the difference stems

from the event `j = d− `+ 1. Thus, by Lemma 22

|Xj | ≤
2(eε − 1)

d+ 1
<

2(eε − 1)

d
.

Next, we bound the conditional expectation of Xj :

E [Xj | Π<j = π<j] =
∑
πj

P [Πj = πj |Π<j = π<j] · ln
(
P [Πj = πj | Π<j = π<j , P = p]

P [Πj = πj |Π<j = π<j]

)
= −DKL ((Πj | Π<j = π<j , P = p)||(Πj | Π<j = π<j))

≤ 0.

Therefore Xn`+1, Xn`+1 +Xn`+2, ..., Xn`+1 + · · ·+Xi form a supermartingale. Next, we use

the above bounds on these Xj to control their sum using the Azuma-Hoeffding inequality:

P [Xn`+1 + · · ·+Xi > ln(2)] ≤ exp

(
− ln2(2)

2(2(eε − 1)/d)2(i− n`)

)
≤ exp

(
− ln2(2)

2(2(eε − 1)/d)2(n/d)

)
≤ 1

d8
=

1

sd4

86

since Z is an s-ary tree with s = d4. Next,

Xn`+1 + · · ·+Xi =
i∑

j=n`+1

ln

(
P [Πj | Π<j , P = p]

P [Πj | Π<j]

)

= ln

 i∏
j=n`+1

P [Πj | Π<j , P = p]

P [Πj | Π<j]


= ln

(
P [Π≤i | P = p]

P [Π≤i]

)
(Chain rule)

= ln (s · P [P = p | Π≤i])

where the last step uses Bayes’ rule and the uniformity of P over the s possible values for

the last step in the path P . Therefore

∑
π≤i

P [Π≤i = π≤i] ·
(
1

[
P [P = p | Π≤i = π≤i] >

2

s

])

=
∑
π≤i

P [Π≤i = π≤i] · (1 [s · P [P = p | Π≤i = π≤i] > 2])

= P [Xn`+1 + · · ·+Xi > ln(2)]

≤ 1

sd4
.

Tracing the above inequality back through Equation 7.3, we have

∑
π≤i

P [Π≤i = π≤i] ·
(

max
p

P [P = p | Π≤i = π≤i]

)
≤ (7.3)

≤ 2

s
+ s · 1

sd4

=
3

d4
.

We now proceed to Claim 7. Here, we bound the information Π contains about Z|P .

Intuitively, by Claim 6 users have little information about P , and as a result they cannot

87

know which potential subtree Z|p to focus their privacy budget on.

Claim 7. ∑
p

P [P = p] · I(Π;Z|p | P = p) ≤ 1

18d2
.

Proof. By the inductive hypothesis, Z is sampled from D ∈ ∆`. Define Z|<p to be

Z|p1,...,pd−`,0, ..., Z|p1,...,pd−`,pd−`+1−1. By the definition of ∆`, we know Z|<p and Z|p are

independent given P , so I(Z|<p;Z|p | P = p) = 0. Therefore by the chain rule for mutual

information, we get

I(Π;Z|p | P = p) ≤ I(Π, Z|<p;Z|p | P = p)

= I(Z|<p;Z|p | P = p) + I(Π;Z|p | P = p, Z|<p)

= I(Π;Z|p | P = p, Z|<p).

The main step of the proof is to compare I(Πi;Z|p | P = p,Π<i = π<i, Z|<p) and I(Πi;Z|p |

Π<i = π<i, Z|<p), i.e. quantify the effect of the event P = p on the mutual information

between Π and Z|p. First, by Claim 5, conditioning on Π<i = π<i induces a product

distribution for Z1, ..., Zd. We also know that (as mentioned in the proof of Claim 5)

conditioned on Π<i = π<i, Πi only depends on Zri , the internal randomness of the user i,

and their level `i. By item 3 in the definition of ∆`, P only depends on Zd−`+1. We prove

I(Πi;Z|p | P = p,Π<i = π<i, Z|<p) = I(Πi;Z|p | Π<i = π<i, Z|<p). (7.4)

There are two cases depending on ri.

• When ri ≤ d− `+ 1, user i either has `i ≤ d− `+ 1 or is a “dummy” user. Therefore,

whether or not we condition on P = p, user i does not have any information about

Z|p or Z|<p. Thus Πi is independent of Z|p, Z|<p, so

I(Πi;Z|p | P = p,Π<i = π<i, Z|<p) = 0 = I(Πi;Z|p | Π<i = π<i, Z|<p).

88

• When ri > d− `+ 1, once we’ve conditioned on Π<i = π<i, additionally conditioning

on P = p does not change the joint distribution of Zd−`+2, ..., Zd. This is because P =

P1, . . . , Pd−`+1 and by above conditioning on Π<i = π<i induces a product distribution

on Z1, . . . , Zd (and in particular on Zd−`+2, ..., Zd). It follows that conditioning on

P = p does not change the joint distribution of Z|p, Z|<p,Πi. Thus

I(Πi;Z|p|P = p,Π<i = π<i, Z|<p) = I(Πi;Z|p|Π<i = π<i, Z|<p).

Putting things together, we have

∑
p

P [P = p] · I(Π;Z|p | P = p)

≤
∑
p

P [P = p] · I(Π;Z|p | P = p, Z|<p)

=
∑
p

n`+n/d∑
i=n`+1

P [P = p] · I(Πi;Z|p | P = p,Π<i, Z|<p)

=

n`+n/d∑
i=n`+1

∑
π<i

∑
p

P [P = p] · P [Π<i = π<i | P = p] · I(Πi;Z|p | P = p,Π<i = π<i, Z|<p)

=

n`+n/d∑
i=n`+1

∑
π<i

∑
p

P [Π<i = π<i] · P [P = p | Π<i = π<i] · I(Πi;Z|p | P = p,Π<i = π<i, Z|<p)

=

n`+n/d∑
i=n`+1

∑
π<i

∑
p

P [Π<i = π<i] · P [P = p | Π<i = π<i] · I(Πi;Z|p| | Π<i = π<i, Z|<p)

≤
n`+n/d∑
i=n`+1

∑
π<i

(∑
p

P [Π<i = π<i] · I(Πi;Z|p | Π<i = π<i, Z|<p)

)
·
(

max
p

P [P = p | Π<i = π<i]

)

≤
n`+n/d∑
i=n`+1

∑
π<i

P [Π<i = π<i] · I(Πi;Z | Π<i = π<i) ·
(

max
p

P [P = p | Π<i = π<i]

)
. (7.5)

where the third equality uses Bayes’ rule and the fourth equality uses Equation 7.4.

We now bound I(Πi;Z|Π<i = π<i) using Theorem 1 from Duchi et al. [32], simplified here

as Lemma 23, itself a version of Lemma 9.

89

Lemma 23. Let Π be the distribution over randomizer outputs for an ε-local randomizer

with inputs drawn from a distribution family parametrized by V. Then I(Π;V) ≤ 4(eε−1)2.

In particular, the proof of Lemma 23 implies that I(Πi;Z|Π<i = π<i) ≤ 4(eε − 1)2. We

continue our chain of inequalities:

(7.5) ≤
n`+n/d∑
i=n`+1

∑
π<i

P [Π<i = π<i] · 4(eε − 1)2 ·
(

max
p

P [P = p | Π<i = π<i]

)
≤ n

d
· (eε − 1)2 · 12

d4
(Claim 6)

≤ 1

18d2

since the overall (theorem-level) proof uses n = d3

216(eε−1)2 ln(d)

In our last claim, we convert the bound on mutual information from Claim 7 into a bound

on the L1 distance between distributions.

Claim 8. There exists a distribution D′(π) which is a mixture of distributions in ∆`−1 for

each π such that ∑
π

P [Π = π] · ‖(D | (Π = π))−D′(π)‖1 ≤
1

3d
.

Proof. By the definition of mutual information in terms of KL-divergence (Fact 7),

I(Π;Z|p | P = p) = DKL

(
P
[
Π, Z|p | P = p

]
||P [Π | P = p] · P

[
Z|p | P = p

])
.

Next, by Pinsker’s inequality (Fact 5),

∑
π,z|p

∣∣P [Π = π, Z|p = z|p | P = p
]
− P [Π = π | P = p] · P

[
Z|p = z|p | P = p

]∣∣
≤
√

2DKL

(
P
[
Π, Z|p | P = p

]
||P [Π | P = p] · P

[
Z|p | P = p

])
.

90

Define

U =
∑
p

P [P = p]
∑
π,z|p

∣∣P [Π = π, Z|p = z|p| | P = p
]
− P [Π = π | P = p]P

[
Z|p = z|p | P = p

]∣∣ .
Then, using our previous application of Pinsker’s inequality, we upper bound U by

U ≤
∑
p

P [P = p]
√

2DKL

(
P
[
Π, Z|p | P = p

]
||P [Π | P = p]P

[
Z|p | P = p

])
=
∑
p

P [P = p]
√

2I(Π;Z|p | P = p) (definition of mutual information)

≤
√

2
∑
p

P [P = p] · 2I(Π;Z|p | P = p) (Jensen’s inequality and concavity of
√
·)

≤ 1

3d
. (Claim 7)

Define A =
∑

p P [P = p] and B =
∑

π P [Π = π]. Then we can also lower bound U by

A
∑
π,z|p

∣∣P [Π = π, Z|p = z|p | P = p
]
− P [Π = π | P = p]P

[
Z|p = z|p | P = p

]∣∣
= A

∑
π

P [Π = π | P = p]
∑
z|p

∣∣P [Z|p = z|p | Π = π, P = p
]
− P

[
Z|p = z|p | P = p

]∣∣
= B

∑
p

P [P = p | Π = π]
∑
z|p

∣∣P [Z|p = z|p | Π = π, P = p
]
− P

[
Z|p = z|p | P = p

]∣∣ (7.6)

since P [P = p] · P [Π = π | P = p] = P [Π = π] · P [P = p | Π = π]. We continue the chain

by multiplying each innermost term by

1 =
∑
z

P
[
Z = z | Π = π, P = p, Z|p = z|p

]
and then use the triangle inequality to rearrange the order of summation and get

(7.6) ≥ B ·
∑
p

P [P = p | Π = π] · C (7.7)

91

where

C =
∑
z

∣∣P [Z = z | Π = π, P = p]− P
[
Z|p = z|p | P = p

]
P
[
Z = z | Π = π, P = p, Z|p = z|p

]∣∣ .
We then repeat our application of the triangle inequality and summation rearrangement to

get

(7.7) ≥ B ·
∑
z

∣∣P [Z = z | Π = π]−D
∣∣ (7.8)

where

D =
∑
p

P [P = p | Π = π] · P
[
Z|p = z|p | P = p

]
P
[
Z = z | Π = π, P = p, Z|p = z|p

] ∣∣.
Now, define D′(π) to be the distribution on Z such that for all z, PZ∼D′(π) [Z = z] = D.

Equivalently, Z ∼ D′(π) is sampled through the following procedure: (1) sample P according

to P | Π = π, (2) sample Z|p according to Z|p | P = p, and (3) sample Z according to

Z | Π = π, P = p, Z|p = z|p.

Note that PZ∼D|(Π=π) [Z = z] = P [Z = z | Π = π] for all z. Thus, we connect the above

chain of inequalities using U,A,B,C,D to ‖(D | (Π = π))−D′(π)‖1 by

‖(D | (Π = π))−D′(π)‖1 =
∑
z

|P [Z = z | Π = π]−D|

and substitute this into (7.8) to get

∑
π

P [Π = π] · ‖(D | (Π = π))−D′(π)‖1 ≤
1

3d
.

It remains to show that D′(π) is a mixture of distributions in ∆`−1; doing so will complete

our proof of the original inductive step. We will show that for any z1, ..., zd−`+1 such that

PZ∼D′(π) [Z1, ..., Zd−`+1 = z1, ..., zd−`+1] 6= 0, D′(π) | (Z1, ..., Zd−`+1 = z1, ..., zd−`+1) is a

92

distribution in ∆`−1. Recalling that membership in ∆`−1 requires meeting three conditions

(Definition 24) we verify these conditions below.

1. By Claim 5, we know D | (Π = π) is a product distribution on Z1, ..., Zd. As D′(π) is

sampled according to D | (Π = π), D′(π) is also a product distribution on Z1, ..., Zd.

After further conditioning, D′(π) | (Z1, ..., Zd−`+1 = z1, ..., zd−`+1) remains a product

distribution on Z1, ..., Zd.

2. Since we draw the final Z conditioned on Z|p = z|p, Zi is deterministically fixed for

i = 1, . . . , d− `.

3. First, note that the marginal distribution of D | (P = p) on Z|p is uniform since

D | (Π = π) induces a product distribution on Z1, . . . , Zd, and conditioning on P = p

only fixes Z≤d−`+1 and leaves Zd−`+2 × · · · × Zd as a product distribution. Thus

PZ∼D′(π)|(Z≤d−`+1=z≤d−`+1)

[
Z|p = z|p

]
= P

[
Z|p = z|p | P = p

]
and the marginal distribution of D′(π) | (Z1, ..., Zd−`+1 = z1, ..., zd−`+1) on Z|p is also

the uniform distribution.

Therefore D′(π) | (Z1, ..., Zd−`+1 = z1, ..., zd−`+1) is a distribution in ∆`−1 and D′(π) is a

mixture of distributions in ∆`−1.

Base case (` = 1): We finally discuss the base case of our induction. Define A, Π and P

as in the induction step. Since the output of A is a function of Π,

P [A outputs P (Z)] ≤
∑
π

P [Π = π] ·max
p

P [P = p | Π = π] .

Since Claim 6 also applies to the base case, we get

P [A outputs P (Z)] ≤ 3

d4
<

1

3
<

1

3
+

1

3d
.

93

This completes our induction, and the overall proof.

94

Chapter 8

Polynomial Separation: Central, Pan-, and Local

Privacy

We now turn to our final result, which separates all three of central, pan-, and (sequentially

interactive) local privacy for the problem of uniformity testing.

8.1. Additional Preliminaries and Related Work

In uniformity testing, a tester receives i.i.d. sample access to an unknown discrete dis-

tribution p over [k] and must determine with nontrivial constant probability whether p is

uniform or α-far from uniform in total variation distance. Below, let Uk denote the uniform

distribution over [k].

Definition 25 (Uniformity testing). An algorithm A is a uniformity tester on m samples

if, given m i.i.d. samples from p,

1. when p = Uk, with probability ≥ 2/3 A outputs “uniform”, and

2. when ||p− Uk||TV ≥ α, with probability ≥ 2/3 A outputs “non-uniform”.

The specific choice of 2/3, while common in uniformity testing, is arbitrary. The important

point is that there is a constant separation between output probabilities,

P [output uniform | p = Uk] ≥ 2/3 and P [output uniform | ||p− Uk||TV ≥ α] ≤ 1/3.

As long as we achieve constant separation, i.e. have P [output uniform | p = Uk] ≥ c1 and

P [output uniform | ||p− Uk||TV ≥ α] ≤ c2 for positive c1 − c2 = Ω(1), we can amplify it

to a 1/3 separation by repetition. After sufficiently many repetitions, if p = Uk then the

proportion of “uniform” answers will concentrate at or above c1, and if ||p− Uk||TV ≥ α it

95

will concentrate at or below c2. By a Chernoff bound, r = Ω
(

1
(c1−c2)2

)
repetitions suffice

to distinguish between these cases. Since this is still a constant number of repetitions, our

algorithms will focus on achieving any constant separation.

Furthermore, like many uniformity testers, ours will employ Poissonization. A Poissonized

uniformity tester draws m′ ∼ Poisson (m) samples instead of just m. The result is that,

over the randomness of m′, the counts of samples of each element in [k] are independent.

This independence will be useful when analyzing the utility of our testers. However, since

Poisson (m) concentrates around m [22], we can guarantee m′ = O(m) at the cost of a

constant decrease in success probability. Since we focus on constant success probability

separation as outlined in the previous paragraph, we elide the distinction between “draws

m samples” and “draws Poisson (m) samples” in our sample complexity results.

A line of work [42, 57, 61] has established that uniformity testing (without privacy) has

sample complexity Θ
(√

k
α2

)
where k is the domain size and α is the total variation distance

parameter (for more information on testing, see the survey by Canonne [21]). Acharya,

Sun, and Zhang [3] showed that ε-centrally private uniformity testing has sample com-

plexity Θ
(√

k
α2 +

√
k

α
√
ε

+ k1/3

α4/3ε2/3
+ 1

αε

)
. Acharya, Canonne, Freitag, and Tyagi [4] showed

that noninteractive ε-locally private uniformity testing has sample complexity Θ
(

k
α2ε2

)
. A

comparison of our results [8] to this previous work appears in Figure 2.

8.2. Pan-Private Upper Bound

We now present our pan-private uniformity testers. In the first subsection, we give a

suboptimal uniformity tester SimplePanTest. SimplePanTest is a warmup and eventual

building block for a better algorithm, PanTest, in the subsequent section.

8.2.1. Warmup: SimplePanTest

Like many uniformity testers, SimplePanTest computes a statistic on the data and com-

pares it to a threshold. The statistic is designed to be small when p is uniform and large if

96

Setting Previous Work This Work

Non-private Θ
(√

k
α2

)
([42, 57, 61]) –

ε-central privacy Θ
(√

k
α2 +

√
k

α
√
ε

+ k1/3

α4/3ε2/3
+ 1

αε

)
([3]) –

ε-pan-privacy –
–

O
(

k2/3

α4/3ε2/3
+
√
k

α2 +
√
k

αε

)
Ω
(

k2/3

α4/3ε2/3
+
√
k

α2 + 1
αε

)
SI ε-local privacy O

(
k

α2ε2

)
([4]) Ω

(
k

α2ε2

)
NI ε-local privacy Θ

(
k

α2ε2

)
([4]) –

Table 2: A comparison of the uniformity testing sample complexity bounds given in this
and previous work. “SI” is sequentially interactive and “NI” is noninteractive.

p is α-far from uniform. For SimplePanTest, our statistic is

Z ′ =
k∑
i=1

(Hi −m/k)2 −Hi

m/k

where m is the number of samples and H is a noisy histogram over [k] where bin i counts

the number of occurrences of element i in the stream. H contains Laplace noise added to

each bin both before and after the stream. The first addition of noise ensures the privacy of

the internal states during the stream, while the second addition of noise is for the privacy

of the final output. Pseudocode for SimplePanTest appears below; values for m and TU

are determined in the proof of Lemma 24.

Inspired by similar statistics in non-private testing [1, 2, 24], Cai et al. [20] originally

studied Z ′ for centrally private identity testing. However, they lower bounded its variance

and argued that high variance makes it a suboptimal centrally private tester. We instead

upper bound its variance and show that Z ′ yields a nontrivial pan-private uniformity tester.

Our argument is simple. First, we upper bound the variance of Z ′. We then apply Cheby-

shev’s inequality to upper bound Z ′ when p is uniform and lower bound Z ′ when p is α-far

97

Algorithm 8 Pan-private uniformity tester SimplePanTest

Require: privacy parameter ε, domain [k]
Set sample size m′ ∼ Poisson (m) and threshold TU

Initialize private histogram H ← Lap
(

1
ε

)k ∈ Rk
for stream elements st = s1, . . . , sm′ do

Hst ← Hst + 1

H ← H + Lap
(

1
ε

)k ∈ Rk

Z ′ ←
∑k

i=1
(Hi−m/k)2−Hi

m/k

if Z ′ > TU then
Output “non-uniform”

else
Output “uniform”

from uniform. These bounds drive our choice of the threshold TU . We then compute the

number of samples m required to separate these quantities on either side of TU .

Finally, note that we actually draw m′ ∼ Poisson (m) samples, not m. This is the “Pois-

sonization” trick mentioned in the preceding section.

Lemma 24. For m = Ω
(
k3/4

αε +
√
k

α2

)
, SimplePanTest is an ε-pan-private uniformity

tester on m samples.

Proof. Privacy: Let t be a time in the stream, let i be a possible internal state for Sim-

plePanTest, and let o be a possible output. Let pI,s,t be the probability density function

for the internal state of SimplePanTest after the first t elements of stream s, and let

pO,s,t|i be the probability density function for the output given stream s such that the in-

ternal state at time t was i. Finally, fix neighboring streams s and s′. Then to prove that

SimplePanTest is ε-pan-private, it suffices to show that
pI,s,t(i)·pO,s,t|i(o)
pI,s′,t(i)·pO,s′,t|i(o)

≤ eε.

The final output of SimplePanTest is a deterministic function of its final internal state

(after the second addition of Laplace noise). The final internal state is after m samples, so

it is enough to choose arbitrary internal states i1 and i2 and show

pI,s,t(i1) · pI,s,m,t|i1(i2)

pI,s′,t(i1) · pI,s′,m,t|i1(i2)
≤ eε. (8.1)

98

We first recall a basic fact about differential privacy: if f is a real-valued function with

sensitivity ∆f , i.e. a function whose output changes by at most ∆ between neighboring

databases, then adding Lap
(

∆f
ε

)
noise to the output of f is ε-differentially private (see e.g.

Theorem 3.4 in the survey of Dwork and Roth [37]). Here, each bin of H is a 1-sensitive

function and each sample alters a single bin. Thus by the first application of Lap
(

1
ε

)
noise

to each bin we get
pI,s,t(i1)
pI,s′,t(i1) ≤ eε. Similarly, the second application of Lap

(
1
ε

)
noise to

each bin implies
pI,s,m,t|i1 (i2)

pI,s′,m,t|i1
(i2) ≤ eε. To get the overall claim, we split into two cases. If

s≤t = s′≤t, then
pI,s,t(i1)
pI,s′,t(i1) = 1. If instead s≤t 6= s′≤t, then s>t = s′>t, so

pI,s,m,t|i1 (i2)

pI,s′,m,t|i1
(i2) = 1.

Thus Equation 8.1 holds.

Sample complexity: To better analyze Z ′, we decompose it as the sum of a non-private

χ2-statistic Z and a noise term Y ,

Z =

k∑
i=1

(Ni −m/k)2 −Ni

m/k
and Y =

k∑
i=1

[Yi + Y ′i]2 + 2[Yi + Y ′i](Ni −m/k)− [Yi + Y ′i]

m/k
.

where Ni is the true stream count of item i and Yi, Y
′
i ∼ Lap

(
1
ε

)
are the first and second

addition of Laplace noise. This lets us rewrite Z ′ = Z + Y . In the uniform case, we will

give a high-probability upper bound for Z + Y , and in the non-uniform case we will give a

high-probability lower bound. Fortunately, Acharya et al. [2] prove several results about Z.

We summarize these results in Lemma 25.

Lemma 25 (Lemmas 2 and 3 from Acharya et al. [2]). If p = Uk and m = Ω
(√

k
α2

)
,

then E [Z] ≤ α2m
500 and Var [Z] ≤ α4m2

500000 . If ||p − Uk||TV ≥ α, then E [Z] ≥ α2m
5 and

Var [Z] ≤ E[Z]2

100 .

We split into cases depending on p. For each case, Lemma 25 will control Z, and our task

will be to control Y .

Case 1: p = Uk. By Lemma 25, E [Z] ≤ α2m
500 and Var [Z] ≤ α4m2

500000 . By Chebyshev’s

inequality, P
[
Z >

(
1

500 + c
500
√

2

)
α2m

]
≤ 1

c2
.

99

Turning our attention to Y , define

A =
k∑
i=1

[Yi + Y ′i]2

m/k
, B =

k∑
i=1

2[Yi + Y ′i](Ni −m/k)

m/k
, and C =

k∑
i=1

Yi + Y ′i
m/k

.

Then we can rewrite Y = A + B − C. We control each of A,B, and C in turn. First,

by the independence of all draws of noise, E [A] =
k2E[[Yi+Y ′i]2]

m = 2k2Var[Yi]
m = 4k2

ε2m
because

Var
[
Lap

(
1
ε

)]
= 2

ε2
. Next,

Var [A] =
k3

m2
Var

[
Y 2
i + 2YiY

′
i + Y ′2i

]
=

k3

m2

(
E
[
(Y 2
i + 2YiY

′
i + Y ′2i)2

]
− E

[
Y 2
i + 2YiY

′
i + Y ′2i

]2)
=

k3

m2

([
2E
[
Y 4
i

]
+ 6E

[
Y 2
i

]2]− 4E
[
Y 2
i

]2)
=

2k3

m2

(
E
[
Y 4
i

]
+ E

[
Y 2
i

]2)
=

2k3

m2

(
12

ε4
+

4

ε4

)
=

32k3

ε4m2

where we use E
[
Y 4
i

]
= ε

2

∫∞
0 x4e−εxdx = 12

ε4
by repeated integration by parts. With Cheby-

shev’s inequality, P
[
A > 4k2

ε2m
+ 6ck

3/2

ε2m

]
< 1

c2
.

100

To bound B, we use E [B] = 0 and

Var [B] =
4k2

m2
·Var

[
k∑
i=1

[Yi + Y ′i]
(
Ni −

m

k

)]

=
4k2

m2
· E

(k∑
i=1

[Yi + Y ′i]
[
Ni −

m

k

])2


=
4k2

m2

∑
i1,i2∈[k]

E
[
(Yi1 + Y ′i1)(Yi2 + Y ′i2)

]
· E
[(
Ni1 −

m

k

)(
Ni2 −

m

k

)]

=
4k2

m2

k∑
i=1

E
[
(Yi + Y ′i)2

]
· E
[(
Ni −

m

k

)2
]

=
16k3

ε2m2

(
E
[
N2

1

]
− 2mE [N1]

k
+
m2

k2

)
=

16k3

ε2m2

(
Var [N1] + E [N1]2 − 2m2

k2
+
m2

k2

)
=

16k2

ε2m

where the last two equalities use Ni ∼ Poisson
(
m
k

)
and Var

[
Poisson

(
m
k

)]
= m

k . Again

applying Chebyshev’s inequality gives P
[
B > 4c k

ε
√
m

]
< 1

c2
.

Similarly, E [C] = 0, and with Var [C] = k3

m2 ·Var [Yi + Y ′i] = 4k3

ε2m2 , P
[
C < −2ck

3/2

εm

]
≤ 1

c2
.

Combining the above bounds on Z,A,B, and C, with probability at least 1− 4
c2

,

Z ′ ≤
(

1
500 + c

500
√

2

)
α2m+

4k2

ε2m
+ 6c

k3/2

ε2m
+ 4c

k

ε
√
m

+ 2c
k3/2

εm
.

Taking c = 4
√

2 and

TU = 1
100α

2m+ 4 k2

ε2m
+ 24
√

2k
3/2

ε2m
+ 16
√

2 k
ε
√
m

+ 8
√

2k
3/2

εm ,

P [Z ′ ≤ TU] ≥ 7/8.

Case 2: ||p − Uk||TV ≥ α. By Lemma 25, E [Z] ≥ α2m
5 and Var [Z] ≤ E[Z]2

100 . Chebyshev’s

101

inequality now gives

1− 1

c2
≤ P

[
Z ≥ E [Z]− c

√
Var [Z]

]
≤ P

[
Z ≥

(
1− c

10

)
E [Z]

]
≤ P

[
Z ≥

(
1− c

10

) α2m

5

]

where the last inequality requires c ≤ 10. Returning to the decomposition of Y used

in Case 1, A and C are unchanged and we can use our previous expressions for them

(with appropriate sign changes for lower bounds). Our last task is to lower bound B =

2k
m

∑k
i=1[Yi+Y

′
i](Ni−m/k). For any term i, Yi and Y ′i are symmetric, so Yi+Y

′
i](Ni−m/k)

is symmetric as well, and in particular P [B ≥ 0] ≥ 1/2.

Summing up, with probability at least 1
2 −

3
c′2 ,

Z ′ ≥
(

1

5
− c′

50

)
α2m+ 4

k2

ε2m
− 6c′

k3/2

ε2m
− 2c′

k3/2

εm
.

Taking c′ = 2
√

3 and Tα = α2m
10 + 4 k2

ε2m
− 12
√

3k
3/2

ε2m
− 4
√

3k
3/2

εm , P [Z ′ ≥ Tα] ≥ 1
4 .

For Tα > TU , it is enough that Tα − TU > 0.

Tα − TU =
9

100
α2m−

(
12
√

3 + 24
√

2
) k3/2

ε2m
− 16
√

2
k

ε
√
m
−
(

4
√

3 + 8
√

2
) k3/2

εm
.

Dropping constants, we need α2m = Ω
(
k3/2

ε2m
+ k

ε
√
m

+ k3/2

εm

)
. We can drop the lower-order

term k3/2

εm and get α2m = Ω
(
k3/2

ε2m
+ k

ε
√
m

)
, i.e. m = Ω

(
k3/4

αε + k2/3

α4/3ε2/3

)
.

Putting it all together and recalling the assumption from Lemma 25, there exists constant

c such that if m > c
(
k3/4

αε + k2/3

α4/3ε2/3
+
√
k

α2

)
then

P [output “uniform” | ||p− Uk||TV ≥ α] ≤ 3/4 and P [output “uniform” | p = Uk] ≥ 7/8.

Thus we get a constant 1/8 separation. By the amplification argument outlined after

102

Definition 25, SimplePanTest is a uniformity tester. Finally,

k2/3

α4/3ε2/3
=

(
k3/4

αε

)2/3

·

(√
k

α2

)1/3

≤ 2

3

(
k3/4

αε

)
+

1

3

(√
k

α2

)

by the AM-GM inequality, and our statement simplifies to m = Ω
(
k3/4

αε +
√
k

α2

)
.

8.2.2. Optimal pan-private tester: PanTest

We now use SimplePanTest as a building block for a more complex tester PanTest. At

a high level, PanTest splits the difference between local and central uniformity testers.

We briefly recap these approaches for context.

Centrally private uniformity testers compute a fine-grained statistic depending on the em-

pirical counts of each element i ∈ [k]. Specific methods include χ2-style statistics [20],

collision-counting [7], and empirical total variation distance from Uk [3], but all of these

methods depend on accurate counts for each i ∈ [k]. Cai et al. [20] observed that adding

Laplace noise to each such count before analyzing the statistic is centrally private. The

cost is a large decrease in accuracy. This is unfortunate in our pan-private setting, as pan-

privacy appears to force the same kind of per-count noise. Intuitively, a pan-private tester

might benefit by maintaining a coarser statistic that is easier to maintain privately.

The best known locally private uniformity tester, due to Acharya et al. [4], uses an extreme

version of this coarser strategy. Their approach randomly halves the domain [k] into sets

U and U c and compares the number of samples falling into each. They prove that if p is

sufficiently non-uniform to start, then p(U) and p(U c) will also be non-uniform — albeit

to a much smaller degree — with constant probability. This reduces uniformity testing

to a simpler binary testing problem that, because of its much smaller domain, is more

amenable to local privacy. However, it does so at the cost of a large reduction in testing

distance, which makes the core distinguishing problem harder. Thus both locally private

and pan-private versions of this approach have sample complexity Ω(k). Intuitively, because

103

pan-privacy does not force as much noise as local privacy, a pan-private algorithm might

benefit by maintaining a finer statistic.

PanTest capitalizes on both of these ideas. First, it randomly partitions [k] into n groups

G1, . . . , Gn of size Θ(k/n). It then runs SimplePanTest to test uniformity of the induced

distribution over [n], treating samples falling in each Gj as samples of j ∈ [n].

PanTest thus intermediates between the central and local approaches. It chooses n =

n(α, ε, k) according to k2/3ε4/3

α4/3 . When k2/3ε4/3

α4/3 < 2, n(α, ε, k) = 2 and PanTest uses the

half-partition approach from local privacy. When k2/3ε4/3

α4/3 > k, then n(α, ε, k) = k and Pan-

Test uses the unpartitioned approach from central privacy. Finally, when k2/3ε4/3

α4/3 ∈ [2, k],

n(α, ε, k) = bk2/3ε4/3
α4/3 c and PanTest takes a middle ground. These choices enable Pan-

Test to calibrate the noise contributed by privately maintaining different counts with the

testing distance α Making this tradeoff work relies crucially on the O
(

1
α

)
dependence on

distance achieved by SimplePanTest in its k3/4 term. In contrast, the Ω
(
k
α2

)
depen-

dence of the best known locally private uniformity tester yields no improvement with this

approach. Pseudocode for PanTest appears below.

Algorithm 9 Improved pan-private uniformity tester PanTest

Require: privacy parameter ε, domain [k]

if k2/3ε4/3

α4/3 < 2 then
n← 2

else if k2/3ε4/3

α4/3 > k then
n← k

else
n← bk2/3ε4/3

α4/3 c
Randomly partition [k] into n groups G1, . . . , Gn of size Θ(k/n)
Run SimplePanTest(ε, [n]), treating each element st ∈ Gj as j ∈ [n]

For this reduction to work, the aforementioned decrease in testing distance between [k] and

[n] must not be too large. We show this in Lemma 26. This generalization is not new (see

Theorem 3.2 from Acharya et al. [5]), but we include our proof here for completeness.

Lemma 26. Let p be a distribution over [k] such that ||p− Uk||TV = α and let G1, . . . , Gn

104

be a uniformly random partition of [k] into n > 1 subsets of size Θ(k/n). Define induced

distribution pn over [n] by pn(j) =
∑

i∈Gj p(i) for each j ∈ [n]. Then, with probability ≥ 1
954

over the selection of G1, . . . , Gn,

||pn − Un||TV = Ω
(
α
√

n
k

)
.

Proof. It is equivalent to sample G1, . . . , Gn as follows: randomly partition [k] into n/2

same-size subsets G′1, . . . , G
′
n/2 (for neatness, we assume n is even), and then randomly

halve each of those to produce G1 and G2 (from G′1), G3 and G4 (from G′2), and so on.

We use the following lemma from Acharya et al. [4] to connect the distances induced by

{G′a}
n/2
a=1 and {Gb}nb=1. Here, for a set S we let p(S) denote the total probability mass of

set S, p(S) =
∑

s∈S p(s).

Lemma 27 (Corollary 15 in Acharya et al. [4]). Let p be a distribution over [k] with ||p−

Uk||TV ≥ α, and let U be a random subset of [k] of size k/2. Then PU
[
|p(U)− 1/2| ≥ α√

5k

]
>

1
477 .

Slightly more generally, the proof of Lemma 27 shows that for any distribution p over [k]

and S ⊂ [k], if 1
2

∑
i∈S |p(i) −

1
k | ≥ α′, and we choose a random subset S′ ⊂ S of size |S|2 ,

then PS′
[
|p(S′)− p(S)

2 | ≥
α′√
5|S|

]
> 1

477 .

Fix the choice of G′1, . . . , G
′
n/2. For each a ∈ [n/2], let αa = 1

2

∑
i∈G′a |p(i)−

1
k |, the portion

of ||p − Uk||TV contributed by G′a. Replacing α′ with αa and |S| with k/(n/2) above, for

each a ∈ [n/2],

P
[∣∣∣∣p(G2a−1)− p(G′a)

2

∣∣∣∣ ≥ αa√ n
10k

]
≥ 1

477
.

p(G2a−1) + p(G2a) = p(G′a), so

P
[
|p(G2a−1)− p(G2a)| ≥ 2αa

√
n

10k

]
≥ 1

477
.

105

Then by triangle inequality

P
[∣∣∣∣p(G2a−1)− 1

n

∣∣∣∣+

∣∣∣∣p(G2a)−
1

n

∣∣∣∣ ≥ 2αa

√
n

10k

]
≥ 1

477

and in particular

E
[∣∣∣∣p(G2a−1)− 1

n

∣∣∣∣+

∣∣∣∣p(G2a)−
1

n

∣∣∣∣] ≥ 2αa
477

√
n

10k
.

For each b ∈ [n] define Yb = min
(∣∣p(Gb)− 1

n

∣∣ , αdb/2e√ n
10k

)
. Let Y =

∑n
b=1 Yb. First, we

can lower bound E [Y], over the choice of G′1, . . . , G
′
n/2 and G1, . . . , Gn, as

E [Y] =
n∑
b=1

E
[
min

(∣∣∣∣p(Gb)− 1

n

∣∣∣∣ , αdb/2e√ n

10k

)]

≥
n∑
b=1

αdb/2e
477

√
n

10k

= 2α
477

√
n

10k (8.2)

where the inequality uses the expectation lower bound above.

Second, by definition of Yb, max(Y) ≤
∑n

b=1 αdb/2e
√

n
10k = 2α

√
n

10k . Now assume for con-

tradiction that P
[
Y ≥ α

477

√
n

10k

]
< 1

954 . Then

E [Y] < α
477

√
n

10k + max(Y)
954 ≤ 2α

477

√
n

10k .

Thus E [Y] < 2α
477

√
n

10k , which contradicts Equation 8.2. It follows that our assumption is

106

false, and P
[
Y ≥ α

477

√
n

10k

]
≥ 1

954 . The final claim follows from

Y

2
=

1

2

n∑
b=1

min

(∣∣∣∣p(Gb)− 1

n

∣∣∣∣ , αdb/2e√ n

10k

)

≤ 1

2

n∑
b=1

∣∣∣∣p(Gb)− 1

n

∣∣∣∣
= ||pn − Un||TV .

Due to the 1/954 success probability of Lemma 26, we have a smaller (but still constant)

separation between output probabilities. We thus use the amplification argument discussed

after Definition 25 to get Theorem 12. The guarantee combines Lemma 26 with Lemma 24,

substituting n for k and α
√

n
k for α.

Theorem 12. For m = Ω
(

k2/3

α4/3ε2/3
+
√
k

α2 +
√
k

αε

)
, PanTest is an ε-pan-private uniformity

tester on m samples.

Proof. Privacy: PanTest only interacts with the data through SimplePanTest, so Pan-

Test inherits SimplePanTest’s pan-privacy guarantee.

Sample complexity: Substituting n for k and α
√

n
k for α in Lemma 24, we require

m = Ω

(
n1/4
√
k

αε
+

k

α2
√
n

)
. (8.3)

We consider the three cases for k2/3ε4/3

α4/3 . Together, these cases exhaust the possible rela-

tionships among α, k, and ε, with a different highest-order term in each. This leads to the

three terms in our bound.

107

First, if k2/3ε4/3

α4/3 ∈ [2, k], then n = bk2/3ε4/3
α4/3 c. By Equation 8.3 it is enough for

m = Ω

(
k1/6ε1/3

√
k

α1/3αε
+

k

α2 · k1/3ε2/3
α2/3

)
= Ω

(
k2/3

α4/3ε2/3

)
.

Next, if k2/3ε4/3

α4/3 > k, then n = k, and Equation 8.3 necessitates m = Ω
(
k3/4

αε +
√
k

α2

)
. The

condition k2/3ε4/3

α4/3 > k gives ε4

α4 > k, so ε
α > k1/4, and then multiplying both sides by

√
k

αε

gives
√
k

α2 >
k3/4

αε .Thus it suffices for m = Ω
(√

k
α2

)
.

Finally, if k2/3ε4/3

α4/3 < 2, then n = 2 and by Equation 8.3 we require m = Ω
(√

k
αε + k

α2

)
.

k2/3ε4/3

α4/3 < 2 implies ε < 2α√
k
, so multiplying both sides by k

α2ε
yields k

α2 <
2
√
k

αε and
√
k

αε =

Ω
(
k
α2

)
. Thus it suffices for m = Ω

(√
k

αε

)
.

8.3. Pan-Private Lower Bound

We now turn to lower bounds. Our first result gives a tight (in k) Ω
(

k2/3

α4/3ε2/3

)
lower bound

for ε-pan-private testing (Theorem 13). Our second result, in the next section, extends the

previous Ω
(

k
α2ε2

)
lower bound for noninteractive (ε, δ)-locally private uniformity testing [4]

to the sequentially interactive case (Theorem 14).

Our lower bounds adapt the approach used by Diakonikolas, Gouleakis, Kane, and Rao [29]

to prove testing lower bounds under memory restrictions and communication restrictions.

The main difference in our lower bounds is that Diakonikolas et al. restrict their algorithm

to use an internal state with b bits of memory. This memory restriction immediately implies

that the internal state’s entropy (and thus its mutual information with any other random

variable) is also bounded by b. In our case, we must use our privacy restrictions to replace

this result. Doing so constitutes the bulk of our arguments.

Finally, we note that these results add to lines of work conceptually connecting restricted

memory to pan-privacy [36, 53] and connecting restricted communication to local privacy [4,

5, 31, 48, 51].

108

We start with the pan-private lower bound. While we state our result using α ≤ 1/2,

the choice of 1/2 is arbitrary: the same argument works for any α bounded below 1 by a

constant. A short primer for the information theory used in our argument appears in the

Appendix.

Theorem 13. For ε = O(1) and α ≤ 1/2, any ε-pan-private uniformity tester requires

m = Ω
(

k2/3

α4/3ε2/3
+
√
k

α2 + 1
αε

)
samples.

Proof. First, recall the centrally private lower bound ([3]):

m = Ω

(√
k

α2
+

√
k

α
√
ε

+
k1/3

α4/3ε2/3
+

1

αε

)
.

We will prove m = Ω
(

k2/3

α4/3ε2/3

)
in the pan-private case. k2/3

α4/3ε2/3
dominates the third term

above and also dominates the second term for ε = O(1), so this produces our final lower

bound.

We start with the lower bound construction used by Diakonikolas et al. [29], which itself uses

the Paninski lower bound construction [57]. Let X be a uniform random bit determining

which of two distributions over [2k] generates the samples. For both X = 0 and X = 1 we

draw Y1, . . . , Yk ∈ {±1} i.i.d. uniformly at random. If X = 0, p = U2k. If instead X = 1,

then we pair the bins as {1, 2}, {3, 4}, . . . , {2k − 1, 2k} and define p(2j − 1) =
1+Yjα

2k and

p(2j) =
1−Yjα

2k . Thus if X = 0 then p is uniform, and if X = 1 each pair i of bins is biased

toward one of the bins according to Yj . Equivalently, we can view each sample St ∼ p as a

pair (Jt, Vt) where Jt ∈ [k] determines the bin pair chosen and Vt ∈ {0, 1} determines which

of the bin pair is chosen. Thus Jt ∼ Uk, and Vt ∼ Ber
(

1
2

)
if X = 0 or Vt ∼ Ber ([1 + αYjt]/2)

if X = 1, where Ber (·) denotes the Bernoulli distribution.

To avoid confusion with the mutual information I(·), denote by Mt the random variable for

the internal state of the algorithm after seeing sample St. Our goal is to upper bound the

109

mutual information between X and the internal state after m samples,

I(X;Mm) =
m∑
t=1

I(X;Mt)− I(X;Mt−1)

≤
m∑
t=1

I(X;Mt−1, St)− I(X;Mt−1)

=

m∑
t=1

I(X;St |Mt−1)

=
m∑
t=1

I(X;Vt |Mt−1, Jt) (8.4)

where the last equality uses St = (Jt, Vt) and the independence of X and Jt

We now have a narrower goal: we choose an arbitrary term in the sum in Equation (8.4) and

upper bound it. For neatness, we use the convention that H2(p) is the entropy of a Ber (p)

random variable. When subscripting we abuse notation and let a ∼ A denote a sample

a from the distribution for random variable A. The following reproduces (and slightly

expands) the first part of the argument given by [29]. It largely reduces to rewriting mutual

information in terms of binary entropy and expanding conditional probabilities.

We start by rewriting the chosen term I(X;Vt |Mt−1, Jt) as

= Em∗∼Mt−1 [Ej∼Jt [H(Vt |Mt−1 = m∗, Jt = j)]]

− Em∗∼Mt−1 [Ej∼Jt [Ex∼X [H(Vt |Mt−1 = m∗, Jt = j,X = x)]]]

= Em∗∼Mt−1 [Ej∼Jt [H2(P [Vt = 0 |Mt−1 = m∗, Jt = j])]]

− Em∗∼Mt−1 [Ej∼Jt [P [X = 1 |Mt−1 = m∗, Jt = j]]

·H2(P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 1])]]

− Em∗∼Mt−1 [Ej∼Jt [P [X = 0 |Mt−1 = m∗, Jt = j]

·H2(P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 0])]]

where the second equality usesH2(p) = H2(1−p). Let βm
∗,j

t−1 = P [X = 1 |Mt−1 = m∗, Jt = j].

110

Since Jt is a uniform draw from [k] independent of Mt−1, we now continue the above chain

of equalities as

= Em∗∼Mt−1

1

k

k∑
j=1

H2 (P [Vt = 0 |Mt−1 = m∗, Jt = j])


− Em∗∼Mt−1

1

k

k∑
j=1

βm
∗,j

t−1 H2 (P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 1])


− Em∗∼Mt−1

1

k

k∑
j=1

(1− βm
∗,j

t−1)H2 (P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 0])

 . (8.5)

Now recall that Vt ∼ Ber
(

1
2

)
when X = 0 and Vt ∼ Ber ([1 + αYJt]/2) when X = 1. Then

we can rewrite P [Vt = 0 |Mt−1 = m∗, Jt = j] as

= βm
∗,j

t−1 P [Vt = 0 | X = 1,Mt−1 = m∗, Jt = j]

+ (1− βm
∗,j

t−1)P [Vt = 0 | X = 0,Mt−1 = m∗, Jt = j]

= βm
∗,j

t−1 P [Vt = 0 | X = 1,Mt−1 = m∗, Jt = j, Yj = 1]P [Yj = 1 |Mt−1 = m∗]

+ βm
∗,j

t−1 P [Vt = 0 | X = 1,Mt−1 = m∗, Jt = j, Yj = −1]P [Yj = −1 |Mt−1 = m∗]

+ (1− βm
∗,j

t−1)P [Vt = 0 | X = 0]

= βm
∗,j

t−1

(
P [Yj = 1 |Mt−1 = m∗] · 1− α

2
+ P [Yj = −1 |Mt−1 = m∗] · 1 + α

2

)
+

1− βm
∗,j

t−1

2

= βm
∗,j

t−1 E
[

1− αYj
2

|Mt−1 = m∗
]

+
1− βm

∗,j
t−1

2

=
βm
∗,j

t−1 (1− αE [Yj |Mt−1 = m∗]

2
+

1− βm
∗,j

t−1

2
=

1− αβm
∗,j

t−1 E [Yj |Mt−1 = m∗]

2
.

where the first equality uses the independence of Yj from X and Jt as well as the inde-

pendence of Vt from Mt−1 and Jt conditioned on X = 0, and the second equality uses the

independence of Vt and Mt−1 conditioned on X, Jt = j, and Yj . Thus

P [Vt = 0 |Mt−1 = m∗, Jt = j] =
1− αβm

∗,j
t−1 E [Yj |Mt−1 = m∗]

2
.

111

Using the work above, we can also rewrite

P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 1] =
1− αE [Yj |Mt−1 = m∗]

2

and

P [Vt = 0 |Mt−1 = m∗, Jt = j,X = 0] =
1

2
.

In the following chain of equalities, for space we let E be the event that Mt−1 = m∗. Now

we can return to Equation 8.5 and, since H2(1
2) = 1, get

(8.5) = Em∗∼Mt−1

[
1

k

k∑
j=1

(
H2

(
1− αβm

∗,j
t−1 E [Yj | E]

2

)

− βm
∗,j

t−1 H2

(
1− αE [Yj | E]

2

)
− (1− βm

∗,j
t−1)

)]
= Em∗∼Mt−1

[
1

k

k∑
j=1

(
βm
∗,j

t−1

[
1−H2

(
1− αE [Yj | E]

2

)]

−

[
1−H2

(
1− αβm

∗,j
t−1 E [Yj | E]

2

)])]

≤ Em∗∼Mt−1

1

k

k∑
j=1

[
1−H2

(
1− αE [Yj | E]

2

)]
= Em∗∼Mt−1

1

k

k∑
j=1

[
1−H2

(
1 + αE [Yj | E]

2

)] (8.6)

where the inequality uses H2, β
m∗,j
t−1 ≤ 1 and the equality uses H2

(
1
2 − b

)
= H2

(
1
2 + b

)
.

We now control the terms with H2. The Taylor series for H2(p) near 1/2 is H2(p) =

1− 1
2 ln(2)

∑∞
n=1

(1−2p)2n

n(2n−1) , so for a < 1/2

1−H2

(
1

2
+ a

)
<
∞∑
n=1

(2a)2n

n2
= 4a2

∞∑
n=1

(2a)2n−2

n2
< 4a2

∞∑
n=1

1

n2
=

2a2π2

3
.

112

Substituting 1−H2

(
1
2 + a

)
< 2π2a2

3 into Inequality 8.6 and tracing back to Equation 8.4,

I(X;Vt |Mt−1, Jt) <
π2α2

6k
Em∗∼Mt−1

 k∑
j=1

E [Yj |Mt−1 = m∗]2

 (8.7)

We now depart from the argument of [29]. Our new goal is to upper bound

A = Em∗∼Mt−1

 k∑
j=1

E [Yj |Mt−1 = m∗]2


=

Em∗ ∼Mt−1

k∑
j=1

(2P [Yj = 1 |Mt−1 = m∗]− 1)2

= Em∗∼Mt−1

 k∑
j=1

(
P [Mt−1 = m∗ | Yj = 1]

P [Mt−1 = m∗]
− 1

)2


by Bayes’ rule and P [Yj = 1] = 1/2. To upper bound this sum, we choose an arbitrary j

and show that
P[Mt−1=m∗|Yj=1]

P[Mt−1=m∗] is close to 1. We pause to recap what we’ve accomplished

and what remains. Note that proving
P[Mt−1=m∗|Yj=1]

P[Mt−1=m∗] ≈ 1 “looks like” a privacy statement:

we are claiming that the state distribution Mt−1 looks similar when its input distribution is

slightly different. However, there is still a gap between a difference in input distribution and

a difference in input. We close this gap in the following lemma, which relies on pan-privacy.

Lemma 28.
∣∣∣P[Mt−1=m∗|Yj=1]

P[Mt−1=m∗] − 1
∣∣∣ = O

(
αεt
k

)
.

Proof. We will prove this claim by showing that both the numerator and denominator of

P[Mt−1=m∗|Yj=1]
P[Mt−1=m∗] fall into a bounded range. This implies that the whole fraction is near 1.

First consider the case X = 0. Then the Yj are irrelevant, so
∣∣∣P[Mt−1=m∗|Yj=1]

P[Mt−1=m∗] − 1
∣∣∣ = 0.

Next, consider the case X = 1. It will be useful to consider an equivalent method of

sampling the stream S. At each time step t, we first sample a bin pair Jt ∼U [k] uniformly

at random from the k bin pairs. Having sampled bin pair j, with probability 1−α we take

113

a uniform random draw from {2j−1, 2j}. With the remaining probability α, if Yj = 1 then

we sample 2j − 1, and if Yj = −1 then we sample 2j. Note that this method is equivalent

because if Yj = 1 then P [sample 2j − 1] = 1
k ·

1−α
2 + α

k = 1+α
2k and P [sample 2j] = 1−α

2k ,

with these equalities swapped for Yj = −1. With this view of sampling, let Eαj,t = 1 if

Jt = j and we sample from the α mixture component and Eαj,t = 0 otherwise. Finally,

let Nα
j,t =

∑t
t′=1E

α
j,t′ , the number of samples from the α mixture component of bin pair j

through the first t stream elements.

We pause to justify bothering with this alternate view. We use it because the original ratio

P[Mt−1=m∗|Yj=1]
P[Mt−1=m∗] is comparing the views of Mt−1 depending on Yj . It is not obvious how to

directly use pan-privacy to reason about this comparison because Yj is a property of the

distribution generating the samples (stream elements) rather than the samples themselves.

In contrast, pan-privacy is a guarantee formulated in terms of the samples. By defining the

Eαj,t and Nα
j,t above we better connect Yj to the actual samples received. The alternate view

therefore makes using pan-privacy easier.

We first analyze the denominator of
P[Mt−1=m∗|Yj=1]

P[Mt−1=m∗] . We can rewrite it as

P [Mt−1 = m∗] =

t−1∑
q=0

P
[
Mt−1 = m∗ | Nα

j,t−1 = q
]
· P
[
Nα
j,t−1 = q

]
. (8.8)

Fix some q ∈ {0, 1, . . . , t−1}. Let Sj,≤t∗ be the random variable for the bin pairs and compo-

nent of j sampled through time t∗, i.e. Sj,≤t∗ = {(Jt, Eαj,t)}t
∗
t=1. Note that this means the tu-

ple (j′, 1) is possible only when j′ = j. Define Sαj,q,t to be the set of realizations of Sj,≤t with

exactly q samples from the α component of bin pair j. Then P
[
Mt−1 = m∗ | Nα

j,t−1 = q
]

=
∑

s∈Sαj,q,t−1

P [Mt−1 = m∗ | Sj,≤t−1 = s] · P
[
Sj,≤t−1 = s | Nα

j,t−1 = q
]

=
∑

s∈Sαj,q,t−1

1(
t−1
q

)
kt−1−q

· P [Mt−1 = m∗ | Sj,≤t−1 = s] (8.9)

where the second equality uses the fact that, conditioned onNα
j,t−1 = q, there are

(
t−1
q

)
kt−1−q

114

equiprobable realizations of Sj,≤t−1. Note that we are now reasoning directly about the

stream’s effect on the state Mt−1. This is much closer to the application of pan-privacy

that we set out to achieve.

Consider a length-(t − 1) realization s ∈ Sαj,q,t−1. Recall that each index of s takes one of

j + 1 possible values: (1, 0), (2, 0), . . . , (k, 0), or (j, 1). Let s′ ∈ Sαj,0,t−1 be a realization such

that the Hamming distance dH(s, s′) = q, i.e. s and s′ differ in exactly q indices. Then

because Mt−1 is an ε-differentially private function of the stream, by group privacy (see e.g.

Theorem 2.2 [37])

P [Mt−1 = m∗ | Sj,≤t−1 = s] ≤ eqεP
[
Mt−1 = m∗ | Sj,≤t−1 = s′

]
.

Moreover, there are exactly kq such s′ for each such s. Denote this set of s′ by Ts,q. We can

now continue

(8.9) =
∑

s∈Sαj,q,t−1

1

kq

∑
s′∈Ts,q

1(
t−1
q

)
kt−1−q

· P [Mt−1 = m∗ | Sj,≤t−1 = s]

≤
∑

s∈Sαj,q,t−1

∑
s′∈Ts,q

eqε(
t−1
q

)
kt−1

· P
[
Mt−1 = m∗ | Sj,≤t−1 = s′

]
=

∑
s′∈Sαj,0,t−1

eqε

kt−1
· P
[
Mt−1 = m∗ | Sj,≤t−1 = s′

]
=

∑
s′∈Sαj,0,t−1

eqε · P
[
Mt−1 = m∗ | Sj,≤t−1 = s′

]
· P
[
Sj,≤t−1 = s′ | Nα

j,t−1 = 0
]

= eqεP
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]

where the first inequality uses the above group privacy guarantee; the second equality uses

the fact that, for a given s′ ∈ Ts,q, there are exactly
(
t−1
q

)
length-(t− 1) realizations s with

q samples from the α mixture component from bin pair j and dH(s, s′) = q; and the last

equality uses the fact that Mt−1 and Nα
j,t−1 are independent conditioned on Sj,≤t−1. Note

that this expression depending only on the conditioning for Nα
j,t−1 = 0 is useful because

it will give us a “fixed point” to relate the numerator and denominator analyses. By

115

expressing both quantities with respect to this condition, we can better compare them (and

in particular, obtain a cancellation in the final ratio).

Returning to Equation 8.8

P [Mt−1 = m∗] =

t−1∑
q=0

P
[
Mt−1 = m∗ | Nα

j,t−1 = q
]
· P
[
Nα
j,t−1 = q

]
we get

P [Mt−1 = m∗] ≤
t−1∑
q=0

eqεP
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
· P
[
Nα
j,t−1 = q

]
= P

[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
·
t−1∑
q=0

eqεP
[
Nα
j,t−1 = q

]
= P

[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
· E
[
eεN

α
j,t−1

]
. (8.10)

To analyze this last quantity, recall that we defined random variable Eαj,t as the indicator

variable for drawing stream element t from the α mixture component of bin pair j. Then

E
[
eεNj,t−1

]
= E

[
e
∑t−1
i=1 εE

α
j,i

]
=

t−1∏
i=1

E
[
eεE

α
j,i

]
=
[(

1− α

k

)
e0 +

α

k
eε
]t−1

=

[
1 +

α(eε − 1)

k

]t−1

.

Since 1 + x ≤ ex, [1 + α(eε−1)
k]t−1 ≤ e

α(eε−1)(t−1)
k . We analyze this quantity in cases.

In the first case, α(eε−1)(t−1)
k ≥ 1. Then t > k

α(eε−1) , and since ε = O(1) there exists constant

C such that t > C k
αε . t ≤ m so m > C k

αε . However, by the non-private uniformity testing

lower bound, I(X;Mm) = Ω(1) requires m = Ω
(√

k
α2

)
. This means we have some constant

C ′ such that

m > C ′

(√
k

α2

)1/3(
k

αε

)2/3

= Ω
(

k5/6

α4/3ε2/3

)
(8.11)

which suffices for our overall lower bound.

All that remains is the second case, α(eε−1)(t−1)
k < 1. Then since ex ≤ 1 + 2x for x ∈ [0, 1],

116

e
α(eε−1)(t−1)

k ≤ 1 + 2α(eε−1)(t−1)
k . Again using ε = O(1), there exists constant C1 such that[

1 + α(eε−1)
k

]t−1
≤ e

α(eε−1)(t−1)
k ≤ 1 +C1

αε(t−1)
k . Thus we return to Equation 8.10 and get

P [Mt−1 = m∗] ≤ P
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
·
(

1 + C1
αε(t−1)

k

)
.

If we repeat this process using the other direction of group privacy, we get

P [Mt−1 = m∗] ≥ P
[
Mt−1 = m∗ | Nα

j,t−1 = 0
] [

1 +
α(e−ε − 1)

k

]t−1

.

k ≥ 2, ε > 0, and α ≤ 1, so α(e−ε−1)
k ∈ (−1, 0). Thus

[
1 + α(e−ε−1)

k

]t−1
≥ 1 + α(e−ε−1)(t−1)

k .

By ε = O(1), we get a constant C2 such that
[
1 + α(e−ε−1)

k

]t−1
≥ 1 − C2

αε(t−1)
k . Tracing

back,

P [Mt−1 = m∗] ≥ P
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
·
(

1− C2
αε(t−1)

k

)
.

Returning to the beginning of our proof, we can repeat the argument for the numerator of

P[Mt−1=m∗|Yj=1]
P[Mt−1=m∗] :

P [Mt−1 = m∗ | Yj = 1] =
t−1∑
q=0

P
[
Mt−1 = m∗ | Nα

j,t−1 = q, Yj = 1
]
· P
[
Nα
j,t−1 = q | Yj = 1

]
=

t−1∑
q=0

P
[
Mt−1 = m∗ | Nα

j,t−1 = q, Yj = 1
]
· P
[
Nα
j,t−1 = q

]

since Nα
j,t and Yj are independent. Fixing a q, we rewrite P

[
Mt−1 = m∗ | Nα

j,t−1 = q, Yj = 1
]

=
∑

s∈Sαj,q,t−1

P [Mt−1 = m∗ | Sj,≤t−1 = s, Yj = 1] · P
[
Sj,≤t−1 = s | Nα

j,t−1 = q
]

=
∑

s∈Sαj,q,t−1

1(
t−1
q

)
kt−1−q

· P [Mt−1 = m∗ | Sj,≤t−1 = s, Yj = 1] (8.12)

where the first equality uses the independence of Mt−1 and Nα
j,t−1 conditioned on Sj,t−1 as

well as the independence of Sj,≤t−1 and Yj , and the second equality uses the same counting

117

argument as in the denominator case. Next, ε-pan-privacy gives

P [Mt−1 = m∗ | Sj,≤t−1 = s, Yj = 1] ≤ eqεP
[
Mt−1 = m∗ | Sj,≤t−1 = s′, Yj = 1

]
and so

(8.12) =
∑

s∈Sαj,q,t−1

1

kq

∑
s′∈Ts,q

1(
t−1
q

)
kt−1−q

· P [Mt−1 = m∗ | Sj,t−1 = s, Yj = 1]

≤
∑

s∈Sαj,q,t−1

∑
s′∈Ts,q

eqε(
t−1
q

)
kt−1

P
[
Mt−1 = m∗ | Sj,t−1 = s′, Yj = 1

]
=

∑
s′∈Sαj,q,t−1

eqε

kt−1
· P
[
Mt−1 = m∗ | Sj,t,−1 = s′, Yj = 1

]
=

∑
s′∈Sαj,0,t−1

(
eqε · P

[
Mt−1 = m∗ | Sj,≤t−1 = s′, Yj = 1

]
· P
[
Sj,≤t−1 = s′ | Nα

j,t−1 = 0, Yj = 1
])

= eqεP
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]

where the last equality uses the independence of Sj,≤t−1 and Yj conditioned on Nα
j,t−1 = 0

and the independence of Mt−1 and Yj and Nα
j,t−1 conditioned on Sj,≤t−1. In turn we get

P [Mt−1 = m∗ | Yj = 1] ≤ P
[
Mt−1 = m∗ | Nα

j,t−1 = 0
] t−1∑
q=0

eqεP
[
Nα
j,t−1 = q

]
which is the same quantity as in Equation 8.10. The same analysis thus gives

P [Mt−1 = m∗ | Yj = 1] ≤ P
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
·
(

1 + C1
αε(t− 1)

k

)

as in the denominator case, and

P [Mt−1 = m∗ | Yj = 1] ≥ P
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
·
(

1− C2
αε(t− 1)

k

)
.

118

Summing up, shorthanding A = P
[
Mt−1 = m∗ | Nα

j,t−1 = 0
]
, both P [Mt−1 = m∗] and

P [Mt−1 = m∗ | Yj = 1] lie in the interval

[
A ·
(

1− C2
αε(t− 1)

k

)
, A ·

(
1 + C1

αε(t− 1)

k

)]
.

Thus

P [Mt−1 = m∗ | Yj = 1]

P [Mt−1 = m∗]
≤

1 + C1
αε(t−1)

k

1− C2
αε(t−1)

k

= 1 +
C1 + C2

1− C2
αε(t−1)

k

· αε(t− 1)

k

= 1 +O

(
αεt

k

)

where the last equality uses αε(t−1)
k < 1

2C2
(otherwise, we get m = Ω

(
k
αε

)
and can use the

argument given in Equation 8.11). Similarly,

P [Mt−1 = m∗ | Yj = 1]

P [Mt−1 = m∗]
≥

1− C2
αε(t−1)

k

1 + C1
αε(t−1)

k

= 1− C1 + C2

1 + C1
αε(t−1)

k

· αε(t− 1)

k

= 1−O
(
αεt

k

)

and the claim follows.

Lemma 28 gives A ≤ α2ε2t2

k , so α2A
k ≤

α4ε2t2

k2
. Returning to Equation 8.7 and using t ≤ m,

I(X;Vt |Mt−1, Jt) = O
(
α4ε2m2

k2

)
. Then we trace back to Equation 8.4 and get I(X;Mm) =

O
(
α4ε2m3

k2

)
. Finally, a uniformity tester requires I(X;Mm) = Ω(1), so m = Ω

(
k2/3

α4/3ε2/3

)
.

119

8.4. Locally Private Lower Bound

We now move to the the locally private lower bound. We state our result for pure sequen-

tially interactive local privacy, but this is without loss of generality by the approximate-to-

pure result summarized in Lemma 7.

Theorem 14. For ε = O(1), any sequentially interactive ε-locally private uniformity tester

requires m = Ω
(

k
α2ε2

)
samples.

Proof. Let Mt be the random variable for the message sent by user t with sample St, and let

M1:t be the concatenation of messages sent through time t. We start by distinguishing our

approach for this lower bound from its pan-private analogue. Recall that in the pan-private

lower bound we expressed the mutual information between the distribution parameter X

and the internal state after m samples Mm as I(X;Mm) =
∑m

t=1 I(X;St |Mt−1). Here, we

want to control the mutual information between X and the transcript through m samples,

I(X;M1:m). A key difference in the local setting is that the algorithm does not see any

sample St. Instead, the algorithm sees a randomizer output based on St. We should

therefore expect some information loss between the sample and its randomizer output.

We formalize this using existing local privacy work (Lemma 29) and get I(X;M1:m) <∑m
t=1O(ε2) · I(X;St | M1:t−1). This partially explains the locally private lower bound’s

different dependence on ε.

More formally, by the chain rule for mutual information, I(X;M1:m) =
∑m

t=1 I(X;Mt |

M1:t−1). Choose one term I(X;Mt |M1:t−1) and fix a value m for M1:t−1. We can rewrite

I(X;Mt |M1:t−1 = m) as

= EX|M1:t−1=m [DKL (Mt | X,M1:t−1 = m||Mt |M1:t−1 = m)]

= P [X = 0 |M1:t−1 = m]DKL (Mt | X = 0,M1:t−1 = m||Mt |M1:t−1 = m)

+ P [X = 1 |M1:t−1 = m]DKL (Mt | X = 1,M1:t−1 = m||Mt |M1:t−1 = m) . (8.13)

120

M1:m is generated by a sequentially interactive ε-locally private protocol. We can therefore

use the following result from Duchi et al. [32]. We originally used this result as Lemma 9,

but we restate it here for ease of exposition.

Lemma 29. Let Q be an ε-randomizer and let P0 and P1 be distributions on X . Let x0 ∼ P0

and x1 ∼ P1. Then

DKL (Q(x0)||Q(x1)) +DKL (Q(x1)||Q(x0)) ≤ min(4, e2ε) · (eε − 1)2||P0 − P1||2TV .

Here, we let P1 be the distribution for St |M1:t−1 = m, P2 for St | X = 0,M1:t−1 = m, and

P3 for St | X = 1,M1:t−1 = m. Q1 is then the distribution for Mt | M1:t−1 = m, Q2 for

Mt | X = 0,M1:t−1 = m, and Q3 for Mt | X = 1,M1:t−1 = m. Lemma 29 then gives

(8.13) ≤ 4(eε − 1)2[P [X = 0 |M1:t−1 = m] ||P1 − P2||2TV

+ P [X = 1 |M1:t−1 = m] ||P1 − P3||2TV]

≤ 2(eε − 1)2[P [X = 0 |M1:t−1 = m]DKL (P1||P2)

+ P [X = 1 |M1:t−1 = m]DKL (P1||P3)]

= 2(eε − 1)2I(X;St |M1:t−1 = m)

where the second inequality uses Pinsker’s inequality. Now we can quantify the loss in

information between the sample St and the private message Mt:

I(X;M1:m) =

m∑
t=1

I(X;Mt |M1:t−1)

≤
m∑
t=1

2(eε − 1)2I(X;St |M1:t−1)

≤
m∑
t=1

2(eε − 1)2I(X;Vt |M1:t−1, Jt) (8.14)

121

and, by the same reasoning as in the proof of Theorem 1,

I(X;Vt |M1:t−1, Jt) = O

α2

k
EM1:t−1

 k∑
j=1

E [Yj |M1:t−1]2

 . (8.15)

and in turn rewrite the RHS inside O (·) as

α2

k

t−1∑
i=1

k∑
j=1

(
EM1:i

[
E [Yj |M1:i]

2
]
− EM1:i−1

[
E [Yj |M1:i−1]2

])
. (8.16)

We now fix some i and want to upper bound

k∑
j=1

(
EM1:i

[
E [Yj |M1:i]

2
]
− EM1:i−1

[
E [Yj |M1:i−1]2

])
.

Choose one term j and define γj = P [Yj = 1 |M1:i]. Then we get

EM1:i

[
E [Yj |M1:i]

2
]

= EM1:i

[
(γj − (1− γj))2

]
= EM1:i

[
4γ2

j − 4γj + 1
]

= 4EM1:i

[
γ2
j

]
− 4EM1:i [γj] + 1

= 4EM1:i

[
γ2
j

]
− 1

where the last equality uses 4EM1:i [γj] = 4EM1:i [P [Yj = 1 |M1:i]] = 4P [Yj = 1] = 2. By

similar reasoning, if we define ηj = P [Yj = 1 |M1:i−1] then we get

EM1:i−1

[
E [Yj |M1:i−1]2

]
= 4EM1:i−1

[
η2
j

]
− 1.

Tracing back, our goal is now to upper bound

EM1:i

[
E [Yj |M1:i]

2
]
− EM1:t−1

[
E [Yj |M1:i−1]2

]
= 4

(
EM1:i

[
γ2
j

]
− EM1:i−1

[
η2
j

])
. (8.17)

Our analysis will be easier if we restrict the message space for M1, . . . ,Mi to be binary. We

122

do so by a result from Bassily and Smith [12]. This again relies on the local privacy of the

protocol.

Lemma 30 (Theorem 4.1 in Bassily and Smith [12]). Given a sequentially interactive ε-

locally private protocol with expected number of randomizer calls T , there exists an equivalent

sequentially interactive ε-locally private protocol with expected sample complexity eεT where

each user sends a single bit from a single randomizer call.

The cost of this transformation is an eε blowup in expected sample complexity and an

additional O(n log(log(n))) bits of public randomness. First, since we assumed ε = O(1), by

Markov’s inequality we can trade an arbitrarily small constant c decrease in overall success

probability for a constant (O(eε/c) = O(1)) blowup in sample complexity. Combined with

our assumption of arbitrary access to public randomness for locally private protocols, it is

without loss of generality to assume all of our M1, . . . ,Mi are binary.1

Returning to 4
(
EM1:i

[
γ2
j

]
− EM1:i−1

[
η2
j

])
in Equation (8.17), suppose we fix M1:i−1 below.

Then

EM1:i

[
γ2
j

]
= P [Mi = 1] · P [Yj = 1 |Mi = 1]2 + P [Mi = 0] · P [Yj = 1 |Mi = 0]2

=
[P [Mi = 1 | Yj = 1] · P [Yj = 1]]2

P [Mi = 1]
+

[P [Mi = 0 | Yj = 1] · P [Yj = 1]]2

P [Mi = 0]

= η2
j

[
P [Mi = 1 | Yj = 1]2

P [Mi = 1]
+

P [Mi = 0 | Yj = 1]2

P [Mi = 0]

]

where the second equality uses Bayes’ rule. Now, using −2x+ 2y − 2(1− x) + 2(1− y) = 0

with x = P [Mi = 1 | Yj = 1] and y = P [Mi = 1], we get

−2P [Mi = 1 | Yj = 1] + 2P [Mi = 1]− 2P [Mi = 0 | Yj = 1] + 2P [Mj = 0] = 0.

1Note that this step relies on the fact that, in sequentially interactive protocols, the number of randomizer
calls is the same as the sample complexity. For fully interactive protocols, the number of randomizer calls
may arbitrarily exceed the sample complexity. However, using the transformation given by Joseph et al. [47],
our argument also extends to any O(1)-compositional fully interactive protocol.

123

We can now add 0 inside the bracketed term to get

η2
j

[
P [Mi = 1 | Yj = 1]2

P [Mi = 1]
+

P [Mi = 0 | Yj = 1]2

P [Mi = 0]

]
= η2

j [A+B]

where

A =
P [Mi = 1 | Yj = 1]2 − 2P [Mi = 1 | Yj = 1]P [Mi = 1] + 2P [Mi = 1]2

P [Mi = 1]

=
(P [Mi = 1 | Yj = 1]− P [Mi = 1])2

P [Mi = 1]
+ P [Mi = 1]

and

B =
P [Mi = 0 | Yj = 1]2 − 2P [Mi = 0 | Yj = 1]P [Mi = 0] + 2P [Mi = 0]2

P [Mi = 0]

=
(P [Mi = 0 | Yj = 1]− P [Mi = 0])2

P [Mi = 0]
+ P [Mi = 0] .

Thus we may rewrite η2
j [A+B] as

η2
j

[
1 +

(P [Mi = 1 | Yj = 1]− P [Mi = 1])2

P [Mi = 1]
+

(P [Mi = 0 | Yj = 1]− P [Mi = 0])2

P [Mi = 0]

]
.

For neatness, let C = P [Mi = 1 | Yj = 1, Ji = j] and D = P [Mi = 1 | Yj = −1, Ji = j].

Recall that Ji denotes which of k bin pairs is chosen. Then

P [Mi = 1 | Yj = 1] = P [Mi = 1 | Yj = 1, Ji 6= j] · P [Ji 6= j | Yj = 1]

+ P [Mi = 1 | Yj = 1, Ji = j] · P [Ji = j | Yj = 1]

=
k − 1

k
· P [Mi = 1 | Yj = 1, Ji 6= j] +

C

k

124

since Ji is independent of Yj and P [Ji = j] = 1
k . Similarly,

P [Mi = 1] = P [Mi = 1 | Ji 6= j] · P [Ji 6= j] + P [Mi = 1 | Ji = j] · P [Ji = j]

=
k − 1

k
· P [Mi = 1 | Yj = 1, Ji 6= j]

+
1

k
· P [Mi = 1 | Ji = j, Yj = 1] · P [Yj = 1]

+
1

k
· PMi = 1 | Ji = j, Yj = −1 · P [Yj = −1]

=
k − 1

k
· P [Mi = 1 | Yj = 1, Ji 6= j] +

1

k
(ηjC + (1− ηj)D)

where the second equality uses the conditional independence of Mi and Yj given Jt 6= j and

fixed M1:i−1. We substitute these expressions for P [Mi = 1 | Yj = 1] and P [Mi = 1] and

get

(P [Mi = 1 | Yj = 1]− P [Mi = 1])2 =

[
(1− ηj)(C −D)

k

]2

= (P [Mi = 0 | Yj = 1]− P [Mi = 0])2

where the last equality follows from P [Mi = 0 | Yj = 1] = 1 − P [Mi = 1 | Yj = 1] and

P [Mi = 1] = 1− P [Mi = 0]. Returning to η2
j [A+B], we have

η2
j [A+B] = η2

j

[
1 +

(
(1− ηi)(C −D)

k

)2(1

P [Mi = 1]
+

1

P [Mi = 0]

)]

= η2
j

[
1 +

(
(1− ηi)(C −D)

k

)2

· 1

P [Mi = 1]P [Mi = 0]

]
(8.18)

since P [Mi = 1] + P [Mi = 0] = 1. We now analyze |C−D|
P[Mi=1] . It will be useful to recall

the sampling thought experiment used in the proof of Lemma 28: at each time t, we

first uniformly sample bin pair Jt ∼U [k] and then sample the bin from a mixture: having

sampled bin pair j, with probability 1−α we take a uniform random draw from {2j−1, 2j}.

With the remaining probability α, if Yj = 1 then we sample 2j − 1, and if Yj = −1 then

we sample 2j. Finally, we define Eαj,t = 1 if Jt = j and we sample from the α mixture

125

component and Eαj,t = 0 otherwise.

Under this equivalent sampling method, we can rewrite

C = P [Mi = 1 | Yj = 1, Ji = j]

= P
[
Mi = 1 | Eαj,i = 1, Yj = 1, Ji = j

]
P
[
Eαj,i = 1 | Yj = 1, Ji = j

]
+ P

[
Mi = 1 | Eαj,i = 0, Yj = 1, Ji = j

]
P
[
Eαj,i = 0 | Yj = 1, Ji = j

]
= αP

[
Mi = 1 | Yj = 1, Eαj,i = 1

]
+ (1− α)P

[
Mi = 1 | Eαj,i = 0, Ji = j

]
where the last equality uses the fact that Mi is independent of Ji conditioned on Eαj,i = 1

and Mi is independent of Yj conditioned on Eαj,i = 0. Similarly

D = αP
[
Mi = 1 | Yj = −1, Eαj,i = 1

]
+ (1− α)P

[
Mi = 1 | Eαj,i = 0, Ji = j

]
.

Thus we can rewrite

|C −D|
P [Mi = 1]

=
|α(P

[
Mi = 1 | Yj = 1, Eαj,i = 1

]
− P

[
Mi = 1 | Yj = −1, Eαj,i = 1

]
)|

P [Mi = 1]

≤ |α(eε − e−ε)P [Mi = 1] |
P [Mi = 1]

= O(αε)

where the inequality uses the ε-local privacy of Mi (recalling that we have been conditioning

on M1:i−1), and the equality uses ε = O(1). Similarly, we get

1− C = P [Mi = 0 | Yj = 1, Ji = j]

= αP
[
Mi = 0 | Yj = 1, Eαj,i = 1

]
+ (1− α)P

[
Mi = 0 | Eαj,i = 0, Ji = j

]
and

1−D = αP
[
Mi = 0 | Yj = −1, Eαj,i = 1

]
+ (1− α)P

[
Mi = 0 | Eαj,i = 0, Ji = j

]
.

126

This gives us

|C −D|
P [Mi = 0]

=
|(1− C)− (1−D)|

P [Mi = 0]

=
|α(P

[
Mi = 0 | Yj = 1, Eαj,i = 1

]
− P

[
Mi = 0 | Yj = −1, Eαj,i = 1

]
)|

P [Mi = 1]

≤ |α(eε − e−ε)P [Mi = 0]

P [Mi = 0]

= O(αε)

as well. Thus by Equation 8.18 η2
j [A+B] = η2

j +O

(
η2j (1−ηi)2α2ε2

k2

)
= η2

j +O
(
α2ε2

k2

)
because

η2
j (1− ηj)2 < 1. Returning to Equation (8.17), we can now bound

EM1:i

[
E [Yj |M1:i]

2
]
− EM1:i−1

[
E [Yj |M1:i−1]2

]
= O

(
α2ε2

k2

)
.

Since this analysis was for an arbitrary j, we get

k∑
j=1

(
EM1:i

[
E [Yj |M1:i]

2
]
− EM1:i−1

[
E [Yj |M1:i−1]2

])
= O

(
α2ε2

k

)
.

We substitute this into Equation (8.16) and get I(X;Vt | M1:t−1, Jt) = O
(
α4ε2t
k2

)
. Finally,

substituting back into Equation (8.14) and using t ≤ m and ε = O(1), I(X;M1:m) =

O
(
α4ε4m2

k2

)
. Since the output of a locally private algorithm is a function of the transcript,

a uniformity tester with sample complexity m requires I(X;M1:m) = Ω(1). We therefore

get sample complexity m = Ω
(

k
α2ε2

)
.

We conclude with a brief recap of this section. Focusing on the dependence on k, we have

shown that the optimal sample complexity for ε-central, ε-pan, and sequentially interactive

ε-local uniformity testing is respectively Θ(
√
k), Θ(k2/3), and Θ(k), where the latter two

results are new.

127

Chapter 9

Folklore and Future Directions

We conclude this dissertation by recapping two folklore results on pan-privacy which, to the

best of our knowledge, have not appeared in writing elsewhere but are almost immediate

from prior work. Possible directions for future work appear in the next section.

9.1. Pan-Privacy Folklore

First, pan-private summation of bits behaves (up to constants) like centrally private sum-

mation. This is because the optimal centrally private solution [34] is to compute the sum

directly and add a draw of Lap (1/ε) noise. As applied in our pan-private tester (The-

orem 12), the pan-private analogue simply adds an initial draw of Lap (1/ε) noise to a

counter, increments the counter deterministically during the stream, and adds a second

draw of Lap (1/ε) noise once the stream ends. This obtains the same asymptotic O(1/ε)

error and extends to real sums. In contrast, no locally private algorithm obtains o(
√
n) er-

ror [26]. We collect this information in the following corollary, which is a simple separation

between pan- and local privacy.

Corollary 2. For the problem of summing bits x1, . . . , xn, there exist ε-central and ε-pan-

private algorithms achieving additive error O(1/ε), but for ε < ln(99) and δ < 1
4n , no

(ε, δ)-locally private algorithm can achieve additive error o(
√
n).

This basic result has implications beyond sums. For example, Canonne et al. [23] showed

that the optimal centrally private simple hypothesis tester computes a sum of truncated

log-likelihood ratios for each data point, adds Laplace noise scaled to the truncated sum’s

sensitivity, and compares the result to a threshold. As the basic algorithm is still a sum, we

get a straightforward pan-private analogue with identical error as described above. However,

our locally private hypothesis testing lower bound (Theorem 4) now separates pan-privacy

128

and local privacy as well. As before, we state a simpler but worse version of the guarantee

of Canonne et al. [23] for brevity.

Corollary 3. For the problem of simple hypothesis testing between distributions P0 and P1,

there exist ε-central and ε-pan-private algorithms requiring only O
(

1
εH2(P0,P1)

)
samples, but

any (ε, δ)-locally private algorithm with δ < min
(

ε3α2

48n ln(2n/β) ,
ε2α2

64n ln(n/β)e7ε

)
requires at least

Ω
(

1
ε2H2(P0,P1)

)
samples.

By a similar token, we can import results from central privacy to separate approximate

and pure pan-privacy. The problem of releasing 1-way marginals is bit summation but for

d-dimensional bit vectors. Focusing on the d parameter, Hardt and Talwar [44] showed that

Ω(d) error is necessary for ε-central privacy, but O(
√
d) error is possible under (ε, δ)-central

privacy by a single addition of Laplace noise (with the appropriate analysis). Both lower

and upper bound thus extend to pan-privacy.

Corollary 4. For the problem of releasing 1-way marginals with L1 error α, every ε-pan-

private algorithm requires n = Ω
(
d
αε

)
samples, but there is an (ε, δ)-pan-private algorithm

that only requires O

(√
d log(1/δ)

αε

)
samples.

9.2. Future Directions

This dissertation has focused on exploring the relationships between the central, pan-, and

local models of differential privacy. Many questions in this area remain. We conclude with

a few such questions, ordered roughly by decreasing specificity:

1. How hard is parity?

The problem of learning parity, and variants thereof, has proven useful for local privacy

lower bounds [50]. For d-dimensional parity, O(d) samples suffice in the central model

but Ω(2d) are required in the sequentially interactive local model. However, the sample

complexity of learning parity under fully interactive local privacy is not known. The

lower bounds of Kasiviswanathan et al. [50] only guarantee that such a fully interactive

129

protocol would require communication that is exponential in d. This still does not tell

us anything about sample complexity. Along similar lines, the sample complexity of

pan-private parity learning is unknown beyond the immediate Ω(d) and O(2d) bounds.

Unfortunately, the central solutions given by Kasiviswanathan et al. [50] rely crucially

on having d raw labelled examples as input to the algorithm (the first, inefficient

solution passes these to the exponential mechanism; the second, efficient solution uses

Gaussian elimination and then post-processes the solution in a randomized way). This

makes adapting centrally private parity learners for pan-privacy difficult.

2. What is the relationship between pan-privacy and robust shuffle privacy?

Very recent work by Balcer, Cheu, Joseph, and Mao [10] showed that the Θ(
√
k)

and Θ(k2/3) dependencies on the domain size k for pan-private distinct elements and

uniformity testing, respectively, also extend to the model of robust shuffle privacy. It

is not known whether (1) a more general connection between pan-privacy and robust

shuffle privacy exists, or (2) there is a problem separating the two models.

3. How useful is approximate privacy beyond the central model?

By the work of Bun et al. [19] and Cheu et al. [27] (combined here as Lemma 7),

approximate and pure sequentially interactive local privacy are essentially equivalent.

However, a naive extension of their results to the fully interactive setting requires δ =

o(1/T), where T is the number of randomizer calls. It is not clear if this dependence

is necessary. At the same time, it is not known if there are any problems where

(necessarily fully interactive) approximate local privacy obtains meaningfully better

utility than pure local privacy. In pan-privacy, the only known separation is inherited

directly from central privacy (Corollary 4).

4. Do any practical problems separate sequentially and fully interactive local privacy?

The only problems known to separate sequentially and fully interactive local privacy

130

are very artificial. For example, when k = 3 the tree in the hidden layers problem has

a number of leaves well in excess of the estimated number of atoms in the universe, but

the problem may be solved with O(1) users absent local privacy. It would be useful

to either find practical separations or show that that, in some meaningful sense, they

do not exist. Theorem 2 offers a first step in the second direction by implying that

any such problem would still require ω(1) randomizer calls to a single user.

5. What is the relationship between pan-privacy and algorithm memory?

All papers on pan-privacy [8, 36, 53] have observed either informal or formal con-

nections between pan-privacy and algorithms with limited memory. Mir et al. [53]

borrowed techniques from the sketching literature to show that a pan-private algo-

rithm can solve the problem of counting distinct elements in a stream to optimal error

using polylogarithmic space, and showed that additional space does not help. Amin

et al. [8] adapted a lower bound for limited memory uniformity testing to prove their

pan-private uniformity testing lower bound. Intuitively, this makes sense: maintaining

a private state forbids memorizing data, which should lead to lower memory require-

ments overall. However, no formal statement connecting pan-privacy and memory is

known.

131

BIBLIOGRAPHY

[1] Jayadev Acharya, Ashkan Jafarpour, Alon Orlitsky, and Ananda Suresh. A competitive
test for uniformity of monotone distributions. In Artificial Intelligence and Statistics
(AISTATS), 2013. 97

[2] Jayadev Acharya, Constantinos Daskalakis, and Gautam Kamath. Optimal testing for
properties of distributions. In Neural Information Processing Systems (NIPS), 2015.
97, 99

[3] Jayadev Acharya, Ziteng Sun, and Huanyu Zhang. Differentially private testing of iden-
tity and closeness of discrete distributions. In Neural Information Processing Systems
(NeurIPS), 2018. 96, 97, 103, 109

[4] Jayadev Acharya, Clément Canonne, Cody Freitag, and Himanshu Tyagi. Test with-
out trust: Optimal locally private distribution testing. In Artificial Intelligence and
Statistics (AISTATS), 2019. 12, 96, 97, 103, 105, 108

[5] Jayadev Acharya, Clément L Canonne, Yanjun Han, Ziteng Sun, and Himanshu Tyagi.
Domain compression and its application to randomness-optimal distributed goodness-
of-fit. arXiv preprint arXiv:1907.08743, 2019. 104, 108

[6] Jayadev Acharya, Clément L Canonne, and Himanshu Tyagi. Inference under informa-
tion constraints: Lower bounds from chi-square contraction. In Conference on Learning
Theory (COLT), 2019. 12

[7] Maryam Aliakbarpour, Ilias Diakonikolas, and Ronitt Rubinfeld. Differentially private
identity and equivalence testing of discrete distributions. In International Conference
on Machine Learning (ICML), 2018. 103

[8] Kareem Amin, Matthew Joseph, and Jieming Mao. Pan-private uniformity testing.
arXiv preprint arXiv:1911.01452, 2019. 3, 14, 96, 131

[9] Differential Privacy Team Apple. Learning with privacy at scale. Technical report,
Apple, 2017. 1

[10] Victor Balcer, Albert Cheu, Matthew Joseph, and Jieming Mao. Connecting robust
shuffle privacy and pan-privacy. arXiv preprint arXiv:2004.09481, 2020. 130

[11] Borja Balle, James Bell, Adria Gascon, and Kobbi Nissim. The privacy blanket of the
shuffle model. In International Cryptology Conference (CRYPTO), 2019. 21, 29, 30

[12] Raef Bassily and Adam Smith. Local, private, efficient protocols for succinct his-
tograms. In Symposium on the Theory of Computing (STOC), 2015. 64, 123

[13] Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed private data analysis: Simul-
taneously solving how and what. In International Cryptology Conference (CRYPTO),
2008. 5

132

[14] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan,
David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard Seefeld.
Prochlo: Strong privacy for analytics in the crowd. In Symposium on Operating Systems
Principles (SOSP), 2017. 1

[15] Mark Braverman. A hard-to-compress interactive task? In Allerton Conference on
Communication, Control, and Computing (Allerton), 2013. 68

[16] Mark Braverman and Jieming Mao. Simulating noisy channel interaction. In Innova-
tions in Theoretical Computer Science (ITCS), 2015. 66

[17] Mark Braverman and Anup Rao. Toward coding for maximum errors in interactive
communication. IEEE Transactions on Information Theory, 2014. 67

[18] Mark Braverman, Ankit Garg, Tengyu Ma, Huy L Nguyen, and David P Woodruff.
Communication lower bounds for statistical estimation problems via a distributed data
processing inequality. In Symposium on the Theory of Computing (STOC), 2016. 42,
43, 51, 55

[19] Mark Bun, Jelani Nelson, and Uri Stemmer. Heavy hitters and the structure of local
privacy. In Principles of Database Systems (PODS), 2018. 41, 130

[20] Bryan Cai, Constantinos Daskalakis, and Gautam Kamath. Priv’it: private and sample
efficient identity testing. In International Conference on Machine Learning (ICML),
2017. 97, 103

[21] Clément L Canonne. A survey on distribution testing: Your data is big. but is it blue?
In Electronic Colloquium on Computational Complexity (ECCC), 2015. 96

[22] Clément L. Canonne. A short note on poisson tail bounds, 2017. URL http://www.

cs.columbia.edu/~ccanonne/files/misc/2017-poissonconcentration.pdf. 96

[23] Clément L. Canonne, Gautam Kamath, Audra McMillan, Adam Smith, and Jonathan
Ullman. The structure of optimal private tests for simple hypotheses. In Symposium
on the Theory of Computing (STOC), 2019. 39, 44, 128, 129

[24] Siu-On Chan, Ilias Diakonikolas, Paul Valiant, and Gregory Valiant. Optimal algo-
rithms for testing closeness of discrete distributions. In Symposium on Discrete Algo-
rithms (SODA), 2014. 97

[25] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of
statistics. ACM Transactions on Information and System Security, 2011. 5, 46

[26] TH Hubert Chan, Elaine Shi, and Dawn Song. Optimal lower bound for differentially
private multi-party aggregation. In European Symposium on Algorithms (ESA), 2012.
5, 128

[27] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Dis-
tributed differential privacy via shuffling. In Conference on the Theory and Applications
of Cryptographic Techniques (CRYPTO), 2019. 41, 130

133

http://www.cs.columbia.edu/~ccanonne/files/misc/2017-poissonconcentration.pdf
http://www.cs.columbia.edu/~ccanonne/files/misc/2017-poissonconcentration.pdf

[28] Amit Daniely and Vitaly Feldman. Learning without interaction requires separation.
In Neural Information Processing Systems (NeurIPS), 2019. 5, 73

[29] Ilias Diakonikolas, Themis Gouleakis, Daniel M. Kane, and Sankeerth Rao. Communi-
cation and memory efficient testing of discrete distributions. In Conference on Learning
Theory (COLT), 2019. 108, 109, 110, 113

[30] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data
privately. In Neural Information Processing Systems (NIPS), pages 3574–3583, 2017.
1

[31] John Duchi and Ryan Rogers. Lower bounds for locally private estimation via com-
munication complexity. In Conference on Learning Theory (COLT), 2019. 5, 108

[32] John C Duchi, Michael I Jordan, and Martin J Wainwright. Local privacy, data pro-
cessing inequalities, and statistical minimax rates. arXiv preprint arXiv:1302.3203,
2013. 5, 12, 42, 44, 86, 89, 121

[33] John C Duchi, Michael I Jordan, and Martin J Wainwright. Local privacy and statis-
tical minimax rates. In Foundations of Computer Science (FOCS), 2013. 5

[34] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Theory of Cryptography Conference (TCC),
2006. 1, 2, 5, 7, 10, 128

[35] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential pri-
vacy under continual observation. In Symposium on the Theory of Computing (STOC),
2010. 4

[36] Cynthia Dwork, Moni Naor, Toniann Pitassi, Guy N Rothblum, and Sergey Yekhanin.
Pan-private streaming algorithms. In Innovations in Computer Science (ICS), 2010.
2, 4, 5, 9, 108, 131

[37] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends R© in Theoretical Computer Science, 2014. 7, 99, 115

[38] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy
breaches in privacy preserving data mining. In Principles of Database Systems (PODS),
2003. 2, 5, 10

[39] Marco Gaboardi, Ryan Rogers, and Or Sheffet. Locally private mean estimation: Z-
test and tight confidence intervals. In Artificial Intelligence and Statistics (AISTATS),
2019. vi, 47, 48

[40] Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of communication and
external information. In Symposium on the Theory of Computing (STOC), 2016. 68,
69

[41] Garfinkel, Simson L. Deploying differential privacy for the 2020 census of population
and housing, 2019. Accessed: 09-12-2019. 1

134

[42] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Elec-
tronic Colloquium on Computational Complexity (ECCC), 2000. 96, 97

[43] Miguel Guevara. Enabling developers and organizations to
use differential privacy. developers.googleblog.com/2019/09/

enabling-developers-and-organizations.html, 2019. Accessed: 09-12-2019.
1

[44] Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In Symposium
on the Theory of Computing (STOC), 2010. 41, 129

[45] Svante Janson. Tail bounds for sums of geometric and exponential variables. arXiv
preprint arXiv:1709.08157, 2017. 38

[46] Matthew Joseph, Janardhan Kulkarni, Jieming Mao, and Zhiwei Steven Wu. Locally
private gaussian estimation. In Neural Information and Processing Systems (NeurIPS),
2019. 3, 48

[47] Matthew Joseph, Jieming Mao, Seth Neel, and Aaron Roth. The role of interactivity
in local differential privacy. In Foundations of Computer Science (FOCS), 2019. 3, 20,
39, 123

[48] Matthew Joseph, Jieming Mao, and Aaron Roth. Exponential separations in local
differential privacy. In Symposium on Discrete Algorithms (SODA), 2020. 3, 39, 59,
72, 108

[49] Vishesh Karwa and Salil Vadhan. Finite Sample Differentially Private Confidence
Intervals. In Innovations in Theoretical Computer Science (ITCS), 2018. 47

[50] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova,
and Adam Smith. What can we learn privately? Symposium on the Theory of Com-
puting (STOC), 2008. 2, 5, 10, 21, 73, 129, 130

[51] Andrew McGregor, Ilya Mironov, Toniann Pitassi, Omer Reingold, Kunal Talwar, and
Salil Vadhan. The limits of two-party differential privacy. In Foundations of Computer
Science (FOCS), 2010. 4, 108

[52] Solomon Messing, Christina DeGregorio, Bennett Hillenbrand, Gary King, Saurav
Mahanti, Chaya Nayak, , Nathaniel Persily, Bogdan State, and Arjun Wilkins.
Facebook privacy-protected urls light table release. socialscience.one/files/

partnershipone/files/facebook_urls-light_codebook_v2.0.pdf, 2019. Ac-
cessed: 09-18-2019. 1

[53] Darakhshan Mir, Shan Muthukrishnan, Aleksandar Nikolov, and Rebecca N Wright.
Pan-private algorithms via statistics on sketches. In Principles of Database Systems
(PODS), 2011. 4, 5, 9, 108, 131

[54] Jack Murtagh, Kathryn Taylor, George Kellaris, and Salil Vadhan. Usable differential
privacy: A case study with psi. arXiv preprint arXiv:1809.04103, 2018. 1

135

developers.googleblog.com/2019/09/enabling-developers-and-organizations.html
developers.googleblog.com/2019/09/enabling-developers-and-organizations.html
socialscience.one/files/partnershipone/files/facebook_urls-light_codebook_v2.0.pdf
socialscience.one/files/partnershipone/files/facebook_urls-light_codebook_v2.0.pdf

[55] Jerzy Neyman and Egon Sharpe Pearson. Ix. on the problem of the most efficient tests
of statistical hypotheses. Philosophical Transactions of the Royal Society of London.
Series A, Containing Papers of a Mathematical or Physical Character, 1933. 39

[56] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sam-
pling in private data analysis. In Symposium on the Theory of Computing (STOC),
2007. 44

[57] Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled
discrete data. IEEE Transactions on Information Theory, 2008. 96, 97, 109

[58] Ryan M. Rogers, Aaron Roth, Jonathan Ullman, and Salil Vadhan. Privacy odometers
and filters: Pay-as-you-go composition. In Neural Information Processing Systems
(NIPS), 2016. 23

[59] Leonard J Schulman. Coding for interactive communication. IEEE Transactions on
Information Theory, 1996. 67

[60] Maurice Sion. On general minimax theorems. Pacific Journal of mathematics, 1958.
45

[61] Gregory Valiant and Paul Valiant. An automatic inequality prover and instance optimal
identity testing. In Foundations of Computer Science (FOCS), 2014. 96, 97

[62] Stanley L. Warner. Randomized response: A survey technique for eliminating evasive
answer bias. Journal of the American Statistical Association, 1965. 10, 11

136

	Acknowledgements
	Abstract
	List of Tables
	List of Illustrations
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Differential Privacy
	2.2 Pan-Privacy
	2.3 Local Differential Privacy

	3 Connection: Pan-Privacy and Local Privacy
	4 Connection: Fully and Sequentially Interactive Local Privacy
	4.1 Additional Preliminaries
	4.2 Step 1: Bayesian View
	4.3 Step 2: Rejection Sampling
	4.4 Step 3: Randomizer Decomposition
	4.5 Complete Simulation

	5 Polynomial Separation: Central vs. Local Privacy
	5.1 Simple Hypothesis Testing
	5.2 One-Dimensional Gaussian Estimation

	6 Exponential Separation: Fully vs. Sequentially Interactive Local Privacy
	6.1 Additional Preliminaries
	6.2 Reduction and Separation
	6.3 Separating Sequential and Full Interactivity

	7 Polynomial Separation: Fully vs. Sequentially Interactive Local Privacy
	7.1 Additional Preliminaries
	7.2 Multi-Party Pointer Jumping
	7.3 Separating Sequential and Full Interactivity (Again)

	8 Polynomial Separation: Central, Pan-, and Local Privacy
	8.1 Additional Preliminaries and Related Work
	8.2 Pan-Private Upper Bound
	8.3 Pan-Private Lower Bound
	8.4 Locally Private Lower Bound

	9 Folklore and Future Directions
	9.1 Pan-Privacy Folklore
	9.2 Future Directions

	Bibliography

