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ABSTRACT

ESSAYS IN EMPIRICAL CORPORATE FINANCE

Paul H. Décaire

Erik P. Gilje
Michael R. Roberts

This dissertation goal is to deepen our understand about firms’ resource allocation deci-
sions. In the first chapter, using an NPV-based revealed-preference strategy, I find that
idiosyncratic risk affects the discount rate that firms use in their capital budgeting deci-
sions. I exploit quasi-exogenous within-region variation in project-specific idiosyncratic risk
and find that, on average, firms inflate their discount rate by 5 percentage points (pp) in re-
sponse to an 18pp increase in idiosyncratic risk. Moreover, these discount rate adjustments
are negatively associated with measures of firm profitability. I then explore how proxies for
costly external financing and agency frictions relate to discount rate adjustments. Consis-
tent with theoretical predictions, firms appear to adjust their discount rate to account for

both frictions.

In the second chapter, which is joint work with Erik Gilje and Jérome Taillard, We study
when and why firms exercise real options. Using detailed project-level investment data,
we find that the likelihood that a firm exercises a real option is strongly related to peer
exercise behavior. Peer exercise decisions are as important in explaining exercise behavior
as variables commonly associated with standard real option theories, such as volatility. We
identify peer effects using localized exogenous variation in peer project exercise decisions
and find evidence consistent with information externalities being important for exercise

behavior.

In the third chapter, I empirically measure the effect of ownership concentration on firms’

risk-taking behavior. In support of the existing theory, I find that firms choose riskier



projects when their ownership concentration increases. To obtain a causal interpretation of
the results, I use the merger of financial holdings as an exogenous shock to firms’ level of

ownership concentration.
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CHAPTER 1 : Capital Budgeting and Idiosyncratic Risk

One of the most important financial decisions managers face is selecting the best projects
among competing investment proposals. Traditional corporate finance theory holds that,
when evaluating projects, firms’ discount rates should account for the projects’ systematic
risk, but not their idiosyncratic risk (Bogue and Roll, 1974; Myers and Turnbull, 1977;
Constantinides, 1978). Similarly, textbooks warn managers about the temptation of incor-
porating a “fudge factor” when calculating discount rates in an attempt to compensate for
idiosyncratic risk!, on the grounds that this kind of adjustment can significantly distort
the firms’ overall allocation of capital. Despite these warnings, surveys conducted by the
Association for Financial Professionals (AFP) showed that nearly half of all respondents
had manually adjusted their discount rates to account for project-specific risk (Jacobs and
Shivdasani, 2012). In surveys, many managers report setting discount rates that are sys-
tematically and substantially greater than the cost of capital (Poterba and Summer, 1995;
Graham and Harvey, 2001; Graham et al., 2015; Jagannathan et al., 2016). These revela-
tions are worrisome, considering that even small deviations from the true discount rate can
have sizable effects on managers’ decision to pursue a given project. In spite of the focus
given to calculating discount rates in managerial training, and the central role it plays in
firms’ internal allocation of capital, there has been relatively little empirical investigation
of managers’ actual behavior. This study is among the first to (i) provide causal empirical
evidence about how managers adjust their projects’ discount rates with respect to idiosyn-
cratic risk, (ii) document the consequences of idiosyncratic risk pricing for firm performance,

and (iii) shed light on the economic factors that affect those adjustments.

Measuring firms’ discount rates, as well as the level of idiosyncratic risk associated with

1The classical corporate finance textbook of Brealey and Myers (1996) discuss this as follows: “We have
defined risk, from the investor’s viewpoint, as the standard-deviation of portfolio return or the beta of a
common stock or other security. But in everyday usage risk simply equals bad outcome. People think of the
risks of a project as a list of things that can go wrong. For example: ... A geologist looking for oil worries
about the risk of a dry hole. ... Managers often add fudge factors to discount rates to offset worries such as
these. This sort of adjustment makes us nervous.”



individual projects, presents significant empirical challenges. First, firms do not report
this information. Second, it is not usually possible to observe firms’ individual investment
decisions. Third, it is generally difficult to compare the investment set across and within
firms, limiting researchers’ ability to control for confounding factors that might affect the
calculation of discount rates. Finally, it is rarely possible to obtain precise estimates of

individual projects’ expected cash flow.

I overcome these challenges by employing a comprehensive and detailed dataset of onshore
vertical gas wells drilled in the United States between 1983 and 2010. Each new well rep-
resents a project. Together, the data covers $53 billion in capital expenditures on 114,969
distinct projects. The dataset has a number of advantages. Specifically, the institutional
setting makes it possible to forecast individual projects’ cash flows and capital expenditures,
and to fully characterize each firm’s investment portfolio annually. In addition, the projects
are homogeneous and tend to have similar characteristics, which allows meaningful compar-
isons across projects. For instance, every project in the sample is undertaken using similar
drilling technology for which the production function is simple and transparent, meaning
that it is possible to easily compute projects’ expected monthly production. All projects
also produce the same resource, natural gas, further simplifying cross-project comparisons.
And finally, the natural gas industry offers an especially rich literature on project-level
production forecasting techniques, which means that the dataset is well suited to obtaining

plausible estimates of expected cash flow for each project.

First, I provide evidence that firms inflate their annual discount rates by an average of 3.8
to 6.0 percentage points (pp) in response to a one-standard-deviation increase in projects’
idiosyncratic risk. This adjustment is economically meaningful, considering that the average
firm in the sample has an estimated weighted average cost of capital (WACC) of 9.6pp.
Obtaining this result requires measures of projects’ idiosyncratic risk and project-specific
discount rates. I measure idiosyncratic risk using a novel method based on the geographic

cross-sectional dispersion of projects’ idiosyncratic productivity shocks. Specifically, I define



each project’s idiosyncratic productivity shock as the ratio of the first-year production
forecast error over the drilling cost, and then estimate the dispersion of that measure at
the regional level every year. I measure discount rates using a revealed-preference strategy
based on the net present value (NPV) rule. This process has four steps. First, for each well
a firm drills during a given year, I estimate the well’s expected cash flows using forecasts of
the well’s production and natural gas prices. Second, I use those forecasts to compute the
project’s expected internal rate of return (IRR). Third, I separate all projects within each
firm-year subsample into two portfolios depending on whether their level of idiosyncratic risk
is above or below the median for that firm-year. And fourth, I estimate the firm’s discount
rate to be the lowest expected IRR across projects in each of these portfolios. The logic is
that the firm’s discount rate must be at least that low, otherwise those marginal projects
would not have been undertaken. After assessing wells’ idiosyncratic risk and discount rates,
I then test the validity of both measures by performing multiple sanity checks. Comparing
discount rates across the two firm portfolios, I find a significant relation between discount

rates and idiosyncratic risk.

Then, I investigate the consequences of idiosyncratic risk pricing on firms’ performance. 1
introduce a novel measure of idiosyncratic risk pricing to directly test its effects on per-
formance metrics. Precisely, the measure of idiosyncratic risk pricing corresponds to the
firm-year discount rate adjustment for a one-unit increase in projects’ idiosyncratic risk.
I find that for the average firm, a one-standard-deviation increase in the price of idiosyn-
cratic risk is negatively correlated with firms’ gross profit margin (-5.1pp), investment rate
(-0.8pp), year-over-year asset growth (-0.7pp) and gross profitability (-0.5pp). These results
show that adjusting discount rates to account for idiosyncratic risk has important negative

consequences.

Finally, I ask why managers attempt to account for idiosyncratic risk by adjusting dis-
count rates. Various theories associate managers’ motives to adjust their discount rate to

external influences (frictions between the firms and the financial market) and to internal



ones (frictions between managers and their superiors). It is important to note that the
results presented in this final part of the paper correspond to correlations, as I do not have

exogenous variation for the costly external financing and agency friction proxies.

With respect to the external frictions theory, Froot et al. (1993) predict that in a world with
costly external financing, managers would adjust their discount rates to account for risks
that cannot be offloaded to the financial market. That is, they predict that if firms cannot
fully diversify their exposure to idiosyncratic risk at the firm level, then they should adjust
their discount rates to account for those sources of risk. The authors’ logic is that if the firm
is hit by a bad idiosyncratic shock, such as drilling multiple bad wells that fail to produce
enough cash flows to fund their operations next period, it has two options. The firm can
either reduce its investment next period, or turn to the financial market and raise capital,
but at a premium because of the costly external financing constraint. Then, managers
should take this additional financing cost into account for projects with greater exposure to
idiosyncratic risk ex-ante, and adjust their discount rate accordingly. To test this hypothesis
empirically, this study builds on Hennessy and Whited (2007) by constructing six proxies of
costly external financing and measuring their relation to firms’ pricing of idiosyncratic risk.
When using Hennessy and Whited (2007)’s favored proxy of costly external financing, the
results are consistent with the prediction made by Froot et al. (1993). Specifically, a one-
standard-deviation increase in the cost of external financing is associated with an average
increase of 2.3pp in firms’ pricing of idiosyncratic risk. Although the results using the other
proxies are not always statistically significant, they are mainly directionally consistent with

the theoretical prediction.

To examine the role of internal frictions, I relate the pricing of idiosyncratic risk to the size
of field managers’ budget. A manager with a larger budget is arguably more diversified
and therefore faces less total idiosyncratic risk. Simultaneously, Diamond (1984) predicts

that risk-averse managers with larger budgets should exhibit a lower idiosyncratic risk pre-



mium?. In line with Diamond (1984)’s prediction, I find that managers’ budget size is
strongly related to the pricing of idiosyncratic risk: a one-standard-deviation in firms’ aver-
age managerial budget size is associated with a 1.16pp reduction in the price of idiosyncratic

risk.

To mitigate endogeneity concerns, I use several strategies, including multiple sets of fixed
effects and an instrumental variable. With regard to the fixed effect strategy, the nature
of the research design makes it possible to control for factors varying at the frequency of
the firm-year, because I construct two idiosyncratic risk portfolios per firm-year. For in-
stance, in a given year, a firm may systematically select regions that are riskier, hence the
need for a firm-year fixed effect. In addition, I also include an idiosyncratic risk portfolio
fixed effect, as there may be a selection effect where some unobserved variables (e.g., man-
agers’ experience) may systematically be associated to better or riskier regions (i.e., regions
with better potential projects, lower risk of bad drilling outcomes). However, the use of
those fixed effects does not eliminate the possibility of a within-firm omitted-variable bias.
Confounding variation occurring within a given firm-year, such as variation in managers’
characteristics may still be correlated with idiosyncratic risk, which is why I also use an
instrumental variable. To better illustrate how my instrumental variable strategy solves this
problem, I consider two types of within-firm omitted variables: (i) the variables correlated
with projects’ geographic characteristics, and (ii) variables uncorrelated with projects’ ge-
ographic characteristics. For instance, field managers’ overall bargaining power might vary
across firms, which could impact how firms assign managers based on their experience to
different regions, which corresponds to a source of variation related to (i). Alternatively, the
production uncertainty associated with wells drilled by unexperienced managers is higher
irrespective of their assigned region, since their ability to properly forecast wells’ outcome or
operate the drilling equipment is lower than the experienced managers, which corresponds

to (ii). In both cases, managers’ experience would likely be correlated with projects’ risk-

2Diamond (1984) highlights that a sufficient condition to obtain this phenomenon is to assume that
managers have a DARA utility function. This assumption is relatively general since a large class of models
assume that managers have a CRRA utility function, and CRRA utility implies DARA utility.



iness, and thus would be correlated with the overall level of idiosyncratic risk measured
for their associated wells’ outcomes. Failing to account for the managers’ experience would
thus lead to a within-firm omitted-variable bias. To deal with this form of omitted variable,
it is necessary that the instrumental variable and the fixed effects strategies account for
both sources of variation. To address these types of within-firm omitted variables, I use the
following instrument for a well’s idiosyncratic risk: the largest idiosyncratic productivity
shock experienced by any of a firm’s peers within each township-year3. After controlling for
the portfolios’ selection effect and the firm-year factors, the information content of peers’
idiosyncratic productivity shocks should be uncorrelated with the within-firm omitted vari-
ables. Put differently, the instrumental variable assumption in this paper is that the relative
level of characteristics of a firms’ managers and its peers’ managers is randomly distributed
within an idiosyncratic risk portfolio. Finally, to satisfy the relevance condition, it is reason-
able to assume that the largest idiosyncratic productivity shocks among peer firms would
have, on average, a positive relation with the idiosyncratic risk measure, which equals the

dispersion of idiosyncratic productivity shocks for each township-year.

The rest of this paper proceeds as follows. Section 1 presents an overview of the literature.
Section 2 offers background information on the natural gas industry. Section 3 outlines the
data used in the study. Sections 4 to 6 explain the measurement of managers’ expectations,
firms’ discount rates, and projects’ idiosyncratic risk, respectively. Section 7 discusses the
results and the instrumental variable strategy. Section 8 reports the robustness analysis.

Section 9 offers concluding remarks.

1.1 Literature Review

Although there is a robust theoretical and survey-based literature on capital budgeting

and project evaluation, this is the first observational study of how managers adjust their

31 use the wells’ township to determine the wells’ respective region. Townships are defined as 6 miles by
6 miles squares of land by the American Public Land Survey System (see Figure 6.1). It is important to
note that not all states use the Public Land Survey System. For states not using this system, I construct
synthetic township, and assign wells to those township using the wells’ GPS coordinates.



discount rates to account for idiosyncratic risk. I summarize in detail the existing literature
addressing each of the paper’s three core contributions, as I introduced them in the previous

section.

First, by showing that firms appear to price idiosyncratic risk, this study provides direct
empirical backing for the discussions of capital budgeting (e.g., Poterba and Summer (1995),
Graham and Harvey (2001), Graham et al. (2015), and Jagannathan et al. (2016)). Those
survey-based papers document and discuss the existence of a puzzling gap between firms’
estimated weighted cost of capital (WACC) and the discount rates reported in their surveys.
The present study provides a direct causal estimate based on firms’ actual choices, of how
idiosyncratic risk affects discount rates. In doing so, this paper also contributes to the
theoretical literature providing guidance on the proper way to compute discount rates (e.g.,
Bogue and Roll (1974), Myers and Turnbull (1977), and Constantinides (1978)). This
paper establishes both that managers appear to include a project-level idiosyncratic risk
premium in the calculation of discount rates, and that doing so has adverse consequences

on performance.

Second, my paper also relates to Kruger et al. (2015) who document a different mistake
firms make when computing discount rates. Kruger et al. (2015) show that a firm often
applies a unique discount rate to its projects, even when projects face different levels of
systematic risk. While Kruger et al. (2015) show that firms adjust their discount rate too
little, I find they adjust too much. Also, when Kruger et al. (2015) focus on systematic risk,
I focus on idiosyncratic risk. The two papers show that these distinct mistakes both have

adverse effects on firms’ performance.

Third, this paper contributes to the literature studying the effect of idiosyncratic risk on
firms’ behaviors. Panousi and Papanikolaou (2012) point out that firms reduce their overall
level of investment when their firm-level exposure to idiosyncratic risk increases, which
is plausibly suboptimal from the standpoint of a well-diversified investor. The authors

identify managers’ remuneration and ownership structure as important factors to rationalize



the observed phenomenon. My paper relates to Panousi and Papanikolaou (2012)’s main
contribution by providing direct evidence as to which capital-budgeting lever is altered by
managers when taking into account project-level idiosyncratic risk: the discount rate. At
the same time, I identify additional attributes of the firm that appear to be relevant in
understanding why idiosyncratic risk is accounted for in the discount rate, enriching our
comprehension of firms’ response to idiosyncratic risk. Also, my results suggest not only
that the overall level of idiosyncratic risk experienced at the firm level matters, but that the
exposure of specific local managers to project-level idiosyncratic risk can ultimately have
firm-wide impacts. Finally, my setting enables me to directly relate the intensity at which
firms price idiosyncratic risk to negative performance outcomes, such as lower gross profit

margins.

Fourth, this study also contributes to the extensive literature on the effects of costly external
financing on firms’ choices?. Most directly related to this paper is Froot et al. (1993), who
study how costly external finance affects the relation between capital budgeting and risk
management. The authors predict that firms facing costly external financing should adjust
their discount rates to account for risks that cannot be hedged or diversified. Supporting
this view, I find that firms facing high costs of external finance do in fact adjust their

discount rate to manage risk.

In addition to these research areas, there are other strands of literature that address how
corporate policies and the characteristics of firms affect managers’ risk tolerance. Two
prior findings are especially relevant. The first of these is that compensation contracts play
a significant role in mitigating risk tolerance misalignment between managers and their
superiors (Ross, 1973; Holmstrom and Weiss, 1985; Lambert, 1986). A rich empirical lit-
erature indicates that market-based compensation contracts affect managers’ risk tolerance
(Agrawal and Mandelker, 1987; Tufano, 1996; Guay, 1999; Rajgopal and Shevlin, 2002;

Coles et al., 2006; Armstrong and Vashishtha, 2012; Gormley et al., 2013), while theoretical

“This literature extends at least back to Miller and Orr (1966). Notable contributions include Fazzari
and Petersen (1993), Hennessy and Whited (2007), Lyandres (2007), and Bolton et al. (2011), among others.



work suggests that such contracts can shift managers’ focus from maximizing long-term
value to pursuing short-term benefits (Narayanan, 1985; Bolton et al., 2006). Similarly,
empirical findings show that market-based compensation can induce excessive risk taking
in managers (Bebchuk and Spamann, 2010; Dong et al., 2010; Hagendorff and Vallascas,
2011). Overall, these results suggest that owners solely using wage contracts to align their
managers’ decisions with their preferences might also subject their firms to potential draw-
backs. Of greater immediate relevance, Holmstrom and Costa (1986) provide a theoretical
argument suggesting that capital budgeting policies can be used to complement compen-
sation contracts in order to more successfully align managers’ decisions with those of their
supervisors. The present study contributes to this literature by empirically identifying the
size of managers’ budgets as a tool to alter risk tolerance. Specifically, the findings reported
here suggest that it is possible to increase the idiosyncratic risk tolerance of a manager by
increasing the size of his allocated budget, in line with the diversification effect proposed

by Diamond (1984).

1.2 Natural Gas Industry: Institutional Background

1.2.1 Project Overview: The Drilling Technology

Two prominent technologies exist to drill natural gas wells: vertical drilling and horizontal
drilling (see Figure 1). In this paper, I focus specifically on vertical-drilling technology.
Vertical drilling is the principal technology employed during the period analyzed for this
study, representing roughly 90% of all natural gas wells in the dataset. Horizontal drilling
is more recent, and has only gradually gained mainstream appeal during the later part of
the sample period. Additionally, it is easier to obtain precise production forecasts for wells
drilled using vertical drilling technology, as horizontal wells are substantial more complex
and technologically advanced (Ma et al., 2016). For example, Covert (2015) provides a clear
illustration of the high level of detail necessary to properly characterize expected monthly

production for horizontally drilled wells. Obtaining information at this level of detail is



simply not possible when dealing with a relatively long-term dataset for the entire United
States. At the same time, good production forecasts for vertical wells can be produced
using information available from major data providers such as DrillingInfo. For all of these

reasons, the study focuses exclusively on vertically drilled wells.

1.2.2 The Life Cycle of Natural Gas Fields

The commercial life cycle of natural gas has two stages: exploration and development.
According to the U.S. Energy Information Agency (i.e., EIA), the exploration stage involves
documenting the geological potential of the field in question, and determining its economic
viability. Once a firm has sufficient information for confirming the economic potential of

the field, it is classified as a proven reserve® and the development stage begins.

This study focuses on the development stage, during which firms still face a high level of
idiosyncratic risk despite having established that the field in question is a proven reserve.
They do not yet know (i) the exact delineation of the natural gas field, (ii) the structure of
the rock formations within it, (iii) the production potential of each drilling location, or (iv)
the technical expertise required to optimally extract the resource. For firms drilling wells,
this lack of knowledge translates into tangible operational risks, such as the risk of drilling
a dry holeS. For example, Figure 2 illustrates the development of the Panhandle field in
Texas over the period between 1960 and 2010. Figure 2.1 represents the initial estimation of
the field boundary, while Figure 2.2 represents the field’s finalized boundary 50 years later.
There are substantial differences between the expected and realized boundaries. Large
sections that were initially identified as promising appear to have had limited potential
ultimately. This example provides a clear illustration of how idiosyncratic risk remains at

the micro-level even after a field’s economic potential has been confirmed at the macro-level.

5The American Bar Association’s definition of proven reserves is as follows: The amount of oil and gas is
estimated with reasonable certainty to be economically producible. source: American Bar Association, Oil
and Gas Glossary, 2019.

SA dry hole is a well that fails to produce enough natural gas to be economically viable.
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1.2.3 The Structure of Natural Gas Exploration and Production Firms

Oil and gas companies establish their strategies at the uppermost levels of the corporate
hierarchy (Graham et al., 2015), but surveying, wells’ selection, and specific drilling de-
cisions require advanced technical expertise and site-specific information (Kellogg, 2011;
Covert, 2015; Decaire et al., 2019). For this reason, lower-level managers, geologists, and
engineers tend to evaluate and select projects (Bohi, 1998), working within the confines of
strategic guidelines from their superiors. Additionally, oil and gas firms tend to organize
their operational units by regions. For example, energy companies’ shareholder commu-
nication documents (e.g., 10-K) provide examples of how those geographical formations
affect operations’ structure (see Figure 3). Finally, by allocating their total budgets across
multiple regional units, firms expose the key on-the-ground decision-makers (i.e., the junior
managers) to the risks of only a relatively small number of specific projects. This creates a
divide between idiosyncratic risk diversification measured at the firm level, and diversifica-
tion measured at the level of individual managers, potentially creating incongruities in risk

preferences.

1.3 The Dataset

The present study uses a dataset provided by DrillingInfo” covering all natural gas wells
drilled in the United States between 1983 and 2010 (see Figure 4). Ultimately, the dataset
contains 30,420,544 month-well observations used to estimate the well production function,
a total of 114,969 distinct gas wells, and 369 distinct firms. The dataset includes monthly
production for each project along with a set of projects’ characteristics such as rock forma-

tion features, wells’” GPS location, the royalty rate® and the depth of the well. I augment

"DrillingInfo is a trusted data provider for multiple federal agencies reporting on environment and energy
matters. Studies conducted by the U.S. Environmental Protection Agency (EPA) and the U.S. Energy
Information Administration (EIA) Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2016 by
the EPA and Petroleum Supply Monthly (PSM) by the EIA use this dataset, for example.

8The royalty rates correspond to an expense computed as a percentage of the well’s revenue that goes
directly to the land owners leasing the land for a given well. The royalty rate estimates are based on royalty
percentages obtained from DrillingInfo for the leases signed in the United States in a given year.
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these data points with two hand-collected datasets. The first covers per-project capital
expenditures including per-foot drilling costs, obtained from public filling from regulatory
pooling documents?, and estimated operational costs, as in (Decaire et al., 2019). The
second is drawn from the EIA and corresponds to the three-year natural gas price forecasts
and two alternative sources of natural gas prices (the Bloomberg natural gas futures prices,
and the EIA wellhead state’s natural gas prices). The EIA is a federal reporting agency
producing an annual economic analysis for the oil and gas industry'?. For public firms, the
dataset is further augmented using Compustat. Finally, the information needed to compute
each firm’s weighted cost of capital is drawn from the 10-year risk-free rate available on the
Saint-Louis Federal Reserve website, the Kenneth French oil and gas industry return, the

Robert Shiller price-earnings ratio, and credit rating information from Capital 1Q.

Finally, I make several refinements to the dataset. I restrict the analysis to firms drilling
at least 10 wells in a given year'!'; because discount rates are estimated from the lower
boundary of the firms’ portfolios, it is reasonable to focus on firms that are at least mod-
erately active during the year of analysis. For less-active firms, it is harder to distinguish
between the firms’ discount rate and the quality of their opportunity set when using the
revealed-preference strategy. This adjustment drops only 5% of wells in the initial sample.
Additionally, all township-year subgroups with fewer than three wells drilled are removed,
because the measure of idiosyncratic risk employed here relies on the standard-deviation for
each township-year set. Finally, any wells with missing information are dropped from the
dataset, along with any wells for which the initial production date is prior to the drilling

date, as those clearly contain data entry errors.

T hand collected per-foot drilling cost for a subset of wells covering the full sample period. Then, following
Kellogg (2014) I obtain the drilling cost estimate by multiplying the well’s vertical depth with the per-foot
drilling cost.

9More specifically, the U.S. Energy Information Administration (EIA) is a statistical and analytical agency
housed within the U.S. Department of Energy. The EIA collects, analyzes, and disseminates independent and
impartial energy information to promote sound policymaking, efficient markets, and public understanding of
energy and its interaction with the economy and the environment. The EIA is the nation’s premier source of
energy information and, by law, its data, analyses, and forecasts are independent of approval by any other
officer or employee of the U.S. government. Source: https://www.eia.gov/about/mission_overview.php
" The main result is robust to alternative cut-off value of 6 and 14, for example.
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The firms in the sample are relatively large, with an average total value of active wells of
$229.2 million. On average, the total annual drilling budget is $60.3 million. The average
firm invests $11.3 million per year for a given field, or $19.4 million per year for a given
state (see Table I). The average vertical gas well in the dataset costs $465,653 and produces
570,049 thousand cubic feet of natural gas over its lifetime. Together, these numbers indicate
that the average firm in the sample is large and experienced, and it operates in multiple

geographical areas in a given year.

1.4 Firms’ Expectations

To estimate a firm’s discount rate, I must first estimate each well’s expected cash flows.
Since cash flows equal well output times the price of natural gas, I need to estimate firm’s

expectations of each variable.

In general, computing the expected production quantities independently from expected
prices leads to potential biases. In most situations, projects’ production flow is endogenously

correlated with prices, such that the expected cash flow can be expressed as:

E[pz : Qj,z,m] = E[ z] . E{Qj,z,m] + COU(Pz% Qj,z,m)a (11)

where p, is the price of natural gas at timze z and g; . », is the natural gas production of well
J at time z and age m (in months). If Cov(p;;¢qj.m) # 0 it would indicate that expected
production flow and natural gas prices are jointly determined. However, in the case of gas
wells, once the decision to drill has been made, the well’s monthly production is determined
by geophysical factors and is therefore independent of the state of the economy. In the
case of vertical oil wells, Anderson et al. (2018) show that firms do not alter production
rates or delay production due to oil price changes. Indeed, once a well starts producing,
managers have little ability to influence the production level without risking damage to
the well. What this means is that effectively, production flow depends on local geophysical

parameters such as the local rock type, the density of the natural gas deposit, and so
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forth, rather than on economic variables affecting natural gas prices. For this reason, I
assume that the production flow is not correlated with variables that affect gas prices.
Further supporting this assumption, the correlation between realized natural gas prices and
wells’ realized production flow is just -0.0034 in my sample'?. Thus, estimating expected
quantities and expected prices independently should not result in biased outcomes. The

process through which I obtain these estimates is described below.

1.4.1 Firms’ Expected Production

Monthly production of vertical gas wells can be approximated using a petroleum-engineering
model such as the Arp model (Fetkovich, 1996; Li and Horne, 2003). The Arp model
is the classical production-forecasting equation, and nowadays is taught in most energy
engineering courses (e.g., the University of Pennsylvania course Engineering in Oil, Gas
and Coal). According to the Arp model, the predicted monthly quantities produced by well

7 equal
Gim = Aj(1+b0m) 7, (1.2)

where m corresponds to the number of months since the well has been drilled, A; corresponds
to the well’s baseline production level, and b and 6 are decline-rate elasticity parameters. To
approximate the Arp model, I linearize this equation to obtain a regression (see Appendix
10.2 for the full derivation):

K

In(qjm) = a0+ o1 + Aj + > Bem’ + €jm, (1.3)
k=1

where oy and a1 are dummy variables for the first and second months of production, used

to account for ramping production'®, K is the order of the linear approximation (i.e., 7),

'2This statistic corresponds to the correlation of the realized natural gas prices )i.e., the wellhead spot
price provided on the EIA website) with the realized within-well’s production flow computed for the entire
well-month sample.

13A well’s ramping period usually corresponds to the first two months of production, during which firms’
engineers optimize and adjust the well’s production to reach peak long-term capacity (Dennis, 2017). Pro-
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and €, ,, is the regression’s error term.

The production baseline (i.e., A;) represents the expected quantity of gas that will be
initially produced by the well. I allow A; to depend on the firm’s total experience (i.e., the
total number of wells the firm has drilled before well j), the firm’s local experience (i.e.,
the number of wells the firm has drilled in the given township at the time of drilling j), the
level of local information available (i.e., the total number of wells that have been drilled in
the township at the time of drilling j), a firm-year fixed effect, and a township-year fixed

effect such that:

A; = In(Firm’s Local XP;) + In(Firm’s Total XP;) + In(Local Info;) + s + o (1.4)

Where 4 identifies the firms that drilled well j, p identifies the township in which the well

is drilled, and ¢ is the year the well is drilled.

Several recent papers motivate the addition of these controls for the Arp estimation (Covert,
2015; Decaire et al., 2019; Hodgson, 2019). Firms’ experience levels, peer effects, and local
access to information influence the quality and type of projects a firm will undertake. More
experienced firms are more likely to produce high-quality wells and to identify regions
with better potential. Equally, regions with more activity are more likely to have wells of
higher quality, while at the same time affording more precise information about how best to
extract the resource. Because the goal of this part of the analysis is both to obtain precise
estimates of the wells’ expected production flow and to deliver a reasonable measure of the
wells’ idiosyncratic productivity shocks, it is important to control for factors that capture

those characteristics.

Finally, to obtain the wells’ expected production flow, I proceed in two steps. First, I
use the Arp model to estimate regression (3), using a sample of 30,420,544 month-well

realized output (see Table XIX). Then, I use the Arp model estimates to obtain a measure

duction then gradually declines until the well is dry.

15



of the managers’ expectation for each well in the sample. Figure 54 provides a graphical
illustration for the median well production function over time and contrasts it with the
estimated production output. These expectations constitute the basis of the analysis to

obtain a measure of the discount rate, and a measure of the wells’ idiosyncratic risk.

1.4.2 Firms’ Expected Price

I define the expected gas prices using the EIA’s yearly three-year natural gas price forecast,
at the time of drilling the well'®>. The EIA forecast is closely followed by governmental
organizations, financial institutions, and energy companies. Section 9 explores alternative
price specifications, such as the Bloomberg natural gas futures prices and wellhead spot
prices varying at the level of individual states, and how these affect the results reported
below. The EIA data are preferable to those other options for two reasons, however. First,
the EIA three-year natural gas forecast has been published consistently since 1983, while
the Bloomberg three-year natural gas futures contracts started trading only in 1995. Thus,
the longer period for the EIA forecast allows the analysis to extend over a correspondingly
greater duration. Second, although the wellhead state-by-state prices provide information
on price variation across states during a given year, which helps to take into account cross-
sectional variation of natural gas prices, those wellhead prices fail to account for managers’
future expectations about price variation, making them unsuitable for the analysis. Finally,
the EIA three-year forecast horizon is well matched to the present study, as the discounted

half-life'S for projects in the sample is 31 months.

14The ramping up period, encompassing the first two months of production, is excluded in order to capture
production decline from peak production to termination.

5 A similar assumption for the prices is used in Kellogg (2014), Covert (2015) and Decaire et al. (2019).

16The discounted project half-life corresponds to the amount of time required for managers to obtain half
of the discounted project’s expected cash flow.

16



1.5 Estimating Firms’ Discount Rates Using a Revealed Pref-

erence Strategy

1.5.1 Estimating Projects’ Expected Rates of Return

To obtain estimates of firms’ discount rates, I proceed in four steps. First, for each well a
firm drills during a given year, I estimate the well’s expected cash flows using forecasts of
the well’s production and natural gas prices. Second, I use those forecasts to compute the

expected IRR (1;) of each project j by solving the equation

A
> EYR Elgjm] Elpj] — Cj =0, (1.5)

m=1

were E[gjm| corresponds to the expected monthly production for well j at age m (in
months)!”, E[p;] corresponds to the EIA 3-year natural gas price forecast at the time of
drilling well j net of operating costs and royalty rate'®, and C; corresponds to the initial
drilling cost incurred when the well is established. And as a final parameter, the average

well in the sample produced for a total of 264 months (i.e., M=264).

1.5.2 Estimating Firm-Year Discount Rates

In the third step of the revealed preference strategy, for each firm in a given year, I split the
wells into two portfolios based on their level of idiosyncratic risk. Projects with a measure of
idiosyncratic risk above (below) the firm-year median are put in the high (low) idiosyncratic
risk portfolio. Finally, the discount rates are estimated with the projects’ lowest expected

performance in each of the portfolios for each firm-year. The logic is that the firm’s discount

17T adjust the expected quantities from the Arp model for the probability of having no production during
a given month. Adjusting for the probability of no production is necessary since the Arp regression uses
the natural logarithmic value of the well production, thus excluding production event equal to 0. More
specifically, E[gj,m] = E[g;,m * (1 — Pr(zero production in month m))]. I follow the methodology developped
by Covert (2015) to adjust the production estimates for the zero production events. According to this
method, I estimate a linear probability model to estimate the probability of having a no-production event,
such that the probability of a month with zero production is 0.028 in the first year, 0.029 in the second year,
0.031 in the third year.

8E[p;] = E[Gas Price;] * (1- Royalty; - Operational Cost)
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rate for that risk profile must be at least this low; otherwise these projects would not have
been undertaken. Precisely, the estimated discount rate corresponds to the average expected

5t percentile of the portfolios’ expected

IRR among the projects contained in the lowest
IRR distribution. In Section 9, I explore several alternative discount rate cut-off definitions,

and the results are not economically or statistically affected.

Estimating discount rates based on two firm-year portfolios in this way provides multiple
benefits. First, it simplifies the task of building a direct measure of the price of idiosyncratic
risk for a given firm-year in order to directly test the effect of idiosyncratic risk pricing on
firms’ performance (see Section 7). Second, it makes it possible to include a regression
specification that controls for a firm-year fixed effect. However, to show that the results
are not sensitive to this research design choice, I provide an alternative specification where
I estimate the discount rate from one portfolio per firm-year in Section 9. The results are

robust to this specification.

In this study, I only observe the set of projects each firm completes in a given year. In
other words, I observe a truncated distribution of projects’ expected IRR, because it is not
possible to observe the expected return for projects the firms did not pursue (i.e., those that
are not completed). At the same time, a firm may not have had investment opportunities
with an expected IRR sufficiently close to the firm’s discount rate. This means that my
estimate constitutes an upper bound for the firms’ discount rate. To mitigate concerns
about this upper bound, I restrict the analysis to a subset of firms that drill at least 10
wells in a given year. The intuition is that for firms that drill many wells, the marginal
well is more likely to represent the firms’ lower bound (i.e., the firm’s discount rate). Then,
to validate that the estimates accurately capture the main features attributed to firms’
discount rates, I conduct a robustness test. First, I restrict the analysis to the subset of
firms whose full capital structure is observed. For that group, I compute the WACC. 1

obtain an estimate for the cost of equity in two steps. First, I use the one-year'® oil and

19Results are robust when using CAPM betas computed with other horizons, such as two-year and three-
year horizons.
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gas industry capital asset pricing model (CAPM) beta computed at the monthly frequency,
obtained from Kenneth French’s industry return data®’. Then, I multiply this variable
by the expected equity premium, estimated from the earning-to-price ratio obtained from
the Robert Shiller’s website?'. Finally, to obtain the cost of debt, I collect the firms’
yearly credit rating from Capital IQ (see Appendix 10.1.). Table II presents the results of
this test. There is a positive and statistically significant correlation between the discount
rate estimates and the firms’ WACC. Coefficient (51 indicates that a one-percentage point
increase to the firm WACC results in a 1.3 to 1.5pp increase in the discount rate??. The
results presented in columns 3 and 4 of Table II suggest that the idiosyncratic risk premium
is added to the discount rate on top of the WACC, and also that the discount rate measure

behaves in a manner consistent with variations in the cost of capital.

1.6 Measure of Wells’ Idiosyncratic Risk

To estimate projects’ average idiosyncratic risk, I proceed in three steps. First, I define the
well’s idiosyncratic productivity shock, denoted (j, as the well’s first-year cash-flow forecast

error attributable to quantity uncertainty scaled by the well’s drilling cost:

Zﬁiz Elp;] * qjm — Z% %2 Elp;] * Elq).m]

- 1.
m=1 m=12
Cost mz_: ¢jm — Elgjm]] Cost * mz_:l i‘j’m../ (1.7)

(*)

Where (*) roughly corresponds to the Arp model forecast error over the first year of pro-
duction. These well-level productivity shocks possess a set of characteristics well suited

to capture the idiosyncratic production shock. The source of the forecast error captures

20The oil and gas industry return is available within the 49 industries’ returns breakdown. I verify the
robustness of the results using the various industry breakdowns available on the Kenneth French website,

and I obtain similar results in all cases.
Jor
Pfi B
rfi—1] + €, estimated for the period 1983 to 2010. In an alternative specification, I use Fama and French
(2002)’s estimate of the equity premium (4.32%) for the entire sample period, and the results are statistically
robust and remain qualitatively similar, although the coefficients are slightly smaller.

22Tn all specifications, the value of 1 is included for the coefficient 81’s confidence interval.

21T estimate the expected equity premium from the fitted value of the regression [% —rfi] =a+0]
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the source of variation to well’s profitability attributable to the wells’ annual production,
holding expected prices constant. I obtain wells’ expected production using the Arp model,
which controls for the firm-year fixed effect and township-year fixed effect, indicating that
the idiosyncratic shocks are orthogonal to the firm-year and township-year information sets.
Also, Gilje and Taillard (2016a) show that wells’ drilling costs are homogeneous within a
year, further supporting the idea that the Arp production forecast errors drive the varia-
tion in productivity shocks at the firm-year level. Then, it is reasonable to assume that
well-diversified investors will perceive such a source of uncertainty as purely idiosyncratic.
To support this claim, Table XX presents the results of a regression of the market excess
return on the wells’ idiosyncratic productivity shocks. In all regression specifications, the
coefficient associated with the idiosyncratic productivity shocks is not significant, which in-
dicates that there exists no correlation between the well’s idiosyncratic productivity shocks
and the market excess returns. In a CAPM based framework, having the well’s shocks
uncorrelated with the market excess return®?® provides evidence in favor of the idiosyncratic
nature of the shocks. Considering that the CAPM is the most likely asset pricing model
used by the average investor (Berk and van Binsbergen, 2016), using this framework for the

analysis appears reasonable.

Second, I measure the idiosyncratic risk for each township-year by computing the cross-
sectional dispersion of the local wells’ idiosyncratic productivity shocks. The strategy is
designed to only capture the quantity uncertainty contribution to the cash flow uncertainty.
It is useful to note that I achieve this by only using expected prices in (; calculation,
ignoring the price shock from the calculation. This is to ensure that idiosyncratic risk is
truly calculated from local idiosyncratic shocks. This provides a measure of idiosyncratic
risk at the township-year level that can be attributed to each well that is drilled in the
specific township in that given year (see Figure 6.1). Third, to obtain a measure for the
firm-year-portfolio level, I take the average of the idiosyncratic risk for all the projects

completed. Ultimately, the sample average of the projects’ average idiosyncratic risk is

23Tn the CAPM framework, the investor’s stochastic discount rate is a function of the market excess return.
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equal to 10pp, and its standard-deviation is 18pp.

This measure of idiosyncratic risk has several appealing features. First, it corresponds
to the level of productivity uncertainty managers face in the first year for 1$ of invested
capital. Second, firms tend to pay attention to the drilling outcomes in their wells’ closed
vicinity (Decaire et al., 2019), suggesting that the level of cross-sectional dispersion for
the township-year likely reflects the level of well’s idiosyncratic risk as assessed by local
managers. Third, the analysis is conducted at a yearly frequency. Thus, working with
first-year risk provides a measure of risk that is computed at the frequency of the study’s
analysis. And finally, the information contained in the productivity forecasting errors, (j,
is plausibly orthogonal to the characteristics of the managing firm. The Arp regression
controls include a firm-year fixed effect and a township-year fixed effect as well as the firm’s
local experience, the firm’s global experience, and the amount of local information available
at the time of drilling. Thus, the information contained in a given well’s productivity
forecasting errors likely corresponds to information that is orthogonal to the firm-year and

geographic characteristics already assessed by the model.

To verify the validity of the Arp regression specifications, it is first necessary to test whether
there is any spatial correlation between the production forecast errors across wells. The goal
of the test is to make sure that variation in forecasting errors is not driven by other important
spatial-economic factors omitted from the Arp model. I assess spatial correlations using the
Moran’s I coefficient, which ranges in value from -1 to 1. A coefficient equal to zero indicates
no spatial correlation, while positive coefficients imply clustering of forecasting errors. In
the present context, a positive Moran’s I would suggest that the Arp model has omitted
spatial factors. However, the estimate of Moran’s I is close to zero, at 0.01, suggesting
that the Arp model properly captures relevant spatial factors. Finally, Figure 7 plots the
distribution of the wells’ idiosyncratic productivity shocks. The idiosyncratic productivity
shocks distribution is centered at zero (i.e., the median value is 0.0007), but it is slightly

leptokurtic.
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Next, in order to confirm that the above measure of idiosyncratic risk is positively related
to a greater occurrence of poor drilling outcomes, I examine the number of dry holes per
township-year. For township-year subgroups in the upper half of the idiosyncratic risk
distribution, there are on average 0.39 dry holes drilled; for township-years in the lower
half, this value is 0.04. This corresponds to a one order of magnitude difference between the
comparison groups, strongly suggesting that township-years with greater idiosyncratic risk
consistently experience higher rates of negative drilling outcomes. To control for additional
factors, I also estimate a Poisson regression®*. Table XXI displays a positive and statistically
significant relationship between projects’ idiosyncratic risk and the probability of drilling
a dry hole across all specifications. Specifically, a one-standard-deviation increase in the
idiosyncratic risk measure is associated with 1.4 additional dry holes drilled in the township-
year. This result provides further empirical support for the relationship between the measure

of idiosyncratic risk and adverse drilling outcomes.

1.7 Results

1.7.1 Do Managers Price Idiosyncratic Risk?

To test whether managers price idiosyncratic risk, I first estimate an OLS regression of firms’
discount rates and projects’ idiosyncratic risk. The regression includes two observations per
firm-year, one for each of the firm’s high- and low-idiosyncratic risk portfolios. To simplify
the interpretation of the regression coefficient across all the regression specifications in the
paper, I scale the regressor of interest by its regression-sample standard-deviation®®. Table
IIT shows that managers appear to positively price idiosyncratic risk. Column 1 presents
the simple regression with one control, the portfolios’ potential differential exposure to

systematic risk (See Appendix 10.3. for a complete discussion). Columns 2 to 5 introduce a

24 A Poisson regression is the appropriate model when the dependent variable is a count variable, such as
the number of dry holes in a township-year (Greene, 2003).

25To scale a regressor by a constant does not alter the statistical properties of the estimate (Greene,
2003). This strategy has the added benefit of directly providing me with the magnitude for the effect of a
one-standard-deviation increase in the projects’ idiosyncratic risk.
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set of controls and show that the regression results are robust to those further specifications.
Column 6 includes a firm-year fixed effect, to control for the time-varying characteristics
of firms, and Column 7 adds the idiosyncratic risk portfolio fixed effect. The source of
variation in those regression is the relationship between average projects’ idiosyncratic risk
and the discount rates estimated for high- and low-risk firm-year portfolios. For the average
firm, a one-standard-deviation increase in idiosyncratic risk results in a 6.7 to 8.0pp increase

in the discount rate.

1.7.2 Instrumental Variable

The fixed effects included in the above regressions address a few endogeneity concerns.
Specifically, the firm-year fixed effect accounts for the fact that, in a given year, a firm
may systematically select regions that are riskier. At the same time, the idiosyncratic risk
portfolio fixed effect helps address the idea that there might be a selection effect such that
some unobserved variables (e.g., managers’ experience) might systematically be associated
to better or riskier regions (i.e., regions with better potential projects, lower risk of bad
drilling outcomes). However, the fixed effect strategy does not account for the managers’
heterogeneity within the idiosyncratic risk portfolios, which could plausibly vary by firms.

Thus, the previous OLS regression may suffer from a within-firm omitted-variable bias.

To address these additional endogeneity concerns, I take an instrumental-variable approach.
The strategy is implemented in two steps. First, each well is associated with its correspond-
ing township-year peers’ largest project’s idiosyncratic productivity shock. Figure 6 provides
a graphical example — with three firms (identified in Red, Blue, and Black) — of how these
shocks are identified for one particular township-year; for the wells drilled by the Red firm,
the associated peer’s shock is 0.23. Then, I define the instrumental variable as the aver-

age value of those associated peers’ shocks computed at the level of each firm-year portfolio.

The relevance of the instrumental variable has to do with how the idiosyncratic risk vari-
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able is calculated. In this study, the idiosyncratic risk corresponds to the cross-sectional
dispersion of all the project-specific productivity shocks occurring within a township-year
such that:

Red »Blue Black) (18)

Idiosyncratic Risk,,; = ("%, (7", G

From the example in Figure 6, the projects’ idiosyncratic risk measure for the wells drilled
in that particular township-year, 0.129, corresponds to the standard-deviation of the 10
idiosyncratic productivity shocks. From the standpoint of the Red firm, the largest idiosyn-
cratic productivity shock experienced by its Blue and Black peers in the township-year is
0.23. Then, given how the idiosyncratic risk variable is constructed, it is reasonable to
assume that, on average, those peers’ shocks will be correlated with the idiosyncratic risk
variable. Panel A of Table VII reports the first stage of the instrumented regression, which
provides empirical support for this assumption. The values of 1 indicate that there is a
positive relationship between idiosyncratic risk levels and the size of the largest idiosyncratic
productivity shock that affects a firm’s peers within a given township-year. Additionally, to
address potential concerns about weak instruments, the bottom section of Panel A reports
the Kleibergen-Paap first-stage F-statistic. For each regression specification, the statis-
tic’s value is substantially greater than the minimum threshold, ~10, alleviating concerns

regarding the presence of a weak instrument.

To satisfy the exclusion restriction, I use the peers’ idiosyncratic productivity shocks within
each township. From the Arp regression, I obtain the peers’ idiosyncratic shocks after con-
trolling for firm-year factors, township-year factors, as well as the firms’ experience and
information set. Then, if managers’ assignment to specific regions is affected by these char-
acteristics, the Arp model should make the information content of peers’ shocks uncorrelated
with those variables (see Section 7 for the full discussion of the idiosyncratic shocks). Then,
after applying the fixed effect strategy in the instrumented regression, the peers’ managers’

characteristics should be uncorrelated with the firm’s managers’ characteristics within a
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portfolio’s risk profile. As a sanity check, I verify if this assumption is supported empir-
ically for the whole sample. In the context of Figure 6, this corresponds to testing if the
idiosyncratic productivity shocks of the Red firm (0.05, -0.1) are correlated with the largest
peer’s idiosyncratic productivity shock, 0.23. More specifically, I regress each well’s own
idiosyncratic shock on their associated largest peers’ idiosyncratic productivity shock, for
the entire sample (i.e., the 114,969 distinct wells). While there exists no way to technically
test for the exclusion restriction, the absence of correlation is generally reassuring. Table
VIII reports the regression results of the firm’s own idiosyncratic productivity shocks on the
largest peers’ idiosyncratic productivity shock in each township-year. I find no statistical
relationship between the two types of shocks, across all the regression specifications. Per-
haps the most relevant specification is the one presented in column 8, because it addresses
more directly the underlying assumption of the instrumental variable strategy: the absence
of correlation between firms’ managers’ characteristics and its peers’ characteristics within
a township of a given risk level. Specifically, column 8 suggests that there exists no sta-
tistical relationship between the shocks within a given township, providing support for the

instrument assumption.

Panel B of Table VII reports the results of the second stage of the instrumented regression.
The coefficients are slightly smaller in magnitude than the results obtained from the reduced-
form regression, but they remain economically meaningful. For the instrumented regression,
a one-standard-deviation increase in a project’s idiosyncratic risk results in an increase of
5.2 to 6.7pp in the firm’s discount rate, compared to 7.1 to 8.6pp for the reduced-form

regression.

Regarding the sign of the endogeneity bias, I find that the coefficient of interest (1) of the
instrumented regression is smaller than the one in the reduced-form regression presented
in Table VI, across all specifications (see Appendix C). The direction of the bias for the
coefficient of interest (/37) depends on (i) the covariance between the managers’ experience

and the level of idiosyncratic risk associated with the wells, and (ii) f2, the linear relationship
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between managers’ experience and the firms’ discount rate. Ultimately, multiple within-
firm omitted variables could be affecting my analysis, with some having opposing effects
on the direction of the endogeneity bias. In this sense, the goal of the following discussion
is to provide a concrete example to illustrate the type of omitted variables that appear
to ultimately dominate the direction of the endogeneity bias observed in the reduced-form

regression.

For (i), it is plausible that more experienced managers get assigned to better regions (i.e.,
better prospect, lower production risk) because of their greater bargaining power within
the firm or that, given their higher level of experience, the outcome of their wells is less
uncertain because they know better how to optimally extract the natural gas. In this
specific framework, this would suggest a negative relationship between the managers’ level
of experience and the observed idiosyncratic risk variable. For (ii), to obtain a reasonable
explanation on the sign of (8, it is helpful to look at it from a career concern standpoint.
More experienced managers have a longer list of realizations, which suggests that each
additional signal is less likely to have a large effect on how the firms’ superiors update
their belief of the experienced managers’ worth. In this case, bad drilling outcomes are less
likely to negatively affect how superiors value experienced managers than how they value
unexperienced managers. Chevalier and Ellison (1999) provide empirical evidence in favor
of this career concern explanation, showing that on average, less experienced managers are
more likely to get fired for bad performance. This suggests that for a similar level of exposure
to idiosyncratic risk, more experienced managers would require a smaller idiosyncratic risk
premium than their less experienced counterparts, implying that the sign of 82 should be
negative. Ultimately, the combined effect of these variables would suggest that the reduced-
form regression suffers from an upward bias because of omitted variables such as managers’
experience. In other words, the coefficient obtained in the reduced-form regression may
overestimate the magnitude of the discount rate adjustment to account for idiosyncratic

risk, when compared to the true coefficient.
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1.7.3 Idiosyncratic Risk Premiums and Firm Performance

The previous results have implications for firms’ performance. If managers inflate their
discount rate when faced with a high level of idiosyncratic risk, firms would then underinvest
in wells with a high level of idiosyncratic risk. As a consequence, pricing idiosyncratic risk
could have negative consequences for firms’ performance, while abstaining from doing so
should be correlated with relatively better performance. However, there is little empirical

evidence linking firms’ discount rate adjustment to adverse performance.

I directly examine that relationship here. To test for the effect of idiosyncratic risk pricing
on firms’ performance (e.g., gross profit margins, gross profitability, asset growth (YoY),
and investment rate), it is necessary to develop a measure of firms’ pricing of idiosyncratic
risk, to directly use it as a regressor. To construct this variable, I define the numerator
as the difference between the discount rates of the high idiosyncratic risk portfolio and the
low idiosyncratic risk portfolio, and I define the denominator as the difference between the

idiosyncratic risk measures of the two portfolios?, such that:

Discount Rate; ¢ gign — Discount Rate; ¢ r.ow

Price of Idiosyncratic Risk; , =

Idiosyncratic Riskiyt’ High — Idiosyncratic Riskut, Low

where High and Low corresponds to the two firm-year portfolios sorted on the exposure to
idiosyncratic risk. Effectively, this measure gives the discount rate change that corresponds
to a one-unit increase in average projects’ idiosyncratic risk, for each firm at a yearly

frequency.

Table IX relates firms’ price of idiosyncratic risk to their performance. For the average
firm, a one-standard-deviation increase in the price of idiosyncratic risk has a statistically
significant and sizable negative effect on the gross profit margins (-5.1pp), gross profitability
(-0.5pp), investment rate (-0.8pp) and year-over-year asset growth (-0.8pp). The negative

relationship between firms’ performance and the firms’ pricing of idiosyncratic risk suggests

26The calculation details are available in Appendix A.1.
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that idiosyncratic risk pricing is related to one or more forms of resource misallocation.

1.7.4 Mechanisms

This section explore several potential mechanisms that might induce managers to adjust
discount rates to account for idiosyncratic risk. The mechanisms relate to theories that
focus on either external pressures (frictions between the firm and the financial market) or

internal pressures (frictions between managers and their superiors).

The Cost of External Funding and Idiosyncratic Risk Pricing

Firms dispose of multiple tools to manage their exposure to risk. While most of the discus-
sion in the literature has focused on the use of financial derivatives, other mechanisms have
long been acknowledged. Studying the interaction between risk management and capital
budgeting, Froot et al. (1993) make the empirical prediction that managers would adjust
their discount rate to account for risk that cannot be offloaded in the financial market in
the presence of costly external financing. Risks that cannot be hedged expose the firm to
variability in cash flows. In the context of this paper, this can be understood as drilling
wells that would not produce enough natural gas (e.g., a dry hole). If the projects that a
firm pursues fail to produce cash flow, the firm may then have to turn to external markets
to raise additional funds and continue its operations. However, if the cost of marginal funds
increases with the amount raised, the firm might have to limit its investment in the next
period or raise capital from increasingly expensive sources. In this sense, greater variability
in the wells’ outcome exposes firms to a greater probability of having to raise external funds
at a premium. Since this source of risk directly translates into a greater cost of capital,
Froot et al. (1993) suggest that managers should adjust their discount rate calculations

accordingly.

Obtaining a measure of the cost of external financing is challenging, as researchers do not
directly observe this variable. To test the hypothesis, this study builds on the work done

by Hennessy and Whited (2007), which provides empirically-based guidance for selecting
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the best proxy of costly external financing. The core of their analysis focuses on firms’
size as well as three indexes: (i) the Cleary index, (ii) the Whited-Wu index, and (iii)
the Kaplan-Zingales index. In general, they conclude that firm size is the best proxy for
the costs of external financing, where larger firms face a lower costs of external financing
than do their smaller counterparts. They also, however, find that the Cleary index and
Whited-Wu index properly capture most of the dynamics attributed to the cost of external
financing, but fail to behave adequately with respect to the costs of bankruptcy, making
them inaccurate overall proxies for the cost of external financing. Finally, the authors note
that the Kaplan-Zingales index improperly captures most of the dynamics attributed to the
cost of external financing. On this basis, the authors conclude that firm size is the best
proxy for costly external financing, noting that the three indexes are better suited to act as

proxies for the need for external funding rather than for its cost.

All four of these potential proxies are included here, in an effort to be fully transparent. In
addition, the present study includes firms’ status (i.e., public or private) and the Hadlock-
Pierce index as additional proxies. Private ownership status has been associated with higher
financing frictions in the finance literature (Gao et al., 2013) and thus has the potential to
be informative here. Also, there is empirical evidence suggesting that the Hadlock-Pierce
index captures firms’ financial constraints. Although the index has not been tested in the
Hennessy and Whited (2007)’s costly external financing horse race analysis, it is closely
related to the firm’s size proxy discussed by Hennessy and Whited (2007) as it is a function

of firm size and age.

Table VII and Tables XXII to XXVI present the results of each of the six proxies of costly
external financing. For each table, the coefficient 85 measures the effect of costly external
financing on firms’ pricing of idiosyncratic risk. Columns 5 through 8 of each table present
the results when two variables are instrumented: (i) the projects’ idiosyncratic risk variable
and (ii) the interaction of projects’ idiosyncratic risk with the relevant proxy of costly

external financing (i.e., 51 and B2).
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Table VII reports the results of firm size. Consistent with the analysis of Froot et al. (1993),
it shows that as the cost of external funding decreases, firms tend to price idiosyncratic risk
less aggressively. The results are robust across all specifications, for both reduced form
and the instrumented regression. On average, a one-standard-deviation reduction in firm
size results in a 2.3pp increase in the price of idiosyncratic risk?’. Columns 2, 3, 4, 6,
7, and 8 introduce a proxy for firms’ diversification®®, which corresponds to the firm-level
idiosyncratic risk diversification among all the projects that are drilled for a given firm-
year. The diversification variable is included because firms’ size has been associated with
several other characteristics of firms, such as their ability to diversify sources of idiosyncratic
risk (Demsetz and Strahan, 1997). The firms’ annual budget diversification variable is
constructed in a similar spirit to the diversification index in Seru (2014) (see Appendix
10.1.), and a larger value of the variable indicates that a larger share of the idiosyncratic

risk is diversified at the firm level.

Table XXII reports the results for the Hadlock-Pierce index, which are directionally consis-
tent with the section hypothesis, and statistically significant. Namely, when the Hadlock-
Pierce index increases, which indicates that firms are more financially constrained, firms’
price idiosyncratic risk more aggressively. Table XXIII presents mixed results for the effect
of firms’ ownership status. For the specifications excluding a fixed effect at the firm level,
the results are consistent with the prediction made by Froot et al. (1993), such that private
firms’ price idiosyncratic risk more than public firms, but the difference is not statistically
significant. Tables XXIV to XXVI report the Cleary, Whited-Wu and Kaplan-Zingales in-
dexes results. They are directionally consistent with the theoretical prediction developed

in Froot et al. (1993), but they are not all statistically different from zero.

To provide additional evidence supporting this channel, I test how sensitive in the discount
rate adjustment for more- and less-diversified firms, in the sense of idiosyncratic risk. The

underlying assumption of (Froot et al., 1993) is that firms should adjust their discount rate

2TFrom Table VII: Bo*Average Scaled Idiosyncratic Risk*o asset= -0.01%0.6%383.8=-2.3.
28 Appendix 10.1. provides the details of the calculations involved.
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to account for projects’ idiosyncratic risk, if this source of risk is not diversified at the firm

level. To address that, I split the sample into two subsamples. I take a set

Overall, the results presented in this section suggest that the cost of external financing can
have a meaningful impact on how firms adjust their discount rates. Focusing on Hennessy
and Whited (2007)’s favored measure, the results indicate that costly external financing can
induce managers to price the undiversified quantities of idiosyncratic risk. It is reasonable
to assume that this proxy imperfectly captures attributes associated with firms’ cost of
external financing, and thus it could ultimately suffer from endogeneity bias. However,
most of the additional proxies tested in this section provide results that are directionally
consistent with that theoretical prediction (despite not being all statistically significant),

lending further strength to that finding.

Managers’ Budget Size Diversification and Idiosyncratic Risk Pricing

Survey evidence collected by Graham et al. (2015) suggests that specific investment decisions
are formulated at the lower level of the hierarchical structure, while budget allocation is
decided by the firms’ superiors. Geanakoplos and Milgrom (1991) suggest that delegating
investment decision-making to the agents with the highest amount of information regarding
a specific decision improves resource allocation. Empirically, the delegation of authority has
been linked to team specialization (e.g., Caroli and Reenen (2001); Colombo and Delmastro
(2004); Acemoglu et al. (2007)), where workers in jobs that require technical skills usually
benefit from a greater level of authority. In the context of gas exploration and production
companies, this approach increases the likelihood that people most familiar with the local
rock formation specificity will make investment decisions with limited interference (Bohi,
1998). However, the decoupling between the capital allocation choice and the decision to
invest in specific projects, known as the delegation process, has been argued as a potential
source of agency conflict between managers and their superiors (Aghion and Tirole, 1997).
From the lens of Aghion and Tirole (1997), to delegate land surveying and project selection

can be beneficial for firms since specialized on-site managers are more likely to generate
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quality information and then identify better drilling opportunities. However, by giving
managers a high level of autonomy, there is a risk that managers might try to abuse their
authority and misrepresent the full set of available wells when pitching them to the firms’
superiors, if monitoring is costly. For example, managers might prefer to avoid pitching
projects with an associated idiosyncratic risk measure that exceeds their preferred level,
although those wells could be value creating from the firms’ standpoint. This could be the
case if managers are evaluated, and ultimately rewarded or punished, by demonstrating their
ability to generate production forecasts that are, on average, in line with the wells’ realized
production. For the firms, managers’ ability to produce reliable production forecasts on
average can be appealing since it facilitates the efficient allocation of resources. Firms’
superiors might value this type of ability in managers’ performance reviews. Thus, for
managers, choosing wells with a higher level of idiosyncratic risk increases the probability
of being wrong in the production forecast (above or below) of a given well, which could
increase their risk of receiving bad evaluations. Although my dataset does not enable
me to observe managers’ compensation contracts or if they get fired or promoted based
on their forecasting performance, Table VIII provides empirical evidence suggesting that
firms’ resource allocation responds to forecasting mistakes. Precisely, the regression results
reported in Table VIII indicate that firms allocate a smaller share of the annual budget
in the following period to managers for which the realized production diverges more from
the expected production in the current period. This result is robust when controlling for
a region-year fixed effect, a factor that captures regions’ overall production potential and

quality.

A direct consequence of the delegation process is that firms’ high-level decision-makers allo-
cate the firm’s total budget across multiple managers, each tasked with evaluating, selecting,
and pitching projects to the firms’ superiors that should, in principle, maximize the firm’s
value. The fact that managers receive a fraction of the firm’s budget can result in a loss
of diversification at the manager level, in the sense used by Diamond (1984). The general

response from the finance and economic literature to this type of agency friction is to design
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a compensation contract that would mitigate the friction. However, given the complex na-
ture of real life situation, it appears reasonable to think that such wage contract might not
feasible in practice. In this sense, Holmstrom and Costa (1986) suggest that capital bud-
geting policies can play a partial role. For a risk-averse manager, if projects’ idiosyncratic
productivity shocks are not perfectly correlated among themselves, being granted a larger
budget has two effects. First, it reduces the total quantity of idiosyncratic risk they face.
And second, it decreases the manager’s idiosyncratic risk premium. The insight developed
in Diamond (1984) would suggest that firms in which managers have larger budgets should,

all things being equal, price idiosyncratic risk less aggressively.

That hypothesis is directly tested here. First, I construct a measure to proxy for managers’
idiosyncratic risk diversification: managers’ budget size. Natural gas exploration and pro-
duction companies organize their activities into regional units. Although it is difficult to
delineate the exact region covered by each manager, it is still possible to develop multiple
proxies of managers’ budgets based on a plausible definition of region of activity. The pro-
cedure followed here considers two potential scenarios that represent a lower and an upper
boundary for the size of their assigned territory, such that managers could either be assigned
to a specific field or to a specific state. Assuming that managers are assigned to specific gas
fields is a reasonable lower boundary, as each field possesses unique characteristics for which
the required technical expertise cannot be directly mapped onto other locations (Kellogg,
2011). These particularities create a steep learning curve for managers taking on new fields
and limit managers’ ability to transfer their knowledge. At the other extreme, using states
as managers’ assigned territories presents a plausible upper boundary. Indeed, it matches
job postings’ regions of assignment and how organizations determine the territory of their
regional units. For each of these two scenarios, I then estimate the managers’ budget size
in two steps. First, I calculate the total cost for all wells drilled in a given field or state for
each firm and year. Then, I define average managers’ budget as the average value across all
fields/states at the firm and year level. This provides me with the average budget size of

the firms’ managers in that given year, for each of two possible methods of measuring the
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budget allocation.

Table IX presents the results of the regression assuming that individual fields define man-
agers’ region of activity. Coeflicient o measures the effect of managers’ budget size on
firms’ pricing of idiosyncratic risk. In line with Diamond’s proposal, managerial budget
size appears to have a meaningful impact on idiosyncratic risk pricing. A one-standard-
deviation increase in average budget size results in a reduction of 1.16pp?? in the price of
idiosyncratic risk. Table XXVII presents the results of the same tests when managers are
assumed to operate at the level of an entire state. The results are robust to this alternative
specification for the region of activity; the relationship is similar in both cases. Finally,
Table XXIIX shows a positive and statistically significant relationship between managerial
budget size and projects’ levels of idiosyncratic risk. This is further evidence suggesting

that managers’ risk tolerance increases as a result of increasing budget size.

To further support the agency channel effect, I test how the effect of managers’ budget size
varies as a function of agency friction. To do so, I construct a measure of agency friction
building on the insight that proximity facilitates monitoring and information acquisition by
the firm’s superiors. A rich empirical literature presents evidence illustrating the benefits of
proximity in reducing the cost of acquiring information and improving monitoring. Giroud
(2013) presents evidence suggesting that proximity between firms’ headquarters and plants
reduces agency conflict by improving the ability of superiors to go on-site and directly
monitor plants’ managers. Similarly, Coval and Moskowitz (1999) and Coval and Moskowitz
(2001) show results with mutual fund managers, where proximity enables funds’ managers
to obtain better results with the shares of firms located geographically closer, suggesting
better monitoring capabilities and access to private information. I obtain the measure
of proximity by calculating the median distance between the wells drilled by a firm in

30

a given year In the context of this literature, a greater median distance between the

29From Table IX: Ba*Average Scaled Idiosyncratic Risk*onanagers’ Budget= -0.11%0.6*17.6=-1.16.
30In a first step, I measure the distance between all the wells a firm drilled in a given year. Then, the
agency friction value is defined as the median value of those distances, for each firm-year.
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firms’ wells indicates greater difficulty in monitoring the quality of projects for the firms’
superiors, thus corresponding to a greater level of agency problem. Given this, if budget
size affects managers’ risk tolerance through the agency channel, one would expect that the
effect of budget size be more salient in firms experiencing greater agency conflict. Table X
reports the results of this additional test. The variable of interest is associated with the
coefficient B3. The negative coefficient suggests that as firms face more agency problems
(i.e., a greater distance between the wells), the effect of budget size in mitigating the agency

friction becomes stronger.

The results reported in this section suggest that managers’ budget size has a meaningful
effect on managers’ risk tolerance, ultimately reducing managers’ pricing of idiosyncratic
risk. It suggests that, for the average firm, the set of available tools to alter managers risk
tolerance extends beyond compensation contracts. By shifting the allocation of resources
among its managers, firms can provide a form of insurance for those who are, for instance,

overly risk-averse.

Costly External Financing and Agency Frictions

To further explore how the two mechanisms affect the price of idiosyncratic risk, I investigate
their combined effect. Table XI reports the results of the regression that includes proxies
for both mechanisms as well as their interaction term. Across all specifications and for both
proxies of managers’ budget size (i.e., aggregation at the field or state level), I find that
the price of idiosyncratic risk (1) is positive and statistically significant, such that a one-
standard-deviation increase is associated with a 10.5 to 12.7pp increase in the discount rate.
In addition, including both mechanisms simultaneously does not eliminate their individual
contribution. Particularly, both mechanisms (2 and ) are statistically and economically
significant, and their magnitudes are closed to the ones obtained in Tables VII, IX and
Table XXVII. These results provide additional evidence suggesting that both mechanisms
operate jointly on frictions associated with the firms’ price of idiosyncratic risk. Perhaps

more interesting is the coefficient (7, which represents the contribution of the interaction
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between the two mechanisms to the price of idiosyncratic risk. The coefficient is positive
and statistically significant, although its magnitude is almost zero3!. To interpret this
coefficient, it is useful to look at a simple case. For a fixed level of idiosyncratic risk, we can
look at two firms with different sizes: 0 or 1. In this example, managers’ budget size will
be less effective in reducing the price of idiosyncratic risk (8¢ + f7) for larger firms (i.e.,
firms of size 1). I interpret this result such that, when holding the level of idiosyncratic
risk constant, the marginal benefit for increasing the size of managers’ budget is smaller for

firms that are less exposed to costly external financing frictions. A similar reasoning can

be applied to firms’ size.

1.8 Robustness Analysis

In this section, I conduct several robustness tests to rule out alternative explanations.a

1.8.1 The Effect of Real Options

One potential concern with the strategy adopted here for estimating firms’ discount rates
is whether it adequately accounts for important aspects of firms’ project selection. For
example, managers might use a real option investment threshold, rather than project cost,
to calculate projects’ NPV; the real option literature (Dixit and Pindyck, 1996) explicitly
considers idiosyncratic risk when determining optimal exercise thresholds. If this is the
case, failing to account for the firm projects’ optionality feature could substantially alter

the nature of the above results.

Empirical evidence suggests that managers behave in a way that is directionally consistent
with real option theory (Bloom et al., 2007; Kellogg, 2014; Decaire et al., 2019), although
they also systematically exercise their investment opportunities prior to the real option rec-

ommendation. Brennan and Schwartz (1985) (in the case of gold mines), Kellogg (2014)3

311 divided the variable by 1000 to increase the coefficient magnitude and show digits in the regression
table.
328ee Figure 10 of Kellogg (2014).
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(on oil wells), and Decaire et al. (2019) (on shale gas wells) provide empirical evidence in
support of this claim. This suggests that managers do not follow the recommendation of
real option theory strictly—a situation that is further supported by multiple survey-based
studies (Graham and Harvey, 2001; Jacobs and Shivdasani, 2012; Graham et al., 2015). In-
stead, in more than 90% of cases, managers prefer more straightforward and less capricious
valuation strategies such as NPV and IRR when selecting projects (Graham and Harvey,
2001), with little mention of the use of real options. In this light, it is reasonable to assume
that managers acknowledge to some extent the value and importance of operational flexi-
bility, but real option models might be too stylized to properly capture the exact dynamic.
Nonetheless, I use two methods here to ensure that the present results are robust to the

effect of operational flexibility and real option.

First, to directly alleviate the concern that this study is biased by a operational flexibility
factor, I repeat the above analysis using a restricted sample of projects that are minimally
likely to be affected. Precisely, I focus on wells for which managers have little time to drill,
since real option valuation directly depends on the flexibility of a project’s timing. Speaking
generally, the more time the managers have to decide when to invest in their projects, the
more the real option is worth. Now, there are two ways a firm can obtain the right to
develop a plot of land in the United States. It can either acquire a lease, providing the
exclusive right to the plot during a certain period, which is, on average, three years, or it
can “hold [the development rights| by production”. This means that as long as a firm has
an actively producing well on the plot, they are entitled to further develop it until they fully
deplete the available reserves of natural gas. In these cases, firms usually have 20 years or
more to drill additional wells. Papers investigating real option behavior have traditionally
focused on projects whose lands are controlled through this second mechanism, because
the real option phenomenon is more salient in those cases (Decaire et al., 2019). However,
when operating on a leased plot of land, oil and gas exploration companies tend to drill
their first well immediately prior to the expiration of the lease (Herrnstadt et al., 2019).

Thus, for those first wells, the effective value of the option-to-wait at the time of drilling is
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marginal. Effectively, as the real option time to expiration converges toward zero, its value
also converges to zero. Given this, the first strategy used here is to limit the analysis to
only those wells that are the first to be drilled on a given plot of land. For those wells,

managers faced limited operational flexibility.

The second strategy is to adjust the revealed preference strategy described above to directly
account for the real option value. This is done by modifying the decision rule used when
estimating each project’s expected IRR. Rather than assuming that firms choose to invest
whenever a project’s expected cash flow is greater than its cost, the new rule assumes that
firms use a real option optimal exercise threshold that increases along with a project’s level
of idiosyncratic risk such that the decision rule becomes (see Appendix 10.5 for a detailed

explanation of the real option calculation):

M
21 Ty i) BIP) = V=0 (1.9)

Where V* is the real option optimal exercise threshold as specified by Dixit and Pindyck,

such that V]* = 61 1C’ > Cj.

There are two limitations to this strategy, however. The first is related to the amount of
time to expiration for each project. Because this information is not observed for most wells
in the dataset, the most conservative approach is to assume that firms have an infinite
time horizon to exercise their options for all projects. The real option optimal threshold
is increasingly sensitive to projects’ risk as the time to expiration increases, thus giving
each project an effectively infinite duration before expiration corresponds to a more con-
servative scenario here (Dixit and Pindyck, 1996). The second limiting factor is related to
the measure of idiosyncratic risk. There could be concerns that the measured level of the
idiosyncratic risk is too low, and that it does not properly capture the total quantity of
idiosyncratic productivity risk faced by the firms. In turn, this would bias the real option
test. To test the robustness of the results with the calibrated real option, I design a kill

test. Precisely, when calibrating the real option optimal threshold, I increase the measure
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of idiosyncratic productivity risk to find at which level my core result is no longer statis-
tically significant. Multiplying the magnitude of idiosyncratic productivity risk magnifies
the difference between the riskier wells and the less risky ones, ultimately widening the
difference between the real option exercise threshold, which reduces the difference between

the estimated expected IRRs.

Table XII presents the results of the first strategy and Table XXIX present the results of the
robustness test for the real option effect. Both regressions are qualitatively and statistically
similar to the primary results described in earlier sections, suggesting that a operational
flexibility or real option effect is not significantly altering the reported outcomes. Not
surprisingly, the regression coefficients are lower in all specifications, suggesting that some
of the observed variation might be partially attributable to those phenomenon. Also, the
number of observations in both tables is lower than that in the main regression tables. For
Table XII, it is because most of the projects evaluated in this analysis are infill wells (i.e.,
wells drilled when the plot of land is held by production), which reduces the number of
firms included in the sample. Similarly, for Table XXIX, the number of observations for
the real option calibration specification is lower than the one for the main specification,
because implied volatility data is not available on Bloomberg before the year 2000. Finally,
the results of the kill test indicate that the core results of this paper are robust to the real

option calibration up to an increase of 28.8% of the idiosyncratic risk.

1.8.2 The Effect of Firms’ Leverage

The cost of debt for a given firm increases with the total amount of risk incurred at the
firm level (Merton, 1974), including both systematic and idiosyncratic forms of risk. Taksler
(2003) presents empirical evidence in favor of Merton’s theory, which is roughly that a firm’s
weighted cost of capital should account for the firm’s idiosyncratic risk, through its debt
component. To test for this alternative interpretation, I design a separate regression that
includes firms’ market leverage and an interaction term of market leverage with project-level

idiosyncratic risk, including only those firms for which the relevant information is available.
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Table XIII reports the results of that test, which are that the effects of leverage on the price
of projects’ idiosyncratic risk does not economically or statistically alter the above results.
Also, consistent with the effect of leverage discussed in Merton (1974), the coefficient of
the interaction between firms’ leverage and the projects’ average idiosyncratic risk (i.e., 5)
is positive, but not statistically significant in all regression specifications. The directional
effect is consistent with the phenomenon discussed by Merton, such that idiosyncratic risk

should be priced by the debt component of firms’ capital structure.

1.8.3 Asset Pricing and the Idiosyncratic Risk Premium

A well-established asset pricing literature has found that firms’ returns may account for
idiosyncratic risk. For example, Goyal and Santa-Clara (2003) found a positive relationship
between the quantity of idiosyncratic risk measured at the firm level and the returns on
the market, while Ang et al. (2009) finds that firms with high past idiosyncratic volatility
have low future average returns. This literature has discussed the role of investors lack
of diversification and the role of real options to explain the idiosyncratic risk premium.
There is a possibility that the results observed in my study are affected by this dynamic.
However, three pieces of evidence presented in the previous sections provide reassuring
evidence regarding such concerns. First, Table II coefficient (5 indicates that firms price
idiosyncratic risk after controlling for the WACC or the cost of equity, which proxies for the
idiosyncratic risk premium discussed in the asset pricing literature. Second, Table XXIII
shows that the results are robust to firms’ listing status (i.e., private or public), ruling
out the idea that the observed phenomenon is driven by a stock market effect, since it is
observed for both types of firms. Finally, the mechanisms explored in this paper indicate
that a plausible explanation for the observed dynamic is attributable to firms’ internal

frictions, steering away from a solely financial market effect.
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1.8.4 Alternative Price Specifications

The study’s primary results are also robust to two alternative price specifications. The first
alternative uses the three-year Bloomberg natural gas futures contract prices rather than
EIA three-year forecast33. In the second specification, the EIA regional wellhead prices are
used to account for price heterogeneity across states (see Figure 8). Effectively, the price
firms obtain for selling their product can vary across regions, depending on the quality of
the resource and the distance it must be transported in order to reach a refinery site. Tables
XIV and XV report the results of these two additional specifications. In both cases, the

primary results are not qualitatively or quantitatively altered.

1.8.5 Alternative Discount Rate Thresholds

I introduce two alternative threshold specifications to address the concern that the results
of the analysis can be materially affected by the threshold used to estimate the firm-year
portfolios’ discount rate. Determining a reasonable threshold is important in this analysis,
because two sources of bias can potentially affect the discount rate estimate. First, the
projects’ expected IRR are obtained using a noisy measure of the managers’ true expec-
tations. Figure 9 provides a graphical illustration of the effects of measurement noise on
the observed firm-year portfolio’s expected IRR distribution. For this reason, observations
situated on the very left portion of the distribution proxy for the discount rate with mea-
surement error. Thus, it is reasonable to extend the discount rate threshold slightly beyond
the minimum value of the distribution. Second, taking value too far on the right side of
the distribution would fail to capture the features associated with the discount rate, as it
would more likely capture dynamics associated with the firm’s average profitability and
its opportunity set. Table XVII presents the main results with two alternative threshold
specifications, to show that the results are robust. Columns 1 to 3 present the results using

only the lowest bound of the expected IRR distribution, and columns 4 to 6 present the

33The number of observations is smaller than the main specification used above, because Bloomberg’s
three-year natural gas futures prices are only available from 1995 to 2010, which presents a restricted
sampling window.
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results using the observations in the 2.5 lowest percentile of the distribution.

1.8.6 Results by Time Period

Finally, I verify that managers price idiosyncratic risk consistently period by period. Pre-
cisely, Table XVIII reports the results for the price of idiosyncratic risk, evaluated per
decade (i.e., [1983-1990), [1990-2000), [2000-2010]). The table shows that managers consis-
tently adjust their discount rate to account for idiosyncratic risk, across the three decades.
This indicates that the main specification results are not driven by specific events associ-
ated with one particular time period. Rather, the effect is economically significant across

all three decades.

It is interesting to note that the price of idiosyncratic risk has been steadily declining over
time, across all regression specifications. Although the goal of this paper is not to explain
the time trend for the price of idiosyncratic risk, future research investigating the underlying

drivers of such phenomenon would be interesting.

1.9 Conclusion

Choosing discount rates for new investment projects is a fundamental topic in corporate
finance, yet we have almost no evidence on how managers make these choices in prac-
tice. This study helps fill this gap by analyzing the relation between projects’ idiosyncratic
risk and firms’ project-specific discount rates. The primary findings are that (i) managers
adjust their discount rates upward when faced with increased idiosyncratic risk; (ii) pric-
ing idiosyncratic risk is negatively related to several measures of firm performance; (iii)
managers appear to adjust their discount rate calculation to account for their exposure to
undiversified unhedgeable risk, when facing costly external financing; and (iv) capital bud-
geting policies, and specifically the size of managers’ budget, appear to provide firm owners

with an additional lever to adjust managers’ effective risk tolerance to desired levels.

An interesting implication of these results relates to the role of alternative tools for aligning
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managers’ preferences. Most of the theoretical and empirical work in finance focuses on
compensation contracts as the main means of insuring managers against the potential neg-
ative outcomes of specific projects. Echoing the theoretical insights provided by Holmstrom
and Costa (1986), this analysis finds that capital budgeting policies, such as the size of
managers’ budget, can supplement contracts and other tools, and may even help to achieve

this goal more efficiently.
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1.10 Appendix

1.10.1 Variable Definition

In this appendix, I define how each variable discussed in the paper is constructed. Subscript
1 corresponds to a specific firm, ¢ corresponds to the year, j indicates a specific well, f refers
to a region (i.e., a field or a state), p refers to a township, and k refers to the two portfolios
at the firm-year level sorted on the idiosyncratic risk. A subscript with a minus sign, such
as X, indicates that the firm’s own observations are excluded from the observations used

in the calculation of the specific variable.

Gas Well Variables

1. # of Wells in a Township-Year: Ngt = Count the number of projects per township p

and year t

2. # of Active Regions: sz, , = Count the number of fields or states the firm is active in

during the year

3. # of Projects per Firm-Year Portfolio: Ng ¢ = Count the number of projects per firm

i, year t, and portfolio k

4. Cost; = The drilling cost of well j

Zp,t Cost;
me

5. Township-Year Average Well’s Costy,; =
6. Asset;; = ) . Costj, for all producing wells on year ¢ for firm i
7. Budget;; = Zi’t Costj, for all the wells drilled on year t for firm 4

8. Managers’ Budgetys; = > f.it Costj, for all the wells drilling on year ¢ for firm ¢ in
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Average Managers’ Budget at the Firm Level; ; ; =

region (i.e., field or state) f

>_;,+ Managers’ Budget; ; ¢
!
Nit

Natural Gas Price; = P,

Operational Cost (%) = OP

Royalty Rate; (%) = Ry

Yearly Gas Production;; (in 1,000 cf) = Q;

Operating profit; s = PQ;¢ * (1 — Ry — OP) — Budget; 4

Gross Profit Margin; ; (%) = Op emi:gf:of tit 4 100

Gross Profitability; ; (%) = OperatingProfitiz 100

Asset; ¢

Assets Growth; ;41 (YoY) (%) = Asselicin 0

Asset; ¢

Budgeti,t+1 * 100

Investment Rate; 11 (%) = Assel; ;

Discount Rate: DR;; = Lower region of the firm-year portfolio’s expected IRR dis-

tribution.

m=12 . _N\m=12 .
Project’s Productivity Shock: (; = 2m=1 E[pt]*q]’mcogjm:1 E[pt] E[gj,m]

Township-Year Idiosyncratic Risk: IRy ; = = let_l > (G — Cpit)?
P,

Projects’ Average Idiosyncratic Risk: Average IR; ;) = N% Yotk IRE

i1,

DR; ¢ High—DRi ¢, Low
Average IRi’tyHigh—AVerage IR; ¢, Low

Price of Idiosyncratic Risk;; = , where High and Low
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corresponds to the two firm-year portfolios sorted on the exposure to idiosyncratic risk
24. Largest Peers’ Projects’ Idiosyncratic Productivity Shock: Max Peer IPS, ; = maxy, +[(—;]

25. Average Largest Peers’ Projects’ Idiosyncratic Productivity Shock; ¢, = N% > itk Max Peer IR, ;
itk 7

j
N/ ,-1

26. Annual Firm’s Budget Diversification; ; = SN
i,6\65 =G4,

Financial Market Variables

For the regressions using Compustat variables or other financial market variables, the vari-
able definitions are below. Names are denoted by their Xpressfeed pneumonic in bold, when

available.

1. Total Book Assets = at
2. Total Debt = dltt + dlc

3. Market Value of Equity: MVE;; = pstk + csho*prcc_c

Total Debt; ¢
MVE; ;+Total Debt; ;

4. Market Leverage =

5. BtOG = One year CAMP Oil and Gas Industry beta, computed at the monthly fre-

quency.
6. Risk-free Rate: rf; = 10-year risk-free rate from St-Louis Federal Reserve.
7. Industry Cost of Equity: 1% = rf; + B¢ * (E(%) —rft)

8. Cost of Debt: rft = Interest rate of trading bonds from firms of equivalent credit

rating.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

MVE, ;

Total Debt; ¢

. Weighted Average Cost of Capital: WACC;; = NMVE, ;T Total Debiy; srf+ NV

D
Tit

Cash Flow: CF = M
a

TLTD = dltt+dlc

at

TDIV — de+dVC

at

CASH = <¥¢

Market-to-book Ratio: Q = MVE"'TOtala?Ebt_thitc

B¢ +Total Debtl"t

DIVPOS = is indicator that equals one if the firm pays dividends, and zero otherwise.

LNTA = In(at)

Three-digit Industry YoY Sales Growth: ISG = 2 digie s1c 52111

PP digit SIC sale; ¢

Own-firm Real Year-over-Year (YoY) Sales Growth: SG = Real salei i1

Real sale; ;

CURAT = 3¢

COVER = (Xint‘fssg)f/‘(if’_tc), where 7_c is the tax rate.

IMARG = -2

sale

__ che+0.5%xinvt+40.7xrect—dlc
SLACK = vi0
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Costly external financial variables

In the paper, I use four indexes to proxy for the level of costly external financing by firms. To
construct each of the first three proxies (Cleary Index, Whited-Wu Index, Kaplan-Zingales
index), I process the data following the methodology presented in Hennessy and Whited
(2007). Finally, for each index to have the same interpretation, I follow the recommendation
of Hennessy and Whited (2007) and multiply the Cleary index by —1, such that it is
increasing with the likelihood of facing costly external finance. Finally, to construct the

Hadlock-Pierce index, I follow the methodology presented in Hadlock and Pierce (2010).

The indexes are constructed in the following way:

Kaplan-Zingales index = —1.001909 « CF + 3.139193 « TLTD — 39.36780 « T DIV (1.10)
—1.314759 « CASH + 0.2826389 * ()

Whited-Wu indez = —0.091 « CF — 0.062 * DIV POS +0.021 « TLTD — 0.044 « LNT A
(1.11)

+0.102% ISG — 0.035 x SG
Cleary index = —0.11905 x CURAT — 1.903670 + TLT D + 0.00138 * COVER (1.12)
+ 1.45618 * IM ARG + 2.03604 + SG — 0.04772 x SLACK

Hadlock-Pierce index = —0.737 * log(Assetagps) + 0.043 log(Asset2004)2 +0.040 * Age
(1.13)

Where Age is measured using the year in which a firm drills its first well in the DrillingInfo

raw data sample, which starts in 1885.
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1.10.2 Linearized ARP model

To estimate the Arp model using a OLS regression, I linearize the equation such that:

Gjm = Aj(1+b0m) T (1.14)
1
In(gjm) = In(A;) — gln(l + bm) (1.15)
K
In(qjm) = a0 + o1 + Aj + Z Brm” (1.16)
k=1

Where the last step is obtained by doing a Taylor expansion of the term In(1 4 b6m). For
a fixed m sufficiently small, the expansion terms converge to zero, since the product of b
and 0 is close to zero. In other words, I can approximate the hyperbolic decline curve using
a K™ order polynomial. Finally, I include two dummy variables, ag and oy, equal to 1 for
the first and second month of the well’s production and zero otherwise, to account for the

well’s production ramp-up patterns (Dennis, 2017).
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1.10.3 Well’s Differential Exposure to Systematic Risk Factors

Wells in my analysis could have different exposure to some potential systematic risk factors
(e.g., natural gas prices). For example, wells with a greater level of idiosyncratic risk are
associated with a greater discount rate, for a given firm-year. Consequently, it is reasonable
to expect that, on average, more risky wells produce larger quantities of natural gas than
their smaller counterparts, all things being equal. Empirically, the correlation between
wells’ level of idiosyncratic risk and their associated level of production is 0.2. Now, wells
producing greater quantities of natural gas are mechanically more exposed to natural gas
prices, a potential systematic risk factor. This relationship can potentially alter how I
interpret this study’s core result, since it would imply that wells with a greater level of
idiosyncratic risk are probably more exposed to systematic risk factors (i.e., natural gas

prices), confounding idiosyncratic and systematic risk factors.

To illustrate how wells with different production levels could have a different exposure to

natural gas prices, I use a simple example, such that:

Pz *Qj,zm = /BWell/sPriceEzposurepz + €j.zm (117)

Where p, corresponds to the price of natural gas at time z, and g; ., is well j production at
age m (in months). We can then derive the expression for the coefficient By ey’ s Price Exposure;

such that:

cov (pz *qj,2,m; pz)

5Well/sPriceEmposure = var(pz) (118)
. E[pg * Q',z,m] - E[q j,z,m * pz] * E[ z]
_ j var(lﬂ)z) (1.19)
_ E[q ',z,m] (E[pZ] B E[pz]2)
= J var(p:) (1.20)
— Elgseum] (121)

Where I use the fact that wells’ production flow is independent from the natural gas price
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process to obtain equation 19. Section IV provides an expansive discussion and some empir-
ical support in favor of this assumption. This simple framework confirms the intuition that
wells with a greater level of production flow may be more exposed to natural gas prices.

This can potentially confound the true effect of idiosyncratic risk in the main analysis.

That being said, the quantity of risk is not the only relevant aspect to consider in this
scenario. The price of this potential systematic risk factor is equally important in char-
acterizing the consequence of a different exposure to systematic risk. There exists mixed
evidence on the size of a natural gas risk premium or, to a more general extant, the risk
premium of an energy factor. First, from a CAPM standpoint, the risk premium of natural

34 The sample average one-year CAPM monthly beta coefficient for

gas is virtually zero
natural gas is 0.004. Computing the measure over alternative horizons does not significantly
alter the resulting coefficients such that the two-year horizon beta coefficient is 0.003, the
three-year beta is 0.003, and the four-year beta is 0.003. Second, when looking at other
asset pricing models, such as models derived from the arbitrage pricing theory (APT), there
exists little consensus for the existence of an energy factor priced by the market. On one
side, Chen et al. (1986) and Kilian and Park (2009), among others, find little evidence in
favor of an energy factor. Chen et al. (1986) find that oil price risk is not separately valued
in the stock market, while Kilian and Park (2009) find limited explanatory power for oil

supply and demand shocks in explaining stock returns. On the other side, Chiang et al.

(2014) and Ready (2017) provide evidence in favor of an energy factor priced by the market.

Given the lack of general agreement in academic research for the existence of a priced energy
risk factor, I include the wells’ differential exposure to this potential systematic risk factor
in my main specification. To do so, I use the results derived in equation 21. Precisely, for
each firm-year portfolio, I measure the average production of the wells that were drilled, to

proxy for their average exposure to natural gas prices.

31Berk and van Binsbergen (2016) provide empirical evidence suggesting that the representative investor
utilizes the CAPM to determine the risk premium.
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1.10.4 Sign of the Endogeneity Bias

To guide the analysis of the endogeneity bias sign in the reduced-form regression, it is useful
to look at a simple regression case to work within an intuitive framework. For illustration’s
sake, one can take the example that managers with different level of experience might not be
randomly allocated among the two firm-year portfolios (i.e., the high and low idiosyncratic
risk portfolios), such that Managers’ Experience would be part of the true data generating

process:

Discount Rate; ) = B1ldiosyncratic Risk; ; j, + f2Managers’ Experience; ; , + €1 (1.22)

In the case where Managers’ Fxperience is omitted from the true regression model, the

reduced-form regression would then be:
Discount Rate; = 8yIdiosyncratic Risk; ; , + ¢(Managers’ Experience); ¢ (1.23)
In this simplified example, the expression of the biased reduced-form 37 can be defined as:

cov(Idiosyncratic Risk; ; ,; Managers’ Experience; ; ;)

B = b1+ P2

1.24
var(Idiosyncratic Risk; ; ;) (124)

From this simple example, one can note that the direction of the bias for the coefficient of
interest (87) depends on (i) the covariance between the managers’ experience and the level
of idiosyncratic risk associated with the wells, and (ii) f2, the linear relationship between

managers’ experience and the firms’ discount rate.
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1.10.5 Revealed Preference Strategy with Real Option

To account for the real option effect, I adjust the firms’ decision rule, such that I no longer
assume that it is optimal to invest when the expected discounted cash flows of the wells are
greater than the cost (C}), but I assume that the wells are exercised when the discounted

cash flows are greater than the real option optimal threshold (V}"), such that:

Moo
> (EYR Elgjm| E[P;] = Vi =0 (1.25)

m=1

To compute the real option optimal threshold (V]*), I follow the methodology introduced in
Dixit and Pindyck (1996, Chapter 5) such that:

V= & «Cj (1.26)
J [3} -1 J

1 rn—90 (rg—9) 1 2r
L - _ T t — )2 ¢ 1.27
=3 0J2+wt2+\/[0]2+wt2 ol (1.27)

where C; denotes the well’s drilling cost, r denotes the 10-year risk-free rate, § corresponds
to the project’s dividend rate, 0]2- is the project’s idiosyncratic risk, and th is the natural

gas risk.

I follow Brennan and Schwartz (1985) and set the dividend rate (i.e., §) equal to the natural
gas convenience yield. I compute the convenience yield using the natural gas spot and
Bloomberg Natural Gas Future prices. Precisely, I obtain the sample average natural gas

convenience yield (i.e., §) such that:

2010

1 1 F;
R o R3] (1.28)
t_22000 3 St

Where t is the year during which the convenience yield is measure, F'; is the Bloomberg

three-year Natural Gas Future Price, and Sy is the spot price.
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Finally, I define the project’s risks as the combination of the project’s idiosyncratic risk (O’?)
and price risk (w?). The project’s idiosyncratic risk is the same measure as the one I use
throughout the paper. The measure of price risk corresponds to the three-year Bloomberg
Natural Gas Futures contract implied volatility. Kellogg (2014) has an extensive discussion
on which measure of price uncertainty is best to use in a real option calibration, and con-
cludes that using implied volatility derived from financial derivatives is optimal. However,
the financial option for the three-year horizon contracts are not available on Bloomberg be-
fore 2000. For this reason, the number of observations used in the regression of this section

is smaller than that of the main specification.
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Figures

Figure 1: Vertical versus Horizontal Drilling Technology

This figure provides a graphical illustration of the difference between horizontal and vertical wells.
Vertical wells represent the older technology, predominantly used in the first part of the American
oil and gas development (i.e.; 1900-2005). During the analyzed period, 89% of the gas wells drilled

in my sample were completed using the vertical technology.
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Figure 2: Panhandle Field (Texas) Development Progress between 1961-2010
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Figure 2.1. 1961 map of approximate boundary of Panhandle oil and gas field producing
region. Source: Anderson and Hinson, 1961, Boone 1958, and G.B. Shelton, U.S. Bureau of
Mines, written communication, 1958 .
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Figure 2.2. 2010 map of cumulative oil and gas wells dnlled in the Panhandle field. Each

dot represents an individual well. Wells' qualify is indicated by a color code. Darker shade of

blue indicates wells that were among the most productive of the region, while dots color

coded 1n gray indicate lower level of productivity.
This panel of figures plots the evolution of the Panhandle field development over the period 1961
to 2010. Figure 2.1. provides the initial expectation of the field boundary, based on geological

surveys. Figure 2.2. provides an updated view of the field development. The red square indicates

the Hutchinson county to help align the surveyor map with the 2010 map.
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Figure 3: Excerpt from Energy Firms’ 10-K Statement for Ongoing U.S. Activities
UNITED STATES

ExxonMobil’s year-end 2018 acreage holdings totaled 12.1 million net acres, of which 0.8 million net acres were offshore.
ExxonMobil was active in areas onshore and offshore in the lower 48 states and in Alaska.

During the year, 554.6 net exploration and development wells were completed in the inland lower 48 states. Development activities
focused on liquids-rich opportunities in the onshore U.S., primarily in the Permian Basin of West Texas and New Mexico and the
Bakken oil play in North Dakota. In addition, gas development activities continued in the Marcellus Shale of Pennsylvania and
West Virginia, the Utica Shale of Ohio and the Haynesville Shale of East Texas and Louisiana.

ExxonMobil’s net acreage in the Gulf of Mexico at year-end 2018 was 0.7 million acres. A total of 3.5 net exploration and
development wells were completed during the year.

Participation in Alaska production and development continued with a total of 7.3 net development wells completed.
Panel 3.1: U.S. Upstream Business of Exxon Mobil Corporation (2018).

This figure presents an example of how energy firms break down their exploration and production activities in the
United-States. There is a strong focus on geographical detail, often refering to states or fields to define their upstream

activities.
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Panel 3.2: U.S. Upstream Business of British Petroleum Plc. (2018).

This figure presents how British Petroleum Ple. breaks down its upstream operations (i.e.. exploration and production)

in the United-States.
The figures in the two above panels present examples of how energy firms break down and discuss
their activities. Those firms rely heavily on geographical boundaries to define their operations,
referring to man-made boundaries (i.e., states) or naturally occurring ones (i.e., geological structure)

in most cases.
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Figure 4: Geographic Distribution of the Vertical Gas Wells
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This figure plots the sample of wells included in the analysis. The total sample includes 114,696
vertical gas wells drilled over the period ranging from 1983 to 2010. The map provides information

on the regions with the most activity during the analyzed period.
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Figure 5: Expected and Realized Well’s Production Decline Over Time
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This figure plots the wells production decline level over time. The blue line corresponds to the
median empirical production, the red line corresponds to the hyperbolic Arp prediction and the

shaded area represent the 10th and 90th confidence interval.
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Figure 6: Variables Constructed

Shocks

6 Miles

Using the Township-Year Idiosyncratic

& Miles

Figure 6.1. Bird Eye View of 2 Township-¥ear (Eanzaz)
This figure plots the wells drilled in the township (335-39W) in Kansas, for the year 1980 to 1991, A wownship is a § miles by § miles
zquare of land. In the Public Land Survey System. each township is constinnted of 36 1-squared mile sections. The colored circles represent
distinct wells drilled by the three active firms in the township-year (Jccidental Pemroleum, Linn Energy, and Merit Enerzy).

Vertical Wells

Idiosyneratic Productivity Shoeks (S)
Occidental Petroleum Linn Energy Merit Energy
Red Blue Black
(51) Well 1 0.05 -0.22 0.23
(5z) Well 2 -0.1 0.1 0.03
[G3) Well 3 0.01
(54) Well 4 0.12
(55) Well 5 -0.04
(56) Well & 0.14
Largest Peer's Idiosyncratic
Productivity Shock b i D
Projects’ [diosyneratic Risk: 0.129

Figure 6.2: Realized Idiosyncratic Productivity Shocks, Idiesyncratic Fisk, and Instrumental Varable

This table presents an example of the realized idiosyncranc productvity shocks for the wells drilled in the township-year, for the three acove
firms. Sigma (g) represents the wells' specific idiosyncratic shocks. For each well drlled in the township-year, I determine the well's level
mezsure of idiosyncratic risk, Projecss' Idiesyncraric Risk, as the cross-sectional standard deviation measured for the township-yvear (e.g.,
0.120). Finally, the instrumental variable, Largest Pears' Idionyneranc Producmviyy Shock, comresponds to the largest idiosyncratic shocks
experienced by a firm's peers. For example, for the Red firm, the largest peers' idiosyncratic shock is 0.23, experienced by the Black firm.

Productivity

Figure 6.1. presents a simplified example of wells being drilled in a given township-year. In this

example, three firms (i.e., Red, Blue, and Black) were active in the township during that specific

year. The adjacent table (Figure 6.2) reports an illustrative example of the potential idiosyncratic

productivity shock, measured for each well. The instrumental variable used in the paper, Average

Largest Peers’ Idiosyncratic Productivity Shock, corresponds to the biggest shock that was measured

for the firm’s peers in its wells’ township-year, averaged at the firmyear porfolio level. To obtain the

Projects’ Average Idiosyncratic Risk , I take the average value of Projects’ Idiosyncratic Risk for

each firmyear porfolio.

60



Figure 7: Distribution of the Well’s Idiosyncratic Productivity Shocks
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This figure plots the distribution of the well’s idiosyncratic productivity shocks. The total sample
includes 114,696 vertical gas wells drilled over the period ranging from 1983 to 2010. values to the

right of the red dashed line indicate positive shocks, while value to the left indicate negative shocks.
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Figure 8: Natural Gas Wellhead Price by Region over Time
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This figure plots the evolution of yearly natural gas wellhead prices for each producing state over

time. Source: https://www.eia.gov/dnav/ng/ng_prod_whv_a_EPGO_FWA_dpmcf_a.htm
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Figure 9: Firm-Year Portfolio’s Projects’ Expected IRR Distribution

Expected IRR
Figure 9: Observed Distribution of the Project's expected IRR !

This figure plots the distribution of the projects’ expected IRR for the firm-year portfolios. If there was no measurement error in the projects’ expected
IRR. the observed distribution would cut sharply at the red dotted line. However. because of measurement error in the projects' expected IRR. the tails
of the distribution are fatter. and the left tail of the distribution extends beyond the firms e cut-off value.

This figure plots the distribution of the projects’ expected IRR for the firm-year portfolios. If there
was no measurement error in the projects’ expected IRR, the observed distribution would cut sharply
at the red dotted line. However, because of measurement error in the projects’ expected IRR, the
tails of the distribution are fatter, and the left tail of the distribution extends beyond the firms true

cut-off value.
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Tables

Table 1: Summary Statistics of Firms’ and Wells’ Characteristics
This table reports summary statistics of exploration and production gas companies included
in the sample. The time period of the sample is from 1983 to 2010. The sample consists of
all firms drilling at least 10 gas wells in the year of analysis, and wells drilled in township-
year with at least 3 wells. I exclude from the analysis all wells with missing fields, and wells
for which the first production date occurs before the drilling date, as they correspond to
data entry error. Panel A reports summary statistics of the firm’s characteristics. Panel B

reports well-level characteristics used to estimate the Arp model.

Observation Mean Median Std. Dev.
Panel A: Firm Level Data
Assets (In millions $) 3.946 22917 84.87 383.79
Annual Budget (In millions $) 3,946 60.34 2295 108.80
Annual Budget per Field (In millions $) 3.946 11.30 6.07 17.57
Annual Budget per State (In millions $) 3946 19.37 10.30 30.09
Number of Firms 369
Observation Mean Median Std. Dev.
Panel B: Well Level Data
Drilling Cost ($) 114,696 465,652.90 402,357.30 299,580.20
Drilling Cost ($ per foot) 114,696 79.07 8§1.48 6.94
Royalty Rate (%) 114,696 17.32% 18.75% 2.83%
Operational Cost (%) 114,696 20.00% 20.00% 0.00%
Well Total Gas Production (in 1,000 cf) 114,696 570.,049.90 177.654.50 1.608.979.00
EIA three-year forecast gas prices (Per 1,000 cf) 114,696 4.05 337 1.83
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Table 2: Firms’ Discount Rate and The Cost of Capital

This table reports coefficient estimates from an OLS regression for the relation between the cost of capital and
firms® discount rate, and t-statistics robust to heteroskedasticity and within-firm dependence m bracket. The
period of the sample is from 1983 to 2010. The unit of observation in the underlying table is at the firm 7, and
vear ! level. The Industrv Cost of Equity 1s calculated using the oil and gas industry beta, computed at the
monthly frequency on a one-year horizon basis, multiplied by the expected market excess return. The oil and
gas mdustry returns are obtained from Kenneth French web site. Market excess return is approximated using
the earning-to-price ratio obtained from Robert Shiller web site. The risk-free rate is the 10-year risk-free rate,
obtained from the St-Louis Federal Reserve website. Finally, to compute the weighited average cost of capital
(WACC), I obtain the cost of debt using firms credit rating reported in Capital IQ. See appendix A.2 for the
full methodological details. The variable Project's Average Idiosyncratic Risk is scaled by its standard
deviation to simplify the lecture of the table and facilitate its comparison with the other regression tables. *
mdicates significance at the 10% level, ** at the 5% level, and *** at the 1% level.
Discount Rate (%);

(1) (2) (3) 4)
(B)) WACC (%),, 1.403%** 1.549%%* 1.367%+ 1.325%*
[2.88] [2.80] [3.13] [2.40]
(B,) Project's Average Idiosyncratic Risk; 11.862%%* 9.989%*
[3.06] [2.43]
Firm Fixed Effect; No Yes No Yes
R-Squared 0.011 0.298 0.152 0.383
F-Statistic 8.308 7.831 19.800 13.866
Observations 748 748 748 748
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Table 3: Managers’ Project’s Idiosyncratic Risk Pricing

This table reports coefficient estimates from an OLS regression for the effect of projects' idiosyncratic risk on firms’™ discount rate. and t-statistics robust to
heteroskedasticity and within-firm dependence in bracket. The time period of the sample is from 1983 to 2010. The unit of observation in the underlying table is at
the firm i. year t and portfolio & level. Project’s Average Idiosyncratic Risk denotes the average projects’ idiosyncratic risk measure for each firm-year portfolio
(i.e.. the high or low idiosyncratic risk portfolio). The variable Average Naniral Gas Production Level correspond to the wells' total production averaged at the firm-
year porfolio level. The variable Project’s Average Idiosyneratie Risk is scaled by its standard deviation to simplify the lecture of the table and facilitate its

comparison with the other regression tables. * indicates significance at the 10% level. ** at the 5% level, and *** at the 1% level.

Discount Rate (%0);

n (2 (3) (C)) (5) (6) ©)
(B,) Projects’ Average Idiosyncratic Risl;, 7.968%** 7.059*** 7.042%%* TOISF** T.014%%* 7.110%** 6.681%*
[3.60] [3.06] [3.08] [3.07] [3.07] [3.22] [2.58]
(B,) Average Natural Gas Production Level;,, 0.361 0.396* 0.398* 0.403* 0.403* 0.384 0378
[1.60] [1.72] [1.72] [1.75] [1.75] [1.54] [1.49]
(B5) Budget;, 0.008 0.002
[0.80] [0.24]
(Ba) Assets;, 0.008 0.007
[1.40] [1.62]
Firm Fixed Effect; Yes NEs Yes Yes Yes No No
Year Fixed Effect, No Yes Yes Yes Yes No No
Firm-Year Fixed Effect;, No No No No No Yes Yes
Porttolio Fixed Effect, No No No No No No Yes
R-Squared 0.451 0.470 0.471 0.471 0.471 0.738 0.738
F-Statistic 6.942 4.690 6.727 3.671 5.782 6.151 3.713
Observations 3.946 3.946 3.946 3.946 3.946 3.946 3.946
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Table 4: Instrumented Regression - Managers’ Project’s Idiosyncratic Risk Pricing
Thus table reports the effects of project-level idiosyncratic nsk on firms® discount rate based on the exogenous measure of Projects’ Average Idiosyncratic Risk from an
instrument, and t-statistics robust to heteroskedasticity and within-firm dependence in bracket. The time period of the sample is from 1983 to 2010. The unit of observation m
the inderlying table is at the firm 7. year 7, and portfolio i level. The results in Panel A report the first stage coefficient estimates of a two stage OLS regression which uses the
average of the finm's peers’ largest idiosyncratic productivity shocks of each wells. to mstrument for the variable Projects’ Average Idiosyneratic Risk. The bottom of Panel 4
reports the first stage F-statistic on the mstrument for the two-stage least-square regression. Panel B reports the second stage regression results of the instrumented model
Projects’ Average Idiosyncratic Risic denotes the average projects’ idiosyneratic risk measure for each firm-year portfolio (ie., the high or low idiosyneratic risk portfolio). The
variable Project’s Average Idiosyneratic Risk is scaled by its standard deviation to simplify the lecture of the table and facilitate its comparison with the other regression tables.
* mdicates sigmficance at the 10% level, ** at the 5% level, and *** at the 1% level

Panel A: First Stage

Projects’ Average Idiosyncratic Risk; .y

(1 @ @) @ &)} (6) m
(p,) Average Largest Peers' Projects' Idiosyncractic Shock; 0.698+%** 0.706%** 0.706%** 0.706%** 0.706%** 0.797%+= 0.746%**
[11:32] [11.66] [11.63] [11.65] [11.64] [14.38]) [1322
(P,) Budget;, 0.000 0.000
[0.93] [0.30]
(Ps) Assets;, 0.000 0.000
[0.89] [0.53]
(Ps) Average Natural Gas Production Level, ;5 0.009 0.033++* 0.033+++ 00334+ 0.033*++ 0.047#4+ 0.033*++*
[1.13] [4.72] [4.84] [4.77] [4.81] [5.98] [4.12]
Firm Fixed Effect; Yes Yes Yes Yes Yes No No
Year Fixed Effect, No Yes Yes Yes Yes No Neo
Firm-Year Fixed Effect;, No No No No No Yes Yes
Portfolio Fixed Effect, No No No No No No Yes
E-Squared 0.750 0.792 0.792 0.792 0.792 0.903 0.908
Kleibergen-Paap First Stage F-Statistic 111.833 145591 103.829 97.303 76.646 193 544 104.833
Panel B: Instrumented Regression Discount Rate (%a);:x
5] @ @) @ 3 6) [©)]
(By) Projects’ Average Idiosyncratic Risk; 3819+ L f b 4254%== 4231+ 4237 6.013%= 5.102%++
[2.31] [2.67] [2.63] [2.62] [2.62] [4.20] [3.08]
(P.) Budget,, 0.008 0.004
[0.74] [0.36]
(Bs) Assets;, 0.006 0.005
[1:21] [1.28]
(ps) Average Natural Gas Production Level; 1.075%* 1386%** 130433 1.3090%** 1.400%** 0.604** 0.451*
[2.05] [2.67] [2.63] [2.65] [2.64] [2.58] [2.02]
Firm Fixed Effect; Tes Yes Yes Yes Yes No Neo
Year Fixed Effect, No Yes Yes Yes Yes No No
Firm-Year Fixed Effect,, No No No No No Yes Yes
Portfolio Fixed Effect, No No No No No No Yes
R-Squared 0435 0.461 0461 0.461 0.461 0.730 0.731
F-Statistic 10.022 13.903 12531 10.131 9581 32.996 11.198
Observations 3.946 3,946 3,946 3.946 3,946 3.946 3.946
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Table 5: Firms’ Idiosyncratic Shocks and Peers’ Largest Idiosyncratic Shock In Township-

Year

This table reports coefficient estimates from an OLS regression for the effect of largest peers' projects’ idiosyneratic risk on firms’ own idiosyncratic risk. and t-statistics robust to
heteroskedasticity. within-firm and within-township dependence in bracket. The time period of the sample is from 1983 to 2010. The unit of observation in the underlying table is at the well
J level. Largest Peers' Project's Idiosyncratic Shock denotes the largest projects’ idiosyneratic productivity shock of the firms' peers measured for each township-year. The variable Fiim's
Project's Idiosyneratic Shock corresponds to the idiosyncratic productivity shock measured for each well individually. * indicates significance at the 10% level. ** at the 5% level. and *** at

the 1% level.

Firms' Projects’ Idiosyncractic Shock;

)] 2 G @ (€] ©) )] ®
(P1) Largest Peers' Projects’ Idiosyncractic Shock;, 0.044 0.065 0.022 0.043 0.043 0.042 0.017 0.039
[1.33] [1.63] [1.49] [1.30] [1.30] [1.33] [0.57] [0.39]
Firm Fixed Effect; Yes No No Yes Yes No No No
Year Fixed Effect; No Yes No Yes Yes No No No
Township Fixed Effect, No No Yes No Yes No Yes No
Firm-Year Fixed Effect;; No No No No No Yes Yes Yes
Township-Year Fixed Effect, No No No No No No No Yes
R-Squared 0.045 0.233 0.112 0.112 0.223 0.336 0.567
F-Statistic 2.651 2212 1.689 1.689 1.759 0.329 0.155
Observations 114.969 114.969 114.969 114.969 114.969 114.969 114.969 114.969
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Table 6: Firms’ Performance and Managers’ Idiosyncratic Risk Pricing

This table reports coefficient estimates from an OLS regression for the effect of the price of idiosyncratic risk on firms’ performance. and t-statistics robust to
heteroskedasticity and within-firm dependence in bracket. The time period of the sample is from 1983 to 2010. The unit of observation in the underlying table is at the firm 7
and year 7 level. The variable Price of Idiosyncratic Risk corresponds to the firm’s price of idiosyncratic risk computed at a yearly frequency. The dependent variables
correspond to the firm gross profit margin (%). the gross profitability (%), the Yol asset growth (%). and the investment rate (%), and are winsorized at the 1 and 99
percentiles. The variable Project’s Average Idiosyncratic Risk is scaled by its standard deviation to simplify the lecture of the table and facilitate its comparison with the
other regression tables. Detailed calculation of the four dependent variables is available in appendix A 1. * indicates significance at the 10% level, ** at the 5% level, and
*#% at the 1% level.

Gross Profit Margin (%);, Gross Profitability (%), YoY Asset Growth (%) Investment Rate (%);
(1) 2) (3) (4) (5) (6) [©) (3)
(B;) Price of Idiosyncratic Risk; -5.053%* -5.110%* -0.511%* -0.501%+* -0.745% -0.747* -0.811% -0.814*
[-2.47] [-2.54] [-2.04] [-1.98] [-1.71] [-1.71] [-1.67] [-1.67]
(B>) Budget;, -0.020 -0.055* 0.017 0.024
[-0.26] [-1.76] [1.25] [1.36]
(B3) Assets;; -0.092%#* 0.008 -0.000 -0.002
[-3.02] [0.62] [-0.05] [-0.30]
Firm Fixed Effect; Yes Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effect; Yes Yes Yes Yes Yes Yes Yes Yes
R-Squared 0.530 0.539 0.808 0.809 0.414 0.415 0.431 0.432
F-Statistic 6.097 8.397 4.144 3.259 2935 2.447 2.801 2.297
Observations 1.973 1,973 1,973 1,973 1,973 1973 1,973 1,973
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Table 7: Managers’ Project’s Idiosyncratic Risk Pricing and Firms’ Size
This table reports coefficient estimates from an OLS regression for the effect of projects’ idiosyncratic risk on firms' discount rate, and t-statistics robust to heteroskedasticity and within-firm dependence in
bracket. The time period of the sample is from 1983 to 2010. The unit of observation in the underlying table is at the firm / year r. and portfolio & level Project’s Idiosyncratic Risk denotes the average
projects’ idiosyneratic risk measure for each firm-year portfolio (ie., the high or low idiosyncratic risk portfolio). The variable Firmi's Divarsification denotes how nmch of the wells' idiosyncratic risk drilled

in a given vear is diversified at the firm's level The instrumented regression confains up to three instrumented variables, the Projecrs’ Average Idiosyncratic Risk, the Projects’ Average Idiosyncratic Risk *
Assers, and for some specifications the Profects’ Average Idiosyncraric Risk = Diversificarion . The variable Project's Average Idiosyncratic Risk is scaled by its standard deviation to simplify the lecture of the
table and facilitate its comparison with the other regression tables. Detailed calculation of each variable is available in appendix A 1. * indicates significance at the 10% level, ** at the 5% level and *** at the

1% level
Discount Rate (%); x
Reduced Form Regression Instrumented Regression
(65] @) ) “) (O] (6 ] )]
(B,) Projects’ Average Idiosyncratic Risk; S E 414 4.830%%= AA5hE 4.660%*= 5.001%*= 6.300%*= 5.003%**
[4.29] [4.34] [4.41] [4.04] [3.74] [3.69] [437] 3.97]
(B2) Projects’ Average Idiosyncratic Risk;; * Assets;; -0.004** -0.004+* -0.007+*+ -0.007+** -0.008*** -0.008*** -0.010%** -0.010%**
[-2.42] [-2.34] [-2.89] [2.81] [-3.05] [-3.08] [-3.82] [-3.74]
(B3) Assets;, 0.007* 0.007* 0.011** 0.011%*
[1.92] .92 2231 [2.23]
(B,) Budget,, -0.006 -0.006 -0.006 -0.006
[-1.05] [-1.09] [-1.03] [-1.07]
(Bs) Firm's Diversification, 0.005 0.006
[0.48] [0.55]
(Bs) Projects’ Average Idiosyncratic Risk;,; * Firm's Diversification; -0.030** -0.019 -0.032 -0.031* -0.023 -0.033
[-2.10] [-1.28] [-1.45] [-1.83] [-1.39] [-1.55]
(B+) Average Natural Gas Production Level, 0.860°*  0.861%==  0.768==*  0.637°**  0.833**=  0.834%== 0680  0.500%**
[6.25] [6.26] [4.56] [3.70] [5.22] [5.24] [3.59] B327]
Firm Fixed Effect; Yes Yes No No Yes Yes No No
Year Fixed Effect, Yes Yes No No Yes Yes No No
Firm-Year Fixed Effect;, No No Yes Yes No No Yes Yes
Portfolio Fixed Effect; No No No Yes No No No Yes
R-Squared 0.717 0.718 0.880 0.881 0.717 0717 0.879 0.880
F-Statistics 19.280 13.940 25.857 16.659 19.470 14.463 27.323 17.736
Kleibergen-Paap First Stage F-Statistics NA NA NA NA 56.022 34302 73.83 62.783
Observations 3.046 3.046 3.946 3.946 3.046 3.946 3.946 3.046

70



Table 8: Year-over-Year Managers’ Share of Firm’s Budget Variation

This table reports coefficient estimates from an OLS regression for the managers' budget change YoY on the annual region’s forecast dispersion. and t-statistics
robust to heteroskedasticity. within-firm and within-region (i.e.. field or state) dependence in bracket. The time period of the sample is from 1983 to 2010. The
unit of observation in the underlying table is at the firm 7. year ¢. and region f level. The sample used in the below regression only includes observations from
firms that were active in more than one region during the analyzed year. The variable Region's Forecast Dispersion denotes the standard deviation of a firm's
wells' drilled in a specific region in a given year. The variable Managers' Budget Change YoY corresponds to the change in the managers' share of the firm's
budget between two years. For example. a value of 5% would indicate that the firm's budget allocation to the manager's region increased by 5% YoY. The
variable Region's Forecast Dispersion is scaled by its standard deviation to simplify the lecture of the table and facilitate the comparison between the two
potential regions of assignment. Detailed calculation of the regression variables is available in appendix A.1. * indicates significance at the 10% level. ** at the
5% level, and *** at the 1% level.

Managers' Share of Firm's Budget Change YoY (%); .1 ¢

Managers' Budget (Region = Field) Managers' Budget (Region = State)
@1 (2) (3) @) 5 (©) (@) (8)

(B,) Region's Forecast Dispersion; , ¢ -2.651 -2.246 -5.736%* -6.385* -5.507* -5.368% e ki 2. -7.561*

[-1.60] [-1.34] [-2.10] [-1.81] [-1.84] [-1.77] [-2.29] [-1.70]
(By) Assets;, 0.030 0.039 -0.001 0.004

[1.05] [1.31] [-0.03] [0.09]
(Bs) Budget;; 0.019 0.003 -0.003 -0.001

[1.56] [0.23] [-0.17] [-0.02]
Firm Fixed Effect; Yes Yes No No Yes Yes No No
Year Fixed Effect, No Yes No No No Yes No No
Firm-Year Fixed Effect;, No No Yes Yes No No Yes Yes
Region-Year Fixed Effect;; No No No Yes No No No Yes
R-Squared 0.09 0.11 0.49 0.54 0.04 0.05 0.23 0.25
F-Statistic 8.315 2.643 4428 3.262 1.134 1.075 5.227 2874
Observations 6.374 6.374 6.374 6.374 4419 4.419 4419 4.419

71



Table 9: Managers’ Project’s Idiosyncratic Risk Pricing and Managers’ Budget - Fields

This table reports cocfficient estimates from an OLS regression for the cffect of projects” idiosyncratic risk on firms' discount rate, and t-statistics robust to heteroskedasticity and within-firm dependence in bracket. The

time period of the sample is from 1983 to 2010. The unit of observation in the underlying table is at the firm i . year 1. and portfolio & level Project’s Average Idiosyncratic Risk denotes the average projects’

idiosyncratic risk measure for each firm-year portfolio (i.c.. the high or low idiosyncratic risk portfolio). The variable Managers' Average Budget corresponds to the managers budget size averaged at the firm-year

level when assuming that managers are assigned to distinct fields. The instrumented

contains two

d variables. the Projects’ Average Idiosyncraric Risk and the Projects’ Average Idiosyncratic

Risk * Managers' Average Budget . The variable Project's Average Idiosyncratic Risk is scaled by ifs standard deviation fo simplify the lecture of the table and facilitate its comparison with the other regression tables.

Detailed calculation of the regression variables is available in appendix A_1 * indicates significance at the 10% level, ** at the 5% level, and *** at the 1% level.

Discount Rate (%),

Reduced Form Regression

Instrumented Regression

@ 2) [€)] (C)] ©) ©) @ 8
(B1) Projects’ Average Idiosyneratic Risk; 1. 6.410%%* 6.409%+* 7.426%%+ 6.872%% 6.512%%* 6.509%%% 8.300%** 78614
[3.43] [3.43] [3.59] [331] [3.71] B.71] [4.65] [4.18]
(B2) Projects’ Average Idiosyncratic Risk; 1. * Managers' Average Budget;, 0.061** -0.061** -0.118%== 0.119%** -0.064** -0.064** 0.110***  0.109**=
[-2.09] [-2.09] [-2.99] [-2.96] [-2.34] [-2.33] [-3.57] [-3.45]
(B3) Assets;, 0.002 0.002 0.002 0.002
[0.68] [0.82] [0.64] [0.81]
(B4) Budget;, -0.002 -0.002
[-0.26] [-0.26]
(Bs) Managers' Average Budget;, 0.044 0.047 0.046 0.049
[137] [1.40] [1.29] n.27]
(Be) Average Natural Gas Production Level; ;. 1.270%* 1.269%* 071152 0.552 1.263%** 1.262%** 0.571% 0477
[5.63] [5.59] [2.14] [1.64] [4.44] 4421 [1.81] [1.50]
Firm Fixed Effect, Yes Yes No No Yes Yes No No
Year Fixed Effect, Yes Yes No No Yes Yes No No
Firm-Year Fixed Effect;; No No Yes Yes No No Yes Yes
Portfolio Fixed Effect, No No No Yes No No No Yes
R-Squared 0.615 0.615 0.836 0.836 0.615 0.615 0.835 0.836
F-Statistic 9.105 10.592 18.681 11492 10.105 11.071 21.383 12241
Kleibergen-Paap First Stage F-Statistic NA. NA NA. NA. 70.322 70.293 114279 90.530
Observations 3.946 3.946 3.946 3.946 3.946 3.946 3.946 3.946
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Table 10: Managers’ Project’s Idiosyncratic Risk Pricing and Managers’ Budget - Agency

Effect

This table reports coefficient estimates from an OLS regressicn for the effect of projects’ idiosyncratic risk on firms' discount rate, and t-statistics robust fo
period of the sample is from 1983 to 2010. The unit of cbservation in the underlying table is at the firm i, year f. and portfolio k level Projact’s Avarage Idiosymeratic Risk denotes the average projects' idiosyneratic risk
‘measure for each firm-year portfolio (i.e., the hish or low idiosyncratic risk portfolic). The variable Managers' Averags Budget corresponds to the managers budget size averaged at the firm-year level. Colunm (1) to (4) reports
the results when assuming that managers are assigned fo specific fields. and columns (3) to (8) report to results when assuning that managers are assigned to different states. The variable Distance denotes the median distance
between the firms' wells drilled during a given year in lundreds of miles, winsorised af the 3" and 935™ percentile . The variable Project’s Average Idiosyncratic Risk is scaled by its standard deviation to simplify the lecture of
variables is available in appendix A 1. * indicates siznificance at the 10% level, *= at fhe 5% level, and *** at the 1%

7 and within-firm depend in bracket. The time

the table and facilitate its with the other ion tables. Detailed of the
level.
Discount Rate (%);.x
Managers' Budget (Region = Field) Managers' Budget (Region = State)
6] @ [©)] “) () (6) o] (8)
(1) Projects' Average Idiosyncratic Riskyx 742004 730344 220844+ 8118+ 7.240%++ 7.216++ 7.965++¢ 7.789%++
[3.37] [3.35] [3.55] [321] [3.38] [3.36] [3.49] [B3.14]
(By) Projects' Average Idiosyncratic Risk;,, * Managers' Average Budget;, -0.062¢ -0.057 -0.089=* -0.093%= -0.037 -0.030 -0.044% 0.046%
[-1.68] [-1.64] [-2.09] [-2.24] [-1.61] [-1.46] [-1.82] [-1.96]
(Bs) Projects’ Average [diosyncratic Risk; ;3 * Managers' Average Budget,; * Distance;; -0.088* -0.0922= -0.087* -0.084* -0.0442* -0.048°* -0.044% 0043
[-2.44] [-2.38] [-1.88] [-1.73] [-2.16] [-222] [-1.67] [-1.55]
(Bs) Assets;, 0.003 0.005
[0.56] [1.03]
(Ps) Budgeti, 0.006 0.010
[0.71] [1.03]
(Bs) Managers' Average Budget,, 0.097* 0.072 0.047% 0.013
[1.86] [1.49] [1.83] [0.51]
() Distance;, 0.295 0336 0.314 0.330
[0.55] [0.63] [0.59] [061]
(Bs) Managers' Average Budget;,; * Distancers 0.037 0.031 0.006 0.007
[0.70] [0.61] [0.20] [0.26]
(Bo) Projects' Average Idiosyncratic Risk ., * Distance, 0229 0278 0.673 0.587 0.205 0.359 0.762 0.683
[0.23] [0.28] [0.62] [051] [030] [035] [0.70] [0.59]
(P10) Average Natural Gas Production Level; ;i 0.886%** 0.902%+= 0.578%*= 0.547=== 0.884%*= 0.911%+= 0.600%** 0.570%==
[431] [4.28] [3.49] [3.41] [435] [434] [3.66] [3.53]
Firm Fixed Effect; Yes Yes No No Yes Yes No No
Year Fixed Effect, Yes Yes No No Yes Yes No No
Firm-Year Fixed Effect;, No No Yes Yes No No Yes Yes
Portfolio Fixed Effect, No No No Yes No No No Yes
R-Scuared 0.624 0.624 0.840 0.840 0.624 0.625 0.840 0.840
F-Statistic 4309 4169 8.964 6.096 4,085 3.839 9.192 6314
Observations 3.946 3.946 3.946 3.946 3.946 3.946 3946 3,946
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Table 11: Managers’ Project’s Idiosyncratic Risk Pricing, Internal Agency Frictions and

Costly External Financing

This table reparts coefficient estimates from an OLS regression for the effect of projects’ idiosyncratic risk on firms' discovat rate, and t-statistics robust to 1 icity and within-firm dependence in bracket. The time

period of the sample is fom 1983 to 2010. The unit of cbservation in the vaderlying table is at the firm i, year ¢, and portfolio & level. Projecr’s dverage Jdiosyneratic Risk denotes the average projects’ idiosyncratic risk
measure for each firm-year portfolio (ie. the high or low idiosyncratic risk portfolic) The variable Firin's Diversificarion denotes how nmich of the wells' idiosyncratic risk drilled in a given year is diversified at the firm's
tevel The variable Managers' dvarags Budgst corresponds to the managers budget size averaged at the firm-year level Column (1) to (4) reports the results when assumiing that managers are assigned to specific fields. and
columns (3) to (8) report to results when assuming that managers are assigned to different states. The variable Project’s dverage Idicsyneraric Risk is scaled by its standard deviation to simplify the lecture of the table and

facilitate its ison with the other regression tables. Detailed calculation of the regression variables is available in appendix A 1. * indicates signifi at the 10% level. ** at the 5% level, and *** at the 1% level
Discouat Rafe (%o
Managers Budget (Region = Ficld) Managers' Budget (Region = State)
) 2) () ) ) (6) @ (8)
(Py) Projects’ Average Idiosyncratic Risk;y 10.542+ 10.531%* 12,428+ 11.880* 11077+ 11.059+ 12.678** 12,143+
2.49] [2.50] 2.39] 2311 2.52] [2.54] [2.40] 232]
(P,) Projects' Average Idiosyncratic Risk;,; * Assets;; -0.015% -0.015** -0.018%* -0.017** -0.016** -0.015%* -0.019% -0.018***
[-1.96] [-1.98] [2.45] [-2.40] [-2.00] [-2.10] [-2.68] [2.65]
(P3) Assetsy; 0.016*% 0.015%* 0.019% 0.018*
[1.74] [1.99] [1.76] [1.89]
(Pz) Managers' Average Budget,, 0.068 0063 0.043 0035
[1.02] [1.02] [0.95] [0.89]
(Bs) Managers' Average Budget;; * Assets; -0.000 20.000 0,000 0,000
[-145] [-151] [-1.60] [-161]
(Bs) Projects' Average Idiosyncratic Risk;, * Managers' Average Budget,; 0.111% -0.111* 0.220++ 02174+ 0.106%* -0.105% 0.154% 0.153%*
[-1.75] [-1.79] [-2.09] [2.07] [-2.00] [-2.02] [-2.05] [202]
(B7) Projects' Average Idiosyncratic Risk,; * Managers' Average Budget,, * Assets,,/ 1000 0.021 0.021 0.034% 0.033* 0.016* 0.016%* 0.023% 0.022%*
[1.59] [164] 187 [182] [1.94] [1.98] 221] 217
(Pg) Budget;; 0.003 0.006
[0.26] [052]
(Ba) Firm's Diversification, , 0.003 0.003 0.001 0.001
[0.24] [0.24] [0.10] [0.09]
(P1q) Projects’ Average Idiosyncratic Risk;; * Firm's Diversification;, -0.082% -0.082% -0.072 -0.086 -0.083% -0.083% -0.073 -0.087
[-1.68] [-1.69] [-1.30] [-136] [[1.72] [[1.73] [-133] [-139]
(P11) Average Natural Gas Production Level; ;x 1202%%F 1.204%== 0.504 0361 1200+ 1.215%== 0.515 0375
[3.89] [3.83] [L51] [1.06] [3.89] [3.81] [1.55] [1.10]
Firm Fixed Effect; Yes Yes Ne Yes Yes No Ne
Year Fixed Effect, Yes Yes No Yes Yes No No
Firm-Year Fixed Effect;, No No Yes No No Yes Yes
Portfolio Fixed Effecty No No No No No No Yes
R-Squared 0.470 0470 0737 737 0.472 0472 0.737 0738
F-Statistic 2.642 4289 9531 6.280 2.501 3.986 9.314 6.085
Observations 3.946 3.946 3.946 3.946 3.946 3,946 3.946 3.946
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Table 12: Managers’ Project’s Idiosyncratic Risk Pricing - Real Option Effect (1)

This table reports coefficient estimates from an OLS regression for the effect of projects’ idiosyneratic risk on firms” discount rate, and t-statistics robust to

heteroskedasticity and within-firm dependence in bracket.. The time period of the sample is from 1983 to 2010. The unit of abservation in the underlying table is

at the firm 7, year 1, and portfolio & level. In this regression specification. the analysis is only performed on a subsample of projects for which the time to

expiration is expected to be close to zero, making the real option optimal exercise threshold (V*) close to the projects investment cost (I). The variable Project's

Average Idiosyncratic Risk 1s scaled by its standard deviation to simplify the lecture of the table and facilitate its comparison with the other regression tables. *

indicates significance at the 10% level. ** at the 5% level, and *** at the 1% level.

Discount Rate (%0)i:x

1 (2) 3) ) &) (6) (O]
(B1) Projects' Average Idiosyncratic Risk; 4 6.228%%* 52567 5230%e% 52430k 52320 5.514%4* 4.24]%%*
[5.32] [4.51] [4.51] [4.51] [4.50] [4.89] [3.28]
(B2) Budget;; 0.006 0.008
[1.56] [1.60]
(B3) Assets;, 0.001 -0.001
[0.91] [-0.46]
(Bs) Average Natural Gas Production Level; 0.288+%% 0.288%#* 0.289%+* 0.290%** 0.288%** 0.229%* 0.189*
[3.20] [3.23] [3.25] [3:29] [3.25] [2.33] [1.93]
Firm Fixed Effect; Yes Yes Yes Yes Yes No No
Year Fixed Effect, No Yes Yes Yes Yes No No
Firm-Year Fixed Effect;; Neo No No No No Yes Yes
Portfolio Fixed Effecty, No No No No No No Yes
R-Squared 0.64 0.67 0.67 0.67 0.67 0.84 0.84
F-Statistic 15.082 12.093 8.220 8.255 6.242 14.700 6.632
Observations 1.642 1.642 1.642 1.642 1.642 1.642 1.642
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Table 13: Managers’ Project-Level Idiosyncratic Risk Pricing - Leverage Effect
This table reports coefficient estimates from an OLS regression for the effect of projects’ idiosyneratic nisk on firms’

discount rate. and t-statistics robust to heteroskedasticity and within-firm dependence in bracket. The time period of the
sample 15 from 1983 to 2010. The unit of observation i the underlying table is at the firm 7, year r, and portfolio
level The Leverage vanable corresponds to the firms' market leverage caleulated usmg the firm 10-k annual statement
and stock market data. Detailed calculations are available i appendix A2, The analysis 1s restricted to the set of finms
available i Compustat for which the necessary variables were available. The variable Project’s dverage Ifionyncraric
Risk 1s scaled by its standard deviation to sumplhify the lecture of the table and facilitate 1ts companison with the other

regression tables. * mdicates signmificance at the 10% level. ** at the 5% level, and *** at the 1% level
Discount Rate (%6); ;4

(1) 2 3 G
(By) Projects' Average Idiosyncratic Risk; 6.110%* 6.261** 4.372** 4.416%*
[2.53] [2.53] [2.13] [2.04]
(B>) Budget; 0.010
[-1.34]
(B.) Assets, 0.002 0.008
[0.38] [1.15]
(Bs) Leverage, -6.581 -5.588
[-1.25] [-1.06]
(Bs) Leverage;, * Projects' Average Idiosyncratic Risk; 6459 6.184 17.000%* 17.319%=*
[0.77] [0.72] [2.13] [2.16]
{Ps) Average Natural Gas Production Level, 0.371* 0.368% 0.313 0.322
[1.78] [1.79] [1.42] [1.29]
Firm Fixed Effect; Yes Yes No No
Year Fuxed Effect, Yes Yes No No
Firm-Year Foied Effect;, No No Yes Yes
Portfolio Fixed Effect, No No No Yes
R-Squared 0.644 0.631 0.828 0.828
F-Statistic 5.039 4920 9.000 5.404
Observations 918 918 918 918
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Table 14: Managers’ Project’s Idiosyncratic Risk Pricing - Futures Price

This table reports coefficient estimates from an OLS regression for the effect of projects’ idiosyncratic risk on firms' discount
rate. and t-statistics robust to heteroskedasticity and within-firm dependence in bracket. The time period of the sample is from
1995 to 2010. The unit of observation in the underlying table is at the firm i. year 7. and portfolio k level. Project’s Average
Idiosyncratic Risk denotes the average projects’ idiosyncratic risk measure for each firm-vear portfolio (i.e.. the high or low
idiosyneratic risk portfolio). In this regression specification. the project's internal rate of refurn is estimated using the 36-month
Bloomberg Natural Gas Futures prices instead of the EIA three-year price forecast. The variable Project’s Average
Idiosyncratic Risk is scaled by its standard deviation to simplify the lecture of the table and facilifate its comparison with the

other regression tables. * indicates significance at the 10% level, ** at the 5% level. and *** at the 1% level

Discount Rate (%6);,¢

(n @ 3 @ )
(By) Projects’ Average Idiosyncratic Risk, T.15344% T.149%%% T 14554 7.304 %4 6.228*%*
[3.74] [3.75] [3.74] [4.24] [3.29]
(B,) Budget;, -0.003 -0.006
[-0.52] [-0.80]
(B;) Assets;, 0.001 0.003
[0.12] [0.48]
(B4) Average Natural Gas Production Level; 0.736* 0.736% 0.737* 0.763 0.728
[1.76] [1.76] [1.76] [1.37] [1.30]
Firm Fixed Effect; Yes Yes Yes No No
Year Fixed Effect, Yes Yes Yes No No
TFirm-Year Fixed Effect;, No No No Yes Yes
Portfolio Fixed Effect, No No No No Yes
R-Squared 0.548 0.548 0.548 0.784 0.784
F-Statistic 6.504 5.021 5.332 8.985 5.404
Observations 3.416 3.416 3.416 3416 3.416
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Table 15: Managers’ Project’s Idiosyncratic Risk Pricing - EIA State’s Wellhead Price

This table reports coefficient estimates from an OLS regression for the effect of projects’ idiosyncratic risk on firms' discount
rate. and t-statistics robust to heteroskedasticity and within-firm dependence in bracket. The time period of the sample is from
1983 to 2010. The unit of observation in the underlying table is at the firm j. vear r, and portfolio & level. Project’s Average
Idiosyncratic Risk denotes the average projects’ idiosyncratic risk measure for each firm-year portfolio (i.e.. the high or low
idiosyneratic risk portfolio). In this regression specification, the project's internal rate of return is estimated using the wellhead
spot price specific to each state (Source: https:/'www.eia.gov/dnav/ng/mg prod whv_a epg0 fwa dpmecf a.htm) instead of the
EIA price forecast. The variable Project’s Average Idiosyncratic Risk is scaled by its standard deviation fo simplify the lecture of
the table and facilitate its comparison with the other regression tables. * indicates significance at the 10% level. ** at the 5%
level, and *** at the 1% level.

Discount Rate (%),

6] (&) G (C) )
(Py) Projects' Average Idiosyneratic Risk; T 1GZrx TLIS8%%2 7.106%%% T.2D0r*E 6.410% %%
[3.32] [3.31] [3.29] [3.40] [2.76]
(p,) Budget;, 0.007 0.008
[0.70] [0.49]
(P3) Assets;, 0.002 -0.001
[0.68] [-0.15]
(P4) Average Natural Gas Production Level; 0.690* 0.692% 0.689+ 0.547* 0.519
[1.82] [1.83] [1.84] [1.67] [1.56]
Firm Fixed Effect; Yes Yes Yes No No
Year Fixed Effect, Yes Yes Yes No No
Firm-Year Fixed Effect;; No No No Yes Yes
Portfolio Fixed Effect, No No No No Yes
R-Squared 0.469 0.469 0.469 0.738 0.739
F-Statistic 6.512 5:017 6.083 7.701 4.737
Observations 3.946 3.946 3,946 3.946 3.946
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Table 16: Managers’ Project’s Idiosyncratic Risk Pricing - Alternative Design

This table reports coefficient estimates from an OLS regression for the effect of projects' idiosyneratic risk on firms® discount rate, and t-statistics
robust to heteroskedasticity and within-firm dependence in bracket. The time period of the sample is from 1983 to 2010. The unit of observation in
the underlying table is at the firm 7, and year ¢ level. Projecrs' Average Idiosynciatic Risk denotes the average projects’ idiosyneratic risk measure for
each firm-year, scaled by its standard deviation (i.e.. one portfolio per firm-year). The variable Project’s Average Idiosynciatic Risk is scaled by its
standard deviation to simplify the lecture of the table and facilitate its comparison with the other regression tables. * indicates significance at the 10%

level. ** at the 5% level, and *#* at the 1% level.

Discount Rate (%0);,

1 2 (3) (G (5) (6)
(B1) Projects’ Average Idiosyncratic Risk;, 11.043%%* TOIS¥F2 5.689%*#* 5.695 %% 5.679 4 5:6784%%
[6.49] [6.45] [5.81] [5.82] [5.80] [5.79]
(P2) Budget;; -0.003 -0.007
[-0.80] [-1.11]
(Bs) Assetsy, 0.002 0.004
[0.59] [1.06]
(B4) Average Natural Gas Production Level;,, 0.689%+% 0.040 0.155%* 0.153%* 0.156%* 0.153%*
[3.39] [0.64] [2.50] [2.49] [2.55] [2.52]
Firm Fixed Effect; No Yes Yes Yes Yes Yes
Year Fixed Effect; No No Yes Yes Yes Yes
R-Squared 0.320 0.718 0.745 0.746 0.746 0.746
F-Statistic 29.718 21.326 22.429 14.992 16.697 12.601
Observations 1.973 1.973 1.973 1,973 1.973 1.973
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Table 17: Managers’ Project’s Idiosyncratic Risk Pricing - Alternative Threshold Value
This table reports coefficient estimates from an OLS regression for the effect of projects’ idiosyncratic risk on firms™ discount rate, and t-statistics robust to heteroskedasticity and
within-firm dependence in bracket. The time period of the sample 1s from 1983 to 2010. The unit of observation in the underlying table 1s at the firm 7, year r level. and portfolio &
level. The columns’ titles refer to the firm-vear porfolio percentiles of the idiosyncratic risk distribution used to compute the estimated discount rate. For example, the columns with
Minintum Bound indicate that only to lowest projects’ expected IRR was used to estimate the discount rate. Projects’ Average Idiosyncratic Risk denotes the average projects’
idiosynecratic risk measure for each firm-year. scaled by its standard deviation (i.e.. one portfolio per firm-year). The variable Project's Average Idiosincratic Risk is scaled by its

standard deviation to simplify the lecture of the table and facilitate its comparison with the other regression tables. * indicates significance at the 10% level. ** at the 5% level and

**% at the 1% level.

Discount Rate (%0); )

Mimnimum Bound 0% t0 2.5® Percentile

O] @ 3) @ 3) ©) ) ®)
(B1) Projects’ Average Idiosyncratic Rask; [T i 6.402%** 6.672%** 6.070** 6.623%** 6.625%%F 6.849% % 6.261**
[2.92] [2.92] [3.03] [2.50] [2.98] [2.98] [3.05] [2.31]
(B>) Budget;, 0.001 0.004
[0.04] [0.24]
(Ps) Assets;; -0.002 -0.001
[-0.54] [-0.22]
(By) Average Natural Gas Production Level, 0.669* 0.663* 0.493* 0.471* 0.659* 0.658* 0.494* 0.472*
[1.94] [1.93] [1.80] [1.68] [1.91] [1.93] [1.81] [1.69]
Firm Fixed Effect; Yes Yes No No Yes Yes No No
Year Fixed Effect; Yes Yes No No Yes Yes No No
Firm-Year Fixed Effect;; No No Yes Yes No No Yes Yes
Portfolio Fixed Effect, No No No Yes No No No Yes
R-Squared 0.463 0.463 0.730 0.731 0.464 0.464 0.731 0.731
F-Statistic 5246 10.583 5.147 3335 5542 7.739 5.186 3363
Observations 3.946 3.946 3.946 3.946 3.946 3.946 3.946 3.946
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Table 18: Managers’ Project’s Idiosyncratic Risk Pricing - Time Trend

This table reports coefficient estimates from an OLS regression for the effect of projects' idiosyneratic risk on firms’ discount rate, and t-statistics robust to
heteroskedasticity and within-firm dependence in bracket. The time period of the sample is from 1983 to 2010. The unit of observation in the underlying table
is at the firm 7, year r and portfolio & level. Project’s Average Idiosyncraric Risk denotes the average projects' idiosyncratic risk measure for each firm-year
portfolio (1.e., the high or low 1diosyneratic risk portfolio). Specifically, the varables Decade 1005 and Decade 550, denote dummy variables equal to 1 1f the
observation occured in that decade, and zero otherwise. The vanable Project's Average Idiosyncraric Risk 1s scaled by 1ts standard deviation to simplify the

lecture of the table and facilitate its comparison with the other regression tables. * indicates significance at the 10% level, ** at the 5% level, and *** at the

1% level.
Discount Rate (%),
[©)) @ 3 (&) ©)] ®)
(B,) Projects' Average Idiosyncratic Risk;,, B.261H* 8.251%%% 8.266%+* 824244+ O.ST5HE 8.670%+*
[2.71] [2.70] [2.72] [2.70] [3.01] [2.68]
(p,) Budget;, -0.002 -0.004
[-0.44] [-1.01]
(B3) Assets;; 0.002 0.003
[0.71] [1.10]
(P4) Projects' Average Idiosyneratic Risk;,; * Decade)og 2257 -2.250 2272 2268 -2.888 -3297
[-0.94] [-0.93] [-0.95] [-0.95] [-1.17] [-1.35]
(Bs) Projects’ Average Idiosyncratic Risk;,; * Decadesgg -4.608 -4.593 4624 -4.594 -5.843#* -5.723%
[-1.56] [-1.55] [-1.57] [-1.56] [-1.87] [-1.82]
(Bg) Average Natural Gas Production Level, 0.282%%% 0.282%%* 0.284%4%% 0.284%+% 0.208+* 0.184%*
[3.56] [3.55] [3.59] [3.60] [2.58] 2271
Firm Fixed Effect; Yes Yes Yes Yes No No
Year Fixed Effect, Yes Yes Yes Yes No No
Firm-Year Fixed Effect;, No No No No Yes Yes
Portfolio Fixed Effect, No No No No No Yes
R-Squared 0.704 0.704 0.704 0.704 0.873 0.874
F-Statistic 9.393 7.847 7.843 7.298 10.567 6.266
Observations 3.946 3,946 3,946 3.946 3,946 3,946
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Table 19: Arp Model Estimation

This table reports coefficient estimates from an OLS regression, and t-statishes robust to
heteroskedasticity and within-firm dependence m bracket. The penod of the sample 15 from 1983 to 2010,
The umit of observation in the underhing table 15 at the well j and well's age m (In month) level
Subsecript p denotes specific township, and subseript + mdicates the vear well j was dnlled. The dze
vaniable commesponds to the well age m {m menth) raise to the power of the supersenpt. For example,
Aze’ denotes the well's age in month raised to the power of 2. The variable Depth denotes the natural
logarithm of the well's total vertical depth in foot. The vanable Local Infoomation; comesponds to the
naturzl log of the pumber of wells dnlled m well j's township at the moment of dnllng well j. The
vanable Firm's Local Expenence; denotes the natural log of the total number of wells dnlled by firm i m
well i 's township, at the moment of dnlling well j . Fim Total E.xpuerip_fl':u::ueJ represent the natural log of the
total number of wells drlled by firm 7, at the time of drilling well j. The precision of those coefficient 1=
important to properly match the realized producton data. For this reason, I allow for 21 digifs. See
appendix B for a complete description of the model denvation. * indicates significance at the 10% level,
** at the 5% level, and **# at the 1% lavel.

LanGas Well Monthly Productien, , )

(By) Age' -0.04612395220367T0993]1 2230%%*
[-205.33]
(B Ag}e: 0.000802229619753800043 T84 34+
[73.52]
(B:) Age’ -0.00001 1060405281 200000552 #2*
[-46.35]
(B Age’ 0.000000095973699714300002 *+=
[35.72]
(Ba) Ag}e!' -0.000000000434 14791 5426000%%*
[-29.94]
(Bs) Ag}er' 0000000000001 29065206401 Q**=
[26.20]
(B A’ -0.000000000000001 402 16884052+
[-23.46]
(B,) Famp, -0.5080639746235920961 581 20+
[-184.07]
(Bs) Bamp, 0.032797358221284100832004 #+=
[12.40]
(B1o) Depth, 0.260683920204977111 70904 5%+=
[189.55]
(B1) Local Information, -0.004502789277263 300089703 #3*
[-4.53]
(B12) Form Local Expenence, 0.03812692354406509859243T4+=
[31.90]
(B13) Frm Total Expanencs, 0.015990787856916301 168386+
[38.76]
Firm-Year Fixed Effect;, Yes
Tonwship-Year Fixed Effect,, Yes
E-Squared 0.686
Observations 30,420,544
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Table 20: Idiosyncratic Shocks and The Stochastic Discount Factor

This table reports coefficient estimates from an OLS regression for the relation between wells' idiosyncratic shocks and the stochastic discount factor of the CAPM model
(i.e.. a function of the Marker Excess Renirn ). and t-statistics robust to heteroskedasticity and within-firm dependence in bracket. The period of the sample is from 1983 to
2010. The unit of observation in the underlying table is at the year 7 level. The market excess return corresponds to the market earning-to-price ratio net of the 10-year risk-
free rate. The Idiosvneratic shock is measured at the individual well level and corresponds to the well's idiosyncratic productivity shocks. See appendix A.1. and A2 for the

full methodological details. * indicates significance at the 10% level. ** at the 5% level. and *** at the 1% level.

Market Excess Return (%),

&) @ 3) “) &) ®) (O] ®)
(By) Idiosyncratic Shocks; -0.472 0.330 0.186 0.318 -0.529 0.179 0.114 0.170
[-1.17] [1.25] [0.78] [1.07] [-1.18] [1.21] [0.55] [0.89]
(By) Assets;, -0.000%** -0.001%%* -0.000%** -0.00 1%
[-3.14] [-3.68] [-3.66] [-3.13]
Township Fixed Effect, No No Yes No No No Yes No
Firm Fixed Effect; No Yes No No No Yes No No
Township-Firm Fixed Effecty; No No No Yes No No No Yes
R-Squared 0.001 0.240 0.112 0.264 0.009 0.264 0.120 0.280
F-Statistic 1.369 1.569 0.603 1.141 5.470 9.251 7.082 6.381
Observations 114.696 114.696 114.696 114.696 114.696 114.696 114.696 114.696
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Table 21: Projects’ Idiosyncratic Risk and Probability of Dry Hole

This table reports the incidence rate ratio estimates of a Poisson regression. and t-statistics robust to
heteroskedasticity and within-township dependence in bracket. A coefficient value greater that 1 indicate a
positive relation between the variable of interest and the outcome variable. while a value smaller than 1 indicate a
negative relation. The unit of observation is at the township p. and year 7 level. The dependent variable. Number
of Dry Hole , is a count variable that corresponds to the number of dry wells drilled in a given township-year. For
example, a value of 2 indicates that there were 2 dry holes drilled in the township during that given year. Project’s
Idiosyncratic Risk,, denotes the cross-sectional dispersion of the well's idiosyncratic productivity shock,
computed at the township p and year ¢ level. The variable Project's Idiosyvncratic Risk is scaled by its standard
deviation to simplify the lecture of the table and facilitate its comparison with the other regression tables. *

indicates significance at the 10% level. ** at the 5% level. and *** at the 1% level.

Number of Dry Holes,,

(1) (2) (3) (4)
(B1) Project's Idiosyncratic Risk, 1.476*%%* 1.425%%* 1.377%%% 1530 %=
[9.56] [7.54] [2.66] [2.86]
(B,) Township Average Production,, 0.999 %% 0.999%** 0.999*** 0.999%**
[-4.40] [4.71] [-3.31] Eekd
Year Fixed Effect, No Yes No Yes
Township Fixed Effect, No No Yes Yes
Pseudo R-Squared 0.128 0.170 0.278 0.295
Observations 12.386 12.386 12.386 12.386
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Table 22: Managers’ Project’s Idiosyncratic Risk Pricing and Hadlock-Pierce Index
This table reports coefficient estimates from an OLS regression and a 2SLS regression for the effect of projects” idiosyncratic risk on firms' discount rate, and t-statistics robust to heteroskedasticity and within
firm dependence in bracket. The time period of the sample 1s from 1983 to 2010. The unit of observation in the underlying table is at the firm 7, year ¢, and portfolio & level Projects' Average Idiosyncratic
Risk denotes the projects' average idiosyncratic risk measure for each firm-year portfolio (i.e., the high or low idiosyneratic risk portfolio). The Hadlock-Pierce Index is used as a costly external financing
proxy. Its calculation details are available in appendix A.3. The instrumented regression contains two mstrumented variables, the Projects’ Average Idiosyncratic Risk and the Projects’ Average Idiosyncratic
Risk * Hadlock-Pierce Index . The analysis is restricted to the set of firms available in Compustat for which the necessary variables for each indexes was available. The variable Project's Average Idiosyncratic

Risk s scaled by its standard deviation to simplify the lecture of the table and facilitate its comparison with the other regression tables. * indicates significance at the 10% level, ** at the 5% level and *** at
the 1% level

Discount Rate (%), ;1

Reduced Form Regression Instrumented Regression
1) @ 3) @ ) 6 @ ®
(By) Projects' Average Idiosyncratic Risk, ¢y, 7101%%* T:110%%% 10.024%*% 9:242%%% TA0EE B 12.094%*+ FLS5TERE
[4.44] [4.44] [3.87] [3.56] [3.94] [3.93] [4.43] [4.10]
(B5) Projects' Average Idiosyncratic Risk, s, * HP;; 1.504% %% 1.509%** pE LTI 1.667%%* 1.665%** 2:719%%% 2.634%%%
[3.44] [3.43] [3.26] [3.11] [3.18] [3.17] [3.79] [3.63]
(B3) HP,; 1:.195%%% 7.083%%% 7.104%%* 6.998%+*
[6.03] [6.04] [5.93] [5.95]
(By) Assets;, 0.002 0.002
[0.63] [0.64]
(B5) Budget;, -0.004 -0.004
[-1.01] [-1.00]
(Ps) Average Natural Gas Production Level;;y 0.777%%% 0.779%** 0.759%** 0.668**% 0.767%%* 0.769%** 0.688*#* 0.636%*%*
[7.08] [7.13] [5.81] [5.07] [6.34] [6.39] [4.82] [4.62]
Firm Fixed Effect; Yes Yes No No Yes Yes No No
Year Fixed Effect, Yes Yes No No Yes Yes No No
Firm-Year Fixed Effect;; No No Yes Yes No No Yes Yes
Portfolio Fixed Effect; No No No Yes No No No Yes
R-Squared 0.735 0.735 0884 0.884 0.735 0.735 0.883 0.884
F-Statistics 31379 26.100 37.816 24057 30.577 25.693 40.172 26.604
Kleibergen-Paap First Stage F-Statistics NA NA. N.A. N.A. 69.810 69.964 81.939 95.083
Observations 3,946 3,946 3,946 3,946 3,946 3,946 3,946 3,946
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Table 23: Managers’ Project’s Idiosyncratic Risk Pricing and Firms’ Private/Public Status
This table reports cocfficient estimates from an OLS regression and a 2SLS regression for the effect of firms' average projects’ idiosyneratic risk on firms' discount rate. and t-statistics robust to
heteroskedasticity and within-firm dependence in bracket. The time period of the sample is from 1983 to 2010. The unit of observation in the underlying table is at the firm 7. year 7, and portfolio &
level. Project’s Average Idiosyncratic Risk denotes the average projects’ idiosyneratic risk measure for each firm-year portfolio (i.c.. the high or low idiosyncratic risk portfolio). The variable Privare
Dummy is equal to 1 if the firm is private and 0 otherwise. The instrumented regression contains two instrumented variables, the Projects’ Average Idiosyncratic Risk and the Projects’ Average

Idiosyncratic Risk * Dummny . The variable Project's Average Idiosyncratic Risk is scaled by its standard deviation to simplify the lecture of the table and facilitate its comparison with the other
regression tables. * indicates significance at the 10% level. ** at the 5% level. and *** at the 1% level.

Discount Rate (Yo)yx

Reduced Form Regression Instrumented Regression

1y @ 3) O] [©)] ©) (7 ®
(By) Projects' Average Idiosyncratic Risk; ;. 5.810%** 5:595%% 4.633%4* 6.998 % 6.503 4% 6.938H 6.199%#*
[4.32] [4.25] [3.53] [4.87] [4.64] [4.79] [3.53]
(P3) Projects' Average Idiosyneratic Risk;sy * Private Dummy; 1.568 1.666 1.495 -3.033%* 0.776 1.108 1.009 -3.645%
[0.73] [0.78] [0.70] [-2.10] [0.34] [0.50] [0.45] [-1.97]
(Bs) Private Dummy; 2,570+ 1.775 1.554 3.175% 2221 1.956
[1.68] [121] [1.04] [1.91] [137] [1.21]
() Assets;y 001545 00110k Q00154 L0.0116
[-5.00] [-3.24] [-4.93] [-3.18]
(Bs) Budget;, 0.010 -0.010
[-1.60] [-1.61]
(s) Average Natural Gas Production Level, 1.234%++ 1.326%+ 0.556FH%  LISgHH 12820 L308H
[5.36] [5.89] [3.19] [5.10] [5.57] [5.63]
Year Fixed Effect, Yes Yes No Yes Yes Yes
Firm-Year Fixed Effect;, No No Yes No No No
Portfolio Fixed Effect; No No Yes No No Yes
R-Squared 0313 0.329 0.880 0.312 0.328 0.330
F-Statistics 22.551 19.846 17.706 23.647 21.054 16.528
Kleibergen-Paap First Stage F-Statistics NA. N.A. N.A. 42.024 41.382 38.73
Observations 3.946 3.946 3.946 3.946 3.946 3,946
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Table 24: Managers’ Project’s Idiosyncratic Risk Pricing and the Cleary Index

This table reports coefficient estimates from an OLS regression and a 2SLS regression for the effect of projects” idiosyncratic risk on firms' discount rate. and t-statistics robust to
heteroskedasticity and within-firm dependence in bracket. The time period of the sample is from 1983 to 2010. The unit of observation in the underlying table is at the firm 7. year ¢, and
portfolio & level. Projects' Average Idiosyncratic Risk denotes the projects' average idiosyncratic risk measure for each firm-year portfolio (1.¢.. the high or low 1diosyneratic nisk portfolio).
The Cleary Index 1s used as a costly external financing proxy. Its calculation details are available 1n appendix A 3. The instrumented regression contains two instrumented vanables, the
Projects’ Average Idiosyncratic Risk and the Projects’ Average Idiosyncratic Risk * Cleary Index . The analysis 1s restricted to the set of firms available in Compustat for which the necessary
vanables for each indexes was available. The vanable Project's Average Idiosyneratic Risk 1s scaled by its standard deviation to simplhify the lecture of the table and facilitate its comparison

with the other regression tables. * indicates significance at the 10% level. ** at the 5% level. and *** at the 1% level.

Discount Rate (%),

Reduced Form Repression Instrumented Regression
1) 2) (3} ] ) (6) ) (8)
(B,) Projects' Average Idiosyncratic Risk;,y T A3TE* 7428%** 8.016%** 7.389%** 8932 %%% 8964+ ** 10.447%** 10.558*%*
[3.78] [3.76] [3.95] [3.49] B3.21] [3.24] [3.54] [3.16]
(B} Projects’ Average Idiosyncratic Risk;;y * Cleary Index;, 0.029* 0.029** 0.035* 0.036* 0.032 0.033 0.048 0.048
[1.97] [2.02] [1.73] [1.80] [1.24] [1.30] [1.40] [1.40]
(B,) Cleary Index,, 0.029% -0.029% 0.032 0,031
[-191] [-1.88] [-1.43] [-1.41]
(By) Assets;, 0.010 0.009 0.010 0.009
[1.23] [1.23] [1.27] [1.28]
(Bs) Budget,, 0011 -0.009 0.011 0,009
[-1.43] [-1.40] [-1.45] [1.42]
(Ps) Leverage,, -13.148 -12.877
[-1.23] [-1.20]
(B;) Average Natural Gas Production Level; 0.362 0.385 0.175 0.044 0.243 0.264 -0.060 -0.045
[1.43] [1.54] [0.72] [0.16] [0.83] [091] [-0.20] [0.15]
Firm Fixed Effect; Yes Yes No No Yes Yes No No
Year Fixed Effect, Yes Yes No No Yes Yes No No
Firm-Year Fixed Effect;; No No Yes Yes No No Yes Yes
Portfolio Fixed Effect, No No No Yes No No No Yes
R-Squared 0.647 0.649 0.841 0.842 0.644 0.646 0.837 0.837
F-Statistic 4.554 4.276 8.076 4.343 4.353 4.136 8.242 4.473
Kleibergen-Paap First Stage F-Statistic NA NA NA NA 26.081 25885 48.554 37.115
Observations 792 792 792 792 792 792 792 792

87



Table 25: Managers’ Project’s Idiosyncratic Risk Pricing and the Whited-Wu Index

This table reports coefficient estimates from an OLS regression and a 2SLS regression for the effect of projects” idiosyncratic risk on firms' discount rate, and t-statistics robust to
heteroskedasticity and within-firm dependence in bracket. The time peried of the sample is from 1983 to 2010. The unit of observation in the underlying table is at the firm 7, year r. and
portfolio & level. Projects’ Average Idiosyncratic Risk denotes the average projects' idiosyncratic nisk measure for each firm-year portfolio (Le.. the high or low 1diosyncratic nisk portfolio).
The Whited-Wu Index 1s used as a costly external financing proxy. Its calculation detail is available in appendix A.3. The instrumented regression contains two instrumented variables, the
Projects' Average Idiosyncratic Risk and the Projects’ Average Idiosyncratic Risk * TWhited-Tu Index . The analysis 1s restricted to the set of firms available in Compustat for which the
necessary vanables for each indexes was available. The vamable Project’s Average Idiosyncratic Risk 1s scaled by 1its standard deviation to sumplify the lecture of the table and facilitate 1ts

comparison with the other regression tables. * mdicates significance at the 10% level ** at the 5% level, and *** at the 1% level

Discount Rate (%),
Reduced Form Regression Instrumented Regression
(1) ) 3 ) ) (6) 0] (8)
(B,) Projects’ Average Idiosyncratic Risk, ., 6.264%%* 6.240%%* 6.590%** 5.961%%* 53R bt FHA1 %% B.354%%% 8.474%%%
[3.54] [3.49] [3.95] [3.31] [3.42] [3.39] [3.90] [3:24]
(B.) Projects’ Average Idiosyncratic Risk;,, * WW Index,, 0353 0.343 0533 0.565 0.190 0.193 0346 0336
[0.67] [0.65] [0.85] [0.95] [0.23] [0.23] [0.33] [0.33]
(B,) WW Index,, 0.752 0.731 0.639 0.629
[-1.24] [-1.23] [-0.86] [-0.86]
(Bs) Assets,, 0.009 0.008 0.010 0.009
[1.14] [1.13] [1.18] [1.18]
(Bs) Budget;. -0.010 0.009 -0.011 0.009
[-1.40] [-1.38] [-1.41] [-1.39]
(Be) Leverage,, -12.551 -12.301
[1.19] [-1.16]
(P;) Average Natural Gas Production Level;,; 0371 0.393 0.169 0.044 0258 0278 -0.060 -0.043
[1.42] [1.50] [0.64] [0.15] [0.84] [0.91] [0.17] [0.13]
Firm Fixed Effect; Yes Yes No No Yes Yes Ne No
Year Fixed Effect, Yes Yes No No Yes Yes No No
Firm-Year Fixed Effect;, No No Yes Yes No No Yes Yes
Portfolio Fixed Effect, No No No Yes No No No Yes
R-Squared 0.642 0.644 0.838 0.839 0.640 0.642 0.835 0.835
F-Statistic 4495 4.063 7433 3.759 5016 4.583 8.260 4379
Kleibergen-Paap First-Stage F-Statistic NA NA. NA NA 20496 20477 64.180 39.036
Observations 792 792 792 792 792 792 792 792
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Table 26: Managers’ Project’s Idiosyncratic Risk Pricing and the Kaplan-Zingales Index
This table reports coefficient estimates from an OLS regression and a 2SLS regression for the effect of projects” idiosyneratic nisk on finms' discount rate. and t-statistics robust fo heteroskedasticity
and within-firm dependence in bracket. The time period of the sample 1s from 1983 to 2010. The unit of observation in the underlying table is at the firm i year ¢ and portfolio k level Projects’
Average Idiosyncratic Risk denotes the average projects' idiosyneratic nisk measure for each firm-year portfolio (Le., the high or low 1diosyneratic risk portfolio). The Kaplan-Zingales Index 1s used
as a costly external financing proxy. Its calculation details are available in appendix A 3. The instrumented regression contains two mstrumented vanables, the Projects’ Average Idiosyncratic Risk
and the Projects’ Average Idiosyncrafic Risk * Kaplan-Zingales Index . The analysis 1s restricted to the set of firms available in Compustat for which the necessary vanables for each mdexes was
available. The vanable Project's Average Idiosyncratic Risk 1s scaled by 1ts standard deviation to sumplify the lecture of the table and facilitate its comparnison with the other regression tables. *
indicates significance at the 10% level. ** at the 5% level and *** at the 1% level

Discount Rate (%) x

Reduced Form Regression Instrumented Regression
1) @ @) @ ) ©) @ (8)
(P1) Projects' Average Idiosyncratic Risk; 6.086%** 6.085%%* 6.219%%* 5.876%** 7.164%* 7.185%* 7.972%%+ 8.219%*
[3.19] [3.15] [357] [3.19] [2.61] [2.59] [3.00] [2.66]
(B,) Projects’ Average Idiosyncratic Risk, ;. * KZ Index;, 0.928 0.898 0.979 0.850 0.658 0.621 0.456 0.507
[0.69] [0.66] [0.85] [0.75] [0.38] [0.35] [0.26] [0.29]
(Bs) KZ Index; -1.569 0219 -1.320 0.030
[-0.82] [-0.13] [-0.63] [0.02]
(B) Assets;, 0.011 0.010 0011 0011
[1.50] [1.53] [1.53] [L57]
(B) Budget, 0.013* 0.011% 0.013* 0.012*
[-1.74] [-184] [1.75] [-1.84]
(Bs) Leverage;, -14.100 -14.027
[-1.05] [-1.04]
(B7) Average Natural Gas Production Level;;x 0.300 0.320 0.131 0.054 0213 0.231 -0.061 -0.021
[1.16] [1.24] [0.48] [0.18] [0.70] [0.75] [-0.18] [-0.06]
Firm Fixed Effect; Yes Yes No No Yes Yes No No
Year Fixed Effect; Yes Yes No No Yes Yes No No
Firm-Year Fixed Effect;, No No Yes Yes No No Yes Yes
Portfolio Fixed Effect;, No No No Yes No No No Yes
R-Squared 0375 0.376 0.376 0.645 0.636 0.637 0.826 0.825
F-Statistic 2172 2458 2237 4.263 5.138 4.623 9.574 5.084
Kleibergen-Paap First Stage F-Statistic NA NA NA NA 7.550 7.529 14908 12.808
Observations 792 792 792 792 792 792 792 792
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Table 27: Managers’ Project’s Idiosyncratic Risk Pricing and Managers’ Budget - States

This table reports cocfficient estimates from an OLS regression for the cffect of projects” idiosyncratic risk on firms' discount rate, and t-statistics robust to heteroskedasticity and within-firm dependence in bracket. The

time period of the sample is from 1983 to 2010. The unit of observation in the underlying table is at the firm i, year t. and portfolio k level Project's Average Idiosyncratic Risk denotes the average projects’

idiosyncratic risk measure for each firm-year portfolio (i.e.. the high or low idiosyncratic risk portfolio). The variable Managers' Average Budget corresponds to the managers budget size averaged at the firm-year

level when assuming that managers are assigned to distinct states. The instrumented regression contains two instrumented variables, the Projects’ Average Idiosyncratic Risk and the Projects' Average Idiosyneratic

Risk = Managers’ Average Budget . The variable Project's Average Idiosyncratic Risk is scaled by its standard deviation to simplify the lecture of the table and facilitate its comparison with the other regression tables

Detailed calculation of the regression variables is available in appendix A_1. * indicates significance at the 10% level. ** at the 5% level. and *** at the 1% level

Discount Rate (%0),4x

Reduced Form Regression

Instrumented Regression

) @) 3 [©) (€] ©) (0] ®

(B1) Projects’ Average Idiosyncratic Risk, sy 6.723%%* 6.725%%* 7.323%=x 6768%%  6721%%%  6724%**  g193%ex  7747x

[3.47] [3.46] [3.53] [3:25] [3.80] [3.80] [4.64] [4.18]
(B1) Projects' Average Tdiosyncratic Risk,; * Managers' Average Budget,, -0.054%* 0.054%* 0.069%* J0.060%%  -0.048%4F  _0.048%4%  .00654+F  0064%H*

[-2:50] [-2.48] [-2.52] [-2.50] [-2.94] [-2.94] [-332] [321]
(Bs) Assets,, 0.005 0.004 0.004 0.004

[1.40] [1.34] [1.38] [1.36]
(B) Budget;, 0.002 0.001

[0.22] [0.21]

(Bs) Managers' Average Budget,, 0017 0015 0013 0011

[0.89] [0.73] [0.72] [0.52]
(Bs) Average Natural Gas Production Level, ) 1.282%s% 12834+ 0.746%* 0587% 1.2684% 126945+ 0.607% 0511

[5.63] [5.56] [2.24] [1.73] [445] [4.41] [1.90] [1.58]
Firm Fixed Effect, Yes Yes No No Yes Yes No No
Year Fixed Effect, Yes Yes No No Yes Yes No No
Firm-Year Fixed Effect,, No No Yes Yes No No Yes Yes
Portfolio Fixed Effect, No No No Yes No No No Yes
R-Squared 0616 0616 0835 0836 0616 0616 03835 0836
F-Statistic 9.243 11.160 17.771 10927 10.127 10.888 20810 12.182
Kieibergen-Paap First Stage F-Statistic NA NA NA NA 63.901 63822 111074 88.060
Observations 3.946 3.946 3,946 3.946 3.946 3,946 3,946 3,946
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Table 28: Firms Characteristics and Projects’ Risk

This table reports the effects of firm characteristics on the chosen projects” risk level, and t-statistics robust to heteroskedasticity and within-firm dependence
in bracket. The time period of the sample is from 1983 to 2010. The unit of observation in the underlying table is at the township p. and year ¢ level. The
dependent variable Project’s Idiosynciatic Risk, . denotes the cross-sectional dispersion of the well's Idiosyneratic Productivity Shock. computed at the
township p and year ¢ level (see appendix A.1. for the detailed calculation). Managers’ Average Budget corresponds to the firm-year average manager's
budget when managers are assumed to be assignment to specific fields in columns (1) to (3). or to specific states level in columms (4) to (6). The variable

Managei’s Average Budget is scaled by its standard deviation.* indicates significance at the 10% level. ** at the 5% level, and *** at the 1% level.
Project’s Idiosyncratic Risk,

Managers' Budget (Region = Field) Managers' Budget (Region = State)
(1 @ (3) “) *) (6
(B;) Managers' Average Budget;, 0.439%* 0.645* 0.700% 0.507%%* 0.669%++ 0.685%+*
[2.35] [1.96] [1.74] [3.55] [3:21] [3.36]
() Assets;, -0.001 -0.001 -0.001 40.002
[-1.15] [-1.07] [-1.27 [-1.18]
(B;) Budget;, -0.000 0.000
[-0.13] [0.16]
(Bs) Township-Year Average Well's Cost,; -2.002 -2.062
[-0.85] [-0.87]
Firm Fixed Effect; Yes Yes Yes Yes Yes Yes
Year Fixed Effect, Yes Yes Yes Yes Yes Yes
Township Fixed Effect, Yes Yes Yes Yes Yes Yes
R-Squared 0474 0475 0475 0.475 0.475 0.475
F-Statistic 5.520 2.087 1.337 12.568 6.002 3.756
Observations 20,725 20,725 20,725 20,725 20,725 20,725
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Table 29: Managers’ Project’s Idiosyncratic Risk Pricing - Real Option Effect (2)
Thus table reports coefficient estimates from an OLS regression for the effect of projects” idiosyncratic risk on firms™ discount rate, and t-statistics robust
to heteroskedasticity and withm-firm dependence in bracket. The time period of the sample 15 from 1983 to 2010. The unit of observation in the underlying
table is at the firm 7, year ¢, and portfolio & level. For this specification, the projects’ internal rate of return used to estimate the firms® discount rate are
obtamed using a real option value decision rule. Instead of assumng that managers find 1t optimal to mvestment whenever the projects discounted value of
cash flow 15 greater than the cost of mvestment, I assume that the optimal mvestment trigger 15 the real option optunal threshold. See appendx C for a
detailed discussion of the estimation strategy. For the Kill test, the goal 15 to find the level at wluch the real option calibration elmunate the results of the
paper (colunm 6). To mmplement that, m the real option calibration, T multiplied the idiosyncratic sk vanable by 28.8%, such that the coefficient for the
idiosyncratic risk variable (B,) is no longer statistically significant. The variable Project’s Average Idiosyncraric Risk 1s scaled by its standard deviation to
simplify the lecture of the table and facilitate its comparison with the other regression tables. * indicates sipmficance at the 10% level, ** at the 5% level,

and *#** at the 1% level

Discount Rate (%), ,,,
+0% Kill test
(1 @ (3) @ () (6)
(P1) Projects’ Average Idiosyncratic Risk;, 2.868%+* 0.530 0.515 1.040%* 0.745% 0.542
[4.12] [1.19] [1.16] [2.52] [1.90] [1.64]
(P) Budget;, -0.007
[-1.49]
(P3) Assets;, 0.002
[1.40]
(P4) Average Natural Gas Production Level; ,; 4.9]18%+* 4.301%%% 4. 35]%FF 2.363%* 1.924%
[6.58] [4.16] [4.37] [2.48] [1.87]
Firm Fixed Effect; No Yes Yes No No No
Year Fixed Effect, No Yes Yes No No No
Firm-Year Fixed Effect,; No No No Yes Yes Yes
Portfolio Fixed Effect, No No No No Yes No
R-Squared 0.572 0.610 0.610 0.828 0.829 0.835
F-Statistic 3275 5.425 3.144 11.964 5438 2.696
Observations 2,716 2,716 2,716 2716 2,716 2,716
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CHAPTER 2 : Real Option Exercise: Empirical Evidence

Every investment decision made by a firm is both a decision about which capital project
to pursue as well as when to pursue it. The flexibility associated with the timing of invest-
ment decisions has value to the firm; this value is commonly referred to as real option value
(Myers and Turnbull 1977). Real options are a central component of models of the macroe-
conomy (Bernanke 1983), and their exercise has received ample attention in the corporate
finance theory literature (e.g., Dixit and Pindyck 1994; Kellogg 2014). Moreover, existing
corporate finance theories hypothesize the importance of peer exercise decisions and infor-
mation revelation in determining exercise behavior.! However, despite the importance of
real options, micro-level empirical evidence on exercise behavior remains limited.? In this
study, we provide novel evidence on the real option exercise behavior of firms and directly

assess the role that peer effects and information externalities can have on exercise decisions.

Characterizing firms’ real option exercise behavior is empirically challenging. First, detailed
data on the timing flexibility associated with capital projects is typically unavailable. Sec-
ond, to understand a firm’s exercise behavior, one would need data on both the projects
that a firm decides to undertake, as well as those it decides not to pursue. This level of
disclosure is often not available. Third, being able to observe key inputs that might drive
option exercise decisions is necessary in order to characterize exercise behavior; these would
include expected project cash flows, costs, and volatility of project cash flows. Fourth, in a
competitive setting where peer firms’ exercise behavior can have an influence, one needs to
be able to precisely measure the actions taken on peer firm projects in order to gauge their
potential impact. Fourth, one needs to develop an empirical framework to appropriately

identify the effect of peer behavior and mitigate potential endogeneity concerns.

1See Grenadier 1996, Grenadier 1999, Grenadier 2002, Novy-Marx 2007, Grenadier and Wang 2005,
Grenadier and Malenko 2011, and Scharfstein and Stein 1990.

?Kellogg 2014 studies oil drilling activity and finds that oil price volatility affects investment decisions
in a manner consistent with real option models. However, the study, which focuses on fields operated by a
single firm, does not assess the importance of information externalities across firms. Moel and Tufano 2002
study mine opening and closing decisions relative to what real option theories would imply; however, their
setting is also not conducive to assessing the importance of peer effects and information externalities.
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This study focuses on a setting which allows us to make significant progress on each of these
challenges. We analyze $107.9 billion in capital projects composed of exercised and unex-
ercised natural gas shale infill well drilling projects in major shale developments in North
America. First, the institutional structure of this setting allows us to have clear visibility
into the timing flexibility firms have in making drilling decisions. Second, because of the
institutional structure of lease contract terms we are also able to observe both exercised
and unexercised options at any given point in time. Third, because the key determinant of
project cash flow is the price of natural gas, a commodity whose expected price and implied
volatility are readily observable to the econometrician from financial derivatives, we have
the inputs necessary to characterize investment behavior. Fourth, due to the regulatory
environment of the shale fields in our setting, we are able to observe and precisely measure
neighboring activity from peers.® Third, and finally, we develop an empirical framework
which uses novel quasi-exogenous variation in peer activity to mitigate some of the chal-

lenges in identifying peer effects.

Our empirical design to assess the exercise behavior of firms is based on a duration analysis
using a hazard model. The objective of using this empirical framework is to compute how
different factors affect the probability of exercising an option at time ¢, conditional on the
option having not been exercised up to time ¢. The data in our sample is conducive to this
type of analysis because each option has a well-defined starting point, we can clearly observe
when an option is exercised, and we have detailed data on how covariates vary during and
up to the time of exercise. This empirical specification is consistent with others that have

modeled drilling decisions (Kellogg 2014).

We find that the likelihood that a firm exercises its real option is strongly related to peer
exercise behavior. Specifically, a 1-standard-deviation increase in adjacent peer project ex-
ercise activity is linked with between a 10.9% and 38.2% increase in exercise likelihood.

These magnitudes imply that peer behavior can be as economically important as baseline

3This is a key distinction from Kellogg 2014, who focuses on single operated fields, where only one firm
operates in each area.
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real option inputs, such as commodity prices and volatility, in determining exercise de-

4

cisions.* We show that our baseline peer effect result holds after mitigating endogeneity

concerns linked with peer exercise decisions as well as across a series of robustness tests.

Corporate finance theory provides a rich set of extensions to baseline real option models
highlighting the importance of peer behavior and information revelation for exercise de-
cisions (e.g., Grenadier 1999; Grenadier and Wang 2007; Grenadier and Malenko 2011;
Novy-Marx 2007). Our empirical framework is well suited to assess these theories. In most
other settings, even the task of defining the set of peers can be a challenge.® In our setting,
geographical proximity of real options to one another provides a natural way to define peer
sets. Specifically, we precisely observe how firms respond to adjacent competitor project
exercise decisions, because our data are granular enough that we can observe the specific
drilling units (real options) a firm has, as well as the adjacent drilling units operated by
competitors. The grid pattern of drilling units in the shale fields in our setting are such that
every 6-sq. mi. township is divided in thirty-six sections and for each section in our sample,
we have eight adjacent sections to it. We can take advantage of the significant variation
in neighboring activity to evaluate two possible channels through which peer exercise could

affect exercise decisions.

First, as Grenadier 1996 highlights, firms may face a common pool problem, in which case
they may decide to exercise early because the common pool of resources could be drained
by neighboring competitors and hence unravel any option value to wait. However, this phe-
nomenon is unlikely to explain exercise behavior because shale rock lies deep underground
and traps hydrocarbons tightly. It is only under very intense pressure (hydraulic fractur-
ing or “fracking”) that the highly nonpermeable rock releases hydrocarbons, with minimal

impact on neighboring nonfracked shale rock. If shale gas were a significant common pool,

Like Kellogg 2014, we find that commodity price and implied volatility are linked with exercise decisions
in our setting.

°In a broad cross-section of firms, defining peer sets, often through industry classification, can be chal-
lenging (see Hoberg and Phillips 2016). Defining geographic proximity at the firm level represents another
challenge; for instance, headquarter location (easily observable) might act as a poor proxy for the location
of firm operations.
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one would likely see only a few wells being drilled to extract natural gas, which is in sharp
contrast to the dense drilling that one actually observes in shale gas extraction. Because
Kellogg 2014 focuses on the exercise behavior of conventional nonshale oil wells, that study
focuses on single operated fields to avoid the common pool problem. Given our focus on
shale wells, we are able to analyze the exercise behavior of infill wells with adjacent activity

without confounding issues related to common pools.

Second, we evaluate the role that competitor exercise behavior has in providing potentially
important information externalities. As Grenadier 1999 points out, information revelation
through real option exercise decisions is a key dimension through which real option exercise
behavior differs from financial option exercise behavior. However, micro-level empirical
evidence attempting to quantify the potential importance of information revelation remains
limited. We find direct evidence that information externalities linked with peer behavior
are important. Specifically, we find that firm exercise activity is most strongly linked to
peer exercise decisions when peers have more experience in drilling natural gas shale infill
projects. Firms with the most experience in a field are higher up the learning curve in terms
of how to extract natural gas, so the information revealed from their exercise is likely more

valuable.

What is the nature of the information firms obtain from adjacent exercise activity? Adjacent
exercise activity could inform a firm on how to better extract reserves from its own project.
Specifically, adjacent exercised projects reveal detailed information on the “target” depths
at which the formation was drilled, which helps firms target their own drilling prospects
better. Further, public disclosures require information to be disclosed on the mix of fracking
chemicals and techniques applied to drill and complete a well; this information then can be
used by peer firms to determine which approach will allow them to extract natural gas most
efficiently from their own reservoir (e.g., Covert 2015).% Lastly, adjacent exercise activity

by peer firms also could be a reflection of some private information about rock quality a

5See fracfocus.org for examples of public disclosures.
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firm has which is not yet publicly known, so that observing a peer firm exercise could cause
a firm to update positively on the rock quality of a project. All these reasons highlight
how neighboring peer exercise activity can lead to economically important information

externalities that can result in upward revisions in project value.

A central concern when evaluating the effect of peer exercise decisions is endogeneity. For
example, common characteristics (e.g., shared geology or technology) may be driving the
exercise behavior of both the firm and its neighboring competitors. This common unob-
served factor is a well-established source of endogeneity that leads to the reflection problem
(Manski 1993). To mitigate this endogeneity concern we develop novel quasi-exogenous

variation in peer firm exercise activity.

Our primary identification strategy relies on the idea that beyond the net present value
(NPV) of a project, the relative rank of a given project in a firm’s portfolio of capital
projects may also matter for investment exercise decisions.” Therefore, two peer firms with
adjacent projects of similar NPVs could undertake exercise decisions differently due to the
relative rank of their project within each firm’s portfolio of projects. For each real option in
our sample, we construct the average relative rank percentile of adjacent projects within the
peer firms’ portfolio of projects at each point in time. We use this variable to instrument
for adjacent peer project exercise activity. We find evidence, using both instrumented and
reduced-form versions of this measure of quasi-exogenous variation in peer exercise activity,

that the adjacent exercise behavior of peer firms affects the exercise behavior of a firm.

The identification assumption of our empirical design is that the relative rank of the NPV of
an adjacent real option in a peer firm’s portfolio affects a firm’s own exercise decision only
through its effect on the likelihood that the peer firm will exercise that adjacent option,
and not through another channel. While this assumption is not directly testable, we can

provide several pieces of evidence that support it. First, if a common characteristic affected

It is well established that firms cannot pursue all positive NPV projects at the same time because of
operational, labor, or capital constraints. Hence, project ranking is a commonly used tool to select only the
most profitable projects (see Berk and DeMarzo 2016 as an example).
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both the relative rank of a peer firm’s real option as well as the exercise of a firm’s own
real option, then the exclusion restriction would be violated. In such circumstances, one
might expect highly ranked projects by different firms would tend to cluster in the same
area, and we show this is not the case. Specifically, we show that after controlling for local
geography fixed effects, which essentially controls for the absolute NPV of a project, the
relative rank of adjacent projects owned by peer firms is uncorrelated with the relative
rank of a given project within a firm’s own portfolio.® Second, we show that our results
hold when we limit our sample only to the real options with low relative rank within a
firm’s portfolio, while its peer firms’ adjacent projects’ relative rank is high. Third, we
find that firms still respond to peer exercise decisions on units that are directly adjacent
to theirs, even after controlling for peer exercise decisions on projects elsewhere. Fourth,
we find that firms’ response to adjacent peer exercise decisions is concentrated around the
activity from peers with substantial experience in extracting shale in the area of interest.
Taken together, these tests make significant progress in addressing the primary endogeneity
concerns in measuring responses to peer real option exercise decisions, and set a high bar
for alternative explanations. Specifically, an alternative explanation would need to reconcile
why the relative NPV rank of a given project in a peer firm portfolio would have a direct
effect on a firm’s exercise decision for a reason other than peer exercise activity, when that
relative rank is uncorrelated with any metric that is linked with the absolute NPV of a

project ex ante.

Ideally one would want to have visibility into all real options a firm has to have a complete
rank ordering of projects. Despite the focused geographical scope of our study, we still
obtain strong statistical power from using the rankings of real options in explaining infill
option exercise decisions. This is consistent with the notion that drilling decisions are
typically made at the shale play/regional level, and, as such, the portfolio ranking within our

geographic area of focus, shale natural gas in Oklahoma, still results in a strong instrument.

8The relationship is not statistically significant. Further, throughout all specifications, we directly control
for the absolute quality of peer firm projects by using the production from the first well of each adjacent
peer units as a proxy for the NPV of the peers’ adjacent infill wells.
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That is, so long as the real option exercise decisions we study are made within the same
capital allocation category, the rank orderings we compute will give us enough statistical
power. A further concern could be that firms might have shale oil infill projects, which
are not included in our analysis, that could alter the interpretation of our tests. However,
shale oil infill options are much rarer in the data than shale gas infill options, largely
because of the much later adoption of fracking technology to oil. Specifically, for the median
observation during our sample period a firm’s infill option portfolio is composed of 7.8%
shale oil infill options and 92.2% shale gas infill options. Moreover, we find that shale oil
and shale gas infill options exist in geographically distinct areas, and, consistent with the
view that these projects are in distinct capital allocation categories, we find that there are
no cross-sectional differences in the explanatory power of our shale gas rank ordering on
shale gas infill decisions between firms with above-median shale oil infill options and firms

with below-median shale oil infill options.”

As a final set of analysis, we estimate the optimal stopping (exercise) time based on standard
real option models (e.g., Paddock et al. 1988; Dixit and Pindyck 1994). After incorporating
all the detailed granular inputs our setting affords into these baseline models, we find that
differences exist between actual exercise behavior and predicted exercise behavior. However,
we find that the baseline model’s predictions are closer to actual observed behavior once we
account for information externalities due to adjacent peer exercise decisions. Specifically, if
we model beliefs about the value of unexercised infill options to be a function of both the
production of the first well on a drilling unit and the adjacent peer exercise activity, we find

that exercise decisions are significantly closer to those predicted by theory.

By analyzing peer effects and social learning in the context of real option exercise behavior,
our study contributes to two important strands of the literature. First, we contribute to the

real option literature by empirically evaluating the importance of a broad set of theories,

9Given the limited amount of activity for shale oil infill projects in our sample there is much lower
statistical power to comprehensively study option exercise activity among these types of projects, so we
exclude these well types from our study. However, we undertake a series of tests in Sections 3.2.4 and 3.3,
to ensure that the presence of shale oil infill projects does not alter the interpretation of our main results.
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which hypothesize that information revelation and externalities may be an important com-
ponent of exercise decisions (Grenadier 1996; Grenadier 1999; Grenadier 2002; Novy-Marx
2007; Grenadier and Wang 2005; Grenadier and Malenko 2011). In particular, we show
that peer exercise is important relative to the predictions from standard real option models
(e.g., Dixit and Pindyck 1994; Kellogg 2014). To understand why this may be the case, we
focus on a setting where we can directly identify peer effects and the role of information ex-
ternalities in option exercise behavior (Grenadier 1999). Using a hazard model framework,
we show that information externalities from peer effects can have economic effects on the
same order of magnitude as natural gas prices and volatility. Second, our novel micro-level
evidence of the effect of peer activity on option exercise helps us contribute to the literature
on learning from peers. That literature documents that peer effects are important for a va-
riety of corporate decisions, such as those on investment policy (Foucault and Fresard 2014;
Bustamante and Fresard 2017), capital structure policy (Leary and Roberts 2014), and div-
idend policy (Greenan 2019). The economics literature provides evidence on social learning
and the adoption of new technologies (e.g., Foster and Rosenzweig 1995; Thompson and
Thompson 2001; Conley and Hudry 2010; Covert 2015). Covert 2015, in particular, relates
to this study, because he documents social learning on decisions related to what technology
to use to drill and complete wells. The evidence Covert 2015 provides is precisely the type
of information externality that can make social learning important for real option exercise
decisions. However, much of the existing literature related to social learning is focused on
how firms learn and invest (see Conley and Hudry 2010; Covert 2015). Our contribution is
to show that this peer learning also has an important impact on the timing of investment

decisions, that is within a real options context, peer learning affects when firms invest.
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2.1 Real Options in the Context of Shale Drilling

2.1.1 Project overview: Natural gas shale drilling

Our setting exploits the institutional features of natural gas shale development to study the
real option exercise behavior of firms. To extract shale natural gas, firms must first drill a
well with a horizontal leg into shale rock (typically more than a mile below the surface),
then complete the well by hydraulically fracturing (“fracking”) it. Drilling a well may take
a few days to a few weeks, whereas fracking is a separate process performed after drilling.
Both drilling and fracking entail substantial upfront capital costs of $4.7 million per well on
average in our sample. Once a well is completed, it produces natural gas and declines over
time. The critical features determining the cash flows are natural gas prices and the volume
extracted. Costs include lease operating costs and royalty costs, and typically comprise less
than 40% of a well’s revenues after the well is drilled. Cash flows are at their highest level at
the beginning of a well’s life and then decline over time as pressure from the well declines.
Once a well starts producing a firm can do little to cause the production to go up or down
outside of a well’s natural decline without risking damage to a well. Figure 10 plots the
cash flows and capital expenditures associated with drilling a well (see Gilje and Taillard

2016b for more details).

2.1.2 Infill drilling

One of the key features of our setting is the unique ability to observe the flexibility and
maturity that firms have on their investment options. Like Kellogg 2014, we focus on
“infill” drilling projects in order to have well-defined maturity assumptions. An “infill”
project corresponds to the decision to drill additional wells on a drilling unit (section)
that a firm already operates. The first (or existing well) on a unit contractually holds the
operatorship of the acreage as long as the first well produces; in this case the lease is said
to be “held by production” or HBP. A firm has the option to drill additional wells at any

point in the future so long as the initial well is still producing. This provides firms with
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options that have very long maturities as the life of the first well can range anywhere from
20 to 40 years. In all the natural gas shale developments that we study in Oklahoma, a
single drilling unit (section) of 640 acres can support up to 8 shale wells (or roughly up to
$37.8 million in capital expenditures). With 2,853 units representing up to $107.9 billion in
potential capital commitments, the infill options in this study represent capital investments
that are economically meaningful, with a significant degree of flexibility on when to exercise

these options. Figure 11 plots a timeline of the infill drilling decision.

A key advantage of focusing on infill drilling is that, unlike most studies of investment
decisions, we can observe both exercised and unexercised options. Indeed, drilling units
with only one existing well effectively contain many unexercised options as no additional
(infill) wells have been drilled in the unit yet. Our study focuses on the timing of the first
infill well in a unit. It is important to note that a firm could delay the exercise of the second,
third, and follow-up infill wells. However, we find that 90.2% of all infill wells are drilled
concurrently to the first infill well. As such, infill drilling does not seem to be exploratory
by nature but, rather, is a decision to extract significantly more resources from a unit that

has been held by production with the first well up to that point.

2.1.3 Measuring peer activity

The ability to analyze firm’s investment responses to competitors’ actions is a key novelty
of our study. We focus on the development of major natural gas fields across multiple
operators, a setting where information and other externalities may be more relevant. This
is a key distinction from Kellogg (2014), who focuses on single operated fields, where only

one firm drills a field.

The regulatory and land environment in Oklahoma lends itself well to further our under-
standing of how firms might react to adjacent drilling activity. Specifically, every drilling
unit in our setting conforms to Jeffersonian survey, and lies on a grid system with squares

that are one mile by one mile. Every 6 by 6 group of squares (thiry-six “units” in total)

102



rolls up to a township survey (township level). This is attractive for several reasons. Every
drilling unit, by construction, has eight clearly delineated adjacent units. We observe every
natural gas well drilled in Oklahoma so we can observe the exact timing and nature of all
adjacent activity throughout our sample period. Second, we can use the township survey
information to control for potential geography or area specific effects in our econometric
specifications. Figure 12 plots the shale drilling activity in a township. The lines represent
the horizontal wellbores of shale wells. Sections in the grid are the drilling units; sections
with one wellbore have not yet been infill drilled; and sections with multiple wellbores have

been infill drilled.

2.1.4 Real option framework

The firm’s option to infill drill corresponds to the choice it has to spend capital to further
develop its proven natural gas reserves. As noted in the introduction, the timing flexibility
related to the investment decision to drill a well on proved reserves can be viewed as an
American call option (e.g., Paddock et al. 1988). Infill drilling maps nicely into the real
option framework: the capital needed to develop the reserves can be viewed as the strike
price of the option. The value of the reserves after capital has been expended, that is,
the producing proved developed reserves, corresponds to the underlying asset. The timing
flexibility a firm has to infill drill can be viewed as the time to maturity. Because the first
well on the section holds by production (HBP) the section as long as it is economically
viable, the option to infill drill has a long maturity attached to it; at least 20 years on
average. And as the decision to infill drill (exercise the option) can be made at any time
over this period, it can be viewed as an American call option. The cash flow volatility
of infill wells corresponds to the volatility of the underlying asset used in standard option
pricing model. Firms in our setting all produce the same commodity, natural gas, and the
market provides indicators of expected futures prices and volatility, both of which can be
used as inputs for an option pricing model, along with other inputs described in more details

in Section 4.
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2.1.5 Optimal exercise time and peer effects

It is well established that American call options on dividend paying underlying assets have
an optimal exercise time that can occur prior to maturity. As Dixit and Pindyck 1994 point
out dividends can be viewed as either explicit or implicit in the context of real options,
and broadly speaking can be viewed as the benefit a firm obtains from exercising an option
sooner rather than later. In our setting, a straightforward way of viewing the cost a firm
incurs by waiting is that future cash flows get discounted by a firm’s cost of capital. The
longer a firm waits to exercise, the more discounting will be applied to the underlying cash
flows generated by the well. Conversely, waiting (delaying drilling) confers the ability to
drill in future states of the world that exhibit higher natural gas prices. Therefore, one can
view early exercise as the result of a tradeoff between the value of early exercise from having
to discount cash flows less and delaying the exercise to get better natural gas pricing in the

future.10

All else equal, higher cash flow volatility tends to result in delayed investment, due to
the increased prospects of higher cash flows, while a higher cost of capital tends to result
in investment occurring sooner. The classic derivations of the optimal stopping time (see
Section 4 for more details) lead to a trigger rule, whereby a trigger value can be computed
such that it is optimal to exercise the option when the value of the underlying asset (natural
gas reserves) exceeds the trigger value from below for the first time. When natural gas prices
rise, it is more likely that the value of the underlying asset will exceed the trigger value.
Hence, commodity price increases will lead to earlier exercise of the real option all else

equal.

Natural gas prices and natural gas price volatility have clear predictions as to how they
might affect exercise based on a standard options framework, with volatility being negatively
correlated with exercise (more valuable to delay when volatility is high) and natural gas

prices being positively correlated with likelihood of exercise. We also include information on

10As we will see in Section 4, in our context, a firm’s cost of capital will correspond to the dividend rate
of a stock.
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nominal interest rates in our initial tests. Typically, a decrease in interest rates decreases
the discount rate and hence makes projects more valuable and hence more likely to be
undertaken. However, in the context of real options, the effect of interest rates is more
ambiguous because a decrease in interest rates makes waiting more appealing, as cash flows

in the future are valued more today.'!

Assessing how peer effects alter option exercise behavior is the central focus of this study.
A broad set of theoretical papers claim that informational spillovers from peer activity
can be of first- order importance in understanding real option exercise behavior. The
mechanism underpinning these peer effects relate to the information content that is revealed
by the exercise of infill drill options on the eight adjacent drilling units (see Figure 13).
Specifically, the more infill wells being drilled nearby, the more information there is on
the depths and porosity of the formation, which will in turn inform a firm on how to
most efficiently extract natural gas from its own infill wells. Additionally, public disclosures
require information to be disclosed on particular chemical mixes and techniques of hydraulic
fracturing of “fracking” a well (see Covert 2015). This reveals information on techniques
that might work well for fracking a particular reservoir as well as those that might not work
as well. It is important to note that, even seeing a negative outcome in terms of production
in an adjacent section, that is knowing which “fracking” techniques do not work, will allow
a firm to learn how to better extract from its own section. Lastly, adjacent exercise activity
by peer firms also could be a reflection of some private information about rock quality a
peer firm has which is not yet publicly known; as such, observing adjacent exercise may
lead a firm to update positively on the rock quality of a project. Grenadier 1999’s develops
a theoretical framework of real option exercise to assess the potential impact of information
externalities from peer exercise activity. All of the reasons listed above justify why we
could see positive information externalities from neighboring activity in our setting and

thus validate the use of our setting to empirically assess Grenadier 1999’s main prediction

" The effect depends somewhat on whether a movement in interest rates (r) will have a commensurate
impact on the firm’s cost of capital (§). See section 5.4 of Dixit and Pindyck 1994 for a more detailed
discussion of the topic.
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that peer exercise activity will lead firms to exercise early. Within the context of a classic
Dixit and Pindyck 1994 framework, the information externalities from peer effects result
in an upward revision of the underlying asset value, pushing firms closer to the optimal

“trigger” rule, all else equal.

2.2 Data

2.2.1 Construction of panel for hazard model

Our sample period begins in January 2005 and ends in December 2016. We construct
a panel of all units (sections) in Oklahoma with one horizontal natural gas shale well in
production.'? This first well confers the operator the option to infill drill the unit with
additional wells as described above. The number of these outstanding available options
gradually increases over the sample period. By the end of our sample in 2016, there is a
total of 2,853 infill drilling options, 680 of which have been exercised (724%). The number
of firms (operators) corresponds to 159. Table 30 reports the summary statistics for the
panel we use in the hazard model. In total our data is composed of wells in 442 townships

across every natural gas shale development in Oklahoma.

Our empirical analysis is based on the panel data of exercise decisions to infill drill on
sections held by production with the existing well (first drilled) on the section. The unit
of observation in this panel is at the drilling unit-month level. In total, our sample com-
prises 162,905 drilling unit-monthly observations prior to exercise. To test some of the key
predictions of the real option framework outlined in the previous section, we include the
18-month natural gas futures price from Bloomberg L.P. and 18-month implied volatility of
natural gas prices like in Kellogg 2014. We also include the 5-year nominal risk-free rate on
U.S. Treasury bond to capture the impact of interest rate movements. All these variables

are computed at the monthly frequency.

120klahoma contains both shale oil and shale gas. We only focus on wells designated as natural gas shale
wells on their drilling and completion reports, meaning the primary economic rationale for drilling the well is
the recovery of natural gas, not oil. Therefore, natural gas prices and natural gas price volatility are directly
related to the investment decision to drill a well in our sample.
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To proxy for the expected value of the reserves that will be unlocked by exercising the
option to infill drill, we compute the present value of future cash flows generated by the
infill well using the futures curve for pricing, and an expected production profile based off
the unit’s first horizontal well’s production in its first year.'® Production data are reported
by the Oklahoma Corporation Commission and Oklahoma Tax Commission at the well level.
Finally, we estimate drilling costs in our sample. Drilling costs vary substantially over time
due to the supply and demand for drilling and completion services; however, they vary little
across operators and geography within a shale basin at any given point in time (Gilje and
Taillard 2016b). As such, we compute a single time-series for the average drilling costs
at the monthly frequency by collecting data on 996 wells from the Oklahoma Corporation
Commission (OCC) regulatory pooling documents over our sample period. These data
provide us with expected drilling costs by all firms who initiate the drilling of the first well

in a given drilling unit.'*

The final set of variables relate to adjacent activity from the firm itself (own) and its peers
(competitors). Recall that each section can have up to eight neighboring infill options
exercised. We find that on average, over the entire sample period, there are 0.34 adjacent
options exercised by its peers and 0.40 by itself. Throughout our regression specifications,
to aid the economic interpretations in the tables, we standardize all variables related to
adjacent activity (adjacent peer exercise, adjacent firm exercise, and associated relative
ranking variables) to have a mean of zero and standard deviation of one. This scaling
does not affect the statistical significance of any variables, but does provide an attractive
economic interpretation of these variables such that the Hazard Impact factors relate to a 1-
standard-deviation change relative to the mean. Table 30, also highlights that the medians

are at zero reflecting the fact that many units do not have any infill wells during our sample

13The expected production of a well can be potentially modeled in many ways. We settled on the simplest
specification based on the first well in the drilling unit. Our results are robust to modeling different types
of technological improvements over time. Using the simple approach, we find that using the first well’s
production explains (R-squared) 64% of the variation in the second well’s production in the drilling unit
(i.e., the first infill well exercised).

14 These data are used by other firms with ownership stakes in the drilling unit to decide whether they
want to participate in the well and pay their share of the drilling costs.
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period, the standard deviations do signal heterogeneity in neighboring activity. We exploit
this heterogeneity in our main econometric specifications. To address potential endogeneity
concerns, we also compute the ranking of each infill well based on the portfolio of options
an operator has at any given point in time. This variable can only be computed on a subset
of observations (103,451) and is defined as the relative rank of an infill option based on the
quality of the first horizontal well drilled on a drilling unit at a given point in time (see

Section 3 for details).

The key event that we use to determine whether an option is exercised is the “spud date”
of the first infill well. This is the date when drilling capital expenditure is initiated and
the drilling of a second well in the section begins and is directly observable from regulatory
filings from the Oklahoma Corporation Commission. From these data we know the precise
date, time, firm, and location (drilling unit) of the infill exercise decision. Figure 14A plots
the number of options exercised over time, while Figure 14B plots the amount of time firms
wait to exercise an option for the subset of options that are exercised. Because an option
only becomes available to exercise after the first well has been drilled on a drilling unit, the
number of options during the sample period is not the same over time. Figure 14C plots
the number of options over time, as well as the number of options exercised at any given

point in time.

2.3 Results

2.3.1 Peer effects and option exercise

To assess the factors that might affect real option exercise behavior, we perform a duration
analysis based on hazard functions. The objective of using a hazard function is that it
allows us to compute the probability of exercising an option, within an interval, conditional
on having not exercised the option up to the time of the interval. Specifically, the hazard

function is deﬁned as:
P r < Z + S Z >

s—0 S
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We parametrize the hazard function using a commonly-used semi-parametric approach:

h(t) = ho(t) exp(B1NGPrice; + B2 NGV oly + B3 DrillCosts, + SylntRatey

+Bs FirstWellProd; + B Adj ExerOwn; ; + BrAdjExerPeer; ;)

This parametrization corresponds to the well-established Cox Proportional Hazard Model,
whereby the unit of observation is at the drilling unit-month level. This empirical design
determines the factors that make it more (or less) likely that the option to drill the first
infill well on a unit (section) is exercised. Once an option is exercised on a drilling unit it
is dropped from our sample. Specifically, our duration model specification models the infill
drilling decision as a “single-spell” data set, whereby each individual unit (section) enters
the data set when the first well in the section is drilled and exits either when the first infill
well is exercised (drilled) or is (right) censored if no infill wells are exercised prior to the

end of our sample period.'®

We cluster standard errors at the township level in every specification, the appendix provides
further robustness tests of the econometric specifications. A useful baseline when conducting
hazard analysis is to plot the survival function; this allows us to observe the rate at which
options are being exercised in the sample, we do this in Figure 15. The plot begins at 1 and
then declines as time passes (in months) and options are exercised (and no longer survive).
By the end of the sample period, 23.8% of all options are exercised. Having established
this baseline hazard rate, we can then assess which covariates may cause a shift up or down
in the curve in Figure 15, that is, what are the factors that might lead firms to exercise

options sooner or later.

The focus of our study is on how neighboring peer project activity affects the baseline

5Most infill wells (90.2%) are exercised (drilled) concurrently with the first infill well. That is, when firms
exercise their first real option to do infill drilling, they typically exercise many infill options at once. Because
infill options tend to get exercised together, modeling the time to exercise of the first infill well is capturing
the main economic decision for reserve extraction in the unit; this modeling also allows us to maintain a
tractable modeling framework.

109



hazard rate. To do this, we test the effect of neighboring peer activity on the decision to
exercise by calculating the number of adjacent drilling sections (as many as eight) that have
infill options exercised by peer firms at each point in time. We include this new variable as
well as a measure of the firm’s own adjacent activity in the parametrization of the hazard
function. To provide context for this peer effect, we include in our baseline specifications
the same set of variables as those found in Kellogg 2014. These include natural gas prices,
natural gas volatility, drilling costs and interest rates. Recall from Section 1 that standard
option theory makes prediction on these variables. For instance, as higher volatility makes
the option to delay more valuable, hence all else equal an increase in volatility should push
firms to delay investment. By including volatility of natural gas as a covariate (NGVoly),

we can assess whether this theoretical relationship holds in the data.

Table 2 shows the results. We find a strong positive relationship between the likelihood
of exercising and peer real option exercise activity. To facilitate the interpretation of the
adjacent real option exercise variables, we standardize the variables to have mean of zero and
standard deviation of one, so that each coefficient/Hazard Impact factor can be interpreted
as a l-standard-deviation change relative to the mean. Specifically, a 1-standard-deviation
increase in adjacent peer infill exercise activity increases the likelihood that a firm will
exercise its infill option by between 10.9% and 38.2% depending on the specification. This
result is supportive of Grenadier 1999’s main prediction that information externalities play

an important role in the exercise decisions of firms.

Like Kellogg 2014, we find that natural gas prices and natural gas volatility affect real
option exercise decisions. Namely, we find that higher volatility reduces the hazard rate
(the rate at which options are exercised). Conversely, natural gas prices (NGPrice;) have
a positive effect on the hazard rate, as an increase in the natural gas price increases the
value (NPV) of the project and makes the option to delay less valuable. In economic terms,
based on the Hazard Impact percentage in specification (1) of Table 31, we find that a

one standard deviation increase in natural gas price volatility decreases the likelihood of
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exercising an option by 14.0% (-3.23%4.32) relative to the baseline hazard rate. Alternatively,
a 1-standard-deviation increase in the price of natural gas increases the likelihood of exercise
by 26.1% (14.77*%1.77) relative to the baseline hazard rate. These results hold across the
three specifications of Table 31. They suggest that firms’ behavior is directionally consistent
with these key predictors of option exercise activity. Furthermore, these magnitudes provide
important context for our peer effect results. Specifically, peer effects have an economic
impact on the same order of magnitude as some of the baseline real option model inputs

such as natural gas price and volatility.

Lastly, we also control for the quality of the first horizontal well drilled in the unit as well as
the estimated cost of the infill well in specifications (2) and (3) of Table 31. The intuition
behind the first of these controls is that the first well is an indicator of the quality of the
geology in an area: the more it produces, the higher the value of the additional infill projects,
and hence the more likely the option to infill drill will be exercised. Results in Table 31
support this hypothesis. Specifically, a 1-standard-deviation increase in the quality of the
first well results in an 88.5% (51.48%1.72) increase in the likelihood of exercise. Drilling costs
will vary over time; for instance, wages for qualified workers were rising over our sample
period (e.g., Bartik et al. 2018). These time-varying costs could affect option exercise
behavior by changing the strike price over time, so controlling for time-varying drilling
costs is also important. Results from Table 31 show no significant impact of drilling costs

on the likelihood of exercising early, similar to Kellogg 2014’s finding.

2.3.2 Endogeneity: Peer effects and option exercise

A potential concern with the interpretation of Table 31 is that the correlation between a
firm’s exercise behavior and its competitors’ adjacent exercise activity cannot necessarily
be attributed to a reaction to adjacent activity (Manski 1993). For example, a common
factor, such as shared technology or similar reserve quality, could affect both the adjacent
competitors’ decisions to exercise as well as a firm’s own decision to exercise. To address

this concern, we need to identify the exogenous component of adjacent exercise activity.
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Defining the instrument for peer activity

For the construction of our measure of exogenous variation in peer activity, we start from
the observation that firms typically face operational, labor, or capital constraints and thus
are unlikely to undertake all positive NPV projects at once. As such, they make decisions
to invest not only based on the absolute NPV of a project but also the relative NPV or the

rank of a project in a firm’s portfolio of capital projects.

The measure we construct can best be illustrated with an example. Figure 16 shows the real
options of three firms. Firm A has two separate drilling units, each of which is adjacent to
drilling units owned by firms B and C. Now assume that the NPV of firm A’s infill projects
and the infill project adjacent to it, owned by its peers, is $1 million. However, let’s also
assume that firm B has a portfolio of four additional real options with NPVs, if exercised
today, of $2 million, $3 million, $4 million, and $5 million, respectively. Alternatively, firm
C has a portfolio of real options with an NPV, if exercised today, of $0.90 million, $0.50
million, $0.30 million, and $0.20 million. All firms have positive NPV projects, but for firm
B the project adjacent to firm A is ranked fifth among its portfolio of projects, whereas
for firm C it is ranked first. Now assuming that these firms face some operational, labor,
or capital constraints, and firms can only undertake one project at a given point in time.
Based on the rankings of these projects, we would expect firm B to be more likely than firm
C to exercise its project next to firm A, even though the projects have the same absolute
NPV. When firm C exercises, firm A benefits from the information on how to complete the
well, and information on the depths of the zone to target, while it has no new information
for its project next to firm B. Therefore, firm A benefits from an information externality
not due to any shared or common characteristic of the specific real option in question, but
due to the ranking within the existing portfolio of the other real options that firm C has.
The identification assumption is that the rankings of the projects in firm B and firm C’s

portfolios is exogenous relative to the investment opportunities that firm A has. We offer

18Qur analysis assumes all projects have the same investment cost at a given point in time, a reasonable
assumption in our sample as Gilje and Taillard 2016b provide evidence that investment cost does not
significantly vary across firms in a given region for shale gas development.
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several tests in the next section to document that the project value of a given firm’s option

is unrelated to the relative ranking of the adjacent options owned by peer firms.

Table 3 reports whether rank ordering matters in option exercise decisions. The variable
we construct is the relative percentile of each infill project in a firm’s portfolio. Our rank
ordering is based on the production of the first horizontal well on a drilling unit.!” For every
month in the sample, for every firm, we rank the total number of natural gas shale infill real
options the firm has across the entire state of Oklahoma as of that point in time, and then
map that rank ordering to percentiles. So, for example, if a firm has 20 real options in its
portfolio, the number one well would be in the 95th percentile (1-1/20). As can be seen in
Table 32, the higher the percentile rank in a firm’s portfolio, the more likely it is that the
project is exercised. To ease the interpretation of the relative rank percentile coefficients,
the data has been normalized to have mean of 0 and standard deviation of 1. Therefore,
based on the different specifications found in Table 32, for a 1-standard-deviation increase

in percentile, a firm is between 65.8% and 84.9% more likely to exercise an option.

Instrumental variable approach

Table 33, panel A, reports the two-stage estimation, where Adjacent Peer Exercise Activity,
defined as the number of infill options exercised by peers adjacent to the drilling unit ¢ at
month ¢, is the variable that is instrumented.'® The instrument we construct is the average
relative percentile of all adjacent drilling units owned by peer firms as of month ¢ based on
the relative rank of each adjacent infill project in a peer’s portfolio of projects. The relative
ranking of each infill project will fluctuate over time; for example, if a peer firm adds real

options with strong first wells elsewhere, then the relative percentile will go down. If it

17We assessed the potential of several alternative measures for project ranking, including adjusting the
production of the first well by its vintage. We found that the unadjusted first well production had the highest
explanatory power over infill production, relative to any alternatives. Additionally, we find no variation in
the explanatory power of the first well production for infill productivity based on whether the well was
drilled early on or later in the shale development.

!8Table 33 has fewer observations than Table 32, because we can only use our instrument once some
adjacent peer infill options exist: if a firm’s real option to infill has no adjacent infill options then there is
no relative rank from an adjacent peer that can be used to construct the instrument.
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adds real options with relatively poor first wells elsewhere, then the relative percentile will
improve. We include all control variables from the second stage of our model in the first

stage. The first-stage regression is given by

#AdjEzercisedOptPeer;; =
B1AvgRel RankPercAdjPeer Proj; ¢
+Controls + TownshipF'E + ¢; 4

The second stage is given by the Cox proportional hazard model whereby the covariates are
comprised of our instrumented variable for neighboring peer activity from the first stage,
as well as a series of additional control variables. We correct for the estimation error in the
first stage in our Cox two-stage IV model by bootstrapping the standard errors (MacKinnon
2002). The appropriateness of this approach has been supported in recent literature (see

Tchetgen et al. 2015).1

Table 39 reports the full first-stage estimations with control variables. As can be seen
across the different first-stage specifications, our instrument, the average relative rank of
the adjacent real option peer projects, has high predictive power for the adjacent peer
exercise activity. In addition to the reported regression coefficients, we compute an F-test
statistic for our instruments in specifications (1), (2), and (3) and obtain values of 12.14,
11.01, and 10.79 respectively, suggesting an appropriate instrument in our setting.?? In
our second-stage estimations, we directly control for the absolute NPV of adjacent peer
infill projects by including the average production from the first (pre-infill) well of adjacent
infill peer options as a control. The underlying assumption of this instrument is that the
only dimension through which it affects our key dependent variable of interest, the exercise

decision of a firm, is through the exercise behavior of peers. We provide a number of tests

19We document the robustness of our main two-stage models by estimating both IV probit and IV 2SLS
models on our data and obtain similar results to our main Cox model tests, see Tables 41, 42, 43, and 44
and our related discussion in Section 3.2.3.

20We also report the first-stage regression in Table 39 without the instrument, including the instrument
has minimal effect on the sign, magnitude, and statistical significance of the other control variables.
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supporting this assumption in Section 3.2.4. Among the control variables, the only one
that loses significance in the instrumental approach (relative to Table 31) is the implied
volatility of natural gas prices. We directly test whether our instrument is correlated with
implied volatility. The correlation between implied volatility and our instrument is slightly
negative, -0.0245, but not statistically different from zero. Further, while the coefficient
does lose its statistical significance, it remains firmly in the general range of the baseline
estimates. Given the economic channel through which the instrument affects peer activity,
this evidence does not suggest that our instrument is operating through any effect on the
implied volatility. We also report a regression specification relating volatility to adjacent
peer ranking and a firm’s own project ranking, along with controls in Table 40, and find no

statistically meaningful relationship between these variables and implied volatility.

Overall, the results from Table 33 suggest that the economic interpretation from Table 31
still holds when we use an exogenous source of variation in adjacent peer exercise activity
driven by the relative rank of projects in peers’ portfolios. For ease of economic interpreta-
tion for our key variable of interest, we report the coefficient on the standardized variable, so
each coefficient/Hazard Impact factor can be interpreted as a 1-standard-deviation change
relative to the mean. As such, a 1-standard-deviation increase in our instrumented adja-
cent peer options exercised leads to between a 79.1% and 94.0% increase in the likelihood of
exercising the option to infill drill. We should be careful to note, as with any instrumental
variable estimates, these economic magnitudes should be viewed as local average treatment
effects. That is, these are effects on outcomes (exercise behavior) that could conceivably be
influenced by the instrument, as opposed to outcomes on real options that are too far out
of the money to be exercised, or too deep in the money they would be exercised regardless

of adjacent peer activity.

Robustness tests

We first report the reduced-form results in Table 33, panel B, for robustness. This regression

is still subject to the exclusion restriction, which in our case means that the relative ranks
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of adjacent projects only affect a firm’s decision to exercise via the relative rank’s effect on
adjacent peer project exercise decisions. By not instrumenting we lose the economic inter-
pretation of the coefficient on the number of adjacent peer exercised options, but maintain
the overall intuition of the result reported in Table 33, panel A: firms’ exercise decisions are
affected when a project has plausibly exogenous exposure to a variable that affects adjacent

exercise behavior (relative rank percentile of adjacent peer projects (5s)).

We retain the Cox model as the primary specification in the paper because we are studying
the motivation behind the decision to exercise real options, and this decision is dynamic
by nature: firms have to decide in each period whether to exercise or not, conditional on
not having exercised until then. A natural econometric specification for this is the duration
model (like in Kellogg 2014). The hazard function allows us to approximate the probability
of exercising the option, conditional on having not exercised until then. This modeling has
been used in other contexts in corporate finance (e.g., Leary and Roberts 2014) and has
several advantages. One of the main advantages in the context of our study being that the
hazard function can easily be made to depend on time-varying variables and has a natural

interpretation.

Linear probability models and probit specifications both face several drawbacks. First,
even though the decision to exercise is binary, a linear specification implicitly assumes
that the outcome variable can be nonbinary and even negative. This is one drawback of
using the linear probability model. Second, both the linear and probit models are not
well suited to capture the dynamic nature of the decision to exercise. Even for probit (or
logit) models that accommodate for the binary nature of the left-hand-side variable, these
modeling approaches aim to explain the proportion of exercised options across the entire
sample at any given point in time, which is different from what the hazard models capture
in terms of the variables that influence the probability of exercise at time ¢, conditional on
not having been exercised up to that time. Third, censoring the data is another impediment

to implementing traditional methods such as linear probability models or probit regressions.
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In our setting, the censoring bias is caused by the fact that we only observe the data until
the end of the sample (right censoring); for firms that do not exercise prior to the end of the
sample period, we only know that they did not exercise their option until that point in time.
Although the linear and probit specifications do not have a natural way of handling this
right censoring issue, the maximum likelihood estimations (MLE) of Cox hazard models are
well suited to handle this specific type of right censoring (see section 20.3.2 of Wooldridge
2002).

That being said, estimating models using the IV 2SLS (two-stage least squares) and IV
probit frameworks is informative in assessing the robustness of our estimates to the choice
of estimation model. As such, we perform two other specifications for the IV approach
based on an IV probit and IV 2SLS specification for which the statistical properties are well
established. Namely, in Table 41, we run an IV probit specification, where the second stage
is a probit modeling of the exercise decision instead of a duration model. The coefficient
on the instrumented adjacent drilling activity of peers is positive and significant. Table 42
provides the results for the IV 2SLS specification. Again, we find a positive and significant

loading on the instrumented adjacent peer activity variable.?!

Throughout all our main specifications, we have clustered the standard errors at the town-
ship level. In Tables 45 and 46, we rerun Table 33, panels A and B, but this time we allow
for clustering at the township and year levels (double clustering). Our results remain robust
to the double-clustering approach.?? The double-clustering results typically yield smaller
standard errors (i.e., higher t/z-statistics) than one-way clustering by township, hence to
be conservative we report township clustering for our main results.?? Taken together, the

evidence in this section suggests that our primary findings are robust across several different

2In terms of economic magnitudes, an increase in adjacent peer activity by 1-standard-deviation, relative
to the mean, is associated with an increased proportion of infill options exercised of between 94% and 145%.
This effect is the same order of magnitude as that in our main tests in Table 33.

22Tables 43 and 44 also provide further support for the results found in the context of the IV probit and
IV 2SLS specification when clustering of standard errors at the township and year levels (double clustering).

23Table 47 documents that our main results are robust to including a control for the first well being drilled
(“purchasing an infill option), and Table 48 documents that our main results are robust to including operator
fixed effects.
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econometric specifications.

Internal validity

In this subsection, we undertake several falsification tests to assess the validity of the in-
strument we outline above. While the exclusion restriction cannot be tested directly, we can

assess the plausibility of some potential explanations that would invalidate our instrument.

One potential explanation which might be problematic for our instrument would be if all
firms had similar locations for their high percentile wells. For example, if all firms had their
90th percentile wells in one township, and their 80th percentile wells in another, such clus-
tering would render inference problematic. Although our main tests include specifications
with township fixed effects and township level clustering, which would control for an overall
township effect, if there is clustering within townships of high percentile groups in some
areas and low percentile groups in other areas, it would be problematic as one could argue
the instrument might proxy for the absolute value of the NPV of a project and not just the
relative NPV of a project. We also directly control for production from adjacent peer wells,
which should alleviate this concern to some extent. Nonetheless, we can also directly assess
the impact of this possibility when we regress the relative rank of a real option in a firm’s
portfolio on the relative rank of the real options owned by peers that are adjacent to it at

a given point in time, like in the regression below:

RelRankPercOwnProj;; =
Bi1AvgRel RankPercAdjPeer Proj; ;

+TownshipFE + €; 4.

The unit of observation is at the drilling unit ¢, month ¢ level, and Table 34 estimates
the ordinary least squares (OLS) regression. As can be seen the coefficient f; is neither
statistically nor economically significant, suggesting that once township fixed effects are

controlled for (as they are in our main specifications in Table 33), there is no correlation

118



between the percentile rank of a given real option and the average percentile ranks from
adjacent peer firms’ surrounding real options. This test provides evidence against the idea
that all firms have their 90th percentile wells clustered together somewhere, and their 80th

percentile wells clustered somewhere else in a way that would confound our tests.

Conceptually, this makes sense as prior to any wells being drilled firms go out and lease
drilling acreage when not much information is known about the natural gas resource. Firms
thus end up with different portfolios which can be quite dispersed in terms of their potential

(see Figure 17); this is the variation that is being exploited with our instrument.

An alternative way to test whether the clustering of relative project quality is driving our
results is to look at situations where a real option is ranked low in a given firm’s relative
percentile rank (below median), whereas the adjacent real options are ranked highly based
on peer relative rank (above median). Specifications (1) and (2) of Table 35 report results
on this subsample of real options with highly dispersed relative rankings, and as can be seen
from the table, our main result holds.?* Overall, we find magnitudes higher in these tests
than our baseline regressions, which is consistent with the idea that information externalities

become more important when relative ranks are more dispersed.

Another potential concern with our identification is whether a firm exercises its real option
because of the action of a competitor (adjacent exercise) or a characteristic of an adjacent

competitor as described in Manski 1993.%°

For example, one might imagine that a competi-
tor exercising their option on an adjacent drilling unit also might be pursuing significant
drilling activity (exercising other real options) elsewhere in the region, which might signal,
for instance, an overall improvement in extraction technology going forward. In this case,
a firm and its competitor are both deciding to exercise options that are adjacent to each

other, but it is not because the firm is responding to information externalities from the

competitor’s actions taken on the neighboring drilling unit, but rather, due to the general

24 Township fixed effects for this model are not well identified because of the dramatically reduced sample
size, and much of the sample is absorbed by township fixed effects.
2Leary and Roberts 2014 articulate this issue in detail as it relates to their capital structure analysis.
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activity of the competitor taking place both nearby and elsewhere.

To assess empirically whether our main coefficient of interest for peer effects is affected by
such characteristics, we look at competitors with adjacent drilling units and test whether
their drilling activity outside of the township also bears an influence on a firm’s decision
to exercise. Our hazard regression in Table 36 includes this measure as an additional
explanatory variable (“Regional” activity). We find that our main coefficient of interest for
peer exercise activity is unaffected by the inclusion of this control variable. Furthermore,
we also find no consistent direction in the effect of the “Regional” activity variable across
model specifications. Overall, this evidence supports the view that firms are influenced by
peers’ activity when it occurs on the drilling units directly adjacent to them, consistent

with the information channel hypothesized.

Lastly, while we exclude any oil infill projects from our main analysis, we still assess the
potential impact of their exclusion from the analysis on our instrument. It is important to
note that shale oil infill options are much rarer in the data than shale gas infill options,
largely due to the much later adoption of fracking technology to oil shale. Specifically, for
the median observation during our sample period a firm’s infill option portfolio is composed
of 7.8% shale oil infill options and 92.2% shale gas infill options. A concern would be that
for firms with different oil exposures the rank ordering variable we compute among natural
gas projects would have a different impact on natural gas infill drilling decisions. To assess
this concern, we split our sample by above- and below-median oil-infill option exposure and
rerun Table 32 across the three sets of specifications for both subgroups separately. As we
report in Table 49, above- and below-median oil exposure firms have the same relationship
between their natural gas shale project rank ordering and shale gas infill exercise decisions.
As we show at the bottom of the table, none of the coefficients across these subgroups are
economically or statistically different from one another. Overall, these results are consistent
with the idea that firms allocate capital separately across shale oil and shale natural gas

projects and provide no support for oil infill options confounding the use of the shale gas
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relative rank measure we rely on for identification.

2.3.3 Information content of adjacent exercise activity

After having established that firms react to neighboring exercise activity when making their
own exercise decisions, we set out to investigate the possible channels behind this result.
To do so, we reestimate the hazard model from Table 31 with adjacent exercise activity
as an explanatory variable, but this time, we decompose the adjacent exercise activity by
competitor type. In particular, we define experienced and inexperienced competitors as
those with above- (respectively below-) median drilling activity in Oklahoma at the time of

exercise.

In an information transmission framework where agents do not have perfect information on
the value of their drilling prospects, operators will look for informational cues from more
experienced operators about the drilling opportunities in and around their own prospects
(e.g., Grenadier 1999). Moreover, the type of information disclosed via well completion and
fracking reports is likely more useful when performed by more experienced firms that are
higher up the learning curve in a given resource development. Under this hypothesis, we
would expect firms to react more strongly to adjacent exercise behavior from experienced

operators.

Table 8 shows the results of our empirical decomposition of neighboring activity. We stan-
dardize both of our inexperienced and experienced adjacent activity variables so that we
can more readily make a direct comparison between the two coefficients. Specifically we
normalize these variables to have a mean of zero and a standard deviation of one. We
find that firms exhibit a strong reaction to the adjacent exercise activity of experienced
competitors. The economic magnitudes are similar to Table 31’s results. These results sup-
port Grenadier 1999, whereby operators make specific inferences from their competitors’
exercise of real options. In particular, their exercise behavior is influenced by the exer-

cise activity of experienced operators, and thus experienced operators seem to be creating
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positive informational spillovers when exercising their real options.

Finally, while we mentioned in the previous section that oil infill options comprise only
a small fraction of the portfolio of infill options our sample firms hold, we still assess how
adjacent oil infill option exercise could confound the interpretation of the main informational
effect we identify. First, it is important to highlight that shale oil and shale gas infill options
exist in geographically distinct areas. Two-thirds of the townships in the study do not have
any oil-related infill options. Further, even in the townships with oil infill options, the
median number of sections with an oil infill option is less than 10% of the total (3 of 36).
To empirically assess whether learning from adjacent nearby oil infill options could confound
our main tests, we replicate the main panels in Table 33 focusing on only the townships
that have natural gas shale. Table 50 (panels A and B) reports these tests. The idea is
to test whether limiting our data set to areas where learning from oil drilling cannot occur
alters our main coefficients. The coefficients we identify on this subset are nearly identical
(and remain statistically significant) to the main tests of the paper. This result provides
evidence that potential information externalities from shale oil are not meaningfully altering

the main interpretation of our findings.

2.4 Real Option Framework and Optimal Exercise Time

In this section, we aim to relate the observed exercise behavior to the optimal exercise
behavior predicted by real options models. Our data provides us with the unique ability
to compute the inputs a firm would have if it were to follow real option decision rules
following the classic real options models of Paddock et al. 1988 and Dixit and Pindyck
1994. We calibrate these models to our data to derive optimal exercise thresholds, that is,
conditions to be satisfied if firms are to exercise in an optimal manner. We then adjust
the framework to take into account information externalities from adjacent peer real option
exercise activity and compare both calibrations to the actual exercise behavior observed in

the data. The appendix extends these results by calibrating the dynamic discrete choice
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model of Rust 1987 that was first applied to the oil and gas industry in Kellogg 2014.25

2.4.1 Value of underlying asset

To apply a real option framework, a first necessary step is to ascertain the value of the real
option’s underlying asset. In our context, the underlying asset corresponds to the natural
gas reserves that are being developed when the real option to infill drill is exercised. To ob-
tain the expected value of a well’s developed reserves (V'), we rely on a set of commonly used
assumptions to estimate (1) the expected production volume out of the reserves (in mcf),
and (2) the expected net profit per mcf produced. Production volumes are estimated as-
suming that the well reserves deplete following an exponential decline rate model (Fetkovich
et al. 1996). More precisely, we rely on the exponential Arps model properties to estimate
the production out of the reserves.?” Second, we make the simplifying assumption that the
18-month futures price of natural gas can be used to compute the price per mcf obtained
over the life of the well (P), and that firms discount their cash flows at a flat discount rate
(). Third, the net profit per mcf is obtained by taking into account the operational cost
(¢), the royalty rate (p), the accounting depreciation rate (6) and the corporate tax rate
(t)such that I =P[(1—d—p)—7(1—0—p—0)].

The expected value of a well’s developed reserves (at time of exercise) is given by:

V =FE]| Qe " x e M dt]
() S—~— e
(1) (2)

The first term of the value equation, E[Q]e™", corresponds to the Arps model estimates of
monthly production at time ¢t where E[Q)] is the well’s expected production baseline (i.e.,
its initial production level), w is the reserve annual depletion rate, and t is the well’s age,

with t = 0 corresponding to the time of exercise. The second term of the equation, Ile™#¢,

26This extension does not alter our conclusions of this section.
2TSeveral recent papers have referred to the Arps model to obtain oil or gas well’s reserves estimates (See
Kellogg 2014 and Covert 2015).
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corresponds to the (discounted) price obtained for the well’s natural gas at time ¢. Solving

for the integral, we get a simplified expression for V:

11
ptw

V = E[Q)]

Thus, the value of the developed reserves is a function of the well’s expected production

baseline (E[Q)]), profit per mcf (IT), discount rate (u), reserves depletion rate (w).

In terms of comparative statics, the expected reserve value (V') increases with price (P),
and expected production baseline (E[Q]).?® Conversely, the expected reserve value (V)
decreases when the discount rate (u), the operational cost (¢), the royalty rate (p), the

accounting depreciation rate (6), the corporate tax rate (7), or depletion rate (w) increases.

2.4.2 Optimal exercise time

The option to expend capital in order to develop shale natural gas reserves through infill
drilling corresponds to a real option. Firms in our sample can decide when to exercise these
real options and a large body of work has been developed to establish both the pricing of

these real options as well as their optimal exercise (stopping) time.??

Given that the real option in our study can be viewed as an American call option on the
underlying reserves, the optimal exercise time for the real option is derived similarly to the
optimal exercise time for an American call option. It is given by a “trigger” rule whereby
the option should be exercised, or “triggered,” when the expected value of the underlying
reserves (V') crosses from below the optimal threshold value (V*) for the first time. Defining

I as the drilling costs of the well, the threshold value is given by

_ A
p1—1
*V = ElQ) - Thus, 57 = —E[Q] {5z <0.

29Detailed derivations can be found in Paddock et al. 1988 and chapters 5.2 (pp. 140-43) and 12.1 (pp.
396-403) in Dixit and Pindyck 1994.

V*
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where

r—2o r—29 2 r
P >_ﬂ< : >_;] e

op o

Thus, the optimal threshold value (V*) depends on the drilling costs (I), the risk-free rate
(r), the dividend rate of the project (9), and the volatility of the underlying project value
(op). From a simple comparative static analysis, the optimal threshold value increases with
drilling costs (I), the risk-free rate (r), and the volatility of the underlying project value
(op). Conversely, when the dividend rate of the project (J) increases, the optimal threshold

value (V*) goes down.?"

2.4.3 Estimates for real option input variables

An attractive feature of our setting is that we are able to obtain all of the inputs needed to
compute both V and V* defined above and thus empirically test whether the predictions of

the real option framework are reflected in the exercise behavior observed in our sample.

Estimating the underlying asset value

To compute the V of each wells at any time period, we need estimates for the following
parameters: II, u, E[Q], w and for II, we need estimates of: P, ¢, p, 7, 8. We provide both
the data source and the necessary computations (if necessary) for each one of these inputs

below.

Recall that the net profit per mcf is given by: I =P [(1—¢ —p) —7(1 —¢p — p—0)]. For
the price per mcf over the life of the well (P), we use natural gas price data from Bloomberg.
Specifically, like in our main hazard model specifications and consistent with Kellogg 2014,
we use the 18-month futures price of natural gas to proxy for the overall natural gas prices

over the life of the well.

Lease operating costs (¢) are the costs incurred after initial drilling and completion to

maintain production during the life of the well. To estimate these costs, we collected data

39Refer to chapter 5.2a (pp. 142—4) in Dixit and Pindyck 1994 for more details.
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on lease operating costs from the public firms in our sample (10-K filings), and found
that on average during our sample time period lease operating costs were 21.6% of well
revenues. Lease operating costs are the labor and equipment costs incurred by the well
operator to maintain and produce from the well after drilling; these costs would include
well pumper costs, company engineering expense, repairs and maintenance. Royalty rates
(p) correspond to a separate expense computed as a percentage of the well’s revenue that
goes directly to the mineral rights owners, the individuals who the natural gas company
leased the land from for a given well. The royalty rate estimates are based on royalty
percentages obtained from DrillingInfo on 322,340 natural gas leases signed in Oklahoma,
the median (and mode) royalty rates are equal to 18.75%.3! For the final elements needed

for II, we set the depreciation rate (6) to 40% and the effective tax rate (7) at 0%.%2

Recall that V = FE [Q]M% Following the computation of II, we need estimates for the
discount rate (u), the expected production baseline (E[Q]) and the annual depletion rate
(w). The discount rate (u) is set at 10% throughout the sample period, in line with the

SEC guidelines in valuing reserves and recent empirical work estimates (e.g., see Kellogg

2014).33

Production data at a monthly frequency on every well in our sample is available from the
Oklahoma Corporation Commission and Oklahoma Tax Commission. From these data,
we estimate both the well’s expected production baseline (E[Q)]), as well as the reserves’
depletion rate (w). From the exponential depletion rate formula of the reserves, we have that
the production at a given point in time ¢ is equal to E[Q]e . For each well we empirically
estimate the annual depletion rate w from the ratio of second year production to the first

Prodi—o

year production: Prod— = e~ “. We find an average well has an annual depletion rate of

3In our sample, the average royalty rate is 19.05%, but the industry standard is 18.75%, and 79% of the
lease data has a royalty rate of 18.75%. The sensitivities we report encompass a range that is covered by
87.7% of the royalty terms in the sample.

32During the covered period, natural gas exploration firms benefited from multiple generous deductions
and tax credits, which enabled them to pay virtually no cash taxes.

33In the sensitivity section, we run the calculations using annual discount rate ranging from 7.5% to 12.5%.
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27%.3* Finally, the well’s expected production baseline (E[Q]) is estimated in two different
ways depending on how firms form expectations. In particular, the modeling of expected
well productivity depends on whether firms incorporate adjacent peer activity into their
updating. Given the centrality of this parameter, a separate section below is devoted to it

(see Section 4.3.3).

Estimating the optimal exercise threshold

To compute the optimal trigger value V* of each wells at any time period, we need estimates
for the following parameters: I, and 81 and for 31, we need estimates of: r, §, and op. We
provide both the data source and the necessary computations (if necessary) for each one of

these inputs below.

We first need an estimate of a well’s drilling costs (). We take the same time-series of
drilling costs estimated over our sample period as the one we use in our survival analysis.
The detailed description of this time series is given in Section 2.1. We proxy the volatility
of the project’s underlying asset value (op) with the 18-month implied volatility of natural
gas futures prices. For the risk-free rate, like in Section 2, we use the 5-year nominal yield

on U.S. Treasury bond to capture the impact of interest rate movements.

Finally, the computation of V* depends on 9§, the implicit dividend a firm generates from
a project. Dixit and Pindyck 1994 show that J equals a firms risk-adjusted cost of capital
(m) minus the expected appreciation of the project (a), 6 = u — a. The intuition behind
this result is that the effect of discounting can be offset by the expected appreciation of the
underlying asset. For the purpose of our study we assume that expected appreciation of the
asset (its drift) is zero. This baseline assumption is reasonable given that the natural gas
futures curve is relatively flat throughout our sample. In this case ¢ simplifies to a firm’s
cost of capital. From the definition of V*, the higher the cost of capital, the smaller the

wedge between the NPV rule and the optimal trigger rule. We explore a wide range for §

3In the sensitivity section, we vary w from 25% to 29%, covering approximately 90% of the empirical
depletion rate distribution.
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in the next section.

Incorporating updating from peer activity

We take a first step at incorporating updating from peer activity by making the expected
value of the developed reserves a function of peer activity. It is important to note that the
only mechanism through which we are updating the inputs in our real option framework is

through the forecast of the productivity of the well.3

We derive the expected value of the developed reserves under two scenarios: (1) when firms
do not include any additional information from adjacent exercise of peers (VVeUrdating)
and (2) when firms augment their expectations using additional information from adjacent
peer activity (VUpdatmg ). Under the Arps decline model, to obtain the expected value of the
total reserves accessible by the infill well, we need an estimate of the infill well’s expected

initial production: (E [QN°Urdating]) and (E [QUrdeting]).

In the “No Updating” case, we first use the realized data from all past infill wells drilled in
Oklahoma and regress the first year of production of the second well (infill well) on the first
year of production of the first well for each section. Second, we take the estimated regression
coefficient and combine it with the first year of production of the first well in the section

of interest to obtain a prediction of the infill well’s first year of production (@N oUpdating)

(VNoUpdating)

Finally, we compute the expected value of the undeveloped reserve using the

equation introduced in Section 4.1 and the calibrated parameters of Section 4.3.1.

To obtain the expected value of the developed reserves in the “Updating” case, we proceed
similarly. First, using data from all past natural gas shale infill wells drilled in Oklahoma,
we perform a regression of the first year of production of the second well (infill well) on the
first year of production of the first well and an indicator variable for adjacent peer exercise
activity for each section. The indicator variable is equal to one if there is existing adjacent

peer activity when the infill well is being drilled, and zero otherwise. Second, we take the

35For instance, our estimates of V* do not depend on any updating from adjacent peer exercise behavior.
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estimated regression coefficients and combine them with the first year of production of the
first well in the section of interest as well as the indicator of adjacent peer activity for that
section to obtain a prediction of the infill well’s first year of production (@Updatmg). Finally,
we compute the expected value of the undeveloped reserve (VUPdating) ysing the equation

introduce in Section 4.1 and the calibrated parameters of Section 4.3.1.

2.4.4 Exercise behavior: Actual versus predicted

In this section we compute the real option decision rules that firms would have if they
followed the behavior predicted by real option theory and compare this predicted exercise
behavior with their actual exercise behavior. Over the period of interest, there are a total
of 2,853 potential infill well real options available. Of these infill well options, 680 are
exercised. The objective of this section is to assess whether firms behave in a way that
is comnsistent with the real option framework and whether the information obtained from

adjacent peers activity has an effect on their timing decision.

According to the optimal stopping time rule, firms should exercise their drilling option when
the value of the developed reserves (V) is equal to the optimal threshold value (V*), such
that V — V* = 0. From a real option perspective, systematic deviations from the optimal
decision rule correspond to suboptimal exercise behavior. For instance, if firms were to
systematically apply the NPV rule (NPV =V — I > 0) instead of the optimal trigger rule,
we would find them exercising relatively too early (i.e., firms would exercise their drilling

option when V' < V*) as the NPV rule would lead firms to invest at the margin when

V=IandI< Blﬂill = V* (since 81 > 1). Given the option value to delay, the value of the
underlying asset needs to exceed the investment cost (and in some cases by a large margin)
before it becomes optimal to exercise. Thus we would expect a positive wedge between the

real option trigger rule and the NPV rule.
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Full sample

In our baseline case shown in panel A of Table 38, we find that infill projects have an average
NPV of $1.92 million at the time of exercise. The distribution of NPVs at exercise is shown
in Figure 18 and clearly shows that a majority of infill wells are positive NPV projects at
the time they are exercised. However, the estimated optimal threshold value (V*) at time
of exercise is higher than the estimated expected present value of the well (V). By defining
V*—V as forgone value at exercise, Table 38 shows that firms forgo on average $0.42 million
($0.42 = $7.08 - $6.66) in our baseline case, with a median forgone value standing at more
than twice that number.?0 Figure 19 plots the distribution of forgone value at exercise
time. The histogram clearly shows that the majority of the wells are exercised when V'
minus V* is negative (i.e., V. < V*), reflecting the fact that most wells are exercised prior
to reaching their optimal threshold (V*). This conclusion is only reinforced by running
a similar exercise with a more advanced model in the appendix, whereby we estimate a
dynamic discrete choice model (see Rust 1987) that also allows for both volatility and

drilling costs to be stochastic (see Kellogg 2014).

To assess how robust our conclusions are to changes in model parameters, Table 9, panel B,
reports sensitivities across every major parameter in the model. As expected, the NPV of
the average (and median) well goes down as the (1) discount rate, (2) operational costs, (3)
tax rate, (4) depletion rate, and (5) royalty rate increase. More importantly, this sensitivity
exercise informs us on how the forgone value (V* —V') changes due to changes in underlying
parameters of the model. In each case, both the average and median forgone values in our
sample point to early exercise as they remain positive and statistically different from zero
throughout. However, so far, these computations do not incorporate any updating from

adjacent peer exercise behavior.

36In the figures, we compute histograms of V — V*, in which case values below zero represent forgone
values.
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Conditioning on adjacent peer activity

The previous sections did not consider the potential information externalities generated by
adjacent peer exercise activity. Specifically, the infill well’s expected production was simply
a function of the unit’s first well’s realized production (see 4.3.2). In this section, our goal is
to identify the role that adjacent peer exercise decisions may play in forming expectations
on second well recoveries. To do so, we compare firms’ second well (infill well) expectations

with their actual realizations with and without conditioning on adjacent peer activity.

To identify the role of adjacent peer exercise activity, we break the sample into two groups:
(1) the wells with no adjacent peer activity and (2) the wells with adjacent peer activity.3”
For both groups, we first compute the deviations between the realization of the second well
and the expectation of the second well based only on information conferred from the first
well’s production. We find that for second wells with no adjacent activity, forming the
expectation based solely on the first well’s production does not lead to any statistically sig-
nificant deviations from realized production on average. However, for the second wells with
adjacent activity, we find that the first well’s production realizations do not adequately pre-
dict the second well realization. The deviations are positive and statistically different from
zero (p-value of 0.066). In other words, adjacent peer activity is associated with significantly

higher well productivity, after conditioning for the first well’s realized productivity.

Under the assumption that firms form appropriate expectations for their infill wells, such
evidence suggests that updating from operators does take into account the information
conveyed by peer activity. To incorporate updating of expectations based on adjacent peer
activity, expectations now stem from (1) the unit’s first well’s realized production and (2)
the adjacent units’ peer exercise activity. We operationalize this updating by using an
indicator variable that takes the value of one if there is one or more adjacent infill real

options that have been exercised by peer firms. When doing so, we find a statistically

370f a total of 680 exercised options, we have 635 infill wells (second well in unit) with at least 1 year
of realized production. Of those 635 infill wells, 214 have adjacent peer exercise activity and 421 have no
adjacent peer activity.

131



and economically significant positive loading on adjacent peer activity when explaining the
realized production of second wells based on this augmented set of two variables. The
coefficient on the adjacent activity dummy variable is 119,323, which can be interpreted as
firms revising up production on the second well by 14.4% relative to the average forecasted
production based only on the first well’s production if adjacent peer activity occurs. This

effect is statistically significant at the 1.9% level.

This result is consistent with one of Grenadier 1999’s main assertion that real option ex-
ercising from peers conveys an informative signal. Namely, units with more adjacent real
options activity are more likely to hold greater reserves. It is also consistent with the findings
from the broader literature that documents the importance of peers and “social learning”
in technological adoption (see, for instance, Griliches 1957; Foster and Rosenzweig 1995;
Thompson and Thompson 2001; Conley and Hudry 2010; Stoyanov and Zubanov 2012).
Specific to the oil and gas industry, Covert 2015 shows that there is some degree of techno-
logical sharing across peers in shale drilling techniques (e.g., optimal mix of sand and water
used in fracking). This finding also could be at work in our context as firms learn how to
improve extraction from reserves by observing how peers drill wells in leases adjacent to

theirs.

Reconciling realized versus predicted with adjacent activity

The next logical step in our analysis is to assess whether incorporating information from
adjacent peer activity makes the decisions to exercise closer to those predicted by theory.
To do so, we compute V minus V* under the two different information sets, one information
set that relies on the first well’s production exclusively and one information set which incor-
porates both the first well’s production and an indicator for adjacent peer exercise activity.
Recall that the optimal trigger threshold V* is invariant to productivity expectations of
the infill well. However, the expected discounted value of the developed reserves of the
infill well, V', depends on its expected productivity. Figure 11, panel A (panel B), plots the

histogram of V' minus V* for the subset of infill wells with (respectively without) adjacent
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peer exercise activity.?®

Panel A of Figure 11 reveals significant differences between the distributions of V' minus
V* across the two different information sets used to form expectations. This difference can
be explained by the fact that V is revised upward under the information set that takes
into account adjacent peer activity. Comparing the proportions of options exercised too
early (i.e., V' < V* at the time of exercise), we find that 57% of infill wells are exercised
too early under the first information set, relative to only 44% when the information set
is augmented to take into account adjacent peer exercise activity. These differences are
statistically significant at the 1% level. This evidence suggests that updating expectations
for the productivity of the infill well based on adjacent peer activity leads to an approximate

20% reduction in the likelihood of exercising too early.3”

The results in this section allow us to show that through a basic updating framework,
incorporating information on adjacent peer exercise decisions helps to explain a portion of
the gap between V and V* using a baseline Dixit and Pindyck 1994 framework. We do
not observe the full model that firms use for either updating beliefs or making real option
decisions, and there may be important additional components to such models, which we
do not include here. However, the objective of our exercise is to demonstrate that under a
basic set of assumptions on real option modeling and a plausible framework for updating,
adjacent peer exercise activity could play a first order role in explaining the gap between
actual and predicted behavior for real option exercise. Overall, this exercise provides useful

context for our empirical results in Section 3.

38Each bin represents a $1M interval.

3%For completeness, and as a falsification, we show Figure 11, panel B reveals no meaningful differences
between the distributions of V' minus V* across the two different information sets used to form expectations
when looking at the subset of wells without adjacent peer exercise activity. This result should not come as
a surprise as we know from above that the big difference in expected productivity comes from observing
adjacent activity.
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2.5 Conclusion

In this paper we exploit detailed data on a large set of real options to empirically charac-
terize the option exercise strategies employed by firms. We find that peer exercise behavior
via an information revelation channel is as important in explaining exercise activity as stan-
dard real option inputs such as commodity prices and volatility. To date, the empirical real
options literature has been limited, largely by data constraints. Our paper provides impor-

tant micro-level evidence on both how real options are exercised, and which channels are

important in explaining exercise behavior. Our results provide novel empirical support for

the importance of information revelation from competitor exercise behavior in explaining

how firms exercise real options.

2.5.1 Figures

Figure 10: Project time line
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Project time line
This figure plots a typical production curve over time for a natural gas well, once production begins. It is based
on similar figures found in Lake et al. (2012) and company investor presentations.
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Figure 11: Infill drilling option exercise timeline
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Infill drilling option exercise timeline
This figure plots the time line associate with the option to infill drill.
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Figure 12: Map of real option exercise activity
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Map of real option exercise activity

This figure provides a map of drilling activity in one township in the Arkoma Woodford shale. The area covers
approximately thirty-six individual drilling units. The blue lines represent the horizontal wellbores of the wells
in the drilling units and the multiple horizontal lines in a drilling unit correspond to the real option to “infill”
drill having been exercised. In some instances the wellhead (top of the well) may be in a different drilling unit
than the horizontal wellbore. In this instance, the well will only drain the reservoir in the drilling unit with the
horizontal wellbore. The colors of the wellhead correspond to different companies.
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Figure 13: Peer project definition
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This figure provides an illustrative example of the definition used for adjacent peer exercise activity. Specifically,
the figure plots a 6 x 6 township that has thirty-six one mile by one mile drilling tracts. Because of institutional
features of the land survey in our empirical setting, all infill drilling options conform to the above grid layout,
and each infill drilling option is linked to a one mile by one mile drilling tract. We compute adjacent activity as
the number of adjacent infill options that have been drilled by firms on the 8 adjacent drilling tracts, we further
subdivide this activity by whether peer firms or a firm itself has exercised. For example, for the infill option
on well 3A, if firm C exercised option 8C and 9C and no other options were exercised, the number of adjacent
peer options exercised would be 2. If firm A exercised option 7A, then its own adjacent options exercised would

increase to 1, while peer adjacent exercise would remain at 2.
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Figure 14: Panel of 3 Figures
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This figure plots the infill drilling exercise activity, measured by the number of infill wells drilled in a given
month over our sample period from 2005 through 2016.
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This figure plots the frequency distribution of the time that firms wait before exercising an infill drilling option
over our sample period from 2005 through 2016.
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This figure plots the number of infill drilling options available and the number of options that have been exercised,
measured by the number of infill wells drilled over our sample period from 2005 through 2016.
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2.5.2 Tables

Table 30: Summary statistics
A. Sample statistics

Time period 2005-2016
Total number of real options 2,853
Number of exercised options over sample period 680
Number of townships 442
Number of firms 159

B. Panel data summary statistics

Baseline variables N Mean Median SD
Natural gas price 162,905 456 4.05 1.7
Implied volatility of natural gas 162,905 26.58 2544 4.32
Interest rates 162,905 1.63 1.51 0.85
log(first well production) 162,905 12.40 12.68 1572
Peer effect variables

Adjacent competitor options exercised 162,905 0.34 0.00 0.86
Adjacent own firm options exercised 162,905 0.40 0.00 0.88
Relative rank percentile (own infill option) 103.451 0.46 0.45 0.29
Relative rank percentile (adjacent peer infill options) 103.451 0.57 0.58 0.29

This table contains summary statistics for the data in our study. Panel A presents an overview of the sample of
options on natural gas infill shale drilling opportunities in Oklahoma, including how many real options there are,
how many have been exercised, over how many townships. and the number of firms (operators) in the sample.
Panel B presents summary statistics on the panel data we estimate our hazard models on. The unit of observation
in this panel is at the infill option-month level, that is, there is an observation for every infill option available
for exercise every month. The baseline variables are all variables used in the hazard model to assess whether
exercise is directionally correlated with factors that standard real option theories suggest are important; log(first
well production) is a proxy for the underlying reserves in the unit where the infill well can be exercised. The
number of adjacent infill options exercised by competitors (peers) corresponds to the variable used to assess
whether peer-related real option exercise activity in adjacent drilling units can affect option exercise decisions.
We compute a similar measure of adjacent exercise activity for the firm itself (own). The relative rank percentile
measures are used to instrument real option exercise activity.
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Table 31: Peer effects and real option exercise
Hazard model for infill option exercise

(1) (2) 3
Estimates HI (%) Estimates HI (%) Estimates  HI (%)

(A1) Implied volatility of natural ~ —0.0328%*  _3.23  _0.0337*** _3.31 —0.0282%* —2.79

£as (percent); [—2.47] [—2.58] [—2.22]
(87) Natural gas price ($/mcf) 0.1378%* 1477 0.1412%* 15,17 0.1839%* 20,19
[3.68] [2.98] [4.10]
(#3) log drilling costy —0.0079 —-0.79 0.0667 6.90
[—0.03] [0.24]
(B4) 5-year risk-free interest rate; 0.1382 14.82 0.0749 TN
[1.50] [0.78]
(B5) log first well production; 0.4153***  51.48 0.3302%**  39.13
[5.74] [3.08]
(Bg) Number of adjacent exercised — 0.546%+* 72.63 0.5263%*  (9.26 0.3781%+* 4505
options (own); [15.22] [14.24] [8.83]
(#7) Number of adjacent exercised  0.3233***  38.17 0.2821%+* 3250 0.1038* 10.94
options (peer); ; [B.75] [7.58] [1.96]
Township FE No No Yes
N 162,905 162.905 162,905

This table reports coefficient estimates from a Cox hazard model of real option exercise. The time period of the
sample is from 2005 to 2016. The unit of observation in the underlying panel is at the “infill drill option™ i, month
1 level. The spell in the hazard model is defined as the time period from which an infill option becomes available
(first well gets drilled in section) to when the infill option is exercised (second well gets drilled in section) or the
end of our sample period if no exercise until that point (right censored). The number of adjacent exercised options
(competitor) for an unexercised option { at time ¢ is the number of adjacent drilling units owned by competitors
in which the “infill drill option™ has been exercised by time ¢. The number of “own™ adjacent options exercised
for an unexercised option 1 at time ¢ is the number of adjacent drilling units owned by the firm itself in which
the “infill drill option™ has been exercised. The implied volatility of natural gas is the implied volatility based on
option prices 18 months in the future, and the natural gas price is the price of the natural gas futures contract 18
months out into the future. The 5-year risk-free rate is the 5-year nominal risk-free rate on U.S. Treasury bonds.
The log of drilling costs is a time-varying estimate of drilling costs for an infill well (analogous to the strike
price of the real option). The log first well production variable is fixed for a given option and is the logarithm
of the first year of production of the first well on the drilling unit, which corresponds to production prior to the
exercise of the infill option. The following variables have been scaled to have mean 0 and standard deviation of
1, to facilitate economic interpretations: Number of adjacent exercised options (own) and Number of adjacent
exercised options {(peer). The hazard impact percentage (HI). which is the percentage change in the hazard rate
per unit change of the covariate, is reported next to the coefficient. z-statistics are reported in brackets below the
coefficients. Standard errors are clustered by township. * p <0.10; ** p < 0.05; ¥**p < 0.01.
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Table 32: Project relative rank percentile and option exercise
Hazard model for infill option exercise

(1) (2) (3)
Estimate HI (%) Estimate HI (%) Estimate HI (%)

(1) Implied volatility of natural gas —0.0252* —2.49  —0.028** —2.76  —0.0245* —2.42
(percent) [—1.92] [—2.07] [—1.77]
(B2) Natural gas price ($/mef); 0.1751%**  19.14 0.1692%**  18.44 0.1631%* 1771
[4.21] [3.28] [3.38]
(B3) log drilling cost 0.1772 19.39 —0.0141 —1.40
[0.62] [—0.05]
(B4) S-year risk-free interest rate 0.0533 547 —0.0093 —0.93
[0.60] [—0.10]
(Bs) log first well production;j 0.1273 13.57 —0.0974 —0.28
[1.29] [—1.44]
(Bg) Relative rank percentile 0.6147*%* 8491 0.5059***  65.84 0.6014**  82.47
(own project)j [10.24] [4.70] [5.69]
Township FE No No Yes
N 162,905 162,905 162,905

This table reports the effect of the relative project rank percentile within the portfolio of a firm’s infill drilling
options on the decision to exercise the real option to infill drill. The time period of the sample is from 2005 to
2016. The unit of observation in the underlying panel is at the “infill drill option™ i, month t level. The relative
project rank percentiles are based on the quality of the project, as measured by the production from the first well
on a drilling tract within a firm’s portfolio. The percentile is computed as the rank of the project divided by the
total number of infill options a firm has, higher percentile projects can be viewed as having a higher relative NPV
rank within a firm’s portfolio. The variable “Relative rank percentile (own project) has been scaled to have mean
0 and standard deviation of 1, to facilitate economic interpretations. The hazard impact percentage (HI). which
is the percentage change in the hazard rate per unit change of the covariate, is reported next to the coefficient.
z-statistics are reported in brackets below the coefficients. Standard errors are clustered by township. *p <0.10;
#p < 0.05; #¥¥p <0.01.
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Table 33: Real option exercise and exogenous peer effects
A. Instrumented - Number of adjacent exercised options (peer)

Hazard model
(1) (2) (3)
Estimate HI (%) Estimate HI (%) Estimate HI (%)
{#1) Implied volatility of natural —0.0245 —2.42 —0.0281 —2.77 —0.0166 —1.64
gas (percent) [—1.45] [—1.62] [—0.98]
(B2 Natural gas price ($/mcf); 0.2062*** 22.90 0.1546%** 16,72 0.2801%** 3233
[2.86] [2.62] [2.70]
{£3) log drilling cost 0.0494 5.06 —0.0319 —3.14 0.4462 56.24
[0.17] [—0.10] [1.07]
(B4) 5-year risk-free interest ratey  0.1325 14.17 0.1564 16.93 0.2168 24.21
[1.07] [1.50] [1.29]
(£5) log first well production; 0.2432%% 27.54 —0.0064 —0.64 —(.0565 —5.50
[2.61] [—0.07] [—0.68]
{Bg) Instrumented - Number of 0.595%%%  g1.31 0.5825%%% 7906 0.6623** 0303
adjacent exercised options [2.72] [2.82] [2.16]
(peeri t
{£7) Average log first well —0.0671 —6.49 —0.0746** —7.18 —(.0236 —2.33
production adjacent options [—1.63] [—2.15] [—0.75]
(peer)iy
{£g) Number of adjacent 0.3731%** 4522 0.7649%* | 14 88
exercised options (own); [3.35] [4.25]
(Bg) Relative rank percentile 0.311*%  36.48 0.2563 29.21
{own project)j [2.05] [1.63]
Township FE No No Yes
N 103,451 103,451 103,451

First-stage F-test statistics for Average relative
rank percentile (adjacent peer projects); ;

(1) (2) 3)

F-test statistic 12.14 11.01 10.79

B. Reduced form - Relative rank percentile (adjacent peer projects)

(£ Implied volatility of natural —0.0242 —2.3% —0.028* —2.76 —0.0211 —2.09
gas (percent) [—1.55] [—1.84] [—1.43]

{B2) Natural gas price ($/mcf); 0.1838%*+* 20.18 0.1301%** 13.90 0.1588%* 17.21
[3.64] [2.71] [3.12]

(#3) log drilling costy 0.1768 19.34 0.0805 8.39 0.2025 2245
[0.55] [0.26] [0.55]

(£4) 5-year risk-free interest ratey  0.0704 7.30 01022 10.76 0.0441 4.51
[0.75] [1.11] [0.45]

(Bs) log first well production; 0.295%* 343] 0.0045 045 —0.0446 —4.36
[3.40] [0.06] [—0.60]

{Bg) Relative rank percentile 0.3043%%* 3557 0.2676%** 30.69 024174+ 27.34
(adjacent peer projects); ¢ [3.31] [3.65] [2.90]

Hazard model
tn 2) (3)

Estimate HI (%) Estimate HI (%) Estimate HI (%)

(A7) Average log first well production  0.0567%%* 584 0.0365%* 3.72 0.0566%** 5.82

adjacent options (peer)j [3.46] [2.31] [3.06]

(#5) Number of adjacent exercised 0.5002*%** 64,90 0.3985%%* 48.96
options (own); ¢ [11.01] [767]

{Ag) Relative rank percentile 0.4146%**  51.37 0.4256%** 53.05
(own project)j ¢ [3.86] [3.67]

Township FE No No Yes

N 103,451 103,451 103,451
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Table 34: Internal validity: Correlation of project relative rank percentiles
Dependent variable = Relative
rank percentile (own project)

(1) (2)
(B1) Relative rank percentile (adjacent peer projects); ¢ —0.0359 0.0316
[—1.11] [1.12]
(B2) Implied volatility of natural gas (percent); 0.0001
[0.13]
(B3) Natural gas price ($/mcf) 0.0367 %
[5.42]
(B4) log drilling costg 0.0908 # 3
[3.37]
(B5) S-year risk-free interest rateg —0.0138
[—1.11]
(Bg) log first well production; 0.4205 %
[7.40]
(B7) Average log first well production adjacent options (peer); 0.0121 3k
[2.68]
(Bg) Number of adjacent exercised options (own); 0.0258
[0.99]
Township FE Yes Yes
N 103.451 103,451

This table reports the coefficient estimates of an ordinary least squares (OLS) regression of the relative rank
percentile of a firm’s own project on the relative rank percentiles of adjacent infill options owned by peer firms.
The unit of observation in the underlying panel is at the “infill drill option™ 7, month ¢ level. ¢-statistics are
reported in brackets below the coefficients. Standard errors are clustered by township. *p <0.10; **p <0.05;
5% p < 0.01.
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Table 35: Internal validity: Subsample analysis

Hazard model

Low own project rank vs. high adjacent peer project rank

Reduced-form peer effects Instrumented peer effects

(1) (2)
Estimates HI (%) Estimates HI (%)
(A1) Implied volatility of natural gas (percent) —0.0107 —1.06 —0.0157 —1.56
[—0.38] [—0.56]
(B7) Natural gas price ($/mcf) 0.0584 6.02 0.1579%* 17.11
[0.66] [2.03]
(f3) log drilling cost; —0.0701 —6.77 —0.0328 —3.23
[-0.15] [—0.06]
(f4) 5-year risk-free interest rate; 0.1505 16.25 0.1107 11.71
[1.01] [0.78]
(f5) log first well production; 0.0241 2.44 0.0308 312
[0.27] [0.29]
(/) Relative rank percentile (adjacent peer 0.4345%=* 54.42
projects)i ¢ [3.46]
(A7) Average log first well production adjacent 0.0793%+* 8.26 —0.0936 —8.93
options (peer); ; [3.02] [—1.17]
(Bg) Number of adjacent exercised options (own); ; 0.399%+* 49.03 0.0166 1.67
[5.27] [0.04]
(Bg) Relative rank percentile (own project); ; 0.1793 19.64 —0.2562 —22.60
[0.83] [—0.85]
(A1) Instrumented - Number of adjacent 1.1038+* 201.57
exercised options (peer); ; [2.21]
Township FE No No
N 43,686 43,686

This table reports coefficient estimates from a Cox hazard model of real option exercise on a specific subsample
to test instrument validity. The time period of the samples are from 2005 to 2016. The unit of observation in the
underlying panel is at the “infill drill option™ i, month ¢ level. Specifications (1) and (2) report exercise behavior
for the subsample of real options where a project’s relative rank percentile within a given firm’s portfolio is below
median for that firm, but adjacent projects owned by peers have project relative rank percentiles in peer project
portfolios that are above median. The following variables have been scaled to have mean 0 and standard deviation
of 1. to facilitate economic interpretations: Number of adjacent exercised options (own), Number of adjacent
exercised options (peer), Relative rank percentile {own project), and Relative rank percentile (adjacent peer
projects). The hazard impact percentage (HI), which is the percentage change in the hazard rate per unit change
of the covariate, is reported next to the coefficient. z-statistics are reported in brackets below the coefficients.
Standard errors are clustered by township. *p <0.10; *#*p < 0.05; ***p < 0.01.
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Table 37: Real option exercise and experienced peers
Hazard model

(1) (2)
Estimates HI (%) Estimates HI (%)
(1) Implied volatility of natural gas (percent) —0.0339*** -3.33 —0.0282** —2.78
[—2.59] [—2.22]
(B>) Natural gas price ($/mcf); 0.1407*** 15.10 0.1842°%** 20.23
[2.96] [4.09]
(B3) log drilling costg 0.0009 0.09 0.0669 6.91
[0.00] [0.24]
(By) S-year risk-free interest ratey 0.1398 15.00 0.0746 7.74
[1.51] [0.77]
(Bs) log first well production; 0.4144%%* 51.35 0.3309%** 39.22
[5.72] [3.08]
(Bg) Number of adjacent exercised options (own)j ¢ 0525+ 69.04 0.3786%+* 46.03
[14.32] [8.89]
(B7) Number of adjacent exercised options 0.2658%* 30.45 0.1022** 10.76
(experienced peer); ¢ [7.54] [2.14]
(Bg) Number of adjacent exercised options 0.0871%** 9.10 0.0152 1.53
(inexperienced peer)j ¢ [3.03] [0.30]
Township FE No Yes
N 162,905 162,905

This table reports coefficient estimates from a Cox hazard model of real option exercise. The time period of the
sample is from 2005 to 2016. The unit of observation in the underlying panel is at the “infill drill option” 7, month
t level. The signal quality variables (Adjacent Experienced / Adjacent Inexperienced) are constructed in two
steps. First. we identify if the adjacent firms exercising their drilling option are more (less) experienced than the
median firm in the sample based on the number of wells drilled and, accordingly, we define them as Experienced
(Inexperienced). In the second step, we aggregate the wells that are drilled by experienced firms into the variable
adjacent experienced options (experienced peer) and those drilled by unexperienced firms into adjacent exercised
options (inexperienced peer). The following variables have been scaled to have mean 0 and standard deviation
of 1. to facilitate economic interpretations: Number of adjacent exercised options (own), Number of adjacent
exercised options (experienced peer), and Number of adjacent exercised options (inexperienced peer). The hazard
impact percentage (HI), which is the percentage change in the hazard rate per unit change of the covariate, is
reported next to the coefficient. z-statistics are reported in brackets below the coefficients. Standard errors are
clustered by township. *p <0.10; **p <0.05; ***p <0.01.
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Table 38: Real option value estimates and sensitivity analysis

A Swevmary stalivhics

Well-level sialistics at time of exercise N Mean Median i)
Well costs (T) ) 54,740,347 54, TOE365 3651954
Present value of well cash flow () R0 36,656,654 56,146015 $3.390,738
Optimal Trigper Value (V*) =) 37,079,647 57307629 $1.407,007
Met Present Value (W-I) 80 S1L916.307 5137495 3,414,682
B Senvitivity anclysir

Depletion rale sensitivity Mean PriMean = ) Median PriMedian = 0)
Met present value (V-1 b exercise)

Depletion mmie { o = 25%) 52,100,214 000 51,540,539 000
Diepletion mis (o= 1T%) 51916307 0.0 51,374,005 ]
Depletion mie (o = 279%) 51574540 000 S1.OTE1BT 000
Fargane value (V*-V a everise)

Depletion rade { o =15%) 5238086 0.o7 ST TRY il H
Depletion mie { o = 2T%) 3412993 Q.00 SB66.943 000
Depletion me [ o = 279%) 5764360 QLK 51,144,138 .00
Orperational cosl sensitivity Mean PriMeaan = O} Median PriMedion = 0)
Met present value (V-1 at exercise)

Operational cost | §=15%) 52459708 QLD 51,864 556 000
Operationad cosl | §=20%) 31916307 000 5137495 .00
Operational cosl | §=25%) 31372007 000 50902.057 000
Fargane valuz (V*- m exarise)

Operational cost | ¢ =15%) 5250973 ons 5721624 000
Oiperational cost | = H10) §4717 9493 0.0 SREG 943 LD
Operationad cosl | §=25%) S654. 643 000 51078926 0.00
Discount rale sensitivity Mean PriMean = O} Median PriMedion = 0)
MNet present vakoe (V-1 b exercise)

Discount raie (=7.5%) 52 308674 iiei] S1E11LETR 000
Dtiscount rale (= 1) 51916307 000 31,374095 (5L
Discoant rale (p=12.5%) 51,495,000 0.0 51,008 592 000
Fargane value (V*- a exemize]

Discount rate (@ =7.5%) SB57.331 000 51,346,908 000
Discount raie (=) 5412 993 0L SBAG6.243 000
Discount rale (= 12.5%) 5318536 01 ST60.092 000
Tax rate sensitivity Mean PriMean = ) Median PriMedian = 0)
Met present vaboe (V-1 ot exencise)

Tax rate (1 =09} 51916307 000 5137485 000
Tax rale (1= 155} 51,569,850 0.0 51,073,508 000
Thax raie (1 =300} 51213472 0.0 STTLE4D ]
Fargane value (V*-V o everize)

Tax rale (1 =05} 5422993 QLD SBAG943 000
Thx rale (1 = 155} STee 411 0.0 51,148941 il
Tax rale {1 =30%) 31115829 000 51,470,295 000
Hoyulty rate sensitivity Mean Prifean = ) Median PriMedian = )
M=t present vaboe (V-1 ot exercise)

Royally male (p=13.75%) 52459708 0L 51,864 656 .00
Royalty mie (p=18.75%) S1.916,307 QLD 51374095 000
Royally mie (p=23.75%) 51372007 000 3902,057 0.00
Fargane value (W*.V o evemrise)

Raoyalty mie (p=13.75%) 5255973 nos 31214624 000
Royally rale (p=18.75%) 34212993 0L SBAG.243 .00
Rayalty mie (p=2375%) SR04 403 0.0 S1.OTE926 L]

This table fArst reports in panel A summary siatistics oo well costs (T), present value of cash Gows (V). the optimal ifgger value
(W*}, and the net present value (NFY =% —I) o the ime of exswise, as genemied by 2 baseline real options model (see Faddock
et al. 198%E; and Dixil Pindyck 1994). Panel B reporis o sensitivity analysis for the nel present value (NFY=V—I) and fargone
walue (V*—V} ol time of exercize. The sensitivity analysis is performed on the different assumpticns for several mode] parameters.
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Table 39: First-stage regression and coefficient comparison

First-stage regression with instrument

First-stage regression without instrument

(n (2) (3) i4) (3) (6)

(A1) Implied volatility of 0.0001 (0.0000 —0.0064%*  0.0003 0.0002 —0.0062%*
natural gas (percent)y [0.07] [0.01] [—2.59] [0.15] [0.08] [—2.55]

{f2) Natural gas price —0.0096 —0.0111 —0.0838%** —0.0019 —0.0047 —0.0756%+*
{$/mef [—0.55] [—0.65] [—5.75] [—0.11] [—0.28] [—5.51]

(#3) log drilling cost; 0.0547 0.0508 —0.0648 0.0683 0.0619 —0.0509

[1.05] [1.00] [—1.43] [1.31] [1.22] [—1.15]

(A4} S-year risk-free —0.0266 —0.0245 —0.0832%*  —0.0235 —0.0214 —0.0818**
interest rate [—1.18] [—1.09] [—2.26] [—1.06] [—0.97] [—2.23]

(A5} log first well 0.0222 0.0049 0.0075 0.0377* (0.0089 —0.0003
production; [1.29] [0.30] [0.57] [1.90] [0.54] [—0.04]

(fs) Relative rank 013065 0.1210%F  0.1117%
percentile (adjacent peer  [3.28] [3.14] [2.93]
projects); ¢

(A7) Average log first 0.0532%*  0.0502%** 004208  0.(0428%F  0.0400% 00336+
well production adjacent  [5.38] [5.02] [6.25] [5.32] [4.88] [6.24]
options (peer);

{#g ) Number of adjacent 0.0574 —0.1657%%* 0.0607 R
exercised options [1.52] [—4.17] [1.59] [—4.13]
(own);

(fg) Relative rank 0.0468 0.0608** 0.0738% 006324+
percentile (own [1.18] [2.47] [1.76] [2.66]
project); 4

Township FE No No Yes Mo No Yes

N 103.451 103,451 103,451 103,451 103,451 103,451

This table reports the first-stage estimation of the two stage model of Table 4, panel A. The first stage runs an OLS
regression of adjacent peer activity on the instrument used in the study (relative rank percentile of peer projects)
and the set of controls from the second-stage estimation. Columns (1)—{3) map to the three specifications of
Table 4, panel A. Columns (4)—{6) run OLS specifications of adjacent peer activity on the same set of controls,
but without the instrument. Standard errors are clustered by township. *p <0.10; **p <0.05; ***p < 0.01.
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Table 40: Instrument and implied volatility

Dependent variable = Implied volatility

(1) @ (3)
(B1) Relative rank percentile (adjacent peer projects); 0.0396 0.0394
[1.21] [1.22]
(B2) Relative rank percentile (own project); ¢ 0.0060 0.0045
[0.17] [0.13]
(B3) Natural gas price ($/mef) 1.0038%*¥* 1.0066%** 1.0036%**
[55.94] [58.00] [55.80]
(Bg) log drilling cost; 4.4830%** 44877+ 4.4825%**
[40.52] [40.73] [40.92]
(Bs) S-year risk-free interest rate 0.5493%** 0.5499*** 0.5494**
[12.27] [12.34] [12.31]
(Bg) log first well production; 0.0195 0.0148 0.0176
[1.41] [0.77] [0.95]
(B7) Average log first well production adjacent options (peer); ;  —0.0091 —0.0125 —0.0092
[—0.76] [—1.01] [—0.77]
(Bg) Number of adjacent exercised options (own); —0.0401 —0.0398 —0.0402
[—1.37] [—1.35] [—1.37]
Township FE Yes Yes Yes
N 103,451 103,451 103,451

This table reports regressions of implied volatility on the instrument used in the study (relative rank percentile
of peer projects) and the set of controls from the second-stage estimation in Table 4, panel A. Standard errors
are clustered by township. *p <0.10; ##p <0.05; ***p <0.01.
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Table 41: Real option exercise and exogenous peer effects: IV probit model, clustered by

township
IV probit model
Instrumented - Number of
adjacent exercised options (peer)
(D (2 3
Estimate Estimate Estimate
(B1) Implied volatility of natural gas (percent); —0.0088* —0.0097* —0.0046
[—1.79] [—1.94] [—0.76]
(B>) Natural gas price ($/mcf) 0.0241 0.0093 0.0867%%*
[1.05] [0.42] [3.51]
(B3) log drilling cost; —0.0373 —0.0592 0.1389
[—0.35] [-0.57] [1.13]
(B4) S-year risk-free interest rateg 0.0581%* 0.07* 0.0958**
[1.65] [1.92] [1.97]
(B5) log first well production; 0.0436 —0.0103 —0.0099
[1.34] [-0.48] [—0.39]
(Bg) Instrumented - Number of adjacent exercised options (peer); ; ~ 0.5688%**  0.5697***  (.5476***
[4.14] [4.22] [2.69]
(B7) Average log first well production adjacent options (peer); —0.014* —0.0182**  _0.0154
. [—1.86] [—2.68] [—1.25]
(Bg) Number of adjacent exercised options (own); ¢ 0:15%** (L2567
[3.91] [7.95]
(Bg) Relative rank percentile (own project); { 0.0707 0.0686
[1.39] [1.01]
Township FE No No Yes
N 103,451 103,451 103,451

This table reports results of the main instrumental variable tests reported in Table 4, panel A, using IV probit as
the estimation model. Variable definitions and panel structure match what is used in Table 4. Standard errors are

clustered by township.
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Table 42: Real option exercise and exogenous peer effects: IV-2SLS model, clustered by

township
IV probit model
Instrumented - Number of
adjacent exercised options (peer)
(H (2) 3
Estimate Estimate Estimate
(B1) Implied volatility of natural gas (percent); —0.0001 —0.0001* —0.0001
[—1.63] [—1.70] [—1.04]
(B7) Natural gas price ($/mcf) 0.0009%* 0.0008* 0.001 7+
[2.04] [1.85] [3.04]
(B3) log drilling cost; —0.0007 —0.0008 0.0013
[—0.44] [—0.49] [0.86]
(B4) S-year risk-free interest ratey 0.0006 0.0007 0.0007
[0.92] [1.03] [0.98]
(Bs5) log first well production; 0.0003 —0.0002 —0.0002
[1.54] [—1.13] [—0.79]
(Bg) Instrumented - Number of adjacent exercised options (peer); ;  0.0071*** 0.0046%* 0.0052*
[2.97] [2.10] [1.65]
(B7) Average log first well production adjacent options (peer); —0.0001 —0.0001 0.0000
[—0.75] [—0.71] [0.17]
(Bg) Number of adjacent exercised options (own); 0.0032%%* 0.0039%#*
[4.89] [4.04]
(Bg) Relative rank percentile (own project); 0.0018%** 0.0019%**
[3.13] [2.71]
Township FE No No Yes
N 103,451 103,451 103,451

This table reports results of the main instrumental variable tests reported in Table 4, panel A, using IV-2SLS as
the estimation model. Variable definitions and panel structure match what is used in Table 4. Standard errors are
clustered by township.
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Table 43: Real option exercise and exogenous peer effects: IV probit model (clustered by
township and by year)
IV probit model

Instrumented - Number of
adjacent exercised options (peer)

Estimate Estimate Estimate
(B1) Implied volatility of natural gas (percent) —0.0088* —0.0097%*  —0.0046
[—1.80] [—2.05] [-0.51]
(B) Natural gas price ($/mcf); 0.0241 0.0003 0.0867*+*
[1.04] [0.38] [3.19]
(B3) log drilling cost; —0.0373 —0.0592 0.1389
[—0.29] [—0.44] [1.16]
(B4) S-year risk-free interest rate; 0.0581* 0.07* 0.0958**
[1.68] [1.91] [2.30]
(B5) log first well production; 0.0436 —0.0103 —0.0099
[1.61] [—0.47] [—0.44]
(Bg) Instrumented - Number of adjacent exercised options (peer); ; ~ 0.5688%**  0.5697***  0.5476"**
[4.88] [4.66] [2.79]
(B7) Average log first well production adjacent options (peer); 4 —0.014* —0.0182%** _0.0154
[—1.90] [—2.64] [—1.15]
(Bg) Number of adjacent exercised options (own); ¢ 0152 (0. 256722
[3.95] [7.55]
(B9) Relative rank percentile (own project); ¢ 0.0707 0.0686
[1.31] [0.97]
Township FE No No Yes
N 103,451 103,451 103,451

This table reports results of the main instrumental variable tests reported in Table 4, panel A, using [V probit as
the estimation model. Variable definitions and panel structure match what is used in Table 4. Standard errors are
clustered by township and by year.
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Table 44: Real option exercise and exogenous peer effects: IV 2SLS regression model (clus-

tered by township and by year)

IV probit model
Instrumented - Number of
adjacent exercised options (peer)

(1 (2) (3
Estimate Estimate Estimate
(B1) Implied volatility of natural gas (percent); —0.0001 —0.0001 —0.0001
[—1.38] [—1.38] [—0.74]
(B7) Natural gas price ($/mef) 0.0009 0.0008 0.0017 %%
[1.49] [1.32] [4.19]
(B3) log drilling cost; —0.0007 —0.0008 0.0013
[—0.32] [—0.34] [0.77]
(B4) S-year risk-free interest rateg 0.0006 0.0007 0.0007
[0.88] [0.98] [1.01]
(B5) log first well production; 0.0003* —0.0002 —0.0002
[1.71] [—1.09] [-0.90]
(Bg) Instrumented - Number of adjacent exercised options (peer); y  0.0071***  0.0046*™**  0.0052**
[3.49] [2.82] [1.96]
(B7) Average log first well production adjacent options (peer); ¢ —0.0001 —0.0001 0.0000
' [—0.84] [—0.79] [0.16]
(Bg) Number of adjacent exercised options (own); ¢ 0.0032%** 0.0039%***
[3.65] [3.74]
(B9) Relative rank percentile (own project); 0.0018** 0.0019**
[2.39] [2.15]
Township FE No No Yes
N 103,451 103,451 103.451

This table reports results of the main instrumental variable tests reported in Table 4, panel A, using IV 2SLS as
the estimation model. Variable definitions and panel structure match what is used in Table 4. Standard errors are
clustered by township and by year.

153



Table 45: Real option exercise and exogenous peer effects: IV Cox model (clustered by

township and by year)

Hazard model
Instrumented - Number of adjacent exercised options (peer)

(D 2) 3)
Estimate HI (%) Estimate HI (%) Estimate HI (%)
(81) Implied volatility of natural —0.0245 —2.42 —0.0281 —2.77 —0.0166 —1.64
gas (percent)y [—1.39] [—1.55] [—0.61]
(B2) Natural gas price (S/mcf); 0.2062** 2290 0.1546 16.72 0.2801%* 32.33
[2.23] [1.63] [2.45]
(B3) log drilling cost; 0.0494 5.06 —0.0319 —3.14 0.4462 56.24
[0.15] [—0.08] [0.96]
(B4) S-year risk-free interest ratey ~ 0.1325 14.17 0.1564 16.93 0.2168 24.21
[1.11] [1.19] [1.15]
(Bs) log first well production; 0.2432*%F 2754 —0.0064  —0.64 —0.0565%* —5.50
[3.10] [—0.08] [—2.44]
(Bg) Instrumented - Number of 0.595%**  81.31 0.5825*** 79.06 0.6623*** 0303
adjacent exercised options [3.65] [3.11] [2.79]
(Peer)i.[
(B7) Average log first well —0.0671* —6.49 —0.0746%* —7.18 —0.0236  —2.33
production adjacent options [—1.82] [—2.00] [—0.96]
(peen)i
(Bg) Number of adjacent 0.3731*** 45.22 0.7649%** 114.88
exercised options (own); ¢ [3.41] [5.03]
(Bg) Relative rank percentile (own 0.311%%  36.48 0.2563*  20.21
project); [2.04] [1.68]
Township FE No No Yes
N 103.451 103,451 103.451

This table reports results of the main instrumental variable tests reported in Table 4, panel A, with standard errors
double clustered by township and by year. Variable definitions and panel structure match what is used in Table 4.
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Table 46: Reduced-form model (clustered by township and by year)

Hazard model

Reduced form - Relative rank percentile (adjacent peer projects)

(1)
Estimate HI (%)
(B1) Implied volatility of natural —0.0242 —-2.39
gas (percent); [—1.33]
(B>) Natural gas price ($/mcf); 0.1838*** 20.18
[3.95]
(B3) log drilling cost; 0.1768 19.34
[0.50]
(B4) 3-year risk-free interest ratey ~ 0.0704 7.30
[1.02]
(Bs) log first well production; 0.205%%* 3431
[3.45]
(Bg) Relative rank percentile 0.3043%* 35,57
(adjacent peer projects); ¢ [4.38]
(B7) Average log first well 0.0567** 584
production adjacent options [3.51]
(Pe'ﬂ')i,t

(Bg) Number of adjacent
exercised options (own);
(Bg) Relative rank percentile (own
project); ¢
Township FE No

N 103.451

2

Estimate HI (%)
—0.028%* -2.76
[—1.67]

0.1301**  13.90
[2.54]

0.0805 8.39
[0.22]

0.1022 10.76
[1.34]

0.0045 0.45
[0.05]

0.2676%** 30.69
[4.42]

0.0365%*  3.72
[2.24]

0.5002%* 64.90

[11.93]

0.4146%** 51.37
[3.55]
No

103,451

(3)
Estimate HI (%)
—0.0211 —2.09
[—1.09]

0.1588*** 17.21
[4.11]
0.2025 22.45
[0.58]
0.0441 4.51
[0.44]

—0.0446 —4.36

[—0.81]

0.2417%* 27.34
[2.96]
0.0566*** 582
[3.13]

0.3985%* 48.06
[7.60]
0.4256%**% 53.05
[3.77]

Yes

103,451

This table reports results of the main reduced-form tests reported in Table 4, panel B, with standard errors double

clustered by township and by year. Variable definitions and panel structure match what is used in Table 4.
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Table 47: Effect of adjacent first wells

Reduced-form Instrumented
peer effects peer effects
() (2)
Estimate HI (%) Estimate HI (%)
(B1) Implied volatility of natural gas (percent) —0.0200 —1.98 —0.0179 -1.77
[—1.34] [—1.09]
(B>) Natural gas price ($/mcf), 0.1621***  17.60 0.249%* 28.27
[3.28] [2.41]
(B3) log drilling cost; 0.1969 21.76 0.4256 53.05
[0.54] [1.00]
(B4) S-year risk-free interest rate; 0.0782 8.13 0.1981 21.90
[0.78] [1.20]
(Bs) log first well production; —0.0436 —4.27 —0.0520 —5.07
[—0.61] [—0.65]
(Bg) Relative rank percentile (adjacent peer projects); ;  0.2633***  30.12
[3.18]
(B7) Average log first well production adjacent options ~ 0.0270 2.74 0.0261 2.64
(peer); ¢ [1.44] [1.40]
(Bg) Number of adjacent exercised options (own); 0.4724*%  60.39 0.5556™*  74.30
[9.52] [6.22]
(Bg) Relative rank percentile (own project); ; 04157*** 51.55 0.2627* 30.04
[3.73] [1.83]
(B10) Number of adjacent first wells drilled (peer); ¢ 0.312%  36.61 —0.7108% —50.88
[5.82] [—1.66]
(B11) Instrumented - Number of adjacent exercised 1.1168%*  205.50
options (peer); ¢ [2.29]
Township FE Yes Yes
N 103.451 103,451

This table reports results of the main instrumental variable and reduced-form tests reported in Table 4, panel A
(specification (3)), and Table 4, Panel B (specification (3)), with the inclusion of an additional control variable to
capture the number of unexercised infill real options from peers (Number of adjacent first wells drilled (peer)).
Other variable definitions and panel structure match what is used in Table 4. Standard errors are clustered by
township.
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Table 48: Operator fixed effects

Reduced-form Instrumented
peer effects peer effects
(D (2)
Estimate HI (%) Estimate HI (%)
(B1) Implied volatility of natural gas (percent) —0.0229 —2.26 —0.013* -1.29
[—1.43] [—1.72]
(B2) Natural gas price ($/mcf); 0.1636™** 17.77 0.0906%%*  0.48
[2.80] [2.43]
(B3) log drilling cost; 0.2906 33.72 0.3216 37.93
[0.74] [1.63]
(B4) S-year risk-free interest rateg —0.0543 —-5.29 0.0670 6.93
[—0.56] [0.34]
(Bs) log first well production; —0.0509 —4.96 —0.0885 —8.42
[—0.48] [—0.32]
(Bs) Relative rank percentile (adjacent peer projects); 0.1619*  17.58
[1.87]
(B7) Average log first well production adjacent options 0.0524%%* 538 0.0171 1.72
(peer); ¢ [2.76] [0.14]
(Bg) Number of adjacent exercised options (own); ; 0.3205*** 37.78 0.1894™** 20.85
[6.15] [2.58]
(Bg) Relative rank percentile (own project); ¢ 0.5406%%* 71.70 0.1664%%F 18.11
[4.15] [2.52]
(B1p) Instrumented - Number of adjacent exercised options 0.1466%** 15.78
(peer); ¢ [2.39]
Township FE Yes Yes
Operator FE Yes Yes
N 103,451 103,451

This table reports results of the main instrumental variable and reduced-form tests reported in Table 4, panel A
(specification (3)), and Table 4, panel B (specification (3)), with the inclusion of operator fixed effects. Other
variable definitions and panel structure match what is used in Table 4. Standard errors are clustered by township.
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Table 49: Project relative rank percentile and option exercise: Above-median oil exposure

versus below-median oil exposure
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Table 50: Real option exercise and exogenous peer effects: Shale gas townships only
A. Instrumented - Number of adjacent exercised options (peer)

Hazard model
(1) (2} (3)
Estimate HI (%) Estimate HI (%) Estimate HI (%)
(£ ) Implied volatility of natural gas (percent); — 00200 —1.98 —0.0247 244 00134 —1.33
[—1.01] [—1.07] [—0.62]
(fiz) Natural gas price (3/mef; 0.233+4+ 26.24 0. 16E3** 18.33 0.2411%* 21.26
[3.32] [2.13] [2.4E]
(5 log drilling cost —0.2426 —21.54 03335 —28.36 00202 204
[—0.60] [—0.94] [0.05]
[ fiq b 5-year risk-free interest ratey 01713 18.68 01947 21.49 0.2227 2495
[1.30] [1.35] [1.18]
(f5) log first well production; .4146%*F* 5137 0.0353 359 00690 —6.67
[3.30] [01.26] [—0.53]
( B ) Instrumented - Number of adjacent exercised  0.6120%* 84,57 0.6362+* £8.03 0.6561%* 92.72
options (peer); , [2.17] [2.04] [2.14]
(A7) Average log first well production adjacent —0.0B1E —7.85 —D.1005%* 956 00218 —2.16
options (peer); , [—1.35] [—2.02] [—0.59]
i fz ) Mumber of adjacent exercised options (L.4076%+ 5447 0.B055%+ 12378
(ownl; ¢ [3.40] [4.26]
(figh Relative rank percentile (own project); 0.3456 41.29 0.3100* 3o47
' [1.46] [1.82]
Township FE No No Yes
N 67,868 67,868 607,868
B. Reduced form: Relative rank percentile (adjacent peer projecis)
(f1 ) Implied volatility of natural gas {percent)y —0.0165 163  —0.0210 208 00166 —1.65
[—0.83] [—1.10] [—0.82]
(fiz ) Natural gas price ($/mcf); 0.2151%% 2400 0. 148%* 15.95 0.1273*% 13.57
[3.55] [2.54] [1.93]
() log drilling cost —0.2081 —18.79 —0.300] 2593 02183 —19.62
[—0.62] [—0.93] [—0.64]
(fiq b 5-year risk-free interest ratey lnlz 11.76 0.1339 1433 00642 6.63
[(L93] [1.15] [0.53]
(f5) log first well production; 0.475F** 6081 0.0667 689 00538 —5.24
[4.46] [.60] [—0.62]
[fig ) Relative rank percentile (adjacent peer 0.2791%+* 32.19 02781+ 3206 0.2253% 25.27
projects); [2.33] [2.80] [2.16]
(7} Avemg’e log first well production adjacent 0.045 1 +* 493 0.0321 3.26 D.0540%* 5.63
options (peer); , [2.00] [1.37] [2.16]
i B3 ) Mumber of adjacent exercised options 0.5020%F g5 35 04527 5706
{own); ; [9.80] [7.27]
( fig) Relative rank percentile (own project); O.4204%+= 5325 04637 50.00
[2.96] [3.24]
Township FE No No Yes
N 67,868 67,868 67,868

This table reports the same specifications as panels A and B of Table 4 in the main paper, but limits the sample
to townships that have shale natural gas only (and no shale oil).
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CHAPTER 3 : Ownership Concentration and Firm Risk-Taking Behavior

The undertaking of profitable but risky business opportunities lies at the center of long-term
economic growth Acemoglu and Zilibotti 1997; Obstfeld 1994. However, without the proper
incentives and institutional environment, managers naturally dislike risk and tend to opt
for safer and less growth enhancing projects Smith and Stulz 1985; Amihud and Lev 1981,
potentially leading to suboptimal resource allocation. Therefore, it is imperative to identify
which channels support the adoption of risk-taking behavior that improve economic welfare

and resource allocation.

In this sense, economic theory and recent empirical results support the idea that resource-
ful and committed large institutional investors are potentially well-suited partners for firms
that aim to develop a competitive hedge such as the implementation of riskier projects
(i.e. research and development, new technology adoption) Porter and Parker 1992; Aghion
et al. 2013. It is then reassuring to note that over the past 30 years the proportion held
by institutional shareholders of a representative firms has grown from 5% in the 1980’s to
approximately 50% in the 2010’s. However, a large theoretical literature also posits that the
ability of such owners to affect resource allocation depends on ownership concentration. In-
deed, ownership concentration affects owners’ ability to coordinate their choice of corporate
policies, willingness to produce information, and capacity to optimally monitor managers
Edmands 2017. Given the steady decline in ownership concentration observed for the same
period, from 40% in 1980 to 10% in 2014, identifying whether ownership concentration is a

relevant corporate governance lever on firms’ behavior is of prime importance.
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Figure 15: Firm-Year Portfolio’s Projects’ Expected IRR Distribution
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Specifically, this paper investigates the relationship between ownership concentration and
firms’ risk-taking behavior. While, there has been ample coverage in the theoretical litera-
ture on the relationship between ownership concentration and firms’ risk-taking behavior,
providing compelling evidence of a causal relationship has been challenging. Indeed, past
research has provided mixed results and failed to provide a causal statement. For example
Tufano 1996 found that firms’ dominated by highly concentrated insider ownership were less
likely to have managers’ adopting riskier business strategy while Paligorova 2010 found that
blockholders are positively correlated with corporate risk-taking. Indeed, from an empirical
perspective there are two main limitations to clearly identifying the relationship. First, risk-
taking behavior and ownership concentration are simultaneously determined, thus making
it difficult to obtain a causal interpretation of ownership concentration on firms’ risk- taking
decisions. Second, there exists no perfect measure of corporate risk-taking behavior, with

each available proxy facing potential limitations.
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To overcome the identification challenge, I use the merger of financial holdings to con-
struct an instrumental variable capturing an exogenous shock to ownership concentration.
I construct the instrument variable using a natural experiment that was first used in a
difference-in-difference setup to measure the effect of competition on bias in the context of
analyst earnings forecasts Hong and Kacperczyk 2010. More closely related to this paper,
some researchers used this natural experiment to investigate the relation between cross-
ownership structure and product market competition Huang and Jie 2017; Azar et al. 2017,
and the effects of blockholders’ diversity on firms performance Volkova 2017. However, to
the best of my knowledge, this is the first empirical paper to investigate a causal relationship

between firms’ risk-taking behavior and ownership concentration.

To overcome the difficulty of correctly measuring firms’ risk-taking behavior, I introduce
three proxies to capture the risk component in firms’ behavior. Using accounting data,
I derive two operational risk measures of risk: the volatility of returns on assets and the
volatility of the returns on sales. From the stock market data, I derive the third measure

of risk using the volatility of market returns.

This paper relates to several literatures. First, it complements the literature that identifies
channels affecting corporate risk-taking. Investigating the relation of CEO remuneration
package structure on risk-taking behavior, Hayes et al. 2012 found a weak economic rela-
tionship while Gormley et al. 2013 found that the effect of CEO remuneration on firms’
risk-taking was slow to impact the risk decisions of the firms. Also, Gilje 2016 showed that
firms’ distance-to-default affects firms’ risk appetite. Finally, John et al. 2008 identified that
the quality of ownership legal protection was positively related to corporate risk-taking and
firms’ growth rate. Perhaps the paper most similar to mine is Gormley and Matsa 2016 who
found that a reduction in the risk of take-over treat would reduce the firms’ risk incentive,
leading to 7.5% of a standard deviation decrease in stocks volatility while I found that a one
standard deviation change in ownership concentration lead to a 17.1% increase in stocks

volatility.
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Finally, it is related to the developing literature on institutional ownership impact on firms’
outcomes. Research papers have shown that the quantity of institutional shareholders
positively impacts firms’ research and development policies Aghion et al. 2013, firms’ per-
formance and governance quality Appel et al. 2016, payout policies Gaspara et al. 2005, and
investment horizons Bena 2017. More recently, a burgeoning literature started to focus on
the structure of institutional ownership on firms’ performance. Huang and Jie 2017; Azar
et al. 2017 found that firms’ cross-ownership positively impact firms’ product-market per-
formance and Volkova 2017 showed that owners’ diversity negatively impact firms’ return

on asset and investment opportunity.

3.1 Motivation and Theoretical Predictions

To understand the potential relation between ownership structure and risk taking, it is first
enlightening to look at how the firms’ ownership concentration impact the quantity of in-
formation production and monitoring intensity of the shareholders and then look at how
monitoring effort from the shareholders impacts managers’ project decisions and risk-taking

behavior.

Regarding the ownership issue, the ownership structure impacts the inner dynamic among
shareholders, and ultimately affects their willingness to exert efforts monitoring the man-
ager. Because, large shareholder better internalizes the benefits from their monitoring
efforts, a more concentrated ownership should alleviate the free-riders issue present in more
diffuse ownership structure and stimulate the monitoring intensity Grossman and Hart
1980; Shleifer and Vishny 1986. Additionally, the recent theoretical results posit the num-
bers of larges investors and their relative size is likely to determine the owners intervention

incentives and the effects of their actions Edmans and Manso 2011; Noe 2002.

Regarding the effect of monitoring effect and information production of the shareholders on
managers risk taking behavior, firms with more concentrated ownership should experience

increasing monitoring efforts and information production. Therefore, it should reduce the
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informational frictions between the owners and the manager. There are three theoretical
results support the idea that a reduction of information asymmetry between firms’ owners

and the manager should foster risk taking.

1) Then the career concern hypothesis Kaplan and Minton 2006 assumes that managers
might be reluctant to take on risky projects because of the risk of being fired should the
project fail. Indeed, engaging in risky projects has the potential to yield greater payoffs, but
if the project fails for purely stochastic reasons, the owners might assume that the manager is
bad and fire her. If contracting technologies cannot resolve entirely the issues, having owners
with better monitoring ability can alleviate part of the problem. In this sense, the capacity
of large institutional investors to reduce the information asymmetry problem connected
to firms’ strategies is widely understood in the literature Hall and Lerner 2010. Indeed,
by allocating substantial resources to support and monitor managers in designing their
corporate strategies Appel et al. 2016, and by reducing the level of information asymmetry
Edmans 2009, institutional investors can help firms’ management team to take on more
unconventional projects. Indeed, Edmans 2009 showed that blockholders can encourage the
manager to invest in riskier and more demanding projects (i.e. long-term projects). In his
proposed model, if the firm announces low earnings, the blockholder receives a signal about
the cause of low earnings. If the signal is not related to managers’ lack of effort or low
firm quality, the blockholder retains his stake, supporting the stock price. This expected
support fostered by the blockholder’s ability to access superior information on the firm’s
outcome encourages the manager to invest in projects that would be career-threatening in

situations where ownership was more disperse.

2) Additionally, the quiet life hypothesis postulate that if managers are not closely moni-
tored, they might choose to take projects that require less efforts and avoid projects that
are riskier Bertrand and Schoar 2003; Hart 1983. In this case, the improved monitoring ca-
pacity of a more concentrated ownership would incentivize the manager to pursue corporate

policies that require more efforts and that potentially have a riskier payoff structure.
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3) Finally, from the asset substitution problem side Jensen and Meckling 1976, equity
holders are the residual owners of firms’ proceeds, which incentivize them to favor riskier
projects. Thus, an increase in owners’ coordination ability resulting from a more concen-
trated ownership is likely to improve the capacity of equity holders to impact managers’
decisions, potentially at the expense of debt holders. Also, even if large shareholders can-
not exercise intervene easily, they can still impact the manager policy choices through the
alternative channel of exit Edmans 2009; Admati and Pfleiderer 2009 (i.e. they can sell
their shares and drive down the stock price to punish the manager ex-post and induce him
to act in their interest ex-ante). Then, the assumption is that by having the equity holders
to increase their ability to coordinate and communicate with the management team, firms

would yield more easily to large shareholders preferences and increase their risk exposure.

These theoretical results support the hypothesis that ownership concentration should play

a role in firms’ risk-taking behavior.

3.2 Data

To conduct my analysis, I used the 13f Thomson ownership dataset to identify institutional
investors’ ownership and the SDC dataset to identify the institutional investors that merged
between 1980 and 2013. I restricted the sample for that date range, since the Thomson 13f
dataset is notorious for having issues in the subsequent period. Since there exists no unique
identifier common to the 13f dataset and the SDC dataset, I manually merged the two
datasets. I restricted my investigation to the mergers that were completed in less than 2
years after the announcement date. Thus, the final set of transactions in the experiment

includes 202 MA transactions over the 33-year sample.

When working with the Thomson 13f and SDC datasets, one potential issue is that financial
holdings sometimes complete their merger before portfolios are consolidated. It is possible

to schematize the development of a problematic deal in the following graph.
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Figure 16: Timeline of a deal development
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In such a case, even if the deal is identified as completed in the SDC dataset, it is possible
that I do not observe a transfer of share ownership between the target and the acquirer
on the day the deal is completed. As a consequence of this asynchrony, I would then
incorrectly measure the effect of the merger on the ownership concentration level around
the time of the merger. Indeed, since I am interested in measuring the control level of
ownership, I can expect that, even if the two merged holdings have not consolidated their
portfolios right after completing the deal, they would now vote in a complementary fashion.
To circumvent this challenge, I manually consolidated the holdings’ portfolios at the time

of the deal completion.

Finally, to obtain the stock market data and accounting data, I used an annually updated
monthly CRSP dataset and the annually updated quarterly Compustat dataset, respec-
tively. In the appendix, I explain the variable construction used in the regression and how
I transformed the Compustat data from quarterly to yearly frequency. I removed all obser-
vations with saleqj 0 and atqj 0. I winsorized the investment dependent variables to the 1st
and 99th percentile and the risk variables to the 2.5st and 97.5th percentile. Finally, I did
not include the firms in the utilities industry, sic contained between 4900 and 4999, or in

the financial industry, sic between 6000 and 6999.

3.2.1 Choice of Proxy Measure

The existing theory on ownership structure on the role of large shareholders has mostly.
However, to empirically investigate the dynamic between the role of large shareholders and
corporate risk-taking we need a measure to capture the nature of the ownership structure.

Most of the academic work conducted on the role of ownership structure focused on the
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role of blockholders (i.e. generally defined as the shareholders with more than 5% of the
total outstanding shares). However, there are no theoretical results that justify setting the
threshold at that level Edmands 2017. To avoid restricting my analysis to any arbitrary
threshold I consider the ownership of all available institutional shareholders. Instead, I
plan on capturing the nature of the ownership structure by using the firms’ ownership con-
centration, measured by the Herfindalh index of the institutional owners (HHI;; = >, s%t’ i
where s;4 ; is the fraction of firm j held by owner 7). The Herfindalh index appears to be a

well-suited proxy for ownership structure as it does not restrict the analysis to a subgroup of

the owners, it takes into account the number of shareholders and the size of their position.

3.3 Identification Strategy

The main regression of this paper identifies the relationship between risk taking and owner-
ship concentration such that: Risk;;y1 = SHHI; ;1 +0X; ¢+ fi +my +€; 441 where Risk; ; is
a risk proxy, H HI;; is the ownership concentration level, X;; is a set of control variables, f;
and my are respectively the firms’ and quarter-year fixed effects, and ¢;; is the error term.
However, there are strong reasons to believe that the variable of interest, HHI; 4, is endoge-
nously determined with the level of risk taking (Risk;;), precisely cov(HHI;;€;4) # 0g.
Thus, to identify the causal relationship between risk taking and ownership structure, I must
have some exogenous variation in the ownership structure. Using an instrument variable

design, the regression setup becomes:
First Stage: HHILt = (92,'7,5 + me + fi+me+ €t
Second Stage: Risk;jii1 = BHHIM + Xt + fi +my + €y

Where Z; ; is the instrumental variable and H HI it is the instrumented level of ownership

concentration.

The instrument captures the exogenous change in ownership concentration due to the merger

of financial holdings, and filters out all the potential variation coming from the endogenous
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responses of other market participants or financial holdings involved in the merger event.

To achieve this objective, I designed the instrument such that it measures the change

Figure 17: Example of the ownership structure of a representative firm
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Figure 17 presents the hypothetical ownership structure for firm A that has 3 institutional
shareholders, each owning 5% of the outstanding shares before holding 1 and holding 2
merge. Then the quarter prior to the merger, the effective HHI value, HHI; = 0 would
be 75. Under the alternative scenario that the merger would have already happened at
that point in time, the implicit HHI value, HHI; = 0, would be 125. I instrumented the

Herfindalh index with the implicit level of Herfindalh index.

Figure 18: Example of the Instrument Construction

| Merger of Holdings ‘
|
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Instrumented: HHI-_4 HHI—, HHI¢—4 HHI:—,

For this instrument to be valid, it needs to satisfy the relevance condition and the exclusion

restriction.
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3.3.1 Relevance Condition

To satisfy the relevance condition, the instrument must be correlated with the instrumented
variable. Consistent with this hypothesis, the first stage regression shows that the instru-
ment is significant to the 1% significance level. Additionally, when looking at the first stage
Wald F-test of the risk-taking regression, the statistic ranges from 905 to 1245, strongly

rejecting the null hypothesis of a weak instrument.

Table 51: First Stage Regression

(1) (2)
HHI HHI
Instrument 0.5635%** 0.5918%**
[1.55] [5.19]
Market size -0.0146**
[-7.58]
Market Leverage -0.0120
[-1.01]
Tobin’s Q) 0.0007
[0.34]
Institutional Ownership -0.0670**
[-6.98]
Firm Fixed Effect YES YES
Quarter-Year ixed Effect YES YES
Observations 37549 37493
e 0.7030 0.7227

{ statistics in brackets, * p < 0.10, ** p < 0.05, *** p < 0.01

Errors are doubled clustered at the firm and quarter-year level.

Additionally, looking at the treatment effect around the merger event of the institutional
shareholders, we observe a clear treatment effect. The HHI index of the treated firms jumps

at the moment of the merger.
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Figure 19: Treatment Effect for Control and Treatment Group

Treatment Effect for Control and Treatment Group

3.3.2 Exclusion Restriction

For the exclusion restriction to hold, financial holdings must not have merged to increase
their position in the treated firms. Considering that acquisition of financial holdings is a
complicated and risky process that is heavily regulated, it is hard to believe that financial
holdings chose to merge for this reason. Additionally, there exist simpler ways to increase

one’s position in a firm such as direct purchase on the open market.

Given the design of the instrument, I need to add extra control to ensure that the exclusion
restriction is satisfied. After adding a firm fixed effect, the instrument virtually becomes a
measure of the exogenous variation between the effective and implicit level of HHI. Since the
difference between the real HHI and the implied HHI is purely exogenous, the instrument

variable should satisfy the exclusion restriction.

3.3.3 Sample Construction

For each merger events, I restricted the analysis to a 3-year window around the events.
Also, to better identify the time trend, I matched the treated firms based on their market

capitalization size and their total institutional level of ownership with a potential control.
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Firms with larger market capitalization or a greater level of institutional ownership are
mechanically more likely to become a treatment given the context of my experiment. Indeed,
the probability that a stock held by virtually every holding be treated is greater than if the
stock is held by fewer holdings. Additionally, since the effect of ownership structure in large
firms might be different from that in small firms, using the matching technique enabled me

to properly identify the effect of ownership structure in firms of similar characteristics.

I defined the set of available stocks in the following way. For a given merger event, I first
identified the set of treated stocks. Then, looking at all the remaining available stocks in
the compustat universe, I removed those that had been treated in a 5-year window around
the event. The stocks I was left with became part of the pool of potential matches for the
treatment stocks of that event. Using a propensity score, I identified in the potential match
dataset the stocks more closely related to our treated stocks. I repeated the same technique

for all the merger events and stacked the matched stocks together in the final dataset.

3.4 Results

There does not exist a perfect proxy of the firms’ operational risk level. To provide a
convincing picture of firms’ risk-taking behavior, I introduced three potential measures of
firms’ risk taking. In the first section, I considered the prediction of ownership structure
on the variance of return on assets (ROA) and the variance of return on sales (ROS). I
measured the variance of those metrics over 8 quarters. Using accounting data enabled me
to avoid working with financial market data, which might capture factors other than firms’
operating policies. In addition to those accounting measures of risk, I used the variance of

the trailing 12-month stock returns.
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Table 52: Operational Risk Regression

(1) (2) (3) (4)
Vol. of ROS  Vol. of ROS  Vol. of ROA  Vol. of ROA
HHI 0.2876*** 0.2836%*~ 0.1029** 0.1014**
[3.69] [3.69] [2.14] [2.22]
Market Size 0.0006 0.0020
[0.30] [1.47]
Market Leverage 0.0153 0.0290***
[1.39] [3.46]
Tobin’s Q 0.0057** 0.0092%**
[2.31] [4.22]
Inst. Ownership 0.0049 -0.0123*
[0.55] [-1.89]
Firm Fixed Effect YES YES YES YES
Quarter-Year Fixed Effect YES YES YES YES
Observations 28668 28640 29811 29763
R? 0.6706 0.6730 0.7527 0.7603
First Stage Wald F-test 1054.502 1245.832 905.649 1077.444

t statistics in brackets, * p < 0.10, ** p < 0.05, *** p < 0.01
Errors are doubled clustered at the firm and quarter-year level.

The dependent variable is winsorized at the 2.5% and 97.5% percentile level.

In columns (1) and (2) I regress the ROS with the instrumented HHI (HHI) and the controls.
I obtain a coefficient of 0.2836 significant at the 1% level, which means that on average the
ownership concentration level is responsible for (0.2836 * 0.113) 3.2% of the risk level. Also,
for a one standard deviation increase in HHI I obtain a (0.2836 * 0.119/0.197 ) 17,1% of a

standard deviation increase of the volatility of ROS.

In columns (3) and (4), I use the same regression on the ROA. I obtain a coefficient of
0.1014 significant at the 5% level, such that on average the ownership concentration is
responsible for 1.3% of the volatility of ROA. In addition, a one standard deviation in
ownership concentration leads to a (0.68 * 0.119 ) 42.15% of a standard deviation increase

of the volatility of market returns.

3.4.1 Market Proxy for Operational Risk

In this section, I used the volatility of equity returns to proxy for operational risk.
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Table 53: Market Risk Regression

(1) (2)
Vol. of Returns  Vol. of Returns

HHI 0.6806*** 0.6505***
[2.66] [2.80]

Market, Size -0.0007
[-0.16]

Market Leverage 0.0785%**
[3.26]

Tobin’s Q 0.0068
[1.19]

Inst. Ownership -0.0077
[-0.39]
Firm Fixed Effect YES YES
Quarter-Year Fixed Effect YES YES
Observations 35861 35837
R? 0.6779 0.6806

First Stage Wald F-test 823.628 0954.364

t statistics in brackets, * p < 0.10, ** p < 0.05, *** p < 0.01
Errors are doubled clustered at the firm and quarter-year level.

The dependent variable is winsorized at the 1% and 99% percentile level.

I obtain a coefficient of 0.6505 significant at the 1% level, which means that on average
the ownership concentration level is responsible for (0.6505 * 0.113) 7.35% of the risk level,
when measured using market returns. Also, for a one standard deviation increase in HHI I
obtain a (0.2836 * 0.119/0.197 ) 17,1% of a standard deviation increase of the volatility of

the monthly returns.

3.5 Investment Policies

Although investment policies do not perfectly capture firms’ risk-taking decision, risk-taking
behavior of firms can partially translate into the investment policy of firms. One must
be careful about relating risk-taking behavior with investment policies because of risk-
shifting behavior. Indeed, firms could simultaneously increase their level of investment

while changing the nature of their investment portfolio by replacing risky projects by safer

Capex+RD

ones. For the analysis, I proxy the investment decisions with the ratio of 7 F7-==.
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Table 54: Investment Behavior

(1) (2)
(Capex +RD) / Asset  (Capex  RD) / Asset
HHI 0.6103** 0.6377***
[2.23] [2.94]
Market size -0.0070
[-1.55]
Market Leverage -0.0226
[-1.12]
Tohin’s 3 0.0267***
[4.31]
Institutional Ownership 0.0219
[1.06]
Firm Fixed Effect YES YES
Quarter-Year Fixed Effect YES YES
Observations 30055 30011
R? 0.8620 0.8750
First Stage F-test 745.828 927.691
I statistics in brackets, * p < 0.10, ** p < 0.05, *** p < 0.01
The dependent variable is winsorized at the 1% and 99% percentile level.

Errors are doubled clustered at the firm and quarter-year level.

I obtain a coefficient of 0.6377 significant at the 1% level, which means that on average the
ownership concentration level leads to a ratio of (0.6377 * 0.363) 0.231%. Also, for a one
standard deviation increase in HHI I obtain a (0.6377 * 0.119/0.377 ) 20.1% of a standard

deviation increase in investment.

3.6 Robustness Analysis

One key concern about the results, is that the merger might have been motivated by posi-
tions that represent a large portion of the merging institutional shareholders. It is indeed
plausible that when those funds merge together they consider the effect of the merger on
their most important positions. To control for this potential problem, the analysis has been
rerun including only the stocks that are among the smallest quartile of their portfolio size.
After implementing this additional specification, I found that the results presented in the

above section are robust to this additional specification.
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Table 55:

Robustness: Investment Behavior

(1) (2)
(Capex RD) / Asset  (Capex RD) / Asset

HHI 0.5762%** 0.5615%*

[2.64] [2.07]
Mkt Size -0.0083*

[-1.75
Mkt Leverage -0.0287

[-1.38]
Tobin’Q) 0.0265%*

[4.13]
Inst. Ownership 0.0156

[0.77]
Firm FE YES YES
Quarter-Year FE YES YES
Observations 29670 29714
R? 0.8761 0.8623
First Stage F-test 927.691 745.828

t statistics in brackets

* p < 0.10, ** p < 0.05, *** p < 0.01

Errors are doubled clustered at the firm and quarter-yvear level.

Table 56: Risk and Volatility

1)

(2) (3) (4) (5)

Val. ROS Veal. ROS \-"ol.‘ ROA  Vol. ROA  Vol. Returns

(6)
Vol. Returns

HHI 0.3138**  0.3121*** 0.1127* 0.1124** 0.7062** 0.6792**=
[3.70] [3.69] [2.29] [2.43] [2.53] [2.62]
Mkt Size 0.0002 0.0017 -0.0006
[0.10] [1.17] [-0.11]
Mkt Leverage 0.0264* 0.0315%** 0.0738%**
[1.93] [3.69] [2.95]
Tobin’Q) 0.0119%** 0.0112*** 0.0070
[3.02] [4.90] [1.20]
Inst. Ownership 0.0065 -0.0090 -0.0075
[0.59] [-1.39] [-0.36]
Firm FE YES YES YES YES YES YES
Quarter-Year FE YES YES YES YES YES YES
Observations 28253 28225 29451 29403 35692 35668
R? 0.6900 0.6925 0.7525 0.7617 0.6711 0.6737
First Stage F-test  1051.163  1202.469 888.954 1023.132 833.486 931.757

I statistics in brackets

* p < 0.10, ** p < 0.05, *** p < 0.01

Frrors are doubled clustered at the lirm and quarter-yvear level.
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Table 57: Robustness: Issuance

(1)
Equity Issuance

(2)

Equity Issuance

(3)

New Debt Issnance

(4)

New Debt Issuance

HHI -0.0971** -0.1212%%* 0.0733 0.0797
[-2.03] [-3.02] [0.98] [1.03]
Mkt Size 0.0099*** 0.0037*
[8.51] [1.97]
Mkt Leverage 0.0649%** -0.0195**
[10.59] [-2.18]
Tobin’Q) 0.0017 0.0032*
[1.39] [1.69]
Inst. Ownership -0.0300*** 0.0116
[-5.33] [1.44]
Firm FI YES YES YES YES
Quarter-Year FEE YES YES YES YES
Observations 36864 36809 36736 36684
R? 0.0687 0.0736 0.1468 0.1520
First, Stage I-test 755.404 874.688 766.467 881.690

{ statistics in brackets
*p <010, ¥ p<0.05 *** p <001

Errors are doubled clustered at the [irm and quarter-year level.

3.7 Conclusion

The merger of financial holdings provides a plausible natural experiment to obtain exogenous
variation in ownership concentration. Using the implicit level of ownership concentration
before the merger is effectively implemented, I obtain the exogenous variation of the HHI,
enabling me to assess the causal relationship between ownership structure and firms’ risk-

taking behavior.

The research results indicate that ownership concentration is related to firms’ risk-taking
behavior when considering three different proxies of risk taking (i.e. standard deviation of
ROA, standard deviation of ROS, and standard deviation of monthly equity returns). In
addition, ownership concentration has a strong and significant effect on firms’ investment
policies. In support of existing theoretical results, ownership structure appears to be of first

importance to understand the nature of risk behavior in firms.
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This research does not identify the nature of the policies leading to an increase in risk tak-
ing. A natural extension to this work should investigate through which channels managers

increase their risk exposure.
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