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ABSTRACT

ESSAYS IN EMPIRICAL CORPORATE FINANCE

Paul H. Décaire

Erik P. Gilje

Michael R. Roberts

This dissertation goal is to deepen our understand about firms’ resource allocation deci-

sions. In the first chapter, using an NPV-based revealed-preference strategy, I find that

idiosyncratic risk affects the discount rate that firms use in their capital budgeting deci-

sions. I exploit quasi-exogenous within-region variation in project-specific idiosyncratic risk

and find that, on average, firms inflate their discount rate by 5 percentage points (pp) in re-

sponse to an 18pp increase in idiosyncratic risk. Moreover, these discount rate adjustments

are negatively associated with measures of firm profitability. I then explore how proxies for

costly external financing and agency frictions relate to discount rate adjustments. Consis-

tent with theoretical predictions, firms appear to adjust their discount rate to account for

both frictions.

In the second chapter, which is joint work with Erik Gilje and Jérôme Taillard, We study

when and why firms exercise real options. Using detailed project-level investment data,

we find that the likelihood that a firm exercises a real option is strongly related to peer

exercise behavior. Peer exercise decisions are as important in explaining exercise behavior

as variables commonly associated with standard real option theories, such as volatility. We

identify peer effects using localized exogenous variation in peer project exercise decisions

and find evidence consistent with information externalities being important for exercise

behavior.

In the third chapter, I empirically measure the effect of ownership concentration on firms’

risk-taking behavior. In support of the existing theory, I find that firms choose riskier

v



projects when their ownership concentration increases. To obtain a causal interpretation of

the results, I use the merger of financial holdings as an exogenous shock to firms’ level of

ownership concentration.
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CHAPTER 1 : Capital Budgeting and Idiosyncratic Risk

One of the most important financial decisions managers face is selecting the best projects

among competing investment proposals. Traditional corporate finance theory holds that,

when evaluating projects, firms’ discount rates should account for the projects’ systematic

risk, but not their idiosyncratic risk (Bogue and Roll, 1974; Myers and Turnbull, 1977;

Constantinides, 1978). Similarly, textbooks warn managers about the temptation of incor-

porating a “fudge factor” when calculating discount rates in an attempt to compensate for

idiosyncratic risk1, on the grounds that this kind of adjustment can significantly distort

the firms’ overall allocation of capital. Despite these warnings, surveys conducted by the

Association for Financial Professionals (AFP) showed that nearly half of all respondents

had manually adjusted their discount rates to account for project-specific risk (Jacobs and

Shivdasani, 2012). In surveys, many managers report setting discount rates that are sys-

tematically and substantially greater than the cost of capital (Poterba and Summer, 1995;

Graham and Harvey, 2001; Graham et al., 2015; Jagannathan et al., 2016). These revela-

tions are worrisome, considering that even small deviations from the true discount rate can

have sizable effects on managers’ decision to pursue a given project. In spite of the focus

given to calculating discount rates in managerial training, and the central role it plays in

firms’ internal allocation of capital, there has been relatively little empirical investigation

of managers’ actual behavior. This study is among the first to (i) provide causal empirical

evidence about how managers adjust their projects’ discount rates with respect to idiosyn-

cratic risk, (ii) document the consequences of idiosyncratic risk pricing for firm performance,

and (iii) shed light on the economic factors that affect those adjustments.

Measuring firms’ discount rates, as well as the level of idiosyncratic risk associated with

1The classical corporate finance textbook of Brealey and Myers (1996) discuss this as follows: “We have
defined risk, from the investor’s viewpoint, as the standard-deviation of portfolio return or the beta of a
common stock or other security. But in everyday usage risk simply equals bad outcome. People think of the
risks of a project as a list of things that can go wrong. For example: ... A geologist looking for oil worries
about the risk of a dry hole. ... Managers often add fudge factors to discount rates to offset worries such as
these. This sort of adjustment makes us nervous.”
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individual projects, presents significant empirical challenges. First, firms do not report

this information. Second, it is not usually possible to observe firms’ individual investment

decisions. Third, it is generally difficult to compare the investment set across and within

firms, limiting researchers’ ability to control for confounding factors that might affect the

calculation of discount rates. Finally, it is rarely possible to obtain precise estimates of

individual projects’ expected cash flow.

I overcome these challenges by employing a comprehensive and detailed dataset of onshore

vertical gas wells drilled in the United States between 1983 and 2010. Each new well rep-

resents a project. Together, the data covers $53 billion in capital expenditures on 114,969

distinct projects. The dataset has a number of advantages. Specifically, the institutional

setting makes it possible to forecast individual projects’ cash flows and capital expenditures,

and to fully characterize each firm’s investment portfolio annually. In addition, the projects

are homogeneous and tend to have similar characteristics, which allows meaningful compar-

isons across projects. For instance, every project in the sample is undertaken using similar

drilling technology for which the production function is simple and transparent, meaning

that it is possible to easily compute projects’ expected monthly production. All projects

also produce the same resource, natural gas, further simplifying cross-project comparisons.

And finally, the natural gas industry offers an especially rich literature on project-level

production forecasting techniques, which means that the dataset is well suited to obtaining

plausible estimates of expected cash flow for each project.

First, I provide evidence that firms inflate their annual discount rates by an average of 3.8

to 6.0 percentage points (pp) in response to a one-standard-deviation increase in projects’

idiosyncratic risk. This adjustment is economically meaningful, considering that the average

firm in the sample has an estimated weighted average cost of capital (WACC) of 9.6pp.

Obtaining this result requires measures of projects’ idiosyncratic risk and project-specific

discount rates. I measure idiosyncratic risk using a novel method based on the geographic

cross-sectional dispersion of projects’ idiosyncratic productivity shocks. Specifically, I define

2



each project’s idiosyncratic productivity shock as the ratio of the first-year production

forecast error over the drilling cost, and then estimate the dispersion of that measure at

the regional level every year. I measure discount rates using a revealed-preference strategy

based on the net present value (NPV) rule. This process has four steps. First, for each well

a firm drills during a given year, I estimate the well’s expected cash flows using forecasts of

the well’s production and natural gas prices. Second, I use those forecasts to compute the

project’s expected internal rate of return (IRR). Third, I separate all projects within each

firm-year subsample into two portfolios depending on whether their level of idiosyncratic risk

is above or below the median for that firm-year. And fourth, I estimate the firm’s discount

rate to be the lowest expected IRR across projects in each of these portfolios. The logic is

that the firm’s discount rate must be at least that low, otherwise those marginal projects

would not have been undertaken. After assessing wells’ idiosyncratic risk and discount rates,

I then test the validity of both measures by performing multiple sanity checks. Comparing

discount rates across the two firm portfolios, I find a significant relation between discount

rates and idiosyncratic risk.

Then, I investigate the consequences of idiosyncratic risk pricing on firms’ performance. I

introduce a novel measure of idiosyncratic risk pricing to directly test its effects on per-

formance metrics. Precisely, the measure of idiosyncratic risk pricing corresponds to the

firm-year discount rate adjustment for a one-unit increase in projects’ idiosyncratic risk.

I find that for the average firm, a one-standard-deviation increase in the price of idiosyn-

cratic risk is negatively correlated with firms’ gross profit margin (-5.1pp), investment rate

(-0.8pp), year-over-year asset growth (-0.7pp) and gross profitability (-0.5pp). These results

show that adjusting discount rates to account for idiosyncratic risk has important negative

consequences.

Finally, I ask why managers attempt to account for idiosyncratic risk by adjusting dis-

count rates. Various theories associate managers’ motives to adjust their discount rate to

external influences (frictions between the firms and the financial market) and to internal

3



ones (frictions between managers and their superiors). It is important to note that the

results presented in this final part of the paper correspond to correlations, as I do not have

exogenous variation for the costly external financing and agency friction proxies.

With respect to the external frictions theory, Froot et al. (1993) predict that in a world with

costly external financing, managers would adjust their discount rates to account for risks

that cannot be offloaded to the financial market. That is, they predict that if firms cannot

fully diversify their exposure to idiosyncratic risk at the firm level, then they should adjust

their discount rates to account for those sources of risk. The authors’ logic is that if the firm

is hit by a bad idiosyncratic shock, such as drilling multiple bad wells that fail to produce

enough cash flows to fund their operations next period, it has two options. The firm can

either reduce its investment next period, or turn to the financial market and raise capital,

but at a premium because of the costly external financing constraint. Then, managers

should take this additional financing cost into account for projects with greater exposure to

idiosyncratic risk ex-ante, and adjust their discount rate accordingly. To test this hypothesis

empirically, this study builds on Hennessy and Whited (2007) by constructing six proxies of

costly external financing and measuring their relation to firms’ pricing of idiosyncratic risk.

When using Hennessy and Whited (2007)’s favored proxy of costly external financing, the

results are consistent with the prediction made by Froot et al. (1993). Specifically, a one-

standard-deviation increase in the cost of external financing is associated with an average

increase of 2.3pp in firms’ pricing of idiosyncratic risk. Although the results using the other

proxies are not always statistically significant, they are mainly directionally consistent with

the theoretical prediction.

To examine the role of internal frictions, I relate the pricing of idiosyncratic risk to the size

of field managers’ budget. A manager with a larger budget is arguably more diversified

and therefore faces less total idiosyncratic risk. Simultaneously, Diamond (1984) predicts

that risk-averse managers with larger budgets should exhibit a lower idiosyncratic risk pre-

4



mium2. In line with Diamond (1984)’s prediction, I find that managers’ budget size is

strongly related to the pricing of idiosyncratic risk: a one-standard-deviation in firms’ aver-

age managerial budget size is associated with a 1.16pp reduction in the price of idiosyncratic

risk.

To mitigate endogeneity concerns, I use several strategies, including multiple sets of fixed

effects and an instrumental variable. With regard to the fixed effect strategy, the nature

of the research design makes it possible to control for factors varying at the frequency of

the firm-year, because I construct two idiosyncratic risk portfolios per firm-year. For in-

stance, in a given year, a firm may systematically select regions that are riskier, hence the

need for a firm-year fixed effect. In addition, I also include an idiosyncratic risk portfolio

fixed effect, as there may be a selection effect where some unobserved variables (e.g., man-

agers’ experience) may systematically be associated to better or riskier regions (i.e., regions

with better potential projects, lower risk of bad drilling outcomes). However, the use of

those fixed effects does not eliminate the possibility of a within-firm omitted-variable bias.

Confounding variation occurring within a given firm-year, such as variation in managers’

characteristics may still be correlated with idiosyncratic risk, which is why I also use an

instrumental variable. To better illustrate how my instrumental variable strategy solves this

problem, I consider two types of within-firm omitted variables: (i) the variables correlated

with projects’ geographic characteristics, and (ii) variables uncorrelated with projects’ ge-

ographic characteristics. For instance, field managers’ overall bargaining power might vary

across firms, which could impact how firms assign managers based on their experience to

different regions, which corresponds to a source of variation related to (i). Alternatively, the

production uncertainty associated with wells drilled by unexperienced managers is higher

irrespective of their assigned region, since their ability to properly forecast wells’ outcome or

operate the drilling equipment is lower than the experienced managers, which corresponds

to (ii). In both cases, managers’ experience would likely be correlated with projects’ risk-

2Diamond (1984) highlights that a sufficient condition to obtain this phenomenon is to assume that
managers have a DARA utility function. This assumption is relatively general since a large class of models
assume that managers have a CRRA utility function, and CRRA utility implies DARA utility.
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iness, and thus would be correlated with the overall level of idiosyncratic risk measured

for their associated wells’ outcomes. Failing to account for the managers’ experience would

thus lead to a within-firm omitted-variable bias. To deal with this form of omitted variable,

it is necessary that the instrumental variable and the fixed effects strategies account for

both sources of variation. To address these types of within-firm omitted variables, I use the

following instrument for a well’s idiosyncratic risk: the largest idiosyncratic productivity

shock experienced by any of a firm’s peers within each township-year3. After controlling for

the portfolios’ selection effect and the firm-year factors, the information content of peers’

idiosyncratic productivity shocks should be uncorrelated with the within-firm omitted vari-

ables. Put differently, the instrumental variable assumption in this paper is that the relative

level of characteristics of a firms’ managers and its peers’ managers is randomly distributed

within an idiosyncratic risk portfolio. Finally, to satisfy the relevance condition, it is reason-

able to assume that the largest idiosyncratic productivity shocks among peer firms would

have, on average, a positive relation with the idiosyncratic risk measure, which equals the

dispersion of idiosyncratic productivity shocks for each township-year.

The rest of this paper proceeds as follows. Section 1 presents an overview of the literature.

Section 2 offers background information on the natural gas industry. Section 3 outlines the

data used in the study. Sections 4 to 6 explain the measurement of managers’ expectations,

firms’ discount rates, and projects’ idiosyncratic risk, respectively. Section 7 discusses the

results and the instrumental variable strategy. Section 8 reports the robustness analysis.

Section 9 offers concluding remarks.

1.1 Literature Review

Although there is a robust theoretical and survey-based literature on capital budgeting

and project evaluation, this is the first observational study of how managers adjust their

3I use the wells’ township to determine the wells’ respective region. Townships are defined as 6 miles by
6 miles squares of land by the American Public Land Survey System (see Figure 6.1). It is important to
note that not all states use the Public Land Survey System. For states not using this system, I construct
synthetic township, and assign wells to those township using the wells’ GPS coordinates.
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discount rates to account for idiosyncratic risk. I summarize in detail the existing literature

addressing each of the paper’s three core contributions, as I introduced them in the previous

section.

First, by showing that firms appear to price idiosyncratic risk, this study provides direct

empirical backing for the discussions of capital budgeting (e.g., Poterba and Summer (1995),

Graham and Harvey (2001), Graham et al. (2015), and Jagannathan et al. (2016)). Those

survey-based papers document and discuss the existence of a puzzling gap between firms’

estimated weighted cost of capital (WACC) and the discount rates reported in their surveys.

The present study provides a direct causal estimate based on firms’ actual choices, of how

idiosyncratic risk affects discount rates. In doing so, this paper also contributes to the

theoretical literature providing guidance on the proper way to compute discount rates (e.g.,

Bogue and Roll (1974), Myers and Turnbull (1977), and Constantinides (1978)). This

paper establishes both that managers appear to include a project-level idiosyncratic risk

premium in the calculation of discount rates, and that doing so has adverse consequences

on performance.

Second, my paper also relates to Kruger et al. (2015) who document a different mistake

firms make when computing discount rates. Kruger et al. (2015) show that a firm often

applies a unique discount rate to its projects, even when projects face different levels of

systematic risk. While Kruger et al. (2015) show that firms adjust their discount rate too

little, I find they adjust too much. Also, when Kruger et al. (2015) focus on systematic risk,

I focus on idiosyncratic risk. The two papers show that these distinct mistakes both have

adverse effects on firms’ performance.

Third, this paper contributes to the literature studying the effect of idiosyncratic risk on

firms’ behaviors. Panousi and Papanikolaou (2012) point out that firms reduce their overall

level of investment when their firm-level exposure to idiosyncratic risk increases, which

is plausibly suboptimal from the standpoint of a well-diversified investor. The authors

identify managers’ remuneration and ownership structure as important factors to rationalize
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the observed phenomenon. My paper relates to Panousi and Papanikolaou (2012)’s main

contribution by providing direct evidence as to which capital-budgeting lever is altered by

managers when taking into account project-level idiosyncratic risk: the discount rate. At

the same time, I identify additional attributes of the firm that appear to be relevant in

understanding why idiosyncratic risk is accounted for in the discount rate, enriching our

comprehension of firms’ response to idiosyncratic risk. Also, my results suggest not only

that the overall level of idiosyncratic risk experienced at the firm level matters, but that the

exposure of specific local managers to project-level idiosyncratic risk can ultimately have

firm-wide impacts. Finally, my setting enables me to directly relate the intensity at which

firms price idiosyncratic risk to negative performance outcomes, such as lower gross profit

margins.

Fourth, this study also contributes to the extensive literature on the effects of costly external

financing on firms’ choices4. Most directly related to this paper is Froot et al. (1993), who

study how costly external finance affects the relation between capital budgeting and risk

management. The authors predict that firms facing costly external financing should adjust

their discount rates to account for risks that cannot be hedged or diversified. Supporting

this view, I find that firms facing high costs of external finance do in fact adjust their

discount rate to manage risk.

In addition to these research areas, there are other strands of literature that address how

corporate policies and the characteristics of firms affect managers’ risk tolerance. Two

prior findings are especially relevant. The first of these is that compensation contracts play

a significant role in mitigating risk tolerance misalignment between managers and their

superiors (Ross, 1973; Holmstrom and Weiss, 1985; Lambert, 1986). A rich empirical lit-

erature indicates that market-based compensation contracts affect managers’ risk tolerance

(Agrawal and Mandelker, 1987; Tufano, 1996; Guay, 1999; Rajgopal and Shevlin, 2002;

Coles et al., 2006; Armstrong and Vashishtha, 2012; Gormley et al., 2013), while theoretical

4This literature extends at least back to Miller and Orr (1966). Notable contributions include Fazzari
and Petersen (1993), Hennessy and Whited (2007), Lyandres (2007), and Bolton et al. (2011), among others.
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work suggests that such contracts can shift managers’ focus from maximizing long-term

value to pursuing short-term benefits (Narayanan, 1985; Bolton et al., 2006). Similarly,

empirical findings show that market-based compensation can induce excessive risk taking

in managers (Bebchuk and Spamann, 2010; Dong et al., 2010; Hagendorff and Vallascas,

2011). Overall, these results suggest that owners solely using wage contracts to align their

managers’ decisions with their preferences might also subject their firms to potential draw-

backs. Of greater immediate relevance, Holmstrom and Costa (1986) provide a theoretical

argument suggesting that capital budgeting policies can be used to complement compen-

sation contracts in order to more successfully align managers’ decisions with those of their

supervisors. The present study contributes to this literature by empirically identifying the

size of managers’ budgets as a tool to alter risk tolerance. Specifically, the findings reported

here suggest that it is possible to increase the idiosyncratic risk tolerance of a manager by

increasing the size of his allocated budget, in line with the diversification effect proposed

by Diamond (1984).

1.2 Natural Gas Industry: Institutional Background

1.2.1 Project Overview: The Drilling Technology

Two prominent technologies exist to drill natural gas wells: vertical drilling and horizontal

drilling (see Figure 1). In this paper, I focus specifically on vertical-drilling technology.

Vertical drilling is the principal technology employed during the period analyzed for this

study, representing roughly 90% of all natural gas wells in the dataset. Horizontal drilling

is more recent, and has only gradually gained mainstream appeal during the later part of

the sample period. Additionally, it is easier to obtain precise production forecasts for wells

drilled using vertical drilling technology, as horizontal wells are substantial more complex

and technologically advanced (Ma et al., 2016). For example, Covert (2015) provides a clear

illustration of the high level of detail necessary to properly characterize expected monthly

production for horizontally drilled wells. Obtaining information at this level of detail is
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simply not possible when dealing with a relatively long-term dataset for the entire United

States. At the same time, good production forecasts for vertical wells can be produced

using information available from major data providers such as DrillingInfo. For all of these

reasons, the study focuses exclusively on vertically drilled wells.

1.2.2 The Life Cycle of Natural Gas Fields

The commercial life cycle of natural gas has two stages: exploration and development.

According to the U.S. Energy Information Agency (i.e., EIA), the exploration stage involves

documenting the geological potential of the field in question, and determining its economic

viability. Once a firm has sufficient information for confirming the economic potential of

the field, it is classified as a proven reserve5 and the development stage begins.

This study focuses on the development stage, during which firms still face a high level of

idiosyncratic risk despite having established that the field in question is a proven reserve.

They do not yet know (i) the exact delineation of the natural gas field, (ii) the structure of

the rock formations within it, (iii) the production potential of each drilling location, or (iv)

the technical expertise required to optimally extract the resource. For firms drilling wells,

this lack of knowledge translates into tangible operational risks, such as the risk of drilling

a dry hole6. For example, Figure 2 illustrates the development of the Panhandle field in

Texas over the period between 1960 and 2010. Figure 2.1 represents the initial estimation of

the field boundary, while Figure 2.2 represents the field’s finalized boundary 50 years later.

There are substantial differences between the expected and realized boundaries. Large

sections that were initially identified as promising appear to have had limited potential

ultimately. This example provides a clear illustration of how idiosyncratic risk remains at

the micro-level even after a field’s economic potential has been confirmed at the macro-level.

5The American Bar Association’s definition of proven reserves is as follows: The amount of oil and gas is
estimated with reasonable certainty to be economically producible. source: American Bar Association, Oil
and Gas Glossary, 2019.

6A dry hole is a well that fails to produce enough natural gas to be economically viable.
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1.2.3 The Structure of Natural Gas Exploration and Production Firms

Oil and gas companies establish their strategies at the uppermost levels of the corporate

hierarchy (Graham et al., 2015), but surveying, wells’ selection, and specific drilling de-

cisions require advanced technical expertise and site-specific information (Kellogg, 2011;

Covert, 2015; Decaire et al., 2019). For this reason, lower-level managers, geologists, and

engineers tend to evaluate and select projects (Bohi, 1998), working within the confines of

strategic guidelines from their superiors. Additionally, oil and gas firms tend to organize

their operational units by regions. For example, energy companies’ shareholder commu-

nication documents (e.g., 10-K) provide examples of how those geographical formations

affect operations’ structure (see Figure 3). Finally, by allocating their total budgets across

multiple regional units, firms expose the key on-the-ground decision-makers (i.e., the junior

managers) to the risks of only a relatively small number of specific projects. This creates a

divide between idiosyncratic risk diversification measured at the firm level, and diversifica-

tion measured at the level of individual managers, potentially creating incongruities in risk

preferences.

1.3 The Dataset

The present study uses a dataset provided by DrillingInfo7 covering all natural gas wells

drilled in the United States between 1983 and 2010 (see Figure 4). Ultimately, the dataset

contains 30,420,544 month-well observations used to estimate the well production function,

a total of 114,969 distinct gas wells, and 369 distinct firms. The dataset includes monthly

production for each project along with a set of projects’ characteristics such as rock forma-

tion features, wells’ GPS location, the royalty rate8 and the depth of the well. I augment

7DrillingInfo is a trusted data provider for multiple federal agencies reporting on environment and energy
matters. Studies conducted by the U.S. Environmental Protection Agency (EPA) and the U.S. Energy
Information Administration (EIA) Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2016 by
the EPA and Petroleum Supply Monthly (PSM) by the EIA use this dataset, for example.

8The royalty rates correspond to an expense computed as a percentage of the well’s revenue that goes
directly to the land owners leasing the land for a given well. The royalty rate estimates are based on royalty
percentages obtained from DrillingInfo for the leases signed in the United States in a given year.
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these data points with two hand-collected datasets. The first covers per-project capital

expenditures including per-foot drilling costs, obtained from public filling from regulatory

pooling documents9, and estimated operational costs, as in (Decaire et al., 2019). The

second is drawn from the EIA and corresponds to the three-year natural gas price forecasts

and two alternative sources of natural gas prices (the Bloomberg natural gas futures prices,

and the EIA wellhead state’s natural gas prices). The EIA is a federal reporting agency

producing an annual economic analysis for the oil and gas industry10. For public firms, the

dataset is further augmented using Compustat. Finally, the information needed to compute

each firm’s weighted cost of capital is drawn from the 10-year risk-free rate available on the

Saint-Louis Federal Reserve website, the Kenneth French oil and gas industry return, the

Robert Shiller price-earnings ratio, and credit rating information from Capital IQ.

Finally, I make several refinements to the dataset. I restrict the analysis to firms drilling

at least 10 wells in a given year11; because discount rates are estimated from the lower

boundary of the firms’ portfolios, it is reasonable to focus on firms that are at least mod-

erately active during the year of analysis. For less-active firms, it is harder to distinguish

between the firms’ discount rate and the quality of their opportunity set when using the

revealed-preference strategy. This adjustment drops only 5% of wells in the initial sample.

Additionally, all township-year subgroups with fewer than three wells drilled are removed,

because the measure of idiosyncratic risk employed here relies on the standard-deviation for

each township-year set. Finally, any wells with missing information are dropped from the

dataset, along with any wells for which the initial production date is prior to the drilling

date, as those clearly contain data entry errors.

9I hand collected per-foot drilling cost for a subset of wells covering the full sample period. Then, following
Kellogg (2014) I obtain the drilling cost estimate by multiplying the well’s vertical depth with the per-foot
drilling cost.

10More specifically, the U.S. Energy Information Administration (EIA) is a statistical and analytical agency
housed within the U.S. Department of Energy. The EIA collects, analyzes, and disseminates independent and
impartial energy information to promote sound policymaking, efficient markets, and public understanding of
energy and its interaction with the economy and the environment. The EIA is the nation’s premier source of
energy information and, by law, its data, analyses, and forecasts are independent of approval by any other
officer or employee of the U.S. government. Source: https://www.eia.gov/about/mission_overview.php

11The main result is robust to alternative cut-off value of 6 and 14, for example.
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The firms in the sample are relatively large, with an average total value of active wells of

$229.2 million. On average, the total annual drilling budget is $60.3 million. The average

firm invests $11.3 million per year for a given field, or $19.4 million per year for a given

state (see Table I). The average vertical gas well in the dataset costs $465,653 and produces

570,049 thousand cubic feet of natural gas over its lifetime. Together, these numbers indicate

that the average firm in the sample is large and experienced, and it operates in multiple

geographical areas in a given year.

1.4 Firms’ Expectations

To estimate a firm’s discount rate, I must first estimate each well’s expected cash flows.

Since cash flows equal well output times the price of natural gas, I need to estimate firm’s

expectations of each variable.

In general, computing the expected production quantities independently from expected

prices leads to potential biases. In most situations, projects’ production flow is endogenously

correlated with prices, such that the expected cash flow can be expressed as:

E[pz · qj,z,m] = E[pz] · E[qj,z,m] + Cov(pz; qj,z,m), (1.1)

where pz is the price of natural gas at timze z, and qj,z,m is the natural gas production of well

j at time z and age m (in months). If Cov(pz; qj,z,m) 6= 0 it would indicate that expected

production flow and natural gas prices are jointly determined. However, in the case of gas

wells, once the decision to drill has been made, the well’s monthly production is determined

by geophysical factors and is therefore independent of the state of the economy. In the

case of vertical oil wells, Anderson et al. (2018) show that firms do not alter production

rates or delay production due to oil price changes. Indeed, once a well starts producing,

managers have little ability to influence the production level without risking damage to

the well. What this means is that effectively, production flow depends on local geophysical

parameters such as the local rock type, the density of the natural gas deposit, and so

13



forth, rather than on economic variables affecting natural gas prices. For this reason, I

assume that the production flow is not correlated with variables that affect gas prices.

Further supporting this assumption, the correlation between realized natural gas prices and

wells’ realized production flow is just -0.0034 in my sample12. Thus, estimating expected

quantities and expected prices independently should not result in biased outcomes. The

process through which I obtain these estimates is described below.

1.4.1 Firms’ Expected Production

Monthly production of vertical gas wells can be approximated using a petroleum-engineering

model such as the Arp model (Fetkovich, 1996; Li and Horne, 2003). The Arp model

is the classical production-forecasting equation, and nowadays is taught in most energy

engineering courses (e.g., the University of Pennsylvania course Engineering in Oil, Gas

and Coal). According to the Arp model, the predicted monthly quantities produced by well

j equal

qj,m = Aj(1 + bθm)
−1
b , (1.2)

where m corresponds to the number of months since the well has been drilled, Aj corresponds

to the well’s baseline production level, and b and θ are decline-rate elasticity parameters. To

approximate the Arp model, I linearize this equation to obtain a regression (see Appendix

10.2 for the full derivation):

ln(qj,m) = α0 + α1 +Aj +

K∑
k=1

βkm
k + εj,m, (1.3)

where α0 and α1 are dummy variables for the first and second months of production, used

to account for ramping production13, K is the order of the linear approximation (i.e., 7),

12This statistic corresponds to the correlation of the realized natural gas prices )i.e., the wellhead spot
price provided on the EIA website) with the realized within-well’s production flow computed for the entire
well-month sample.

13A well’s ramping period usually corresponds to the first two months of production, during which firms’
engineers optimize and adjust the well’s production to reach peak long-term capacity (Dennis, 2017). Pro-
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and εj,m is the regression’s error term.

The production baseline (i.e., Aj) represents the expected quantity of gas that will be

initially produced by the well. I allow Aj to depend on the firm’s total experience (i.e., the

total number of wells the firm has drilled before well j ), the firm’s local experience (i.e.,

the number of wells the firm has drilled in the given township at the time of drilling j ), the

level of local information available (i.e., the total number of wells that have been drilled in

the township at the time of drilling j ), a firm-year fixed effect, and a township-year fixed

effect such that:

Aj = ln(Firm’s Local XPj) + ln(Firm’s Total XPj) + ln(Local Infoj) + αi,t + αp,t (1.4)

Where i identifies the firms that drilled well j, p identifies the township in which the well

is drilled, and t is the year the well is drilled.

Several recent papers motivate the addition of these controls for the Arp estimation (Covert,

2015; Decaire et al., 2019; Hodgson, 2019). Firms’ experience levels, peer effects, and local

access to information influence the quality and type of projects a firm will undertake. More

experienced firms are more likely to produce high-quality wells and to identify regions

with better potential. Equally, regions with more activity are more likely to have wells of

higher quality, while at the same time affording more precise information about how best to

extract the resource. Because the goal of this part of the analysis is both to obtain precise

estimates of the wells’ expected production flow and to deliver a reasonable measure of the

wells’ idiosyncratic productivity shocks, it is important to control for factors that capture

those characteristics.

Finally, to obtain the wells’ expected production flow, I proceed in two steps. First, I

use the Arp model to estimate regression (3), using a sample of 30,420,544 month-well

realized output (see Table XIX). Then, I use the Arp model estimates to obtain a measure

duction then gradually declines until the well is dry.
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of the managers’ expectation for each well in the sample. Figure 514 provides a graphical

illustration for the median well production function over time and contrasts it with the

estimated production output. These expectations constitute the basis of the analysis to

obtain a measure of the discount rate, and a measure of the wells’ idiosyncratic risk.

1.4.2 Firms’ Expected Price

I define the expected gas prices using the EIA’s yearly three-year natural gas price forecast,

at the time of drilling the well15. The EIA forecast is closely followed by governmental

organizations, financial institutions, and energy companies. Section 9 explores alternative

price specifications, such as the Bloomberg natural gas futures prices and wellhead spot

prices varying at the level of individual states, and how these affect the results reported

below. The EIA data are preferable to those other options for two reasons, however. First,

the EIA three-year natural gas forecast has been published consistently since 1983, while

the Bloomberg three-year natural gas futures contracts started trading only in 1995. Thus,

the longer period for the EIA forecast allows the analysis to extend over a correspondingly

greater duration. Second, although the wellhead state-by-state prices provide information

on price variation across states during a given year, which helps to take into account cross-

sectional variation of natural gas prices, those wellhead prices fail to account for managers’

future expectations about price variation, making them unsuitable for the analysis. Finally,

the EIA three-year forecast horizon is well matched to the present study, as the discounted

half-life16 for projects in the sample is 31 months.

14The ramping up period, encompassing the first two months of production, is excluded in order to capture
production decline from peak production to termination.

15A similar assumption for the prices is used in Kellogg (2014), Covert (2015) and Decaire et al. (2019).
16The discounted project half-life corresponds to the amount of time required for managers to obtain half

of the discounted project’s expected cash flow.
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1.5 Estimating Firms’ Discount Rates Using a Revealed Pref-

erence Strategy

1.5.1 Estimating Projects’ Expected Rates of Return

To obtain estimates of firms’ discount rates, I proceed in four steps. First, for each well a

firm drills during a given year, I estimate the well’s expected cash flows using forecasts of

the well’s production and natural gas prices. Second, I use those forecasts to compute the

expected IRR (µj) of each project j by solving the equation

M∑
m=1

1

(1 + µj)m
E[qj,m]E[pj ]− Cj = 0, (1.5)

were E[qj,m] corresponds to the expected monthly production for well j at age m (in

months)17, E[pj ] corresponds to the EIA 3-year natural gas price forecast at the time of

drilling well j net of operating costs and royalty rate18, and Cj corresponds to the initial

drilling cost incurred when the well is established. And as a final parameter, the average

well in the sample produced for a total of 264 months (i.e., M=264).

1.5.2 Estimating Firm-Year Discount Rates

In the third step of the revealed preference strategy, for each firm in a given year, I split the

wells into two portfolios based on their level of idiosyncratic risk. Projects with a measure of

idiosyncratic risk above (below) the firm-year median are put in the high (low) idiosyncratic

risk portfolio. Finally, the discount rates are estimated with the projects’ lowest expected

performance in each of the portfolios for each firm-year. The logic is that the firm’s discount

17I adjust the expected quantities from the Arp model for the probability of having no production during
a given month. Adjusting for the probability of no production is necessary since the Arp regression uses
the natural logarithmic value of the well production, thus excluding production event equal to 0. More
specifically, E[qj,m] = E[qj,m ∗ (1−Pr(zero production in month m))]. I follow the methodology developped
by Covert (2015) to adjust the production estimates for the zero production events. According to this
method, I estimate a linear probability model to estimate the probability of having a no-production event,
such that the probability of a month with zero production is 0.028 in the first year, 0.029 in the second year,
0.031 in the third year.

18E[pj ] = E[Gas Pricej ] * (1- Royaltyj - Operational Cost)
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rate for that risk profile must be at least this low; otherwise these projects would not have

been undertaken. Precisely, the estimated discount rate corresponds to the average expected

IRR among the projects contained in the lowest 5th percentile of the portfolios’ expected

IRR distribution. In Section 9, I explore several alternative discount rate cut-off definitions,

and the results are not economically or statistically affected.

Estimating discount rates based on two firm-year portfolios in this way provides multiple

benefits. First, it simplifies the task of building a direct measure of the price of idiosyncratic

risk for a given firm-year in order to directly test the effect of idiosyncratic risk pricing on

firms’ performance (see Section 7). Second, it makes it possible to include a regression

specification that controls for a firm-year fixed effect. However, to show that the results

are not sensitive to this research design choice, I provide an alternative specification where

I estimate the discount rate from one portfolio per firm-year in Section 9. The results are

robust to this specification.

In this study, I only observe the set of projects each firm completes in a given year. In

other words, I observe a truncated distribution of projects’ expected IRR, because it is not

possible to observe the expected return for projects the firms did not pursue (i.e., those that

are not completed). At the same time, a firm may not have had investment opportunities

with an expected IRR sufficiently close to the firm’s discount rate. This means that my

estimate constitutes an upper bound for the firms’ discount rate. To mitigate concerns

about this upper bound, I restrict the analysis to a subset of firms that drill at least 10

wells in a given year. The intuition is that for firms that drill many wells, the marginal

well is more likely to represent the firms’ lower bound (i.e., the firm’s discount rate). Then,

to validate that the estimates accurately capture the main features attributed to firms’

discount rates, I conduct a robustness test. First, I restrict the analysis to the subset of

firms whose full capital structure is observed. For that group, I compute the WACC. I

obtain an estimate for the cost of equity in two steps. First, I use the one-year19 oil and

19Results are robust when using CAPM betas computed with other horizons, such as two-year and three-
year horizons.
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gas industry capital asset pricing model (CAPM) beta computed at the monthly frequency,

obtained from Kenneth French’s industry return data20. Then, I multiply this variable

by the expected equity premium, estimated from the earning-to-price ratio obtained from

the Robert Shiller’s website21. Finally, to obtain the cost of debt, I collect the firms’

yearly credit rating from Capital IQ (see Appendix 10.1.). Table II presents the results of

this test. There is a positive and statistically significant correlation between the discount

rate estimates and the firms’ WACC. Coefficient β1 indicates that a one-percentage point

increase to the firm WACC results in a 1.3 to 1.5pp increase in the discount rate22. The

results presented in columns 3 and 4 of Table II suggest that the idiosyncratic risk premium

is added to the discount rate on top of the WACC, and also that the discount rate measure

behaves in a manner consistent with variations in the cost of capital.

1.6 Measure of Wells’ Idiosyncratic Risk

To estimate projects’ average idiosyncratic risk, I proceed in three steps. First, I define the

well’s idiosyncratic productivity shock, denoted ζj , as the well’s first-year cash-flow forecast

error attributable to quantity uncertainty scaled by the well’s drilling cost:

ζj =

∑m=12
m=1 E[pj ] ∗ qj,m −

∑m=12
m=1 E[pj ] ∗ E[qj,m]

Costj
(1.6)

=
E[pj ]

Costj
∗
m=12∑
m=1

[qj,m − E[qj,m]] ≈ E[pj ]

Costj
∗
m=12∑
m=1

εj,m︸︷︷︸
(∗)

. (1.7)

Where (*) roughly corresponds to the Arp model forecast error over the first year of pro-

duction. These well-level productivity shocks possess a set of characteristics well suited

to capture the idiosyncratic production shock. The source of the forecast error captures

20The oil and gas industry return is available within the 49 industries’ returns breakdown. I verify the
robustness of the results using the various industry breakdowns available on the Kenneth French website,
and I obtain similar results in all cases.

21I estimate the expected equity premium from the fitted value of the regression [Et
Pt

−rft] = α+β[
Et−1

Pt−1
−

rft−1] + εt, estimated for the period 1983 to 2010. In an alternative specification, I use Fama and French
(2002)’s estimate of the equity premium (4.32%) for the entire sample period, and the results are statistically
robust and remain qualitatively similar, although the coefficients are slightly smaller.

22In all specifications, the value of 1 is included for the coefficient β1’s confidence interval.
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the source of variation to well’s profitability attributable to the wells’ annual production,

holding expected prices constant. I obtain wells’ expected production using the Arp model,

which controls for the firm-year fixed effect and township-year fixed effect, indicating that

the idiosyncratic shocks are orthogonal to the firm-year and township-year information sets.

Also, Gilje and Taillard (2016a) show that wells’ drilling costs are homogeneous within a

year, further supporting the idea that the Arp production forecast errors drive the varia-

tion in productivity shocks at the firm-year level. Then, it is reasonable to assume that

well-diversified investors will perceive such a source of uncertainty as purely idiosyncratic.

To support this claim, Table XX presents the results of a regression of the market excess

return on the wells’ idiosyncratic productivity shocks. In all regression specifications, the

coefficient associated with the idiosyncratic productivity shocks is not significant, which in-

dicates that there exists no correlation between the well’s idiosyncratic productivity shocks

and the market excess returns. In a CAPM based framework, having the well’s shocks

uncorrelated with the market excess return23 provides evidence in favor of the idiosyncratic

nature of the shocks. Considering that the CAPM is the most likely asset pricing model

used by the average investor (Berk and van Binsbergen, 2016), using this framework for the

analysis appears reasonable.

Second, I measure the idiosyncratic risk for each township-year by computing the cross-

sectional dispersion of the local wells’ idiosyncratic productivity shocks. The strategy is

designed to only capture the quantity uncertainty contribution to the cash flow uncertainty.

It is useful to note that I achieve this by only using expected prices in ζj calculation,

ignoring the price shock from the calculation. This is to ensure that idiosyncratic risk is

truly calculated from local idiosyncratic shocks. This provides a measure of idiosyncratic

risk at the township-year level that can be attributed to each well that is drilled in the

specific township in that given year (see Figure 6.1). Third, to obtain a measure for the

firm-year-portfolio level, I take the average of the idiosyncratic risk for all the projects

completed. Ultimately, the sample average of the projects’ average idiosyncratic risk is

23In the CAPM framework, the investor’s stochastic discount rate is a function of the market excess return.
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equal to 10pp, and its standard-deviation is 18pp.

This measure of idiosyncratic risk has several appealing features. First, it corresponds

to the level of productivity uncertainty managers face in the first year for 1$ of invested

capital. Second, firms tend to pay attention to the drilling outcomes in their wells’ closed

vicinity (Decaire et al., 2019), suggesting that the level of cross-sectional dispersion for

the township-year likely reflects the level of well’s idiosyncratic risk as assessed by local

managers. Third, the analysis is conducted at a yearly frequency. Thus, working with

first-year risk provides a measure of risk that is computed at the frequency of the study’s

analysis. And finally, the information contained in the productivity forecasting errors, ζj ,

is plausibly orthogonal to the characteristics of the managing firm. The Arp regression

controls include a firm-year fixed effect and a township-year fixed effect as well as the firm’s

local experience, the firm’s global experience, and the amount of local information available

at the time of drilling. Thus, the information contained in a given well’s productivity

forecasting errors likely corresponds to information that is orthogonal to the firm-year and

geographic characteristics already assessed by the model.

To verify the validity of the Arp regression specifications, it is first necessary to test whether

there is any spatial correlation between the production forecast errors across wells. The goal

of the test is to make sure that variation in forecasting errors is not driven by other important

spatial-economic factors omitted from the Arp model. I assess spatial correlations using the

Moran’s I coefficient, which ranges in value from -1 to 1. A coefficient equal to zero indicates

no spatial correlation, while positive coefficients imply clustering of forecasting errors. In

the present context, a positive Moran’s I would suggest that the Arp model has omitted

spatial factors. However, the estimate of Moran’s I is close to zero, at 0.01, suggesting

that the Arp model properly captures relevant spatial factors. Finally, Figure 7 plots the

distribution of the wells’ idiosyncratic productivity shocks. The idiosyncratic productivity

shocks distribution is centered at zero (i.e., the median value is 0.0007), but it is slightly

leptokurtic.

21



Next, in order to confirm that the above measure of idiosyncratic risk is positively related

to a greater occurrence of poor drilling outcomes, I examine the number of dry holes per

township-year. For township-year subgroups in the upper half of the idiosyncratic risk

distribution, there are on average 0.39 dry holes drilled; for township-years in the lower

half, this value is 0.04. This corresponds to a one order of magnitude difference between the

comparison groups, strongly suggesting that township-years with greater idiosyncratic risk

consistently experience higher rates of negative drilling outcomes. To control for additional

factors, I also estimate a Poisson regression24. Table XXI displays a positive and statistically

significant relationship between projects’ idiosyncratic risk and the probability of drilling

a dry hole across all specifications. Specifically, a one-standard-deviation increase in the

idiosyncratic risk measure is associated with 1.4 additional dry holes drilled in the township-

year. This result provides further empirical support for the relationship between the measure

of idiosyncratic risk and adverse drilling outcomes.

1.7 Results

1.7.1 Do Managers Price Idiosyncratic Risk?

To test whether managers price idiosyncratic risk, I first estimate an OLS regression of firms’

discount rates and projects’ idiosyncratic risk. The regression includes two observations per

firm-year, one for each of the firm’s high- and low-idiosyncratic risk portfolios. To simplify

the interpretation of the regression coefficient across all the regression specifications in the

paper, I scale the regressor of interest by its regression-sample standard-deviation25. Table

III shows that managers appear to positively price idiosyncratic risk. Column 1 presents

the simple regression with one control, the portfolios’ potential differential exposure to

systematic risk (See Appendix 10.3. for a complete discussion). Columns 2 to 5 introduce a

24A Poisson regression is the appropriate model when the dependent variable is a count variable, such as
the number of dry holes in a township-year (Greene, 2003).

25To scale a regressor by a constant does not alter the statistical properties of the estimate (Greene,
2003). This strategy has the added benefit of directly providing me with the magnitude for the effect of a
one-standard-deviation increase in the projects’ idiosyncratic risk.
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set of controls and show that the regression results are robust to those further specifications.

Column 6 includes a firm-year fixed effect, to control for the time-varying characteristics

of firms, and Column 7 adds the idiosyncratic risk portfolio fixed effect. The source of

variation in those regression is the relationship between average projects’ idiosyncratic risk

and the discount rates estimated for high- and low-risk firm-year portfolios. For the average

firm, a one-standard-deviation increase in idiosyncratic risk results in a 6.7 to 8.0pp increase

in the discount rate.

1.7.2 Instrumental Variable

The fixed effects included in the above regressions address a few endogeneity concerns.

Specifically, the firm-year fixed effect accounts for the fact that, in a given year, a firm

may systematically select regions that are riskier. At the same time, the idiosyncratic risk

portfolio fixed effect helps address the idea that there might be a selection effect such that

some unobserved variables (e.g., managers’ experience) might systematically be associated

to better or riskier regions (i.e., regions with better potential projects, lower risk of bad

drilling outcomes). However, the fixed effect strategy does not account for the managers’

heterogeneity within the idiosyncratic risk portfolios, which could plausibly vary by firms.

Thus, the previous OLS regression may suffer from a within-firm omitted-variable bias.

To address these additional endogeneity concerns, I take an instrumental-variable approach.

The strategy is implemented in two steps. First, each well is associated with its correspond-

ing township-year peers’ largest project’s idiosyncratic productivity shock. Figure 6 provides

a graphical example – with three firms (identified in Red, Blue, and Black) – of how these

shocks are identified for one particular township-year; for the wells drilled by the Red firm,

the associated peer’s shock is 0.23. Then, I define the instrumental variable as the aver-

age value of those associated peers’ shocks computed at the level of each firm-year portfolio.

The relevance of the instrumental variable has to do with how the idiosyncratic risk vari-
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able is calculated. In this study, the idiosyncratic risk corresponds to the cross-sectional

dispersion of all the project-specific productivity shocks occurring within a township-year

such that:

Idiosyncratic Riskp,t = f(ζRedj , ζBluej , ζBlackj ) (1.8)

From the example in Figure 6, the projects’ idiosyncratic risk measure for the wells drilled

in that particular township-year, 0.129, corresponds to the standard-deviation of the 10

idiosyncratic productivity shocks. From the standpoint of the Red firm, the largest idiosyn-

cratic productivity shock experienced by its Blue and Black peers in the township-year is

0.23. Then, given how the idiosyncratic risk variable is constructed, it is reasonable to

assume that, on average, those peers’ shocks will be correlated with the idiosyncratic risk

variable. Panel A of Table VII reports the first stage of the instrumented regression, which

provides empirical support for this assumption. The values of β1 indicate that there is a

positive relationship between idiosyncratic risk levels and the size of the largest idiosyncratic

productivity shock that affects a firm’s peers within a given township-year. Additionally, to

address potential concerns about weak instruments, the bottom section of Panel A reports

the Kleibergen-Paap first-stage F-statistic. For each regression specification, the statis-

tic’s value is substantially greater than the minimum threshold, ∼10, alleviating concerns

regarding the presence of a weak instrument.

To satisfy the exclusion restriction, I use the peers’ idiosyncratic productivity shocks within

each township. From the Arp regression, I obtain the peers’ idiosyncratic shocks after con-

trolling for firm-year factors, township-year factors, as well as the firms’ experience and

information set. Then, if managers’ assignment to specific regions is affected by these char-

acteristics, the Arp model should make the information content of peers’ shocks uncorrelated

with those variables (see Section 7 for the full discussion of the idiosyncratic shocks). Then,

after applying the fixed effect strategy in the instrumented regression, the peers’ managers’

characteristics should be uncorrelated with the firm’s managers’ characteristics within a
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portfolio’s risk profile. As a sanity check, I verify if this assumption is supported empir-

ically for the whole sample. In the context of Figure 6, this corresponds to testing if the

idiosyncratic productivity shocks of the Red firm (0.05, -0.1) are correlated with the largest

peer’s idiosyncratic productivity shock, 0.23. More specifically, I regress each well’s own

idiosyncratic shock on their associated largest peers’ idiosyncratic productivity shock, for

the entire sample (i.e., the 114,969 distinct wells). While there exists no way to technically

test for the exclusion restriction, the absence of correlation is generally reassuring. Table

VIII reports the regression results of the firm’s own idiosyncratic productivity shocks on the

largest peers’ idiosyncratic productivity shock in each township-year. I find no statistical

relationship between the two types of shocks, across all the regression specifications. Per-

haps the most relevant specification is the one presented in column 8, because it addresses

more directly the underlying assumption of the instrumental variable strategy: the absence

of correlation between firms’ managers’ characteristics and its peers’ characteristics within

a township of a given risk level. Specifically, column 8 suggests that there exists no sta-

tistical relationship between the shocks within a given township, providing support for the

instrument assumption.

Panel B of Table VII reports the results of the second stage of the instrumented regression.

The coefficients are slightly smaller in magnitude than the results obtained from the reduced-

form regression, but they remain economically meaningful. For the instrumented regression,

a one-standard-deviation increase in a project’s idiosyncratic risk results in an increase of

5.2 to 6.7pp in the firm’s discount rate, compared to 7.1 to 8.6pp for the reduced-form

regression.

Regarding the sign of the endogeneity bias, I find that the coefficient of interest (β1) of the

instrumented regression is smaller than the one in the reduced-form regression presented

in Table VI, across all specifications (see Appendix C). The direction of the bias for the

coefficient of interest (β∗1) depends on (i) the covariance between the managers’ experience

and the level of idiosyncratic risk associated with the wells, and (ii) β2, the linear relationship
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between managers’ experience and the firms’ discount rate. Ultimately, multiple within-

firm omitted variables could be affecting my analysis, with some having opposing effects

on the direction of the endogeneity bias. In this sense, the goal of the following discussion

is to provide a concrete example to illustrate the type of omitted variables that appear

to ultimately dominate the direction of the endogeneity bias observed in the reduced-form

regression.

For (i), it is plausible that more experienced managers get assigned to better regions (i.e.,

better prospect, lower production risk) because of their greater bargaining power within

the firm or that, given their higher level of experience, the outcome of their wells is less

uncertain because they know better how to optimally extract the natural gas. In this

specific framework, this would suggest a negative relationship between the managers’ level

of experience and the observed idiosyncratic risk variable. For (ii), to obtain a reasonable

explanation on the sign of β2, it is helpful to look at it from a career concern standpoint.

More experienced managers have a longer list of realizations, which suggests that each

additional signal is less likely to have a large effect on how the firms’ superiors update

their belief of the experienced managers’ worth. In this case, bad drilling outcomes are less

likely to negatively affect how superiors value experienced managers than how they value

unexperienced managers. Chevalier and Ellison (1999) provide empirical evidence in favor

of this career concern explanation, showing that on average, less experienced managers are

more likely to get fired for bad performance. This suggests that for a similar level of exposure

to idiosyncratic risk, more experienced managers would require a smaller idiosyncratic risk

premium than their less experienced counterparts, implying that the sign of β2 should be

negative. Ultimately, the combined effect of these variables would suggest that the reduced-

form regression suffers from an upward bias because of omitted variables such as managers’

experience. In other words, the coefficient obtained in the reduced-form regression may

overestimate the magnitude of the discount rate adjustment to account for idiosyncratic

risk, when compared to the true coefficient.
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1.7.3 Idiosyncratic Risk Premiums and Firm Performance

The previous results have implications for firms’ performance. If managers inflate their

discount rate when faced with a high level of idiosyncratic risk, firms would then underinvest

in wells with a high level of idiosyncratic risk. As a consequence, pricing idiosyncratic risk

could have negative consequences for firms’ performance, while abstaining from doing so

should be correlated with relatively better performance. However, there is little empirical

evidence linking firms’ discount rate adjustment to adverse performance.

I directly examine that relationship here. To test for the effect of idiosyncratic risk pricing

on firms’ performance (e.g., gross profit margins, gross profitability, asset growth (YoY),

and investment rate), it is necessary to develop a measure of firms’ pricing of idiosyncratic

risk, to directly use it as a regressor. To construct this variable, I define the numerator

as the difference between the discount rates of the high idiosyncratic risk portfolio and the

low idiosyncratic risk portfolio, and I define the denominator as the difference between the

idiosyncratic risk measures of the two portfolios26, such that:

Price of Idiosyncratic Riski,t =
Discount Ratei,t,High −Discount Ratei,t,Low

Idiosyncratic Riski,t,High − Idiosyncratic Riski,t,Low

where High and Low corresponds to the two firm-year portfolios sorted on the exposure to

idiosyncratic risk. Effectively, this measure gives the discount rate change that corresponds

to a one-unit increase in average projects’ idiosyncratic risk, for each firm at a yearly

frequency.

Table IX relates firms’ price of idiosyncratic risk to their performance. For the average

firm, a one-standard-deviation increase in the price of idiosyncratic risk has a statistically

significant and sizable negative effect on the gross profit margins (-5.1pp), gross profitability

(-0.5pp), investment rate (-0.8pp) and year-over-year asset growth (-0.8pp). The negative

relationship between firms’ performance and the firms’ pricing of idiosyncratic risk suggests

26The calculation details are available in Appendix A.1.
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that idiosyncratic risk pricing is related to one or more forms of resource misallocation.

1.7.4 Mechanisms

This section explore several potential mechanisms that might induce managers to adjust

discount rates to account for idiosyncratic risk. The mechanisms relate to theories that

focus on either external pressures (frictions between the firm and the financial market) or

internal pressures (frictions between managers and their superiors).

The Cost of External Funding and Idiosyncratic Risk Pricing

Firms dispose of multiple tools to manage their exposure to risk. While most of the discus-

sion in the literature has focused on the use of financial derivatives, other mechanisms have

long been acknowledged. Studying the interaction between risk management and capital

budgeting, Froot et al. (1993) make the empirical prediction that managers would adjust

their discount rate to account for risk that cannot be offloaded in the financial market in

the presence of costly external financing. Risks that cannot be hedged expose the firm to

variability in cash flows. In the context of this paper, this can be understood as drilling

wells that would not produce enough natural gas (e.g., a dry hole). If the projects that a

firm pursues fail to produce cash flow, the firm may then have to turn to external markets

to raise additional funds and continue its operations. However, if the cost of marginal funds

increases with the amount raised, the firm might have to limit its investment in the next

period or raise capital from increasingly expensive sources. In this sense, greater variability

in the wells’ outcome exposes firms to a greater probability of having to raise external funds

at a premium. Since this source of risk directly translates into a greater cost of capital,

Froot et al. (1993) suggest that managers should adjust their discount rate calculations

accordingly.

Obtaining a measure of the cost of external financing is challenging, as researchers do not

directly observe this variable. To test the hypothesis, this study builds on the work done

by Hennessy and Whited (2007), which provides empirically-based guidance for selecting
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the best proxy of costly external financing. The core of their analysis focuses on firms’

size as well as three indexes: (i) the Cleary index, (ii) the Whited-Wu index, and (iii)

the Kaplan-Zingales index. In general, they conclude that firm size is the best proxy for

the costs of external financing, where larger firms face a lower costs of external financing

than do their smaller counterparts. They also, however, find that the Cleary index and

Whited-Wu index properly capture most of the dynamics attributed to the cost of external

financing, but fail to behave adequately with respect to the costs of bankruptcy, making

them inaccurate overall proxies for the cost of external financing. Finally, the authors note

that the Kaplan-Zingales index improperly captures most of the dynamics attributed to the

cost of external financing. On this basis, the authors conclude that firm size is the best

proxy for costly external financing, noting that the three indexes are better suited to act as

proxies for the need for external funding rather than for its cost.

All four of these potential proxies are included here, in an effort to be fully transparent. In

addition, the present study includes firms’ status (i.e., public or private) and the Hadlock-

Pierce index as additional proxies. Private ownership status has been associated with higher

financing frictions in the finance literature (Gao et al., 2013) and thus has the potential to

be informative here. Also, there is empirical evidence suggesting that the Hadlock-Pierce

index captures firms’ financial constraints. Although the index has not been tested in the

Hennessy and Whited (2007)’s costly external financing horse race analysis, it is closely

related to the firm’s size proxy discussed by Hennessy and Whited (2007) as it is a function

of firm size and age.

Table VII and Tables XXII to XXVI present the results of each of the six proxies of costly

external financing. For each table, the coefficient β2 measures the effect of costly external

financing on firms’ pricing of idiosyncratic risk. Columns 5 through 8 of each table present

the results when two variables are instrumented: (i) the projects’ idiosyncratic risk variable

and (ii) the interaction of projects’ idiosyncratic risk with the relevant proxy of costly

external financing (i.e., β1 and β2).
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Table VII reports the results of firm size. Consistent with the analysis of Froot et al. (1993),

it shows that as the cost of external funding decreases, firms tend to price idiosyncratic risk

less aggressively. The results are robust across all specifications, for both reduced form

and the instrumented regression. On average, a one-standard-deviation reduction in firm

size results in a 2.3pp increase in the price of idiosyncratic risk27. Columns 2, 3, 4, 6,

7, and 8 introduce a proxy for firms’ diversification28, which corresponds to the firm-level

idiosyncratic risk diversification among all the projects that are drilled for a given firm-

year. The diversification variable is included because firms’ size has been associated with

several other characteristics of firms, such as their ability to diversify sources of idiosyncratic

risk (Demsetz and Strahan, 1997). The firms’ annual budget diversification variable is

constructed in a similar spirit to the diversification index in Seru (2014) (see Appendix

10.1.), and a larger value of the variable indicates that a larger share of the idiosyncratic

risk is diversified at the firm level.

Table XXII reports the results for the Hadlock-Pierce index, which are directionally consis-

tent with the section hypothesis, and statistically significant. Namely, when the Hadlock-

Pierce index increases, which indicates that firms are more financially constrained, firms’

price idiosyncratic risk more aggressively. Table XXIII presents mixed results for the effect

of firms’ ownership status. For the specifications excluding a fixed effect at the firm level,

the results are consistent with the prediction made by Froot et al. (1993), such that private

firms’ price idiosyncratic risk more than public firms, but the difference is not statistically

significant. Tables XXIV to XXVI report the Cleary, Whited-Wu and Kaplan-Zingales in-

dexes results. They are directionally consistent with the theoretical prediction developed

in Froot et al. (1993), but they are not all statistically different from zero.

To provide additional evidence supporting this channel, I test how sensitive in the discount

rate adjustment for more- and less-diversified firms, in the sense of idiosyncratic risk. The

underlying assumption of (Froot et al., 1993) is that firms should adjust their discount rate

27From Table VII: β2*Average Scaled Idiosyncratic Risk*σAsset= -0.01*0.6*383.8=-2.3.
28Appendix 10.1. provides the details of the calculations involved.
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to account for projects’ idiosyncratic risk, if this source of risk is not diversified at the firm

level. To address that, I split the sample into two subsamples. I take a set

Overall, the results presented in this section suggest that the cost of external financing can

have a meaningful impact on how firms adjust their discount rates. Focusing on Hennessy

and Whited (2007)’s favored measure, the results indicate that costly external financing can

induce managers to price the undiversified quantities of idiosyncratic risk. It is reasonable

to assume that this proxy imperfectly captures attributes associated with firms’ cost of

external financing, and thus it could ultimately suffer from endogeneity bias. However,

most of the additional proxies tested in this section provide results that are directionally

consistent with that theoretical prediction (despite not being all statistically significant),

lending further strength to that finding.

Managers’ Budget Size Diversification and Idiosyncratic Risk Pricing

Survey evidence collected by Graham et al. (2015) suggests that specific investment decisions

are formulated at the lower level of the hierarchical structure, while budget allocation is

decided by the firms’ superiors. Geanakoplos and Milgrom (1991) suggest that delegating

investment decision-making to the agents with the highest amount of information regarding

a specific decision improves resource allocation. Empirically, the delegation of authority has

been linked to team specialization (e.g., Caroli and Reenen (2001); Colombo and Delmastro

(2004); Acemoglu et al. (2007)), where workers in jobs that require technical skills usually

benefit from a greater level of authority. In the context of gas exploration and production

companies, this approach increases the likelihood that people most familiar with the local

rock formation specificity will make investment decisions with limited interference (Bohi,

1998). However, the decoupling between the capital allocation choice and the decision to

invest in specific projects, known as the delegation process, has been argued as a potential

source of agency conflict between managers and their superiors (Aghion and Tirole, 1997).

From the lens of Aghion and Tirole (1997), to delegate land surveying and project selection

can be beneficial for firms since specialized on-site managers are more likely to generate
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quality information and then identify better drilling opportunities. However, by giving

managers a high level of autonomy, there is a risk that managers might try to abuse their

authority and misrepresent the full set of available wells when pitching them to the firms’

superiors, if monitoring is costly. For example, managers might prefer to avoid pitching

projects with an associated idiosyncratic risk measure that exceeds their preferred level,

although those wells could be value creating from the firms’ standpoint. This could be the

case if managers are evaluated, and ultimately rewarded or punished, by demonstrating their

ability to generate production forecasts that are, on average, in line with the wells’ realized

production. For the firms, managers’ ability to produce reliable production forecasts on

average can be appealing since it facilitates the efficient allocation of resources. Firms’

superiors might value this type of ability in managers’ performance reviews. Thus, for

managers, choosing wells with a higher level of idiosyncratic risk increases the probability

of being wrong in the production forecast (above or below) of a given well, which could

increase their risk of receiving bad evaluations. Although my dataset does not enable

me to observe managers’ compensation contracts or if they get fired or promoted based

on their forecasting performance, Table VIII provides empirical evidence suggesting that

firms’ resource allocation responds to forecasting mistakes. Precisely, the regression results

reported in Table VIII indicate that firms allocate a smaller share of the annual budget

in the following period to managers for which the realized production diverges more from

the expected production in the current period. This result is robust when controlling for

a region-year fixed effect, a factor that captures regions’ overall production potential and

quality.

A direct consequence of the delegation process is that firms’ high-level decision-makers allo-

cate the firm’s total budget across multiple managers, each tasked with evaluating, selecting,

and pitching projects to the firms’ superiors that should, in principle, maximize the firm’s

value. The fact that managers receive a fraction of the firm’s budget can result in a loss

of diversification at the manager level, in the sense used by Diamond (1984). The general

response from the finance and economic literature to this type of agency friction is to design
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a compensation contract that would mitigate the friction. However, given the complex na-

ture of real life situation, it appears reasonable to think that such wage contract might not

feasible in practice. In this sense, Holmstrom and Costa (1986) suggest that capital bud-

geting policies can play a partial role. For a risk-averse manager, if projects’ idiosyncratic

productivity shocks are not perfectly correlated among themselves, being granted a larger

budget has two effects. First, it reduces the total quantity of idiosyncratic risk they face.

And second, it decreases the manager’s idiosyncratic risk premium. The insight developed

in Diamond (1984) would suggest that firms in which managers have larger budgets should,

all things being equal, price idiosyncratic risk less aggressively.

That hypothesis is directly tested here. First, I construct a measure to proxy for managers’

idiosyncratic risk diversification: managers’ budget size. Natural gas exploration and pro-

duction companies organize their activities into regional units. Although it is difficult to

delineate the exact region covered by each manager, it is still possible to develop multiple

proxies of managers’ budgets based on a plausible definition of region of activity. The pro-

cedure followed here considers two potential scenarios that represent a lower and an upper

boundary for the size of their assigned territory, such that managers could either be assigned

to a specific field or to a specific state. Assuming that managers are assigned to specific gas

fields is a reasonable lower boundary, as each field possesses unique characteristics for which

the required technical expertise cannot be directly mapped onto other locations (Kellogg,

2011). These particularities create a steep learning curve for managers taking on new fields

and limit managers’ ability to transfer their knowledge. At the other extreme, using states

as managers’ assigned territories presents a plausible upper boundary. Indeed, it matches

job postings’ regions of assignment and how organizations determine the territory of their

regional units. For each of these two scenarios, I then estimate the managers’ budget size

in two steps. First, I calculate the total cost for all wells drilled in a given field or state for

each firm and year. Then, I define average managers’ budget as the average value across all

fields/states at the firm and year level. This provides me with the average budget size of

the firms’ managers in that given year, for each of two possible methods of measuring the
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budget allocation.

Table IX presents the results of the regression assuming that individual fields define man-

agers’ region of activity. Coefficient β2 measures the effect of managers’ budget size on

firms’ pricing of idiosyncratic risk. In line with Diamond’s proposal, managerial budget

size appears to have a meaningful impact on idiosyncratic risk pricing. A one-standard-

deviation increase in average budget size results in a reduction of 1.16pp29 in the price of

idiosyncratic risk. Table XXVII presents the results of the same tests when managers are

assumed to operate at the level of an entire state. The results are robust to this alternative

specification for the region of activity; the relationship is similar in both cases. Finally,

Table XXIIX shows a positive and statistically significant relationship between managerial

budget size and projects’ levels of idiosyncratic risk. This is further evidence suggesting

that managers’ risk tolerance increases as a result of increasing budget size.

To further support the agency channel effect, I test how the effect of managers’ budget size

varies as a function of agency friction. To do so, I construct a measure of agency friction

building on the insight that proximity facilitates monitoring and information acquisition by

the firm’s superiors. A rich empirical literature presents evidence illustrating the benefits of

proximity in reducing the cost of acquiring information and improving monitoring. Giroud

(2013) presents evidence suggesting that proximity between firms’ headquarters and plants

reduces agency conflict by improving the ability of superiors to go on-site and directly

monitor plants’ managers. Similarly, Coval and Moskowitz (1999) and Coval and Moskowitz

(2001) show results with mutual fund managers, where proximity enables funds’ managers

to obtain better results with the shares of firms located geographically closer, suggesting

better monitoring capabilities and access to private information. I obtain the measure

of proximity by calculating the median distance between the wells drilled by a firm in

a given year30. In the context of this literature, a greater median distance between the

29From Table IX: β2*Average Scaled Idiosyncratic Risk*σManagers’ Budget= -0.11*0.6*17.6=-1.16.
30In a first step, I measure the distance between all the wells a firm drilled in a given year. Then, the

agency friction value is defined as the median value of those distances, for each firm-year.
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firms’ wells indicates greater difficulty in monitoring the quality of projects for the firms’

superiors, thus corresponding to a greater level of agency problem. Given this, if budget

size affects managers’ risk tolerance through the agency channel, one would expect that the

effect of budget size be more salient in firms experiencing greater agency conflict. Table X

reports the results of this additional test. The variable of interest is associated with the

coefficient β3. The negative coefficient suggests that as firms face more agency problems

(i.e., a greater distance between the wells), the effect of budget size in mitigating the agency

friction becomes stronger.

The results reported in this section suggest that managers’ budget size has a meaningful

effect on managers’ risk tolerance, ultimately reducing managers’ pricing of idiosyncratic

risk. It suggests that, for the average firm, the set of available tools to alter managers risk

tolerance extends beyond compensation contracts. By shifting the allocation of resources

among its managers, firms can provide a form of insurance for those who are, for instance,

overly risk-averse.

Costly External Financing and Agency Frictions

To further explore how the two mechanisms affect the price of idiosyncratic risk, I investigate

their combined effect. Table XI reports the results of the regression that includes proxies

for both mechanisms as well as their interaction term. Across all specifications and for both

proxies of managers’ budget size (i.e., aggregation at the field or state level), I find that

the price of idiosyncratic risk (β1) is positive and statistically significant, such that a one-

standard-deviation increase is associated with a 10.5 to 12.7pp increase in the discount rate.

In addition, including both mechanisms simultaneously does not eliminate their individual

contribution. Particularly, both mechanisms (β2 and β6) are statistically and economically

significant, and their magnitudes are closed to the ones obtained in Tables VII, IX and

Table XXVII. These results provide additional evidence suggesting that both mechanisms

operate jointly on frictions associated with the firms’ price of idiosyncratic risk. Perhaps

more interesting is the coefficient β7, which represents the contribution of the interaction
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between the two mechanisms to the price of idiosyncratic risk. The coefficient is positive

and statistically significant, although its magnitude is almost zero31. To interpret this

coefficient, it is useful to look at a simple case. For a fixed level of idiosyncratic risk, we can

look at two firms with different sizes: 0 or 1. In this example, managers’ budget size will

be less effective in reducing the price of idiosyncratic risk (β6 + β7) for larger firms (i.e.,

firms of size 1). I interpret this result such that, when holding the level of idiosyncratic

risk constant, the marginal benefit for increasing the size of managers’ budget is smaller for

firms that are less exposed to costly external financing frictions. A similar reasoning can

be applied to firms’ size.

1.8 Robustness Analysis

In this section, I conduct several robustness tests to rule out alternative explanations.a

1.8.1 The Effect of Real Options

One potential concern with the strategy adopted here for estimating firms’ discount rates

is whether it adequately accounts for important aspects of firms’ project selection. For

example, managers might use a real option investment threshold, rather than project cost,

to calculate projects’ NPV; the real option literature (Dixit and Pindyck, 1996) explicitly

considers idiosyncratic risk when determining optimal exercise thresholds. If this is the

case, failing to account for the firm projects’ optionality feature could substantially alter

the nature of the above results.

Empirical evidence suggests that managers behave in a way that is directionally consistent

with real option theory (Bloom et al., 2007; Kellogg, 2014; Decaire et al., 2019), although

they also systematically exercise their investment opportunities prior to the real option rec-

ommendation. Brennan and Schwartz (1985) (in the case of gold mines), Kellogg (2014)32

31I divided the variable by 1000 to increase the coefficient magnitude and show digits in the regression
table.

32See Figure 10 of Kellogg (2014).
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(on oil wells), and Decaire et al. (2019) (on shale gas wells) provide empirical evidence in

support of this claim. This suggests that managers do not follow the recommendation of

real option theory strictly–a situation that is further supported by multiple survey-based

studies (Graham and Harvey, 2001; Jacobs and Shivdasani, 2012; Graham et al., 2015). In-

stead, in more than 90% of cases, managers prefer more straightforward and less capricious

valuation strategies such as NPV and IRR when selecting projects (Graham and Harvey,

2001), with little mention of the use of real options. In this light, it is reasonable to assume

that managers acknowledge to some extent the value and importance of operational flexi-

bility, but real option models might be too stylized to properly capture the exact dynamic.

Nonetheless, I use two methods here to ensure that the present results are robust to the

effect of operational flexibility and real option.

First, to directly alleviate the concern that this study is biased by a operational flexibility

factor, I repeat the above analysis using a restricted sample of projects that are minimally

likely to be affected. Precisely, I focus on wells for which managers have little time to drill,

since real option valuation directly depends on the flexibility of a project’s timing. Speaking

generally, the more time the managers have to decide when to invest in their projects, the

more the real option is worth. Now, there are two ways a firm can obtain the right to

develop a plot of land in the United States. It can either acquire a lease, providing the

exclusive right to the plot during a certain period, which is, on average, three years, or it

can “hold [the development rights] by production”. This means that as long as a firm has

an actively producing well on the plot, they are entitled to further develop it until they fully

deplete the available reserves of natural gas. In these cases, firms usually have 20 years or

more to drill additional wells. Papers investigating real option behavior have traditionally

focused on projects whose lands are controlled through this second mechanism, because

the real option phenomenon is more salient in those cases (Decaire et al., 2019). However,

when operating on a leased plot of land, oil and gas exploration companies tend to drill

their first well immediately prior to the expiration of the lease (Herrnstadt et al., 2019).

Thus, for those first wells, the effective value of the option-to-wait at the time of drilling is
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marginal. Effectively, as the real option time to expiration converges toward zero, its value

also converges to zero. Given this, the first strategy used here is to limit the analysis to

only those wells that are the first to be drilled on a given plot of land. For those wells,

managers faced limited operational flexibility.

The second strategy is to adjust the revealed preference strategy described above to directly

account for the real option value. This is done by modifying the decision rule used when

estimating each project’s expected IRR. Rather than assuming that firms choose to invest

whenever a project’s expected cash flow is greater than its cost, the new rule assumes that

firms use a real option optimal exercise threshold that increases along with a project’s level

of idiosyncratic risk such that the decision rule becomes (see Appendix 10.5 for a detailed

explanation of the real option calculation):

M∑
m=1

1

(1 + µj)m
E[qj,m]E[Pj ]− V ∗j = 0 (1.9)

Where V ∗ is the real option optimal exercise threshold as specified by Dixit and Pindyck,

such that V ∗j =
β1
j

β1
j−1

Cj ≥ Cj .

There are two limitations to this strategy, however. The first is related to the amount of

time to expiration for each project. Because this information is not observed for most wells

in the dataset, the most conservative approach is to assume that firms have an infinite

time horizon to exercise their options for all projects. The real option optimal threshold

is increasingly sensitive to projects’ risk as the time to expiration increases, thus giving

each project an effectively infinite duration before expiration corresponds to a more con-

servative scenario here (Dixit and Pindyck, 1996). The second limiting factor is related to

the measure of idiosyncratic risk. There could be concerns that the measured level of the

idiosyncratic risk is too low, and that it does not properly capture the total quantity of

idiosyncratic productivity risk faced by the firms. In turn, this would bias the real option

test. To test the robustness of the results with the calibrated real option, I design a kill

test. Precisely, when calibrating the real option optimal threshold, I increase the measure
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of idiosyncratic productivity risk to find at which level my core result is no longer statis-

tically significant. Multiplying the magnitude of idiosyncratic productivity risk magnifies

the difference between the riskier wells and the less risky ones, ultimately widening the

difference between the real option exercise threshold, which reduces the difference between

the estimated expected IRRs.

Table XII presents the results of the first strategy and Table XXIX present the results of the

robustness test for the real option effect. Both regressions are qualitatively and statistically

similar to the primary results described in earlier sections, suggesting that a operational

flexibility or real option effect is not significantly altering the reported outcomes. Not

surprisingly, the regression coefficients are lower in all specifications, suggesting that some

of the observed variation might be partially attributable to those phenomenon. Also, the

number of observations in both tables is lower than that in the main regression tables. For

Table XII, it is because most of the projects evaluated in this analysis are infill wells (i.e.,

wells drilled when the plot of land is held by production), which reduces the number of

firms included in the sample. Similarly, for Table XXIX, the number of observations for

the real option calibration specification is lower than the one for the main specification,

because implied volatility data is not available on Bloomberg before the year 2000. Finally,

the results of the kill test indicate that the core results of this paper are robust to the real

option calibration up to an increase of 28.8% of the idiosyncratic risk.

1.8.2 The Effect of Firms’ Leverage

The cost of debt for a given firm increases with the total amount of risk incurred at the

firm level (Merton, 1974), including both systematic and idiosyncratic forms of risk. Taksler

(2003) presents empirical evidence in favor of Merton’s theory, which is roughly that a firm’s

weighted cost of capital should account for the firm’s idiosyncratic risk, through its debt

component. To test for this alternative interpretation, I design a separate regression that

includes firms’ market leverage and an interaction term of market leverage with project-level

idiosyncratic risk, including only those firms for which the relevant information is available.
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Table XIII reports the results of that test, which are that the effects of leverage on the price

of projects’ idiosyncratic risk does not economically or statistically alter the above results.

Also, consistent with the effect of leverage discussed in Merton (1974), the coefficient of

the interaction between firms’ leverage and the projects’ average idiosyncratic risk (i.e., β5)

is positive, but not statistically significant in all regression specifications. The directional

effect is consistent with the phenomenon discussed by Merton, such that idiosyncratic risk

should be priced by the debt component of firms’ capital structure.

1.8.3 Asset Pricing and the Idiosyncratic Risk Premium

A well-established asset pricing literature has found that firms’ returns may account for

idiosyncratic risk. For example, Goyal and Santa-Clara (2003) found a positive relationship

between the quantity of idiosyncratic risk measured at the firm level and the returns on

the market, while Ang et al. (2009) finds that firms with high past idiosyncratic volatility

have low future average returns. This literature has discussed the role of investors lack

of diversification and the role of real options to explain the idiosyncratic risk premium.

There is a possibility that the results observed in my study are affected by this dynamic.

However, three pieces of evidence presented in the previous sections provide reassuring

evidence regarding such concerns. First, Table II coefficient β2 indicates that firms price

idiosyncratic risk after controlling for the WACC or the cost of equity, which proxies for the

idiosyncratic risk premium discussed in the asset pricing literature. Second, Table XXIII

shows that the results are robust to firms’ listing status (i.e., private or public), ruling

out the idea that the observed phenomenon is driven by a stock market effect, since it is

observed for both types of firms. Finally, the mechanisms explored in this paper indicate

that a plausible explanation for the observed dynamic is attributable to firms’ internal

frictions, steering away from a solely financial market effect.
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1.8.4 Alternative Price Specifications

The study’s primary results are also robust to two alternative price specifications. The first

alternative uses the three-year Bloomberg natural gas futures contract prices rather than

EIA three-year forecast33. In the second specification, the EIA regional wellhead prices are

used to account for price heterogeneity across states (see Figure 8). Effectively, the price

firms obtain for selling their product can vary across regions, depending on the quality of

the resource and the distance it must be transported in order to reach a refinery site. Tables

XIV and XV report the results of these two additional specifications. In both cases, the

primary results are not qualitatively or quantitatively altered.

1.8.5 Alternative Discount Rate Thresholds

I introduce two alternative threshold specifications to address the concern that the results

of the analysis can be materially affected by the threshold used to estimate the firm-year

portfolios’ discount rate. Determining a reasonable threshold is important in this analysis,

because two sources of bias can potentially affect the discount rate estimate. First, the

projects’ expected IRR are obtained using a noisy measure of the managers’ true expec-

tations. Figure 9 provides a graphical illustration of the effects of measurement noise on

the observed firm-year portfolio’s expected IRR distribution. For this reason, observations

situated on the very left portion of the distribution proxy for the discount rate with mea-

surement error. Thus, it is reasonable to extend the discount rate threshold slightly beyond

the minimum value of the distribution. Second, taking value too far on the right side of

the distribution would fail to capture the features associated with the discount rate, as it

would more likely capture dynamics associated with the firm’s average profitability and

its opportunity set. Table XVII presents the main results with two alternative threshold

specifications, to show that the results are robust. Columns 1 to 3 present the results using

only the lowest bound of the expected IRR distribution, and columns 4 to 6 present the

33The number of observations is smaller than the main specification used above, because Bloomberg’s
three-year natural gas futures prices are only available from 1995 to 2010, which presents a restricted
sampling window.
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results using the observations in the 2.5th lowest percentile of the distribution.

1.8.6 Results by Time Period

Finally, I verify that managers price idiosyncratic risk consistently period by period. Pre-

cisely, Table XVIII reports the results for the price of idiosyncratic risk, evaluated per

decade (i.e., [1983-1990), [1990-2000), [2000-2010]). The table shows that managers consis-

tently adjust their discount rate to account for idiosyncratic risk, across the three decades.

This indicates that the main specification results are not driven by specific events associ-

ated with one particular time period. Rather, the effect is economically significant across

all three decades.

It is interesting to note that the price of idiosyncratic risk has been steadily declining over

time, across all regression specifications. Although the goal of this paper is not to explain

the time trend for the price of idiosyncratic risk, future research investigating the underlying

drivers of such phenomenon would be interesting.

1.9 Conclusion

Choosing discount rates for new investment projects is a fundamental topic in corporate

finance, yet we have almost no evidence on how managers make these choices in prac-

tice. This study helps fill this gap by analyzing the relation between projects’ idiosyncratic

risk and firms’ project-specific discount rates. The primary findings are that (i) managers

adjust their discount rates upward when faced with increased idiosyncratic risk; (ii) pric-

ing idiosyncratic risk is negatively related to several measures of firm performance; (iii)

managers appear to adjust their discount rate calculation to account for their exposure to

undiversified unhedgeable risk, when facing costly external financing; and (iv) capital bud-

geting policies, and specifically the size of managers’ budget, appear to provide firm owners

with an additional lever to adjust managers’ effective risk tolerance to desired levels.

An interesting implication of these results relates to the role of alternative tools for aligning
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managers’ preferences. Most of the theoretical and empirical work in finance focuses on

compensation contracts as the main means of insuring managers against the potential neg-

ative outcomes of specific projects. Echoing the theoretical insights provided by Holmstrom

and Costa (1986), this analysis finds that capital budgeting policies, such as the size of

managers’ budget, can supplement contracts and other tools, and may even help to achieve

this goal more efficiently.
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1.10 Appendix

1.10.1 Variable Definition

In this appendix, I define how each variable discussed in the paper is constructed. Subscript

i corresponds to a specific firm, t corresponds to the year, j indicates a specific well, f refers

to a region (i.e., a field or a state), p refers to a township, and k refers to the two portfolios

at the firm-year level sorted on the idiosyncratic risk. A subscript with a minus sign, such

as X-i, indicates that the firm’s own observations are excluded from the observations used

in the calculation of the specific variable.

Gas Well Variables

1. # of Wells in a Township-Year: Nj
p,t = Count the number of projects per township p

and year t

2. # of Active Regions: Nf
i,t = Count the number of fields or states the firm is active in

during the year

3. # of Projects per Firm-Year Portfolio: Nj
i,t,k = Count the number of projects per firm

i, year t, and portfolio k

4. Costj = The drilling cost of well j

5. Township-Year Average Well’s Costp,t =
∑
p,t Costj

Nj
p,t

6. Asseti,t =
∑

iCostj , for all producing wells on year t for firm i

7. Budgeti,t =
∑

i,tCostj , for all the wells drilled on year t for firm i

8. Managers’ Budgetf,i,t =
∑

f,i,tCostj , for all the wells drilling on year t for firm i in
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region (i.e., field or state) f

9. Average Managers’ Budget at the Firm Leveli,t,f =
∑
i,t Managers’ Budgeti,t,f

Nf
i,t

10. Natural Gas Pricet = Pt

11. Operational Cost (%) = OP

12. Royalty Ratet (%) = Rt

13. Yearly Gas Productioni,t (in 1,000 cf) = Qi,t

14. Operating profiti,t = PtQi,t ∗ (1−Rt −OP )−Budgeti,t

15. Gross Profit Margini,t (%) =
OperatingProfiti,t

PtQi,t
∗ 100

16. Gross Profitabilityi,t (%) =
OperatingProfiti,t

Asseti,t
∗ 100

17. Assets Growthi,t+1 (YoY) (%) =
Asseti,t+1

Asseti,t
∗ 100

18. Investment Ratei,t+1 (%) = Budgeti,t+1
Asseti,t

∗ 100

19. Discount Rate: DRi,t,k = Lower region of the firm-year portfolio’s expected IRR dis-

tribution.

20. Project’s Productivity Shock: ζj =
∑m=12
m=1 E[pt]∗qj,m−

∑m=12
m=1 E[pt]E[qj,m]

Costj

21. Township-Year Idiosyncratic Risk: IRk,t = = 1

Nj
p,t−1

∑
p,t(ζj − ζ̄p,t)2

22. Projects’ Average Idiosyncratic Risk: Average IRi,t,k = 1

Nj
i,t,k

∑
i,t,k IRk,t

23. Price of Idiosyncratic Riski,t =
DRi,t,High−DRi,t,Low

Average IRi,t,High−Average IRi,t,Low
, where High and Low
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corresponds to the two firm-year portfolios sorted on the exposure to idiosyncratic risk

24. Largest Peers’ Projects’ Idiosyncratic Productivity Shock: Max Peer IPSp,t =maxp,t[ζ−j ]

25. Average Largest Peers’ Projects’ Idiosyncratic Productivity Shocki,t,k = 1

Nj
i,t,k

∑
i,t,k Max Peer IRp,t

26. Annual Firm’s Budget Diversificationi,t =
Nj
i,t−1∑

i,t(ζj−ζ̄i,t)2

Financial Market Variables

For the regressions using Compustat variables or other financial market variables, the vari-

able definitions are below. Names are denoted by their Xpressfeed pneumonic in bold, when

available.

1. Total Book Assets = at

2. Total Debt = dltt + dlc

3. Market Value of Equity: MVEi,t = pstk + csho*prcc c

4. Market Leverage =
Total Debti,t

MVEi,t+Total Debti,t

5. βOGt = One year CAMP Oil and Gas Industry beta, computed at the monthly fre-

quency.

6. Risk-free Rate: rft = 10-year risk-free rate from St-Louis Federal Reserve.

7. Industry Cost of Equity: rEt = rft + βOGt ∗ (E(EtPt )− rft)

8. Cost of Debt: rDi,t = Interest rate of trading bonds from firms of equivalent credit

rating.
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9. Weighted Average Cost of Capital: WACCi,t =
MVEi,t

MVEi,t+Total Debti,t
∗rEt +

Total Debti,t
MVEi,t+Total Debti,t

∗

rDi,t

10. Cash Flow: CF = oancf+intpn
at

11. TLTD = dltt+dlc
at

12. TDIV = dvp+dvc
at

13. CASH = che
at

14. Market-to-book Ratio: Q = MVE+Total Debt−txditc
at

15. DIVPOS = is indicator that equals one if the firm pays dividends, and zero otherwise.

16. LNTA = ln(at)

17. Three-digit Industry YoY Sales Growth: ISG =
∑

3 digit SIC salei,t+1∑
3 digit SIC salei,t

18. Own-firm Real Year-over-Year (YoY) Sales Growth: SG =
Real salei,t+1

Real salei,t

19. CURAT = act
lct

20. COVER = oibdp−dp
(xint+dvp)/(1−τ c) , where τ c is the tax rate.

21. IMARG = ni
sale

22. SLACK = che+0.5∗invt+0.7∗rect−dlc
ppent
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Costly external financial variables

In the paper, I use four indexes to proxy for the level of costly external financing by firms. To

construct each of the first three proxies (Cleary Index, Whited-Wu Index, Kaplan-Zingales

index), I process the data following the methodology presented in Hennessy and Whited

(2007). Finally, for each index to have the same interpretation, I follow the recommendation

of Hennessy and Whited (2007) and multiply the Cleary index by −1, such that it is

increasing with the likelihood of facing costly external finance. Finally, to construct the

Hadlock-Pierce index, I follow the methodology presented in Hadlock and Pierce (2010).

The indexes are constructed in the following way:

Kaplan-Zingales index = −1.001909 ∗ CF + 3.139193 ∗ TLTD − 39.36780 ∗ TDIV (1.10)

− 1.314759 ∗ CASH + 0.2826389 ∗Q

Whited-Wu index = −0.091 ∗ CF − 0.062 ∗DIV POS + 0.021 ∗ TLTD − 0.044 ∗ LNTA

(1.11)

+ 0.102 ∗ ISG− 0.035 ∗ SG

Cleary index = −0.11905 ∗ CURAT − 1.903670 ∗ TLTD + 0.00138 ∗ COV ER (1.12)

+ 1.45618 ∗ IMARG+ 2.03604 ∗ SG− 0.04772 ∗ SLACK

Hadlock-Pierce index = −0.737 ∗ log(Asset2004) + 0.043 ∗ log(Asset2004)2 + 0.040 ∗Age

(1.13)

Where Age is measured using the year in which a firm drills its first well in the DrillingInfo

raw data sample, which starts in 1885.
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1.10.2 Linearized ARP model

To estimate the Arp model using a OLS regression, I linearize the equation such that:

qj,m = Aj(1 + bθm)
−1
b (1.14)

ln(qj,m) = ln(Aj)−
1

b
ln(1 + bθm) (1.15)

ln(qj,m) = α0 + α1 +Aj +

K∑
k=1

βkm
k (1.16)

Where the last step is obtained by doing a Taylor expansion of the term ln(1 + bθm). For

a fixed m sufficiently small, the expansion terms converge to zero, since the product of b

and θ is close to zero. In other words, I can approximate the hyperbolic decline curve using

a K th order polynomial. Finally, I include two dummy variables, α0 and α1, equal to 1 for

the first and second month of the well’s production and zero otherwise, to account for the

well’s production ramp-up patterns (Dennis, 2017).
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1.10.3 Well’s Differential Exposure to Systematic Risk Factors

Wells in my analysis could have different exposure to some potential systematic risk factors

(e.g., natural gas prices). For example, wells with a greater level of idiosyncratic risk are

associated with a greater discount rate, for a given firm-year. Consequently, it is reasonable

to expect that, on average, more risky wells produce larger quantities of natural gas than

their smaller counterparts, all things being equal. Empirically, the correlation between

wells’ level of idiosyncratic risk and their associated level of production is 0.2. Now, wells

producing greater quantities of natural gas are mechanically more exposed to natural gas

prices, a potential systematic risk factor. This relationship can potentially alter how I

interpret this study’s core result, since it would imply that wells with a greater level of

idiosyncratic risk are probably more exposed to systematic risk factors (i.e., natural gas

prices), confounding idiosyncratic and systematic risk factors.

To illustrate how wells with different production levels could have a different exposure to

natural gas prices, I use a simple example, such that:

pz ∗ qj,z,m = βWell′sPriceExposurepz + εj,z,m (1.17)

Where pz corresponds to the price of natural gas at time z, and qj,z,m is well j production at

age m (in months). We can then derive the expression for the coefficient βWell′sPriceExposure,

such that:

βWell′sPriceExposure =
cov(pz ∗ qj,z,m; pz)

var(pz)
(1.18)

=
E[p2

z ∗ qj,z,m]− E[qj,z,m ∗ pz] ∗ E[pz]

var(pz)
(1.19)

=
E[qj,z,m](E[p2

z]− E[pz]
2)

var(pz)
(1.20)

= E[qj,z,m] (1.21)

Where I use the fact that wells’ production flow is independent from the natural gas price
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process to obtain equation 19. Section IV provides an expansive discussion and some empir-

ical support in favor of this assumption. This simple framework confirms the intuition that

wells with a greater level of production flow may be more exposed to natural gas prices.

This can potentially confound the true effect of idiosyncratic risk in the main analysis.

That being said, the quantity of risk is not the only relevant aspect to consider in this

scenario. The price of this potential systematic risk factor is equally important in char-

acterizing the consequence of a different exposure to systematic risk. There exists mixed

evidence on the size of a natural gas risk premium or, to a more general extant, the risk

premium of an energy factor. First, from a CAPM standpoint, the risk premium of natural

gas is virtually zero34. The sample average one-year CAPM monthly beta coefficient for

natural gas is 0.004. Computing the measure over alternative horizons does not significantly

alter the resulting coefficients such that the two-year horizon beta coefficient is 0.003, the

three-year beta is 0.003, and the four-year beta is 0.003. Second, when looking at other

asset pricing models, such as models derived from the arbitrage pricing theory (APT), there

exists little consensus for the existence of an energy factor priced by the market. On one

side, Chen et al. (1986) and Kilian and Park (2009), among others, find little evidence in

favor of an energy factor. Chen et al. (1986) find that oil price risk is not separately valued

in the stock market, while Kilian and Park (2009) find limited explanatory power for oil

supply and demand shocks in explaining stock returns. On the other side, Chiang et al.

(2014) and Ready (2017) provide evidence in favor of an energy factor priced by the market.

Given the lack of general agreement in academic research for the existence of a priced energy

risk factor, I include the wells’ differential exposure to this potential systematic risk factor

in my main specification. To do so, I use the results derived in equation 21. Precisely, for

each firm-year portfolio, I measure the average production of the wells that were drilled, to

proxy for their average exposure to natural gas prices.

34Berk and van Binsbergen (2016) provide empirical evidence suggesting that the representative investor
utilizes the CAPM to determine the risk premium.
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1.10.4 Sign of the Endogeneity Bias

To guide the analysis of the endogeneity bias sign in the reduced-form regression, it is useful

to look at a simple regression case to work within an intuitive framework. For illustration’s

sake, one can take the example that managers with different level of experience might not be

randomly allocated among the two firm-year portfolios (i.e., the high and low idiosyncratic

risk portfolios), such that Managers’ Experience would be part of the true data generating

process:

Discount Ratei,t,k = β1Idiosyncratic Riski,t,k + β2Managers’ Experiencei,t,k + εi,t,k (1.22)

In the case where Managers’ Experience is omitted from the true regression model, the

reduced-form regression would then be:

Discount Ratei,t,k = β∗1Idiosyncratic Riski,t,k + ε(Managers’ Experience)i,t,k (1.23)

In this simplified example, the expression of the biased reduced-form β∗1 can be defined as:

β∗1 = β1 + β2

cov(Idiosyncratic Riski,t,k; Managers’ Experiencei,t,k)

var(Idiosyncratic Riski,t,k)
(1.24)

From this simple example, one can note that the direction of the bias for the coefficient of

interest (β∗1) depends on (i) the covariance between the managers’ experience and the level

of idiosyncratic risk associated with the wells, and (ii) β2, the linear relationship between

managers’ experience and the firms’ discount rate.
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1.10.5 Revealed Preference Strategy with Real Option

To account for the real option effect, I adjust the firms’ decision rule, such that I no longer

assume that it is optimal to invest when the expected discounted cash flows of the wells are

greater than the cost (Cj), but I assume that the wells are exercised when the discounted

cash flows are greater than the real option optimal threshold (V ∗j ), such that:

M∑
m=1

1

(1 + µj)m
E[qj,m]E[Pj ]− V ∗j = 0 (1.25)

To compute the real option optimal threshold (V ∗j ), I follow the methodology introduced in

Dixit and Pindyck (1996, Chapter 5) such that:

V ∗j =
β1
j

β1
j − 1

∗ Cj (1.26)

β1
j =

1

2
− rt − δ
σ2
j + ω2

t

+

√
[
(rt − δ)
σ2
j + ω2

t

− 1

2
]2 +

2rt
σ2
j + ω2

t

(1.27)

where Cj denotes the well’s drilling cost, r denotes the 10-year risk-free rate, δ corresponds

to the project’s dividend rate, σ2
j is the project’s idiosyncratic risk, and ω2

t is the natural

gas risk.

I follow Brennan and Schwartz (1985) and set the dividend rate (i.e., δ) equal to the natural

gas convenience yield. I compute the convenience yield using the natural gas spot and

Bloomberg Natural Gas Future prices. Precisely, I obtain the sample average natural gas

convenience yield (i.e., δ) such that:

δ =
1

11

2010∑
t=2000

[rt +
1

3
(1− Ft

St
)] (1.28)

Where t is the year during which the convenience yield is measure, F t is the Bloomberg

three-year Natural Gas Future Price, and S t is the spot price.
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Finally, I define the project’s risks as the combination of the project’s idiosyncratic risk (σ2
j )

and price risk (ω2
t ). The project’s idiosyncratic risk is the same measure as the one I use

throughout the paper. The measure of price risk corresponds to the three-year Bloomberg

Natural Gas Futures contract implied volatility. Kellogg (2014) has an extensive discussion

on which measure of price uncertainty is best to use in a real option calibration, and con-

cludes that using implied volatility derived from financial derivatives is optimal. However,

the financial option for the three-year horizon contracts are not available on Bloomberg be-

fore 2000. For this reason, the number of observations used in the regression of this section

is smaller than that of the main specification.
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Figures

Figure 1: Vertical versus Horizontal Drilling Technology

This figure provides a graphical illustration of the difference between horizontal and vertical wells.

Vertical wells represent the older technology, predominantly used in the first part of the American

oil and gas development (i.e.; 1900-2005). During the analyzed period, 89% of the gas wells drilled

in my sample were completed using the vertical technology.
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Figure 2: Panhandle Field (Texas) Development Progress between 1961-2010

This panel of figures plots the evolution of the Panhandle field development over the period 1961

to 2010. Figure 2.1. provides the initial expectation of the field boundary, based on geological

surveys. Figure 2.2. provides an updated view of the field development. The red square indicates

the Hutchinson county to help align the surveyor map with the 2010 map.
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Figure 3: Excerpt from Energy Firms’ 10-K Statement for Ongoing U.S. Activities

The figures in the two above panels present examples of how energy firms break down and discuss

their activities. Those firms rely heavily on geographical boundaries to define their operations,

referring to man-made boundaries (i.e., states) or naturally occurring ones (i.e., geological structure)

in most cases.
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Figure 4: Geographic Distribution of the Vertical Gas Wells

This figure plots the sample of wells included in the analysis. The total sample includes 114,696

vertical gas wells drilled over the period ranging from 1983 to 2010. The map provides information

on the regions with the most activity during the analyzed period.
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Figure 5: Expected and Realized Well’s Production Decline Over Time

This figure plots the wells production decline level over time. The blue line corresponds to the

median empirical production, the red line corresponds to the hyperbolic Arp prediction and the

shaded area represent the 10th and 90th confidence interval.
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Figure 6: Variables Constructed Using the Township-Year Idiosyncratic Productivity

Shocks

Figure 6.1. presents a simplified example of wells being drilled in a given township-year. In this

example, three firms (i.e., Red, Blue, and Black) were active in the township during that specific

year. The adjacent table (Figure 6.2) reports an illustrative example of the potential idiosyncratic

productivity shock, measured for each well. The instrumental variable used in the paper, Average

Largest Peers’ Idiosyncratic Productivity Shock, corresponds to the biggest shock that was measured

for the firm’s peers in its wells’ township-year, averaged at the firmyear porfolio level. To obtain the

Projects’ Average Idiosyncratic Risk , I take the average value of Projects’ Idiosyncratic Risk for

each firmyear porfolio.
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Figure 7: Distribution of the Well’s Idiosyncratic Productivity Shocks

This figure plots the distribution of the well’s idiosyncratic productivity shocks. The total sample

includes 114,696 vertical gas wells drilled over the period ranging from 1983 to 2010. values to the

right of the red dashed line indicate positive shocks, while value to the left indicate negative shocks.
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Figure 8: Natural Gas Wellhead Price by Region over Time

This figure plots the evolution of yearly natural gas wellhead prices for each producing state over

time. Source: https://www.eia.gov/dnav/ng/ng_prod_whv_a_EPG0_FWA_dpmcf_a.htm
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Figure 9: Firm-Year Portfolio’s Projects’ Expected IRR Distribution

This figure plots the distribution of the projects’ expected IRR for the firm-year portfolios. If there

was no measurement error in the projects’ expected IRR, the observed distribution would cut sharply

at the red dotted line. However, because of measurement error in the projects’ expected IRR, the

tails of the distribution are fatter, and the left tail of the distribution extends beyond the firms true

cut-off value.
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Tables

Table 1: Summary Statistics of Firms’ and Wells’ Characteristics

This table reports summary statistics of exploration and production gas companies included

in the sample. The time period of the sample is from 1983 to 2010. The sample consists of

all firms drilling at least 10 gas wells in the year of analysis, and wells drilled in township-

year with at least 3 wells. I exclude from the analysis all wells with missing fields, and wells

for which the first production date occurs before the drilling date, as they correspond to

data entry error. Panel A reports summary statistics of the firm’s characteristics. Panel B

reports well-level characteristics used to estimate the Arp model.
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Table 2: Firms’ Discount Rate and The Cost of Capital
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Table 3: Managers’ Project’s Idiosyncratic Risk Pricing
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Table 4: Instrumented Regression - Managers’ Project’s Idiosyncratic Risk Pricing
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Table 5: Firms’ Idiosyncratic Shocks and Peers’ Largest Idiosyncratic Shock In Township-

Year
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Table 6: Firms’ Performance and Managers’ Idiosyncratic Risk Pricing
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Table 7: Managers’ Project’s Idiosyncratic Risk Pricing and Firms’ Size
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Table 8: Year-over-Year Managers’ Share of Firm’s Budget Variation
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Table 9: Managers’ Project’s Idiosyncratic Risk Pricing and Managers’ Budget - Fields

72



Table 10: Managers’ Project’s Idiosyncratic Risk Pricing and Managers’ Budget - Agency

Effect
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Table 11: Managers’ Project’s Idiosyncratic Risk Pricing, Internal Agency Frictions and

Costly External Financing

74



Table 12: Managers’ Project’s Idiosyncratic Risk Pricing - Real Option Effect (1)
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Table 13: Managers’ Project-Level Idiosyncratic Risk Pricing - Leverage Effect
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Table 14: Managers’ Project’s Idiosyncratic Risk Pricing - Futures Price
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Table 15: Managers’ Project’s Idiosyncratic Risk Pricing - EIA State’s Wellhead Price
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Table 16: Managers’ Project’s Idiosyncratic Risk Pricing - Alternative Design
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Table 17: Managers’ Project’s Idiosyncratic Risk Pricing - Alternative Threshold Value
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Table 18: Managers’ Project’s Idiosyncratic Risk Pricing - Time Trend
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Table 19: Arp Model Estimation
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Table 20: Idiosyncratic Shocks and The Stochastic Discount Factor
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Table 21: Projects’ Idiosyncratic Risk and Probability of Dry Hole
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Table 22: Managers’ Project’s Idiosyncratic Risk Pricing and Hadlock-Pierce Index
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Table 23: Managers’ Project’s Idiosyncratic Risk Pricing and Firms’ Private/Public Status
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Table 24: Managers’ Project’s Idiosyncratic Risk Pricing and the Cleary Index

87



Table 25: Managers’ Project’s Idiosyncratic Risk Pricing and the Whited-Wu Index
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Table 26: Managers’ Project’s Idiosyncratic Risk Pricing and the Kaplan-Zingales Index
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Table 27: Managers’ Project’s Idiosyncratic Risk Pricing and Managers’ Budget - States
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Table 28: Firms Characteristics and Projects’ Risk
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Table 29: Managers’ Project’s Idiosyncratic Risk Pricing - Real Option Effect (2)
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CHAPTER 2 : Real Option Exercise: Empirical Evidence

Every investment decision made by a firm is both a decision about which capital project

to pursue as well as when to pursue it. The flexibility associated with the timing of invest-

ment decisions has value to the firm; this value is commonly referred to as real option value

(Myers and Turnbull 1977). Real options are a central component of models of the macroe-

conomy (Bernanke 1983), and their exercise has received ample attention in the corporate

finance theory literature (e.g., Dixit and Pindyck 1994; Kellogg 2014). Moreover, existing

corporate finance theories hypothesize the importance of peer exercise decisions and infor-

mation revelation in determining exercise behavior.1 However, despite the importance of

real options, micro-level empirical evidence on exercise behavior remains limited.2 In this

study, we provide novel evidence on the real option exercise behavior of firms and directly

assess the role that peer effects and information externalities can have on exercise decisions.

Characterizing firms’ real option exercise behavior is empirically challenging. First, detailed

data on the timing flexibility associated with capital projects is typically unavailable. Sec-

ond, to understand a firm’s exercise behavior, one would need data on both the projects

that a firm decides to undertake, as well as those it decides not to pursue. This level of

disclosure is often not available. Third, being able to observe key inputs that might drive

option exercise decisions is necessary in order to characterize exercise behavior; these would

include expected project cash flows, costs, and volatility of project cash flows. Fourth, in a

competitive setting where peer firms’ exercise behavior can have an influence, one needs to

be able to precisely measure the actions taken on peer firm projects in order to gauge their

potential impact. Fourth, one needs to develop an empirical framework to appropriately

identify the effect of peer behavior and mitigate potential endogeneity concerns.

1See Grenadier 1996, Grenadier 1999, Grenadier 2002, Novy-Marx 2007, Grenadier and Wang 2005,
Grenadier and Malenko 2011, and Scharfstein and Stein 1990.

2Kellogg 2014 studies oil drilling activity and finds that oil price volatility affects investment decisions
in a manner consistent with real option models. However, the study, which focuses on fields operated by a
single firm, does not assess the importance of information externalities across firms. Moel and Tufano 2002
study mine opening and closing decisions relative to what real option theories would imply; however, their
setting is also not conducive to assessing the importance of peer effects and information externalities.
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This study focuses on a setting which allows us to make significant progress on each of these

challenges. We analyze $107.9 billion in capital projects composed of exercised and unex-

ercised natural gas shale infill well drilling projects in major shale developments in North

America. First, the institutional structure of this setting allows us to have clear visibility

into the timing flexibility firms have in making drilling decisions. Second, because of the

institutional structure of lease contract terms we are also able to observe both exercised

and unexercised options at any given point in time. Third, because the key determinant of

project cash flow is the price of natural gas, a commodity whose expected price and implied

volatility are readily observable to the econometrician from financial derivatives, we have

the inputs necessary to characterize investment behavior. Fourth, due to the regulatory

environment of the shale fields in our setting, we are able to observe and precisely measure

neighboring activity from peers.3 Third, and finally, we develop an empirical framework

which uses novel quasi-exogenous variation in peer activity to mitigate some of the chal-

lenges in identifying peer effects.

Our empirical design to assess the exercise behavior of firms is based on a duration analysis

using a hazard model. The objective of using this empirical framework is to compute how

different factors affect the probability of exercising an option at time t, conditional on the

option having not been exercised up to time t. The data in our sample is conducive to this

type of analysis because each option has a well-defined starting point, we can clearly observe

when an option is exercised, and we have detailed data on how covariates vary during and

up to the time of exercise. This empirical specification is consistent with others that have

modeled drilling decisions (Kellogg 2014).

We find that the likelihood that a firm exercises its real option is strongly related to peer

exercise behavior. Specifically, a 1-standard-deviation increase in adjacent peer project ex-

ercise activity is linked with between a 10.9% and 38.2% increase in exercise likelihood.

These magnitudes imply that peer behavior can be as economically important as baseline

3This is a key distinction from Kellogg 2014, who focuses on single operated fields, where only one firm
operates in each area.
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real option inputs, such as commodity prices and volatility, in determining exercise de-

cisions.4 We show that our baseline peer effect result holds after mitigating endogeneity

concerns linked with peer exercise decisions as well as across a series of robustness tests.

Corporate finance theory provides a rich set of extensions to baseline real option models

highlighting the importance of peer behavior and information revelation for exercise de-

cisions (e.g., Grenadier 1999; Grenadier and Wang 2007; Grenadier and Malenko 2011;

Novy-Marx 2007). Our empirical framework is well suited to assess these theories. In most

other settings, even the task of defining the set of peers can be a challenge.5 In our setting,

geographical proximity of real options to one another provides a natural way to define peer

sets. Specifically, we precisely observe how firms respond to adjacent competitor project

exercise decisions, because our data are granular enough that we can observe the specific

drilling units (real options) a firm has, as well as the adjacent drilling units operated by

competitors. The grid pattern of drilling units in the shale fields in our setting are such that

every 6-sq. mi. township is divided in thirty-six sections and for each section in our sample,

we have eight adjacent sections to it. We can take advantage of the significant variation

in neighboring activity to evaluate two possible channels through which peer exercise could

affect exercise decisions.

First, as Grenadier 1996 highlights, firms may face a common pool problem, in which case

they may decide to exercise early because the common pool of resources could be drained

by neighboring competitors and hence unravel any option value to wait. However, this phe-

nomenon is unlikely to explain exercise behavior because shale rock lies deep underground

and traps hydrocarbons tightly. It is only under very intense pressure (hydraulic fractur-

ing or “fracking”) that the highly nonpermeable rock releases hydrocarbons, with minimal

impact on neighboring nonfracked shale rock. If shale gas were a significant common pool,

4Like Kellogg 2014, we find that commodity price and implied volatility are linked with exercise decisions
in our setting.

5In a broad cross-section of firms, defining peer sets, often through industry classification, can be chal-
lenging (see Hoberg and Phillips 2016). Defining geographic proximity at the firm level represents another
challenge; for instance, headquarter location (easily observable) might act as a poor proxy for the location
of firm operations.
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one would likely see only a few wells being drilled to extract natural gas, which is in sharp

contrast to the dense drilling that one actually observes in shale gas extraction. Because

Kellogg 2014 focuses on the exercise behavior of conventional nonshale oil wells, that study

focuses on single operated fields to avoid the common pool problem. Given our focus on

shale wells, we are able to analyze the exercise behavior of infill wells with adjacent activity

without confounding issues related to common pools.

Second, we evaluate the role that competitor exercise behavior has in providing potentially

important information externalities. As Grenadier 1999 points out, information revelation

through real option exercise decisions is a key dimension through which real option exercise

behavior differs from financial option exercise behavior. However, micro-level empirical

evidence attempting to quantify the potential importance of information revelation remains

limited. We find direct evidence that information externalities linked with peer behavior

are important. Specifically, we find that firm exercise activity is most strongly linked to

peer exercise decisions when peers have more experience in drilling natural gas shale infill

projects. Firms with the most experience in a field are higher up the learning curve in terms

of how to extract natural gas, so the information revealed from their exercise is likely more

valuable.

What is the nature of the information firms obtain from adjacent exercise activity? Adjacent

exercise activity could inform a firm on how to better extract reserves from its own project.

Specifically, adjacent exercised projects reveal detailed information on the “target” depths

at which the formation was drilled, which helps firms target their own drilling prospects

better. Further, public disclosures require information to be disclosed on the mix of fracking

chemicals and techniques applied to drill and complete a well; this information then can be

used by peer firms to determine which approach will allow them to extract natural gas most

efficiently from their own reservoir (e.g., Covert 2015).6 Lastly, adjacent exercise activity

by peer firms also could be a reflection of some private information about rock quality a

6See fracfocus.org for examples of public disclosures.
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firm has which is not yet publicly known, so that observing a peer firm exercise could cause

a firm to update positively on the rock quality of a project. All these reasons highlight

how neighboring peer exercise activity can lead to economically important information

externalities that can result in upward revisions in project value.

A central concern when evaluating the effect of peer exercise decisions is endogeneity. For

example, common characteristics (e.g., shared geology or technology) may be driving the

exercise behavior of both the firm and its neighboring competitors. This common unob-

served factor is a well-established source of endogeneity that leads to the reflection problem

(Manski 1993). To mitigate this endogeneity concern we develop novel quasi-exogenous

variation in peer firm exercise activity.

Our primary identification strategy relies on the idea that beyond the net present value

(NPV) of a project, the relative rank of a given project in a firm’s portfolio of capital

projects may also matter for investment exercise decisions.7 Therefore, two peer firms with

adjacent projects of similar NPVs could undertake exercise decisions differently due to the

relative rank of their project within each firm’s portfolio of projects. For each real option in

our sample, we construct the average relative rank percentile of adjacent projects within the

peer firms’ portfolio of projects at each point in time. We use this variable to instrument

for adjacent peer project exercise activity. We find evidence, using both instrumented and

reduced-form versions of this measure of quasi-exogenous variation in peer exercise activity,

that the adjacent exercise behavior of peer firms affects the exercise behavior of a firm.

The identification assumption of our empirical design is that the relative rank of the NPV of

an adjacent real option in a peer firm’s portfolio affects a firm’s own exercise decision only

through its effect on the likelihood that the peer firm will exercise that adjacent option,

and not through another channel. While this assumption is not directly testable, we can

provide several pieces of evidence that support it. First, if a common characteristic affected

7It is well established that firms cannot pursue all positive NPV projects at the same time because of
operational, labor, or capital constraints. Hence, project ranking is a commonly used tool to select only the
most profitable projects (see Berk and DeMarzo 2016 as an example).
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both the relative rank of a peer firm’s real option as well as the exercise of a firm’s own

real option, then the exclusion restriction would be violated. In such circumstances, one

might expect highly ranked projects by different firms would tend to cluster in the same

area, and we show this is not the case. Specifically, we show that after controlling for local

geography fixed effects, which essentially controls for the absolute NPV of a project, the

relative rank of adjacent projects owned by peer firms is uncorrelated with the relative

rank of a given project within a firm’s own portfolio.8 Second, we show that our results

hold when we limit our sample only to the real options with low relative rank within a

firm’s portfolio, while its peer firms’ adjacent projects’ relative rank is high. Third, we

find that firms still respond to peer exercise decisions on units that are directly adjacent

to theirs, even after controlling for peer exercise decisions on projects elsewhere. Fourth,

we find that firms’ response to adjacent peer exercise decisions is concentrated around the

activity from peers with substantial experience in extracting shale in the area of interest.

Taken together, these tests make significant progress in addressing the primary endogeneity

concerns in measuring responses to peer real option exercise decisions, and set a high bar

for alternative explanations. Specifically, an alternative explanation would need to reconcile

why the relative NPV rank of a given project in a peer firm portfolio would have a direct

effect on a firm’s exercise decision for a reason other than peer exercise activity, when that

relative rank is uncorrelated with any metric that is linked with the absolute NPV of a

project ex ante.

Ideally one would want to have visibility into all real options a firm has to have a complete

rank ordering of projects. Despite the focused geographical scope of our study, we still

obtain strong statistical power from using the rankings of real options in explaining infill

option exercise decisions. This is consistent with the notion that drilling decisions are

typically made at the shale play/regional level, and, as such, the portfolio ranking within our

geographic area of focus, shale natural gas in Oklahoma, still results in a strong instrument.

8The relationship is not statistically significant. Further, throughout all specifications, we directly control
for the absolute quality of peer firm projects by using the production from the first well of each adjacent
peer units as a proxy for the NPV of the peers’ adjacent infill wells.
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That is, so long as the real option exercise decisions we study are made within the same

capital allocation category, the rank orderings we compute will give us enough statistical

power. A further concern could be that firms might have shale oil infill projects, which

are not included in our analysis, that could alter the interpretation of our tests. However,

shale oil infill options are much rarer in the data than shale gas infill options, largely

because of the much later adoption of fracking technology to oil. Specifically, for the median

observation during our sample period a firm’s infill option portfolio is composed of 7.8%

shale oil infill options and 92.2% shale gas infill options. Moreover, we find that shale oil

and shale gas infill options exist in geographically distinct areas, and, consistent with the

view that these projects are in distinct capital allocation categories, we find that there are

no cross-sectional differences in the explanatory power of our shale gas rank ordering on

shale gas infill decisions between firms with above-median shale oil infill options and firms

with below-median shale oil infill options.9

As a final set of analysis, we estimate the optimal stopping (exercise) time based on standard

real option models (e.g., Paddock et al. 1988; Dixit and Pindyck 1994). After incorporating

all the detailed granular inputs our setting affords into these baseline models, we find that

differences exist between actual exercise behavior and predicted exercise behavior. However,

we find that the baseline model’s predictions are closer to actual observed behavior once we

account for information externalities due to adjacent peer exercise decisions. Specifically, if

we model beliefs about the value of unexercised infill options to be a function of both the

production of the first well on a drilling unit and the adjacent peer exercise activity, we find

that exercise decisions are significantly closer to those predicted by theory.

By analyzing peer effects and social learning in the context of real option exercise behavior,

our study contributes to two important strands of the literature. First, we contribute to the

real option literature by empirically evaluating the importance of a broad set of theories,

9Given the limited amount of activity for shale oil infill projects in our sample there is much lower
statistical power to comprehensively study option exercise activity among these types of projects, so we
exclude these well types from our study. However, we undertake a series of tests in Sections 3.2.4 and 3.3,
to ensure that the presence of shale oil infill projects does not alter the interpretation of our main results.
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which hypothesize that information revelation and externalities may be an important com-

ponent of exercise decisions (Grenadier 1996; Grenadier 1999; Grenadier 2002; Novy-Marx

2007; Grenadier and Wang 2005; Grenadier and Malenko 2011). In particular, we show

that peer exercise is important relative to the predictions from standard real option models

(e.g., Dixit and Pindyck 1994; Kellogg 2014). To understand why this may be the case, we

focus on a setting where we can directly identify peer effects and the role of information ex-

ternalities in option exercise behavior (Grenadier 1999). Using a hazard model framework,

we show that information externalities from peer effects can have economic effects on the

same order of magnitude as natural gas prices and volatility. Second, our novel micro-level

evidence of the effect of peer activity on option exercise helps us contribute to the literature

on learning from peers. That literature documents that peer effects are important for a va-

riety of corporate decisions, such as those on investment policy (Foucault and Fresard 2014;

Bustamante and Fresard 2017), capital structure policy (Leary and Roberts 2014), and div-

idend policy (Greenan 2019). The economics literature provides evidence on social learning

and the adoption of new technologies (e.g., Foster and Rosenzweig 1995; Thompson and

Thompson 2001; Conley and Hudry 2010; Covert 2015). Covert 2015, in particular, relates

to this study, because he documents social learning on decisions related to what technology

to use to drill and complete wells. The evidence Covert 2015 provides is precisely the type

of information externality that can make social learning important for real option exercise

decisions. However, much of the existing literature related to social learning is focused on

how firms learn and invest (see Conley and Hudry 2010; Covert 2015). Our contribution is

to show that this peer learning also has an important impact on the timing of investment

decisions, that is within a real options context, peer learning affects when firms invest.
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2.1 Real Options in the Context of Shale Drilling

2.1.1 Project overview: Natural gas shale drilling

Our setting exploits the institutional features of natural gas shale development to study the

real option exercise behavior of firms. To extract shale natural gas, firms must first drill a

well with a horizontal leg into shale rock (typically more than a mile below the surface),

then complete the well by hydraulically fracturing (“fracking”) it. Drilling a well may take

a few days to a few weeks, whereas fracking is a separate process performed after drilling.

Both drilling and fracking entail substantial upfront capital costs of $4.7 million per well on

average in our sample. Once a well is completed, it produces natural gas and declines over

time. The critical features determining the cash flows are natural gas prices and the volume

extracted. Costs include lease operating costs and royalty costs, and typically comprise less

than 40% of a well’s revenues after the well is drilled. Cash flows are at their highest level at

the beginning of a well’s life and then decline over time as pressure from the well declines.

Once a well starts producing a firm can do little to cause the production to go up or down

outside of a well’s natural decline without risking damage to a well. Figure 10 plots the

cash flows and capital expenditures associated with drilling a well (see Gilje and Taillard

2016b for more details).

2.1.2 Infill drilling

One of the key features of our setting is the unique ability to observe the flexibility and

maturity that firms have on their investment options. Like Kellogg 2014, we focus on

“infill” drilling projects in order to have well-defined maturity assumptions. An “infill”

project corresponds to the decision to drill additional wells on a drilling unit (section)

that a firm already operates. The first (or existing well) on a unit contractually holds the

operatorship of the acreage as long as the first well produces; in this case the lease is said

to be “held by production” or HBP. A firm has the option to drill additional wells at any

point in the future so long as the initial well is still producing. This provides firms with
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options that have very long maturities as the life of the first well can range anywhere from

20 to 40 years. In all the natural gas shale developments that we study in Oklahoma, a

single drilling unit (section) of 640 acres can support up to 8 shale wells (or roughly up to

$37.8 million in capital expenditures). With 2,853 units representing up to $107.9 billion in

potential capital commitments, the infill options in this study represent capital investments

that are economically meaningful, with a significant degree of flexibility on when to exercise

these options. Figure 11 plots a timeline of the infill drilling decision.

A key advantage of focusing on infill drilling is that, unlike most studies of investment

decisions, we can observe both exercised and unexercised options. Indeed, drilling units

with only one existing well effectively contain many unexercised options as no additional

(infill) wells have been drilled in the unit yet. Our study focuses on the timing of the first

infill well in a unit. It is important to note that a firm could delay the exercise of the second,

third, and follow-up infill wells. However, we find that 90.2% of all infill wells are drilled

concurrently to the first infill well. As such, infill drilling does not seem to be exploratory

by nature but, rather, is a decision to extract significantly more resources from a unit that

has been held by production with the first well up to that point.

2.1.3 Measuring peer activity

The ability to analyze firm’s investment responses to competitors’ actions is a key novelty

of our study. We focus on the development of major natural gas fields across multiple

operators, a setting where information and other externalities may be more relevant. This

is a key distinction from Kellogg (2014), who focuses on single operated fields, where only

one firm drills a field.

The regulatory and land environment in Oklahoma lends itself well to further our under-

standing of how firms might react to adjacent drilling activity. Specifically, every drilling

unit in our setting conforms to Jeffersonian survey, and lies on a grid system with squares

that are one mile by one mile. Every 6 by 6 group of squares (thiry-six “units” in total)
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rolls up to a township survey (township level). This is attractive for several reasons. Every

drilling unit, by construction, has eight clearly delineated adjacent units. We observe every

natural gas well drilled in Oklahoma so we can observe the exact timing and nature of all

adjacent activity throughout our sample period. Second, we can use the township survey

information to control for potential geography or area specific effects in our econometric

specifications. Figure 12 plots the shale drilling activity in a township. The lines represent

the horizontal wellbores of shale wells. Sections in the grid are the drilling units; sections

with one wellbore have not yet been infill drilled; and sections with multiple wellbores have

been infill drilled.

2.1.4 Real option framework

The firm’s option to infill drill corresponds to the choice it has to spend capital to further

develop its proven natural gas reserves. As noted in the introduction, the timing flexibility

related to the investment decision to drill a well on proved reserves can be viewed as an

American call option (e.g., Paddock et al. 1988). Infill drilling maps nicely into the real

option framework: the capital needed to develop the reserves can be viewed as the strike

price of the option. The value of the reserves after capital has been expended, that is,

the producing proved developed reserves, corresponds to the underlying asset. The timing

flexibility a firm has to infill drill can be viewed as the time to maturity. Because the first

well on the section holds by production (HBP) the section as long as it is economically

viable, the option to infill drill has a long maturity attached to it; at least 20 years on

average. And as the decision to infill drill (exercise the option) can be made at any time

over this period, it can be viewed as an American call option. The cash flow volatility

of infill wells corresponds to the volatility of the underlying asset used in standard option

pricing model. Firms in our setting all produce the same commodity, natural gas, and the

market provides indicators of expected futures prices and volatility, both of which can be

used as inputs for an option pricing model, along with other inputs described in more details

in Section 4.
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2.1.5 Optimal exercise time and peer effects

It is well established that American call options on dividend paying underlying assets have

an optimal exercise time that can occur prior to maturity. As Dixit and Pindyck 1994 point

out dividends can be viewed as either explicit or implicit in the context of real options,

and broadly speaking can be viewed as the benefit a firm obtains from exercising an option

sooner rather than later. In our setting, a straightforward way of viewing the cost a firm

incurs by waiting is that future cash flows get discounted by a firm’s cost of capital. The

longer a firm waits to exercise, the more discounting will be applied to the underlying cash

flows generated by the well. Conversely, waiting (delaying drilling) confers the ability to

drill in future states of the world that exhibit higher natural gas prices. Therefore, one can

view early exercise as the result of a tradeoff between the value of early exercise from having

to discount cash flows less and delaying the exercise to get better natural gas pricing in the

future.10

All else equal, higher cash flow volatility tends to result in delayed investment, due to

the increased prospects of higher cash flows, while a higher cost of capital tends to result

in investment occurring sooner. The classic derivations of the optimal stopping time (see

Section 4 for more details) lead to a trigger rule, whereby a trigger value can be computed

such that it is optimal to exercise the option when the value of the underlying asset (natural

gas reserves) exceeds the trigger value from below for the first time. When natural gas prices

rise, it is more likely that the value of the underlying asset will exceed the trigger value.

Hence, commodity price increases will lead to earlier exercise of the real option all else

equal.

Natural gas prices and natural gas price volatility have clear predictions as to how they

might affect exercise based on a standard options framework, with volatility being negatively

correlated with exercise (more valuable to delay when volatility is high) and natural gas

prices being positively correlated with likelihood of exercise. We also include information on

10As we will see in Section 4, in our context, a firm’s cost of capital will correspond to the dividend rate
of a stock.
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nominal interest rates in our initial tests. Typically, a decrease in interest rates decreases

the discount rate and hence makes projects more valuable and hence more likely to be

undertaken. However, in the context of real options, the effect of interest rates is more

ambiguous because a decrease in interest rates makes waiting more appealing, as cash flows

in the future are valued more today.11

Assessing how peer effects alter option exercise behavior is the central focus of this study.

A broad set of theoretical papers claim that informational spillovers from peer activity

can be of first- order importance in understanding real option exercise behavior. The

mechanism underpinning these peer effects relate to the information content that is revealed

by the exercise of infill drill options on the eight adjacent drilling units (see Figure 13).

Specifically, the more infill wells being drilled nearby, the more information there is on

the depths and porosity of the formation, which will in turn inform a firm on how to

most efficiently extract natural gas from its own infill wells. Additionally, public disclosures

require information to be disclosed on particular chemical mixes and techniques of hydraulic

fracturing of “fracking” a well (see Covert 2015). This reveals information on techniques

that might work well for fracking a particular reservoir as well as those that might not work

as well. It is important to note that, even seeing a negative outcome in terms of production

in an adjacent section, that is knowing which “fracking” techniques do not work, will allow

a firm to learn how to better extract from its own section. Lastly, adjacent exercise activity

by peer firms also could be a reflection of some private information about rock quality a

peer firm has which is not yet publicly known; as such, observing adjacent exercise may

lead a firm to update positively on the rock quality of a project. Grenadier 1999’s develops

a theoretical framework of real option exercise to assess the potential impact of information

externalities from peer exercise activity. All of the reasons listed above justify why we

could see positive information externalities from neighboring activity in our setting and

thus validate the use of our setting to empirically assess Grenadier 1999’s main prediction

11The effect depends somewhat on whether a movement in interest rates (r) will have a commensurate
impact on the firm’s cost of capital (δ). See section 5.4 of Dixit and Pindyck 1994 for a more detailed
discussion of the topic.
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that peer exercise activity will lead firms to exercise early. Within the context of a classic

Dixit and Pindyck 1994 framework, the information externalities from peer effects result

in an upward revision of the underlying asset value, pushing firms closer to the optimal

“trigger” rule, all else equal.

2.2 Data

2.2.1 Construction of panel for hazard model

Our sample period begins in January 2005 and ends in December 2016. We construct

a panel of all units (sections) in Oklahoma with one horizontal natural gas shale well in

production.12 This first well confers the operator the option to infill drill the unit with

additional wells as described above. The number of these outstanding available options

gradually increases over the sample period. By the end of our sample in 2016, there is a

total of 2,853 infill drilling options, 680 of which have been exercised (˜24%). The number

of firms (operators) corresponds to 159. Table 30 reports the summary statistics for the

panel we use in the hazard model. In total our data is composed of wells in 442 townships

across every natural gas shale development in Oklahoma.

Our empirical analysis is based on the panel data of exercise decisions to infill drill on

sections held by production with the existing well (first drilled) on the section. The unit

of observation in this panel is at the drilling unit-month level. In total, our sample com-

prises 162,905 drilling unit-monthly observations prior to exercise. To test some of the key

predictions of the real option framework outlined in the previous section, we include the

18-month natural gas futures price from Bloomberg L.P. and 18-month implied volatility of

natural gas prices like in Kellogg 2014. We also include the 5-year nominal risk-free rate on

U.S. Treasury bond to capture the impact of interest rate movements. All these variables

are computed at the monthly frequency.

12Oklahoma contains both shale oil and shale gas. We only focus on wells designated as natural gas shale
wells on their drilling and completion reports, meaning the primary economic rationale for drilling the well is
the recovery of natural gas, not oil. Therefore, natural gas prices and natural gas price volatility are directly
related to the investment decision to drill a well in our sample.

106



To proxy for the expected value of the reserves that will be unlocked by exercising the

option to infill drill, we compute the present value of future cash flows generated by the

infill well using the futures curve for pricing, and an expected production profile based off

the unit’s first horizontal well’s production in its first year.13 Production data are reported

by the Oklahoma Corporation Commission and Oklahoma Tax Commission at the well level.

Finally, we estimate drilling costs in our sample. Drilling costs vary substantially over time

due to the supply and demand for drilling and completion services; however, they vary little

across operators and geography within a shale basin at any given point in time (Gilje and

Taillard 2016b). As such, we compute a single time-series for the average drilling costs

at the monthly frequency by collecting data on 996 wells from the Oklahoma Corporation

Commission (OCC) regulatory pooling documents over our sample period. These data

provide us with expected drilling costs by all firms who initiate the drilling of the first well

in a given drilling unit.14

The final set of variables relate to adjacent activity from the firm itself (own) and its peers

(competitors). Recall that each section can have up to eight neighboring infill options

exercised. We find that on average, over the entire sample period, there are 0.34 adjacent

options exercised by its peers and 0.40 by itself. Throughout our regression specifications,

to aid the economic interpretations in the tables, we standardize all variables related to

adjacent activity (adjacent peer exercise, adjacent firm exercise, and associated relative

ranking variables) to have a mean of zero and standard deviation of one. This scaling

does not affect the statistical significance of any variables, but does provide an attractive

economic interpretation of these variables such that the Hazard Impact factors relate to a 1-

standard-deviation change relative to the mean. Table 30, also highlights that the medians

are at zero reflecting the fact that many units do not have any infill wells during our sample

13The expected production of a well can be potentially modeled in many ways. We settled on the simplest
specification based on the first well in the drilling unit. Our results are robust to modeling different types
of technological improvements over time. Using the simple approach, we find that using the first well’s
production explains (R-squared) 64% of the variation in the second well’s production in the drilling unit
(i.e., the first infill well exercised).

14These data are used by other firms with ownership stakes in the drilling unit to decide whether they
want to participate in the well and pay their share of the drilling costs.
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period, the standard deviations do signal heterogeneity in neighboring activity. We exploit

this heterogeneity in our main econometric specifications. To address potential endogeneity

concerns, we also compute the ranking of each infill well based on the portfolio of options

an operator has at any given point in time. This variable can only be computed on a subset

of observations (103,451) and is defined as the relative rank of an infill option based on the

quality of the first horizontal well drilled on a drilling unit at a given point in time (see

Section 3 for details).

The key event that we use to determine whether an option is exercised is the “spud date”

of the first infill well. This is the date when drilling capital expenditure is initiated and

the drilling of a second well in the section begins and is directly observable from regulatory

filings from the Oklahoma Corporation Commission. From these data we know the precise

date, time, firm, and location (drilling unit) of the infill exercise decision. Figure 14A plots

the number of options exercised over time, while Figure 14B plots the amount of time firms

wait to exercise an option for the subset of options that are exercised. Because an option

only becomes available to exercise after the first well has been drilled on a drilling unit, the

number of options during the sample period is not the same over time. Figure 14C plots

the number of options over time, as well as the number of options exercised at any given

point in time.

2.3 Results

2.3.1 Peer effects and option exercise

To assess the factors that might affect real option exercise behavior, we perform a duration

analysis based on hazard functions. The objective of using a hazard function is that it

allows us to compute the probability of exercising an option, within an interval, conditional

on having not exercised the option up to the time of the interval. Specifically, the hazard

function is defined as:

h(t) = lim
s→0

Pr(t ≤ T < t+ s|T ≥ t)
s
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We parametrize the hazard function using a commonly-used semi-parametric approach:

h(t) = h0(t) exp(β1NGPricet + β2NGV olt + β3DrillCostst + β4IntRatet

+β5FirstWellProdi + β6AdjExerOwni,t + β7AdjExerPeeri,t)

This parametrization corresponds to the well-established Cox Proportional Hazard Model,

whereby the unit of observation is at the drilling unit-month level. This empirical design

determines the factors that make it more (or less) likely that the option to drill the first

infill well on a unit (section) is exercised. Once an option is exercised on a drilling unit it

is dropped from our sample. Specifically, our duration model specification models the infill

drilling decision as a “single-spell” data set, whereby each individual unit (section) enters

the data set when the first well in the section is drilled and exits either when the first infill

well is exercised (drilled) or is (right) censored if no infill wells are exercised prior to the

end of our sample period.15

We cluster standard errors at the township level in every specification, the appendix provides

further robustness tests of the econometric specifications. A useful baseline when conducting

hazard analysis is to plot the survival function; this allows us to observe the rate at which

options are being exercised in the sample, we do this in Figure 15. The plot begins at 1 and

then declines as time passes (in months) and options are exercised (and no longer survive).

By the end of the sample period, 23.8% of all options are exercised. Having established

this baseline hazard rate, we can then assess which covariates may cause a shift up or down

in the curve in Figure 15, that is, what are the factors that might lead firms to exercise

options sooner or later.

The focus of our study is on how neighboring peer project activity affects the baseline

15Most infill wells (90.2%) are exercised (drilled) concurrently with the first infill well. That is, when firms
exercise their first real option to do infill drilling, they typically exercise many infill options at once. Because
infill options tend to get exercised together, modeling the time to exercise of the first infill well is capturing
the main economic decision for reserve extraction in the unit; this modeling also allows us to maintain a
tractable modeling framework.
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hazard rate. To do this, we test the effect of neighboring peer activity on the decision to

exercise by calculating the number of adjacent drilling sections (as many as eight) that have

infill options exercised by peer firms at each point in time. We include this new variable as

well as a measure of the firm’s own adjacent activity in the parametrization of the hazard

function. To provide context for this peer effect, we include in our baseline specifications

the same set of variables as those found in Kellogg 2014. These include natural gas prices,

natural gas volatility, drilling costs and interest rates. Recall from Section 1 that standard

option theory makes prediction on these variables. For instance, as higher volatility makes

the option to delay more valuable, hence all else equal an increase in volatility should push

firms to delay investment. By including volatility of natural gas as a covariate (NGV olt),

we can assess whether this theoretical relationship holds in the data.

Table 2 shows the results. We find a strong positive relationship between the likelihood

of exercising and peer real option exercise activity. To facilitate the interpretation of the

adjacent real option exercise variables, we standardize the variables to have mean of zero and

standard deviation of one, so that each coefficient/Hazard Impact factor can be interpreted

as a 1-standard-deviation change relative to the mean. Specifically, a 1-standard-deviation

increase in adjacent peer infill exercise activity increases the likelihood that a firm will

exercise its infill option by between 10.9% and 38.2% depending on the specification. This

result is supportive of Grenadier 1999’s main prediction that information externalities play

an important role in the exercise decisions of firms.

Like Kellogg 2014, we find that natural gas prices and natural gas volatility affect real

option exercise decisions. Namely, we find that higher volatility reduces the hazard rate

(the rate at which options are exercised). Conversely, natural gas prices (NGPricet) have

a positive effect on the hazard rate, as an increase in the natural gas price increases the

value (NPV) of the project and makes the option to delay less valuable. In economic terms,

based on the Hazard Impact percentage in specification (1) of Table 31, we find that a

one standard deviation increase in natural gas price volatility decreases the likelihood of
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exercising an option by 14.0% (-3.23*4.32) relative to the baseline hazard rate. Alternatively,

a 1-standard-deviation increase in the price of natural gas increases the likelihood of exercise

by 26.1% (14.77*1.77) relative to the baseline hazard rate. These results hold across the

three specifications of Table 31. They suggest that firms’ behavior is directionally consistent

with these key predictors of option exercise activity. Furthermore, these magnitudes provide

important context for our peer effect results. Specifically, peer effects have an economic

impact on the same order of magnitude as some of the baseline real option model inputs

such as natural gas price and volatility.

Lastly, we also control for the quality of the first horizontal well drilled in the unit as well as

the estimated cost of the infill well in specifications (2) and (3) of Table 31. The intuition

behind the first of these controls is that the first well is an indicator of the quality of the

geology in an area: the more it produces, the higher the value of the additional infill projects,

and hence the more likely the option to infill drill will be exercised. Results in Table 31

support this hypothesis. Specifically, a 1-standard-deviation increase in the quality of the

first well results in an 88.5% (51.48*1.72) increase in the likelihood of exercise. Drilling costs

will vary over time; for instance, wages for qualified workers were rising over our sample

period (e.g., Bartik et al. 2018). These time-varying costs could affect option exercise

behavior by changing the strike price over time, so controlling for time-varying drilling

costs is also important. Results from Table 31 show no significant impact of drilling costs

on the likelihood of exercising early, similar to Kellogg 2014’s finding.

2.3.2 Endogeneity: Peer effects and option exercise

A potential concern with the interpretation of Table 31 is that the correlation between a

firm’s exercise behavior and its competitors’ adjacent exercise activity cannot necessarily

be attributed to a reaction to adjacent activity (Manski 1993). For example, a common

factor, such as shared technology or similar reserve quality, could affect both the adjacent

competitors’ decisions to exercise as well as a firm’s own decision to exercise. To address

this concern, we need to identify the exogenous component of adjacent exercise activity.
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Defining the instrument for peer activity

For the construction of our measure of exogenous variation in peer activity, we start from

the observation that firms typically face operational, labor, or capital constraints and thus

are unlikely to undertake all positive NPV projects at once. As such, they make decisions

to invest not only based on the absolute NPV of a project but also the relative NPV or the

rank of a project in a firm’s portfolio of capital projects.

The measure we construct can best be illustrated with an example. Figure 16 shows the real

options of three firms. Firm A has two separate drilling units, each of which is adjacent to

drilling units owned by firms B and C. Now assume that the NPV of firm A’s infill projects

and the infill project adjacent to it, owned by its peers, is $1 million. However, let’s also

assume that firm B has a portfolio of four additional real options with NPVs, if exercised

today, of $2 million, $3 million, $4 million, and $5 million, respectively. Alternatively, firm

C has a portfolio of real options with an NPV, if exercised today, of $0.90 million, $0.50

million, $0.30 million, and $0.20 million. All firms have positive NPV projects, but for firm

B the project adjacent to firm A is ranked fifth among its portfolio of projects, whereas

for firm C it is ranked first. Now assuming that these firms face some operational, labor,

or capital constraints, and firms can only undertake one project at a given point in time.16

Based on the rankings of these projects, we would expect firm B to be more likely than firm

C to exercise its project next to firm A, even though the projects have the same absolute

NPV. When firm C exercises, firm A benefits from the information on how to complete the

well, and information on the depths of the zone to target, while it has no new information

for its project next to firm B. Therefore, firm A benefits from an information externality

not due to any shared or common characteristic of the specific real option in question, but

due to the ranking within the existing portfolio of the other real options that firm C has.

The identification assumption is that the rankings of the projects in firm B and firm C’s

portfolios is exogenous relative to the investment opportunities that firm A has. We offer

16Our analysis assumes all projects have the same investment cost at a given point in time, a reasonable
assumption in our sample as Gilje and Taillard 2016b provide evidence that investment cost does not
significantly vary across firms in a given region for shale gas development.
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several tests in the next section to document that the project value of a given firm’s option

is unrelated to the relative ranking of the adjacent options owned by peer firms.

Table 3 reports whether rank ordering matters in option exercise decisions. The variable

we construct is the relative percentile of each infill project in a firm’s portfolio. Our rank

ordering is based on the production of the first horizontal well on a drilling unit.17 For every

month in the sample, for every firm, we rank the total number of natural gas shale infill real

options the firm has across the entire state of Oklahoma as of that point in time, and then

map that rank ordering to percentiles. So, for example, if a firm has 20 real options in its

portfolio, the number one well would be in the 95th percentile (1–1/20). As can be seen in

Table 32, the higher the percentile rank in a firm’s portfolio, the more likely it is that the

project is exercised. To ease the interpretation of the relative rank percentile coefficients,

the data has been normalized to have mean of 0 and standard deviation of 1. Therefore,

based on the different specifications found in Table 32, for a 1-standard-deviation increase

in percentile, a firm is between 65.8% and 84.9% more likely to exercise an option.

Instrumental variable approach

Table 33, panel A, reports the two-stage estimation, where Adjacent Peer Exercise Activity,

defined as the number of infill options exercised by peers adjacent to the drilling unit i at

month t, is the variable that is instrumented.18 The instrument we construct is the average

relative percentile of all adjacent drilling units owned by peer firms as of month t based on

the relative rank of each adjacent infill project in a peer’s portfolio of projects. The relative

ranking of each infill project will fluctuate over time; for example, if a peer firm adds real

options with strong first wells elsewhere, then the relative percentile will go down. If it

17We assessed the potential of several alternative measures for project ranking, including adjusting the
production of the first well by its vintage. We found that the unadjusted first well production had the highest
explanatory power over infill production, relative to any alternatives. Additionally, we find no variation in
the explanatory power of the first well production for infill productivity based on whether the well was
drilled early on or later in the shale development.

18Table 33 has fewer observations than Table 32, because we can only use our instrument once some
adjacent peer infill options exist: if a firm’s real option to infill has no adjacent infill options then there is
no relative rank from an adjacent peer that can be used to construct the instrument.
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adds real options with relatively poor first wells elsewhere, then the relative percentile will

improve. We include all control variables from the second stage of our model in the first

stage. The first-stage regression is given by

#AdjExercisedOptPeeri,t =

β1AvgRelRankPercAdjPeerProji,t

+Controls+ TownshipFE + εi,t

The second stage is given by the Cox proportional hazard model whereby the covariates are

comprised of our instrumented variable for neighboring peer activity from the first stage,

as well as a series of additional control variables. We correct for the estimation error in the

first stage in our Cox two-stage IV model by bootstrapping the standard errors (MacKinnon

2002). The appropriateness of this approach has been supported in recent literature (see

Tchetgen et al. 2015).19

Table 39 reports the full first-stage estimations with control variables. As can be seen

across the different first-stage specifications, our instrument, the average relative rank of

the adjacent real option peer projects, has high predictive power for the adjacent peer

exercise activity. In addition to the reported regression coefficients, we compute an F-test

statistic for our instruments in specifications (1), (2), and (3) and obtain values of 12.14,

11.01, and 10.79 respectively, suggesting an appropriate instrument in our setting.20 In

our second-stage estimations, we directly control for the absolute NPV of adjacent peer

infill projects by including the average production from the first (pre-infill) well of adjacent

infill peer options as a control. The underlying assumption of this instrument is that the

only dimension through which it affects our key dependent variable of interest, the exercise

decision of a firm, is through the exercise behavior of peers. We provide a number of tests

19We document the robustness of our main two-stage models by estimating both IV probit and IV 2SLS
models on our data and obtain similar results to our main Cox model tests, see Tables 41, 42, 43, and 44
and our related discussion in Section 3.2.3.

20We also report the first-stage regression in Table 39 without the instrument, including the instrument
has minimal effect on the sign, magnitude, and statistical significance of the other control variables.
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supporting this assumption in Section 3.2.4. Among the control variables, the only one

that loses significance in the instrumental approach (relative to Table 31) is the implied

volatility of natural gas prices. We directly test whether our instrument is correlated with

implied volatility. The correlation between implied volatility and our instrument is slightly

negative, -0.0245, but not statistically different from zero. Further, while the coefficient

does lose its statistical significance, it remains firmly in the general range of the baseline

estimates. Given the economic channel through which the instrument affects peer activity,

this evidence does not suggest that our instrument is operating through any effect on the

implied volatility. We also report a regression specification relating volatility to adjacent

peer ranking and a firm’s own project ranking, along with controls in Table 40, and find no

statistically meaningful relationship between these variables and implied volatility.

Overall, the results from Table 33 suggest that the economic interpretation from Table 31

still holds when we use an exogenous source of variation in adjacent peer exercise activity

driven by the relative rank of projects in peers’ portfolios. For ease of economic interpreta-

tion for our key variable of interest, we report the coefficient on the standardized variable, so

each coefficient/Hazard Impact factor can be interpreted as a 1-standard-deviation change

relative to the mean. As such, a 1-standard-deviation increase in our instrumented adja-

cent peer options exercised leads to between a 79.1% and 94.0% increase in the likelihood of

exercising the option to infill drill. We should be careful to note, as with any instrumental

variable estimates, these economic magnitudes should be viewed as local average treatment

effects. That is, these are effects on outcomes (exercise behavior) that could conceivably be

influenced by the instrument, as opposed to outcomes on real options that are too far out

of the money to be exercised, or too deep in the money they would be exercised regardless

of adjacent peer activity.

Robustness tests

We first report the reduced-form results in Table 33, panel B, for robustness. This regression

is still subject to the exclusion restriction, which in our case means that the relative ranks
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of adjacent projects only affect a firm’s decision to exercise via the relative rank’s effect on

adjacent peer project exercise decisions. By not instrumenting we lose the economic inter-

pretation of the coefficient on the number of adjacent peer exercised options, but maintain

the overall intuition of the result reported in Table 33, panel A: firms’ exercise decisions are

affected when a project has plausibly exogenous exposure to a variable that affects adjacent

exercise behavior (relative rank percentile of adjacent peer projects (β6)).

We retain the Cox model as the primary specification in the paper because we are studying

the motivation behind the decision to exercise real options, and this decision is dynamic

by nature: firms have to decide in each period whether to exercise or not, conditional on

not having exercised until then. A natural econometric specification for this is the duration

model (like in Kellogg 2014). The hazard function allows us to approximate the probability

of exercising the option, conditional on having not exercised until then. This modeling has

been used in other contexts in corporate finance (e.g., Leary and Roberts 2014) and has

several advantages. One of the main advantages in the context of our study being that the

hazard function can easily be made to depend on time-varying variables and has a natural

interpretation.

Linear probability models and probit specifications both face several drawbacks. First,

even though the decision to exercise is binary, a linear specification implicitly assumes

that the outcome variable can be nonbinary and even negative. This is one drawback of

using the linear probability model. Second, both the linear and probit models are not

well suited to capture the dynamic nature of the decision to exercise. Even for probit (or

logit) models that accommodate for the binary nature of the left-hand-side variable, these

modeling approaches aim to explain the proportion of exercised options across the entire

sample at any given point in time, which is different from what the hazard models capture

in terms of the variables that influence the probability of exercise at time t, conditional on

not having been exercised up to that time. Third, censoring the data is another impediment

to implementing traditional methods such as linear probability models or probit regressions.
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In our setting, the censoring bias is caused by the fact that we only observe the data until

the end of the sample (right censoring); for firms that do not exercise prior to the end of the

sample period, we only know that they did not exercise their option until that point in time.

Although the linear and probit specifications do not have a natural way of handling this

right censoring issue, the maximum likelihood estimations (MLE) of Cox hazard models are

well suited to handle this specific type of right censoring (see section 20.3.2 of Wooldridge

2002).

That being said, estimating models using the IV 2SLS (two-stage least squares) and IV

probit frameworks is informative in assessing the robustness of our estimates to the choice

of estimation model. As such, we perform two other specifications for the IV approach

based on an IV probit and IV 2SLS specification for which the statistical properties are well

established. Namely, in Table 41, we run an IV probit specification, where the second stage

is a probit modeling of the exercise decision instead of a duration model. The coefficient

on the instrumented adjacent drilling activity of peers is positive and significant. Table 42

provides the results for the IV 2SLS specification. Again, we find a positive and significant

loading on the instrumented adjacent peer activity variable.21

Throughout all our main specifications, we have clustered the standard errors at the town-

ship level. In Tables 45 and 46, we rerun Table 33, panels A and B, but this time we allow

for clustering at the township and year levels (double clustering). Our results remain robust

to the double-clustering approach.22 The double-clustering results typically yield smaller

standard errors (i.e., higher t/z-statistics) than one-way clustering by township, hence to

be conservative we report township clustering for our main results.23 Taken together, the

evidence in this section suggests that our primary findings are robust across several different

21In terms of economic magnitudes, an increase in adjacent peer activity by 1-standard-deviation, relative
to the mean, is associated with an increased proportion of infill options exercised of between 94% and 145%.
This effect is the same order of magnitude as that in our main tests in Table 33.

22Tables 43 and 44 also provide further support for the results found in the context of the IV probit and
IV 2SLS specification when clustering of standard errors at the township and year levels (double clustering).

23Table 47 documents that our main results are robust to including a control for the first well being drilled
(“purchasing an infill option), and Table 48 documents that our main results are robust to including operator
fixed effects.
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econometric specifications.

Internal validity

In this subsection, we undertake several falsification tests to assess the validity of the in-

strument we outline above. While the exclusion restriction cannot be tested directly, we can

assess the plausibility of some potential explanations that would invalidate our instrument.

One potential explanation which might be problematic for our instrument would be if all

firms had similar locations for their high percentile wells. For example, if all firms had their

90th percentile wells in one township, and their 80th percentile wells in another, such clus-

tering would render inference problematic. Although our main tests include specifications

with township fixed effects and township level clustering, which would control for an overall

township effect, if there is clustering within townships of high percentile groups in some

areas and low percentile groups in other areas, it would be problematic as one could argue

the instrument might proxy for the absolute value of the NPV of a project and not just the

relative NPV of a project. We also directly control for production from adjacent peer wells,

which should alleviate this concern to some extent. Nonetheless, we can also directly assess

the impact of this possibility when we regress the relative rank of a real option in a firm’s

portfolio on the relative rank of the real options owned by peers that are adjacent to it at

a given point in time, like in the regression below:

RelRankPercOwnProji,t =

β1AvgRelRankPercAdjPeerProji,t

+TownshipFE + εi,t.

The unit of observation is at the drilling unit i, month t level, and Table 34 estimates

the ordinary least squares (OLS) regression. As can be seen the coefficient β1 is neither

statistically nor economically significant, suggesting that once township fixed effects are

controlled for (as they are in our main specifications in Table 33), there is no correlation
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between the percentile rank of a given real option and the average percentile ranks from

adjacent peer firms’ surrounding real options. This test provides evidence against the idea

that all firms have their 90th percentile wells clustered together somewhere, and their 80th

percentile wells clustered somewhere else in a way that would confound our tests.

Conceptually, this makes sense as prior to any wells being drilled firms go out and lease

drilling acreage when not much information is known about the natural gas resource. Firms

thus end up with different portfolios which can be quite dispersed in terms of their potential

(see Figure 17); this is the variation that is being exploited with our instrument.

An alternative way to test whether the clustering of relative project quality is driving our

results is to look at situations where a real option is ranked low in a given firm’s relative

percentile rank (below median), whereas the adjacent real options are ranked highly based

on peer relative rank (above median). Specifications (1) and (2) of Table 35 report results

on this subsample of real options with highly dispersed relative rankings, and as can be seen

from the table, our main result holds.24 Overall, we find magnitudes higher in these tests

than our baseline regressions, which is consistent with the idea that information externalities

become more important when relative ranks are more dispersed.

Another potential concern with our identification is whether a firm exercises its real option

because of the action of a competitor (adjacent exercise) or a characteristic of an adjacent

competitor as described in Manski 1993.25 For example, one might imagine that a competi-

tor exercising their option on an adjacent drilling unit also might be pursuing significant

drilling activity (exercising other real options) elsewhere in the region, which might signal,

for instance, an overall improvement in extraction technology going forward. In this case,

a firm and its competitor are both deciding to exercise options that are adjacent to each

other, but it is not because the firm is responding to information externalities from the

competitor’s actions taken on the neighboring drilling unit, but rather, due to the general

24Township fixed effects for this model are not well identified because of the dramatically reduced sample
size, and much of the sample is absorbed by township fixed effects.

25Leary and Roberts 2014 articulate this issue in detail as it relates to their capital structure analysis.
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activity of the competitor taking place both nearby and elsewhere.

To assess empirically whether our main coefficient of interest for peer effects is affected by

such characteristics, we look at competitors with adjacent drilling units and test whether

their drilling activity outside of the township also bears an influence on a firm’s decision

to exercise. Our hazard regression in Table 36 includes this measure as an additional

explanatory variable (“Regional” activity). We find that our main coefficient of interest for

peer exercise activity is unaffected by the inclusion of this control variable. Furthermore,

we also find no consistent direction in the effect of the “Regional” activity variable across

model specifications. Overall, this evidence supports the view that firms are influenced by

peers’ activity when it occurs on the drilling units directly adjacent to them, consistent

with the information channel hypothesized.

Lastly, while we exclude any oil infill projects from our main analysis, we still assess the

potential impact of their exclusion from the analysis on our instrument. It is important to

note that shale oil infill options are much rarer in the data than shale gas infill options,

largely due to the much later adoption of fracking technology to oil shale. Specifically, for

the median observation during our sample period a firm’s infill option portfolio is composed

of 7.8% shale oil infill options and 92.2% shale gas infill options. A concern would be that

for firms with different oil exposures the rank ordering variable we compute among natural

gas projects would have a different impact on natural gas infill drilling decisions. To assess

this concern, we split our sample by above- and below-median oil-infill option exposure and

rerun Table 32 across the three sets of specifications for both subgroups separately. As we

report in Table 49, above- and below-median oil exposure firms have the same relationship

between their natural gas shale project rank ordering and shale gas infill exercise decisions.

As we show at the bottom of the table, none of the coefficients across these subgroups are

economically or statistically different from one another. Overall, these results are consistent

with the idea that firms allocate capital separately across shale oil and shale natural gas

projects and provide no support for oil infill options confounding the use of the shale gas
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relative rank measure we rely on for identification.

2.3.3 Information content of adjacent exercise activity

After having established that firms react to neighboring exercise activity when making their

own exercise decisions, we set out to investigate the possible channels behind this result.

To do so, we reestimate the hazard model from Table 31 with adjacent exercise activity

as an explanatory variable, but this time, we decompose the adjacent exercise activity by

competitor type. In particular, we define experienced and inexperienced competitors as

those with above- (respectively below-) median drilling activity in Oklahoma at the time of

exercise.

In an information transmission framework where agents do not have perfect information on

the value of their drilling prospects, operators will look for informational cues from more

experienced operators about the drilling opportunities in and around their own prospects

(e.g., Grenadier 1999). Moreover, the type of information disclosed via well completion and

fracking reports is likely more useful when performed by more experienced firms that are

higher up the learning curve in a given resource development. Under this hypothesis, we

would expect firms to react more strongly to adjacent exercise behavior from experienced

operators.

Table 8 shows the results of our empirical decomposition of neighboring activity. We stan-

dardize both of our inexperienced and experienced adjacent activity variables so that we

can more readily make a direct comparison between the two coefficients. Specifically we

normalize these variables to have a mean of zero and a standard deviation of one. We

find that firms exhibit a strong reaction to the adjacent exercise activity of experienced

competitors. The economic magnitudes are similar to Table 31’s results. These results sup-

port Grenadier 1999, whereby operators make specific inferences from their competitors’

exercise of real options. In particular, their exercise behavior is influenced by the exer-

cise activity of experienced operators, and thus experienced operators seem to be creating
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positive informational spillovers when exercising their real options.

Finally, while we mentioned in the previous section that oil infill options comprise only

a small fraction of the portfolio of infill options our sample firms hold, we still assess how

adjacent oil infill option exercise could confound the interpretation of the main informational

effect we identify. First, it is important to highlight that shale oil and shale gas infill options

exist in geographically distinct areas. Two-thirds of the townships in the study do not have

any oil-related infill options. Further, even in the townships with oil infill options, the

median number of sections with an oil infill option is less than 10% of the total (3 of 36).

To empirically assess whether learning from adjacent nearby oil infill options could confound

our main tests, we replicate the main panels in Table 33 focusing on only the townships

that have natural gas shale. Table 50 (panels A and B) reports these tests. The idea is

to test whether limiting our data set to areas where learning from oil drilling cannot occur

alters our main coefficients. The coefficients we identify on this subset are nearly identical

(and remain statistically significant) to the main tests of the paper. This result provides

evidence that potential information externalities from shale oil are not meaningfully altering

the main interpretation of our findings.

2.4 Real Option Framework and Optimal Exercise Time

In this section, we aim to relate the observed exercise behavior to the optimal exercise

behavior predicted by real options models. Our data provides us with the unique ability

to compute the inputs a firm would have if it were to follow real option decision rules

following the classic real options models of Paddock et al. 1988 and Dixit and Pindyck

1994. We calibrate these models to our data to derive optimal exercise thresholds, that is,

conditions to be satisfied if firms are to exercise in an optimal manner. We then adjust

the framework to take into account information externalities from adjacent peer real option

exercise activity and compare both calibrations to the actual exercise behavior observed in

the data. The appendix extends these results by calibrating the dynamic discrete choice
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model of Rust 1987 that was first applied to the oil and gas industry in Kellogg 2014.26

2.4.1 Value of underlying asset

To apply a real option framework, a first necessary step is to ascertain the value of the real

option’s underlying asset. In our context, the underlying asset corresponds to the natural

gas reserves that are being developed when the real option to infill drill is exercised. To ob-

tain the expected value of a well’s developed reserves (V ), we rely on a set of commonly used

assumptions to estimate (1) the expected production volume out of the reserves (in mcf),

and (2) the expected net profit per mcf produced. Production volumes are estimated as-

suming that the well reserves deplete following an exponential decline rate model (Fetkovich

et al. 1996). More precisely, we rely on the exponential Arps model properties to estimate

the production out of the reserves.27 Second, we make the simplifying assumption that the

18-month futures price of natural gas can be used to compute the price per mcf obtained

over the life of the well (P ), and that firms discount their cash flows at a flat discount rate

(µ). Third, the net profit per mcf is obtained by taking into account the operational cost

(φ), the royalty rate (ρ), the accounting depreciation rate (θ) and the corporate tax rate

(τ) such that Π = P [(1− φ− ρ)− τ (1− φ− ρ− θ)].

The expected value of a well’s developed reserves (at time of exercise) is given by:

V = E[

∫ ∞
t=0

Qe−ωt︸ ︷︷ ︸
(1)

∗Πe−µt︸ ︷︷ ︸
(2)

dt]

The first term of the value equation, E[Q]e−ωt, corresponds to the Arps model estimates of

monthly production at time t where E[Q] is the well’s expected production baseline (i.e.,

its initial production level), ω is the reserve annual depletion rate, and t is the well’s age,

with t = 0 corresponding to the time of exercise. The second term of the equation, Πe−µt,

26This extension does not alter our conclusions of this section.
27Several recent papers have referred to the Arps model to obtain oil or gas well’s reserves estimates (See

Kellogg 2014 and Covert 2015).
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corresponds to the (discounted) price obtained for the well’s natural gas at time t. Solving

for the integral, we get a simplified expression for V :

V = E[Q]
Π

µ+ ω
.

Thus, the value of the developed reserves is a function of the well’s expected production

baseline (E[Q]), profit per mcf (Π), discount rate (µ), reserves depletion rate (ω).

In terms of comparative statics, the expected reserve value (V ) increases with price (P ),

and expected production baseline (E[Q]).28 Conversely, the expected reserve value (V )

decreases when the discount rate (µ), the operational cost (φ), the royalty rate (ρ), the

accounting depreciation rate (θ), the corporate tax rate (τ), or depletion rate (ω) increases.

2.4.2 Optimal exercise time

The option to expend capital in order to develop shale natural gas reserves through infill

drilling corresponds to a real option. Firms in our sample can decide when to exercise these

real options and a large body of work has been developed to establish both the pricing of

these real options as well as their optimal exercise (stopping) time.29

Given that the real option in our study can be viewed as an American call option on the

underlying reserves, the optimal exercise time for the real option is derived similarly to the

optimal exercise time for an American call option. It is given by a “trigger” rule whereby

the option should be exercised, or “triggered,” when the expected value of the underlying

reserves (V ) crosses from below the optimal threshold value (V ∗) for the first time. Defining

I as the drilling costs of the well, the threshold value is given by

V ∗ =
β1

β1 − 1
I

28V = E[Q] Π
(µ+ω)

. Thus, ∂V
∂ω

= −E[Q] Π
(µ+ω)2

< 0.
29Detailed derivations can be found in Paddock et al. 1988 and chapters 5.2 (pp. 140–43) and 12.1 (pp.

396–403) in Dixit and Pindyck 1994.
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where

β1 =
1

2
− (r − δ)

σ2
P

−

√[
(r − δ)
σ2
P

− 1

2

]2

+
2r

σ2
P

Thus, the optimal threshold value (V ∗) depends on the drilling costs (I), the risk-free rate

(r), the dividend rate of the project (δ), and the volatility of the underlying project value

(σP ). From a simple comparative static analysis, the optimal threshold value increases with

drilling costs (I), the risk-free rate (r), and the volatility of the underlying project value

(σP ). Conversely, when the dividend rate of the project (δ) increases, the optimal threshold

value (V ∗) goes down.30

2.4.3 Estimates for real option input variables

An attractive feature of our setting is that we are able to obtain all of the inputs needed to

compute both V and V ∗ defined above and thus empirically test whether the predictions of

the real option framework are reflected in the exercise behavior observed in our sample.

Estimating the underlying asset value

To compute the V of each wells at any time period, we need estimates for the following

parameters: Π, µ, E[Q], ω and for Π, we need estimates of: P , φ, ρ, τ , θ. We provide both

the data source and the necessary computations (if necessary) for each one of these inputs

below.

Recall that the net profit per mcf is given by: Π = P [(1− φ− ρ)− τ (1− φ− ρ− θ)]. For

the price per mcf over the life of the well (P ), we use natural gas price data from Bloomberg.

Specifically, like in our main hazard model specifications and consistent with Kellogg 2014,

we use the 18-month futures price of natural gas to proxy for the overall natural gas prices

over the life of the well.

Lease operating costs (φ) are the costs incurred after initial drilling and completion to

maintain production during the life of the well. To estimate these costs, we collected data

30Refer to chapter 5.2a (pp. 142–4) in Dixit and Pindyck 1994 for more details.
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on lease operating costs from the public firms in our sample (10-K filings), and found

that on average during our sample time period lease operating costs were 21.6% of well

revenues. Lease operating costs are the labor and equipment costs incurred by the well

operator to maintain and produce from the well after drilling; these costs would include

well pumper costs, company engineering expense, repairs and maintenance. Royalty rates

(ρ) correspond to a separate expense computed as a percentage of the well’s revenue that

goes directly to the mineral rights owners, the individuals who the natural gas company

leased the land from for a given well. The royalty rate estimates are based on royalty

percentages obtained from DrillingInfo on 322,340 natural gas leases signed in Oklahoma,

the median (and mode) royalty rates are equal to 18.75%.31 For the final elements needed

for Π, we set the depreciation rate (θ) to 40% and the effective tax rate (τ) at 0%.32

Recall that V = E[Q] Π
µ+ω . Following the computation of Π, we need estimates for the

discount rate (µ), the expected production baseline (E[Q]) and the annual depletion rate

(ω). The discount rate (µ) is set at 10% throughout the sample period, in line with the

SEC guidelines in valuing reserves and recent empirical work estimates (e.g., see Kellogg

2014).33

Production data at a monthly frequency on every well in our sample is available from the

Oklahoma Corporation Commission and Oklahoma Tax Commission. From these data,

we estimate both the well’s expected production baseline (E[Q]), as well as the reserves’

depletion rate (ω). From the exponential depletion rate formula of the reserves, we have that

the production at a given point in time t is equal to E[Q]e−ωt. For each well we empirically

estimate the annual depletion rate ω from the ratio of second year production to the first

year production: Prodt=2
Prodt=1

= e−ω. We find an average well has an annual depletion rate of

31In our sample, the average royalty rate is 19.05%, but the industry standard is 18.75%, and 79% of the
lease data has a royalty rate of 18.75%. The sensitivities we report encompass a range that is covered by
87.7% of the royalty terms in the sample.

32During the covered period, natural gas exploration firms benefited from multiple generous deductions
and tax credits, which enabled them to pay virtually no cash taxes.

33In the sensitivity section, we run the calculations using annual discount rate ranging from 7.5% to 12.5%.
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27%.34 Finally, the well’s expected production baseline (E[Q]) is estimated in two different

ways depending on how firms form expectations. In particular, the modeling of expected

well productivity depends on whether firms incorporate adjacent peer activity into their

updating. Given the centrality of this parameter, a separate section below is devoted to it

(see Section 4.3.3).

Estimating the optimal exercise threshold

To compute the optimal trigger value V ∗ of each wells at any time period, we need estimates

for the following parameters: I, and β1 and for β1, we need estimates of: r, δ, and σP . We

provide both the data source and the necessary computations (if necessary) for each one of

these inputs below.

We first need an estimate of a well’s drilling costs (I). We take the same time-series of

drilling costs estimated over our sample period as the one we use in our survival analysis.

The detailed description of this time series is given in Section 2.1. We proxy the volatility

of the project’s underlying asset value (σP ) with the 18-month implied volatility of natural

gas futures prices. For the risk-free rate, like in Section 2, we use the 5-year nominal yield

on U.S. Treasury bond to capture the impact of interest rate movements.

Finally, the computation of V ∗ depends on δ, the implicit dividend a firm generates from

a project. Dixit and Pindyck 1994 show that δ equals a firms risk-adjusted cost of capital

(m) minus the expected appreciation of the project (a), δ = µ − α. The intuition behind

this result is that the effect of discounting can be offset by the expected appreciation of the

underlying asset. For the purpose of our study we assume that expected appreciation of the

asset (its drift) is zero. This baseline assumption is reasonable given that the natural gas

futures curve is relatively flat throughout our sample. In this case δ simplifies to a firm’s

cost of capital. From the definition of V ∗, the higher the cost of capital, the smaller the

wedge between the NPV rule and the optimal trigger rule. We explore a wide range for δ

34In the sensitivity section, we vary ω from 25% to 29%, covering approximately 90% of the empirical
depletion rate distribution.
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in the next section.

Incorporating updating from peer activity

We take a first step at incorporating updating from peer activity by making the expected

value of the developed reserves a function of peer activity. It is important to note that the

only mechanism through which we are updating the inputs in our real option framework is

through the forecast of the productivity of the well.35

We derive the expected value of the developed reserves under two scenarios: (1) when firms

do not include any additional information from adjacent exercise of peers (V NoUpdating),

and (2) when firms augment their expectations using additional information from adjacent

peer activity (V Updating). Under the Arps decline model, to obtain the expected value of the

total reserves accessible by the infill well, we need an estimate of the infill well’s expected

initial production: (E
[
QNoUpdating

]
) and (E

[
QUpdating

]
).

In the “No Updating” case, we first use the realized data from all past infill wells drilled in

Oklahoma and regress the first year of production of the second well (infill well) on the first

year of production of the first well for each section. Second, we take the estimated regression

coefficient and combine it with the first year of production of the first well in the section

of interest to obtain a prediction of the infill well’s first year of production (Q̂NoUpdating).

Finally, we compute the expected value of the undeveloped reserve (V NoUpdating) using the

equation introduced in Section 4.1 and the calibrated parameters of Section 4.3.1.

To obtain the expected value of the developed reserves in the “Updating” case, we proceed

similarly. First, using data from all past natural gas shale infill wells drilled in Oklahoma,

we perform a regression of the first year of production of the second well (infill well) on the

first year of production of the first well and an indicator variable for adjacent peer exercise

activity for each section. The indicator variable is equal to one if there is existing adjacent

peer activity when the infill well is being drilled, and zero otherwise. Second, we take the

35For instance, our estimates of V ∗ do not depend on any updating from adjacent peer exercise behavior.
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estimated regression coefficients and combine them with the first year of production of the

first well in the section of interest as well as the indicator of adjacent peer activity for that

section to obtain a prediction of the infill well’s first year of production (Q̂Updating). Finally,

we compute the expected value of the undeveloped reserve (V Updating) using the equation

introduce in Section 4.1 and the calibrated parameters of Section 4.3.1.

2.4.4 Exercise behavior: Actual versus predicted

In this section we compute the real option decision rules that firms would have if they

followed the behavior predicted by real option theory and compare this predicted exercise

behavior with their actual exercise behavior. Over the period of interest, there are a total

of 2,853 potential infill well real options available. Of these infill well options, 680 are

exercised. The objective of this section is to assess whether firms behave in a way that

is consistent with the real option framework and whether the information obtained from

adjacent peers activity has an effect on their timing decision.

According to the optimal stopping time rule, firms should exercise their drilling option when

the value of the developed reserves (V ) is equal to the optimal threshold value (V ∗), such

that V − V ∗ = 0. From a real option perspective, systematic deviations from the optimal

decision rule correspond to suboptimal exercise behavior. For instance, if firms were to

systematically apply the NPV rule (NPV = V − I ≥ 0) instead of the optimal trigger rule,

we would find them exercising relatively too early (i.e., firms would exercise their drilling

option when V < V ∗) as the NPV rule would lead firms to invest at the margin when

V = I and I < β1

β1−1I = V ∗ (since β1 > 1). Given the option value to delay, the value of the

underlying asset needs to exceed the investment cost (and in some cases by a large margin)

before it becomes optimal to exercise. Thus we would expect a positive wedge between the

real option trigger rule and the NPV rule.
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Full sample

In our baseline case shown in panel A of Table 38, we find that infill projects have an average

NPV of $1.92 million at the time of exercise. The distribution of NPVs at exercise is shown

in Figure 18 and clearly shows that a majority of infill wells are positive NPV projects at

the time they are exercised. However, the estimated optimal threshold value (V ∗) at time

of exercise is higher than the estimated expected present value of the well (V ). By defining

V ∗−V as forgone value at exercise, Table 38 shows that firms forgo on average $0.42 million

($0.42 = $7.08 - $6.66) in our baseline case, with a median forgone value standing at more

than twice that number.36 Figure 19 plots the distribution of forgone value at exercise

time. The histogram clearly shows that the majority of the wells are exercised when V

minus V ∗ is negative (i.e., V < V ∗), reflecting the fact that most wells are exercised prior

to reaching their optimal threshold (V ∗). This conclusion is only reinforced by running

a similar exercise with a more advanced model in the appendix, whereby we estimate a

dynamic discrete choice model (see Rust 1987) that also allows for both volatility and

drilling costs to be stochastic (see Kellogg 2014).

To assess how robust our conclusions are to changes in model parameters, Table 9, panel B,

reports sensitivities across every major parameter in the model. As expected, the NPV of

the average (and median) well goes down as the (1) discount rate, (2) operational costs, (3)

tax rate, (4) depletion rate, and (5) royalty rate increase. More importantly, this sensitivity

exercise informs us on how the forgone value (V ∗−V ) changes due to changes in underlying

parameters of the model. In each case, both the average and median forgone values in our

sample point to early exercise as they remain positive and statistically different from zero

throughout. However, so far, these computations do not incorporate any updating from

adjacent peer exercise behavior.

36In the figures, we compute histograms of V − V ∗, in which case values below zero represent forgone
values.
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Conditioning on adjacent peer activity

The previous sections did not consider the potential information externalities generated by

adjacent peer exercise activity. Specifically, the infill well’s expected production was simply

a function of the unit’s first well’s realized production (see 4.3.2). In this section, our goal is

to identify the role that adjacent peer exercise decisions may play in forming expectations

on second well recoveries. To do so, we compare firms’ second well (infill well) expectations

with their actual realizations with and without conditioning on adjacent peer activity.

To identify the role of adjacent peer exercise activity, we break the sample into two groups:

(1) the wells with no adjacent peer activity and (2) the wells with adjacent peer activity.37

For both groups, we first compute the deviations between the realization of the second well

and the expectation of the second well based only on information conferred from the first

well’s production. We find that for second wells with no adjacent activity, forming the

expectation based solely on the first well’s production does not lead to any statistically sig-

nificant deviations from realized production on average. However, for the second wells with

adjacent activity, we find that the first well’s production realizations do not adequately pre-

dict the second well realization. The deviations are positive and statistically different from

zero (p-value of 0.066). In other words, adjacent peer activity is associated with significantly

higher well productivity, after conditioning for the first well’s realized productivity.

Under the assumption that firms form appropriate expectations for their infill wells, such

evidence suggests that updating from operators does take into account the information

conveyed by peer activity. To incorporate updating of expectations based on adjacent peer

activity, expectations now stem from (1) the unit’s first well’s realized production and (2)

the adjacent units’ peer exercise activity. We operationalize this updating by using an

indicator variable that takes the value of one if there is one or more adjacent infill real

options that have been exercised by peer firms. When doing so, we find a statistically

37Of a total of 680 exercised options, we have 635 infill wells (second well in unit) with at least 1 year
of realized production. Of those 635 infill wells, 214 have adjacent peer exercise activity and 421 have no
adjacent peer activity.
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and economically significant positive loading on adjacent peer activity when explaining the

realized production of second wells based on this augmented set of two variables. The

coefficient on the adjacent activity dummy variable is 119,323, which can be interpreted as

firms revising up production on the second well by 14.4% relative to the average forecasted

production based only on the first well’s production if adjacent peer activity occurs. This

effect is statistically significant at the 1.9% level.

This result is consistent with one of Grenadier 1999’s main assertion that real option ex-

ercising from peers conveys an informative signal. Namely, units with more adjacent real

options activity are more likely to hold greater reserves. It is also consistent with the findings

from the broader literature that documents the importance of peers and “social learning”

in technological adoption (see, for instance, Griliches 1957; Foster and Rosenzweig 1995;

Thompson and Thompson 2001; Conley and Hudry 2010; Stoyanov and Zubanov 2012).

Specific to the oil and gas industry, Covert 2015 shows that there is some degree of techno-

logical sharing across peers in shale drilling techniques (e.g., optimal mix of sand and water

used in fracking). This finding also could be at work in our context as firms learn how to

improve extraction from reserves by observing how peers drill wells in leases adjacent to

theirs.

Reconciling realized versus predicted with adjacent activity

The next logical step in our analysis is to assess whether incorporating information from

adjacent peer activity makes the decisions to exercise closer to those predicted by theory.

To do so, we compute V minus V ∗ under the two different information sets, one information

set that relies on the first well’s production exclusively and one information set which incor-

porates both the first well’s production and an indicator for adjacent peer exercise activity.

Recall that the optimal trigger threshold V ∗ is invariant to productivity expectations of

the infill well. However, the expected discounted value of the developed reserves of the

infill well, V , depends on its expected productivity. Figure 11, panel A (panel B), plots the

histogram of V minus V ∗ for the subset of infill wells with (respectively without) adjacent
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peer exercise activity.38

Panel A of Figure 11 reveals significant differences between the distributions of V minus

V ∗ across the two different information sets used to form expectations. This difference can

be explained by the fact that V is revised upward under the information set that takes

into account adjacent peer activity. Comparing the proportions of options exercised too

early (i.e., V < V ∗ at the time of exercise), we find that 57% of infill wells are exercised

too early under the first information set, relative to only 44% when the information set

is augmented to take into account adjacent peer exercise activity. These differences are

statistically significant at the 1% level. This evidence suggests that updating expectations

for the productivity of the infill well based on adjacent peer activity leads to an approximate

20% reduction in the likelihood of exercising too early.39

The results in this section allow us to show that through a basic updating framework,

incorporating information on adjacent peer exercise decisions helps to explain a portion of

the gap between V and V ∗ using a baseline Dixit and Pindyck 1994 framework. We do

not observe the full model that firms use for either updating beliefs or making real option

decisions, and there may be important additional components to such models, which we

do not include here. However, the objective of our exercise is to demonstrate that under a

basic set of assumptions on real option modeling and a plausible framework for updating,

adjacent peer exercise activity could play a first order role in explaining the gap between

actual and predicted behavior for real option exercise. Overall, this exercise provides useful

context for our empirical results in Section 3.

38Each bin represents a $1M interval.
39For completeness, and as a falsification, we show Figure 11, panel B reveals no meaningful differences

between the distributions of V minus V ∗ across the two different information sets used to form expectations
when looking at the subset of wells without adjacent peer exercise activity. This result should not come as
a surprise as we know from above that the big difference in expected productivity comes from observing
adjacent activity.
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2.5 Conclusion

In this paper we exploit detailed data on a large set of real options to empirically charac-

terize the option exercise strategies employed by firms. We find that peer exercise behavior

via an information revelation channel is as important in explaining exercise activity as stan-

dard real option inputs such as commodity prices and volatility. To date, the empirical real

options literature has been limited, largely by data constraints. Our paper provides impor-

tant micro-level evidence on both how real options are exercised, and which channels are

important in explaining exercise behavior. Our results provide novel empirical support for

the importance of information revelation from competitor exercise behavior in explaining

how firms exercise real options.

2.5.1 Figures

Figure 10: Project time line
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Figure 11: Infill drilling option exercise timeline
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Figure 12: Map of real option exercise activity
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Figure 13: Peer project definition
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Figure 14: Panel of 3 Figures
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2.5.2 Tables

Table 30: Summary statistics
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Table 31: Peer effects and real option exercise
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Table 32: Project relative rank percentile and option exercise
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Table 33: Real option exercise and exogenous peer effects
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Table 34: Internal validity: Correlation of project relative rank percentiles
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Table 35: Internal validity: Subsample analysis
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Table 36: Actions versus characteristics
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Table 37: Real option exercise and experienced peers
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Table 38: Real option value estimates and sensitivity analysis
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Table 39: First-stage regression and coefficient comparison
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Table 40: Instrument and implied volatility
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Table 41: Real option exercise and exogenous peer effects: IV probit model, clustered by

township
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Table 42: Real option exercise and exogenous peer effects: IV-2SLS model, clustered by

township
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Table 43: Real option exercise and exogenous peer effects: IV probit model (clustered by

township and by year)
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Table 44: Real option exercise and exogenous peer effects: IV 2SLS regression model (clus-

tered by township and by year)
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Table 45: Real option exercise and exogenous peer effects: IV Cox model (clustered by

township and by year)
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Table 46: Reduced-form model (clustered by township and by year)
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Table 47: Effect of adjacent first wells
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Table 48: Operator fixed effects
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Table 49: Project relative rank percentile and option exercise: Above-median oil exposure

versus below-median oil exposure
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Table 50: Real option exercise and exogenous peer effects: Shale gas townships only
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CHAPTER 3 : Ownership Concentration and Firm Risk-Taking Behavior

The undertaking of profitable but risky business opportunities lies at the center of long-term

economic growth Acemoglu and Zilibotti 1997; Obstfeld 1994. However, without the proper

incentives and institutional environment, managers naturally dislike risk and tend to opt

for safer and less growth enhancing projects Smith and Stulz 1985; Amihud and Lev 1981,

potentially leading to suboptimal resource allocation. Therefore, it is imperative to identify

which channels support the adoption of risk-taking behavior that improve economic welfare

and resource allocation.

In this sense, economic theory and recent empirical results support the idea that resource-

ful and committed large institutional investors are potentially well-suited partners for firms

that aim to develop a competitive hedge such as the implementation of riskier projects

(i.e. research and development, new technology adoption) Porter and Parker 1992; Aghion

et al. 2013. It is then reassuring to note that over the past 30 years the proportion held

by institutional shareholders of a representative firms has grown from 5% in the 1980’s to

approximately 50% in the 2010’s. However, a large theoretical literature also posits that the

ability of such owners to affect resource allocation depends on ownership concentration. In-

deed, ownership concentration affects owners’ ability to coordinate their choice of corporate

policies, willingness to produce information, and capacity to optimally monitor managers

Edmands 2017. Given the steady decline in ownership concentration observed for the same

period, from 40% in 1980 to 10% in 2014, identifying whether ownership concentration is a

relevant corporate governance lever on firms’ behavior is of prime importance.
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Figure 15: Firm-Year Portfolio’s Projects’ Expected IRR Distribution

Time Series of Institutional Ownership Statistics For US Common Stocks (Median Statistics in %)

Specifically, this paper investigates the relationship between ownership concentration and

firms’ risk-taking behavior. While, there has been ample coverage in the theoretical litera-

ture on the relationship between ownership concentration and firms’ risk-taking behavior,

providing compelling evidence of a causal relationship has been challenging. Indeed, past

research has provided mixed results and failed to provide a causal statement. For example

Tufano 1996 found that firms’ dominated by highly concentrated insider ownership were less

likely to have managers’ adopting riskier business strategy while Paligorova 2010 found that

blockholders are positively correlated with corporate risk-taking. Indeed, from an empirical

perspective there are two main limitations to clearly identifying the relationship. First, risk-

taking behavior and ownership concentration are simultaneously determined, thus making

it difficult to obtain a causal interpretation of ownership concentration on firms’ risk- taking

decisions. Second, there exists no perfect measure of corporate risk-taking behavior, with

each available proxy facing potential limitations.
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To overcome the identification challenge, I use the merger of financial holdings to con-

struct an instrumental variable capturing an exogenous shock to ownership concentration.

I construct the instrument variable using a natural experiment that was first used in a

difference-in-difference setup to measure the effect of competition on bias in the context of

analyst earnings forecasts Hong and Kacperczyk 2010. More closely related to this paper,

some researchers used this natural experiment to investigate the relation between cross-

ownership structure and product market competition Huang and Jie 2017; Azar et al. 2017,

and the effects of blockholders’ diversity on firms performance Volkova 2017. However, to

the best of my knowledge, this is the first empirical paper to investigate a causal relationship

between firms’ risk-taking behavior and ownership concentration.

To overcome the difficulty of correctly measuring firms’ risk-taking behavior, I introduce

three proxies to capture the risk component in firms’ behavior. Using accounting data,

I derive two operational risk measures of risk: the volatility of returns on assets and the

volatility of the returns on sales. From the stock market data, I derive the third measure

of risk using the volatility of market returns.

This paper relates to several literatures. First, it complements the literature that identifies

channels affecting corporate risk-taking. Investigating the relation of CEO remuneration

package structure on risk-taking behavior, Hayes et al. 2012 found a weak economic rela-

tionship while Gormley et al. 2013 found that the effect of CEO remuneration on firms’

risk-taking was slow to impact the risk decisions of the firms. Also, Gilje 2016 showed that

firms’ distance-to-default affects firms’ risk appetite. Finally, John et al. 2008 identified that

the quality of ownership legal protection was positively related to corporate risk-taking and

firms’ growth rate. Perhaps the paper most similar to mine is Gormley and Matsa 2016 who

found that a reduction in the risk of take-over treat would reduce the firms’ risk incentive,

leading to 7.5% of a standard deviation decrease in stocks volatility while I found that a one

standard deviation change in ownership concentration lead to a 17.1% increase in stocks

volatility.
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Finally, it is related to the developing literature on institutional ownership impact on firms’

outcomes. Research papers have shown that the quantity of institutional shareholders

positively impacts firms’ research and development policies Aghion et al. 2013, firms’ per-

formance and governance quality Appel et al. 2016, payout policies Gaspara et al. 2005, and

investment horizons Bena 2017. More recently, a burgeoning literature started to focus on

the structure of institutional ownership on firms’ performance. Huang and Jie 2017; Azar

et al. 2017 found that firms’ cross-ownership positively impact firms’ product-market per-

formance and Volkova 2017 showed that owners’ diversity negatively impact firms’ return

on asset and investment opportunity.

3.1 Motivation and Theoretical Predictions

To understand the potential relation between ownership structure and risk taking, it is first

enlightening to look at how the firms’ ownership concentration impact the quantity of in-

formation production and monitoring intensity of the shareholders and then look at how

monitoring effort from the shareholders impacts managers’ project decisions and risk-taking

behavior.

Regarding the ownership issue, the ownership structure impacts the inner dynamic among

shareholders, and ultimately affects their willingness to exert efforts monitoring the man-

ager. Because, large shareholder better internalizes the benefits from their monitoring

efforts, a more concentrated ownership should alleviate the free-riders issue present in more

diffuse ownership structure and stimulate the monitoring intensity Grossman and Hart

1980; Shleifer and Vishny 1986. Additionally, the recent theoretical results posit the num-

bers of larges investors and their relative size is likely to determine the owners intervention

incentives and the effects of their actions Edmans and Manso 2011; Noe 2002.

Regarding the effect of monitoring effect and information production of the shareholders on

managers risk taking behavior, firms with more concentrated ownership should experience

increasing monitoring efforts and information production. Therefore, it should reduce the
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informational frictions between the owners and the manager. There are three theoretical

results support the idea that a reduction of information asymmetry between firms’ owners

and the manager should foster risk taking.

1) Then the career concern hypothesis Kaplan and Minton 2006 assumes that managers

might be reluctant to take on risky projects because of the risk of being fired should the

project fail. Indeed, engaging in risky projects has the potential to yield greater payoffs, but

if the project fails for purely stochastic reasons, the owners might assume that the manager is

bad and fire her. If contracting technologies cannot resolve entirely the issues, having owners

with better monitoring ability can alleviate part of the problem. In this sense, the capacity

of large institutional investors to reduce the information asymmetry problem connected

to firms’ strategies is widely understood in the literature Hall and Lerner 2010. Indeed,

by allocating substantial resources to support and monitor managers in designing their

corporate strategies Appel et al. 2016, and by reducing the level of information asymmetry

Edmans 2009, institutional investors can help firms’ management team to take on more

unconventional projects. Indeed, Edmans 2009 showed that blockholders can encourage the

manager to invest in riskier and more demanding projects (i.e. long-term projects). In his

proposed model, if the firm announces low earnings, the blockholder receives a signal about

the cause of low earnings. If the signal is not related to managers’ lack of effort or low

firm quality, the blockholder retains his stake, supporting the stock price. This expected

support fostered by the blockholder’s ability to access superior information on the firm’s

outcome encourages the manager to invest in projects that would be career-threatening in

situations where ownership was more disperse.

2) Additionally, the quiet life hypothesis postulate that if managers are not closely moni-

tored, they might choose to take projects that require less efforts and avoid projects that

are riskier Bertrand and Schoar 2003; Hart 1983. In this case, the improved monitoring ca-

pacity of a more concentrated ownership would incentivize the manager to pursue corporate

policies that require more efforts and that potentially have a riskier payoff structure.
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3) Finally, from the asset substitution problem side Jensen and Meckling 1976, equity

holders are the residual owners of firms’ proceeds, which incentivize them to favor riskier

projects. Thus, an increase in owners’ coordination ability resulting from a more concen-

trated ownership is likely to improve the capacity of equity holders to impact managers’

decisions, potentially at the expense of debt holders. Also, even if large shareholders can-

not exercise intervene easily, they can still impact the manager policy choices through the

alternative channel of exit Edmans 2009; Admati and Pfleiderer 2009 (i.e. they can sell

their shares and drive down the stock price to punish the manager ex-post and induce him

to act in their interest ex-ante). Then, the assumption is that by having the equity holders

to increase their ability to coordinate and communicate with the management team, firms

would yield more easily to large shareholders preferences and increase their risk exposure.

These theoretical results support the hypothesis that ownership concentration should play

a role in firms’ risk-taking behavior.

3.2 Data

To conduct my analysis, I used the 13f Thomson ownership dataset to identify institutional

investors’ ownership and the SDC dataset to identify the institutional investors that merged

between 1980 and 2013. I restricted the sample for that date range, since the Thomson 13f

dataset is notorious for having issues in the subsequent period. Since there exists no unique

identifier common to the 13f dataset and the SDC dataset, I manually merged the two

datasets. I restricted my investigation to the mergers that were completed in less than 2

years after the announcement date. Thus, the final set of transactions in the experiment

includes 202 MA transactions over the 33-year sample.

When working with the Thomson 13f and SDC datasets, one potential issue is that financial

holdings sometimes complete their merger before portfolios are consolidated. It is possible

to schematize the development of a problematic deal in the following graph.
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Figure 16: Timeline of a deal development

In such a case, even if the deal is identified as completed in the SDC dataset, it is possible

that I do not observe a transfer of share ownership between the target and the acquirer

on the day the deal is completed. As a consequence of this asynchrony, I would then

incorrectly measure the effect of the merger on the ownership concentration level around

the time of the merger. Indeed, since I am interested in measuring the control level of

ownership, I can expect that, even if the two merged holdings have not consolidated their

portfolios right after completing the deal, they would now vote in a complementary fashion.

To circumvent this challenge, I manually consolidated the holdings’ portfolios at the time

of the deal completion.

Finally, to obtain the stock market data and accounting data, I used an annually updated

monthly CRSP dataset and the annually updated quarterly Compustat dataset, respec-

tively. In the appendix, I explain the variable construction used in the regression and how

I transformed the Compustat data from quarterly to yearly frequency. I removed all obser-

vations with saleq¡ 0 and atq¡ 0. I winsorized the investment dependent variables to the 1st

and 99th percentile and the risk variables to the 2.5st and 97.5th percentile. Finally, I did

not include the firms in the utilities industry, sic contained between 4900 and 4999, or in

the financial industry, sic between 6000 and 6999.

3.2.1 Choice of Proxy Measure

The existing theory on ownership structure on the role of large shareholders has mostly.

However, to empirically investigate the dynamic between the role of large shareholders and

corporate risk-taking we need a measure to capture the nature of the ownership structure.

Most of the academic work conducted on the role of ownership structure focused on the
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role of blockholders (i.e. generally defined as the shareholders with more than 5% of the

total outstanding shares). However, there are no theoretical results that justify setting the

threshold at that level Edmands 2017. To avoid restricting my analysis to any arbitrary

threshold I consider the ownership of all available institutional shareholders. Instead, I

plan on capturing the nature of the ownership structure by using the firms’ ownership con-

centration, measured by the Herfindalh index of the institutional owners (HHIi,t =
∑

i s
2
i,t,j ,

where si,t,j is the fraction of firm j held by owner i). The Herfindalh index appears to be a

well-suited proxy for ownership structure as it does not restrict the analysis to a subgroup of

the owners, it takes into account the number of shareholders and the size of their position.

3.3 Identification Strategy

The main regression of this paper identifies the relationship between risk taking and owner-

ship concentration such that: Riski,t+1 = βHHIi,t+ θXi,t+fi+mt+ εi,t+1 where Riski,t is

a risk proxy, HHIi,t is the ownership concentration level, Xi,t is a set of control variables, fi

and mt are respectively the firms’ and quarter-year fixed effects, and εi,t is the error term.

However, there are strong reasons to believe that the variable of interest, HHIi,t, is endoge-

nously determined with the level of risk taking (Riski,t), precisely cov(HHIi,t; εi,t) 6= 0q.

Thus, to identify the causal relationship between risk taking and ownership structure, I must

have some exogenous variation in the ownership structure. Using an instrument variable

design, the regression setup becomes:

First Stage: HHIi,t = θZi,t + ωXi,t + fi +mt + εi,t

Second Stage: Riski,t+1 = β ˆHHIi,t + φXi,t + fi +mt + εi,t

Where Zi,t is the instrumental variable and ˆHHIi,t is the instrumented level of ownership

concentration.

The instrument captures the exogenous change in ownership concentration due to the merger

of financial holdings, and filters out all the potential variation coming from the endogenous
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responses of other market participants or financial holdings involved in the merger event.

To achieve this objective, I designed the instrument such that it measures the change

Figure 17: Example of the ownership structure of a representative firm

Figure 17 presents the hypothetical ownership structure for firm A that has 3 institutional

shareholders, each owning 5% of the outstanding shares before holding 1 and holding 2

merge. Then the quarter prior to the merger, the effective HHI value, HHIt = 0 would

be 75. Under the alternative scenario that the merger would have already happened at

that point in time, the implicit HHI value, HHIt = 0, would be 125. I instrumented the

Herfindalh index with the implicit level of Herfindalh index.

Figure 18: Example of the Instrument Construction

For this instrument to be valid, it needs to satisfy the relevance condition and the exclusion

restriction.

168



3.3.1 Relevance Condition

To satisfy the relevance condition, the instrument must be correlated with the instrumented

variable. Consistent with this hypothesis, the first stage regression shows that the instru-

ment is significant to the 1% significance level. Additionally, when looking at the first stage

Wald F-test of the risk-taking regression, the statistic ranges from 905 to 1245, strongly

rejecting the null hypothesis of a weak instrument.

Table 51: First Stage Regression

Additionally, looking at the treatment effect around the merger event of the institutional

shareholders, we observe a clear treatment effect. The HHI index of the treated firms jumps

at the moment of the merger.
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Figure 19: Treatment Effect for Control and Treatment Group

3.3.2 Exclusion Restriction

For the exclusion restriction to hold, financial holdings must not have merged to increase

their position in the treated firms. Considering that acquisition of financial holdings is a

complicated and risky process that is heavily regulated, it is hard to believe that financial

holdings chose to merge for this reason. Additionally, there exist simpler ways to increase

one’s position in a firm such as direct purchase on the open market.

Given the design of the instrument, I need to add extra control to ensure that the exclusion

restriction is satisfied. After adding a firm fixed effect, the instrument virtually becomes a

measure of the exogenous variation between the effective and implicit level of HHI. Since the

difference between the real HHI and the implied HHI is purely exogenous, the instrument

variable should satisfy the exclusion restriction.

3.3.3 Sample Construction

For each merger events, I restricted the analysis to a 3-year window around the events.

Also, to better identify the time trend, I matched the treated firms based on their market

capitalization size and their total institutional level of ownership with a potential control.
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Firms with larger market capitalization or a greater level of institutional ownership are

mechanically more likely to become a treatment given the context of my experiment. Indeed,

the probability that a stock held by virtually every holding be treated is greater than if the

stock is held by fewer holdings. Additionally, since the effect of ownership structure in large

firms might be different from that in small firms, using the matching technique enabled me

to properly identify the effect of ownership structure in firms of similar characteristics.

I defined the set of available stocks in the following way. For a given merger event, I first

identified the set of treated stocks. Then, looking at all the remaining available stocks in

the compustat universe, I removed those that had been treated in a 5-year window around

the event. The stocks I was left with became part of the pool of potential matches for the

treatment stocks of that event. Using a propensity score, I identified in the potential match

dataset the stocks more closely related to our treated stocks. I repeated the same technique

for all the merger events and stacked the matched stocks together in the final dataset.

3.4 Results

There does not exist a perfect proxy of the firms’ operational risk level. To provide a

convincing picture of firms’ risk-taking behavior, I introduced three potential measures of

firms’ risk taking. In the first section, I considered the prediction of ownership structure

on the variance of return on assets (ROA) and the variance of return on sales (ROS). I

measured the variance of those metrics over 8 quarters. Using accounting data enabled me

to avoid working with financial market data, which might capture factors other than firms’

operating policies. In addition to those accounting measures of risk, I used the variance of

the trailing 12-month stock returns.

171



Table 52: Operational Risk Regression

In columns (1) and (2) I regress the ROS with the instrumented HHI (HHI) and the controls.

I obtain a coefficient of 0.2836 significant at the 1% level, which means that on average the

ownership concentration level is responsible for (0.2836 * 0.113) 3.2% of the risk level. Also,

for a one standard deviation increase in HHI I obtain a (0.2836 * 0.119/0.197 ) 17,1% of a

standard deviation increase of the volatility of ROS.

In columns (3) and (4), I use the same regression on the ROA. I obtain a coefficient of

0.1014 significant at the 5% level, such that on average the ownership concentration is

responsible for 1.3% of the volatility of ROA. In addition, a one standard deviation in

ownership concentration leads to a (0.68 * 0.119 ) 42.15% of a standard deviation increase

of the volatility of market returns.

3.4.1 Market Proxy for Operational Risk

In this section, I used the volatility of equity returns to proxy for operational risk.
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Table 53: Market Risk Regression

I obtain a coefficient of 0.6505 significant at the 1% level, which means that on average

the ownership concentration level is responsible for (0.6505 * 0.113) 7.35% of the risk level,

when measured using market returns. Also, for a one standard deviation increase in HHI I

obtain a (0.2836 * 0.119/0.197 ) 17,1% of a standard deviation increase of the volatility of

the monthly returns.

3.5 Investment Policies

Although investment policies do not perfectly capture firms’ risk-taking decision, risk-taking

behavior of firms can partially translate into the investment policy of firms. One must

be careful about relating risk-taking behavior with investment policies because of risk-

shifting behavior. Indeed, firms could simultaneously increase their level of investment

while changing the nature of their investment portfolio by replacing risky projects by safer

ones. For the analysis, I proxy the investment decisions with the ratio of Capex+RD
TotalAsset .
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Table 54: Investment Behavior

I obtain a coefficient of 0.6377 significant at the 1% level, which means that on average the

ownership concentration level leads to a ratio of (0.6377 * 0.363) 0.231%. Also, for a one

standard deviation increase in HHI I obtain a (0.6377 * 0.119/0.377 ) 20.1% of a standard

deviation increase in investment.

3.6 Robustness Analysis

One key concern about the results, is that the merger might have been motivated by posi-

tions that represent a large portion of the merging institutional shareholders. It is indeed

plausible that when those funds merge together they consider the effect of the merger on

their most important positions. To control for this potential problem, the analysis has been

rerun including only the stocks that are among the smallest quartile of their portfolio size.

After implementing this additional specification, I found that the results presented in the

above section are robust to this additional specification.
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Table 55: Robustness: Investment Behavior

Table 56: Risk and Volatility
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Table 57: Robustness: Issuance

3.7 Conclusion

The merger of financial holdings provides a plausible natural experiment to obtain exogenous

variation in ownership concentration. Using the implicit level of ownership concentration

before the merger is effectively implemented, I obtain the exogenous variation of the HHI,

enabling me to assess the causal relationship between ownership structure and firms’ risk-

taking behavior.

The research results indicate that ownership concentration is related to firms’ risk-taking

behavior when considering three different proxies of risk taking (i.e. standard deviation of

ROA, standard deviation of ROS, and standard deviation of monthly equity returns). In

addition, ownership concentration has a strong and significant effect on firms’ investment

policies. In support of existing theoretical results, ownership structure appears to be of first

importance to understand the nature of risk behavior in firms.
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This research does not identify the nature of the policies leading to an increase in risk tak-

ing. A natural extension to this work should investigate through which channels managers

increase their risk exposure.
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