
Electronic copy available at: http://ssrn.com/abstract=926927

Cooperative Cashing?: An Economic Analysis of Document Duplication in Cooperative Web

Caching

Abstract

Cooperative caching is a popular mechanism to allow an array of distributed caches to cooperate and

serve each others’ web requests. Controlling duplication of documents across cooperating caches is a

challenging problem faced by cache managers. In this paper, we study the economics of document

duplication in strategic and non-strategic settings. We have three primary findings. First, we find that the

optimum level of duplication at a cache is non-decreasing in inter-cache latency, cache size and extent of

request locality. Second, in situations in which cache peering spans organizations, we find that the

interaction between caches is a game of strategic substitutes wherein a cache employs lesser resources

towards eliminating duplicate documents when the other caches employs more resources towards

eliminating duplicate documents at that cache. Thus, a significant challenge will be to simultaneously

induce multiple caches to contribute more resources towards reducing duplicate documents in the system.

Finally centralized decision-making, which as expected provides improvements in average latency over a

decentralized setup, can entail highly asymmetric duplication levels at the caches. This in turn can benefit

one set of users at the expense of the other and thus will be challenging to implement.

Keywords: web caching, cooperative caching, duplication in caching, analytical modeling, incentive

centered design, game theory.

Electronic copy available at: http://ssrn.com/abstract=926927

 1

1. Introduction

Web caching refers to the temporary storage of web content somewhere between web servers and clients

in order to satisfy future requests from the nearby location (see Figure 1). Proxy caches, located at the

gateways of large organizations and ISPs, play an important role in reducing latency (i.e., delay in content

delivery) and bandwidth costs. Forrester Research prescribes caching as one of four best practices to

improve performance for websites and ISPs (Gualteiri and Staten 2009).

Figure 1: A Proxy Web Cache

 Often, multiple caches in a network coordinate and share resources in order to serve each others’

requests (see Figure 2). This is also known as cooperative caching. When a cache does not have the

requested data object, it can forward the request to a nearby cooperating cache that can serve the object

faster than the origin server. The primary benefits of cache cooperation are higher hit rates
1
 and lower

average latency for end users. Cooperative caching is typically implemented across caches within an

organization such as a large enterprise, ISP, or a Content Delivery Network (CDN). Cache cooperation

can sometimes span organizational boundaries, for example with cache peering at exchanges such as

Packet Clearing House and Equinix as well as implementations in the public domain such as IRCache and

w3cache.
2

1
 Hit rate or hit ratio indicates the fraction of requests served from the cache.

2
 www.pch.net, www.equinix.com, www.ircache.net, http://w3cache.icm.edu.pl.

 2

Figure 2: Cooperative Caching

A number of protocols have been proposed to help determine how caches should communicate

and coordinate. These include Inter Cache Protocol (ICP), Cache Array Routing Protocol (CARP),

Summary Cache and Home Protocol. ICP (Wessels and Claffy 1998), one of the first cooperative caching

protocols to be supported in commercial proxy servers, lets each cache independently determine what

objects to cache without accounting for content in other caches. This eliminates the need to coordinate but

can result in low array hit ratio because of duplication of objects across the caches. CARP (Valloppillil

and Ross 1998), a protocol first used in Microsoft Proxy Server, assigns every data object to a designated

cache based on a hash function. Each cache stores only those objects that it is designated to cache. This

maximizes the number of objects collectively stored by the cache array. However, it can result in a low

local hit ratio, e.g., when a popular object is always fetched from a remote cache. Ultimately, the end user

is concerned with latency, which is a function of both local and array hit rates. To achieve a better

balance, protocols that set duplication levels in between that achieved under ICP and CARP have also

been proposed. Using trace-driven simulations, studies show that these protocols help balance the load of

the caches and reduce user latency by 10-20% (Wu and Yu 1999a, Zu and Subhlok 2003). Given the non-

trivial gains realizable from tuning the duplication level, this is a key factor influencing the returns from

cache cooperation.

 Recognizing that neither ICP nor CARP will consistently outperform the other, most proxy

servers including Squid and Sun Java System proxy server currently support both ICP and CARP and let

 3

the system administrator select the protocol at deployment. System administrators can also set

intermediate duplication levels using recent techniques which, although not currently supported in

commercial proxy servers, can be implemented with some additional effort such as through the logical

partitioning of caches (Wu and Yu 1999a). The absence of a default setting in most proxy servers is

because the optimal choice depends on the deployment context. This provides significant flexibility to

administrators but also imposes the additional burden of selecting the right level of duplication.

Considerable experimentation is often needed to determine the appropriate choice.
3
 The trade and

academic press provide prescriptions ranging from “CARP versus ICP: ... CARP is a genuine evolution of

ICP, providing much better scalability and performance” (Northrup 1998) to “ICP (has) considerably

lower response time than CARP. The reason is the low local hit ratio of CARP.” (Zu and Subhlok 2003).

Simultaneously, recent academic studies suggest intermediate levels of duplication are desirable. These

studies are based on simulations of distributed non-strategic caches and the diversity of their conclusions

reflects the diversity of the simulation settings. They do not develop a theory to help understand the

fundamental tradeoffs in determining duplication levels. Further they raise additional questions for the

policy-maker. For example, when should the cache manager use configurations that result in no

duplication, unmonitored duplication or some intermediate level of duplication? In case of cache peering

across organizations, what is the impact of strategic behavior on equilibrium duplication levels and

latency? We conduct an economic analysis of document duplication to address these questions.

We study the problem in two ways. First, we develop analytical models to study document

duplication in cooperative caching.
4
 We make several assumptions that help specify a tractable model

from which insights regarding the impact of various parameters can be derived. Second, we turn to trace-

driven simulations to validate our findings under more realistic settings. The novelty of our analytic

3
 Industry discussion forums provide some examples: “I have gone back and forth on what protocol to use in order

to maximize the efficiency of my squid cache cluster (HTCP, ICP, CARP)”. Retrieved August 2008 from

http://www.nabble.com/Carp-is-resulting-in-403s-td18843567.html. See also http://www.nabble.com/cache-

hierarchy-question-td18919695.html.
4
 Our study focuses on document duplication rather than the broader question of protocol selection. Protocol

selection involves multiple considerations beyond duplication levels. We discuss some of these considerations in

Section 2.

 4

approach lies in the fact that we model the request process and caching decisions for the full set of

documents in a cache to ultimately capture the impact of document duplication on expected latency. As a

result, the economic model captures the operational details of cooperative caching protocols.

Our main contribution is the development of a formal framework with which to analyze the

tradeoffs associated with document duplication in cooperative web caching. We arrive at three primary

findings. First, we find that the optimum level of duplication is non-decreasing in inter-cache latency,

cache size and extent of request locality.
5
 Correspondingly, zero duplication is preferable to unmonitored

duplication when caches are close by and are smaller in size and requests exhibit low locality, and vice-

versa. Second, in situations in which cache peering spans organizations, we find that the interaction

between caches is a game of strategic substitutes wherein a cache employs lesser resources towards

eliminating duplicate documents when the other caches employ more resources towards eliminating

duplicate documents. Thus, a significant challenge will be to simultaneously induce multiple caches to

allocate resources towards reducing document duplication in the cache array. Finally centralized decision-

making, as expected, provides improvements in latency over a decentralized setup. But more

significantly, it can entail highly asymmetric duplication levels at the caches. This in turn penalizes some

users while benefiting others and thus raises implementation challenges.

 The rest of the paper is organized as follows. In Section 2, we review the related literature. In

Section 3, we develop a model to study optimal duplication in a setting with two caches. We apply the

model to a variety of decision contexts, including decentralized and centralized decision contexts. In

Section 4, we test the robustness of our results in two parts. First, we extend our analytical model and

relax two key assumptions. Next, we use trace-driven simulations to validate our theoretical findings

under a realistic environment. We conclude the study in Section 5.

2. Literature Review

5
 Locality in web caching refers to the fact that a recently requested document is likely to be requested again.

 5

Web caching has been a popular research stream in Computer Science and Information Systems. The two

streams of work most relevant to our paper are the ones on a) cooperative caching protocols with a

particular emphasis on document duplication, and b) Management Science research on caching.

Document Duplication in cooperative Caching: A number of protocols have been proposed to

address cache coordination in cooperative caching. These include ICP, CARP, Summary Cache, Home

and Two-exit LRU among others.

In ICP (Wessels and Claffy 1998), each cache independently determines which objects to cache

(for e.g., each cache uses LRU).
6
 Whenever there is a local miss, queries are sent to all other caches in the

array. If any of the caches have the content, they respond with the content else the request is forwarded to

the origin server. A major disadvantage of ICP is that a large number of queries are sent, especially if the

number of caches in the array is large. Summary Cache (Fan et al 1998) and Cache Digest (Rousskov and

Wessels 1998) address this by maintaining an index/directory of current content in all the caches. A local

miss results in a lookup of the index, and the request is forwarded to the relevant cache. Several studies

show that the indexes can be maintained with relatively low overheads if caches delay propagation of

directory updates (Fan et al. 1998, Tewari et al. 1999). There is a high degree of duplication of objects in

ICP, Summary Cache and Cache Digest because the caches do not coordinate which objects to store. This

results in low array hit ratio.

 In CARP (Valloppillil and Ross 1998), every data object is assigned to a designated cache based

on a hash function. Each cache stores only the objects it is designated to cache. This helps ensure that the

maximum number of data objects is collectively stored in the array resulting in a high array hit ratio.

Furthermore, a local miss results in the request being forwarded to the designated cache alone which

implies lower query traffic. However, a primary disadvantage of CARP is that it has a low local hit ratio.

For example, a popular document may be assigned to another cache resulting in a local miss whenever the

document is requested locally.

6
 Least Recently Used (LRU) is a replacement policy commonly used in web caches. A replacement policy specifies

the object that should be removed from a cache whenever a new object is added to a cache. LRU replaces the object

that was least recently requested assuming that it is least likely to be requested again among the objects in the cache.

 6

Given the deficiencies of unmonitored duplication and zero duplication, recent research has

proposed allowing some amount of duplication of documents across caches. Two-exit LRU (Wu and Yu

1999a), Adaptable Controllable Replication (Wu and Yu 1999b), Home Protocol (Zu and Subhlok 2003)

and Hosanagar and Tan (2004) all allow a cache to store its most popular documents irrespective of its

presence in one or more other caches. These schemes often divide a cache into two regions as shown in

Figure 3. In the duplication region, a regular LRU scheme is used to store the most popular documents

independent of whether these documents also exist in the other caches. In the non-duplication region, the

cache will not store a document if it exists in another cache. The decision of whether to store a document

in the non-duplication region can be made using a hash function (Wu and Yu 1999a, 1999b) or by using

an index to confirm the document is not in another cache (Hosanagar and Tan 2004).

Figure 3: Controlling Duplication by Logical Partitioning of Caches

In summary, the protocols differ along two main dimensions – communication overhead and level

of duplication (see Table 1). In terms of communication overhead, ICP broadcasts queries to all caches in

the array whenever there is a local miss whereas the other protocols query caches in a targeted manner

through either the use of directories or URL hashing. ICP is rarely used when there are a large number of

caches in the array because of the communication overhead of broadcasting to all caches. When the array

size is relatively manageable, this overhead of ICP is less of an issue. In terms of duplication, ICP,

Summary Cache and Cache Digest do not monitor duplication levels, CARP does not permit duplication,

and Two-exit LRU and Home can set duplication to any value in between.

Our paper focuses exclusively on the level of duplication and we do not evaluate overhead costs.

This is partly because it is possible to use URL hashing or directories to achieve low communication

 7

overhead regardless of the level of duplication. For example, Two-exit LRU uses URL hashing to reduce

communication overhead but can implement zero duplication and unmonitored duplication as special

cases. Further, unlike communication overhead, of which less is always better, there is no universally

preferred level of duplication. Therefore, we focus on the optimal level of duplication and investigate how

it depends on various parameters. These arguments notwithstanding, a natural extension of our work is to

focus on the issue of protocol selection by considering duplication levels, communication and storage

overheads and other factors.

 ICP Summary

cache

Cache

Digest

CARP Two-exit

LRU

Home

Communication

with other

caches

Broadcast Targeted

(Directory-

based)

Targeted

(Directory-

based)

Targeted

(URL

Hashing)

Targeted

(URL

Hashing)

Targeted

(URL

Hashing)

Duplication Unmonitored Unmonitored Unmonitored Zero Intermediate Intermediate

Table 1: Comparison of cooperative caching protocols

It is also worth noting that although many of the papers described above use simulations to

demonstrate that controlled duplication often helps improve latency, they neither prescribe the optimal

level of duplication nor do they provide a framework to understand the factors driving the optimal

duplication levels. Further, even though cooperative caching is a decentralized process, they do not

consider the strategic behavior of the caches. Our model complements these papers by developing a

theoretical framework to better understand the tradeoffs in determining document duplication and the

impact of strategic behavior on equilibrium outcomes. These insights can help cache operators select the

best approach when deploying a network of peering caches.

Management Science Research on Web Caching: There has been a lot of recent interest in web

caching in the Information Systems (IS)/ Management Science (MS) community. For a detailed overview

of web caching from a Management Science perspective, we refer the reader to Datta et al. (2003). One

important stream of work has focused on modeling the key operational decisions at proxy caches and

demonstrated that performance improvements can be achieved through careful optimization. The key

operational decisions at proxy caches include the rules to determine which objects to add to a cache

(placement policy) and rules to determine which objects to remove when a new object is added

 8

(replacement policy). Fang et al. (2006) propose and test a pre-fetching technique for caches in a network

storage system to pre-fetch objects that users are likely to request in the near future. Dutta et al. (2006)

and Chiang et al. (2007) formulate models for identifying objects/fragments to cache and the frequency

with which they should be replaced. Mookerjee and Tan (2002) analyze the performance of an LRU

policy for browser caches. Kaya et al. (2009) propose an admission-control policy for proxy server

caching that augments the LRU mechanism. Kumar and Norris (2008) propose a mechanism that takes

into account aggregate patterns in user object requests and show that it can outperform LRU. Bose and

Cheng (2000) show that proxy caching is beneficial if the hit rate exceeds a threshold, and identify the

factors on which the threshold depends.

The stream of work that is closely related to our paper is that studying the economics and

operational aspects of distributed caching. Chan et al. (1999) and Chuang and Sirbu (2000) propose

markets for QoS-based caching services and Hosanagar et al. (2005) study the design and pricing of these

services. Geng et al (2003) also discuss a cooperative caching market in which ISPs may trade cache

capacity. More recently, Du et al (2008) address the viability of a cache coordination network coordinated

through an allocation hub. Cache networks can also be deployed by a central provider such as a Content

Delivery Network (CDN). Dogan et al. (2003) and Hosanagar et al. (2008) study pricing of CDNs that

maintain a network of cooperating caches. In terms of operational issues, Tan et al (2006) develop models

for coordinating object placement decisions between browser and proxy-server caches, and Tawarmalani

et al (2008) and Kumar (2009) formulate and solve nonlinear programs to allocate objects in a cache

array. The technologies and market mechanisms that facilitate distributed caching within and across

organizational boundaries have clearly been of much interest to the Management Science community. Our

paper contributes to this stream of work by studying the economics of document duplication in

cooperative caching.

3. Analytical Model

We begin by stating our assumptions and introducing our notation. We analyze the case of two

caches cooperating with each other. The caches are heterogeneous in terms of their sizes. Requests to the

 9

caches are independent. All documents are of the same size and server download time for all the

documents is the same. This assumption is for analytical tractability. In Section 4, we relax our

assumptions and test the robustness of our findings using trace-driven simulations.

 Request arrival at a cache is assumed to follow an inhomogeneous Poisson process. That is, the

request arrivals for any document follows a Poisson distribution but the mean arrival rates vary based on

the time since last request for the object. Although a Poisson arrival process at caches is commonly

assumed in the literature (e.g., Che et al 2002), it ignores locality in web requests. We use an

inhomogeneous Poisson process to address this shortcoming. In our model, the mean instantaneous access

rate for a document with LRU age (time since the last request) x is assumed to be

1;0,;
1

)(


 



x

x (1)

The parameter  measures the sensitivity of the access rate to the LRU age. A high value of  implies

that LRU age is a good predictor of future requests i.e., there is high locality in requests. Setting 0

models a regular Poisson process. With an inhomogeneous Poisson process, the probability density of a

document with age x, i.e. the probability of having a document with LRU age x, (Tan et al 2006) is,

0,))(1()(

11






xxxf 



 (2)

The total mean access rate for the n documents (Tan et al 2006) is :

ndxxfnH






 


1

)(
0

0 (3)

At any given instant, we can rank order the n documents based on their LRU age in a proxy

cache. With a simple LRU policy, a cache of size R would have stored the top R documents. In the new

scheme, the cache is divided into a duplication region of size L and a non-duplication region of size (R

L). The cache can store any document in the duplication region but no duplication is allowed in the non-

duplication region. Thus, the L most popular documents are stored in the duplication region regardless of

whether these documents are in the other cache. However, document (L + 1) is stored in the cache only if

 10

it is not already present in the other cache. Similarly for documents (L + 2) and onwards, the cache stores

only those documents that are not present in the other cache. The advantage of this framework is that it

incorporates zero duplication and unmonitored duplication as special cases (L=0 and L=R respectively).

The setup is similar to the Two-exit LRU scheme proposed by Wu and Yu (1999a, 1999b) and a variant

discussed by Hosanagar and Tan (2004). Wu and Yu (1999) use a hash function like in CARP to

determine which objects to store in the non-duplication region. Hosanagar and Tan (2004) adopt a variant

that does not use a hash function but instead verifies an object is not in another cache by consulting a

directory/index as in Summary Cache. We sketch the implementation of both these schemes in the online

appendix. To fix a context and also because it is harder to model hash functions analytically, our model

below assumes a directory-based approach. Although we study the tradeoffs under the directory-based

approach, we expect that the fundamental tradeoffs tied to duplication do not depend on the specific

mechanism used to coordinate the non-duplication region.

Consider the configuration of cache 2 at some arbitrary instant. The indicator variable k denotes

whether document k exists in cache 1. That is, document k is tagged 1k if it is in cache 1 and k  0

otherwise. If we rank order the documents by their LRU age in cache 2, the first L2 documents are stored

in cache 2 irrespective of the value of k for these documents. Let us denote the number of tagged

documents among the first L2 documents by j. That is,
2

1

L

kk
j


 . For document (L2 + 1) and higher,

the document is stored only if k 0. Let i denote the number of documents that are skipped (i.e., not

stored in cache 2 because they exist in cache 1) before the (R2  L2)th document is encountered for the no-

duplication region. That is, the final document that is stored in cache 2 is the (R2 + i)th document. Thus,

2

2 1

R i

kk L
i



 
 . It is clear that if the size of the duplication region is reduced, the two caches collectively

store more documents (i increases if the size of the duplication region decreases). Figure 4 represents the

above-described schematic at a particular instant of time. The documents are sorted by their LRU age and

documents that are currently in cache 1 are shaded.

 11

Figure 4: Objects Stored in Duplication and Non-Duplication Regions of Cache 2

 The probability of a request for a document is given by its mean arrival rate divided by the total

request arrival rate at the cache, i.e.,
0Prob(request) () /kx H . The latency experienced by a user of

cache 2 for a given sorted arrangement of documents is:

   














 







n

iRk

kk
k

iR

Lk

kk
k

L

k

k D
H

x
D

H

x

H

x

1 0

1

1 00 0 2

2

2

2

)1(
)(

0)1(
)(

0
)(







 (4)

For the first L2 documents, all requests are satisfied by the cache and hence the delay is 0. For documents

(L2 + 1) through (R2 + i 1), the document may be in cache 2 or in cache 1. If the document is in cache 1

(1k), then the document can be fetched from cache 1 with a delay of D. If the document is not tagged

(0k), then the document is returned from the local cache with no delay. Document (R2 + i) is in

cache 2 and hence incurs no delay. Finally, documents (R2 + i 1) through n may either be fetched from

cache 1 if they are tagged (1k) for a delay of D or fetched from the origin server (0k) for a

delay of 1. Without loss of generality, the server delay is normalized to 1. If the inter-cache latency were

greater than server delay, then cooperating does not make sense, implying that]1,0[D . The expected

latency for a user of cache 2 is given by averaging equation 4 over all possible values of document ages

{],[],...,,[],,0[1121  nn xxxxx } and all possible combinations of {i,j}.

 



















 
















n

iRk

kk
k

iR

Lk

k
k

x

nn

x

ij

RL

j

jR

i

D
H

x

D
H

x
dxxfdxxfdxxfnijpEL

n

1 0

1

1 0

22

0

11,|

),min(

0 0

2

2

2

211

12 1

)1(
)(

)(
)()()(!),(







 E

 (5)

EL2 denotes the expected latency at cache 2. p(j, i) is the probability that there are j tagged documents

among the first L2 documents and i tagged documents before the (R2 L2)th untagged document is

 12

encountered for the no-duplication region. We also define an operator, ij ,|E , which allows us to consider

all possible combinations in which documents can be tagged for a given j and i.

The decision problem faced by the cache operator is to select the value of L2 that minimizes the

expected latency. In the proceeding analysis, we investigate the solution of this decision problem. In

Section 3.1, we begin with a problem in which cache 2 makes a duplication decision given cache 1 uses a

traditional LRU policy (L1  R1). This can refer to a scenario in which cache 1 is not strategic about

optimal duplication levels or one in which cache 2 considers the worst case outcome wherein cache 1

makes no effort to reduce duplication in the array.
7
 In Section 3.2, we optimize the duplication levels at

both caches. We consider both decentralized and centralized decision contexts. We summarize our

notation in Table 2.

n Total number of documents on the web

Ri Size of cache i (expressed as number of documents the cache can store)

Li Size of “duplication region” (also in terms of number of documents)

D Delay incurred in fetching a document from other cache, 1D 

kx LRU Age (time since last request) for document k

()kx Instantaneous rate of access for a document with LRU age
kx .

() 1 (); , 0; 1k kx x         

()kf x Probability density of a document with LRU age kx

0H The total mean access rate at the cache

k Indicator variable set to 1 if document k is currently in cache 1 or k  0 otherwise

p(j, i) Probability that there are j tagged documents in the duplication region and i tagged

documents before the (R2 L2)th untagged document is encountered for the no-

duplication region

ELi Expected latency at cache i

Table 2: Glossary of Terms

3.1 Optimal Duplication under LRU at Cache 1

In this Section, we assume that cache 1 uses a regular LRU policy. Cache 2 breaks up its cache into

duplication and no-duplication regions. Under these assumptions, the probability p(j, i) is

1

11

2222 1
),(






























 










R

n

ijR

iRn

i

iLR

j

L
ijp (6)

7
 ICP, the most commonly used protocol for cache cooperation, does not monitor duplication. Hence Li=Ri for ICP.

 13

where 2 1{0, , }; and {0, , }j L i R j   . In the above expression, the number of ways in which we

can tag j documents in the duplication region is 








j

L2
; i documents between (L2 + 1)th and (R2 + i  1)th

is 






 

i

iLR 122
; and (R1 j i) documents between (12  iR)th and n-th is 













ijR

iRn

1

2
 (see

Figure 4). The total number of ways to tag R1 documents in the sorted list of n documents is 








1R

n
.

The constraints on the binary indicator variables are
2

2

1

1

R i

kk L
i

 

 
 , and

2
11

n

kk R i
R j i

  
   . In Appendix A, we have explicitly evaluated Equation (5) under these

assumptions to arrive at the following expression for the expected delay at cache 2,

EL2 =
2 1

1 2 1
2 2

0 0 2

(,) (,) (,)
L R j

j i

R n R R j
D w n L p j i w n R i

n n R i



 

  
   

 
 (7)

where












1

1

1),(
x

y
yxw . When R / n is small, we can approximate the above expression as shown in

Appendix A,
























1

22
12

1
2

1
2 ,1),(

Rn

LR
RRnw

n

R
DLnw

n

R
EL (8)

The expected delay may be interpreted as EL2  Pr(request satisfied locally)·0 + Pr(request

satisfied by cache 1)·D + Pr(request satisfied by origin server) ·1. Note that),(2
1 Lnw

n

R
 is decreasing in

L2 and 






















1

22
12

1 ,1
Rn

LR
RRnw

n

R
 is increasing in L2. This observation highlights the main tradeoff

in choosing the size of duplication region (L2): if the cache manager increases L2, more requests get

satisfied locally, fewer requests are satisfied at cache 1 and a greater proportion of requests go to the

origin server. In other words, the local hit rate increases but array hit rate decreases. ICP and Summary

 14

Cache attempt to maximize the local hit rate and set L2= R2. CARP attempts to maximize the array hit rate

and sets L2=0. The expected latency depends on both the local and array hit rates.

PROPOSITION 1: Zero duplication is preferable to unmonitored duplication for D<DTh and vice-versa,

where








































































1

1

2

1

1

1

2
1

1

2

1

11

11

1

n

R

Rn

R

n

R

R

n
DTh .

The proof is in Appendix B. Given most proxy servers support both ICP and CARP and let the

cache operator select the duplication level, Proposition 1 provides an important qualitative insight to

guide the decision. Specifically, zero duplication is preferable to unmonitored duplication when inter-

cache latency (D) or request locality () are low. The finding can be explained as follows. At high inter-

cache latency, there are limited gains from fetching an object from another cache in the event of a local

miss. So the emphasis is on maximizing local hit rate through unmonitored duplication. In contrast, at low

inter-cache latency, an array hit is almost as effective as a hit from the local cache. So the emphasis is on

maximizing the array hit rate through zero duplication. Similarly, when request locality is very high, the

locality is best exploited by ensuring that recently requested objects are stored locally as opposed to

eliminating them if they exist in another cache. Thus, unmonitored duplication is preferred at high

locality. The converse is true at low locality.

The optimal duplication level corresponds to the value of L2 that minimizes the expected latency.

That is,
2

*

2 2min { }LL EL . The objective function is globally convex in L2. The minimization problem

has a closed form solution given by

 * 2

2 1
1

1 1()

n n R
L n

n R D R


 
 

  

 (9)

(9) is always less than the cache size R2. However, the expression may sometimes result in a negative

value. Incorporating the non-negativity constraint, the proposition follows:

 15

PROPOSITION 2: The optimal size of the duplication region is given by

1

* 2
2 1

1 1

()
max 0,

()

n n R
L n

n R D R 

  
      

 (10)

COROLLARY 1: The optimal size of the duplication region is (a) non-decreasing in the inter-cache wait

time, D, (b) non-decreasing in request locality, (c) non-decreasing in the size of the other cache R1, and

(d) non-decreasing in cache size R2.

The proofs are in the Appendix B. In Figure 5, we illustrate results (a) and (b) from Corollary 1

for a case in which {n  5000, R1  500, R2 400}. When D 0, i.e. there is no perceivable difference

between fetching the document from the local cache or the other cache, then L2
*
 0. That is, there will be

no duplication of content and a scheme like CARP is desirable. For small inter-cache latencies, zero

duplication continues to perform well. However, as the inter-cache latency increases, it is optimal for the

cache manager to allow some duplication in order to ensure that the most popular documents are locally

stored irrespective of their presence in the other cache.
8

 Now consider the impact of request locality. Recall that a high value of  implies that LRU age

is a good predictor of future requests. Thus, as  increases, it becomes appealing to always store the

items with the lowest LRU age. Eliminating a recently requested document just because it exists in the

other cache can result in significant decline in local hit rates which in turn drives up the latency. As a

result, we observe that)/(2

*

2 RL weakly increases with  .

Finally, consider the impact of the cache sizes. If the size of either cache increases, the overall

capacity of the array also increases. The additional capacity in the array reduces the negative impact of

duplication resulting in an increase in L2. A clear recommendation from Corollary 1 is that policies with

zero or low duplication of content (CARP, Two-exit LRU with small duplication, etc) are recommended

when the caches are located close by, cache capacity is limited and temporal locality in requests is

8
 In our scheme, *

2 2/ 1L R  only when D  1 because there is no cost of querying the other cache (an index as in

summary cache is maintained and is always current). If no index is maintained or if the index is not current, then
*

2 2/ 1L R  at high inter-cache latencies that are less than the origin server delay.

 16

relatively low (all else constant). When caches are geographically farther apart, temporal locality is high

and the cache capacities are high, then greater levels of duplication is preferred.

Figure 5: Impact of Inter-cache Latency and Request Locality on Optimal Duplication

COROLLARY 2: Unmonitored duplication (Li= Ri) is optimal if D=1 or 1  , and no duplication

(Li=0) is optimal if
1 1 2

1

1
R

D
n R

    


.

Corollary 2 indicates that unmonitored duplication (e.g. ICP, Summary Cache) is optimal if the

inter-cache latency or request locality is high. Conversely, zero duplication (e.g. CARP) is optimal when

inter-cache latency and request locality are low. This is consistent with Proposition 1. Proposition 1

identified the conditions under which zero duplication is better than unmonitored duplication and vice-

versa. In contrast, Corollary 2 identifies the conditions under which these decisions are optimal. In short,

Proposition 1 informs a cache operator considering only zero or unmonitored duplication whereas

Corollary 2 informs an operator willing to expend the effort to logically partition the caches to achieve

any level of duplication. Figure 6 plots the expected latency at cache 2 with zero duplication (L2  0),

unmonitored duplication (L2  R2) and optimal duplication (L2  L2
*
). The remaining parameters are {n 

5000, R1  500, R2 400,  =0.95}. It is clear that there exist a wide range of parameters under which it

is optimal for the cache operator to select unmonitored duplication or zero duplication. At the same time,

choosing the wrong duplication level (e.g., choosing unmonitored duplication when no duplication is

optimal), can result in significant deterioration of performance. The expected latency with optimal

 17

duplication traces the inner envelope of the latency curves of unmonitored and zero duplication and

provides the maximum benefit at intermediate levels of inter-cache latencies.

Figure 6: Average Latency with Different Duplication Schemes

Our results highlight how various factors including inter-cache latency and request locality affect

the optimal duplication levels. We now turn to the optimization of duplication levels at both caches.

3.2. Optimizing Duplication at Both Caches

We evaluate the problem under two decision scenarios. The first is a setting in which the duplication

decisions are decentralized, i.e. made independently at each cache. Whenever cooperative caching spans

organizational boundaries, it is expected that individual organizations choose policies that are locally

optimal (example, minimize latency for their own users). For example, this corresponds to a situation in

which two ISPs may peer with one another at bilateral peering points or at exchanges such as Packet

Clearing House and Equinix. Cooperative caching implementations in the public domain, such as

IRCache and w3cache, are also relevant here. The second decision setting is a centralized one, which

corresponds to a situation in which an ISP or a large organization implements cooperative caching across

its proxy servers.

3.2.1. Decentralized Coordination

When both caches are strategic, we need to compute each cache’s best response to the other cache’s

decision in order to compute the equilibrium outcomes. The expression for expected latency is the same

 18

as equation 5. However, p(j, i), the probability that there are j tagged documents among the first L2

documents and i tagged documents before the (R2L2)th untagged document is encountered for the no-

duplication region, has a different functional form. This is because the number of documents collectively

stored increases as cache 1 reduces the size of its duplication region L1. Under this game structure, p(j,i)

can be computed as shown in Appendix C,

1 1

2 1 2 1 12 2 2

1 1 1 1 1

1
(,)

n R i R j n L n L RL R L i
p j i

R j i L j R L Lj i

 
                

         
           

 (11)

Combining Equations 11 and 5 and simplifying as shown in Appendix C,

2 1

1 2 2 1
2 1 2 2

0 02 1 1 2

1
(,) (,) (,)

L R j

j i

L L n R R j
EL R D w n L p j i w n R i

n L n L R n R i



 

    
      

     
 (12)

where    1

1

)/(1),(xyyxw .

 As before, we can interpret (12) as the probability that the request goes to cache 1 times D, plus

the probability that the request goes to the origin server times 1. Assuming that R1/n and R2/n are small,

we further show that (12) can be approximated by,

1 2
2 1 2

2 1 1

1 2 1 1 1 1 2 2 2
1 2

2 1 1 1 2 1 1

1
(,)

()1
1 ,

L L
EL R D w n L

n L n L R

L L R n L R L L R L
R w n R

n L n L R n L L R n R

 
    

   

       
                   

 (13)

The response function for cache 2 can be computed by }{min)(21

*

2
2

ELLL
L

 . Similarly, the response

function for cache 1 is obtained by setting up the expression for the expected latency at cache 1, EL1, and

solving }{min)(12

*

1
1

ELLL
L

 . Unfortunately these decision problems have no closed form solutions. But

the following property of the response functions can be derived,

PROPOSITION 3: The best response curves,)(1

*

2 LL and)(2

*

1 LL , are non-increasing in 1L and 2L

respectively. Further, the existence of an equilibrium is guaranteed.

 19

The proof is in Appendix C. The response functions are non-increasing. Thus, this is a game of

strategic substitutes wherein a reduction of the duplication region at one cache results in an expansion of

the duplication region at the other.
9
 Proposition 3 highlights a key result regarding the nature of the

strategic interaction between caches. If a cache allocates more resources towards eliminating duplicate

documents, this creates an incentive for the other cache to free-ride and increase the size of its own

duplication region. This can be explained as follows. A small increase in the size of the duplication region

at a cache (say cache 2) provides a benefit in the form a slight increase in the local hit rate but also

imposes a cost in the form of a slight increase in requests forwarded to the origin server (due to a drop in

the array hit rate). However, the latter cost is relatively small when the other cache (cache 1) reduces the

size of its duplication region. This allows cache 2 to reduce the size of its duplication region without

having to deal with a significant increase in requests forwarded to the original server. As a result, it is

hard to simultaneously induce both caches to contribute greater resources towards reducing duplicate

documents in the system in the absence of additional incentives such as payments.

While there is no closed form solution for the equilibrium values, they can be evaluated

numerically.
10

 Figure 7 plots the response curves of the two caches when {n  5000, R1  500, R2  400,

9.0 and D  0.5}. The equilibrium solution is given by { 92,197
*

2

*

1  LL }. The equilibrium
*

2L

is higher than would be the case if cache 1 uses a regular LRU policy (
*

2L  71 when L1=500). The fact

that cache 2 is aware that cache 1 has an incentive to reduce L1 results in an increase in L2.

9
 If a boundary condition has been reached (L2=0 or L2= R2), then the duplication level may remain unchanged

resulting in the response functions being non-increasing rather than strictly decreasing.
10

 However, multiple equilibria can exist.

 20

Figure 7: Best Response Curves and Equilibrium Duplication Levels for the Two Caches

PROPOSITION 4: The best response curves,)(1

*

2 LL and)(2

*

1 LL , are both non-decreasing in inter-cache

latency, D.

Holding the other player’s choice of L fixed, the size of the duplication region at a cache weakly

increases with inter-cache latency. This does not imply that equilibrium duplication levels are non-

decreasing in D. In Figure 8, we illustrate that the equilibrium duplication levels can decrease with D

even though the response curves)(1

*

2 LL and)(2

*

1 LL are monotonically non-decreasing in D. This

result can be explained as follows. A decrease in D may cause one cache to lower the size of its

duplication region, L. However, since the cache’s decisions are strategic substitutes, there is a second-

order effect wherein a decrease in the size of the duplication region by one cache encourages the other to

increase L resulting in the non-monotonicity in equilibrium.

Finally, Figure 9 plots the average latency at cache 2 under the equilibrium and contrasts it with

the average latency when both caches choose zero duplication and both choose unmonitored duplication.

The remaining parameters are {n  5000, R1  500, R2 400,  =0.95}. As before, choosing unmonitored

duplication when zero duplication is optimal (and vice-versa) can result in significant performance

deterioration. Also, the average latency under the equilibrium again traces the inner envelope of the

latency curves of unmonitored and zero duplication and provides the maximum benefit at intermediate

 21

levels of inter-cache latencies. These results are qualitatively similar to Figure 6 and they help underscore

the fact that tuning the duplication levels can provide significant gains even under strategic behavior.

Figure 8: Monotonic Response Functions and Non-monotonic Equilibria

0.13

0.15

0.17

0.19

0.21

0.23

0.25

0 0.2 0.4 0.6 0.8 1

Ex
p

e
ct

e
d

 L
at

e
n

cy
 f

o
r

C
ac

h
e

 2
 (

EL
2

)

Inter-cache Latency (D)

Equilibrium Duplication

Zero Duplication

Unmonitored Duplication (Pure LRU)

Figure 9: Average Latency with Different Duplication Schemes

We now explore the optimal duplication levels chosen by a central planner and contrast the

solution with the equilibrium duplication levels computed above.

3.2.2. Centralized Coordination

Consider a central planner that sets the optimal duplication level at each cache in order to minimize

overall latency in the system (i.e., maximize social welfare). The decision problem can be stated as:

 22














21

2211

, 21

min
HH

ELHELH

LL
 (14)

where H1 and H2 are the request arrival rates at caches 1 and 2 respectively, and are specified by equation

3. The objective function represents the average latency experienced in the system, which is a weighted

sum of the average latencies at the individual caches. Assuming the same values for  and  at the two

caches, the decision problem is   2/min 21
, 21

ELEL
LL

 .

In Table 3, we present the solution for different values of inter-cache latency and request locality.

The remaining parameters are {n = 5000, R1 = 500, R2 = 400}. For moderate values of inter-cache

latency, we observe that the centralized solution entails greater resource commitment from cache 2 (i.e.

low L2) and lower commitment from cache 1 (high L1). Setting L to a very low value at one cache ensures

minimal duplication of documents across the two caches. The central planner can then set a high value of

L at the other cache (i.e., an LRU-like policy) to ensure low latency at that cache. Thus the social

optimum may entail penalizing users at one cache in order to ensure very low average latency at the other.

When cooperative caching is done by independent organizations, it is not clear whether solutions with

such asymmetric resource commitment can be implemented in the absence of additional mechanisms such

as payments.
11

For each of the parameter values in Table 3, we also computed the expected latency under the

centralized and decentralized setups. The expected latency under the centralized setup is 0.00-3.00%

lower than that achieved under decentralized decision making. As expected, centralized decision-making

is better.

D
 = 0.85  = 0.90  = 0.95

L1
*
 L2

*
 L1

*
 L2

*
 L1

*
 L2

*

0 0 0 0 0 0 0

0.1 0 0 0 0 0.01 0

0.2 0 0 0 0 150.65 45.95

11

 At low to medium levels of request locality, we sometimes observe asymmetric solutions even when caches are

symmetric. We provide some examples in the online appendix.

 23

0.3 0 0 0 0 233.70 133.98

0.4 0 0 106.57 0 294.85 196.89

0.5 51.12 0 190 80.43 343.38 245.95

0.6 162.21 33.39 263.10 160.50 383.71 286.20

0.7 244.81 135.15 329.76 230.28 418.28 320.38

0.8 330.27 228.7 390.85 292.37 448.58 350.09

0.9 415.52 316.44 447.32 348.52 475.59 376.39

1 500 400 500 400 500 400

Table 3: Socially Optimal Duplication Levels (R1 = 500, R2=400)

3.3. Discussion

Our analysis yields a number of insights for cache operators. First we find that even if other caches do not

do much to monitor duplication, a selfish cache may still want to take steps to control duplication. Thus

free-riding (setting L=R) need not be optimal even if other caches do not attempt to eliminate duplicate

documents. The primary tradeoff associated with duplication is as follows: if the cache operator does not

monitor duplication and chooses a placement/replacement policy that is locally optimal, then it maximizes

the local hit rate but also results in fewer requests being satisfied at other caches. At the same time,

eliminating documents that are currently stored elsewhere has the risk of lowering local hit rate. As a

result, the cache operator may benefit from controlling duplication even when other caches take no such

action.

We also find that there exist a range of settings in which it might just suffice to choose one of two

extreme solutions. Specifically, zero duplication is optimal at low inter-cache latencies or low levels of

request locality. And conversely, unmonitored duplication is optimal at high inter-cache latencies or high

levels of request locality. Choosing zero (unmonitored) duplication when unmonitored (zero) duplication

is optimal can have an adverse impact and negate much of the value from cache cooperation. This

observation is particularly important because most proxy servers including Squid and Sun Java Proxy

Server support both zero and unmonitored duplication and leave the specific choice to the cache operator.

Cache operators must be careful in selecting the right setting. Finally, at intermediate values of request

locality and inter-cache latency, the extra effort of implementing two-exit policies may be justified. The

size of the duplication region in these two exit policies is non-decreasing in request locality, inter-cache

latency and cache sizes.

 24

Cooperative caching can be implemented within large organizations as with an ISP with multiple

proxy servers or across organizations as with bilateral peering among ISPs and cache peering at

exchanges like Equinix. A key question here relates to the impact of strategic behavior on the success of

cache peering. Our analysis provides a few insights here as well. First, we find that the interaction among

strategic caches is a game of strategic substitutes. That is, it is best for a cache to employ lesser resources

towards eliminating duplicate documents when other caches employ more resources towards reducing

document duplication. Thus it may be hard to simultaneously induce multiple caches to contribute

towards the best global performance in the absence of mechanisms such as payments and audits. We also

find, as expected, that centralized decision-making does better than decentralized decision-making. More

importantly, the size of the duplication regions under this centralized setup can be highly asymmetric.

This in turn can benefit users connected to the cache with the largest duplication region while penalizing

users who are connected to the cache that has the smallest duplication region. This has the potential to be

perceived as unfair by one set of users. Thus, issues of fairness may need to be addressed when

implementing the optimal centralized decision.

All the above insights are derived from a model in which we make several simplifying

assumptions for tractability. We now test the robustness of these insights by relaxing several of the key

assumptions made in this section.

4. Robustness of Results

We approach robustness tests in two parts. First, we test the robustness of the analytical findings from

Section 3.1 by relaxing two key independence assumptions in our two-cache setup: (i) inter-cache latency

is independent of traffic, (ii) requests are independent at the two caches. These assumptions are relaxed

within the framework of our analytical model. Next, we evaluate the findings tied to centralized versus

decentralized coordination in a setting with more than two caches and with real-world request traces.

These tests are conducted within a simulation environment.

4.1. Extending Analytical Model to Relax Independence Assumptions

4.1.1. Traffic-dependent Inter-cache Delay

 25

In Section 3, the inter-cache latency is assumed to be independent of the traffic between the two caches.

However, traffic can influence the waiting and processing times for requests at a cache and thereby affect

the overall latency. We now explicitly model the waiting/processing time at a cache as a function of the

traffic.

 In Equation (8), 1
2(,)

R
w n L

n
is the probability that documents are fetched from cache 1. Since

1
n






 is the total demand,  1

2

1
(,)

R
n w n L

n






 is the mean traffic intensity to cache 1. If  denotes

the mean service time at cache 1 (i.e., service rate is  /1), then the mean time in the system for

requests forwarded to cache 1 is given by
















 





),(
1

1

1

2
1 Lnw

n

R
n

. Thus, the expression for

expected latency at cache 2 is,

1 1 2 2
2 2 2 1

1
1 2

(,) 1 ,
1

1 (,)

R R R L
EL w n L D w n R R

n n n R
R w n L








 
 

                   
  

The cache operator’s decision problem is,
2

*

2 2min { }LL EL . There is no closed-form solution

for
*

2L . However, applying the conjugate pairs theorem, we can show that:

PROPOSITION 5: With traffic-dependent inter-cache latency, the optimal size of the duplication region is

(a) non-decreasing in the inter-cache delay D, (b) non-decreasing in request locality  for  below

some positive threshold, (c) non-decreasing in cache size R2, (d) non-decreasing in cache size R1, and (e)

non-decreasing in mean service time  .

The proof is in Appendix D. These results are consistent with the results of Section 3. However if  is

very high, the result regarding request locality can change signs as highlighted in the appendix. That the

size of the duplication region is non-decreasing in the mean service time  is expected because the value

from cooperative caching reduces when the other proxy cache takes too long to process requests.

 26

Consequently, the cache operator is better off ensuring that the requests for popular documents get

serviced locally.

4.1.2. Correlated Demand

In Section 3.1, the expression for p(j,i) assumes that requests at the two caches are independent. Here, we

relax the assumption to consider positively correlated requests. For arbitrary correlation structures, it is

hard to derive an analytical expression for the expected latency so we consider a specific form below.

In the original model, the number of tagged documents (j) in cache 2’s duplication region varies

from zero to L2 and the probability distribution of j is obtained by assuming requests are independent. If

requests are positively correlated, we are more likely to see higher values of j than the lower values. Thus

the probability density around low values of j reduces and that around high values of j increases. To

model this, we truncate the parameter j by removing its small values. That is, j varies from min(l, L2) to

L2. A low value of l is close to our original independence assumption and a high value indicates that the

popular items at cache 2 are likely to also be in cache 1. Specifically, we modify the probability p(j,i) as

follows:

22 2 2 1

1

1
(,)c

n R iL R L i
p j i NF

R j ij i


       

    
    

,

Where 2Ljl  and jRi  10 . NF is a normalization factor such that  







2 1

0

1),(
L

lj

jR

i

c ijp .

 Under this new model, the expected delay can be computed in the same manner as in Section 3.

The new expression is:

 

 

1

11
2 2 1 21 2 1

2

2 2 1

1 1 1
nR L R RR L R

EL D
n n n L n n L R


  



       
       

       
 ,

where,
 

 
3 2 2 1 2 1 2 1

3 2 2 1 2 1 2 1

2,1 ,1 ;2 ,2 ;1 ()()

1, , ;1 ,1 ;1 (1)(1)

F l L l R l l n L R l L l R
l

F l L l R l l n L R l l n L R


          
 

           
, and aFb() denotes the

HyperGeometric function.

 27

The optimal value *

2L that minimizes EL2 can be obtained numerically. Figure 10 shows that the size of

the duplication region is non-monotonic with the correlation parameter l (4.0,95.0  D). Figure 11

shows that the size of the duplication region is non-decreasing in the inter-cache latency and request

locality (n=5000, R1=500, R2=400, l=40). These results are consistent with those in Section 3.

Figure 10: Impact of Correlated Requests on

Optimal Duplication

Figure 11: Impact of Inter-cache Latency and

Locality on Optimal Duplication

4.2 Simulations

In this Section, we use trace-driven simulations to evaluate our findings under more realistic requests and

with multiple caches. We used a large request stream collected on January 09, 2007 by the Urbana-

Champaign proxy server of the IRCache project
12

. The trace consists of 423,968 requests for 207,206

unique URLs submitted by users of the proxy server. The log reports the size of the response as well as

the response time for each request. For size, the trace records number of bytes written to the client rather

than size of the data object. Because header sizes vary across requests, there can be minor variations in

size across requests for the same URL. In accord with Kelly et al. (1999), we define the size of a URL as

the maximum recorded transfer size among all requests for it and assume that the URLs remain

unchanged throughout the day. The object sizes in our trace range from 0.2 KB to 129 MB with an

average size of 26.71 KB. Because the trace does not report the origin server’s response time during

12

 www.ircache.net

 28

cache hits, we use the maximum recorded response time for a URL as the origin server’s response time

for that URL.

 All requests in the trace are generated by users of a single proxy cache. In order to test

cooperative caching schemes, we create M caches in any simulation run (M is an input parameter) and

randomly assign the users in the log file to one of the M caches. Once users are assigned, requests at

individual caches are generated in accordance with the sequence and timing specified in the trace. The

inter-cache latency is fixed as a constant fraction, D, of the origin server’s response time for a URL. All

caches are initially empty and are populated in accordance with the two exit policy discussed in Section 3.

The results from the first 25,000 requests at any cache are discarded to eliminate data from the initial

period when caches are not yet full.

 The input parameters for the simulation are the number of caches (M), the caches sizes (Ri) and

the ratio D. Other parameters are determined by the trace. In the simulations, we considered the cases of

two, four and five caches ({2,4,5}M ) as well as a variety of cache sizes. Below, we report results for

M=4 and asymmetric cache sizes (R1=62.6 MB, R2=83.4MB, R3=104.4MB, R4=125.22MB). The smallest

cache is 2400 times the average size of an object in our trace and the largest cache is 4800 times the

average size of an object. The results are qualitatively similar for other values. In contrast, our results are

sensitive to the inter-cache latency. Hence, we report the results for a range of D.

 Our simulations test four policies. The first two policies are Li=0 and Li=Ri. The third policy

allows each cache to independently determine a locally optimal Li and evaluates the performance at the

resulting equilibrium. There is no simple method to compute the equilibrium in our multi-cache

simulations. We consider an iterative best-response procedure. To determine the best response for cache i

(i.e. optimal Li given L-i), we use simulations to compute the expected latency at cache i for all candidate

values of Li.
13

 The optimal Li minimizes the expected latency at cache i. Given a starting point L
0
 = (L1,

L2,...,LM), the iterative best-response procedure sequentially optimizes the duplication levels of caches 1

13

 We restricted the candidate values of Li to {0, 0.01Ri, 0.02Ri, … , Ri}.

 29

through M and repeats the process until the duplication levels converge. In order to account for the

possibility of multiple equilibria, we consider several randomly chosen starting points L
0
. The fourth

policy we consider is the socially optimal duplication level. We exhaustively consider all possible values

of (L1, L2,...,LM) and choose the one that minimizes the average latency in the cache array.
14

 In Table 4, we report the average latency in the cache array under each of the four policies. The

average latency under zero duplication and unmonitored duplication are in the first two columns. The

column labeled “Equilib.” presents the average latency realized in equilibrium with decentralized

decision-making. The socially optimal policy is labeled “Min”. We additionally report the maximum

expected latency observed during our exhaustive evaluation of all possible (L1, L2,...,LM). This maximum

latency along with the socially optimal value help benchmark the other three policies. For consistency

with Section 3, the expected latency under a regime where all requests are forwarded to the origin server

is normalized to 1. In accord with the results in Section 3, we find that policies with zero duplication (Li 

0) are desirable at low inter-cache latency and policies with unmonitored duplication (Li  Ri) are

desirable at high latencies and that optimizing duplication levels provides benefits over both policies. As

expected, there are costs to decentralized decision-making although they are somewhat low. Finally, we

investigated the shape of the best response function by comparing the best response at each cache

obtained during the iterative procedure. Specifically, we did a pairwise comparison of all computed

*

1.. ,

i j

j M j i

L L
 

 
 
 
 at each cache. 86.33% of these pairwise comparisons were non-decreasing providing

support for the observation that this is a game of strategic substitutes.

 Average Latency

 Li = 0 Li = Ri Equilib. Min Max

D=0.0 0.568 0.590 0.568 0.568 0.590

D=0.2 0.606 0.597 0.585 0.582 0.606

D=0.4 0.644 0.606 0.598 0.595 0.644

D=0.6 0.683 0.614 0.611 0.610 0.683

D=0.8 0.721 0.623 0.623 0.623 0.721

14

 Simulations were run in parallel on a grid computing system in order to address the computational overhead

imposed by an exhaustive evaluation.

 30

D=1.0 0.759 0.635 0.635 0.635 0.759

Table 4: Expected Latency from Different Duplication Policies

 In summary, we find that the key insights from the analytical model continue to hold in the trace-

driven simulations.

5. Conclusions

Tuning the level of duplication across cooperating caches is a key operational decision for cache

operators. They may choose to not monitor duplication (e.g., by choosing ICP, Summary Cache or Cache

Digest), have zero duplication across caches (e.g. by choosing CARP), or expend additional effort to

achieve intermediate levels of duplication (e.g., HOME, two-exit LRU). The optimal decision depends on

the deployment context and operators have to experiment considerably before making the decision. We

develop a model to study the relevant tradeoffs and generate insights regarding optimal duplication in

strategic and non-strategic settings.

 Our study represents an initial foray into understanding the tradeoffs tied to document

duplication. However, the study has several limitations. First, although our study provides several insights

regarding optimal duplication levels, protocol selection in cooperative caching requires additional

considerations. One of these relates to overheads associated with the different protocols. As mentioned

earlier, ICP queries all caches upon a local miss and thus generates significant query traffic when the

cache array is large. Thus, ICP is undesirable for large cache arrays. Further, Summary cache and Cache

Digest require use of directories. This imposes overheads tied to maintaining the directories and also

storing them. Fortunately, these issues have received considerable attention. For example, studies show

that the directories can be maintained with low overheads if caches delay propagation of directory

updates. Further, directories can be stored in a compact manner by using Bloom filters. URL hashing used

in CARP, Two-exit LRU and Home do not have these communication and storage overheads, with the

latter two protocols capable of implementing any level of duplication. However, known challenges with

URL hashing are the significant disruption every time a cache is added or removed and achieving even

load distribution among proxy caches. Recent work on consistent hashing proposes several solutions to

 31

these hash disruption issues. These considerations need to be factored into protocol selection. Future work

can look at protocol selection more holistically after accounting for all relevant factors including

duplication, overheads and implementation complexity.

 Another limitation of our work is that we assume that proxy caches are always closer than the

origin server. In global-scale caches, this is not always true and a key challenge is that of proxy pruning,

namely selecting between remote proxies and origin server. Our model does not account for this. We also

do not consider cache hierarchies and instead assume all caches are at the same level. Incorporating proxy

pruning and cache hierarchies into our framework is clearly of value. Finally, a promising direction for

future work is the study of mechanisms to ensure that the socially optimal duplication levels can be

attained in practice under decentralized decision-making. Such a study can provide prescriptions for

contracting and auditing in cooperative caching.

References

Bose, I., H. K. Cheng. Performance Models of a Firm's Proxy Cache Server. Decision Support Systems,

Vol. 29, Issue 1, July 2000, Pages 47-57.

Chan, Y. M., J. Womer, J. K. MacKie-Mason, S. Jamin. One size doesn’t fit all: Improving network QoS

through preference driven web caching. Proc. 27th Annual Telecomm. Policy Res. Conf., Alexandria,

VA, 1999.

Che, H., Y. Tung, and Z. Wang, "Hierarchical web caching systems: Modeling, design and experimental

results," IEEE Journal on Selected Areas in Communications, vol. 20, no. 7, Sept. 2002.

Chiang, I. R., P. Goes, Z. Zhang. Periodic Cache Replacement Policy for Dynamic Content at Application

Server. Decision Support Systems, Vol. 43, Issue 2, March 2007, Pages 336-348.

Chuang, J., M. Sirbu. Distributed network storage with quality-of-service guarantees. J. Network Comput.

Appl., 23(3) 163–185, 2000.

Datta, A., K. Datta, H. Thomas, D. VanderMeer, “WORLD WIDE WAIT: A Study of Internet Scalability

and Cache-Based Approaches to Alleviate it,” Management Science, Vol. 49, No. 10, October 2003.

Debreu, D. 1952. A social equilibrium existence theorem. Proceedings of the National Academy of

Sciences, Vol.38, 886-893.

Dogan, K., C. Kaya and V. Mookerjee, “An Economic and Operational Analysis of the Market for

Content Distribution Services”, Proceedings of the International Conference on Information Systems,

December 14-17, 2003, Seattle, WA.

 32

Du, A., X. Geng, R. Gopal, R. Ramesh, A. B. Whinston. Capacity Provision Networks: Foundations of

Markets for Sharable Resources in Distributed Computational Economies. Information Systems

Research, Vol. 19, No. 2, June 2008, pp. 144-160.

Dutta, K., S. Soni, S. Narasimhan, and A. Datta. Optimization in Object Caching. INFORMS Journal on

Computing, Vol. 18, No. 2, Spring 2006, pp. 243-254.

Fan, L., P. Cao, J. Almeida, and A. Z. Broder. Summary Cache: a scalable wide-area Web cache sharing

protocol. Proceedings of Sigcomm, 1998.

Fang, X., O. Sheng, W. Gao, B. Iyer. A Data-Mining-Based Prefetching Approach to Caching for

Network Storage Systems. INFORMS Journal on Computing, Vol. 18, No. 2, Spring 2006, pp. 267-

282.

Geng, X., Gopal, R. D., Ramesh, R., and Whinston, A. B., “Scaling Web Services with Capacity

Provision Networks,” IEEE Computer, Vol. 36, No. 11, November 2003.

Gualteiri, M. and J. Staten. Best Practices: Attaining and Maintaining Blazing Fast Web Site

Performance. Forrester Industry Report. February 2009.

Hosanagar, K., J. Chuang, R. Krishnan, M. Smith. Service Adoption and Pricing of Content Delivery

Network (CDN) Services. Management Science, Vol. 54, No. 09, September 2008.

Hosanagar, K. and Y. Tan. Optimal Duplication in Cooperative Web Caching. Proceedings of the

Fourteenth Annual Workshop on Information Technologies and Systems (WITS), 92–97, December

2004.

Hosanagar, K., R. Krishnan, J. Chuang, and V. Choudhary. Pricing and Resource Allocation in Caching

Networks with Multiple Levels of QoS. Management Science, 51 (12), 2005.

Kaya, C., G. Zhang, Y. Tan, V. Mookerjee. An admission-control technique for delay reduction in proxy

caching. Decision Support Systems, Vol. 46, Issue 2, January 2009, Pages 594-603.

Kelly, T., S. Jamin, J. K. MacKie-Mason. Variable QoS from shared web caches: User-centered design

and value-sensitive replacement. MIT Workshop on Internet Service Quality Economics, Cambridge,

MA, 1999.

Kumar, C. Performance evaluation for implementations of a network of proxy caches. Decision Support

Systems, Vol. 46, Issue 2, January 2009, Pages 492-500.

Kumar, C., J. Norris. A new approach for a proxy-level web caching mechanism. Decision Support

Systems, Vol. 46, Issue 1, December 2008, Pages 52-60.

Mookerjee, V. and Y. Tan, “Analysis of a Least Recently Used Cache Management Policy for Web

Browsers,” Operations Research, 50(2), 2002.

Northrup, A. NT Network Plumbing. IDG Books, pp. 515, 1998.

Rousskov, A. and D. Wessels. Cache Digest. Proceedings of 3rd International WWW Caching Workshop,

June 1998.

 33

Tan, Y., V.S. Mookerjee and Y. Ji. Analyzing Document-Duplication Effects on Policies for Browser and

Proxy Caching. INFORMS Journal on Computing, 18 (4), 2006.

Tawarmalani, M., K. Kannan, P. De, and C. Kumar. Allocating Objects in a Network of Caches: Social

Welfare and Incentive Compatibility. Management Science, Vol. 55, No. 1, January 2009, pp. 132-

147.

Valloppillil, V. and K. W. Ross, "Cache Array Routing Protocol v1.0. Internet Draft", February 1998,

http://www.globecom.net/ietf/draft/draft-vinod-carp-v1-03.html.

Wessels, D. and K. Claffy, “ICP and the squid web cache”, IEEE Journal on Selected Areas in

Communication, vol. 16, no. 3, pp. 345-357, April 1998. http://ircache.nlanr.net/~wessels/Papers/icp-

squid.

Wu, K. and P.S Yu. Local replication for proxy web caches with hash routing. Proceedings of the 8th

international Conference on information and Knowledge Management (CIKM), Missouri, November

1999.

Wu, K. and P.S Yu. Load balancing and hot spot relief for hash routing among a collection of proxy

caches. Proceedings of 19th IEEE International Conference on Distributed Computing Systems,

pp.536-543, 1999.

Zu, M. and J. Subhlok, Home Based Cooperative Web Caching, Seventh Multi-Conference on Systemics,

Cybernetics and Informatics, Orlando, FL, July 2003.

Appendix A: Expected Latency

Result A1: In order to derive a simple expression for the expected latency, we will first prove the

following result:

1

1

1 1

1 100

()
! () () 1

(1)
n

n n
k

n n

k m l n mx

x n m
n f x dx f x dx

H n l

 




 

    

 
  

  
   (A1)

Proof: Plugging equations 1 and 2 to the left hand side of the above expression and simplifying, we get:

 






1
1 00

11

)(
)()(!

nx

n

mk

k
nn

H

x
dxxfdxxfn




1 1 10

1 1 1 1 1
! 1

(1/ 1) (1/ 1) 1

n n n k n

k m j i n k

n
H j i   



     

 
  

   
   (A2)

Re-labeling with the new index k’ = n – k + 1 (hereafter, the prime is omitted)

1

1 10

1 1 1 1 1
! 1

(1/ 1) (1/ 1) 1

n n m k n

k j i k

n
H j i   

 

  

 
  

   
  (A3)

http://www.globecom.net/ietf/draft/draft-vinod-carp-v1-03.html
http://ircache.nlanr.net/~wessels/Papers/icp-squid
http://ircache.nlanr.net/~wessels/Papers/icp-squid

 34

By induction, we have,

)!1()1/1(1)1/1(

1

)1/1(

1
1

1

1

1 


 







lij l

l

ki

l

k

k

j 




 (A4)

Substituting equation A4 into equation A3, we have

1
10

1

1

1 1 1 1
! 1

(1/ 1) (1)! (1/ 1) 1

1 1 .
(1)

n n

n m
l n m

n

l n m

n
H n m l

m

n l



   





 
  



  

 
  

     

  
     

   





 (A5)

Hence proved.

Expected Latency: We will now proceed to evaluate the expected latency. The expected latency in cache

2 is formulated in Equation 5. It can be restated as

 



















 
















n

iRk

kk
k

iR

Lk

k
k

x

nnij

RL

j

jR

i

D
H

x

D
H

x
dxxfdxxfjipjpEL

n

1 0

1

1 00

11,|

),min(

0 0

2

2

21

12 1

)1(
)(

)(
)()()|()(







 E

 (A6)

where we have merely substituted)|()(),(jipjpijp  into Equation 5.

To simplify the above expression, we begin by looking at the probability that there are j tagged

documents among the first L2 documents:

1
1

22

0 1 1

() (,)
R j

i

n L nL
p j p j i

R j Rj






    
      

    
 . (A7)

Because 








k

m
=0 for k<0 and k>m, it follows that p(j)=0 for),min(12 RLj  . We apply this result later

in this section. Using (A7), we can also derive the conditional probability of having i tagged documents

among the documents ranked from the (L2+1)
th
 to the (R2 + i  1)

th

 35

1

2 22 2

1 1

1(,)
(|)

()

n R i n LR L ip j i
p i j

R j i R jip j


         

      
      

. (A8)

Now note that the (R2 + i)
th
 document cannot be tagged because it is stored in cache 2. Similarly, given

values of j and i, each document k has a probability of

2 2

2 2

; ,

1
2

2

, if 1 1;
1

, if 1.
j i k

i
L k R i

R L i

R j i
k R i

n R i

 


       

 
    

  

E (A9)

of being tagged. The above expression follows directly from Figure 4. In the Figure, note that there are i

tagged documents in the no duplication region and (R1 ji) tagged documents among the final (nR2  i)

documents. It can be verified that

1

1

0 2 2 2

(|)
1

R j

i

i R j
p i j

R L i n L








   
 and

1

1 1

0 2 2

(|)
R j

i

R j i R j
p i j

n R i n L





  


  
 . (A10)

That is, the probability that any random document outside the duplication-allowed region is tagged (given

j tagged documents in duplication region) is 1 2() /()R j n L  .

By combining Equations A1 and A9, we get

T1=  
2

2 21

1

; , 1 1

1 10 00

() ()
! () () (1)

n

R i n
k k

j i n n k k k

k L k R ix

x x
n f x dx f x dx D D

H H


 
  



   

    

 
   

 
  E =

2 2

2

1 1

2 2

1 22 2

1

1 2 1 2

12 2

1
1 1

1 (1) (1)

 1 .
(1)

n n

l n L l n R i

n

l n R i

n L n R ii
D

R L i n l n l

R j i n R R j n R i
D

n R i n R i n l

 

 





 

      



   

       
                  

         
      

       

 



 (A11)

Averaging the above expression over i and simplifying,

 36

1)|(2
1

0







jR

i

TjipT 

1

2 2

1 1

1 2 1

1 0 1

1 (|) 1
(1) (1)

R jn n

l n L i l n R i

R j n R R j
D p i j

n l n l

 

 

 

       

      
      

      
   (A12)

which can be further reduced, after averaging over j to yield,
15

2)(2)(
212

0

),min(

0





L

j

RL

j

TjpTjpEL =

2 1

2 2

1 1

1 2 2 1

1 0 0 1

1 (,) 1
(1) (1)

L R jn n

l n L j i l n R i

R n L n R R j
D p j i

n n l n l

 

 

 

        

      
      

      
  

 (A13)

Upon further simplification, we get

EL =
2 1

1 2 1
2 2

0 0 2

(,) (,) (,)
L R j

j i

R n R R j
D w n L p j i w n R i

n n R i



 

  
   

 
 (A14)

where












1

1

1),(
x

y
yxw .

When nR  , we can expand

2

2 2
2 2

1 1
(,) 1

1 2 (1)

R i R i
w n R i

n n



 

  
     

   
 (A15)

Substituting this into A14, the expected latency can be approximated by

EL = 1 1 2 2
2 2 1

1

(,) 1 ,
R R R L

D w n L w n R R
n n n R

  
       

   
 (A16)

Appendix B

15
 Because p(j)=0 for),min(12 RLj  , it follows that 2)(2)(

212

0

),min(

0





L

j

RL

j

TjpTjp .

 37

Proposition 1: Zero duplication (CARP) is preferable to unmonitored duplication (ICP) for D<DTh and

vice-versa, where








































































1

1

2

1

1

1

2
1

1

2

1

11

11

1

n

R

Rn

R

n

R

R

n
DTh .

Proof: The expected latency is given by 






















1

22
12

1
2

1
2 ,1),(

Rn

LR
RRnw

n

R
DLnw

n

R
EL . In

the case of zero duplication, we have
























1
1

1

211
22 11)0(

Rn

R

n

R
D

n

R
LEL . Similarly, with L2=R2, we have

 





























1
1

21
1

1

21
222 111)(

n

R

n

R

n

R
D

n

R
RLEL . Equating the two expressions for the

expected latency, we get the DTh specified in Proposition 1.

Proposition 2: The optimal size of the duplication region is 1

* 2
2 1

1 1

()
max 0,

()

n n R
L n

n R D R 

  
      

.

Proof: The objective function is
































1

22
12

1
2

1 ,1),(}{
22 Rn

LR
RRnw

n

R
Lnw

n

R
DMinELMin

LL
 (B1)

where












1

1

1),(
x

y
yxw . The First Order Condition (FOC) leads to the following expression for the

optimal size of the duplication region:

 

 1

)1(

1

2*

2 1

)(RDRn

Rnn
nL







 (B2)

We will first verify that 2

*

2 RL  is always satisfied. Plugging in the expression for L2
*
 into this

condition, we get 2

*

2 RL  if and only if (iff)

 38

 2

21
1

1 1()

n n R
n R

n R D R


 
 

  

 (B3)

1
1

1 1()n R D R n


     (B4)

i.e., iff 1)1(1

D . This is guaranteed since 1D and 1 by definition. Thus, 2

*

2 RL  is always

guaranteed. However, the expression may sometimes give negative values. In such cases, the lowest

latency for],0[22 RL  is realized at L2=0. Thus, it follows that

1

* 2
2 1

1 1

()
max 0,

()

n n R
L n

n R D R 

  
      

. QED.

Corollary 1: The optimal size of the duplication region is (a) non-decreasing in the inter-cache wait time,

D, (b) non-decreasing in request locality, (c) non-decreasing in the size of the other cache R1, and (d) non-

decreasing in cache size R2.

Proof: (a) Impact of Inter-Cache latency D:

 

   
0

)(

))(()1(

)(
2

11

/1

21

/1

1

)1(

1

2

1
































DRRnD

RnRnnD

RDRn

Rnn
n

D 







 (B5)

Thus,
 

 RDRn

Rnn
n






)1(1

)(
 is non-decreasing in D, implying that

*L is also non-decreasing in

inter-cache latency D.

(b) Impact of request locality ():

Proof:
 

   
0

)(

)/1())((

)(
2

11

/1

21

/)1(

1

)1(

1

2

1

































DRRnD

DLogRnRnnD

RDRn

Rnn
n

 




 (B6)

Thus, it follows that
*

2L is non-decreasing in  .

(c) Impact of R1, the size of the other cache.

 39

Proof:
 

   
0

)(

)1)((

)(
2

11

/1

1
1

2

2

1

)1(

1

2

1

1

































DRRnD

DRnnD

RDRn

Rnn
n

R 




 (B7)

Thus, it follows that
*

2L is non-decreasing in R1.

(d) Impact of cache size R2.

 

   
0

)()(11

/1

1

)1(

1

2

2

1






























DRRnD

Dn

RDRn

Rnn
n

R 
 (B8)

Thus, it follows that
*

2L is non-decreasing in R2.

Appendix C

The first L1 documents from cache 1 can be located anywhere in the sorted list at cache 2 (i.e., documents

sorted by LRU age at cache 2), while the next (R1 – L1) can only be between (L2 + 1) to n because these

documents cannot be in cache 2 by definition. Suppose there are j tagged documents in the first L2

documents at cache 2 and i tagged documents from (L2 + 1) to (R2 + i  1). Out of these i documents, k

are from Cache 1’s (R1 – L1) region. The total number of ways in which these documents to tag may be

chosen is given by:

),(1 jiN
2 12 2 2

0 1 1 1

1i

k

n R i R i jL R i L i

R i j R L kj i k

           
     

        
 (C1)

The first term refers to the number of ways in which we can choose the j documents to tag in

cache 2’s duplication region. The second term selects the i tagged documents between (L2 + 1) and (R2 + i

1). Among these i documents, k are selected and marked as belonging to cache 1’s non-duplication

region (third term). The fourth term selects and tags the remaining (R1 j i) documents between

(12  iR) and n. Since k documents have already been marked as belonging to the non-duplication

region of cache 1, this leaves us with (kLR  11) documents yet to be selected for the non-duplication

 40

region. These can be selected from the (R1 j i) tagged documents in 












kLR

ijR

11

1
 ways (fifth term).

Upon simplification,

),(1 jiN
2 12 2 2

1 1

1 n R i R jL R i L

R i j L jj i

         
    

      
 (C2)

Given j tagged documents in cache 2’s duplication region,],0[1 jRi  . Thus, the total number

of ways in which we can select the j tagged documents is:

 




jR

i

jiNjN
1

0

),()(
1

2 12 2 2

0 1 1

1R j

i

n R i R jL R i L

R i j L jj i





         
    

      
 (C3)

)(jN =
2 12

1 1

n L R jL

R j L jj

    
   

    
 (C4)

The value of j can itself be anywhere from 0 to min(L2, R1). Thus, the total number of ways in

which the documents can be tagged is
16

N 
2

2 12

0 1 1

L

j

n L R jL

R j L jj

    
   

    
 

2 1 1

1 1 1

n L n L R

R L L

    
  

  
 (C5)

Dividing C4 by C5:

1 1

2 1 2 1 12

1 1 1 1 1

()
n L R j n L n L RL

p j
R j L j R L Lj

 
           

        
         

 (C6)

And dividing C2 by C5.

1 1

2 1 2 1 12 2 2

1 1 1 1 1

1
(,)

n R i R j n L n L RL R i L
p j i

R i j L j R L Lj i

 
                

         
           

 (C7)

We also have,

16
 Because










k

m
=0 for k<0 and k>m, it follows that 




212

0

),min(

0

)()(
L

j

RL

j

jNjN .

 41

1

1

0 2 2 2

(|)
1

R j

i

i R j
p i j

R L i n L








   
 (C8)

and
1

1

0 2 2 2

(|)
1

R j

i

i R j
p i j

R L i n L








   
 (C9)

 The expected latency at cache 2 is given by

 




 








2 1

0 0

1)|()(
L

j

jR

i

TjipjpEL (C10)

where T1 is given by Equation A11. Here again, we use p(j)=0 for),min(12 RLj  and set the upper bound

for j as L2. Substituting Equations C6 and C7 into A11 and using results C8 and C9,

2

2 1

2

1

1 2 2
1

12 1 1

1

2 1

0 0 1

1
1

(1)

(,) 1
(1)

n

l n L

L R j n

j i l n R i

L L n L
EL R D

n L n L R n l

n R R j
p j i

n l











  



     

   
      

      

   
  

  



 

 (C11)

Upon simplification,

2 1

1 2 2 1
1 2 2

0 02 1 1 2

1
(,) (,) (,)

L R j

j i

L L n R R j
EL R D w n L p j i w n R i

n L n L R n R i



 

    
      

     
 (C12)

Equation (C12) can be simplified further when n is sufficiently large as described below.

Approximation: If the ratios R1 / n and R2 / n are small, we can expand

2

2 2
2 2

1 1
(,) 1

1 2 (1)

R i R i
w n R i

n n



 

  
     

   
 (C13)

Substituting this into C12 and using the following two results

2 1

1 2 1 1 2 1

0 0 2 2 1 1

(,)
L R j

j i

n R R j n R n L L R
p j i

n R i n L n L R



 

      


    
 (C14)

2 1

1 2 2 2 1 2
1

0 0 2 2 1 1

(,)
()

L R j

j i

n R R j i R L L L
p j i R

n R i n n n L n L R



 

    
  

     
 (C15)

we get:

 42

1 2
1 2

2 1 1

1 2 1 1 1 1 2 2 2
1 2

2 1 1 1 2 1 1

1
(,)

1 ()
1 ,

L L
EL R D w n L

n L n L R

L L R n L R L L R L
R w n R

n L n L R n L L R n R

 
    

   

       
        

          

 (C16)

Proposition 3: The best response curves,)(1

*

2 LL and)(2

*

1 LL , are non-increasing in 1L and 2L

respectively. Further, the existence of an equilibrium is guaranteed.

Proof: To prove this result, we apply the Binomial theorem to expand w(x, y):

...
)1(2)1(

1
11),(

2

2

)1/(1



























x

y

x

y

x

y
yxw









 (C17)

For yx  , we can ignore the cubic and other higher order terms to get

2

2

)1/(1

)1(2)1(

1
11),(


























x

y

x

y

x

y
yxw









 (C18)

When the number of documents, n, is much larger than the size of either cache, we can use (C18) to

rewrite (C16) as follows:










































































































































2

1121

2221111

2

2

1121

2221111

2

11

21

1

2

2

2

2

2

11

21

1

2

2

))((

))()((

)1(2

))((

))()((

)1(

1
1

1
1

)1(2)1(

1
1

1

n

RnRLLn

LRLLRLnR
R

n

RnRLLn

LRLLRLnR
R

RLn

LL
R

Ln

D
n

L

n

L

RLn

LL
R

Ln
EL













 (C19)

We now apply the conjugate pairs theorem, which states that for the problem),(min axF
x

, the derivative

a

x



 *

 and the cross partial Fxa have opposite signs. Taking the cross-partial of (C19) with respect to 1L

and 2L ,

 43

  
3

1211

2

11

2

2

2

6

121

78

21

2

2

))(()()()1(

)()1(5)35()1(3)1()1(

RLLnRnRLnLnn

nORLLnnD

LL

EL













 (C20)

Where)(6nO denotes terms of order
6n or lower. For large n, these terms can be ignored relative to the

higher order terms (i.e., terms of order 7 and 8).

 
3

1211

2

11

2

2

2

121

7

21

2

2

))(()()()1(

)1(5)35()1(3)1()1(

RLLnRnRLnLnn

RLLnDn

LL

EL













 (C21)

As long as 











121

2

533

2
1

RLLn

L
 , the above expression is greater than or equal to zero

for all],0[22 RL  . Since),max(21 RRn  , the right hand side of the constraint on  approaches 1.

Since  <1, we have 0
21

2

2






LL

EL
.
17

 It follows that
*

2L is weakly decreasing in 1L . In exactly the same

manner, we can set up the expression for expected latency at cache 1 and show that
*

1L is weakly

decreasing in 2L .

 To prove existence of an equilibrium, we compute the second-order derivative of (C16). As

before, assuming that),max(21 RRn  and ignoring terms with lower exponents of n, we get the

followed simplified expression:

0
)())(1(

))()(1(2

11

3

2

111

2

2

2

2











RLnLn

RnLRD

L

EL




 (C22)

Note that the strategy space is compact and convex for each player (],0[],,0[2211 RLRL ) and the

objective function to be minimized is continuous and quasi convex in each player’s own strategy. Thus, it

follow’s that the game has at least one pure strategy Nash equilibrium (Debreu 1952).

Proposition 4: The best response curves,)(1

*

2 LL and)(2

*

1 LL , are both non-decreasing in inter-cache

latency, D.

17

 For  approaching 1, we can show that the optimal solution is to just use LRU at each cache. This boundary

solution (
2

*

2 RL ) also conforms to the notion of a non-increasing response function.

 44

Proof: To prove the result, we again use the conjugate pairs theorem. Taking the cross-partial of equation

(C16),

 0))((
1

)(1

2

11

21
1

11

1

)1/(1

)1/(

2

2

2
























 





Ln
RLn

LL
R

RLn

L

n

Ln

LD

EL








 (C23)

Thus, it follows that)(1

*

2 LL is non-decreasing in D. In a similar manner, it can be shown that)(2

*

1 LL

is non-decreasing in D.

Appendix D

Proposition 5: With traffic-dependent inter-cache latency, the optimal size of the duplication region is (a)

non-decreasing in the inter-cache delay D, (b) non-decreasing in request locality  for  below some

positive threshold, (c) non-decreasing in cache size R2., and (d) non-decreasing in mean service time  .

Proof: We apply the conjugate pairs theorem to prove the result.

(a) non-decreasing in the inter-cache delay D: 0
)1(

1

1
2

1
2

1

2

2

2


























n

n

L
R

DL

EL
. Thus, it follows that

0
*

2 




D

L
.

(b) non-decreasing in request locality  for low :

 
   

2
1

2 1 2 1
2 222

2

1
1 (,) ln (,) ln

1

EL R L R
w n L w n L

L n n n





   
  

    
        

     

Where
2

11
1

D
R

n w
n









  
  
  
  

 and
3

1

1 2

1
1

n
R

n w
n

 
 

 




 
   

    
  
  

. Note that

when 0 , we have D and 0 . Thus, the cross-partial is negative and the optimal
*

2L is

non-decreasing in  . For higher values of  , the sign of the cross partial is determined by the sign of:

   1
0 ln ln

R
w w

n
         . Since 0 1w  , we have

1lnw w e  . Thus,

 45

 
 

   
3/ 211 1

0

2 1
ln ln

R R
e D

n e

 
      



 
              . () is a convex

function of   in the range 1D   , and () 0D   , (1) 0   . Therefore, there exists a

unique threshold for   , below which the cross partial is negative and
*

2L is non-decreasing in  .

Because   is increasing in  , it follows that there is a corresponding threshold for  as well.

(c) non-decreasing in cache size R2:
 

0
)1()(

)(
1)(

22

1212

2

1
1

1

122
11

22

2

2






























RLRRnn

Rnn

RLnR
RnR

RL

EL
. Thus, it

follows that
*

2L is non-decreasing in R2.

(d) non-decreasing in cache size R1: We can rewrite EL2 as

1 1 2 2
2 2 2 1

1

(,) 1 ,
R R R L

EL w n L w n R R
n n n R


    

        
     

Where the function  is convexly increasing, that is, 0  and 0  . Taking the cross-partial:

 

2
1

2 1 2
22

2 1

2 1

1
2 2 2 2

2 1 2

1 1

1 1
1 (,)

1

1
 1 0

1

EL R L
w n L

L R n n n

R L R L
R R

n n R n R























          




    

            


Thus, it follows that
*

2L is non-decreasing in R1.

(e) non-decreasing in mean service time  :

 0

)1(1)1)((

)1(11

3

1

1
1

2
2

1

1
1

2
1

1
1

22

2

2



















































































R
n

L
Lnn

R
n

L
R

n

L

L

EL
. It follows that 0

*

2 






L
 .

