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Abstract 

Increasing bandwidth-delay product of high-speed wide-area networks is  well-known to  make 
conventional dynamic t ra f i c  control schemes "sluggish". Still, most existing schemes employ 
dynamic control, among which T C P  and A T M  Forum's rate-based flow control are prominent 
examples. So far, little has been investigated as t o  how the existing schemes will scale as band- 
width further increases up to  gigabit speed and beyond. OUT investigation in this paper is the 
first t o  show that dynamic control has a severe scalability problem with bandwidth increase, and 
to  propose an entirely new approach to t ra f ic  control that overcomes the scalability problem. 
The essence of our approach is  i n  exercising control in bandwidth domain rather than t ime do- 
main,  .in order to  avoid t ime delay in  control. This  requires more bandwidth than the timed 
counterpart, but achieves a much faster control. Furthermore, the bandwidth requirement is  not 
excessively large because the bandwidth used would have been idled i f  dynamic control were used. 
Eflectively, we trade bandwidth for smaller control delay and we call our approach Bandwidth- 
Latency Tradeo#(BLT). While the control in existing schemes are bound to  delay, B L T  is  bound 
t o  bandwidth. A s  a fallout, BLT scales tied to  bandwidth increase, rather than increasingly dete- 
riorate as conventional schemes. Surprisingly, our approach begins to  pay off much earlier than 
expected, even from a point where bandwidth-delay product is  not so large. For instance, in a 
roughly AURORA-sized network, B L T  far outperforms T C P  on a shared 150Mbps link, where 
the bandwidth-delay product is  around 60KB. In the other extreme where bandwidth-delay prod- 
uct is  large, B L T  outperforms T C P  by as much as twenty t imes in  terms of network power 
in  a gigabit nationwide network. More importantly, B L T  is desdgned to continue to  scale with 
bandwidth increase and the performance gap is  expected to  widen further. 

1 Introduction 

With the onset of high-speed wide-area networks, a significant portion of ongoing research is be- 

ing devoted to efficiently support nonreal-time data traffic. To mention a few, TCP running on 

ATM network testbeds exposed some problems yet to be solved in interfacing with ATM[RF94, 

oAm1941, ATM/AAL-level congestion control mechanisms such as link-by-link flow control[KC94] 
and rate-based traffic management[YH94] have been proposed to control ABR traffic congestion, 

and switch algorithms have been investigated to support transport layer data traffics over ATM 



networks[FJ93, Flo941. One big open question in supporting data traffic on very high-speed 

networks, however, is if conventional traffic control mechanisms can fully exploit large band- 

width provided by underlying high-speed fabric, such as ATM networks. Leaving other prob- 
lems, such as how to implement TCP/IP on ATM standards/implementations, to  be addressed by 

others[oAml94, RF941, we concentrate on a more fundamental aspect of the probleni: whether the 

conventional way of controlling source rate can still be effective over upcoming larger bandwidth- 

delay product networks. Indeed, whether window-based or rate-based, and whether on transport 

layer or on lower(i.e., ATM/AAL) layer, recently proposed methods all seem to adopt dynamic 

source rate control[Jac88, KBC94, YH94, HKM93, RJ901. Although it is well-known by now that 

large bandwidth-delay products make traditional dynamic rate control LLsluggish"[Kle92], there 

has been little effort to  investigate existing methods' scalability with ever increasing bandwidth- 

delay products. A few previous works address this problem only limitedly, e.g. mainly for LAN 

environment[KC94], or with infinite source assumption[KMT93], or in networks with relatively 

small bandwidth[MK92]. Therefore, a more generalized and in-depth investigation on this issue is 

needed. Moreover, recent researches show bursty nature of data traffic is not mitigated by traffic 

aggregation. In fact, aggregating bursty data streams typically intensifies it, instead of smoothing 

it[LTWW93, GW941. So future high-speed networks will see intensified burstiness contributed by 

many bursty traffic sources. Also, the burstiness will exist at every time scale, from milliseconds 

to minutes to  hours, so load fluctuations that are shorter than round trip time will be frequent. 

This is bad news to conventional feedback(dynamic) traffic control because no feedback control can 

deal with a congestion that is shorter than its feedback loop[Jai90]. Conversely, the conventional 

schemes will not be able to  exploit temporarily available network bandwidth left by load fluctua- 

tion, where even a relatively short fluctuation will amount to large data size(that could have been 

transported) in large bandwidth-delay product network, again causing throughput to  fall. 

In this paper, as a first step, we investigate the effect of large bandwidth-delay product on 

dynamic window protocols such as TCP, show the scalability problem, and then attempt to  develop 

a new approach to  overcome such problem. We take an entirely different and novel approach to  the 

traffic control to cope with large bandwidth-delay product with better scalability. Increases in the 

bandwidth will logically lengthen the feedback loop because while more data is transmitted during 

a given time interval, control speed cannot be accelerated due to speed-of-light delay. Slow feedback 

control will get even slower with further bandwidth increase. Although bandwidth increase creates 

this problematic trend, if there is a way to appropriate this bandwidth back to  quicken the control, 

we would have more resource to mobilize to  solve the problem. Moreover, we would not need to  

worry about scalability of such approach because with bandwidth increase, it would also scale. 

The main purpose of this paper is to  show that this is feasible. To make a long story short, we 

propose to  do dynamic control in bandwidth domain, rather than time domain. We will be thereby 
trading bandwidth for smaller control delay, hence obtaining hopefully better performance. So our 

approach is called Bandwidth-Latency Tradeoff(BLT; pronounced "Blitz"). The details of how this 



approach can be materialized in the context of window control is discussed in section 3, but first, 

to  state our goals of this investigation: 

1. to  develop a traffic control methodology to  overcome large bandwidth-delay product 

2. to  establish the relationship between 

a bandwidth 

a propagation latency 

a transported data size 

a traffic model in high-speed network, e.g., self-similarity, etc. 

to  determine the range where the above methodology is feasible 

The organization of this paper is as follows: Section 2 briefly surveys a few typical window- 

based congestion control schemes. We give the conceptual framework of bandwidth-latency tradeoff 

in section 3. In section 4 we show simulation results comparing window-based bandwidth-latency 

tradeoff technique and ordinary TCP. Section 5 summarizes our discussion and lists future works. 

2 Related work 

In this section, we briefly survey dynamic traffic control algorithms with emphasis on window-based 

schemes. 

2.1 DECbit 

DECbit [RJSO] is one of the earlier congestion avoidance scheme that require cooperation of network 

switches and traffic sources. In the DECbit binary feedback scheme, the congested network switches 

set congestion indication bit in the network layer header of a data packet, where the congestion is 

indicated by the average queue length greater than or equal to 1. Non-congested switches ignore 

the congestion indication bit field. At the destination, the bit is copied into the transport header 

of the acknowledgment packet which is then transmitted to  the source. The source updates its 

window once every two round-trip times, and if at least 50% of the bits examined are set during 

the interval, the window size is reduced from its current value W, to ,D x W,. Otherwise it is 

increased to W, + a ,  where p = 0.875 and cr = 1. The scheme uses minimal amount of feedback 

from the network, with just one bit in the network layer header to indicate congestion. The scheme 

addresses the important issue of fairness and achieves the goal t o  some extent. 

When there is a transient change in the network, DECbit is designed to  adapt t o  the change and 
converge to  the efficient operating point. But in [KKM92], the authors show that DECbit is quite 

ignorant of short transient load fluctuations in the network unless the change lasts a long time. 

Also, it is shown that DECbit's additive window increase scheme is sometimes too conservative. Its 



slow linear increase causes the file transfer time to  far exceed those of all otlzer schemes compared 

in [KKM92], including TCP. 

2.2 TCP congestion control and avoidance algorithms 

For congestion control in TCP, a series of successful optimizations on congestion detection and 

avoidance algorithms have made TCP increasingly more efficient compared with other window- 

based methods such as DECbit. Jacobson and Karels[Jac88] introduced Slow Start and Congestion 

Avoidance algorithms to TCP. When a connection begins, or a timeout occurs for a data segment, 

TCP starts to reopen congestion window from 1 segment until it hits half of the previous window 

size that caused the loss of the segment and subsequently the timeout. Then a separate algorithm, 

Congestion Avoidance, takes over t o  increase the window size roughly by 1 segment per roundtrip 

time. Albeit cautious, Slow Start exponentially increases the window size, while Congestion Avoid- 

ance increases it linearly. By probing the next packet loss point slowly, Congestion Avoidance 

attempts to  maximize the inter-loss interval, thereby improving throughput. If only Slow Start is 

used, frequent packet loss will lower the throughput. In the Tahoe version of TCP(4.3-tahoe BSD 
TCP)[Jac88, Ste941, another algorithm, Fast Retransmit, is also included to  discover packet loss 

without waiting for timeout of the lost packet. If three duplicate ACK packets are received, the 

source decides that a packet has been dropped. The source uses both Fast Retransmit and retrans- 

mission timers to  detect packet losses. In Reno version of TCP, Fast Recovery algorithm[Jac90] is 

added. With the Fast Recovery algorithm, the TCP source does not slow-start after inferring (by 

Fast Retransmit) that a packet has been dropped. Instead, the TCP source effectively waits for 

half round trip time and halves the congestion window. The source retransmits the dropped packet 

and uses incoming duplicate ACKs to  clock outgoing packets. TCP "Vegas"[BOP94] further refines 

TCP in three points. First, it improves upon retransmission algorithms. It uses time stamp to get 

more accurate RTT estimate, and does not necessarily wait until 3 duplicate ACKs arrive to  begin 

retransmission. Second, it exercises a certain proactive congestion avoidance measure. Vegas keeps 

track of expected throughput and actual sending rate, and compares them as it tries t o  control 

the sending rate by linearly changing window size. Third, Vegas modifies Slow Start to  detect 

congestion during the Slow Start phase. To detect and avoid congestion during slow-start, Vegas 

allows exponential growth only every other RTT. When the actual rate falls below the expected 

rate by a certain amount, Vegas changes from slow-start mode to  linear increasejdecrease mode. 

A recent proposal incorporates explicit congestion notification(ECN) in TCP[Flo94, FJ931, so 

that TCP is informed of incipient congestion without dropping any packet. There have been a 

range of rate-based congestion control schemes for ATM layer or higher layer with ECN[FJ93, 

RJ90, New941, and this scheme assumes such information is available from lower layers. The 
advantages of ECN approach for TCP are first, unnecessary packet drops can be avoided, and 
second, sources can be informed of congestion fairly quickly. The disadvantages are the absence of 
ECN field in IP packet headers and the uncertainty of the delivery of the ECN if the ACK packet 



with the ECN message is itself dropped by the network. In LAN environment, TCP with ECN 

showed higher throughput for bulk data transfer, and low delay for delay-sensitive data traffic such 

as telnet. But for wide-area networks, the simulations suggest that ECN does not give significant 

advantages. This is because the TCP clock granularity is less likely t o  be a problem in wide-area 

network time scale, and similarly, the additional delay of waiting for a retransmit timer timeout has 

a less significant impact on performance. However, as network speed increases and TCP overhead 

reduces, this scheme could be potentially rewarding. 

In high-speed network environment where propagation latency is large, we expect that not only 

additive-increase/multiplicative decrease can be too slow but even Slow Start can also be slow. 

Although Slow Start opens window exponentially, when the maximum window size is large due to 

large bandwidth-delay product, it still takes significant number of round trip times to  open up a 

large enough window. In high-speed networks, the available bandwidth keeps growing, and the size 

of a significant number of files will be on the order of a few roundtrip time x bandwidth. Our 

experience with Internet shows that "small" files are the major source of data traffic[CDJM91]. 

In this sense, one RTT increase per one segment window size increase in TCP Vegas may not be 

desirable especially in high-speed networks. 

Another possible source of problem is in the timer granularity. When queueing delay is decreas- 

ing and the roundtrip delay is less than a few tens of milliseconds, an average of 250 milliseconds 

for the retransmission timer timeout to expire is a long time, for similar reasons discussed in the 

above paragraph. 

And finally, as with all other window-based control schemes, if load fluctuation is shorter than 

RTT, which is intensified under self-similarity assumption and bandwidth increase, TCP may be 

unable to  react timely to  such fluctuations. 

2.3 Dynamic window control in ATM networks 

So far we have looked at transport level congestion control algorithms. For completeness, we will 

look at window control algorithms for newly emerging ATM networks. 

Hahne et al.[HKM93] envision a wide-area ATM network that offers a sliding window-controlled 

service for data. In their scheme, end-to-end cell window size is dynamically changed at intervals 

as short as one round-trip time. The window size change request affects the buffer size reserved 

for the particular connection at the network switches. They showed that the window protocol and 

higher layer protocols such as TCP work well together. 

The above work resembles a credit-based link-by-link flow control[KBC94], except that it is an 

end-to-end rather than a link-by-link scheme. The link-by-link scheme is Flow-Controlled Virtual 

Circuit(FCVC) and it is one of the proposals for ATM flow control[KC94]. The adaptive credit allo- 

cation mechanism is one variation of the original FCVC proposal that dynamically changes switch 
buffer allocation according to  a connection's usage of reserved bandwidth. The original credit-based 

flow control method is a sliding window mechanism, and the adaptive allocation algorithm allows 



the window size to  change dynamically during the conversation. It is needed not only to  reduce 

buffer requirement of the original scheme, but also t o  cope with data traffic that cannot be easily 

pre-characterized with parameters[New94], where the characterization is a requirement to  allocate 

enough buffer that guarantees the absence of packet loss. 

Although not window-based, there are a few rate-based proposals for ATM flow control[YH94, 

New93I1. One notable thing about these rate-based flow control schemes is that they also adopt 

additive-increase/multiplicative-decrease dynamic rate change that strongly reminds us of window 

size changing mechailisms of transport layer protocols like TCP and DECbit. In this paper, we 

limit our discussion to  window protocols, postponing the discussion on how to apply our approach 

to rate-based protocols for a future paper. We also omit the discussion on the ATM level ilow 

controls. Although the implications of our discussions are not limited to  any one particular layer of 

protocol stack, we concentrate on transport layer traffic control in this paper. We believe that it is 

tjme to  look into the scalability of existing transport layer traffic control schemes especially when 

there are active ongoing researches on how to implement existing transport layer protocols such as 

TCP on the emerging high-speed ATM networks[RF94, BD941. This is with the expectation that 

TCP will remain as the prime transport protocol for the future data traffics, and it will be very 

hard to  deploy any pure ATM network flow control in apparently heterogeneous network of the 

future[New94, Cro941. 

3 Concept of bandwidt h-latency tradeoff 

3.1 Problem definition 

The reason that dynamic congestion/flow control will be inadequate in very high bandwidth-latency 

product network is twofold. With increasing bandwidth and constant propagation delay, the logical 

feedback control loop keeps lengthening[Tou93]. This (physics) is the first reason why dynamic 

feedback congestion control will not scale, i .e . ,  the control is bound to  the delay rather than the 

bandwidth. With this irreversible trend the feedback controls will continue t o  lag, and may not be 

able to  react to  the network condition timely. One thing that would make control lag worse is self- 

similarity, which means we should expect intensified burstiness at all time scale[LTWW93, GW941. 

Namely, in our high-speed wide area backbone, the load will fluctuate fast and violently even at  

small time scale. The control depending on slow feedback simply cannot adjust to, or exploit, such 

changes. 

The second reason is in the cautious nature of dynamic controls. Most window control schemes 

and some rate control schemes follow conservative rate changing principles. DECbit uses additive- 

increase/multiplicative-decrease[RJ90], and so does rate-based ATM traffic control[YH94, MK92], 

and TCP[Jac88] linearly increases window size in Congestion Avoidance phase while exponentially 
decreasing it upon packet loss. The reason behind this conservativeness is the fact that the average 

'Recently ATM Forum voted to support rate-based flow control among many proposals[New94] 



queue length at the bottleneck switch begins to increase exponentially upon congestion, and the 

system will stabilize only if the traffic sources throttle back at  least as quickly as the queues 

are growing[Jac88]. Since symmetric multiplicative increase will cause wild oscillation and poor 

throughput, the additive increase is used. Although safe, additive increase can be too conservative 

to  exploit large bandwidth that dynamically becomes available. For instance, in [MK92], DECbit is 

shown to perform poorly due to  this. TCP showed better performance than DECbit, owing to  the 

exponential increase element, Slow Start. Slow Start exponentially opens a congestion window just 

after packet loss is indicated by retransmission timer timeout, or at the beginning of a connection. 

Although exponential increase is fast enough for small propagation delay networks, tlze initial 

part of the increase can still be slow under large propagation delay, especially considering large 

bandwidth and finite data size being transported. Some rate-based schemes also use a certain form 

of "slow-start" [KKM92]. 

In essence, conventional traffic control schemes have inherent limitations that do not keep up 

with bandwidth increase. We aim to show how this limitations are manifested, and quantify the 

boundary where the limitations call for totally different way to  control traffic. We also intend 

to discuss a straw-man design of the new approach, and compare its performance with that of 

a conventional scheme, TCP. But first, we discuss a methodology to overconie the effect of large 

bandwidth-delay product in this section. 

3.2 Conceptual solution: control in bandwidth domain 

We will later show that delay will limit the usefulness of conventional feedback controls via exper- 

iment in section 4, but until then let us just suppose it is the problem. With this assumption, we 

search for a methodology to overcon~e the curse of propagation delay which is relatively increasing 

as bandwidth increases. 

Obviously the simpliest (but unreal) solution to eliminate the feedback delay would be to 

"move" the control point(i.e. congestion control algorithm at the source) to  where the control 

action actually applies (i.e. the congested switch), eliminating the physical distance barrier. In 

other words, the traffic source closer to the congested switch will be able t o  react to the congestion 

faster than a source father located. Rather than working on an elaborate control mechanism to 

compensate for the effect of propagation delay, which existing schemes attempt to  do, our approach 

advocates this approach of moving the control point t o  the controlee, but only virtually. 

In our bandwidth-latency trade08 (BLT; pronounced "Blitz") approach2, a data stream to the 

network carries multiple performance parameter values at the same time. To create the parameter 

space, the source uses the bandwidth otherwise wasted unused, due t o  the inherent conservativeness 

of dynamic control methods as described in Section 3.1. The controlee(switch/destination) can then 

2~~~ is totally different from NETBLT[CLZ87], a bulk d a t a  transfer protocol. Although BLT and NETBLT share 
the common philosophy that  dynamic window change is too slow to achieve high throughput, NETBLT advocated 
rate-based flow control and became one of the progenitors of the current rate-based protocols which exercise more 
sophisticated rate  control. Application of BLT to rate-based schemes will be discussed in future work. 



choose an appropriate parameter value that exactly fits the network condition at the time of its 

control action. Since the source yields the right to  exercise the control action to  the controlee, the 

control point is effectively "moved" to  where the controlee is. This is only rational because it is 

the controlee that knows exactly which control action should be taken at any moment. Now that 

the control action takes place immediately at the controlee, this approach does not suffer from long 

propagation delay, but at the expense of bandwidth used in creating the multiple parameter value 

space, hence there is a bandwidth-latency tradeoff. 

To a window-based congestion control, the 'performance parameter' is congestion window size. 

BLT dictates that a data stream carries multiple number of windows with different sizes. Then 

network switches(possib1y including the receiving end of the connection) determine which window 

size is acceptable given the current network load. This saves time for a congested switch to  commu- 

nicate with the traffic source, so faster control can be achieved. In particular, adaptive rate change 

algorithms such as Congestion Avoidance and Slow Start become unnecessary. In BLT, the source 

does not need to blindly "feel for" a maximum acceptable window size over time because a data 

stream provides entire menu of window sizes or source rates to the switch simultaneously and the 

switch simply chooses one. This approach gives results as if the source transmitted with precisely 

the largest window size that the switch can accept on the first try. 

3.3 A window-based incarnation of BLT 

In this section, we design a window-based congestion control scheme based upon the bandwidth- 

latency tradeoff approach. The design guidelines are as follows: 

a By overcoming the inherent problem of dynamic feedback control, the new scheme should 

improve performance over conventional schemes. And it should scale better with bandwidth 

increase. Also, in a small bandwidth-delay product environment its performance should not 

be worse than in conventional schemes. 

a It should not cause bias or unfairness between connections or between different traffic char- 

acteristics any more than conventional methods. 

3.3.1 D a t a  s t r e a m  s t ruc tur ing  

With the above guidelines, we begin with how the source structures a data stream. Recollect that 

the essence of BLT idea is to  provide the entire spectrum of window sizes to  the network. So 

the only constraint in structuring a BLT data stream is that it should contain multiple number 

of windows with different sizes. We plan to investigate the performance implications of different 

window sizing schemes, but in this paper, we decided to use exponential increase in the window 

sizes, i.e., 

lW0l = 1 

IWil = y W i 2 1 



where IWkI is the size of kth window in packets and y is the increase ratio. We set y = 2, again 

deferring the effect of different values of y until future work. And of course, we could use additive 

increase so that, 

The exponential increase in BLT should not be considered to  be emulating Slow Start in TCP, 

and as briefly mentioned in Section 3.2, additive-increase/multiplicative decrease is also irrelevant 

here because window size probing is not necessary in BLT. Window sizing in BLT is just a way 

for the source to  structure a data stream into different sized windows so that network switches can 

select one appropriate size among them, and there is no reason that BLT should emulate any of 

the dynamic window resizing algorithms. 

If p is the first packet in the newly opened portion of the congestion window, we will have 

the windows with exponentially increasing sizes under the current structuring scheme as shown in 

Figure 1 where the file is q in packets. Conceptually, the sender sends the entire (remaining) file 

Wk : (p, p +  1, a * . ,  p + 2 k  - 1) 

. . .  
0 . .  

w, : (p, p +  1, p + 2 ,  . . .  9 q) 

Figure 1: Conceptual structure of a BLT stream carrying q - p f 1 packets in n different size 
windows, y = 2 

at once. All windows Wo..Wn are sent out at the same time to the network so that the network 

switch can pick one of the window sizes to pass. However, it is not clear as shown in Figure 1 

as to  how to schedule packet transmissions of each window in reality. Moreover, there are many 

redundant transmissions of the same packets. For example, packet p is transmitted n + 1 times 

in the above example. Finally, it would make the switch simpler if the switch does not need to  

actively decide which window size to pick among different window sizes, since this will typically 

take computations based on (average) queue length, number of active connections, etc. So, if we 

restructure and order the windows as presented in Figure 2 and let W: be transmitted followed by 
W,!+l, the scheduling problem is simplified and the redundant transmission problem vanishes. The 

most interesting aspect in the above implementation is that while redundant transmission problem 
is eliminated, virtually we still send out the same entire window spectrum to the network that 



Figure 2: Actual structure of the BLT stream 

was enumerated in Figure 1. This is because when the switch takes in a series of windows, e .g .  

Wk = (WA, Wi, . . . , WL), this set of consecutive windows will approximate one of the original 

windows, i.e., 

lwkl = \wk+ll - 1 

This results as if the switch selected WkS1 (except packet p+2k+2 - 2) as the window size that it can 

maximally take in from the original window space given in Figure 1. Note than any window sizes 

shown in Figure 1 can be approximated this way. By making the switch absorb the maximal number 

of packets that the switch can digest, we can exploit the dynamically available bandwidth left by 

fluctuating load. But note that the last part of Wk(or, approximately, Wk+l) can be cut short due 

to  queue overflow and some other reasons that will be discussed later. The acceptable number of 

consecutive windows, k, is implicitly determined by the queue size, without involving computations 

and associated data structures at the switch. One small advantage of using exponentially increasing 

window size is that even with a small number of bits, we can encode a large number of packets. 

With T bits, we can give priorities to 2" windows, which in exponential scheme is 2; packets. 
With only T = 4, we can encode 216 - 1 = 64K packets. 

No matter how clever the ordering scheme is, if the consecutive window Wk is transmitted in 

a burst without any information on the structure of the data stream, the stream will overflow an 

unsuspecting switch and block other connections from entering the switch buffer. Therefore, we 

need a mechanism to signal the degree of opportunism of the packets in a stream. In our ordering 

schemes, k value denotes "warped" round trip times. In TCP, Wk would be sent after k - 1 

round-trips a t  its earliest. But in BLT it is transmitted in the first stream(burst), k - 2 round trip 

times earlier3. So the larger the k ,  the more opportunistic the packets in Wk are. One mechanism 

to discriminate against more opportunistic packets is to  give lower priority t o  such packets. We 
simply consider k as the priority of Wk, with larger Ic representing lower priority. In other words, 

3This is a bad example. Here BLT is not emulating TCP Slow Start. The exponential increase of window sizes is 
only a coincidence. 



the priority simply encodes how much earlier the particular window is being transported than its 

time. In Figure 3, we show how TCP congestion window size varies over time with the example of 

Slow Start and how BLT windows are transmitted over time. 

I 

priority ........ 16 

c RTT d t 

Figure 3: Comparison of TCP(in Slow Start) and BLT stream structures 

3.3.2 Switch queueing discipline 

Once the data streams have this structure, we need a priority discarding discipline at  network 

switches to  impose higher dropping probability on more opportunistic packets. In this paper, we 

assume that the switches work with the following algorithm: 

1. if 7 fuEl(Q), then use FIFO discipline regardless of priorities. 

2. e l s e  /* full * /  

(a) if V j  P(pkt) > P(Q[j]) ,  then drop pkt. 

(b) e l s e  

i. Find max(j)  such that P(pkt) < P(Q[j]) .  

ii. for k = j + 1 to Q S I Z E  

Q [k - 11 t Q [k] / *  advance */  
iii. &[QSIZE] + pkt /*  insert at the end */ 

where pkt is the incoming packet, Q is the switch queue, and P is the priority function. This 

algorithm is not the only possible instance that fits the BLT idea, but we use the above algorithm 

in this paper. The algorithm is very similar to the model analyzed in [PF90, THP931. In fact, the 

algorithm has some room for improvement. For instance, when the queue is full the first packet 

from the end that has a lower priority, rather than the lowest priority packet in the entire queue, is 

dropped. For fairness' sake, the algorithm should have dropped the lowest priority packet. We will 

correct this feature in our future work. From the algorithm description, we can easily notice that 



longer bursts will be punished when a new stream comes on. This is only fair, and gives shorter, 

interactive traffic priority over non-interactive bulk transfer type traffic. 

In terms of implementation, the above algorithm is much more complex than simple FIFO, but 

one approach that allows for the implementation of the policy considered in this paper is discussed 

in [Chagl]. We assume in this paper that the above algorithm can be implemented in hardware 

in the network switches. We are currently investigating if BLT can be applied to  other switching 

disciplines. We believe priority FIFO scheduling is not the essential part of BLT scheme, and 

BLT could be applicable to  other switching disciplines that exercise a certain control action for 

congestion control. 

3.3.3 Priority reset 

In the current version of our scheme, a source transmits all the remaining data in one single burst. 

We assume the same cumulative acknowledgement(which is used by TCP) is used at  the receiving 

end. When a packet n is dropped at one of the network switches, the loss will be signaled to  

the sender explicitly via duplicate ACKs in case out-of-order packets arrive at the destination, 

or implicitly via timeout4. When the packet drop is signaled, whether or not the source is still 

transmitting the stream n belongs to, the source starts another burst (quitting the old one in case 

it was transmitting) starting from n. However, this time, it gives priority 0 to  packet n. In fact, 

the entire priority space is shifted over the sequence number space when ACKs arrive. So packet 

n + 1 and n + 2 gets priority 1, and so forth(Figure 3). 

Since entire files can be transmitted in one burst, it may seem that our approach will aggravate 

congestion in the network. It is true that our BLT sources generate large bursts especially in the 

earlier part of the transmission. However, in our experiment shown in Section 4, we will see that 

the opposite is true. Namely, we observed lower average utilization at the bottleneck switch with 

BLT scheme than with TCP. This can be explained by two reasons. First, BLT sources finish 

transmissions quickly. So on the average, fewer BLT streams linger in the network than TCP, 

with the same arrival rate of the connections. With more active connections in the systems, TCP 

faces higher probability of packet drops and associated timeouts, Slow Starts, shorter Congestion 

Avoidance phases, and so forth. This again leads to more new connections coming into the system 

before old connections finish their transmissions, sustaining high level of utilization. Second, all 

the BLT sources get a relatively fair chance at the switches owing to  the prioritizing schemes. One 

long transmission cannot occupy the switch queue, which leads to  higher average response time 

and hence higher utilization as explained in the first reason. 

Although we only consider file-transfer like traffic in this paper, we can easily extend the priority 

reset scheme to interactive traffic. Whenever a user submits new data, we treat it as a new burst. 

So we give the packets in the new burst starting from priority 0. But we do not reset priority for 

any data remaining in the transmission buffer at the sender, submitted prior to  the current data. 

4We use the same acknowledgement scheme as TCP just for fair comparison. 



The remaining data in the transmission buffer is only reset when packet loss is signaled as discussed 

above. This way, short interactive traffic gets higher priority over bulk data transfer, withing the 

same priority reset scheme designed above. 

In this paper we only intend to test the feasibility of BLT approach, so we do not attempt 

t o  optimize the way BLT transmits. But in future version we will investigate how to avoid this 

obvious overhead. 

3.3.4 Under ly ing  assumpt ions  

BLT needs more assumptions than TCP to  work. First, all the sources need to  follow the priority 

encoding scheme described above. Otherwise, one abusive source marking all its packets with 

highest priority will deceive network switches to pass its packets before others. One separate 

but related problem with this is how to  prioritize other types of traffic. To real-time traffic we 

can simply give the highest priority as many approaches propose[KC94], but it is rather a tricky 

problem to decide which priority to  give to  non flow-controlled traffic, such as UDP. We could give 

lower priority t o  UDP-like traffics, but how low is one question. The problem is more difficult if we 

give the same treatment to UDP-like traffics as flow-controlled traffics. The second assuniption is 

regarding the switches. For BLT to work, every multiplexing point along the path of a connection 

should discard packets based on priority. The multiplexing points may work in multiple layers 

of the protocol hierarchy. If BLT works on a higher layer (although BLT concept is not limited 

to  a particular layer), then the priority information should filter down to lower layer and the 

multiplexing point working on the lower layer should discard its data PDUs based on the priority. 

If any one of the multiplexing point does not exercise priority discarding along the path of the 

connection, then it will soon overflow and BLT will not work. One counter-argument is that 

connection multiplexing/demultiplexing is disadvantageous because multiplexed streams must be 

treated identically. Feldmeier[Fel93] argues that multiplexing interferes with our ability to  provide 

only those services that are required, making high-speed protocol configuration difficult. It is also 

shown that less multiplexing/demultiplexing decreases processing cost while increasing memory 

cost. However, it is beyond the scope of this paper to address all these issues, and we only investigate 

the feasibility of BLT concept itself, assuming all the requirements are met and BLT is ready to 

work. And we will examine if BLT can outperform conventional schemes under such favorable 

assumptions. 

Finally, although not a necessary assumption for BLT, we assume throughout the paper that 

the sender is not the bottleneck. In other words, the sender has enough bandwidth to  drive the 

network with BLT streams. The bottleneck is assumed to  exist in the network. This is realistic 

because the bandwidth of one high-performance workstation is comparable to a highspeed network 
bandwidth as of today. 



4 Simulation 

In this section, we investigate the feasibility of BLT approach by comparing its perforniaizce with 

that of TCP. The TCP we use in this experiment implements all the congestion control mechanisms 

used by Reno TCP, namely Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery. 

Also it has some Vegas-like features, which are time-stamping for more accurate estimation of RTT 
and immediate retransmission upon the arrival of 1 duplicate ACK5. 

One difference between our TCP emulation and other implementations is that our TCP is 

packet-oriented rather than byte-oriented. Also we assume the packet size to  be fixed. But such 

packet-oriented emulations of TCP have been extensively used in other research works without 

noticeable side-effects[RF94, MK921. As to  BLT, we use the window-based BLT discussed in Section 

3 without modification. 

4.1 Simulation setting 

The simulation setting in this investigation is intentionally simplified and generalized to  clearly 

observe the effects of a few important parameters, which could get diffused in a more complex 

environment. For instance, in configuring the simulated network we use only two parameters 

associated with bandwidth-delay product, i .e . ,  bandwidth and propagation delay. And in terms 

of workload, we also use only two parameters: mean arrival rate of connections and data size t o  

transfer. The network model is one of the simplest, with one bottleneck link as shown in Figure 

4, which is conceptually similar to  what is used in [FRW92]. Now we give the detailed description 

on our simulation setting beginning with the basic assumptions to  be used throughout the entire 

experiments . 

4.1.1 Some assumptions 

As we discussed in Section 3, we assume that traffic sources have enough bandwidth to  inject BLT 

streams into the network, and only consider the case that network is bottleneck. So, for example, 

we do not consider such case that multiple BLT source processes on the same host congesting a 

network interface, making the interface device a bottleneck6. 

We assume that a receiver has infinite buffer space, and therefore only the congestion window 

size matters. So our TCP emulation does not have the problem of insufficient receiver window size 

to  "fill the pipe". This makes sense because real TCPs also provide Window Scale option[JBB92] 

for the same purpose. 

In this experiment we limit our traffic characteristics to ftp-like bulk data transfer although 

future investigations will generalize it t o  include interactive and intermittent traffic(e.g., as in 

5 ~ n  our simulation, out-of-order packet delivery is not allowed, so 1 duplicate ACK is a non-ambiguous sign that  
a packet has been dropped. 

' ~ u l t i ~ l e  bottleneck case will be investigated in future work. 



[HKM93]). But by tuning file size parameter to have very small value, we expect to  get some insight 

on how the congestion control schemes will behave for interactive traffics. In fact, [CDJMSl] shows 

that 80% of all interactive conversations send as much data as the aberage bulk transfer conversation 

- although conversely it means that bulk transfer applications send a smaller amount of data than 

is often assumed. 

We only model transmission delay and propagation delay. Other delays such as operating sys- 

tem overhead, TCP overhead, hardware interface overhead are not modeled. This is t o  expose the 

inherent limit of the traffic control schemes more clearly. Considering the continuing improvement 

on processing power and the large magnitude of propagation delay compared with the other de- 

lays, we do not believe this assumption poses any significant problem on the implications of the 

experimental results obtained through this investigation. 

Figure 4 shows our model network. There are unspecified number of traffic sources whose 

traffic traffic 
sources destinations 

Figure 4: Configuration of the simulated network 

aggregate arrival rate to  the network is determined by mean arrival rate parameter. There is only 

one bottleneck link, which is between switches S1 and S27. Twice the sum of the link propagation 

delays(dl, d2, ds) determines propagation RTT. In this experiment we set dl = d2 = d3 without 

loss of generality. The switches have one (link bandwidth x link RTT) worth of buffer space, and 

all connections share the buffer. The packet size used is 500B, which is close t o  Internet packet 

size mean[CDJM91]. Finally, we assume that ACK packets cannot be dropped at  the switches. 

But in reality, ACK packets can be bundled, or even dropped when congestion occurs. In future 

investigation, we will loosen the assumption and allow ACK packets to be dropped. 

4.1.2 Network configuratioils 

To see the effect of bandwidth-delay product on the performance of congestion control schemes, we 

vary two parameters network bandwidth BWN and propagation delay D. We determine network 

configuration by the two parameters without changing the network topology given in Figure 4. 

Generally, we expect to see the following spectrum of configurations according to  given BWN and 

D : 

high bandwidth-delay product network: 

'switch S 2  is redundant as far as the experiments in this paper are concerned. 



- high BWN, large D 

medium bandwidth-delay product network: 

- high BWN, small D or, 

- low BWN, large D 

low bandwidth-delay product network: 

- low BWN, small D 

Specifically, we use nationwide network size of RTT = 30ms and AURORA testbed size of RTT = 

3ms as D values. For BWN, we use 15OMbps, and lGbps, with the bottleneck bandwidth BWb 

ranging from 5 to  $ t o  full BWN. Varying BWN from 150Mbps t o  lGbps, we intend t o  observe 

the scalability of the experimented schemes with increasing bandwidth. Also by varying BWb,  we 

intend t o  observe the effect of on the performance scalability. 

4.1.3 Workload 

To control the load on the network, we vary the arrival rate X of connections. The connections arrive 

with the inter-arrival time having exponential distribution, and generate file transfer-like traffic. 

'The major reason that  we do not consider interactive traffic in this paper is that  such traffic carries 

so little da ta  that more or less it is unaffected by flow control. For instance, Caceres et. al. showed 

that  about 90% of interactive conversations send less than 10KB bytes over a duration of 1.5 to  50 

minutes. Therefore interactive traffic is an inappropriate traffic class to  use in an investigation of 

flow/congestion control schemes. To get a good confidence interval quickly, we made all connections 

send the same sized file. The file size F in each simulation varies from lOIiB t o  100I<B t o  1 M B .  

Previous research on Internet traffic reveals that 75-90% of the conversations belonging t o  bulk 

transfer applications send less than 10ICB of data. Moreover, almost all bulk transfer size is less 

than 1 M B .  So our assumption on the file size faithfully follows the observation[CDJM91]. 

By varying X and F, we expect the following load spectrum: 

high load: 

large F with large X 

medium load: 

- srnall F with large X or, 

- large F with small X 

a low load: 

- sn~al l  F with small A.  



For each network configuration and each file size , we vary X until the utilization at the bottleneck 

node, p, approaches near 100%. 

4.1.4 Performance metrics 

Average response time R is the average of all (Tf,k - Ti,k), where Tj,k is the finished time and Ti,k 

is the arrival time of the kth connection to  the system. Namely, 

Response time has been used in [MK92] as the primary performance measure, easily quantifying 

the relative performance of a flow or congestion control scheme. Throughput 0 is the ratio of the 

number of finished connections to  the total time elapsed. Or, it is the ratio of transferred bytes to 

the total time elapsed. In this paper, we adopt the second convention, because we need to  unify 

the measure when F varies. So, 

where lckl is the file size in bytes that connection k carries and T is the total elapsed tinie to 

finish k connections. Once we get R and 0 ,  we can calculate network power[GHKP78]. The goals 

of maximizing throughput and minimizing response time are mutually contradictory in that all 

methods to  increase throughput result in increased response time as well and vice versa[JRSS]. 

Because it is clear that throughput and response time are really redundant metrics, they are 

combined into a single measure known as the network power, defined at any resource ass: 

A higher power means either a higher throughput or a lower delay in a given system; in either case 

it is considered better than a lower power. We can uniquely determine the power characteristics 

for a given system as shown in Figure 5 by only varying the load(X axis). So we compare the 

performance of two different systems, one using TCP and the other using BLT, in terms of the 

power characteristics by giving the same system configuration parameter values and varying the 

load. In the above formula, when a = 1,' the point at which the power is maximized is the "knee" 

of the delay curve, which is our desired operating point[RJSO]. Congestion avoidance schemes 

attempt to  operate the network at the knee of the overall response time curve. At this operating 

point, the response time does not increased substantially because of queuing effects. Furthermore, 

the incremental throughput gained for applying additional load on the network is small. Since 

the two measures 0 and R compete with each other, P has a single maximum if the system is 

'In this paper we abstract the whole network as a single resource and so the O and R above are system-wide 
throughput( total number of packets sent for all users divided by the total time ) and system-wide response time( 
averaged over all users ) giving us system y1ower[JR88]. 

9 ~ y  setting cr > I ,  one can favor file traffic by emphasizing higher throughput. Similarly, by setting a < 1 one 
can favor terminal traffic by emphasizing lower response time[JR88]. 
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Figure 5: Network performance as a function of the load(from [JR88]) 

lossless[Kle78]. Our system is l o s ~ l e s s ~ ~ ,  because a connection does not leave the network until it 

is finished. So for example if a system u has ten times the power of a system v(i.e. P, = 10 . P,), 

it could be because 0, = 2 0, and R, = ;R,, among numerous possibilities. Network power has 

been extensively used to  quantify network performance[RJ90, Kle791. 

Intuitively, power represents how far we can "push" the given network system to gain better 

performance, where the system is considered to consist of the physical bandwidth and the congestion 

control mechanism given in this paper. The increase of physical bandwidth will result in higher 

power anyway, but it is the efficiency of the congestion control mechanism that will determine 

the magnitude of power increase. A congestion control scheme that cannot effectively drive newly 

available network bandwidth will yield lower P than what can be achieved. In our paper, we use the 

network power as the primary performance measure that uniquely characterizes the performance 

of a congestion control scheme given the same raw bandwidth. 

One might ask why the response time matters in lOOKB data transfer because it should be 

a non-interactive bulk traffic. This, however, may not be true any more. Among bulk transfers, 

services like gopher, www, wais and other browsing/retrieval services are interactive, being classified 

as interactive bulk class[SCL93]. The data transfer size of one data item request in www for example, 

easily goes over a few tens of kilobytes. Researchers soon expect a widespread demand for an 

emerging generation of computer based applications that will expand such traffic class[SCL93]. 

In fact, the traffic of this type(especial1y www), absolutely exploded recently, in one observed site 

''Loss should not be confused with packet drops. Loss occurs when a connection arrives t o  the system and leaves 
without being completed. 



sustaining growth of 300-fold/year with no immediate signs of slowing down. And the volume of 

the traffic grew extremely rapidly by about a factor of 750 per year, even faster than the number 

of www connections. So the average volume of data of one www request is growing. At this pace, www 

traffic would surpass the volume of ftpdata traffic in four more months[Pax94]. So 1OOKB may 

well be interactive, let alone 1 0 K B .  But l M B  should probably be regarded as bulk transfer. In 

this paper we do not vary a to address this issue, but this will be considered in our future work. 

Another important performance criterion is fairness across all the users of the network. There 

are many definitions of fairness, but in our particular setting it is the equal distribution of bottleneck 

bandwidth across all outstanding connections. As we mentioned in the design guidelines in Section 

3.3, fairness is one of the design goals of RLT. To compare the fairness of BLT and TCP, we adopt 

the fairness function f as defined in [JR88] as our metric: 

wl-lcre 0, is i th user's throughput and n is the number of independent users who are sharing the 

same resource. This function has the property that its value always lies between 0 and 1. For 

cxarnple, f = 1 for a maximally fair allocation but if only k of n users receive equal throughput and 

the remaining n - k users receive zero throughput, the fairness function value is k[Jai91]. Although 

our main goal was to  find a scheme that  scales performance better with bandwidth increase, fairness 

is one thing we should not sacrifice. In our experiments, we not only compare the power of BLT 

and TCP, but we also show the fairness characteristics of the schemes. 

Summarizing this section, we have the following parameters: 

network bandwidth ( B W N )  and bottleneck bandwidth ( B W b )  

propagation delay (D) 

a meail arrival rate of connections (A)  

file size t o  transfer (F) 

And as primary performance metrics, we will use the followings: 

a network power (P = $) 

a fairness function ( f )  

4.2 Results and analyses 

4.2.1 Under reference configuration and load 

The reference network configuration is a 15OMbps network with RTT = 30ms, where each connec- 

tion has 2001C R t o  send. Namely, 





Figure 6 shows the average file transfer times of TCP and BLT with the reference parameters. 

X axis shows mean arrival time of connections (A), and Y axis represents the file transfer time 

(R). Note that R is the system-wide average of file transfer times. The figure also shows the 90% 

mean arrival rate(conn./sec) 

Figure 6: File transfer times of TCP and BLT as a function of X in the reference network with 
BWb = 30Mbps 

confidence interval. We can see BLT consistently outperforms TCP with the speedup of more than 

200% in R. Moreover, TCP diverges at X x 20conn./sec. while BLT does not until 35conn./sec. 

This is because the bottleneck switch S1 has a lower utilization with BLT than with TCP(Figure 

7). This is seemingly counterintuitive because BLT transmits the entire remaining file on every 
burst. The reason that BLT keeps lower utilization is that there are a fewer number of connections 

in the system with BLT. As shown in Figure 6, BLT finishes transmission quickly. When we view 

the network as a whole to  be a server, the jobs, i.e. the connections, departs the system earlier 

in BLT. By Little's Theorem we know that there will be more connections lingering in the system 

using TCP. This not only implies a larger average utilization at the bottleneck, but the probability 

that TCP connections will cause global synchronization[SZC91], will be larger. In fact, we observe 

this phenomenon in our simulations. Figure 8 shows the queue length variation in TCP and BLT 

in a randomly selected part of the simulation with the reference parameters. We clearly see that 

there are indications of global synchronization in TCP case while in BLT we cannot find any such 
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Figure 7: Bottleneck switch utilization in the reference network with BWb = 3OMbps 

I(Sec.) 

Figure 8: Instantaneous queue length change over time: TCP(up) and BLT(be1ow) 



tendency. Also, we can observe in the initial parts of the graphs that BLT quickly jumps up to 

exploit available bandwidth, but TCP takes time to warm up with Slow Start. 

We can conjecture several reasons why BLT finishes transmission more quickly than BLT on the 

average. First, while BLT switching discipline prevents a burst from blocking other bursts entering 

the switch queue(Section 3))  TCP switches can discriminate the packets that come after a large 

burst. This unfairness in TCP can increase the average response time R. Second, BLT has no 

cautious window size probing phases while TCP goes through various kinds of adjustment phases 

like Slow Start and Congestion Avoidance, which takes time. Finally, BLT provides the switch with 

more than sufficient data, and it can still pass many out-of-order packets even after packet drops 

for a particular connection. With reordering at  the receiving end, this can sometimes contribute to 

a faster transmission. 

When we vary the bottleneck bandwidth from 3OMbps to 9OMbps to 150Mbps we get the same 

results. Figure 9 shows the throughput of TCP and BLT with different bottleneck sizes. Roughly 

O increases proportionally to X(X axis is in log scale), and BLT shows better throughput than 

TCP especially when X is large. Note that higher utilization does not necessarily lead to  higher 

throughput, which is obviously the case here. When we say "throughput", we will mean goodput 

in this paper. It is not shown where BLT throughput tops out in Figure 9 but we can see that 
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Figure 9: System throughputs in reference network 

TCP tops out earlier than BLT. In other words, TCP arrives at  the "knee" earlier. Figure 10 shows 
network power of TCP  and BLT with different bottleneck sizes. In the graph, the initial alphabet 
represents the congestion control scheme used("T"=TCP, "B7'=BLT), and the number after the 

initial means the bottleneck size in Mbps. The X axis represents X in log scale, and the Y axis is 



P also in log scale. As the figure clearly shows, our main thesis of this paper is that the power 

"generated" by conventional congestion control schemes compared to our approach will be 

a less, and 

less scalable with bandwidth increase. 

log mean arrival rate(conn./sec.) 

Figure 10: Network powers for various bottleneck sizes in the reference network 

In Figure 10, the powers of TCP and BLT both increase with the increase of physical bottleneck 

bandwidth. But for all BWb, the power of BLT is much higher, with the maximum ratio of 

roughly ten times of the TCP power at BWb = 150Mbps = BWN. Even BLT power at BWb = 
9OMbps excels that of TCP at BWb = 150Mbps. If we see the maximum powers, BLT increasingly 

outperforms TCP with the ratio of 3, 6, and 10(0.5,0.8 and 1 in log scale) as BWb increases. In the 

reference network with varying BWb, BLT's performance and scalability are better than TCP's. 

In terms of fairness, there is no clear winner. In Figure 11, the fairness is shown for BLT and 

TCP. For BWb = 3OMbps and BWb = 150Mbps, BLT has better fairness, especially at higher 

load. But at  BWb = SOMbps, TCP shows better result. This is surprising, because BLT switch 

discriminates against opportunistic packets while TCP does not assume anything on network switch 

for fairness. We suspect that the glitch in the switch queueing algorithm described in Section 3.3.2 
is the cause of this phenomenon and it will be rectified in the future research. Overall, the best 

fairness is achieved when the load is the lowest. 
In this section we varied BWb, and in the next section we vary BWN, F, and D from the 

reference network to see the performance scalability of each scheme. 
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Figure 11: Fairness of TCP and BLT 

4.2.2 Bandwidth scaling 

In this section we vary BWN to see the effect of larger network bandwidth on performance and 

scalability of the two schemes. Note that BWb is automatically scaled with BWN so that it ranges 

from to 2 to 1 times of BWN. We already confirmed that our conjecture on scalability in terms of 

BWb; i .e . ,  with a given BWN, TCP's P tops out much earlier and much less scalable than BLT's. 

Now we experiment with a larger network bandwidth of BWN = 1Gbps. 

Figure 12 shows results that are similar to those in Figure 10. For example, the power difference 

increases with larger BWb. However, the important change is that the difference in power increase 

with the same between BLT and TCP has increased for all BWb. For instance, a t  BWb = 
200Mbps, BLT maximum power has increased by 1.5 in log scale, but it is 1.1 in TCP. Similarly, it 

was 1.3 versus 0.8 and 1.1 versus 0.7 at  BWb = 6OOMbps and BWb = lGbps, respectively. Table 1 

shows that not only the increase of BWb but also the increase of BWN yields better power increase 

with BLT than TCP. Specifically, AlogP,(BLT) - AlogP,(TCP) 2 0.4, meaning the power 

difference between BLT and TCP has gotten widened by another 2.5 to 3.5 times in network power 

with the bandwidth increase. This trend is strong evidence that in multi-gigabit networks, BLT 

performance will overshadow the performance of conventional dynamic control schemes. Figure 

13 shows the fairness characteristics of the two scheme in BWN = 1Gbps environment. Only at  

BWb = 200Mbps TCP is comparable to BLT. As BWb increases, BLT fairness is better than in 
TCP. This is close to our expectation. It seems that the fairness rapidly deteriorates around the 
arrival rate that achieves the maximum power. The maximum power is achieved when the system 

is on the "knee" and after that the fairness seems to suffer from excessive load. 
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Figure 12: Network powers for various bottleneck size with BWN = lGbps, F = lOOKB 

Table 1: Maximum power(Pm) increase and scalability of TCP  and BLT 

sw, 
B WN 

1 - 
5 
3 - 
5 

1 

logPm(B/sec2) 
BLT 

BWN = 15OMbps 
6.9 
7.9 
8.3 

T C P  
BWN = 150Mbps 

6.4 
7.1 
7.4 

BWN = 1Gbps 
8.4 
9.2 
9.4 

AlogP, 
1.5 
1.3 
1.1 

BWN = lGbps 
7.5 
7.9 
8.1 

AlogPm 
1.1 
0.8 
0.7 
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Figure 13: Fairness of TCP and BLT, BWN = lGbps 

Before proceeding further, here we make clear what we are pursuing throughout this series 

of experiments. In Figure 14, we put our experiments on the bandwidth-delay plane. We have 

seen that the Reference Network and Faster Network both yield far more power with BLT. So 

(150Mbps x 30ms = 0.6MB) and (1Gbps x 30ms z 4 M B )  are both beyond the boundary. We 

put them on the non-shaded part of the network, that represents the space where bandwidth-delay 

tradeoff approach is beneficial. The shaded area represents the bandwidth-delay space where the 

use of conventional dynamic control schemes is beneficial. The dotted lines connect equi-BW x D 
points. As we briefly mentioned in Section 3 ,  our task is threefold. First, show the limitation of 

conventional approaches, second, propose a new scheme that overcomes the limitation, and third, 

determine the boundary on the bandwidth-delay plane between these two regions where one scheme 

outperforms the other. In Section 4.2.1 and 4.2.2 we show that BLT indeed excels and scales better 

than TCP in large bandwidth delay network. This addresses the first two tasks, so the remaining 

task is to find the boundary where BLT performs poorly when compared to TCP. It is evident that 

the boundary lies where the bandwidth-delay product is smaller than in the previous 2 experiments. 

4.2.3 Scaling down network size 

One way to reduce the bandwidth-delay product is to scale D down. A nationwide network size is 

RTT z 30ms at its maximum, but smaller wide-area networks such as AURORA network will have 
RTT = 3 m s  at the maximum". In Figure 15, we show the network powers when D = 3ms.  We 

"However, D = 3 m s  is almost twice a s  large as the average round-trip inter-nodal distance[JLK78] of AURORA 
network. The inter-nodal distance of AURORA network is around 1.55ms. 
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Figure 14: Bandwidth-delay space with F = lOOKB 

notice two major changes. First, the network power is overall larger than in the larger propagation 

delay network. This is because the response time and throughput both improve with smaller 

propagation latency. Therefore, the sender stalls shorter amount of time waiting for ACKs to 

arrive. When bandwidth-delay product is much higher than the window size, a data burst is only a 

blob on a long path12. After quickly transmitting a burst of packets, the sender stalls a long time, 

waiting for the group of ACKs arrive. Such inter-burst interval is shortened with small propagation 

latency, improving throughput and response time. 

Second, the gap between the BLT power and TCP power narrowed. This shows that as 

bandwidth-delay product decreases, the relative performance gained through BLT gets smaller. 

But still, BLT7s power is safely over TCP7s, with increasing gap as BWb increases. In Figure 16, we 

show the fairness of the two schemes. Overall, BLT fairness degrades with smaller bandwidth-delay 

product, if we ignore the indeterminate effect of the glitch of BLT switch queueing algorithm. 

Since D = 3 m s  did not push the BLT performance below that of TCP, we further reduce D and 

set D = 1.8m.s. This amounts to about 170 miles in distance and the bandwidth-delay product of 

about 35KB. As we expected, the result shown in Figure 17 tells us that generally the network 

power increased due to the shortened feedback loop. However, this is only visible when BWb 
approaches BWN. In addition, the gap between the powers slightly decreased in general. Figure 

18 shows the fairness characteristics of BLT and TCP under this configuration. Again, we find it 
hard to  generalize the result to any consistent tendency based on the bandwidth-delay product or 

''Note that it does not have to do small receiver window. We already assumeed "infinite" receiver window(e.g. by 
adopting TCP Window Scale option[JBB92]) and only the congestion window size matters. 

2 7 
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Figure 15: Network powers of TCP and BLT in a network with D = 3ms, F = lOOKB and 
Bl/tjv = 150Mbps 

log mean arrival rate(conn./sec.) 

Figure 16: Fairness of TCP and BLT with the reference parameters, except D = 3ms 
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Figure 17: Network powers with in an AURORA-size network with BWN = 150Mbps, F = lOOKB 

on some other parameter. 

In the current configurations, even smaller network size implies impractical small buffer size 

at  the bottleneck switch, and we defer the experiment on such cases to future work where we 

will change the buffer size configuration. If we reduce D to lms ,  then the buffer size in terms 

of packets in S1 at BWd will be 2 or 3. Under such condition, comparing TCP and BLT is 

almost meaningless, as well as impractical. For comparison, ATM Forum's rate-based flow control 

scheme[YH94] assumes multiple (end-to-end round-trip time x bandwidth) worth of buffer space 

at  each switch. In future investigation, we will assume larger switch buffer size. 

4.2.4 Slower network 

Another way to reduce bandwidth-delay product is to decrease BWN. Hopefully, the boundary 

between BLT-beneficial area and the other area will be drawn based only on the bandwidth-delay 

product, and we expect to get the same result when we reduce BWN to yield the same bandwidth- 

delay product as in the previous experiment. To compare with (D = 3ms, BWN = 150Mbps) 

case, we set BWN = 15Mbps and D = 30ms. Figure 19 shows the power characteristics, and we 

see that the power is lower about 2 orders of magnitude smaller compared with AURORA-sized 

network case. This is roughly explained by the fact that the raw bandwidth was decimated, while 

the feedback loop length was increased tenfold. We also see that when BWb = 3Mbps TCP power 

is slightly better with low arrival rate. But this soon vanishes with increased arrival rate and/or 
larger BWb. We can safely conclude that this result supports the benefits of BLT as we had hoped. 

Figure 20 shows the fairness characteristics. 
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Figure 18: Fairness of T C P  and BLT, D = 1.8ms 
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Figure 19: Powers of TCP and BLT, BWN = 15Mbps 
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Figure 20: Fairness of TCP and BLT, BWN = 15Mbps 

4.2.5 Scaling data size 

So far we have seen the performance with F = lOOKB only. In this section, we vary F for all 

three previous combinations of bandwidth-delay parameters. As far as the bandwidth-delay plane 

is concerned, we are now looking at a different plane, and the boundary between the two areas could 

shift. Other parameters we previously fixed, such as switch buffer size for one, can also significantly 

affect the boundary. In short, every one of the network configuration parameters, except bandwidth 

and delay, will create a new plane where the boundary is shifted. 

We expect as file size grows, the performance difference between BLT and TCP will narrow 

down because the relative overhead of dynamic window sizing such as Slow Start will be smaller in 

long transmissions. Figure 21 shows the power characteristics of TCP and BLT with F = 1 M B .  

Overall power decreases compared to the reference network. In case of BLT, the maximum power 

in all bottleneck size fell at least one order of magnitude. In TCP, the decrease is milder, about 

half order of magnitude. The nominal cause of the overall drop is the increase of response time R. 
With F ten times larger than in the reference network, we can expect that the response time will 

roughly increase tenfold. This amounts to one order decrease in power, and that is precisely what 

happened to BLT. The fact that the increase of F has direct impact on BLT response time(and 

power) means there are little overhead factors in BLT that would melt away with the increase in 

file size. However, for TCP, as the overhead of dynamic window size maneuvering decreases, the 
drop was milder. This again clearly shows how more efficient BLT is than TCP. 

In general, the usefulness of BLT decreases when file size increases, especially when X is very 

small making the probability of congestion low. In such cases TCP can even outperform BLT 
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Figure 21: Network powers in transfer of 1MB file in reference network 

when BWb = 3OMbps. This is because packet drops due to congestion is rare at  low arrival rate, 

improving TCP throughput. However when BWb increases, the bandwidth-delay product increases 

and even with very low arrival rate, TCP cannot outperform BLT. And with the increase of A,  
even when the bandwidth-delay product small, TCP rapidly deteriorates. Figure 22 shows fairness 

values in this environment. As the increase of BWb yields better performance for BLT, so does the 

increase of BWN. When we increase BWN to lGbps, we see that the power difference between BLT 

and TCP widens again(Figure 23). This is the strong point of BLT. It scales better with bandwidth. 

Figure 24 shows fairness characteristics. The disadvantage of conventional schemes like TCP is 

amplified in small file transfers. Almost all data transfer protocols adopt some form of Slow Start, 

and adaptive rate searching algorithm, and this search overhead is critical to small files because 

for them the time spent in adjustment could be very long. Here, we decreased F to 10KB in the 

reference network. The result shown in Figure 25 seemingly disagrees with our expectation that 

the power will increase tenfold, but this is because we calculated the response time to  be Tf - Ti 
where T j  is the time that the acknowledgement for the last bit of the sent file arrives at  the sender. 

In the current setting, the entire file transmission time in BLT is much smaller than the time that 

the source waits for the last ACK. Namely, the file transmission time for 20 packets(1OKB) is less 

than l m s  where the ACK travel time is 15ms. This is not the case for TCP, where it goes through 

Slow Start and other rate adjustment at  least for 4 RTT. If we take this into account, we get the 

result as shown in Figure 26. Now we can clearly see that 

which means BLT is more scalable. Because file transfer time is much smaller than the propagation 
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Figure 22: Fairness of TCP and BLT, F = l M B  
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Figure 23: Network powers in transfer of 1 M B  file in 1Gbps network 
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Figure 24: Fairness of TCP and BLT, BWN = lGbps, F = 1 M B  
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Figure 25: Network powers with reference parameters except F = lOKB 
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Figure 26: Network powers considering ACK overhead 

delay, the file size decrease to  one tenth does not result in 10 times power increase. For instance, 

if only one RTT is added to R because of a packet drop, it will drastically pull the power down. 

Fairness results are shown in Figure 27. 

4.2.6 Comparison with no congestion control 

For completeness, we compare the performance of BLT and TCP with that of what we call "Bully- 

Tyrant" scheme that does not exercise any flow control. Bully-Tyrant(BT) behaves similar to  BLT 

except that it does not provide any information on each packet's degree of opportunism. In some 

sense, it is also similar to old TCPs where no congestion control algorithm was used. We intend 

to  show that aggressive exploitation of bandwidth alone cannot achieve comparable performance 

as BLT. In Figure 28 we can see that aggressive exploitation of bandwidth pays off, and BT power 

almost reaches BLT power, well exceeding TCP. There is little difference between BLT and BT in 

powers when X is relatively small. However, as the arrival rate increases, "congestion meltdown" 

occurs earlier in BT while BLT gracefully adapts to load increase. Figure 28 is interesting in that 

it shows how much aggressive bandwidth exploitation boosts performance. Conversely, it shows 

the failure of conservativeness of dynamic feedback control in high-speed networks. But in terms 

of fairness, we can easily expect that BT will mark the lowest and it does in Figure 29. 

4.3 Summary 

In a simplified and generalized network environment we measured the (maximum) network powers 
of TCP and BLT. It is clear that BLT yields far more power than TCP and it scales much better 
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Figure 27: Fairness of TCP and BLT, F = lOIiB 
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Figure 28: Network power of TCP, Bully-Tyrant and BLT for BWb = 30Mbps 
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Figure 29: Fairness of TCP, Bully-Tyrant and BLT for BWb = 30Mbps 

than TCP with bandwidth. In terms of fairness, however, BLT and TCP showed mixed results. We 

suspect BLT's fairness improve by correcting the switch queueing discipline, but we have yet to see 

how much improvement can be achieved. In one of our experiments, we saw that the main driving 

force behind BLT7s good performance is the aggressiveness in utilizing bandwidth. We think this 

is a very important lesson in designing congestion control schemes for high-speed networks in the 

future. 

4.3.1 Powers at a glance 

In Figure 30, we summarize the maximum powers for all parameter combinations we experimented 

for F = 100KB. The powers are in log scale, so the bottom parts not shown in the graph 

are insignificant, and only the difference between the powers of BLT and TCP for each network 

configuration matters. We see that the difference in power between TCP and BLT widens, with 

both BWb and BWN. In small network with less D, BLT still outperforms TCP but the power 

difference reduces. But even in that case, as BWb increases, the difference grows again. Because P 
is in log scale we are likely to be deceived on the real difference between the performances. In Figure 

31, we show only the case of BWN = lGbps with normal scale. And now we can see the difference 

in performance and scalability. The main factor that resulted in the huge difference, seems to be 

R rather than O. For instance, when BWb = 1Gbps OB z 605Mbps while OT = 318Mbps, which 

is about two times difference, but RB = 0.032s and RT = 0.2894s, about nine times difference. 

So the difference in power is about 17 times, which appeared as about 1.23 order of magnitude 

in log scale in Figure 30. Note that the O's are system throughputs, and they are different from 



Figure 30: Maximum powers in log scale, F = 1001(;B 
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Figure 31: Maximum powers in normal scale, F = 1001iB, BWN = 1Gbps 



the throughputs viewed from individual connections. Since TCP connections linger longer in the 

system, the system carries more connections than in BLT, and the throughputs seen by individual 

connections are much smaller. But there are many outstanding connections, and the aggregate 

throughput(i.e., system throughput) is is only half of BLT's. In the above example, the average 

individual throughput of TCP case would be 

This implies that there were 115 outstanding connections on the average in the TCP case. On the 

other hand, in BLT case there were 29 outstanding connections on the average. This means that 

OB = 20.8Mbps, and RB = 0.0385s which roughly coincides with the measured number above13. 

There was no such error in measuring R,  so if we use RB = 0.032 we get OB = 725Mbps, and this 

nicely matches with X = 900 conn./s = 720Mbps where the highest power was achieved, and the 

system is stabilized. 

4.3.2 Drawing boundary with bandwidth-delay product 

We also attempted to show that we can determine the boundary between the two areas where BLT 

or TCP  outperform each other. With current network configuration where the network switches 

are allowed to have one (bandwidth x link delay) worth of buffer space and packet size is 500B, 

it was impractical to experiment on very small bandwidth-delay product networks. But down 

to 35KB, BLT outperfornied TCP. It is still possible that BLT can outperform TCP in smaller 

bandwidth-delay product networks than this, but we leave it to  future work. 

4.3.3 Remaining works 

In future experiments, we will modify the BLT switch algorithm so that when the queue is full 

and new packet is coming in, the lowest priority packet be dropped. For TCP, we will fully 

implement Vegas TCP  which is said to improve throughput by 40 to  70% over Reno TCP(a1though 

the experiment was done in a relatively low-speed network). 

In this experiment we intentionally used the simplest network model, because we wanted to  

observe the affects of bandwidth-delay product without muddled by other small parameters. For 

instance, there was only one bottleneck. We will add more bottlenecks along the path of connections 

in future works. 

One of the parameters we fixed throughout the experiments was switch buffer size. However, 
this parameter can significantly affect performance because it changes the network characteristics 

1 3 ~ h i s  discrepancy stems from the error in calculating 0. We used the longest run time among three independent 
runs in calculating 0, and the above O's are from the pessimistic case(this will be rectified in future simulations). 



from the viewpoint of the congestion control. In most cases, a buffer size of one (bandwidth x 
link delay) is too small in reality. For instance, rate-based ATM flow control deploys multiple 

(bandwidth x round trip delay) worth of buffer at each switch node. In future works, we will also 

investigate the scalability of the congestion control schemes with buffer size. 

As we briefly mentioned in the simulation assumptions, we limited the traffic characteristics to  

file transfer. In the future, we will incorporate other traffics such as intermittent and interactive 

traffics. It is also of interest to have self-similar cross traffic at the switches, to  see how the 

congestion control schemes react to such changes at the switches. 

5 Conclusion 

5.1 Summary 

In this paper, we addressed the issue of scalability in controlling congestion for high-speed networks. 

To the best of our knowledge, there has not been any serious efforts to  determine how existing 

congestion control schemes will scale with increasing bandwidth in high-speed networks. The 

existing schemes use some form of dynamic rate adaptation mechanisms such as Slow Start and/or 

additive-increase/multiplicative-decrease, whether it is a window-based scheme or a rate-based 

scheme[RJSO, Jac88, MK92, YH941. These dynamic rate control schemes are bound to  delay in 

that the efficiency of control is determined by the fast feedback of network load. But the length of 

feedback loop logically increases with bandwidth increase, decreasing their efficiency. To overcome 

the problem of increasing feedback delay, we need an entirely different way of thinking. We propose 

an approach based on bandwidth-delay tradeoff, called BLT. While conventional schemes do the 

control in time domain, we propose to do the control in bandwidth domain. In other words, 

conventional schemes change window size over time based on the most recent feedback information 

from the network. In BLT, window sizes are changed in bandwidth domain without the help of 

feedback information. Conceptually, since the change of window size occurs in the bandwidth 

domain, the window change occurs at the same instance in time. So the traffic source sends out 

the whole spectrum of windows at the same time. It takes more bandwidth to  create this spectrum 

of windows, but it can help alleviate the delay problem. The bottleneck switch chooses the right 

window size among the array of window sizes, discarding all others. Since the switch does not need 

communication with the traffic source to negotiate on the window size, there is no problem of delay. 

Moreover, since BLT is designed to  scale with bandwidth, it does not have the scalability problem 

as conventional control schemes. The source of longer feedback loop problem was the bandwidth 

increase, but BLT is only better with the increase. 

We had two goals when we set out this investigation. First, we intended to show the scalability 

problem with existing schemes. Second, we intended to  show the feasibility of our new approach. 

Third, we wanted to  draw a line in bandwidth-delay space, if it exists, which marks the point from 

which BLT performs better than conventional schemes. The first and the second goal were achieved 



by comparing the performance and scalability of TCP and the window-based implementation of 

BLT. In all experimentable ranges, from small bandwidth-delay product to large bandwidth-delay 

product, BLT outperformed TCP approximately around 10 times. More importantly, BLT perfor- 

mance increases faster than TCP with bandwidth increase. We have experimented up to  lGbps 

network, but it is of interest whether or not this improvement in scalability of BLT can be sus- 

tained. We expect that it can, and will further outperform TCP. With the third goal, we faced 

some practical problems in the experiment. But down to 35KB of bandwidth-delay product, BLT 

outperformed TCP. From the last experiment presented in Section 4.2.6, we learned that aggres- 

siveness is the key to harvest good performance in future high-speed networks. We can characterize 

conventional approaches to traffic control as the marriage between "fragile network" and "cautious 

user". But we believe this should be changed to "abusive user" that is aggressive to  use idle band- 

width and "rugged network" that can readily control excessive aggressiveness. One major issue 

would be how to guarantee fairness in this new environment. 

This study explored the feasibility of the bandwidth-delay tradeoff approach, and in the process 

we made many assumptions and waived many practical considerations. Thus, quite a few issues 

should be resolved for BLT to be deployed in real networks, but it is clear that bandwidth-delay 

tradeoff is a new promising approach to traffic control in future high-speed networks since the 

feasibility and the potential of this approach in terms of performance and scalability showed promise. 

An added advantage is that the improvements are not limited to  a particular layer or to  a 

particular protocol. Furthermore, not only window control schemes but also rate based schemes and 

ATM flow control schemes also adopt dynamic control in one way or another, and the implication 

of this experiment also applies to  them. 

5.2 Future works 

5.2.1 Rate-based BLT 

BLT is not inherently limited to  window-based implementation. Window-based control has a 

problem of "lock-step" transmission, where the sender transmits a burst and then waits for the group 

of ACKs for a long time and transmits again. Due to this reason, we expect that rate-based traffic 

control schemes will eventually replace window-based schemes. Because BLT is a methodology to  

solve the scalability problem of dynamic flowJcongestion control, there is no reason why it cannot 

be applied to  dynamic rate-based traffic control schemes. Recently ATM Forum voted to  support 

one of the rate-based flow control proposals[YH94, New931 and it is expected to  become the major 

flow control mechanism for ATM networks. One notable thing about the scheme is that it uses 

additive-increase/multiplicative-decrease for rate adjustment at the traffic source, with the feedback 

provided by forwardlbackward explicit congestion notification. Yin and Hluchjy[YH94] also alludes 
to some use of Slow Start, although the detail has yet to be worked out. In essence, there is little 

conceptual difference between window-based control and rate-based control. We expect the scheme 

to face the same control delay problem when it is used for large bandwidth-delay product network, 



and this issue is already under investigation. Although the basic philosophy behind window control 

and rate control is similar, we see an array of difficult problems. For example, to  apply BLT to 

rate-based control, one should be able to create multiple rates in a stream just as multiple windows 

with different sizes were created in window-based BLT, which is tricky. Even if we can create this 

multiple-rate stream, sequence number synchronization among these substreams and between the 

sender and the receiver is a difficult problem. 

5.2.2 Self-similar interference 

We have already pointed out that self-similarity of data traffic can be a major problem for con- 

ventional traffic control schemes that are becoming ever slower due to  increasing bandwidth. One 

of the implications of self-similarity is that the burstiness will still appear in small time scales well 

under round-trip delays of wide-area networks. We expect that the conventional schemes will fail 

to react to, and exploit, the fluctuation in the network load. On the other hand, BLT carries more 

than sufficient amount of data up to  the bottleneck, which enables a BLT stream to quickly exploit 

dynamically available bandwidth. Specifically, BLT makes the switch to take in the maximum 

amount of data from its data stream when the stream passes. Conversely, when the network load 

quickly surges the network switch can conveniently discard opportunistic packets t o  control the 

congestion and distribute its bandwidth fairly among the connections. In our continuing investi- 

gation, we will employ a self-similar cross traffic at bottleneck switches and see how conventional 

schemes and BLT react to  such network condition. 

5.2.3 Other switching disciplines 

In this paper, we assumed a hybrid of FIFO and priority queueing at network switches. In principle, 

BLT does not limit the switch queueing discipline to one or two, provided that some form of 

discriminating action is exercised based on the degree of opportunism of packets. We will investigate 

if other queueing disciplines can be coupled with BLT sources in future work. 

5.2.4 Bandwidth usage optimization 

An obvious optimization target in BLT is in its bandwidth usage. Since this investigation is a feasi- 

bility study we do not limit the bandwidth use in any way, but in reality this is somewhat unrealistic 

even if we are given a large bandwidth. Although we still believe that the bandwidth requirement 

of BLT would not be that excessive because it only uses the bandwidth that would be idled with 

conventional control schemes, we will investigate ways to  further decrease the requirement. 

5.2.5 Deploying in real world 

One last issue we have to deal with is how BLT can interface with the real networks, especially with 

underlying ATM-based network fabric. Separate from our investigation on rate-based BLT in ATM 



networks, we will have to solve many possible problems. For instance, if BLT is used on transport 

layer14, priority discarding should also be exercised on lower layers because otherwise multiplexing 

points on lower layers will be flooded with opportunistic BLT packets. This will block not only 

other connections but we found that BLT itself cannot achieve satisfactory performance, either. 

And again, the underlying networks won't eagerly drop packets, as we can see in ATM rate-based 

flow control. We will have to  deal with niany such problems to  transform BLT from a theoretical 

solution to  a practical traffic control mechanism. 
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