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Abstract—Building physics-based models of complex physical
systems like buildings and chemical plants is extremely cost
and time prohibitive for applications such as real-time optimal
control, production planning and supply chain logistics. Machine
learning algorithms can reduce this cost and time complexity,
and are, consequently, more scalable for large-scale physical
systems. However, there are many practical challenges that must
be addressed before employing machine learning for closed-loop
control. This paper proposes the use of Gaussian Processes (GP)
for learning control-oriented models: (1) We develop methods
for the optimal experiment design (OED) of functional tests to
learn models of a physical system, subject to stringent operational
constraints and limited availability of the system. Using a
Bayesian approach with GP, our methods seek to select the
most informative data for optimally updating an existing model.
(2) We also show that black-box GP models can be used for
receding horizon optimal control with probabilistic guarantees
on constraint satisfaction through chance constraints. (3) We
further propose an online method for continuously improving the
GP model in closed-loop with a real-time controller. Our methods
are demonstrated and validated in a case study of building energy
control and Demand Response.

Index Terms—Machine learning, Gaussian Processes, optimal
experiment design, receding horizon control, active learning

I. INTRODUCTION

Machine learning and control theory are two foundational
but disjoint communities. Machine learning requires data to
produce models, and control systems require models to provide
stability, safety or other performance guarantees. Machine
learning is widely used for regression or classification, but thus
far data-driven models have not been suitable for closed-loop
control of physical plants. The current challenge with data-
driven approaches is to close the loop for real-time control
and decision making.

For example, consider a multi-story building. We ask the
following questions. (1) What should the optimal set-points
be to curtail power consumption by 100 kW from 2-5pm
tomorrow? Such actions are necessary for Demand Response
(DR) when the price of electricity peaks due to high volatility.
For instance, in January 2014, the east coast electricity grid,
managed by PJM, experienced an 86-fold increase in the price
of electricity from $31/MWh to $2,680/MWh in a matter of
10 minutes. (2) What are the optimal ways to cool or heat
facilities in order to save energy and reduce carbon footprint?
Automatic climate control while reducing the energy consump-
tion is desirable under all circumstances. In large facilities and
data centers this provides a huge financial incentive.

The first and foremost requirement for making such critical
control decisions is to obtain the underlying control-oriented
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predictive model of the system. With a reasonable forecast
of the external disturbances, these models should predict
the state of the system in the future and thus a predictive
controller based on Model Predictive Control (MPC) can act
preemptively to provide a desired behavior. MPC has been
proven to be very powerful for multivariable systems in the
presence of input and output constraints, and forecast of the
disturbances. The caveat is that MPC requires a reasonably
accurate mathematical model of the system. Traditionally, for
the building control, these mathematical models are built using
first principles based on physics. The required effort for such
model development and engineering, and the need for expert
knowledge and periodic re-tuning of the model limit the use
of physics-based models for MPC. MPC has shown to be
efficient supervisory control solution providing 17% energy
savings with better thermal comfort over rule-based control
[1]. However, the key barrier is that it takes several months to
capture accurate physics-based model of a medium to large-
sized building.

There are three main reasons that make the modeling
process hard for complex physical systems like buildings.

(1) Model capture using only historical data is not suitable
for control. Historical data, as large as it may be, does not
capture the full model dynamics as the control set-points are
based on rule-based strategies, thus lack in input excitation.
Therefore, we need functional tests to excite the system with
wide range of control inputs. However, in practice, functional
tests are permitted only for a few hours in a month.

(2) Change in model properties over time - even if the
model is identified once via an expensive route as in [1], as
the model changes with time, the system identification must
be repeated to update the model. Thus, model adaptability or
adaptive control is desirable for such systems.

(3) Model heterogeneity further prohibits the use of model-
based control. For example, unlike the automobile or the air-
craft industry, each building is designed and used in a different
way. Therefore, this modeling process must be repeated for
every new building.

Due to aforementioned reasons, the control strategies in
such systems are often limited to fixed, sometimes ad-hoc,
rules that are based on best practices. The key question now
is: can we employ data-driven techniques to reduce the cost
of modeling, and still exploit the benefits that MPC has to
offer? We therefore look for automatic data-driven approaches
to control that are also adaptive and scalable. We solve this
problem by bridging the gap between Machine Learning and
Predictive Control.



A. Challenges in bridging machine learning and controls

It is important to note that the standard machine learning
regression used for prediction is fundamentally different from
using machine learning for control synthesis. In the former,
all the inputs to the model (also called regressors or features)
are known, while in the latter some of the inputs that are the
control variables must be optimized in real-time for desired
performance. We next discuss the practical challenges in using
machine learning algorithms for control.

(1) Data quality: Most of the historical data that are available
from complex systems like buildings are based on some rule-
based controllers. Therefore, the data may not be sufficient to
explain the relationship between the inputs and the outputs. To
obtain richer data with enough excitation in the inputs, new ex-
periments must be done either by exciting the inputs randomly
or by a procedure for optimal experiment design (OED) [2],
[3]. This paper proposes a procedure for OED using Gaussian
Processes (GP) to recommend control strategies.

(2) Computational complexity: Depending upon the learning
algorithm, the output from a learned model is a non-linear,
non-convex and sometimes non-differentiable (eg. Random
Forests [4]) function of the inputs with no closed-form ex-
pression. Using such models for control synthesis where some
of the inputs must be optimized can lead to computationally
intractable optimization. Our previous work uses an adaptation
of Random Forests which overcomes this problem by separa-
tion of variables to derive a local linear input-output mapping
at each time step [5]. This paper uses GPs for receding horizon
control where the output mean and variance are analytical
functions of the inputs, albeit non-convex.

(3) Performance guarantees and robustness: A desired
characteristic for closed-loop control is to provide performance
guarantees. This becomes hard when a black-box is used to
replace a physical model. However, it is possible to provide
probabilistic guarantees with a learning algorithm based on
Gaussian Processes. GPs allow us to define chance constraints
or account for model uncertainty in the cost while solving the
optimization problem. This helps bound the performance er-
rors with high confidence. Handling disturbance uncertainties
or robustness to sensor failures in this framework is part of
our on-going work and is thus excluded from this paper.

(4) Model adaptability: It is often the case that the model
properties change with time, and thus, the learned model
must also be updated when required. The traditional mode
of system identification, done repeatedly, can be time and
cost prohibitive, especially in the case of buildings. In this
paper, we show how GPs can be updated online to account
for changes in the properties of the system.

B. Overcoming practical challenges

To address these challenges, we can take two different
approaches based on how machine learning is used to learn
the models.

(1) Mix of black-box and physics-based models: In this
approach, we use machine learning to learn only the dynamics
of a sub-system or to model uncertainties in the dynamics.
An example of former is in the use of machine learning for
perception, and model-based control for low-level control in
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Fig. 1: Paper contributions: (1) Optimal experiment design sequen-
tially samples the inputs and applies to the system to generate training
data, (2) Model Predictive Controller uses a Gaussian Process model
learned on the OED data for receding horizon control, (3) the new
data generated by controller is used to update the model online.

autonomous cars [6]. Examples on learning uncertainties in
the models include [7], [8].
(2) Fully black-box models: The full dynamical model can
also be obtained using only machine learning algorithms. This
deviates from the traditional notion of system identification
where a physics-based structure is assumed to begin with.
An example would be fully autonomous control using camera
where control actions are mapped to raw image pixels [9].
For the application to building control in context of Demand
Response, where there is a massive cost to physical modeling,
this paper explores the latter route to bypass the modeling
difficulties as summarized before. The data-driven approach
allows to scale this methodology to multi-building campus
and in general to many more applications like control of
autonomous systems.

C. Contributions

This paper addresses the aforementioned practical chal-

lenges using fully black-box models based on Gaussian Pro-
cesses. In particular, this paper has the following contributions.
(1) Optimal experiment design: We develop a procedure for
optimal experiment design with the dynamical system in a
closed-loop by exploiting the variance in the predictions from
a GP model. We show that under limited system availability
and operation constraints, OED can provide faster learning
rate than uniform random sampling or pseudo binary random
sampling, reducing the duration of functional tests by up to
50%.
(2) Stochastic Model Predictive Control: We show that the
dynamical GP model can be used for real-time closed-loop
finite horizon receding horizon control with probabilistic guar-
antees on constraint satisfaction. We again use the variance in
the predictions from a GP model to make decisions where the
model is most confident. In the case of Demand Response,
we show that GP controller provides the necessary curtaiment
with maximum 1.7% prediction error.



(3) Online model update: We propose an online method to
update the GP model as new data are generated by running
the GP-based controller in a closed-loop with the physical
system. Our method maximizes the information gain to select
the best subset of data to update the model, thereby reducing
the need for repetitive functional tests as systems properties
change with time.

An overview of the organization is shown in Fig. 1. We
apply all three methods to large-scale buildings in EnergyPlus
[10], a high fidelity building simulation software. In the
context of load curtailment for Demand Response, we apply
OED to recommend control strategies to learn a model, fast
and accurately. We show that MPC with GPs can provide the
desired load curtailment with high confidence. After running
the controller for a few weeks, we update the GP model with
newly collected data, thus avoiding the need for a functional
test in a new season.

D. Related Work

A broad range of data-driven modeling, assessment, and
control methods for DR with buildings have been investigated
in the literature. Regression trees were used in our previous
work [5], [11], [12] to model and compute set-point schedules
of buildings for DR. Neural networks were used for MPC of
a residential HVAC system in [13] and Deep Reinforcement
Learning for scheduling electrical devices in [14]. However,
these methods require huge amount of data. On the other hand,
GPs require only a few weeks of data, and our contributions
put together, as described in Sec. I-C, provide an end-to-end
solution for learning and control. GP models were investigated
for forecasting long-term building energy consumption in [15].
Simulation studies with EnergyPlus and regression models
were used in [16] to quantify the flexibility of buildings for
DR using set-point change rules. The authors in [17] compared
four data-driven methods for building energy predictions and
concluded that the Gaussian approaches were accurate and
highly flexible, and the uncertainty measures could be helpful
for certain applications involving risks. In the experiment
design literature, GPs were used for sensor placement to
capture maximum information in [18], whereas our method,
for the first time, sequentially recommends control strategies
to generate more informative training data for the buildings.

II. GAUSSIAN PROCESSES

In this section, we briefly introduce modeling with Gaussian
Process (GP) and its applications in control. More details can
be found in [19] and [20].

Definition 1 ([19]): A Gaussian Process is a collection of

random variables, any finite number of which have a joint
Gaussian distribution.
Consider noisy observations y of an underlying function
f : R™ — R through a Gaussian noise model: y = f(x) +
N (0,02), z € R™. A GP of y is fully specified by its mean
function () and covariance function k(x,z’),

p(w;0) = E[f ()] 0]

k(z,a';0) = E[(f(2) — u(2))(f(z') —p(2"))] + 076 (w, ")
where &(x,2’) is the Kronecker delta function. The hyper-
parameter vector § parameterizes the mean and covariance
functions. This GP is denoted by y ~ GP(u, k; 0).
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Fig. 2: Example of priors calculated using (1) and posteriors using (2)
for predicting power consumption of a building for 12 hrs. Initially
the mean is constant because p(x) is constant, and we observe a high
variance. The posterior agrees with the actual power consumption
with high confidence.

Given the regression vectors X = [z1,...,7x]? and the
corresponding observed outputs Y = [y1, ..., yn]|T, we define
training data by D = (X,Y’). The distribution of the output
Y, corresponding to a new input vector z, is a Gaussian
distribution A/ (23*7 af), with mean and variance given by

o = gm(@.) = p(we) + KK Y —p(X))  (2)
02 =gy(v,) = Ko — K,K 'K, (2b)
where K, = [k(zs,21),...,k(ze,zN)], Kix = Ek(zs,24),
and K is the covariance matrix with elements K;; = k(x;, ;).

Note that the mean and covariance functions are parame-
terized by the hyperparameters 6, which can be learned by
maximizing the likelihood: arg max, Pr(Y'|X, ). The covari-
ance function k(z, z') indicates how correlated the outputs are
at = and 2/, with the intuition that the output at an input is
influenced more by the outputs of nearby inputs in the training
data D. In other words, a GP model specifies the structure
of the covariance matrix of, or the relationship between, the
input variables rather than a fixed structural input—output
relationship. It is therefore highly flexible and can capture
complex behavior with fewer parameters. An example of GP
prior and posterior is shown in Fig. 2. We use a constant mean
function and a combination of squared exponential kernel and
rational quadratic kernel as described in Sec. VI-B. There
exists a wide range of covariance functions and combinations
to choose from [19].

GPs offer several advantages over other machine learning
algorithms that make them more suitable for identification of
dynamical systems.

1) GPs provide an estimate of uncertainty or confidence in
the predictions through the predictive variance. While
the predictive mean is often used as the best guess of the
output, the full distribution can be used in a meaningful
way. For example, we can estimate a 95% confidence
bound for the predictions which can be used to measure
control performance.

2) GPs work well with small data sets. This capability is
generally useful for any learning application.

3) GPs allow including prior knowledge of the system
behavior by defining priors on the hyperparameters or
constructing a particular structure of the covariance
function. This feature enables incorporating domain
knowledge into the GP model to improve its accuracy.



A. Gaussian Processes for Dynamical Systems

GPs can be used for modeling nonlinear dynamical systems,
by feeding autoregressive, or time-delayed, input and output
signals back to the model as regressors [20]. Specifically, in
control systems, it is common to use an autoregressive GP
to model a dynamical system represented by the nonlinear
function y; = f(x;) where

T =[Ys1,- .
Here, t denotes the time step, u the control input, w the
exogenous disturbance input, y the (past) output, and [, m, and
p are respectively the lags for autoregressive outputs, control
inputs, and disturbances. Note that u; and w; are the current
control and disturbance inputs. The vector of all autoregressive
inputs can be thought of as the current state of the model. A
dynamical GP can then be trained from data in the same way
as any other GPs.

When a GP is used for control or optimization, it is usually
necessary to simulate the model over a finite number of future
steps and predict its multistep-ahead behavior. Because the
output of a GP is a distribution rather than a point estimate,
the autoregressive outputs fed to the model beyond the first
step are random variables, resulting in more and more complex
output distributions as we go further. Therefore, a multistep
simulation of a GP involves the propagation of uncertainty
through the model. There exist several methods for uncertainty
propagation in GPs [20].

It was shown in [21] that the zero-variance method, which
replaces the autoregressive outputs with their corresponding
expected values and therefore does not propagate uncertainty,
could achieve sufficient prediction accuracy compared to the
Monte-Carlo method of uncertainty propagation. Its com-
putational simplicity is attractive, especially in optimization
applications where the GP must be simulated for many time
steps. Consequently, the zero-variance method was selected
for predicting future outputs in this work.
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III. OPTIMAL EXPERIMENT DESIGN

In this section, we address the practical challenge of “Data
quality” listed in Sec. I-A.

In general, the more data we have, the better we can learn a
model using machine learning algorithms. These data are often
obtained by running experiments, called functional tests, on
the real system. However, in many applications, the amount of
training data we can practically obtain is usually limited due to
many factors, such as a short permitted duration for functional
tests and operational or safety constraints of the physical
system. For example, in the case of buildings as we will
discuss in Sec. VI, a functional test typically involves changing
various set-points of the building energy control system in
order to excite the different components and operation modes
of the building, so that the obtained data will reflect their
behaviors. It is often the case that a functional test in a building
is limited by the short time window during which the set-points
are allowed to change, and by the maximum allowable rates
of change of these set-points. Subject to these constraints, it
is desirable to optimally design the functional tests so that the
data quality is maximized, in the sense that the model obtained
from the data with a specific learning technique likely has

the best quality possible. This practice is known as optimal
experiment design (OED).

A. Information theoretic approach to OED

In this section, we present an information theoretic approach
for OED to incrementally design or select the best data
points for explaining the behavior of the underlying physical
system with GP. This is achieved by exploiting the predictive
variance in GP regression (2). The goal here is to update the
hyperparameters 6 in the model y ~ GP(u(x), k(z); 0) as new
samples are observed sequentially. One popular method for
selecting the next sample is the point of Maximum Variance
(MV), which is also widely used for Bayesian Optimization
using GPs [22]. Since we can calculate the variance in y for
any z, OED based on MV can be directly computed using
(2). However, another approach which has been shown to
result in better samples for learning the hyperparameters 6
is maximizing the Information Gain (IG) [18]. In Sec. VI, we
will compare both approaches in a case study.

The IG approach selects the sample which adds the maxi-
mum information to the model, i.e. which reduces the maxi-
mum uncertainty in 6. If we denote the existing data before
sampling by D, then the goal is to select x that maximizes the
information gain defined as

argmax, H(0|D) — Ey n(g(2),02)H (0D, 2,y), (3)
where H is the Shannon’s Entropy given by

Hmm:—/mmm%@mmma @

Since ylz ~ N (y(z),02(x);0), we need to take an expec-
tation over y. When the dimension of 6 is large, computing
entropies is typically computationally intractable. Using the
equality H(0) — H(A|y) = H(y) — H(y|#), we can rewrite (3)
equivalently as

arg max H (y|z, D) — Egpo)p) H (y]z, 0). )]

In this case, as the expectation is defined over 6, (5) is much
easier to compute because y is a scaler. For further details, we
refer the reader to [23]. The first term in (5) can be calculated
by marginalizing over the distribution of 6|D:

p(ylx, D) = Egpop)p(y|z,0,D)
:/@@mapmwmwo 6)

for which the exact solution is difficult to compute. We
therefore use an approximation described in [24]. It is shown
that for 0|D ~ N (67, E), we can find a linear approximation
to y(z) = a¥'(z)0 + b(z) such that
p(ylz,D) ~ N (a"§+b,0° + a" La) (7)
in the neighborhood of #. Under the same approximation, the
variance p(y|x, D) is approximated to be
~2 4 5 oy(x) " 9y(x)
7 (x) = 39 () + 50 b 50
1 90%(x)" _002(2) q
302(x) 06 00 ®
evaluated at 6 while the second term in (5) can be written as
H (y|x, ). Finally, maximizing the information gain in (3) is
equivalent to maximizing &2(z)/0?(x). Next, we apply this
result for sequential optimal experiment design.




Algorithm 1 Sequential sampling for OED based on IG

1: procedure INITIALIZATION

2 if initial D := (X,Y) then

3 Compute Ovre = arg maxgmie Pr(Y|X, 0)
4: Assign priors 0o ~ N (OmLE, 05it)

5: else

6: Assign priors 6o ~ N (Liinit, Oinit )

7 end if

8: end procedure

9: procedure SAMPLING

10: while ¢ < tmax do

11: Calculate features x; in (9) as a function of wu;
12: Solve (10) to calculate optimal u;

13: Apply u; to the system and measure y;

14: D=DU (z¢,yt)

15: Update 0y = arg maxymar Pr(Y|X,0:_1)

16: end while
17: end procedure

B. Sequential experiment design with Gaussian Processes

Our goal is to update the hyperparameters 6 of the GP
efficiently as new data is observed. To begin the experiment
design, we assume that we only know about which features
z have an influence on the output y. This is often known in
practice. For example, for the case study in Sec. VI, the output
of interest is the building power consumption, and the features
we consider include outside air temperature and humidity,
time of day to account for occupancy, control set-points and
lagged terms for the output. Then a covariance structure of GP
must be selected. For the example above, we chose a squared
exponential kernel. If samples D := (X,Y) are available,
we can assign the prior distribution on € based on the MLE
estimate arg max, Pr(Y|X,0), ie. 6y ~ N (Ovrg,02;)
where a suitable value of o2, is chosen. Otherwise, the
Gaussian priors g ~ N (uinit, O’iznit) are initialized manually.

Now, consider a dynamical GP model introduced in Sec. II,
yr = f(x¢; 0) where

Tt =[Yt—ty- s Yom1, Ut - - Swi—1,wi). (9)
At time ¢, the current disturbance, and the lagged terms of the
output, the control inputs and the disturbance are all known.
The current control input u; € R* are the only unknown fea-
tures for experiment design, which we aim to select optimally.
For physical systems, very often, we must operate under strict
actuation or operation constraints. Therefore, the new sampled
inputs must lie within these constraints. To this end, we solve
the following optimization problem to compute optimal control
set point recommendations u; for experiment design

% () /0* (21)
subject to  wu; €U

where x; is a function of u;. The new control input u; is
applied to the physical system to generate the output y;, update
the parameters # using maximum a posteriori (MAP) estimate
[24], and we proceed to time ¢ + 1. The algorithm for OED
is summarized in Algorithm 1.

As an example, in Sec. VI where we learn a dynamical
model of a building, the proposed OED method is used to
optimally sample the chilled water temperature, supply air
temperature and zone-level cooling set-points, subject to oper-
ation constraints on the chiller system. The result is illustrated

-5 Uty We—p, - -
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Fig. 3: Error in prediction of power consumption on test dataset.
RMSE denotes root mean square error and AE denotes absolute error.
The errors are much lower with optimal experiment design based on
information gain. The random sampling requires 2x time to reach
the same accuracy as OED.

in Fig. 3, which shows the changes in model accuracy between
several experiment design methods, for various durations of
functional tests. For short functional test durations, our OED
methods achieve much more accurate models compared to
random sampling methods. The random sampling requires 2x
time to reach the same accuracy as OED. Since the historical
data is unperturbed, it would require even longer to provide
similar accuracy.

IV. MODEL PREDICTIVE CONTROL

This section addresses the challenge of “Computational
complexity” and “Performance guarantees” listed in Sec. I-A.

Consider a black-box model given by z;1 = f(z¢, us, di),
where x,u,d represent state, input and disturbance, respec-
tively. Depending upon the learning algorithm, f is typically
nonlinear, nonconvex and sometimes nondifferentiable (as
is the case with regression trees and random forests) with
no closed-form expression. Such functional representations
learned through black-box modeling may not be directly suit-
able for control and optimization as the optimization problem
can be computationally intractable, or due to nondifferentia-
bilities we may have to settle with a sub-optimal solution
using evolutionary algorithms. In our previous work, we use
separation of variables that allows us to approximate the
Random Forests as affine models in the neighborhood of a
given disturbance [5]. The main drawback of this approach
is that these models lead to a non-smooth input behavior.
Gaussian Processes overcome this problem. Further, GPs can
generalize well using only a few samples while also providing
an estimate for uncertainty in the predictions. We exploit this
property in the optimization to generate input trajectories with
high confidence.

Given a GP model of the plant, the zero-variance method
is used to predict the plant’s outputs in a horizon of N time
steps starting from the current time ¢, for 7 € {0,..., N —1}:

(1)

Ytrr ~ N (gt+'r = gm(xt-i-ﬂ')a o't2+7— = gV(xt-i-T)) >

Tt4r = [@tw—l, co Ytr—15 Ut r—my - -y Utprs

Witr—ps -y Wetr—1, Wi r].

The output at step ¢t + 7 depends upon the control inputs

Utgpr—m, - - -, Ut47. We are interested in the following opti-



mization problem with quadratic cost with R > 0
N-1
minimize Z (Jtar —yref)Q—|—ut+TTRut+T—|—)\a§7t+T (12)
7=0
subject (0 Grir = parir) + KK (Y = (X))
oriir =Ko — KKK}
Ut4r € u

Pr(yir€Y)>1—¢

where the constraints hold for all 7 € {0,..., N — 1}. Here,
K, = [k(xt-i-‘rv .1?1), s k<xt+7'7 xN)]» Ky = k(xt-i-‘ra -rt+7')~
The last constraint is a chance constraint, which keeps the
plant’s output inside a given set ) with a given probability
of at least 1 — €. The hyperparameters 6 of the mean function
w1 and the covariance function k are optimized while training
GPs as described in Sec. II or by experiment design in Sec. III.
We solve (12) to compute optimal uy, ..., u;, 1, apply u;
to the system and proceed to time ¢ + 1.

Although we have an analytical expressions for all the
constraints in the optimization, depending upon the choice
of mean and covariance functions, the optimization can be
computationally hard to solve. We solve (12) using IPOPT [25]
and CasADi [26]. Our future work will focus on developing
MPC based on sparse GPs which are more scalable to large
scale systems.

V. EVOLVING GAUSSIAN PROCESSES

In this section, we discuss the challenge of “Model adapt-
ability” listed in Sec. I-A.

As the system properties change with time, the learned
model must actively update itself so that it best reflects the
current behavior of the system. For example, the same GP
model may not be suitable to control a building in both
Summer and Winter seasons. As we generate more data with
time with the controller in the loop, it is intuitive to incorporate
the new data into the existing model to improve its accuracy.
However, we may not want to use the full new data set for
model update for multiple reasons. First, because not all data
are created equal, especially in closed loop with a controller,
we should select only the most informative subset of data
that best explain the system dynamics at the time. Second,
since the computational complexity of training and predicting
with Gaussian Processes is O(n?), where n is number of
training samples, the learning and control problems become
computationally hard as the size of data increases. Therefore,
obtaining the best GP model with the least amount data is
highly desired. The solution to this problem lies in selecting
the optimal subset of data, from the available data, that best
explains the system behavior or dynamics. Towards this goal,
we extend the result from Sec. III-A.

A. Optimal subset of data selection: selecting the most infor-
mative data for periodic model update

Out goal is to filter the most informative subset of data
that best explain the dynamics. In this section, we outline a
systematic procedure that aims to select the best k£ samples
from a given set D of n observations. The main differences be-
tween the problem of selecting the best or the most informative
subset of data and the sequential sampling for OED described

Algorithm 2 Optimal subset of data selection

1: procedure INITIALIZATION

2 Sample with replacement & integers € {1,...,n}
3 Compute OvLe = arg maxyuie Pr(Y]X, 0)

4 Assign priors 0o ~ N (OmLE, 07i)

5: end procedure

6: Define S = @

7: procedure SAMPLING

8: while j < k do

9: Solve (13) for optimal z;|(z;,y;) € D\ S

10: S=8U(zj,y5)
11: Update 0 = arg maxyuar Pr(Y[X,6;-1)

12: end while
13: end procedure

in Sec. III-B are that in the former, (1) all the features x must
be optimized as opposed to only control variables u, and (2)
the decision has to be made only from the available data rather
than sampling.

We begin by selecting k& samples randomly, then assign the
priors of the hyperparameters 6 based on the MLE estimate
obtained by learning a GP on the drawn set. Starting with an
empty set of samples S, we loop through the full data set D
to identify which sample maximizes the information gain. In
this setup, we solve the following optimization problem

maximize

~2 2
o \x; o \x;
@;l(x;,,)€D\S (@5)/o"(2;)

Then, we add this sample to S, update 6§ and proceed until
|S| = k. This algorithm is summarized in Algorithm 2.

The proposed method is used in a case study in Sec. VI-E to
update the learned model from time to time as a controller runs
in a closed loop and we generate more data. Fig. 4 shows the
improvement in mean prediction error and prediction variance
obtained after optimal selection, starting with a model trained
on uniformly random sampled data.

13)

VI. CASE STUDY

In January 2014, the east coast electricity grid, managed
by PIM, experienced an 86-fold increase in the price of
electricity from $31/MWh to $2,680/MWh in a matter of 10
minutes. Similarly, the price spiked 32 times from an average
of $25/MWh to $800/MWh in July of 2015. This extreme price
volatility has become the new norm in our electric grids. Build-
ing additional peak generation capacity is not environmentally
or economically sustainable. Furthermore, the traditional view
of energy efficiency does not address this need for Energy
Flexibility. A promising solution lies with Demand Response
(DR) from the customer side — curtailing demand during peak
capacity for financial incentives. However, it is a very hard
problem for commercial, industrial and institutional plants —
the largest electricity consumers — to decide which knobs to
turn to achieve the required curtailment, due to the large scale
and high complexity of these systems. Therefore, the problem
of energy management during a DR event makes an ideal case
for our proposed approach of combining machine learning and
control. In this section, we apply optimal experiment design,
receding horizon control based on GPs, and evolving GPs on
large scale EnergyPlus models to demonstrate the effectiveness
of our approach.
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Fig. 4: Left: Selection using random sampling. Right: Optimal subset of data selection. Starting with the model parameters obtained using
random sampling, we apply Algorithm 2 to improve the model accuracy. Both the mean prediction error and the prediction variance are

lower for optimal selection based on information gain.

A. Building Description

We use two different U.S. Department of Energy’s Commer-
cial Reference Buildings (DoE CRB) simulated in EnergyPlus
[10] as the virtual test-bed buildings. The first is a 6-story
hotel consisting of 22 zones with a total area of 120,122 sq.ft,
with a peak load of about 400 kW. The second building is
a large 12-story office building consisting of 19 zones with
a total area of 498,588 sq.ft. Under peak load conditions the
office can consume up to 1.4 MW of power. Developing a
high fidelity physics-based model for these buildings would
require massive cost and effort. Leveraging machine learning
algorithms, we can now do both prediction and control with
high confidence at a very low cost.

We use the following data to validate our results. We
limit ourselves to data which can be measured directly from
installed sensors like thermostats, multimeters and weather
forecasts, thus making it scalable to any other building or a
campus of buildings.

o Weather variables d": outside temperature and humidity
— these features are derived from historical weather data.

e Proxy features dP: time of day, day of week — these
features are indicators of occupancy and periodic trends.

o Control variables u: cooling, supply air temperature and
chilled water setpoints — these will be optimized in the
MPC problem.

o Output variable y: total power consumption — this is the
output of interest which we will predict using all the
above features in the GP model.

The time step for modeling and control is 15 minutes.

B. Gaussian Process Models

We learn a single GP model of the building and use the
zero-variance method to predict the outputs y at the future
time steps following the current time step. For each prediction
step t + 7, where ¢ is the current time and 7 > 0, the output
Y+ 18 a Gaussian random variable given by (11). We assume
that at time ¢, wyy, are available V7 from forecasts or fixed
rules as applicable.

As for the mean and covariance functions of the GP, we use
a constant mean p and the kernel function k(x,2") proposed
in [21]. The kernel function is a mixture of constant kernel

ky(z,2"), squared exponential kernel ko(z,x’) and rational
quadratic kernel ks(z,z’) as

kl(l’,l’/) = k7

D _ ’ 2
ko(w,2') = o, exp <§ D=1 (wd,\gwd) ;

2\ T
ba(a, ') = o2, (1 L L yD | G ) 7

k(z,2") = (ki(z,2") + ka(x,2")) * k3(z, 2'). (14)
Here, D is the dimension of z, k3(x,z’) is applied to only
temporal features like time of day and day of week, while
k1(z,2") and ko(x,2’) are applied to all the remaining fea-
tures. The insight of this kernel choice, as discussed in [21],
is that k3 represents the temporal pattern of the energy usage
of the building, k; represents the base power demand, and ko
represents the influence of non-temporal features (e.g., weather
conditions and temperature setpoints) on the power demand.
We optimize the hyperparameters 6 of the model in (11) using
GPML [27].

C. Optimal Experiment Design

OED is powerful when limited data are available for
training. To demonstrate this, using Algorithm 1, we begin
the experiment by assigning N (0,1) priors to the kernel
hyperparameters. For OED, we only consider the one-step-
ahead model with 7 = 0 in (11). The goal at time t is
to determine what should be the optimal cooling set-point
Uclg,t>» Supply air temperature set-point ugas s, and chilled
water temperature set-point Uchw,; Which, when applied to
the building, will require power consumption y; such that
(z¢,y:) can be used to learn 6 as efficiently as possible.
We use the lagged terms of the power consumption, proxy
variables, weather variables and their lagged terms to define
Tt (Uclg b, Usat, b, Uchw,t)- We assume a practical operational
constraint that the chilled water temperature set-point cannot
be changed faster than 0.13°C/min. Keeping this constraint
and thermal comfort constraints into consideration, we con-
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Fig. 5: Comparison of model accuracies for different experiments: OED based on information gain (IG), OED based on maximum variance
(MV), uniform random sampling (Uniform) and pseudo random binary sampling (PRBS) for two buildings: hotel and office. RMSE denotes
root mean square error and SMSE standardized mean square error; lower RMSE and higher 1-SMSE indicate better prediction accuracy.

sider the following operational constraints:
22°C < uagyt < 27°C,

12°C < ugasr < 14°C,

3.7°C < Uchw,t < 9.7°C,

|Uchw,t - Uchw,t—1| <2°C.

15)

Finally, we solve the optimization (13), subject to the opera-
tional constraints (15), every 15min to calculate optimal inputs
for OED.

The results for experiment design in closed-loop with the
EnergyPlus building models described in Sec. VI-A are shown
in Fig. 5. We compare 4 different methods: OED based on
maximum information gain (IG), OED based on maximum
variance (MV), uniform random sampling (Uniform) and
pseudo random binary sampling (PRBS). The last two methods
are frequently used in practical applications for model training.
The inputs wclg,t, Usat,t, Uchw,t generated via OED or random
sampling are applied to the building every 15min. We repeat
OED/random sampling continuously for 14 days and learn a
model at the end of each day using the data generated until
that time. For example, at the end day of day 3 we have 3 x 96
samples, at day 7 we have 7 x 96 samples and so on. As the
days progress, we add more training samples and therefore
the model accuracy is expected to increase with time. This is
visible in both metrics Root Mean Square Error (RMSE) and
Standardized Mean Square Error (SMSE) for both buildings.

For OED based on information gain as well as maximum
variance, the learning rate is much faster than any random
sampling. For the hotel building on the left, the IG method
is the best in terms of accuracy. Uniform random sampling
and PRBS are far worse in both metrics for approx. 200
hrs. For the same performance, OED reduces the duration of
functional tests by over 50%. For the office building on the
right, IG is marginally better than MV in terms of SMSE for all
days, while MV shows faster learning rate with lower RMSE.
Thus for the office building, OED based on IG and MV are
comparable. With the random sampling, we observe the same
trend as before. Random sampling, both uniform and PRBS
require more than 200 hrs for functional tests to achieve the
same RMSE and model accuracy.

We have shown that OED can be used to learn a model very
fast. In practice, due to operational constraints, the functional

tests cannot be performed for sufficiently long time. They are
permitted only in a small window, during non-business hours
for only a few hours in a month. Even short periodic tests
based on OED can provide far better models due to its ability
to capture more information in the same amount of time. Thus,
OED can drastically reduce the duration for functional tests.

D. Power Reference Tracking Control

This section formulates an MPC approach for the follow-
ing demand tracking problem. Consider a building, which
responds to various set-points resulting in power demand
variations, and a battery, whose state of charge (SoC) can
be measured and whose charge/discharge power can be con-
trolled. Given a power reference trajectory, for example a cur-
tailed demand trajectory from the nominal energy consumption
profile (the baseline), our objective is to control the building
and the battery to track the reference trajectory as closely
as possible without violating the operational constraints. The
building’s response to the setpoint changes is modeled by a GP.
The battery helps improve the tracking quality by absorbing
the prediction uncertainty of the GP. An MPC based on the
GP model computes the set-points for the building and the
power of the battery to optimally track the reference demand
signal.

For simplicity, we assume an ideal lossless battery model

Si41 = 8¢+ 1Tby (16)

where b, is the battery’s power at time step ¢ and s is the
battery’s SoC. Here, b is positive if the battery is charging
and negative if discharging. The battery is subject to power and
SoC constraints: by < by < bmax, and Smin < S¢ < Smax
where spmax 1S the fully-charged level and sy, is the lowest
safe discharged level.

The building and the battery are linked via the power
tracking constraint which states that p; = vy, + b; should track
the reference r; at any time ¢. Therefore, our objective is to
minimize §; = r; — p;. In this way, the battery helps reject the
uncertainty of the GP and acts as an energy buffer to increase
the tracking capability of the system. The controller tries to
keep 6; = 0, however when exact tracking is impossible,
it will maintain the operational safety of the system while
keeping d; as small as possible. The bounds on the battery’s
power and SoC lead to corresponding chance constraints. We



wish to guarantee that at each time step, the power and SoC
constraints are satisfied with probability at least (1 — ¢,) and
at least (1 — €,), respectively, where 0 < €, €, < 1 are given
constants. Specifically, for each 7 in the horizon,
Pr (bmin < b7'+t S bmax) 2 1- €p

PI‘ (Smin S Sttt S Smax) Z 1-— €s

(17)
(18)
where by, and s;4, are Gaussian random variables whose
mean and variance are given by

biyr =7t — Otrr — Yttr, Ul?,wr = U§,t+w (19)
Stprrr=se T Y b, 02 =T 000y (20)
For further details on modeling we refer the reader to our
previous work [21]. To track a given reference power signal,
we solve the following stochastic optimization problem to op-
timize 044, Uclg, 7+, Usat, 7+t Uchw,r+t VT € {0,...,N —1}

mir%imize Ziv;ol (0r4e)® + )\Uz’ﬂ_t (21

subject to dynamics constraints (11), (17) — (20)
operation constraints (15).

The term o7 ., in the objective functions ensures control set-
points where model is more confident. At time ¢, we solve for
Ug, ..., Ufy 1, apply the first input uj to the building, and
proceed to the next time step.

The office building has a large HVAC system, so for
this building we consider the following Demand Response
scenario. Due to price volatility, the office receives a request
from the aggregator to shed 90 kW load between 2-4pm. Now,
the goal of the operators is to decide setpoints that would
guarantee this curtailment while following stringent operation
and thermal comfort constraints. Rule-based strategies do not
guarantee this curtailment and hence pose a huge financial risk.
Using our data-driven approach for control, we can synthesize
optimal setpoint recommendations. Fig. 6 shows the load
shedding between 2-4pm. The baseline power consumption
indicates the usage if there was no DR event, or in other words
if the building would have continued to operate under normal
conditions. The reference for tracking differs from baseline
by 90 kW during 2-4pm. The mean prediction denoted by p
is the output ¢, which follows the reference signal closely
as the input constraints are never active. The actual (system)
building power consumption differs only marginally from the
reference as shown in Fig. 7. The maximum prediction error
during the DR event is 22.5 kW (1.7%) and the mean absolute
error is 7.9 kW (0.6%). While tracking the reference signal,
the battery power compensates for this error to provide near
perfect tracking. The optimal setpoints are shown in Fig. 8.
The controller has a prediction horizon of 1 hr. It kicks in at
1:15pm and increases the cooling, chilled water temperature
and supply air temperature set-points to meet the requirement
of 90 kW. After 4pm, we continue to follow the baseline signal
for the next one hour to reduce the effect of the kickback.

E. Online Model Update

The GP model used for control in Sec. VI-D is trained on the
data set D generated from the OED procedure in Sec. VI-C.
We run the controller in a closed loop with the building for two
weeks and collect the new data set D’ generated in the process.
D’ contains useful and current information about the dynamics

baseline

system

p - - - reference ‘

power [MW]
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Fig. 6: The reference power signal is closely tracked by GP model
providing sustained curtailment of 90 kW (with respect to the
baseline) during the Demand Response event 2-4pm. Due to lhr
horizon in the control problem, the curtailment starts at 1:15pm, and

the controller is further active until Spm to reduce kickback.
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Fig. 7: The prediction error during the DR event is always less 22.5
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Fig. 8: Optimal set-points obtained after solving optimization (21).

of the system, that is beneficial for updating the GP model to
improve its accuracy. This can be achieved by re-training the
model on the combined data set D U D’. However, due to the
fast growth of computational complexity of GPs with the size
of the training data set (O(|DU D’|3)), it is not recommended
to re-train the model on DUD’, especially when |D| and |D’
are large. Therefore, we select the most informative subset of
data S C {DU D'} to update the GP model.

We consider two different GP models learned using OED
for 14 days and 21 days in the month of June. In the first
case, we have 14 x 96 samples and in the second case 21 x 96
samples for training. We run each GP model in closed-loop
with the building in a different month for further 14 days.
To update the model for evolving GP, we use Algorithm 2 for
optimal subset of data selection to choose the most informative
14 x 96 samples in the first case and 21 x 96 samples in the



TABLE I: Comparison of Root Mean Square Error (RMSE) in kW
between Updated GP and Outdated GP models for different months.

| July | August | September

| 14-day 2l-day | 14-day 2l-day | l4-day 21-day
Outdated GP 65.2 63.8 91.81 93.2 103.2 101.4
Updated GP 58.9 59.4 86.4 85.7 97.7 94.9
% improved 9.6% 6.9% 5.9% 7.9% 5.3% 6.4%

second case. These models are denoted by “Updated GP” in
Tab. I. We compare the performance of these models against
the original model, referred to as an “Outdated GP” in Tab. I
since this model does not include the most up-to-date data
about the current system which has evolved due to seasonal
and operational changes. We repeat this for the months of
July, August and September. Finally, we test the prediction
accuracy (RMSE) of both models on the remaining 14days
of the respective months. For example, when the outdated GP
model is used for control from Aug 1 to Aug 14, we calculate
the prediction error from Aug 15 to Aug 28. For the office
building, our results show that the updated GP model is better
in all the cases with lower RMSE, decreasing the model errors
by at least 5%.

VII. CONCLUSION

Learning black-box models for real-time control reduces the
cost and time required to model complex physical systems like
buildings and chemical plants by an order of magnitude. This
paper addresses the various challenges associated in bridg-
ing machine learning and controls with application to load
curtailment for Demand Response. (1) We propose a method
for optimal experiment design using Gaussian Processes to
recommend strategies for functional test (in closed-loop with
the plant) when limited data are available. We show that under
operational constraints, data generated by the proposed OED
method based on maximizing information gain or maximizing
variance provides much faster learning rate than uniform
random sampling or pseudo random binary sampling. OED
drastically reduces the duration of required functional tests by
upto 50%, which, in practice, are permitted for only a few
hours in a month due to operation constraints. (2) We exploit
the variance in predictions from GPs to formulate a stochastic
optimization problem to design an MPC controller. We show
the GP controller provides the desired load curtailment with
perfect tracking and maximum 1.7% prediction error during
a DR event. (3) Finally, we extend the OED approach to
update the GP model as new data is generated by running
the controller in a closed-loop with the building, reducing the
repetitive need for functional tests as the system properties
change with time.

While we can do functional tests more efficiently, perform
closed-loop control with high confidence and update the model
online with Gaussian Processes, our future work will focus
on scaling the approach to even more complex systems like
a network of buildings in a district. We will also address the
effect of uncertainties in the weather forecast and the emergent
behavior like hardware failure.

REFERENCES

[1] David Sturzenegger, Dimitrios Gyalistras, Manfred Morari, and Roy S
Smith. Model predictive climate control of a swiss office building:

[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Implementation, results, and cost-benefit analysis. IEEE Transactions
on Control Systems Technology, 24(1):1-12, 2016.

AF Emery and Aleksey V Nenarokomov. Optimal experiment design.
Measurement Science and Technology, 9(6):864, 1998.

Valerii Fedorov. Optimal experimental design. Wiley Interdisciplinary
Reviews: Computational Statistics, 2(5):581-589, 2010.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements
of statistical learning, volume 1. Springer series in statistics Springer,
Berlin, 2001.

Achin Jain, Francesco Smarra, and Rahul Mangharam. Data Predictive
Control using Regression Trees and Ensemble Learning. In Proceedings
of the 2017 Conference on Decision and Control. IEEE, 2017.

Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert
Bittner, MN Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris
Geyer, et al. Autonomous driving in urban environments: Boss and the
urban challenge. Journal of Field Robotics, 25(8):425-466, 2008.
Felix Berkenkamp and Angela P Schoellig. Safe and robust learning
control with gaussian processes. In Proceedings of the 2015 European
Control Conference (ECC), pages 2496-2501. IEEE, 2015.

Vishnu R Desaraju and Nathan Michael. Experience-driven predictive
control. Robot Learning and Planning (RLP 2016), page 29, 2016.
Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

Michael Deru, Kristin Field, Daniel Studer, Kyle Benne, Brent Griffith,
Paul Torcellini, Bing Liu, Mark Halverson, Dave Winiarski, Michael
Rosenberg, et al. US Department of Energy commercial reference
building models of the national building stock, 2011.

Achin Jain, Madhur Behl, and Rahul Mangharam. Data Predictive
Control for building energy management. In Proceedings of the 2017
American Control Conference. IEEE, 2017.

Achin Jain, Francesco Smarra, Madhur Behl, and Rahul Mangharam.
Data-driven model predictive control with regression trees—An appli-
cation to building energy management. ACM Transactions on Cyber-
Physical Systems, 2(1):4, 2018.

Abdul Afram, Farrokh Janabi-Sharifi, Alan S Fung, and Kaamran
Raahemifar. Artificial neural network (ann) based model predictive
control (mpc) and optimization of hvac systems: A state of the art review
and case study of a residential hvac system. Energy and Buildings,
141:96-113, 2017.

Elena Mocanu, Decebal Constantin Mocanu, Phuong H Nguyen, Anto-
nio Liotta, Michael E Webber, Madeleine Gibescu, and JG Slootweg.
On-line building energy optimization using deep reinforcement learning.
arXiv preprint arXiv:1707.05878, 2017.

Hae Young Noh and Ram Rajagopal. Data-driven forecasting algorithms
for building energy consumption. In Proceedings of SPIE, 2013.
Rongxin Yin, Emre C. Kara, Yaping Li, et al. Quantifying flexibility
of commercial and residential loads for demand response using setpoint
changes. Applied Energy, 2016.

Yuna Zhang, Zheng O’Neill, Bing Dong, and Godfried Augenbroe.
Comparisons of inverse modeling approaches for predicting building
energy performance. Building and Environment, 86:177-190, 2015.
Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor
placements in gaussian processes: Theory, efficient algorithms and
empirical studies. Machine Learning Research, 9(Feb):235-284, 2008.
Carl Edward Rasmussen and Christopher KI Williams.  Gaussian
processes for machine learning, volume 1. MIT press Cambridge, 2006.
Jus Kocijan. Modelling and control of dynamic systems using Gaussian
process models. Springer, 2016.

Truong X. Nghiem and Colin N. Jones. Data-driven demand response
modeling and control of buildings with gaussian processes. In Proceed-
ings of American Control Conference (ACC), 2017.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian
optimization of machine learning algorithms. In Advances in neural
information processing systems, pages 2951-2959, 2012.

Neil Houlsby, Ferenc Huszar, Zoubin Ghahramani, and Mété Lengyel.
Bayesian active learning for classification and preference learning. arXiv
preprint arXiv:1112.5745, 2011.

Roman Garnett, Michael A Osborne, and Philipp Hennig. Active
learning of linear embeddings for gaussian processes. arXiv preprint
arXiv:1310.6740, 2013.

A Wichter and L Biegler. Ipopt-an interior point optimizer, 2009.

Joel Andersson. A General-Purpose Software Framework for Dynamic
Optimization. PhD thesis, KU Leuven, 2013.

Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes
for machine learning (gpml) toolbox. Journal of Machine Learning
Research, 11(Nov):3011-3015, 2010.



	Introduction
	Challenges in bridging machine learning and controls
	Overcoming practical challenges
	Contributions
	Related Work

	Gaussian Processes
	Gaussian Processes for Dynamical Systems

	Optimal Experiment Design
	Information theoretic approach to OED
	Sequential experiment design with Gaussian Processes

	Model Predictive Control
	Evolving Gaussian Processes
	Optimal subset of data selection: selecting the most informative data for periodic model update

	Case Study
	Building Description
	Gaussian Process Models
	Optimal Experiment Design
	Power Reference Tracking Control
	Online Model Update

	Conclusion
	References

