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ABSTRACT

Entropic Elasticity of Polymers and Their Networks

Tianxiang Su

Advisor: Prashant K. Purohit

The elastic energy for many biopolymer systems is comparable to the ther-
mal energy at room temperature. Therefore, biopolymers and their networks
are constantly under thermal fluctuations. From the point of view of thermo-
dynamics, this suggests that entropy plays a crucial role in determining the
mechanical behaviors of these filamentous biopolymers. One of the main goals
of this thesis is to understand how thermal fluctuations affect the mechanical
properties and behaviors of filamentous networks, and also how stress affects
the thermal fluctuations.

Filaments and filamentous networks are viewed as mechanical structures,
whose static equilibrium states under the action of loads or kinematic con-
straints are determined in the first step of the investigation. Typically, a
system is discretized and represented by a finite set of kinematic variables
that characterizes the configuration space. In the next step, we apply sta-
tistical mechanics to study the thermo-mechanical properties of the system.
We approximate the local minimum energy well to quadratic order. Such a
quadratic approximation for a discrete system gives rise to a stiffness matrix
that characterizes the flexibility of the system around the ground state. Us-
ing the multidimensional Gaussian integral technique, the partition function
is efficiently evaluated, provided that the energy well around the ground state
is steep. In this case, the dominant contribution to the partition function
is from the states that are close to the equilibrium state, whose energies are
well approximated by the quadratic energy expression. All thermodynamic
properties of the system can be further evaluated from the partition function.
Fluctuation of the system, in particular, scales linearly with the temperature
and inversely with the stiffness matrix. Therefore, the stiffness matrix governs
the statistical mechanical behavior of the system near its ground state. We
also show that a system with constraints on its kinematic variables can be
converted into an effective non-constrained system.

Using the above theoretical framework, we study the thermo-mechanical
properties of filaments and filamentous networks under different loadings and
confinement conditions. The filaments need not be homogeneous in the me-
chanical properties, and they can be subjected to non-uniform distributed
loads or non-uniform confinements. Under compression, a filament can buckle.
Buckling in a filament network can reduce the stiffness of the structure, which
leads to significant thermal fluctuations around the buckling point. Proper-
ties of a triangular network under pure expansion, simple shear and uniaxial
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tension are also investigated in this thesis.
As further applications, we discuss the protein forced unfolding problem.

We show that different unfolding behaviors of a protein chain can be under-
stood using a system of three equations. We also discuss the internal fluc-
tuations of DNA under confinement and show a length-dependent transition
between the de Gennes and Odijk regimes. We also show that entropy plays
a role in driving the motion of a piece of DNA along a non-uniform channel.
We derive the entropic force on the DNA in this thesis and discuss the coupled
migration and deformation of the polymer under non-uniform confinement.
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close to each other, to make the theoretical results clear, we
do not plot the MC simulation results in (a). (b): transverse
fluctuation decreases when the force increases. The results are
for a homogeneous hinged-hinged chain with L = 25nm and
K = 2.5kBT · nm. The corresponding forces are labeled in the
figure. Circles: MC simulation results; solid lines: theoretical
predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 Dependence of the transverse fluctuation on the countour length
of the chain. K = 2.5kBT · nm for all the curves. Black solid
curves (theory) and blue circles (MC simulation): L = 5nm;
black dashed curves (theory) and red circles (MC simulation):
L = 25nm; (a) hinged-hinged boundary conditions; (b) partially
clamped boundary conditions; (c) clamped-clamped boundary
conditions. The figures show that for a fixed persistence length,
the longer the chain, the more the fluctuation. Also, our theo-
retical results and the MC simulation results match quite well.
Note that here ξp/L ≤ 1 and the results for hinged-hinged chain
and clamped-clamped chains are quite similar, which is con-
firmed by the simulation results. . . . . . . . . . . . . . . . . . 74
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4.11 Unfolding of six copies of ubiquitins under constant velocity
pulling condition. Blue dotted curves are the experimental
data from [25]. Each peak in the profile represents a unfolding
event where the force drops. The first and the last experimental
curves are fitted to obtain the contour lengths and the bend-
ing moduli of the folded and unfolded proteins (Fig.(a): red
circles are the fitted data and the black curves are the fitting
results). The intermediate curves are then predicted without
any free parameters using the 3D version of Eq. 4.38 (Fig.(b),
red curves). Figure.(b) shows that the predictions match well
with the experimental data. . . . . . . . . . . . . . . . . . . . 75

5.1 End-to-end distance distribution function P (x) using Eq. 5.14
(red circles) and Eq. 5.19 (blue). Here the external force is
F = 0pN, the segment length is l = 1nm and the contour length
is L = 50nm. The two theories match well with each other. . . 82

5.2 (A): End-to-end distance distribution function P (x) for a freely-
jointed chain with different contour lengths L = 5, 10, 25nm.
Here F = 10pN and the Kuhn length is l = 5nm. The profile
looks symmetric only when the contour length of the chain is
long compared to its Kuhn length. (B) Distribution P (x) for
a freely-jointed chain under different values of tensile forces:
F = 5, 10, 20pN. As the force increases, the profile shifts to the
right and the peak becomes sharper. For both plots, T = 300K. 83

5.3 (A): End-to-end distance distribution function P(x) for a worm-
like chain with different contour lengths L = 1, 5, 25nm. Here
F = 1000pN. For short chain, the profile is clearly not sym-
metric. When the contour length of the chain increases and
becomes comparable to its persistence length, the profile looks
more symmetric. (B) Distribution P(x) for a wormlike chain
under different values of tensile forces: F = 50, 100, 300pN. As
the force increases, the profile shifts to the right and the peak
becomes sharper. For both plots, T = 300K, Kb = 2.5kBT · nm. 83

5.4 Distribution P (r, x) for (A) a freely-jointed chain and (B) a
wormlike chain. The chains are subjected to hinged-free bound-
ary conditions. x, r are respectively the extension and trans-
verse displacement of the free end. Here x is fixed for each curve
and P (r) versus r is plotted. The parameters are (1) Tempera-
ture T = 300K; (2) Kuhn length l = 1nm (freely-jointed chain)
or bending modulus Kb = 2.0kBT (wormlike chain); (3) Con-
tour length L = 25 nm; (4) Fixed force F = 50pN. The figures
show that as the fixed x increases, the peak in the distribution
profile becomes sharper. This makes sense because a chain with
large extension has less freedom to fluctuate in the transverse
direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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6.1 A fluctuating elastic filament (extensible wormlike chain) under
distributed forces. The origin of the x− y coordinate system is
set at the head of the filament, which is hinged. The other end
of the filament is constrained to move only in the x direction.
One possible deformed configuration of the filament is shown in
dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Comparison between the continuous models and the discrete
model. (A) Force balance for an infinitesimal segment of a con-
tinuous rod. (B) Comparison of the results for a continuous rod
(Black curve: Fourier series method and Eq. 6.15; Blue (almost
overlaps with the black curve): method using force balance on
infinitesimal segment and Eq. 6.20) and a discrete chain (red cir-
cles). The filament is under constant τ along the arc length so
that Fourier series method can be applied. Here a 100nm chain
is discretized into 1000 segments. The results match quite well. 99

6.3 Force-extension relations for a wormlike chain (1: red solid line)
under uniform distributed load τ with thermal fluctuations, (2:
red dashed line) under uniform distributed load τ without ther-
mal fluctuations, (3: blue solid line) under end-to-end force
F = τL0 with thermal fluctuations, and (4: blue dashed line)
under end-to-end force without thermal fluctuations. The refer-
ence contour length of the chain is L0 = 50nm. The persistence
length is 5nm. The segment length is 0.5nm with N = 100
segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Transverse fluctuation of a chain under uniform distributed τ =
5pN/nm (red), and under end-to-end applied force F = τL0

(blue). Under distributed force, the chain has larger thermal
fluctuations with an asymmetric fluctuation profile. . . . . . . 101
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6.5 DNA in non-uniform microfluidic channels. (A) A piece of DNA
confined in a linear channel and a constant-strain rate channel.
Both channel types have been fabricated in experiments [15].
(B) The velocity in the non-uniform channel is inversely pro-
portional to the channel width. Therefore, given the velocity
vf at the exit (rightmost) end, the entire velocity profile in-
side the channel is known, which then leads to the drag force
τ = dtv along the polymer. Here the end-to-end extension of
the polymer is plotted against vf . As we increase the flow ve-
locity, the strain along polymer increases, resulting in a larger
end-to-end extension. Red: DNA in a linear channel. Blue:
DNA in a constant-strain-rate channel. Dashed/Solid lines: ex-
tension with/without the contribution of thermal fluctuations.
(C) Transverse fluctuations along the polymer arc length. Red
and blue for DNA in a linear and a constant-strain-rate channel
respectively. Solid line is for a DNA with one end hinged and
the other end free to fluctuate. Dashed line is for the same DNA
with both ends hinged on the x aixs. . . . . . . . . . . . . . . 102

6.6 Transverse fluctuation of a chain under uniform distributed τ
plus a point load F in the middle. The left half of the chain
has less fluctuation because the stretching of the point loads
reduces the thermal fluctuations. . . . . . . . . . . . . . . . . 102

7.1 Measurement of the fluctuations of the internal segments of con-
fined DNA. (A) Image of a dye label (Alexa-546) on a DNA
backbone (backbone not shown) with 80ms exposure time. (B)
2D surface plot of the raw image (intensity of the dye vs. the
X Y coordinates). (C) Image of one T4 DNA fragment (∼ 36
microns) with backbone (red) and internal labels (green). (D)
Time series (8 seconds) of the DNA showing the fluctuations
of backbone and internal labels. In (D), the red trace is the
backbone and the green traces are the trajectories of internal
dye labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Internal fluctuation of λ DNA confined in a 80nm×130nm chan-
nel. (A) The measured rms fluctuation σ versus mean exten-
sion 〈x〉 for the internal segments of the DNA agrees very well
with de Genne’s theory with no fitting parameters (red curve,
Eq.7.4). (B) A linear σ2 − 〈x〉 profile confirms the 0.5 power
law of σ ∼ 〈x〉1/2 of the de Gennes’ theory. Note, however, that
here we have maximum 〈x〉 . 10µm. As shown in a subse-
quent figure (Fig.7.4) and in the text, for longer polymer with
a maximum 〈x〉 & 10µm, the data deviates significantly from
de Gennes’ theory and even the 0.5 power law is lost. . . . . . 108
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7.3 Probability distributions P (x) for 2 internal segments of λ DNA
inside a 80nm×130nm channel. The experimental data is fitted
to Eq.7.7 (red). The fitting value C (Eq.7.7), when plugged
back to Eq.7.6-2, recovers de Gennes’s formula Eq.7.4. . . . . 109

7.4 Fluctuation of the internal segments of (A) T4 DNA in 80nm×130nm,
(B) T4 DNA in 60nm×100nm and (C) λ DNA in 50nm×70nm
channels. For all cases, the maximum mean extension 〈x〉 >
10µm. For (A) and (B), the data 〈x〉 . 10µm agrees with de
Gennes’s theory (red, no fitting parameters). Deviation from
de Gennes’ theory begins at a critical 〈x〉 ∼ 10µm, above which
the data falls into the black curve predicted by the deflection
theories of Odijk [6], Wang and Gao [11]. For tighter channels
(C), the transition occurs earlier with most data falling in the
deflection regime. . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.5 Internal fluctuation σ versus mean extension 〈x〉 for BAC (red
squares) and T4 DNA (black circles) in a 80nm×130nm channel.
This figure shows that DNAs from two different sources give
almost identical results, which suggests that agreement with de
Gennes theory for short internal segments, and deviation from
de Gennes’ theory for long internal segments, are both sequence
independent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.6 (A) Folded structures in the backbone of confined DNA. Each
branch of the structure is about 150− 250nm, about the width
of the channel size. The structures are separated by a distance
∼10µm. (B, C) Distribution of extension P (x) for 2 internal
segments that contain the folded structures. In disagreement
with de Gennes’ prediction, the distributions show 2 peaks, from
which we infer the existence of the folded structures. However,
the structures are not stable as the two peaks in the distribu-
tions are comparable in height. The red curves fitted to the left
peaks on the histogram are from de Gennes’ theory (Eq.7.7) and
the ones superimposed on the right peaks are from the deflec-
tion theory (Eq.7.10). (D) Extension x versus time for a single
internal segment that shows two peaks in the distribution P (x).
The extension of this particular internal segment seems to fluc-
tuate around two values shown by the dashed lines. This gives
rise to the two peaks seen in the probability distribution. . . . 112
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7.7 (A) Phase diagram showing two regimes on the L − D plane,
assuming ξp = 50nm for DNA. Transition from de Gennes’ to
Odijk’s regime can occur when D decreases with L fixed, or
when L increases with D fixed. (B) DNA with local folded
structures as an intermediate state between de Gennes’s and
Odijk’s regimes. In experiments, we observe heterogeneity in
the intensity profile of YOYO-1 dye along the backbone of a
confined DNA, which suggests the existence of the local folded
structures (see Appendix). . . . . . . . . . . . . . . . . . . . . 114

7.8 Discrete wormlike chain model for confined DNA in a nanochan-
nel. The confined wormlike chain, subjected to and end-to-end
applied force in general, has bending energy represented by a
spring of stiffness κ at each node. . . . . . . . . . . . . . . . . 115

7.9 Fluctuation versus mean extension of internal segments of the
strongly confined DNA in 60nm channels (Eq.7.13 and Eq.7.14).
The contour lengths of the DNA are (A) L = 10µm, (B) 5µm,
(C) 1µm and (D) 250nm. For a long DNA (A and B), data from
internal segments of various locations of the chain collapse on
the a curve with 0.5 power law (light green). The result agrees
with Eq.7.9 (blue), which is derived for the end-to-end fluctua-
tion of a confined DNA. For short DNA however (C and D), no
power law is found as data from various locations of the chain do
not collapse onto a single curve (light green). Therefore, formu-
lae derived for the end-to-end fluctuation of the confined DNA,
such as Eq.7.9 (blue), cannot be used for internal fluctuation.
The boundary effect is so significant that the rms fluctuation σ
not only depends on 〈x〉, but also on the location of the internal
segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.10 Fluctuation as a function as the position of an internal segment
for a short chain. The contour length of the entire chain is short
(250nm), so that the fluctuation not only depends on the length
of the internal segment, but also on its position. Here we plot
the fluctuation versus position for internal segments with the
same size: 50nm (red) and 10nm (blue). For the internal seg-
ments close to the boundaries, the fluctuation is larger because
they have more freedom compared to the segments inside the
chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.11 Fluctuation of a 18µm long chain with persistence length ξp =
50nm confined in a 60nm×60nm channel. From bottom to top:
(1) 4: no nicks; (2) +: 10 nick in 18µm; (3) ©: 50 nicks in
18µm; (4) ×: 100 nicks in 18µm; (5) �: 200 nicks in 18µm.
This figure shows that when the density of nicks is lower than
50 nicks per 18µm, or 1 nick per kbp of DNA, the fluctuation
profile is almost the same as that for a chain without nicks. . . 118
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8.1 1D random walk of particles (blue) in the z-direction. In its
natural condition, each particle has Ωtot internal states (Ωtot =
6 in the figure). Some z-dependent spatial constraints reduce
the number of accessible states at location z to Ω(z) ≤ Ωtot

(the blank boxes), creating an entropy varying landscape. Free
energy is lower where there are more states to explore. An
entropic force arises from this random walk model, driving the
system towards regions with lower free energy. . . . . . . . . . 127

8.2 Steady state distribution Psteady(z) (y-axis on the left) on a free
energy landscape G(z) ∝ log(z) (y-axis on the right). The
random walk domain is z ∈ [1, 100], with z = 1 being a hard wall
and z = 100 being an absorption wall. Eq. 8.5 predicts a linear
steady state distribution (blue line), which is confirmed, without
any fitting, by the Kinetic Monte Carlo simulation results (blue
circles). The numbers in this figure are in SI units. . . . . . . 129

8.3 A DNA molecule is modelled as a 1D rod confined in a non-
uniform channel. Typically, inside a nano-channel the DNA
molecule can be subjected to stretching force fint, drag force
fdrag exerted by the surrounding fluid flow, entropic force fent

due to the non-uniform confinement and also electrical force fele

since the DNA is charged. The figure shows balance of force for
an infinitesimal segment on the rod. . . . . . . . . . . . . . . . 130

8.4 Drag coefficient per unit length as a function of the stretch-
ing force fint at different channel widths D (calculated using
Eq. 8.11, Eq. 8.12 and Eq. 8.14). . . . . . . . . . . . . . . . . 132

8.5 Stretch and force distributions along the arc length s of a sta-
tionary DNA in a uniform nanofluidic channel. The stretch
distribution is non-linear: (1 − λ̄) ∼ (−s̄)−1/2 while the force
distribution is always linear with slope being −5V̄/3. . . . . . 134
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8.6 Entropically driven DNA crossing a sharp interface where the
channel width changes suddenly. The channel shape is shown
in (a). No fluid flow or electrical force is applied, so the DNA
is driven only by the entropic force. The numbers in the cir-
cles represent snapshots of the molecule at different times. The
process can be divided into two stages. Stage-(I): DNA moving
across the interface at z = z∗ ( 1© – 3©). In this stage, a large
force/strain gradient occurs at z = z∗ as is apparent in (b). This
force/strain gradient is caused by the migration speed gradient
as shown in the enlarged figure in (a) (v0 > vl, v0 > vr). The
strain gradient travels along the DNA backbone until it com-
pletely enters into the wider region. Total extension of the DNA
decreases in this stage as is apparent in (c). Stage-(II): DNA
leaving the interface ( 3© – 4©). In this stage, the force/strain
gradient slowly relaxes as is apparent in (b). The total exten-
sion of the DNA stops decreasing, instead, it increases to reach
an equilibrium value as is apparent in (c). . . . . . . . . . . . 135

8.7 Movement of the right end of the DNA (z(L, t) as a function of
t) in channels with different η. No fluid flow or electrical force
is applied, so the DNA is driven only by the entropic force.
For a channel that changes its shape more rapidly (smaller η =
0.01, blue), the DNA moves faster because of larger entropic
force. The initial condition is a stress free state. The boundary
conditions are fint = 0 at s = 0 and s = L. . . . . . . . . . . . 136

8.8 Migration of a piece of DNA in different types of nanochannels.
The polymer is driven purely by entropic forces (V̄ = 0). (a) z̄
at s̄ = 0 versus dimensionless time. (b) Total stretch ∆z/L =
[z(L) − z(0)]/L versus dimensionless time. Different lines are
for different channel shapes D(z). Blue circles: linear channel
with D(z) = az + b. Red triangles: D(z) = (az + b)−1/2. Black
squares: D(z) = (az + b)−2. Cyan stars: D(z) = (az + b)−1.
Here a and b are different constants for different channel types.
For comparison, a and b for each channel type are chosen so
that the entrance/exit widths of the four channels are the same. 141
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8.9 Motion and deformation of a piece of DNA in symmetric non-
uniform channels without fluid flow or applied electric fields. (a–
c): In the symmetric channel shown in (a), the initially stress-
free polymer is pulled by a pair of entropic forces created by
the channel. As a result, force and strain build up along the
polymer backbone. In particular, large force gradient occurs at
locations where the channel changes its shape most rapidly (b).
The total extension of the polymer increases initially in response
to the entropic pulling and then reaches equilibrium (c). (d–f):
The symmetric channel shown in (d) creates a pair of entropic
forces, which pushes the DNA inwards. In response, strain is
developed along the polymer backbone (e). The total extension
of the DNA decreases because of the pushing and then reaches
equilibrium (f). . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.10 (a) A piece of DNA migrates along a non-uniform nano-channel
with fluid flow V̄ > 0. The numbers 1,2,3,4,5,6 represent snap-
shots in time. (b) Total stretch of the DNA increases as the
polymer squeezes through the middle narrow region of the chan-
nel. (c) Two strain/stress gradients travel through the polymer
backbone sequentially because there are two locations where the
width of the channel varies rapidly. . . . . . . . . . . . . . . . 143

8.11 Migration of three different pieces of DNA in a periodic channel
as shown in (a) (width in the wide/narrow region is D = 50nm
and D = 25nm respectively, only one DNA molecule is shown).
No electrical force is applied. Fluid in the channel flows to the
right vfluid > 0. (b) z at s = 0 versus time. Blue: L = 8µm,
p = 50nm. Red: L = 3µm, p = 50nm. Black: L = 8µm,
p = 100nm. At t = 5s, the long DNA (blue) and the short
DNA (red) have been separated by 6.6 microns. . . . . . . . . 143

8.12 Transition between Odijk’s and de Gennes’ regimes. The two
curves on the f −D plane correspond to errors e = 3% (black),
and 5% (blue) respectively. Region to the left of the curves is
with less error. For the region with e < 3%, we claim the poly-
mer is in Odijk’s regime. On the other hand, for the region with
e > 5%, the polymer is more likely to be in de Gennes’ regime.
We define 3%–5% as an uncertain zone, where transition be-
tween the two regimes occurs. The transition channel width is
shown to increase with the increase of force. . . . . . . . . . . 144
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9.1 Illustration of the primary plant cell wall, which is a network
consisting of various filaments with very different mechanical
properties. The cellulose microfibrils are thick and provide ten-
sile strength for the cell walls while the polysaccharide pectins,
much smaller in the cross section dimensions, fill the spaces be-
tween the cellulose microfibrils and provide resistance to com-
pression [18]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.2 A triangular network made up of 3 wormlike chains. . . . . . . 153
9.3 Expansion of a triangular network made up of 3 wormlike chains.

There is a phase transition at p̄ = 3. . . . . . . . . . . . . . . 155
9.4 Illustration of a discrete fluctuating filament network. . . . . . 155
9.5 Configuration of a hinged-hinged buckled rod. The rod is under

uniaxial compression. If we start with a perfectly straight rod,
the computational scheme always leads to a straight configu-
ration, which is unstable when the compressive force is large.
With initial perturbation, however, we obtain the correct post-
buckling configurations, as shown in the figure. . . . . . . . . . 158

9.6 Buckling of a hinged-hinged rod. (A) Tangent angle at s = 0,
(B) Deflection at the middle of the rod, and (C) ∆x = L−x(L)
as a function of the compressive force. Blue: exact solution.
Red: Computational results. . . . . . . . . . . . . . . . . . . . 158

9.7 Extension a hinged-hinged rod. Blue dashed line: without ther-
mal fluctuation. Blue circles: with thermal fluctuation. Red:
analytic solution. . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.8 Compression of a hinged-hinged rod. Dashed line: without ther-
mal fluctuation. Solid line: with thermal fluctuation. Small
perturbations are applied to the initial configuration of the rod. 160

9.9 Influence of the initial imperfection. When the imperfection is
small, the path is closer to the singularity and a large peak shows
in the force-extension curve. When there is no imperfection,
the curve will go to infinitely. When the imperfection is large,
the path is further away from the singularity and the curve
transition smoothly to the post-buckling regime. (B) is the
enlarged figure of (A) around the peak. Blue: 0.1◦. Red: 0.5◦.
Black: 1.0◦. Green: 2.0◦. Cyan: 3.0◦. . . . . . . . . . . . . . . 161
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9.10 Influence of the material properties on the compression behav-
ior. (A) Force-extension curve for different bending modulus
Kb. Increasing the bending modulus shift the peak to the right
and decreases the intensity of the peak. Blue: Kb = 150kBT ·
nm. Red: Kb = 250kBT · nm. Black: Kb = 350kBT · nm.
Green: Kb = 450kBT · nm. Cyan: Kb = 550kBT · nm. (B)
Force-extension curve for different stretching modulus Ks. In-
creasing the bending modulus shift the peak to the left. Blue:
Ks = 2.0kBT/nm. Red: Kb = 4.0kBT/nm. Black: Kb =
1000kBT ·nm. The force-extension behavior of a single filament
is more sensitive to a change in the bending modulus than a
change in the stretching modulus. . . . . . . . . . . . . . . . . 162

9.11 Influence of the boundary conditions on the compression be-
havior. Rotational springs are added to the two ends of the
rod. When the stiffness of the spring becomes infinity, the rod
is under clamped-clamped conditions. Black: Kθ = 0.0kBT .
Red: Kθ = 10.0kBT . Black: Kθ = 1000.0kBT . The clamped-
clamped rod buckles at F = 4pN, as expected. . . . . . . . . . 162

9.12 (A) Hydrostatic edge tension on a filament ring with n = 6
interior filaments. (B) If we assume linear elasticity and do
not consider thermal fluctuations, the network always becomes
softer at larger hydrostatic tension. . . . . . . . . . . . . . . . 164

9.13 (A) Plot of Eq. 9.35. The size of the network versus the di-
mensionless hydrostatic tension p̄ = βπξpLp/n. (B) Plot of
Eq. 9.38. The dimensionless bulk modulus is defined as Kbulk ·
(8πξpL/(kBTn)). . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.14 Expansion of two hexagons under hydrostatic tension. Each
filament is 20nm long. Their persistence length is 10nm. (A)
Stretching modulus is 10kBT/nm. Black: undeformed config-
uration. Red: deformed configuration under p = 0.5pN/nm.
Green: deformed configuration under p = 1.0pN/nm. Blue:
deformed configuration under p = 1.5pN/nm. (B) Stretching
modulus is 100.0kBT/nm. Black: undeformed configuration.
Red: deformed configuration under p = 0.5pN/nm. Green: de-
formed configuration under p = 2.5pN/nm. Blue: deformed
configuration under p = 5pN/nm. . . . . . . . . . . . . . . . . 166
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9.15 Expansion of a hexagon under hydrostatic tension p. Each fila-
ment in the hexagon is 20nm long. Dashed lines are the results
without taking thermal fluctuations into account. Solid lines
are the results with thermal fluctuations. Circles are the ana-
lytic solutions of Eq. 9.32. (A) Persistence length ξp = 10nm,
stretching modulus Ks = 10kBT/nm. The results with ther-
mal fluctuations shows strain stiffening, i.e, the bulk modu-
lus increases during the expansion process. The bulk modu-
lus changes from Kbulk = 0.07pN/nm (fitting from p = 0 to
0.06pN/nm) to Kbulk = 1.29pN/nm (fitting from p = 0.3 to
0.6pN/nm). (B) ξp = 5nm, Ks = 10kBT/nm (red). Changing
the bending modulus does not change the static solution. But,
the results with thermal fluctuation changes a lot. In partic-
ular, the initial bulk modulus is Kbulk = 0.02pN/nm (fitting
from p = 0 to 0.06pN/nm). For p = 0.3 to 0.8pN/nm, the
bulk modulus is Kbulk = 1.18pN/nm. The results in plot A
are superimposed as blue lines and circles. (C) ξp = 10nm,
Ks = 100kBT/nm (red). Changing the stretching modulus
(compared to A) affects both the static and thermo-mechanical
solutions. The fittings for Kbulk are for the intervals p = 0
to 0.06pN/nm and p = 0.4 to 0.8pN/nm respectively. The re-
sults in plot A are superimposed as blue lines and circles. (D)
ξp = 10nm, Ks = 100kBT/nm (red). The fittings are for the
intervals p = 0 to 0.05pN/nm and p = 0.15 to 0.3pN/nm re-
spectively. The results in plot A are superimposed as blue lines
and circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.16 (A)-(C): Three different hexagonal structures. The structures
shown in (B) and (C) are obtained by removing and adding
filaments from/into (A). (D): Expansion behaviors of the three
structures shown in A-C are shown in red, blue and black, re-
spectively. Thermal fluctuation is significantly reduced for net-
work (C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.17 Scaling law of stretching the thermal fluctuations. An equilat-
eral triangle whose initial length for the sides is L = 20nm is
under hydrostatic tension p. The persistence length of the fila-
ments is ξp = 10nm. ∆r, as defined in Eq. 9.39, characterizes
the size difference between the static solution and the thermal
solution. The fitting result suggests ∆r ∼ p−1. Thermal fluctu-
ation is stretched out faster than the −0.5 power law. . . . . . 170

9.18 Principal stretch during an expansion process. Denote the prin-
cipal stretches as λ1 and λ2, then the stretch associate with
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Chapter 1

Introduction

Key concepts of this chapter:

1 Cells use filaments and filamentous networks as the basis
of their structures. The mechanics and energetics of these
one dimensional ‘biological beams’ and their networks play
a role in regulating a cell’s activities.

2 In the world of nanoscale mechanics, entropy, or thermal
fluctuation, plays a role as important as the elastic energy.

3 The freely-jointed chain model is the simplest model for a
biopolymer. The entropic nature of this model leads to the
prediction that a polymer behaves like a spring in the limit of
small force, with a temperature dependent spring constant.

4 The wormlike chain model is the most widely used model
for a biopolymer. It considers both the elastic energy and
the entropy of the system and predicts that the shrinking of
a chain under tension F scales as F−1/2 in the limit of large
force.

5 The fact that thermal fluctuation scales linearly with the
temperature and inversely with the effective stiffness of the
system is a rather universal law.

6 This thesis develops theoretical methods to efficiently evalu-
ate the statistical mechanical properties of rod-like filaments
and filamentous networks. In particular, the theory can be
applied to study heterogeneous filaments and networks un-
der various boundary and loading conditions.
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Beams as structural elements have been used by human beings for thou-
sands of years. But the fact that nature, or our own bodies, has put these
one-dimensional elements to similar architectural uses was not appreciated
until recent decades. It is now widely acknowledged that cells not only make
use of various rod-like filaments as the basis of their structures, but also use
them smartly and efficiently. Well-known examples of rod-like macromolecules
and structures in our bodies include the three different types of filaments that
make up the cytoskeleton networks, such as actin filaments, intermediate fila-
ments and microtubules, the slender protrusions of hair cells, known as stere-
ocilia that vibrate in response to sound, and also the DNA molecules, whose
backbones are double helices that can be further folded to adopt supercoiled
configurations, etc. All being one-dimensional objects though, these macro-
molecules and structures differ a lot in their sizes and mechanical properties.
They are so designed to meet specific needs and perform different functions in-
side cells. For example, an intermediate filament has a diameter around 10nm
while a DNA molecule is about 2.5nm wide. Correspondingly, the former is
stiff and has a function of supporting mechanical stress in cells, while the lat-
ter is relatively flexible and can be highly coiled up and packed into confined
spaces when needed.

The mechanics and energetics of these ‘biological beams’ have been of great
interest to many researchers because to some extent, they determine and reg-
ulate the functions of the cells. For example, the activity of a gene regulated
by the lac repressor is found to depend periodically on the distance between
the operator sites [3]. Here the key element in the modulation of the activ-
ity of the gene is the twisting and bending deformations of the DNA that is
looped between the operator sites. Similarly, an enhancer’s (a binding site for
an activator protein) activity depends periodically on its distance away from
the promoter [1]. Such periodicity occurs because a nonideal binding site can
result in unfavorably large twisting energy in the DNA molecule and finally
leads to differences in gene expression. Lately, scientists have even begun
to make use of the mechanics of the rod-like filaments to develop new tools
for molecule detection. For instance, the change in the bending energy of a
molecular beacon caused by binding has been used for mRNA detection [4].

Important as the mechanical aspect is, it does not completely describe the
behavior of rod-like filaments inside cells. In the world of molecular biology,
the relevant units are piconewtons and nanometers, which combine to give the
relevant energy scale as ∼ 1pN-nm. This is comparable to the typical value
of thermal energy kBT ≈ 4.1pN-nm at room temperature. Therefore, unlike
beams that statically support loads on a building, the rod-like filaments inside
cells are under erratic and constant Brownian motion. Therefore, entropy
plays a significant role in their mechanics and can not be neglected compared
to the elastic bending and twisting energies.

In fact, the simplest model that captures the relation between force and
extension for a single rod-like polymer is based on a purely entropic interpre-
tation of the free energy, neglecting all the elastic energy terms. This is the
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Figure 1.1: Beam structures made by human beings and by nature.
(A) The Akashi-Kaikyō Bridge, located in Japan and spanning 1,991
metres, is the world’s longest suspension bridge (Figure comes from
http://blogger.sanook.com/confuse/2008/11/23/). (B) In a cell division cycle,
the mitotic spindels, composed by microtubules and various other proteins,
are used as ‘cables’ to pull the daughter chromosomes apart. (Figure comes
from reference [1].) (C) Man-made tent is usually supported by a frame of
poles. (Figure comes from Wikipedia: Tent.) (D) A spectrin meshwork under
the human red blood cells. Cell membrane is thin and fragile. So most of them
are strengthened and supported by a network of protein filamenets. This fila-
mentous network, like the frame in the man-made tent, determines the shape
of the membrane. (Figure comes from reference [1].) (E) The 2010 Vancou-
ver Olympic cauldron. (Figure comes from Wikipedia: Olympic Flame. (F)
Structure of the stereocilia projecting from a hair cell in the inner ear (Figure
comes from [2]).
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so-called freely-jointed chain model, or random walk model because each con-
figuration of a chain in this model is essentially a random walk in the space.
In this model, one imagines a polymer as a chain of N inextensible monomeric
segments without interactions between each other. Elastic energy E is zero
for all the configurations and therefore the free energy G = E − TS is purely
determined by the entropy S. Since the number of configurations and thus the
entropy decreases with the increase of polymer end-to-end distance, larger ex-
tension leads to a higher value of free energy. Hence, the principle of minimum
free energy implies that the polymer favors highly convoluted configurations
where a large number of conformations are available. In other words, one
needs to exert tensile force to extend the polymer even without stretching it
beyond its contour length. The force extension relation in this model (in 3D
space) is [5, 6]:

〈x〉
L

= coth

(
Fl

kBT

)
− kBT

F l
= L

(
Fl

kBT

)
, (1.1)

where 〈x〉 is the average extension of the chain in the direction along which
an end-to-end tensile force F is applied, L is the contour length of the chain
and l is the length of a single monomeric segment. The function L(x) =
coth(x) − 1/x is called the Langevin function, named after the prominent
French physicist Paul Langevin who developed Langevin dynamics for molecu-
lar systems. This function is most commonly known to occur in the expressions
for the paramagnetic susceptibility of a collection of classical (non-quantum-
mechanical) magnetic dipoles, and for the polarizability of a molecule having
a permanent electric dipole moment [7].

In the small-force limit (Fl << kBT ), the Langevin function reduces to a
linear relation, suggesting an effective spring constant for the polymer keff =
3kBT/(Ll):

F =
DkBT

Ll
〈x〉. (1.2)

Here D = 3 is the dimension of space. The fact that the spring constant
is proportional to the temperature reveals the entropic nature of the model:
the higher the temperature, the more significant the entropic effect is. Thus
one needs a larger force to extend the chain. In the limit of large force, the
Langevin function saturates at 〈x〉 → 1, which makes sense because the model
assumes that the chain is inextensible.

The freely-jointed chain model takes the entropy of the system into account
and reveals an entropic force that is proportional to the temperature. But
it totally neglects the elastic energy of the chain. This simplification will
overestimate the stiffness of the polymer because a chain with elastic energies
does not like to be highly coiled up, and so it is relatively easier to pull it
straight. Elastic energies of a chain usually include the stretching energy, the
bending energy, the twisting energy as well as twist-stretch coupling energy
[6]:

E = Estretch + Ebend + Etwist + Estretch-twist. (1.3)
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In some cases, Eq. 1.3 can be simplified. For example, for polymers that
consist of monomers joined by single chemical bonds, the twisting energy is
usually negligible because the monomers can rotate freely around the bonds
[6]. Also, many polymers cannot sustain large stretching deformation before
undergoing phase transitions. In these cases, one can neglect the twisting and
stretching terms in Eq. 1.3. This leads to the so-called wormlike chain model,
or the Kratky-Porod model, whose elastic energy consists of only the bending
term:

E = Ebend =
Kb

2

∫ L

0

∣∣∣∣ dt̂ds
∣∣∣∣2 ds. (1.4)

Here Kb is the bending modulus of the polymer and t̂(s) is the tangent vector
along the arc length s.

Using a fixed temperature and fixed force ensemble, the partition function
for the wormlike chain model is:

Z =

∫
exp

{
−
E
[
t̂(s)
]
− Fx[t̂(s)]

kBT

}
Dt̂(s), (1.5)

where D denotes a path integral that sums over all the possible configurations
of the chain.
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The polymer behaves like
 a spring under small force.
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Figure 1.2: Force-extension relation for a wormlike chain. In the small force
limit (red dashed line, Eq. 1.10), the polymer behaves like a spring with a
temperature dependent spring constant. In the high force limit (black dashed
line, Eq. 1.14), the model predicts that 1 − x/L ∼ F−1/2. These two limits
can be combined to construct an approximate formula for all forces (blue line,
Eq. 1.15).

In the limit of small force, one can expand the exp(Fx/kBT ) term in Eq. 1.5
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and obtain [5]:

Z = Z0

[
1 +

1

2
(βF )2 〈x2〉0 +

1

24
(βF )4 〈x4〉0 + · · ·

]
, (1.6)

where β = 1/kBT , Z0 is the partition function at zero force, and 〈· · · 〉0 de-
notes the average evaluated in the zero force ensemble. Eq. 1.6 implies that
the behavior of a polymer under a finite applied force is closely related to
and completely determined by its behavior under zero force. However, the
quantities 〈x2n〉0 are in general difficult to evaluate except when n = 1. For-
tunately, this term alone is enough to give us the leading order approximation
of the force-extension relation under small force. By using basic statistical
mechanics, the partition function Eq. 1.6 leads to:

〈x〉 =
〈x2〉0
kBT

F. (1.7)

Hence, at small force, the polymer again behaves like a spring (Fig. 1.2), with
the effective spring constant given by:

keff =
kBT

〈x2〉0
. (1.8)

It is worth pointing out that to derive Eq. 1.8, we do not need to use any
particular form of the elastic energies. In other words, Eq. 1.8 holds for the
freely-jointed chain model, the wormlike chain model, and even models that
consider more complicated forms of the elastic energies. In fact, for the 3D
freely-joined chain model, it is easy to see that 〈x2〉0 = Ll/3 [5]. Plugging
this into Eq. 1.8, we recover exactly the effective spring constant in Eq. 1.2.
For the wormlike chain model, 〈x2〉0 can be shown to depend on the so-called
persistence length ξp = βKb of the polymer by [5]:

〈x2〉0 =
2

3
ξpL. (1.9)

This relation is valid in the limit L >> ξp. The force extension relatioin Eq. 1.7
can now be rewritten as:

〈x〉 =
2ξpL

3kBT
F =

2KbL

3(kBT )2
F. (1.10)

It is interesting that unlike the freely-jointed chain model, the effective spring
constant scales as keff ∼ T 2 in the wormlike chain model.

The above analysis is for the wormlike chain in the small force limit. Be-
fore going to the large force limit, we note that Eq. 1.8 is a rather universal
expression for the thermal fluctuation of a spring-like system. In fact, the
fluctuation in any quadratic energy well can be expressed as:

〈x2〉 =

∫
x2 exp

(
−1

2
β keff x

2
)
dx∫

exp
(
−1

2
β keff x2

)
dx

=
kBT

keff

. (1.11)
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In other words, fluctuation in a quadratic energy well always scales linearly
with the temperature and inversely with the effective stiffness of the well.
This is true when keff is independent of T . As we shall show in details in later
chapters, for a multidimensional quadratic well characterized by a stiffness
matrix M, the fluctuation is:

〈xixj〉 = kBT
(
M−1

)
ij
, (1.12)

which is a natural generalization of Eq. 1.11. In fact, the idea that thermal
fluctuation scales linearly with temperature T and inversely with the suscep-
tibility of the system is believed to be so universal that it not only is used in
equilibrium systems, but has been applied to define the effective temperature
for systems that are far away from equilibrium [8].

Coming back to the wormlike chain model, in the limit of large force, the
chain is approximately straight and the components of the tangent vector in
a cartesian coordinate system can be approximated by:

t̂ =

[
tx, ty, 1− 1

2

(
t2x + t2y

)]
, (1.13)

in which the x and y axes are perpendicular to the direction of the applied
force. By introducing the Fourier series for tx(s) and ty(s) and then using the
equipartition theorem, one can obtain the force extension relation for large
force [5]:

〈x〉 = L

[
1− 1

2
√
βFξp

]
. (1.14)

Eq. 1.14 implies that in the large force limit, the shrinking of the chain scales
as 1− 〈x〉/L ∼ F−1/2, which is an important prediction of the wormlike chain
model (Fig. 1.2).

The force extension relation in the two limits analyzed above (Eq. 1.10 and
Eq. 1.14) can be combined to construct an approximate formula for all forces
[5, 9]:

Fξp
kBT

≈ 〈x〉
L

+
1

4 (1− 〈x〉/L)2 −
1

4
, (1.15)

which is the famous interpolation formula for a wormlike chain (see Fig. 1.2)
and has been used widely for fitting experimental data [10]. However, it has
up to 6% error when compared to the exact solution in an intermediate-force
regime [9].

Models that consider more elastic energy terms can also be found in the
literature and are not discussed here [11]. Instead, we address another simpli-
fication made in both the two classical models discussed above – homogeneous
mechanical properties of the filaments. In the freely-jointed chain model, the
segment lengths of all the monomers are assumed to be the same. But we
know that the effective stiffness of the chain depends inversely on the segment
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length (Eq. 1.2), so we have implicitly assumed homogeneous mechanical prop-
erties along the polymer. Similarly, in the wormlike chain model, the bending
modulus Kb is assumed to be independent of the arc length s. For the freely-
jointed chain model, the simplification is made for the sake of simplicity. A
random walk with variable step sizes is more difficult to analyze but the result
is still the same [6]. For the wormlike chain model, however, the simplification
is vital for the classical theory that takes advantage of the special properties
of the Fourier-transformed functions. In other words, the classical method for
analyzing the wormlike chain cannot be generalized for a heterogeneous chain
whose bending modulus depends on the arc length s. Such a simplification
made the classical models not applicable to many biopolymers of interest to the
researchers. Partially unfolded protein oligomers in atomic force microscopy
(AFM) experiments, for example, are long polymer chains consisting of both
folded and unfolded proteins. Their force-extension curves have been measured
by many groups to obtain valuable information about the stability and kinetics
of various proteins [12, 13, 14]. However, it is not suitable to use a homoge-
neous wormlike chain model to describe the entire oligomer because the folded
and unfolded proteins are expected to have different mechanical properties –
the unfoled proteins should be floppier since their stability is expected to be
reduced by the breaking of several internal chemical bonds. Heterogeneity is
even more important when one extends the theories to study the biological fil-
amentous networks. For example, the primary plant cell walls are networks of
various filaments with very different mechanical properties performing diverse
functions: the cellulose microfibrils are thick and provide tensile strength for
the cell walls while the polysaccharide pectins, much smaller in the cross sec-
tion dimensions, fill the spaces between the cellulose microfibrils and provide
resistance to compression [1]. To analyze such heterogeneous filaments and
networks, one needs more general theories without the assumption of homo-
geneity.

Moreover, the classical method for analyzing the wormlike chain has other
limitations preventing it from being generalized for other situations. For exam-
ple, it fails if there is a distributed load acting along the chain. But distributed
loads are rather common for biological filaments, from charged DNA molecules
under electric fields to actin filaments loaded by molecular motors on different
locations. Also, the classical method does not tell us anything about the inter-
nal fluctuations of the filaments, which, as we shall discuss in later chapters,
are important for mapping genomes in nanochannels.

Finally, when the classical force-extension relation is derived, little atten-
tion is paid to the boundary condition effects. For the wormlike chain model,
we have implicitly assumed that the two ends of the chain are subjected to
zero moments and zero forces in the transverse direction. With the rapid
development of single-molecule techniques, however, scientists are now able
to manipulate the biological filaments by different instruments like the atomic
force microscopy, optical tweezers and magnetic tweezers, etc (Fig. 1.3). These
instruments apply different boundary conditions on the macromolecules and
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A B C

Figure 1.3: Set-ups for measuring the force vs. extension behavior of macro-
molecules (Figure comes from reference [16]). (A) Hinged-hinged condition.
Both ends are attached to beads which are held in optical traps that can exert
forces but not moments. Hence the curvatures at the ends are constrained
but not the slopes. The trap does not allow transverse displacements. (B)
Clamped-clamped condition. The slopes and transverse displacements are
constrained at both ends. (C) Partially clamped condition. One end of the
macromolecule is secured to a cover-slip while the other end is attached to
a bead in a magnetic or optical trap which ensures that the slope is held
constant, but transverse displacements are allowed.

analysis of the experimental results requires detailed theory that addresses
the boundary effects more carefully [16]. In fact, several groups have pointed
out that boundary conditions can have significant influence on the thermo-
mechanical behavior of a short filament whose contour length is comparable
to or smaller than its persistence length [15, 16, 17].

This thesis proposal is made up of three major parts:

1. In Part I, we generalize the freely-jointed chain model for a heterogeneous
chain with various Kuhn lengths along the polymer. The heterogeneous
model is then applied to study the forced unfolding of a protein oligomer,
which contains both folded and unfolded proteins and hence is expected
to be heterogeneous in its mechanical properties. Bell’s model [18] is
added to analyze the kinetics of the problem and to predict the unfolding
events observed in experiments. By considering a third equation which
takes into account the loading conditions, we are able to reproduce the
force-extension profiles under various loading modes. The advantage of
using the freely-jointed chain model is that most of our results are simple
and analytic. This enables us to consider some other issues that are hard
to tackle when the model becomes complicated. In fact, unlike most of
the analyses in the literature, we do not assume the protein refolding
rate to vanish. Protein folding rate is much larger than the unfolding
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rate when the unfolding force is small. Therefore, to model the behavior
of forced unfolding of proteins under general loading modes, one must
keep the protein folding rate in the analysis. To support this argument,
we shall show the consequences of neglecting the refolding rate in the
model.

2. In Part II, we discuss the heterogeneous wormlike chain model. Gen-
eral properties of a wormlike chain that hold for any type of boundary
condition and heterogeneity are derived. Distributions of the end-to-end
extension and the transverse displacement of the chain are evaluated.
Further, we use the multidimensional Gaussian integral to obtain the
partition function for a heterogeneous wormlike chain. Fluctuations and
other thermo-mechanical properties are also calculated and compared to
Monte Carlo simulation results. Boundary conditions are treated care-
fully and they are shown to have significant effects for short chains.
Lastly, the theory is extended to study a wormlike chain under dis-
tributed forces and spatial confinement. We analyze the internal fluctu-
ations of a piece of DNA in a nanochannel and show a length-dependent
transition between the de Gennes and Odijk regimes. We also investigate
the migration and deformation of a piece of DNA in a non-uniform chan-
nel. Under non-uniform confinement, the DNA is driven by an entropic
force to minimize the free energy of the system.

3. In Part III, we extend the theory for a wormlike chain to study a filamen-
tous network. The challenge for studying filamentous networks is that
even under some very common loading conditions, some of the filaments
are under compression and buckling will occur when the compressive
forces reach some critical values. Buckling of beams is a bifurcation phe-
nomenon where the first order approximation of the energy well ceases
to be quadratic. When buckling happens, δE = 0 is no longer suffi-
cient to determine a stable equilibrium state. In fact, the solution of
δE = 0 can probably lead to an unstable state with δ2E > 0. For
these reasons, exact post-buckling behavior of filaments in a network is
not easy to tackle. We introduce “imperfection” into the filaments and
start with curved configurations. In this way, we avoid the singularity
at the buckling point and the solutions go into the post-buckling path
smoothly. Taking thermal fluctuations into account, we determine the
material properties, such as, Young’s modulus, shear and bulk moduli,
and also Poisson’s ratio for a triangular network.
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Chapter 2

Mechanics of Forced Unfolding
of Proteins

Main results of this chapter:

1 Forced unfolding of proteins under different pulling condi-
tions can be described by a system of three equations.

2 Kuhn length of an unfolded protein is found to be about half
of that of a folded protein. This means unfolded proteins
are floppier and more flexible.

3 Kinetic parameters such as protein folding and unfold-
ing rates are extracted using the protein unfolding force-
extension profiles with the saw-tooth patterns.

4 Unlike previous Monte Carlo simulation methods, we do not
assume zero folding rate in this chapter. As a result, refold-
ing events, such as folding-unfolding hoppings, are predicted
in both constant force pulling mode and linearly increasing
force pulling mode.

2.1 Introduction

Over the last two decades Atomic Force Microscopy (AFM) has established
itself as a valuable experimental technique to probe the structure and energet-
ics of proteins [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Force-extension measurements
performed using the AFM have shown that the mechanics and chemistry of
proteins are intimately linked [3, 12]. The data emerging from the AFM exper-
iments are interpreted using Steered Molecular Dynamics (SMD) and Monte
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Carlo (MC) simulations [1, 10, 13, 14]. The SMD simulations complement
AFM experiments by providing information about short-lived and metastable
intermediate states that could not be gleaned from the experiments alone. But,
the unfolding forces predicted by SMD simulations are much larger than those
obtained in AFM experiments since the rates of pulling in the SMD simulations
are constrained (due to limitations on the time step) to be orders of magnitude
larger than realistic AFM pulling rates [13]. The MC simulations are based
on the two-state model of Rief et al. [14] and they reproduce the AFM data
quite well [1, 9, 10]. These methods, however, suffer from the limitation that
the kinetic parameters have to be determined by trial and error. Often, the
refolding rate is set to zero in these simulations and only one persistence length
is used for both the folded and unfolded states of the protein. This reduces the
dimensionality of the parameter space to be searched [1, 3] but is unrealistic
since refolding is dominant at low forces and unfolded proteins are expected
to be floppier than their folded counterparts. Furthermore, MC simulations
have been used primarily to fit the data from AFM experiments where the
protein is pulled at a constant velocity and we are not aware of any attempt
to use MC methods to determine the response of proteins under other pulling
conditions, such as, a force linearly increasing with time.

Our goals in this chapter are: (a) to unify the description of protein un-
folding under different types of pulling conditions within a single model, (b)
to account for refolding and explain the consequences of neglecting it, and
(c) to predict the response of proteins under different pulling conditions from
a knowledge of its kinetic and mechanical properties. We begin with a brief
discussion of the heterogeneous freely-jointed chain model which will be used
later to describe the protein oligomer. We further show that the protein forced
unfolding problem has 3 unknowns and can be solved analytically using the
freely-jointed chain model and Bell’s kinetic model with an additional equa-
tion to specify the loading condition. The force-extension profile obtained can
be directly fitted to the experimental data. Unlike many of the MC simula-
tions, we do not set the refolding rate to zero. In fact, we show that there
is a critical value of the applied force under which the equilibrium in the
folding/unfolding reaction is biased toward folding. We demonstrate the ap-
plicability of our model by fitting it to published AFM experimental data on
two different proteins – ubiquitin and fibrinogen. For ubiquitin we show that
the kinetic and mechanical parameters obtained from fitting our expressions
to a constant velocity pulling experiment can be used to predict its response
in an experiment where the force is linearly increasing with time. After val-
idating our model with ubiquitin which has been extensively studied under
various types of loading conditions, we apply the same procedure to fibrinogen
and obtain predictions for its response under a linearly increasing force.
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2.2 Three Equations Governing the Forced Un-

folding of Proteins

In the problem of sequentially unfolding a protein oligomer, we have three
unknown functions of time t: x(t), F (t) and Nf (t), which are, respectively,
the extension, force and the number of folded proteins. The total number of
proteins N is a constant throughout the experiment, so that, Nf + Nu ≡ N .
Therefore, Nu(t), the number of unfolded proteins, is not viewed as an un-
known function. The three equations that close the system are: (1) the
equilibrium force-extension relation, x = x(F,Nf ), obtained from either the
freely-jointed chain (FJC) model or wormlike chain (WLC) model of polymer
elasticity [15, 16]; (2) the kinetic equation, which measures the rates of un-
folding and refolding, obtained from either Bell’s model [17], or other more
sophisticated kinetic models based on Kramer’s rate theory [18]; (3) the equa-
tion which determines the manner of applying the external constraint, e.g. for
constant velocity pulling, it is dx/dt = vc, where vc is the pulling speed, and
for constant force pulling, it is dF/dt = 0. This system of equations unifies
problems of protein unfolding under different kinds of loading conditions into
a single mathematical framework. By merely changing the last equation, one
can get the unfolding behavior of proteins under constant velocity pulling,
constant force pulling, pulling with a force linearly increasing with time, etc.

2.3 Heterogeneous FJC Model and the Equi-

librium Force-Extension Relation

The freely-jointed chain (FJC) is the simplest theory to model a rod-like poly-
mer. This theory describes the polymer as an N -segment chain. It assumes
that there is no interaction between individual segments so that the configu-
ration of the polymer is essentially a random walk in 3D space. The length of
the segments – also called the Kuhn length – is the only parameter reflecting
the stiffness of the chain. Classical FJC theory, for simplicity’s sake, assumes
all the segment lengths are the same along the chain. In the protein forced
unfolding problem, however, the oligomer consists of mixed folded and un-
folded proteins with different mechanical properties. Therefore, the classical
FJC theory is not applicable. Here, we extend the classical FJC theory to
study a heterogeneous chain in which different segments can have different
Kuhn lengths. The force-extension relation for this heterogeneous chain can
be used as the first equation in the protein unfolding problem described in the
previous section.

We study a heterogeneous freely-jointed chain in a fixed temperature and
fixed force ensemble (Fig. 2.1a). Since every segment is independent of others,
the partition function of the chain is just the product of the sub-partition
function of each segment:
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Z =
N∏
i=1

zi, (2.1)

where the sub-partition function zi for segment i is the summation of the
Boltzmann weight for all the possible orientations:

zi =

∫ π

0

exp (βF li cos θ) 2π sin θ dθ = 4π
sinh(βF li)

βF li
, (2.2)

with β = 1/kBT , kB being the Boltzmann constant, T being the absolute
temperature in Kelvin and θ being the angle formed by the segment with
repect to the axis along which the external force F is applied. Note that
Eq. 2.2 is valid for small forces as well as large forces 1. In particluar, as the
external force approaches zero, zi approaches 4π.

The ensemble average of the angle orientation can be evaluated analytically
using the formula:

〈Ai〉 =
1

zi

∫ π

0

Ai exp (βF li cos θ) 2π sin θdθ, (2.3)

and the results turn out to be:

〈cos θi〉 = L(ξi), 〈sin θi〉 =
π

2

I1(ξi)− L1(ξi)

sinh(ξi)
, (2.4)

〈cos2 θi〉 = 1− 2L(ξi)/ξi, 〈sin2 θi〉 = 2L(ξi)/ξi, (2.5)

where ξi = βF li is a dimensionless number, L(ξi) = coth(ξi) − 1/ξi is the
Langevin function, I1(ξi) is the modified Bessel function of the first kind and
L1(ξi) is the modified Struve function.

In the limit of small force/high temperature (βF → 0), these results, to
the first order approximation, reduce to:

〈cos θi〉 → βF li/3, 〈sin θi〉 → π/4, 〈cos2 θi〉 → 1/3, 〈sin2 θi〉 → 2/3. (2.6)

The results approach randomly isotropic orientation in this limit. In the op-
posite limit (βF → +∞), the results are:

〈cos θi〉 → 1, 〈sin θi〉 → 0, 〈cos2 θi〉 → 1, 〈sin2 θi〉 → 0. (2.7)

These results make sense because in the large force limit, energy dominates
and 〈θi〉 ≈ 0. The segments line up in the force direction.

From the results of average angle orientation, we can calculate the average
extension of the chain:

〈x〉 =
N∑
i=1

li〈cos θi〉 =
N∑
i=1

li

[
coth(ξi)−

1

ξi

]
. (2.8)

1Here we neglect the excluded volume interactions.
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This is a generalization of the force-extension relation for the homogeneous
freely-jointed chain model. It can also be derived from −∂G/∂F , with G
being the Gibbs free energy for the system:

G = −kBT logZ = −kBT
N∑
i=1

log

[
4π sinh(βF li)

βF li

]
. (2.9)

In the limit of small force, the average extension is linear with respect to
the force. In the opposite limit, the extension saturates at 〈x〉 →

∑N
i=1 li = L,

which is the contour length of the entire chain:

〈x〉 →


(∑N

i=1 βl
2
i /3
)
F as βF → 0

L as βF →∞
(2.10)

For homogeneous chain with li ≡ l, this reduces to:

〈x〉 →

 (βlL/3)F as βF → 0

L as βF →∞
(2.11)

As discussed in the Introduction part of this thesis proposal, the polymer be-
haves like a spring at low forces with an effective spring constant k = 3kBT/Ll.
As temperature increases, or the Kuhn length decreases, the fluctuation in-
creases and so the entropic effect becomes more significant, making it more
difficult to pull the polymer straight. Thus the effective spring constant is
larger.

To apply the theory discussed above to the protein forced unfolding prob-
lem, we note that the mechanical properties of a protein in the folded and
unfolded states are expected to be different – a folded protein is stiff, whereas
an unfolded protein is floppy. Hence, we model the protein oligomer as a het-
erogeneous FJC with two possible values of Kuhn length lf and lu for the folded
and unfolded states respectively (Fig. 2.1a). Using Eq. 2.8, the equilibrium
force-extension relation can be written as:

x = NfLfs

[
coth

(
Flf
kBT

)
− kBT

F lf

]
+NuLus

[
coth

(
Flu
kBT

)
− kBT

F lu

]
(2.12)

where Lfs and Lus are the contour lengths of a single folded and unfolded
protein respectively, kB is the Boltzmann constant, T is the absolute tem-
perature and the meanings of the symbols x, F , Nf , Nu, lf and lu have been
discussed above. Note that in reality, there is only one contour length Lu, that
associates with the fully unfolded proteins. The other contour length Lf in
Eq. 2.12 is meant to represent the maximum length of the proteins if unfolding
is somehow prevented.

This model implies that the equilibrium force-extension behavior of a pro-
tein chain is governed only by four parameters: Lfs, lf , Lus and lu, regardless
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Figure 2.1: Illustration of the two-state kinetic model. (a) A chain of mixed
folded and unfolded proteins is modeled as a heterogeneous freely-jointed
chain. A single folded (unfolded) protein is represented by an Nfs-segment
(Nus-segment) subchain with Kuhn length lf (lu). In this illustration, two
folded and one unfolded proteins are represented by the two red and one blue
subchains respectively. Note that in reality, the actual number of segments in
each subchain may be much larger. Also, lu is expected to be smaller than
lf since an unfolded protein is expected to be floppier than a folded protein.
(b) Energy landscape of the two-state model. The ordinate is the Gibbs free
energy and the abscissa is the reaction coordinate. The two wells, representing
the folded and unfolded states of a protein, are separated by an energy barrier
with transition distances ∆xu and ∆xf . At zero force, the folding rate and the
unfolding rate are β0 and α0 respectively, with β0 >> α0. An applied force
can lower the energy barrier and thus change the folding and unfolding rates.
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of the number of copies in the oligomer. However, if the chain is modeled as
homogeneous, we need N Kuhn lengths and N contour lengths for fitting the
N curves obtained in a constant velocity pulling experiment (see, for instance,
[21]).

In order to demonstrate the applicability of our model, we consider force-
extension measurements on ubiquitin (N-C linked) and fibrinogen. For ubiq-
uitin (experimental data from [7]), we know that the last curve in the force-
extension profile (see Fig. 2.2a) corresponds to six unfolded proteins and zero
folded proteins, so we apply the homogeneous FJC model to fit this curve
and obtain Lus = 25.37nm, lu = 0.33nm. The other two parameters can be
obtained by fitting one other curve using the heterogeneous FJC model. Here
we use the first curve and get Lfs = 6.29nm and lf = 0.60nm. We simi-
larly determine the parameters for fibrinogen using the first and last curves
(Fig. 2.2b, experimental data from [9]) and get Lfs = 11.39nm, Lus = 44.62nm,
lf = 0.57nm and lu = 0.31nm. These results are not significantly different if
we use any other two curves for the fitting. Without any more free parameters,
we then predict the intermediate curves for both proteins using Eq. 2.12 and
compare the predictions with the experimental data. The results are shown
in Fig. 2.2 (red curves) and the predictions of the heterogeneous FJC model
match the experimental data quite well for both the proteins.

Our results show that lu ≈ lf/2 for both the proteins, which agrees with
our intuition that unfolded proteins should be floppier than the folded ones.
Also, our estimates for the contour lengths of the fully unfolded proteins Lus
agree well with published results (27.4nm for ubiquitin [5, 22] and 40nm for
fibrinogen [11]), which shows that our fitted parameters are indeed physically
relevant. However, it is worth pointing out that Lfs is the maximum length
of a single folded protein if unfolding is somehow prevented, therefore, it will
be different from the end-to-end distance of the protein in its native state. In
fact, the contour length of ubiquitin in its native state is about 3.8nm [5], and
simulations have shown that this number increases to 4.7nm under a constant
force of 200pN while the protein remains in a native-like state [22].

2.4 Kinetic Equation

It has been shown by both experiments and simulations that, at least for
ubiquitin, most (∼ 95%) of the unfolding events follow a two-state pathway
[8, 22]. Therefore, following Bell’s theory [17], we propose that the change in
the number of folded proteins is given by:

dN∗f
dt

= −kuNf + kfNu (2.13)

where ku = α0 exp(F∆xu/kBT ), kf = β0 exp(−F∆xf/kBT ), α0 and β0 are
the unfolding and refolding rates when no force is applied, ∆xu and ∆xf
are the distances to the transition state (Fig. 2.1b), and N∗f , set to be a
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Figure 2.2: Predictions of the force-extension profiles using the heterogeneous
FJC model with only four free parameters. (a) ubiquitin. (b) fibrinogen.
Blue curves are the experimental data – ubiquitin data from [7] and fibrinogen
data from [9]. We use two of the experimental curves (black dots) to fit the
Kuhn length and the contour length of the folded and unfolded proteins (black
dashed lines are the fitting results). Then, without any more free parameters,
we use the heterogeneous FJC model (Eq. 2.12) to predict all the other curves.
The predictions (red curves) match well with the experimental data for both
proteins.

real number, is a continuous version of the integer Nf . Its initial value is
set to be equal to Nf and it evolves according to Eq. 2.13. On the other
hand, Nf , the number of folded proteins, evolves in such a way that it jumps
by ±1 whenever N∗f reaches an integer. Note that for simplicity, here we
assume ∆xf and ∆xu are unaffected by the external force. This assumption is
valid when the local curvatures of the potential wells are large [23, 24]. More
sophisticated kinetic models (see [18] for example) can be easily incorporated
into our description. We stick with Bell’s model here because the goal of this
chapter is to apply the three-equation mathematical framework to understand
the unfolding behavior of proteins under different pulling conditions and Bell’s
model is simple enough to give analytic or semi-analytic solutions for all the
conditions discussed below, and at the same time captures most of the physics
reported in the experiments. The condition for the unfolding or refolding
events to happen is:∫

dN∗f =

∫
(−kuNf + kfNu) dt = ±1 (2.14)

where +1 represents refolding and −1 represents unfolding of a protein.
The advantage of the present method over MC simulations is that we can

solve exactly for all the four kinetic parameters (α0, β0, ∆xu and ∆xf ) from
the experimental data (discussed below) instead of guessing which parameter
values fit the data best. Guessing the best fit kinetic parameters is especially
difficult for the MC simulations when taking the refolding rate β0 into account
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since the parameter space is large. In fact, in many cases β0 is simply set to
zero by taking advantage of the fact that refolding is negligible at large forces
[1, 3]. A caveat of our deterministic model is that it ignores the randomness
of the unfolding/folding events, but it is really meant to represent the average
behavior of a large ensemble of experiments. In fact, we show in what follows
that the kinetic parameters obtained by the deterministic model assuming kf =
0 are close to the ones obtained previously by MC simulations. Furthermore,
the kinetic parameters obtained from the deterministic model can be used in
the MC simulations to obtain particular instances of the unfolding pathway,
thus providing information about higher moments, for instance, the variance
of the unfolding force in a constant velocity pulling experiment.

2.5 Constant Velocity Pulling I – Forced Un-

folding of Globular Proteins

For the case of constant velocity pulling, the external constraint equation
is dx/dt = vc. Using this relation, the unfolding and refolding condition
(Eq. 2.14) can be rewritten as:∫ x2

x1

(kuNf − kfNu)dx± vc = 0 (2.15)

where the positive (negative) sign represents refolding (unfolding) of one pro-
tein, x1 is the initial extension of a particular continuous force-extension
curve, x2 is the extension when unfolding/refolding is imminent, ku(F (x))
and kf (F (x)) are functions of the extension, and Nf and Nu are the number
of folded and unfolded proteins which remain constants for each curve.

Each of the unfolding events in the force-extension profile should satisfy
Eq. 2.15 and we can use any four of them to solve for the four free kinetic
parameters. This results in four algebraic equations with four unknowns α0,
β0, ∆xf and ∆xu:

α0Nfi

∫ x2i

x1i

exp

(
F∆xu
kBT

)
dx− β0Nui

∫ x2i

x1i

exp

(
−F∆xf
kBT

)
dx = vc, (2.16)

where i = 1, 2, 3, 4 denotes the four curves we choose, Nfi and Nui are respec-
tively the number of folded and unfolded proteins along the force-extension
curve i, x1i is the initial extension of the curve and x2i is the extension where
the curve breaks. We solved these four equations numerically using Newton’s
method for both ubiquitin and fibrinogen (pulling velocity for both the pro-
teins is vc = 1000nm/s [7, 9]). The result for ubiquitin is: α0 = 3.75s−1,
β0 = 1293.65s−1, ∆xu = 0.08nm and ∆xf = 0.31nm. The refolding rate
β0 found here is comparable to the one obtained previously from MD sim-
ulations [25]. The result for fibrinogen is: α0 = 3.19s−1, β0 = 7691.16s−1,
∆xu = 0.10nm and ∆xf = 0.67nm. Similar transition distances have been
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Figure 2.3: Force-extension profiles of six copies of (a) ubiquitin, and (b)
fibrinogen (vc = 1000nm/s) in constant velocity pulling. Blue curves: experi-
mental data (ubiquitin data from [7] and fibrinogen data from [9]); red curves:
prediction using our two-state kinetic model.

reported for many other protein domains and they are suggested to reflect the
critical breaking of hydrogen bonds or hydrophobic interactions in the process
of protein unfolding [26]. Using the solved kinetic parameters, we can predict
other breaking points and thus the whole force-extension profile using Eq. 2.12,
Eq. 2.15 and dx/dt = vc. The predictions match well with the experimental
data and are shown in Fig. 2.3. Our solutions for both the proteins imply
that β0 is several orders larger than α0. Intuitively, this is expected because
when no external force is applied, the proteins tend to rapidly fold into their
native state. The fact that β0 >> α0 suggests that the refolding rate cannot
be ignored, at least when the force is small.

If we assume that the refolding rate β0 is zero as is commonly done in
MC simulations, the solution for the kinetic paramters for ubiquitin is: α0 =
0.05s−1, ∆xu = 0.17nm. These results are quite close to those obtained pre-
viously by other experiments that also assume kf = 0 [8, 27, 28], and suggest
that our model is consistent with the MC simulations used before. In fact,
the authors in [8] assumed kf = 0 and found α0 = 0.015s−1, ∆xu = 0.17nm
using the constant force pulling data and α0 = 0.0375s−1, ∆xu = 0.14nm using
the linearly increasing force pulling data on ubiquitin. Our results show that
the unfolding rate α0 obtained by ignoring the refolding rate is significantly
lower than the one obtained by taking the refolding rate into account. In fact,
setting β0 = 0 should always lead to an under-prediction of α0. The reason for
the under-prediction is that when the refolding rate is ignored in the kinetic
equation, the unfolding rate predicted is in fact a ‘net rate’ for the proteins
to change from the folded state to the unfolded state. This calculated ‘net
rate’ should be smaller than the true unfolding rate because it includes the
contribution of the refolding rate which is high at low forces.

It has been shown that the average breaking force is approximately linear
with respect to the logarithm of pulling velocity [5, 7]. We use the parame-
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ters calculated above and predict the force-extension profiles under different
pulling speeds ranging from vc = 103nm/s to vc = 1011nm/s for both the
proteins (six copies, force-extension profiles not shown). The linear relation
between the average breaking force and the logarithm of pulling velocity is
found using either set (kf = 0 and kf 6= 0) of the kinetic parameters obtained
previously (Fig. 2.6a). For ubiquitin, our calculations show that the slope is
63.1 (piconewton per tenfold change of the velocity in nm/s) if we use the set
of parameters that assumes kf = 0, and 135.3 if we use another set of param-
eters that takes refolding into account. Recent MD results on fibrinogen, with
pulling velocity 2.5×109nm/s, show that the unfolding events happen at force
∼ 103pN [11]. This result is close to our predicted average breaking force for
fibringen at similar pulling velocity (see Fig. 2.6a blue solid line). However,
Fig. 2.6a shows that if we set kf = 0, the predicted unfolding force is much
smaller than the one that takes the refolding rate into account The reason the
unfolding force is higher with non-zero kf is as follows. Recall that for given ku
and kf , the breaking extension x2 (and hence the breaking force) is calculated
from the integral over the entire force-extension curve (see Eq. 2.15) including
the low force regime where refolding is dominant. The integral in Eq.2.15 is
initially negative because the force is low and kf >> ku, so for the case kf 6= 0,
the force-extension curve should go higher in order that the integral reaches
the positive value vc. This suggests that a poor prediction of the unfolding
rate at low pulling velocities leads to large errors in the predictions for the
breaking events at high pulling velocities.

2.6 Constant Velocity Pulling II – Forced Un-

folding of Fibrous Proteins

If we set Nf and Nu in both Eq. 2.12 and Eq. 2.13 to be real numbers that
change continuously, then together with the constraint equation dx/dt = vc,
we can analytically reproduce the continuous force-extension profile for the
coiled-coil proteins with a shallow force-plateau as observed in the experiments
[4, 11].

To do this, we first write Eq. 2.12 as:

x = NfLf (F ) +NuLu(F ) (2.17)

= Nf (Lf − Lu) +NLu (2.18)

where N = Nf + Nu is the total number of proteins, Lf (F ) and Lu(F ) is the
length of a single folded and unfoled protein under force F respectively:

Lf (F ) = Lfs

[
coth(

Flf
kBT

)− kBT

F lf

]
, (2.19)

Lu(F ) = Lus

[
coth(

Flu
kBT

)− kBT

F lu

]
. (2.20)
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Then we rearrange Eq. 2.18 and get:

Nf =
NLu(F )− x
Lu(F )− Lf (F )

, (2.21)

Using x = vct, Eq. 2.21 becomes:

Nf (t, F ) =
NLu(F )− vct
Lu(F )− Lf (F )

. (2.22)

Here Nf is a function of F and t.
Next, we differentiate Eq. 2.18 with respect to t once to get the relation

between dNf/dt and dF/dt:

dNf

dt
=
vc − dF

dt
[NfL

′
f (F ) + (N −Nf )Lu

′(F )]

Lf − Lu
. (2.23)

Then by substituting Eq. 2.13 into the right-hand-side of Eq. 2.23 and
rearranging the expression to get dF/dt, we obtain:

dF

dt
=
vc − (Lf (F )− Lu(F ))[Nkf − (kf + ku)Nf (t, F )]

NfL′f (F ) + (N −Nf )L′u(F )
. (2.24)

Plugging Eq.2.22 into this expression, we get the decoupled governing equa-
tion for F (t). We solve this single-variable ODE numerically, and then use
Eq. 2.22 to obtain Nf (t). The following parameters are used in the calcula-
tion: the Kuhn length, contour length, and kinetic parameters are those for
ubiquitins and fibrinogens. Total number of proteins in the chain is set to be
Nf + Nu = 20. With initial values Nf = N and Nu = 0. Also, the pulling
velocity is set to be vc = 300nm/s.

The force-extension profile is shown in Fig. 2.4. Similar profiles have been
observed for many fibrous proteins in experiments [4]. Also, number of the
folded proteins as a function of time (the Nf (t) profile) is shown in Fig. 2.5
(red for ubiquitin and blue for fibrinogen).

Finally, we note that the model described here can be applied to study the
relaxation behavior of the protein chain after all the proteins are fully stretched
as has been done in experiments [29]. We keep the relaxation extension xr fixed
by setting vc = 0, let the initial Nf be 0 (i.e., all the proteins are unfolded
initially), and get the solution for Nf (t, xr). Fig. 2.6b shows how the number
of refolded proteins evolves as a function of time and also its dependence on
xr. The trend in the solution agrees with recent experimental observations on
a different protein [29]. We further note that the correct limit profile as t→∞
(Fig. 2.6b blue line) can be obtained only by taking both the unfolding and
refolding rates into account.
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Figure 2.4: Force-extension relation (continuous model) of ubiquitin (red) and
fibrinogen (blue). In reality, both are globular proteins. Here we plot the
force-extension relation using their kinetic parameters, but with Nf , Nu being
real numbers instead of integers.

2.7 Pulling with a Force Linearly Increasing

with Time

For a protein oligomer stretched under a linearly increasing force, we have
dF/dt = vf , and the unfolding/refolding condition (Eq. 2.14) becomes:

W (F2) = ±vf +W (F1), (F2 > F1) (2.25)

Eq. 2.25 can be used to determine the unfolding force F2. The double exponen-
tial function W (F ) is given by W (F ) = kBT [Nfku(F )/∆xu +Nukf (F )/∆xf ],
and F1 is the initial force at each step (note that the force-extension profile
is step-wise). Depending on the sign (positive/negative) of vf , one protein
unfolds/refolds when F linearly increases to reach F2.

We use Eq. 2.12, Eq. 2.25 together with dF/dt = vf (vf = 300pN/s) to
generate the step-wise extension-time profile for both ubiquitin and fibrinogen
(all the kinetic parameters have been obtained in the constant velocity pulling
section). The results are shown in Fig. 2.7a and b (red). For ubiquitin, the
unfolding events occur around ∼ 100pN and the breaking extension is nearly
linear in time, with a slope predicted as 680.9nm/s. Both these results are
consistent with experimental obervations [8]. For fibrinogen, the result shown
here constitutes a falsifiable prediction from our model and can be easily tested
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Figure 2.5: Number of folded proteins as a function of time (continuous model).
Red curve for ubiquitin and blue curve for fibrinogen. In reality, both are
globular proteins. Here we plot theNf (t) profile using their kinetic parameters,
but with Nf , Nu being real numbers instead of integers.

using current AFM techniques. For both proteins, some refolding events are
observed at small force (inset of Fig. 2.7a and b), which would not be predicted
if the refolding rate is ignored (Fig. 2.7c).

Further analysis of Eq. 2.25 shows that the initial force F1 at each step
should be larger than a critical force in order that one protein unfolds at the
end of the step (otherwise one protein will refold at the end of the step). This
critical force Fcl is determined by:

W (Fcl) = vf +W (Fs), (Fcl < Fs) (2.26)

where Fs is the unique stationary point of the functionW (F ): Fs = [kBT/(∆xu+
∆xf )] ln[β0Nu/(α0Nf )]. In general, since W (F ) depends on Nf , the critical
force increases as more and more proteins unfold (Fig. 2.8). For example, con-
sider the unfolding of a chain of nine ubiquitins; the critical force computed
using Eq. 2.26 increases from ∼ 30pN to ∼ 80pN during the unfolding process.

If we let Nf and Nu in both Eq. 2.12 and Eq. 2.13 to be continuous real
numbers, then the solution for Nf (t) satisfying Nf (0) = N and F = vf t is:

Nf (t)

N
= Q−1(t)

[∫ t

0

β0Q(t)eC2tdt+Q(0)

]
(2.27)

where the function Q(t) and the two constants C1 (appearing in Q(t)) and C2
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Figure 2.6: Constant velocity pulling. (a) Dependence of the average unfolding
force on pulling speed. Red: ubiquitin; blue: fibrinogen; solid line: accounting
for refolding (kf 6= 0), dashed line: ignoring refolding (kf = 0). For both
proteins, the predicted unfolding force using the set of parameters that assume
kf = 0 is much smaller, especially at high pulling velocities, than the one that
takes the refolding rate into account. (b) Relaxation profiles (vc = 0nm/s).
The evolution of the number of refolded proteins is shown as a function of the
relaxation extension xr (normalized by xmax = NLus). A limit profile (blue)
is approached as time approaches infinity.
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Figure 2.7: Extension versus time profiles for pulling using a linearly increasing
force (vf = 300pN/s, 9 copies of proteins). (a) ubiquitin and (b) fibrinogen.
Red curves: predicted step-wise profile, using integer Nf and Nu in the govern-
ing equations (Eq. 2.12 and Eq. 2.13). Each of the steps obeys the equilibrium
force-extension relation, which is shown as dashed black curves (Eq. 2.12).
Red circles and dashed line: unfolding events and the fitting results. The fit-
ting equation is x = 680.9t − 52.12 for ubiquitin and x = 1419t − 92.01 for
fibrinogen (x is the extension in units of nm. Blue lines: solutions obtained
by using continuous Nf and Nu in the governing equations, which match well
with the discrete model shown in red. The profiles for ubiquitin obtained here
are consistent with those measured in [8]. Insets: if we take the refolding rate
into account, some refolding events are observed at small force. (c) Extension
versus time profiles for nine copies of ubiquitin assuming kf = 0 shows no
refolding events at small force even though it reproduces the overall trend.
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Figure 2.8: The double exponential function W (F ) together with the station-
ary points (blue) and the critical forces (red) for pulling with a force linearly
increasing in time. Assume that there are nine copies of ubiquitin in the chain.
The double exponential function when Nf = 8, Nu = 1 is shown as a black
solid line (when Nu = 0, the function is only a single exponential). As more
and more proteins unfold, Nf decreases and the curve W (F ) shifts to the
right along the F axis (see the arrow). We plot W (F ) in black dashed line
for Nf = 5, Nu = 4 and in black dashed-dotted line for Nf = 1, Nu = 8. The
movement of the curve results in the increase of the critical force Fcl (red).

are given by:

Q(t) = exp [ α0 exp(C1t)/C1 + β0 exp(C2t)/C2 ] (2.28)

C1 =
vf∆xu
kBT

, C2 =
−vf∆xf
kBT

(2.29)

An analytic expression of x(t) can be obtained by plugging Eq. 2.27 into
x = x(Nf (t), F (t)) (Eq. 2.12). The results for both the proteins are shown
in Fig. 2.7a and b (blue). The curves agree quite well with the predictions of
the discrete model, implying that whether we take Nf and Nu as integers or
real numbers does not greatly affect the results for this kind of experiments.
The advantage of assuming continuous Nf and Nu is that we have an ana-
lytical expression for x = x(Nf (t), F (t)). This can be directly fitted to the
experimental data for linearly increasing force.

2.8 Constant Force Pulling

Stretching proteins under a constant force produces a staircase-like extension-
time profile, in which the extension remains piece-wise constant over each step.
Since the force is a constant, the unfolding/refolding condition Eq. 2.14 leads
to the dwell time ∆t for one unfolding (Nf decreases by 1) or refolding (Nf

increases by 1) event:

∆t =
1

|kuNf − kfNu|
. (2.30)
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If kuNf − kfNu > 0, then dN∗f /dt < 0 (Eq. 2.13), so one protein unfolds after
the dwell time ∆t, otherwise, one protein refolds after ∆t. Note that usuallyNu

is small or zero at the beginning of the experiment, so that kuNf − kfNu > 0
results in sequential unfolding of the proteins. As more and more proteins
unfold, (kuNf − kfNu) decreases and thus the unfolding time increases, which
is indeed observed in experiments [8]. If the force is large enough that the
term (kuNf − kfNu) remains positive before Nf decreases to 0, then all the
proteins can unfold (Fig. 2.9a). On the other hand, if the force is small (for
example, ∼ 80pN for ubiquitin), (kuNf − kfNu) becomes negative at some
time before Nf reaches 0, then unfolding events cease, and periodic refolding
and unfolding events ensue with (kuNf − kfNu) switching sign each time an
event occurs (inset of Fig. 2.9a). Although it is difficult to do the constant
force experiment on copies of proteins at low force (< 70pN for ubiquitin)
using AFM [8], the unfolding and refolding ‘hopping’ was indeed found in
a simulation on an α-helix with a similar force (78.2pN) [23] as well as in
experiments on RNA hairpin using optical tweezers [24].

By setting kuNf − kfNu = 0, we can get the critical force below which the
refolding/unfolding ‘hopping’ will happen:

Fcc =
kBT

∆xu + ∆xf
ln

(
β0Nu

α0Nf

)
(2.31)

This critical force Fcc keeps increasing as more and more proteins unfold.
Using the parameters obtained from constant velocity pulling, we find that an
applied force larger than 84pN is required for all the ubiquitins to unfold if
there are nine copies of the protein in the chain. Note that the critical force
is different for constant force pulling and pulling with a linearly increasing
force unless vf = 0 (Eq. 2.31 and Eq. 2.26). Also note that there is no such
critical force if we assume kf = 0 and therefore a model ignoring refolding
unrealistically predicts that all the proteins in the chain should unfold and no
‘hopping’ events should happen no matter how small the force is.

If we assume that Nf and Nu are continuous real numbers in the model,
then the analytic solution for Nf (t) is:

Nf (t) = Nf∞ + (Nf0 −Nf∞)e−t/τ (2.32)

where Nf∞ = Nkf/(kf + ku) is the number of folded proteins that remain
in the chain as t → ∞, Nf0 is the number of folded proteins at t = 0 and
τ = 1/(kf + ku) is the time constant.

We plot Nf∞/N versus a dimensionless force ΠF =
F (∆xu+∆xf )

kBT
in Fig. 2.9b

and find that the transition of Nf∞/N from 90% to 10% occurs over a narrow
range of ΠF , a result also reported in an earlier simulation work on an α-helix
and suggested to have some relation to mechanotransduction [23]. From our
expression for Nf∞, we further show that this transition range δF (Fig. 2.9b)
can be calculated analytically and the value turns out to be a universal con-
stant ln 81 ≈ 4.4, independent of all the kinetic parameters. In other words,
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Figure 2.9: Constant force pulling profiles. (a) Extension versus time profile
for nine copies of ubiquitin. Blue: F = 100pN, red: F = 120pN, black: F =
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text, increases as the protein unfolds. The inset shows that when the force
is not large enough, not all the proteins can unfold, and refolding/unfolding
‘hoppings’ occur periodically. (b) Nf∞/N as a function of the dimensionless
force ΠF . Red: ubiquitin; Blue: fibrinogen. δF , the range of the dimensionless
force over which Nf∞/N changes from 90% to 10%, is a universal constant ln 81
for all proteins. Π∗F is the dimensionless force for half the proteins to unfold.
It is shown in the text that Π∗F = ln(β0/α0). (c) Unfolding rate α as a function
of the applied force F . Red solid line is the result of taking the refolding rate
into account. When the force is large enough, logα is a linear function of F
(red broken line). Blue solid line is the prediction assuming kf = 0. Inset,
kf/ku as a function of the applied force.
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for any protein that obeys the two-state model, the transition always occurs
over 4.4 units of the dimensionless force. Also, it can be shown that the dimen-
sionless force Π∗F that unfolds half the proteins relates to the kinetic paramters
by Π∗F = ln(β0/α0). This suggests a new way to determine β0 experimentally.
Note that all the discussions here for Nf∞ and δF are results of taking the
refolding rate into account, otherwise Nf∞/N ≡ 0 and is not a function of F .

Eq. 2.32 combined with Eq. 2.12 further leads to an analytic expression for
the relative extension as a function of time:

x

xM
= (1− ∆xNf∞

xM
)− ∆x(Nf0 −Nf∞)

xM
e−

t
τ (2.33)

where xM = NLus[coth(Flu/(kBT ))−kBT/(Flu)] is the extension of the chain
when all proteins are unfolded, ∆x = Lus[coth(Flu/(kBT )) − kBT/(Flu)] −
Lfs[coth(Flf/(kBT ))− kBT/(Flf )] is the difference in length between a single
unfolded and folded protein. We plot the analytic solution from the continuous
model (Eq. 2.33) together with the step-wise solution from the discrete model
in Fig. 2.9a. The two results agree quite well.

Moreover, Eq. 2.33 leads to the conclusion that the unfolding rate α = 1/τ
is a double exponential of the force F (Fig. 2.9c):

α =
1

τ
= α0 exp

(
F∆xu
kBT

)
+ β0 exp

(
−F∆xf
kBT

)
(2.34)

When the applied force is large enough so that kf << ku (inset of Fig. 2.9c),
then lnα ≈ (∆xuF/kBT ) + lnα0 is linear with respect to the force F , as has
been shown in experiments [8]. For small forces, the unfolding rate decreases
with increasing force, which is consistent with earlier works [23, 27]. Note that
the decreasing of the unfolding rate at small force is due to the decreasing kf ,
which again suggests that kf cannot be ignored, especially at small forces.
Eq. 2.34 further gives a way to fit all the four kinetic parameters using the
constant force pulling experimental data.

2.9 Discussions

Any stable system should have a positive definite susceptibility because of the
minimum free energy principle δ2G ≥ 0. Here in the force-extension type
problem, stability implies dF/dx ≥ 0. Violation of this inequality will lead to
more complicated phenomena such as phase transitions of the system. When
these occur, the force extension relation needs to be modified according to the
loading history. In this section, we study the sign of dF/dx in our model. In
particular, we focus on the case of constant velocity pulling condition. Other
loading modes can be studied in a similar way.

For the constant velocity pulling condition, the three governing equations
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are:

x = NfLf +NuLu (2.35)

dNu/dt = kuNf − kfNu (2.36)

dx/dt = vc (2.37)

Here Lf (F ) and Lu(F ) are the extension of a single folded and unfolded protein
under an extension force F .

We first take the derivative with respect to time t for Eq. 2.35 and get:

vc =
dNu

dt
(Lu − Lf ) +

(
dLf
dF

Nf +
dLf
dF

Nu

)
dF

dt
. (2.38)

This equation can be rearranged to obtain a formula for dF/dt:

dF

dt
=
vc − dNu

dt
(Lu − Lf )

NfL′f +NuL′u
(2.39)

here L′f = dLf/dF and L′u = dLu/dF .
Note that Eq. 2.39 is a decoupled ODE for F (t) because all the quantities

on the right-hand-side of the equation are only functions of F and t:

Nu =
x−NLf
Lu − Lf

=
x0 + vct−NLf (F )

Lu(F )− Lf (F )
, (2.40)

Nf =
NLu − x
Lu − Lf

=
NLu(F )− x0 − vct
Lu(F )− Lf (F )

, (2.41)

dNu

dt
= ku(F )Nf (t, F )− kf (F )Nu(t, F ). (2.42)

Also note that Lf and Lu are the length of a single folded/unfolded protein
and they are functions of only F (true for both FJC (Eq. 2.12) and WLC).

Since dx/dt = vc > 0, to determine the sign of dF/dx, we only need to
study the sign of Ḟ = dF/dt. Hence, we now focus on the F−t plane. Eq. 2.39
tells us that the whole F − t plane can be divided into 4 regions, depending
on the signs of the numerator and denominator on the right hand side (see
Table. 2.1).

The actual solution to the 3-equation system always satisfies Nf ≥ 0 and
Nu ≥ 0. Also, it is generally true that L′f ≥ 0 and L′u ≥ 0, i.e, the length
of a single folded/unfolded protein should increase with an increasing pulling
force. Therefore the denominator term is always non-negative. Hence the
actual solution for F (t) always lies in region I or region II of Table. 2.1. In
other words, region III and IV are forbidden.

Now we should study more carefully the numerator (vc − Ṅu(Lu − Lf )) in
order to see whether the F (t) curve is in region I (stable with dF/dx > 0) or
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Region Numerator Denominator dF/dt

I vc − Ṅu(Lu − Lf ) > 0 NfL
′
f +NuL

′
u > 0 dF/dt > 0

II vc − Ṅu(Lu − Lf ) < 0 NfL
′
f +NuL

′
u > 0 dF/dt < 0

III vc − Ṅu(Lu − Lf ) > 0 NfL
′
f +NuL

′
u < 0 dF/dt < 0

IV vc − Ṅu(Lu − Lf ) < 0 NfL
′
f +NuL

′
u < 0 dF/dt > 0

Table 2.1: Eq. 2.39 divides the F − t plane into 4 regions with different signs
of dF/dt.

region II (unstable with dF/dx < 0). To do this, we rewrite the numerator as:

vc − Ṅu(Lu − Lf ) = vc − [kuNf − kfNu] (Lu − Lf ) (2.43)

= vc − [Nku − (ku + kf )Nu] (Lu − Lf ) (2.44)

= vc −Nku(Lu − Lf )− (ku + kf )(x−NLf ) (2.45)

= vc −NkuLf −NkfLf + (ku + kf )(x0 + vct).(2.46)

Based on Eq. 2.46, we define T (F ) as:

T (F ) =
NkuLu +NkfLf − (ku + kf )x0 − vc

vc(ku + kf )
, (2.47)

then Eq. 2.46 implies:

vc − Ṅu(Lu − Lf ) > 0 ⇔ t > T (F ) ⇔ dF/dt > 0 (2.48)

vc − Ṅu(Lu − Lf ) < 0 ⇔ t < T (F ) ⇔ dF/dt < 0 (2.49)

Using this information, we could make some conclusions for the behavior of
the F (t) profile. Suppose we have one solution F (t) which behaves as follows:

• For t ∈ [t0, t1], F (t) is a monotonically increasing function. Denote the
inverse of this function as tI(F ).

• For t ∈ [t1, t2], F (t) is a monotonically decreasing function, whose inverse
is tII(F ).

We argue that this is not possible in our model. The reason is: the curve F (t)
between [t1, t2] is monotonically decreasing, so it is in region II. Therefore
tII ≤ T (F ). But then we have tI(F ) ≤ tII(F ) ≤ T (F ) 2, this means F (t) in
∈ [t0, t1] is also monotonically decreasing. This violates our assumption that
during t ∈ [t0, t1], F (t) is an increasing function. Therefore, we arrive at the
conclusion that no negative slope is possible after a positive slope in the F − t
or F − x profile.

2Since F (t) first increases and then decreases, so the two regions share the same range
of F
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On the other hand, our model also has the property that dF/dt > 0 as
t→ +∞. To see this, note that at sufficiently large time t:

vc −NkuLu −NkfLf + (ku + kf )(x0 + vct) (2.50)

= vc + ku(vct+ x0 −NLu) + kf (vct+ x0 −NLf ) (2.51)

> 0, (2.52)

because vc, ku and kf are always positive and NLf and NLu are bounded for
an inextensible chain. So at sufficiently large time, t > T (F ) and the F (t)
curve is always in region I.

The conclusions above suggest that there are only two kinds of F (t) behav-
iors depending on its initial condition: If initially dF/dt > 0, then the force
will monotonically increase for any t > 0. Otherwise, if initially dF/dt < 0,
the F (t) profile will first decrease, and then increase after some critical time
tr. Once it begins to increase, it can never decrease again.

Finally, we note that generally, we begin with a small force that is close to
0. If we assume Lf (0) and Lu(0) is very small such that:

vc −Nku(0)Lu(0)−NkfLf (0) + (ku + kf )x0 ≈ vc > 0, (2.53)

then the sign of dF/dt is always positive for all time t. In other words, gener-
ally, the force-extension profile should be monotonically increasing.

To summarize, under the following three assumptions, a negative slope
plateau in the force-extension relation will never appear in our 3-equation
model:

1. The system can be characterized by our 3 equations: Eq. 2.35 to Eq. 2.37.
Note that in this section, no assumption of FJC or WLC is made, but
the total extension is assumed to be the sum of the extensions of the
sub-chains.

2. For a single folded or unfolded protein, if we increase the force, its length
should increase: L′f > 0, L′u > 0. This is obviously true for both FJC
and WLC.

3. kf , ku, Lf and Lu are smooth continuous functions with (kf +ku)vc > 0.

2.10 Conclusions

We have obtained solutions to a kinetic two-state model for protein unfolding
based on a heterogeneous FJC model and Bell’s model. This model describes
the forced unfolding of a chain of proteins under various kinds of loading
conditions. Using this model we have obtained analytic solutions that can
predict the response of a chain of proteins under a linearly increasing force or
a constant force. The model can also be used to fit the experimental data from
constant velocity pulling experiments, as we have demonstrated for ubiquitin
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and fibrinogen. In particular, we have used the experimental data to solve
directly for all the four kinetic parameters and predict the response of the
proteins under a linearly increasing or constant force. Our solutions show that
the refolding rate is much larger than the unfolding rate at zero force and that
interesting physics is revealed if we account for the refolding rate at low forces.
We argue that in general, the F (t) or F (x) profile is monotonically increasing
under the assumptions listed in the main text. We also note that unfolding is a
first order phase transition since some energy is required to go to the unfolded
state and there is discontinuous change in the entropy per unit length.
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Part II

Heterogeneous Wormlike Chain
Model and Its Applications
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Chapter 3

Statistical Mechanics of a
Discrete System with Quadratic
Energy

Main results of this chapter:

1 Partition function of a discrete system with quadratic energy
can be evaluated analytically. The free energy is determined
by detM, where M is the system’s stiffness matrix. The
thermal fluctuation scales linearly with the temperature and
inversely with M.

2 There are two methods to analyze a statistical mechanical
system with constraints. The first is to replace each con-
straint by an infinitely stiff spring. This corresponds to the
penalty method in classical mechanics, especially in the fi-
nite element setting. The other method makes use of the
Fourier transform of the Dirac delta function, which corre-
sponds to the Lagrange multiplier method in classical me-
chanics.

The partition function of a continuous system is in general difficult to eval-
uate. However, by discretizing a continuous system into elements and reducing
the degrees of freedom to a finite number, it is sometimes possible to obtain
an analytic expression for the partition function and all other thermodynamic
properties. In this chapter, we will first study a discrete system under no
constraints and then discuss the consequences of adding constraints into the
system. In specific problems, as we shall see in the chapters that follow, con-
straints are usually introduced into the system by posing different boundary
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conditions.

3.1 General Theory

Consider a discrete system having D degrees of freedom characterized by a
finite set of independent variables:

~θ
T

= [ θ1, θ2, · · · , θD ]. (3.1)

Assume the Hamiltonian of the system takes the quadratic form:

H =
1

2
~θ
T
M · ~θ +H0, (3.2)

where M and H0 are the symmetric stiffness matrix and the ground state
energy of the system respectively.

The partition function of the system is the sum of all the allowed states
weighted by the Boltzmann factor:

Z =

∫
exp

[
−1

2
~θ
T

(βM) · ~θ − βH0

]
d~θ, (3.3)

with β = 1/kBT , kB being the Boltzmann constant and T being the temper-
ature in Kelvin.

Using the multidimensional Gaussian integral, Eq. 3.3 can be evaluated
analytically (see reference [1, 2] and Appendix A):

Z = exp (−βH0)

√
(2πkBT )D

det M
. (3.4)

Here we assume the limits of the integral in Eq. 3.3 are ±∞. If the range of
~θ is finite, like an angle typically lies only in the interval of [−π, π], we can first
extend the integral to ±∞, then Eq. 3.4 is an asymptotic approximation for
the partition function. Such an approximation is good when the eigenvalues
of M are large, in which case the energy well is steep and states that are far
away from ~θ = ~0 have high energies and extremely small contributions to the
partition function 1

The free energy of the system is G = −kBT logZ:

2βG = log(det M)−D log(2πkBT ) + 2βH0. (3.5)

All thermodynamic properties of the system can be derived from the free
energy and their expressions depend on the ensemble we use.

1If the energy well is not steep, the quadratic approximation may break down. In this
case, we need to consider higher order approximation for the energy well. For example,
in 1D case, if the energy takes the form E(x) = ax2 + bx4, then the partition function

is Z =
∫ +∞
−∞ exp

(
−βax2 − βbx4

)
dx =

√
a/4b exp(βa2/8b) K1/4(βa2/8b), where a, b are

constants and K1/4(z) is the modified Bessel function of the second kind of order 1/4.
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Fluctuation of the system can also be evaluated analytically and it is gov-
erned by the inverse of the stiffness matrix M [1, 2]. This makes sense because
the stiffer the system is, the less thermal fluctuations it experiences:

〈θi · θj〉 =
1

Z

∫
(θiθj) exp

[
−1

2
~θ
T

(βM) · ~θ − βH0

]
d~θ = kBT

(
M−1

)
ij
. (3.6)

From Eq. 3.6, we see that 〈θi · θj〉 ∼ T because the stiffness matrix M
is independent of temperature. This relation is a natural generalization of
the fluctuation in a 1D system discussed in the Introduction of this proposal
(Eq. 1.11).

Finally, the Equipartition theorem can be derived directly from Eq. 3.6:

〈H〉 −H0 =
1

2

∑
Mij〈θiθj〉 =

kBT

2

∑
Mij

(
M−1

)
ij

= DkBT/2. (3.7)

Here we have used the fact that M is a symmetric matrix with dimension
D ×D.

If the system is decoupled such that the stiffness matrix M is diagonal:

H =
1

2

D∑
i=1

Miθ
2
i +H0, (3.8)

then the fluctuation reduces to:

〈θiθj〉 = δij
kBT

Mij

, (3.9)

where δij is the Kronecker delta function.
The theory described above assumes that the Hamiltonian is a quadratic

function of the independent variables θi. In general, the Hamiltonian can take
various complicated forms. But as long as it has a well-defined ground state
~θ 0, we can always expand the Hamiltonian around ~θ 0 and approximate the
ground state energy up to the 2nd order. In this case, the results we obtained
above are the asymptotic solutions based on the Laplace method in complex
variable theory [3]. Such asymptotic solutions reflect the fluctuation of the
system around its ground state and they are good approximations when the
energy well is steep, in which case the states far away from the ground state are
not important because they have high energies and extremely small Boltzmann
factors.

3.2 Statistical Mechanics of a Constrained Sys-

tem: Method 1

Consider the same discrete system characterized by [ θ1, θ2, · · · , θD ] with a
quadratic Hamiltonian shown in Eq. 3.2. Now suppose not all the θi are
independent, instead, they are constrained by:

gi(~θ ) = 0 (i = 1, 2, · · · , p), (3.10)
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where p is the number of constraints on the system.
The partition function is the sum of Boltzmann weights for all the allowed

configurations. Therefore, only those configurations satisfying the constraints
gi can be taken into account:

Z =

∫
exp (−βH) δ(g1) δ(g2) · · · δ(gp) d~θ, (3.11)

To evaluate Eq. 3.11, we make use the definition of the Dirac δ function:

δ(x) = lim
k→+∞

{
k√
π

exp
[
−(kx)2

]}
. (3.12)

Plugging Eq. 3.12 into Eq. 3.11, we get 2:

Z = lim
ki→+∞

[ ∏p
i=1 ki

(kBTπ)p/2

∫
exp (−βHeff) d~θ

]
, (3.13)

where the effective Hamiltonian for the constrained system is:

Heff = H +

p∑
i=1

(kigi)
2. (3.14)

Hence, by using the definition of δ function, we have changed the constrained
system to an effective unconstrained one. By looking at Eq. 3.14, it is as if
we have replaced each constraint with a stiff spring. This is exactly the idea
of the penalty method for solving constrained optimization problems in finite
element analysis [4]. As we shall see in the following chapters, to compute
the fluctuation of a discrete system, the first step is to find the configura-
tion that minimizes the Halmiltonian. For a system with constraints on its
kinematic variables, theories of the penalty methods that determine the static
configuration of the system can be used for this step.

Further, the free energy of the constrained system is G = −kBT logZ.
Using Eq. 3.13, it can be expressed as (from here, we omit writing limki→+∞.
All the results below hold as ki approach infinity.):

G = Geff +G0(T ), (3.15)

where the reference G0 is:

G0(T ) =
p

2
kBT log(kBTπ)− kBT

N∑
i=1

log ki. (3.16)

The fluctuation of the system is:

〈θiθj〉 =
1

Z
· lim
ki→+∞

[ ∏p
i=1 ki

(kBTπ)p/2

∫
(θiθj) exp (−βHeff) d~θ

]
= 〈θiθj〉eff. (3.17)

Therefore, the fluctuation of the effective unconstrained system approaches
the fluctuation of the constrained system as ki → +∞.

2Here, we change the variable from kBTki → ki.
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3.3 Statistical Mechanics of a Constrained Sys-

tem: Method 2

Zhang & Crothers [1] and later Su & Purohit [2] have used another method
to evaluate the partition function with constraints and we briefly summarize
their method in this section. Instead of using the definition of the δ function
shown in Eq. 3.12, they use the Fourier transform of the δ function:

δ(x) =
1

2π

∫ +∞

−∞
exp(Ikx)dk, (3.18)

where I =
√
−1 is the imaginary unit.

Plugging Eq. 3.18 into the partition function Eq. 3.11, we get:

Z =
1

(2π)p

∫
exp (−βHeff) d~θ d~k, (3.19)

where ~k = [k1, k2, · · · kp] and the effective Hamiltonian for the constrained
system is:

Heff = H− kBTI
p∑
i=1

kigi, (3.20)

Here again we have changed the constrained system into an unconstrained
one with the price of introducing p more independent variables ki. The free
energy and fluctuation of the system can be evaluated in the same way as we
discussed before.

3.4 An Example

To illustrate the general theory discussed above, we consider a simple coupled
harmonic spring system shown in Fig. 3.1. Two balls are attached to three
springs with the same spring constant k. The system has two degrees of free-
dom: x1 and x2 being the displacements of the two balls from their equilibrium
positions. The Hamiltonian of the system is:

H =
1

2
kx2

1 +
1

2
kx2

2 +
1

2
k(x1 − x2)2. (3.21)

The stiffness matrix constructed from Eq. 3.21 is:

M =

[
2k −k
−k 2k

]
(3.22)

Hence, using Eq. 3.6, the fluctuation of the system is:

〈xixj〉 = kBT
(
M−1

)
ij

=
kBT

3k

[
2 1
1 2

]
(3.23)
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Figure 3.1: A simple coupled harmonic spring system with two balls attached
to three springs. All three springs have the same spring constant k and natural
length L. The degrees of freedom for this discrete system are two, characterized
by x1 and x2, the displacements of the two balls away from their equilibrium
positions.

Now suppose we have an additional constraint x1 = x2, i.e, the two balls are
further connected by a rigid bar. The first method is to replace the constraint
by a stiff spring kc and the effective Hamiltonian of the system becomes:

H =
1

2
kx2

1 +
1

2
kx2

2 +
1

2
(k + kc)(x1 − x2)2. (3.24)

The stiffness matrix constructed from Eq. 3.24 is:

M =

[
2k + kc −k − kc

−k − kc 2k + kc

]
(3.25)

So the fluctuation of the system is:

〈xixj〉 = kBT lim
kc→+∞

(
M−1

)
ij

=
kBT

2k

[
1 1
1 1

]
. (3.26)

This makes sense because the system with constraint x1 = x2 is just like a
rigid bar connected by two springs. The effective spring constant is 2k.

For the method that uses Fourier transform of the δ-function, the effective
Hamiltonian of the system is:

H =
1

2
kx2

1 +
1

2
kx2

2 +
1

2
k(x1 − x2)2 − IkckBT (x1 − x2). (3.27)

The corresponding stiffness matrix constructed from Eq. 3.27 has three
degrees of freedom:

M =

 2k −k −kBTI
−k 2k kBTI
−kBTI kBTI 0

 (3.28)

46



The inverse of M multiplied by the thermal energy gives the fluctuation
〈xixj〉 = kBT/2k, which is exactly the same as the result using the previ-
ous method (Eq. 3.26).
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Chapter 4

Heterogeneous Wormlike Chain
Under End-to-end Force

Main results of this chapter:

1 Statistical mechanical properties of a general heterogeneous
chain under various boundary conditions are evaluated using
the multidimensional Gaussian integral technique.

2 All thermodynamic properties of a chain can be expressed
in terms of an energy function which is measurable in a
single force-extension experiment. Formulae in terms of this
energy function hold for any heterogeneous chain under any
boundary condition.

3 Folded and unfolded proteins are expected to have different
mechanical properties. Here the theory for a heterogeneous
chain with two bending moduli is applied to predict the
force-extension profile for the forced unfolding of a protein
oligomer.

4.1 Introduction

Single molecule mechanical experiments on rod-like biomolecules, such as,
DNA and actin have for long been interpreted using a model of a homoge-
neous fluctuating elastic rod [1, 2, 3, 4]. However, advanced single molecule
techniques are now capable of probing the structure and properties of macro-
molecules at length scales of a few nanometers. At these length scales it is no
longer sufficient to think of the molecules as having homogeneous mechanical
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properties. In fact, several recent studies have revealed the remarkable effects
of the heterogeneous properties of some biopolymers on their conformations
as well as their mechanical behavior [5, 6]. For example, heterogeneous me-
chanical properties are encountered in partially unfolded protein oligomers
in atomic force microscopy [7]. Sequence specific mechanical properties of
DNA are already well known and it has been suggested that DNA binding
proteins can sense these heterogeneities, making them biologically significant
[8, 9, 10]. Also, it has been noted that localized softening in DNA can have
significant influence on looping probabilities which ultimately affect genetic
activity [11, 12]. These examples show that heterogeneous mechanical prop-
erties have been observed in experiments on biomolecules and that even at
relatively large length scale, they can have significant biological consequences
which the homogeneous models cannot caputre. They motivate us to examine
the consequences of heterogeneity through detailed mathematical models.

A simple way of introducing heterogeneity in polymer models is to group
monomers into hydrophilic and hydrophobic types as has been done in some
recent articles [13, 14]. Another model which accounts for heterogeneity is the
two-state wormlike chain model of [15], which reduces to the fluctuating rod
model in the low force limit, and to the Ising model at high forces [15]. The
approach in this chapter is different from these methods in that we allow the
bending modulus Kb(s) of our fluctuating rod to vary as an arbitrary function
of the arc length s. We first evaluate the partition function of the rod in
a constant force and constant temperature ensemble, and then compute the
free energy and a host of other thermal and mechanical properties of the rod.
The results are verified through Monte Carlo simulations. A special case of
our model is one in which there are only two possible values of the bending
modulus KI and KII along the chain. We call this the ‘special heterogeneous
chain’ and use it to interpret the force-extension data from the forced unfolding
experiments on protein oligomers.

Our method also allows us to determine the consequences of constraints
imposed on the rod. In particular, we can determine the force-extension re-
lation and the magnitude of transverse fluctuations under different types of
boundary conditions. Boundary conditions siginificantly affect the fluctuations
if the length of the rod is comparable or shorter than its persistence length
[16]. The effect of boundary conditions on the fluctuations of homogeneous
rods has been analyzed only recently by a few authors [17]. In this chapter we
apply three different boundary conditions on the rod and compare our results
with those of [17] for homogeneous rods and find excellent agreement. The
method used in this chapter is more general than that of [17] which is based
on the equipartition theorem and can only be applied to homogeneous rods.

This chapter is organized as follows. We first use the equipartition theorem
to derive some general results for heterogeneous chains with arbitrary bound-
ary conditions. We then demonstrate a method for calculating the thermo-
mechanical properties of chains and rods under three different boundary con-
ditions. We use Monte Carlo simulations and comparisons with earlier work
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to show that our method gives accurate results. Finally, we apply our method
to interpret data from force-extension experiments on the protein ubiquitin.

4.2 Description of the Heterogeneous Worm-

like Chain Model

Below we study the thermo-mechanical properties of a fluctuating heteroge-
neous elastic chain. A theory for a 2D chain is presented first and then the
results are generalized to 3D.

 θ

extension x

yl
i i

 Ŷ axis

 X̂ axis

force F

 X̂ axis

force F

 X̂ axis

force F

a

b

c

Figure 4.1: Model of the 2D chain. A thermally fluctuating N−segment 2D
chain is subjected to an external applied force ~F = FX̂. The configuration of
the chain is characterized by its N tangent angles θi, formed by the segments
with respect to the X̂ axis. The transverse displacement of the chain, denoted
by yi in the figure, reflects how much the chain fluctuates. (a) Hinged-hinged
boundary conditions: both ends of the chain are constrained on the X̂ axis,
but no moment is acting on them; (b) partially clamped boundary conditions:
one end of the chain is clamped on the X̂ aixs while the other end, with slope
also constrained to be zero, is free to have transverse displacement in the Y
direction. (c) clamped-clamped boundary conditions: both ends are clamped
on the X̂ axis.

Let {X̂, Ŷ } be a standard reference dyad in 2D space, an N -segment chain
with one end fixed at the origin and the other end subjected to an external
force ~F = FX̂ is fluctuating around its equilibrium state. As shown in Fig. 6.1,
each configuration of the chain is characterized by N tangent angles θi, formed
by the segments with respect to the X̂ axis. We assume that (1) the length
of the segment l is a constant independent of the applied force, and therefore,
the chain is inextensible with contour length being L = Nl; (2) the chain
is untwistable 1. Therefore, the elastic energy of the chain arises only from

1Although twist may be important in some cases, we neglect it here and focus on (1)

51



bending and it is given by:

E =
N−1∑
i=1

Ki

2l
(θi+1 − θi)2, (4.1)

where Ki is the bending modulus that varies along the heterogeneous chain.
A continuum version of this energy is obtained by taking the limit as l → 0
and N →∞ while Nl = L remains fixed and is given by:

Erod =

∫ L

0

K(s)

2
θ̇(s)2ds, (4.2)

where s is the arc length along the rod and θ̇ is the derivative of θ with respect
to s.

Up to a quadratic approximation, the Hamiltonian of the chain (or rod
in the continuum limit) in a fixed T (temperature in Kelvin) and F (force)
ensemble is:

β(E − Fx) =

∫ L

0

βK(s)

2
θ̇(s)2ds− βF

∫ L

0

cos θds (4.3)

≈ β
N−1∑
i=1

κi(θi+1 − θi)2 + βf
N∑
i=1

θ2
i − βFL, (4.4)

where β = (kBT )−1 and kB is the Boltzmann constant, x is the extension
(end-to-end distance projected onto the X̂ axis) of the chain and κi, f are
respectively the bending modulus and the force in energy units:

κi =
Ki

2l
, f =

Fl

2
. (4.5)

For a short chain whose contour length L is comparable to its persistence
length ξp ∼ K/kBT

2, we expect the thermomechanics and the fluctuation of
the chain to depend on the boundary conditions. We consider three different
boundary conditions in this chapter (Fig. 6.1): (1) hinged-hinged chain: both
ends of the chain are hinged on the X̂ axis with no moments acting on them; (2)
partially clamped chain: one end of the chain is clamped at the origin while
the other end, with slope constrained to be zero, is free to have transverse
displacement in the Y direction. (3) clamped-clamped chain: both ends of the
chain are clamped on the X̂ axis. All these three boundary conditions have
been realized in experiments using different types of apparatuses [17]. Note
that for a long chain with L >> ξp, we expect the thermomechanics of the
chain to be insensitive to the boundary conditions.

the effects of heterogeneity and (2) different boundary conditions. Reference [4] gives some
explanation on the simplification of the twisting energy.

2Here we define the persistence length ξp as 〈t̂(s0) · t̂(s0 + s)〉 = e−s/ξp , where t̂ is the
unit tangent vector of the chain. This definition leads to ξp = 2K/kBT for a 2D chain and
ξp = K/kBT for a 3D chain [19]
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4.3 General Theory

For a chain in a fixed temperature T and F ensemble, the partition function
is:

Z =
∑
ν

exp [−β (Eν − Fxν) ] , (4.6)

where the summation is over all the allowed configurations ν, with Eν and
xν respectively being the energy and the extension of the chain. From the
definition of the partition function (Eq. 4.6), we get:

〈E − Fx〉 =
1

Z

∑
ν

(Eν − Fxν) exp [−β (Eν − Fxν) ] = −
(
∂ logZ

∂β

)
F

, (4.7)

where 〈A〉 denotes the ensemble average of a quantity A and ‘log’ denotes the
natural logarithm in this chapter.

On the other hand, since the Hamiltonian is quadratic in the configura-
tion angles θi (Eq. 4.4), we have the equipartition theorem for a fixed T , F
ensemble:

〈E − Fx+ FL〉 =
D

2
kBT, (4.8)

where D is the number of degrees of freedom of the system.
Eq. 4.7 together with Eq. 4.8 leads to a partial differential equation for the

partition function Z: (
∂ logZ

∂β

)
F

= −D
2β

+ FL, (4.9)

integrating which we get:

logZ = −D
2

log β + FLβ −W (F ), (4.10)

where W (F ) is an unknown function of F . Note that Eq. 4.10 holds for any
heterogeneous chain with any boundary condition, and all this information is
included in W (F ), which is independent of the temperature T . Also, regarding
to the units in Eq. 4.10, we shall see in the later sections (Eq. 4.34, Eq. 4.49
and Eq. 4.60) that W (F ) includes D terms of the logarithm of quantities in
energy units, which combine with the term −D

2
log β in Eq. 4.10 to make the

argument of the ‘log’ dimensionless.
Using the relation between the partition function Z and the free energy G,

we obtain G(T, F ) expressed in terms of W (F ):

G(T, F ) = −kBT logZ =
D

2β
log β − FL+

W (F )

β
. (4.11)

Eq. 4.11 shows how the free energy G(T, F ) depends on T and F up to an
unkown function W (F ). Note that G(T, F ) is the fundamental quantity for a
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fixed T, F ensemble because all thermo-mechanical quantities can be derived
from it [18]. Here, by using the equipartition theorem, we have been able to
deduce a form for G(T, F ) in which the dependences on T and F are conve-
niently decoupled. All thermo-mechanical quantities can now be expressed in
terms of W (F ). More importantly, we will see that W (F ) and its derivative,
which we denote as ∆(F ) = W ′(F ), have clear physical meanings and unlike
G(T, F ), can be measured directly in a single force-extension experiment.

We derive the thermo-mechanical quantities in terms of W (F ) and its
derivatives ∆(F ), ∆′(F ) below. The entropy of the chain is given by:

S = −
(
∂G

∂T

)
F

=
1

2
DkB [ 1 + log(kBT ) ]− kBW (F ). (4.12)

Eq. 4.12 shows that the contributions of T and F to the entropy are decoupled.
The extension of the chain is given by a simple formula:

〈x〉 = −
(
∂G

∂F

)
T

= L− kBT ·∆(F ). (4.13)

where again ∆(F ) is the derivative of W (F ): ∆(F ) = W ′(F ). Note that as a
special case, the well-known formula for the 2D hinged-hinged homogeneous
wormlike chain has exactly the form of Eq. 4.13, with ∆(F ) given by [17]:

∆homo(F ) =
1

4

[
L√
KF

coth

(
FL√
KF

)
− 1

F

]
. (4.14)

It is interesting that the simple expression Eq. 4.13 holds for any general chain,
with all the complexity of the heterogeneity and boundary information appear-
ing only in the function ∆(F ). Also note that the dependence on T of 〈x〉 is the
same for all chains with any heterogeneity and boundary conditions (Eq. 4.13).
In fact, this conclusion is true for all the thermo-mechanical quantities shown
below.

More importantly, Eq. 4.13 implies that the unknown function ∆(F ) is
actually the ‘shrinking’ of the chain (L − 〈x〉) scaled by the inverse of the
thermal energy β = (kBT )−1. Therefore, this unkown function of F can be
measured in a single force-extension experiment and its independence of T can
also be tested. Further, to reveal the physical meaning of W (F ), we integrate
Eq. 4.13 with respect to F once to get:

kBT ·W (F ) = LF −
∫
〈x〉dF. (4.15)

The integral on the right-hand-side of Eq. 4.15 is the complementary energy
of the chain (Fig. 4.2), therefore, kBT ·W (F ) is the difference between LF
and the complementary energy, which corresponds to the shaded area beneath
the force-extension curve shown in Fig. 4.2 and can be measured in a single
force-extension experiment. Once W (F ) and ∆(F ) are measured, all the other
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Figure 4.2: The unkown function W (F ) can be measured in a single force
extension experiment. The shaded area above the force-extension curve is
the complementary energy and the area beneath the force-extension curve is
kBT ·W (F ) by Eq. 4.15.

thermo-mechanical properties of the chain are known, as we will show below.
We note that kBT ·W (F ) is not exactly the energy stored in the chain, which is∫
Fdx = Fx−

∫
xdF . We also note that W (F ) can only be measured up to a

constant because of the indefinite integral in Eq. 4.15. However, this constant
will not appear in ∆(F ), which is the derivative of W (F ).

The variance of extension is related to the derivative of 〈x〉 with respect to
F [18] and it is given by:

〈(∆x)2〉 = kBT

(
∂〈x〉
∂F

)
T

= −(kBT )2 ·∆′(F ), (4.16)

where Eq. 4.13 has been used. Eq. 4.16 implies that the variance of extension
always scales as T 2. Note that 〈(∆x)2〉 is non-negative, so ∆′(F ) ≤ 0 and
therefore ∆(F ) is a decreasing function, as it should be, because it is the
‘shrinking’ of a chain under a force F .

Using basic thermodynamic relations [18], the average energy of the chain
and its variance can also be expressed in term of ∆(F ) and ∆′(F ):

〈E〉 = 〈E − Fx〉+ F 〈x〉 = kBT

[
D

2
− F ·∆(F )

]
, (4.17)

〈(∆E)2〉 = −
(
∂〈E〉
∂β

)
F/T

= (kBT )2

[
1

2
D − 2F∆(F )− F 2∆′(F )

]
.(4.18)

Thermo-mechanical properties, such as heat capacity CF , coefficient of
thermal expansion α as well as the isothermal extensibility χ, are second
derivatives of the free energy G [18]. Using Eq. 4.11, Eq. 4.12 and Eq. 4.13,
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we get:

CF = T

(
∂S

∂T

)
F

=
kBD

2
, (4.19)

α =
1

〈x〉

(
∂〈x〉
∂T

)
F

=
−kB ·∆(F )

〈x〉
=

1

T [ 1− βL/∆(F ) ]
, (4.20)

χ =
1

〈x〉

(
∂〈x〉
∂F

)
T

=
−kBT ·∆′(F )

〈x〉
=

∆′(F )

∆(F )− βL
. (4.21)

Note that the heat capacity CF is a constant independent of both T and F .
From Eq. 4.20, we find that the inverse of the coefficient of thermal expan-

sion is linear with respect to T :

1

α
= T − L

kB ·∆(F )
. (4.22)

This can be tested in a single thermal expansion experiment with constant
force F acting at the end of the chain. We further note that the condition
〈x〉 ∈ [0, L] on Eq. 4.13 leads to α ≤ 0 in Eq. 4.22, which means the chain
shrinks in response to an increase in temperature.

Moreover, Eq. 4.13 combined with Eq. 4.20 suggests that if one does a
force-extension experiment and a thermal expansion experiment, one should
find the results of the two experiments related by:

〈x〉
L

=
1

1− αT
, (4.23)

with both sides evaluated at the same F and T . Note that this relation
(Eq. 4.23) does not invlove the unknown function W (F ) and therefore it is
not affected by the heterogeneity and boundary condition of the chain. It
(Eq. 4.23) implies that a stiffer chain, which has a larger value of 〈x〉/L, will
have a smaller value of |α| and therefore is less sensitive to the change of
temperature. In addition, Eq. 4.23 constitutes a falsifiable prediction of our
theory and can be tested in experiments.

To sum up, we have been able to express the thermo-mechanical properties
for any heterogeneous chain with any boundary conditions in terms of a single-
variable unknown function W (F ), instead of G(T, F ) and Z(T, F ). Moreover,
unlike G(T, F ) and Z(T, F ), W (F ) and its derivative ∆(F ) have clear phys-
ical meanings and are easy to measure in a single force-extension experiment
using Eq. 4.133. Therefore, by doing a single experiment, one can get all the
thermo-mechanical properties for the chain, without assuming the chain is ho-
mogeneous and regardless of the type of boundary condition applied. Finally,

3Note that the shrinking ∆(F ) can be measured directly while the energy W (F ) can be
measured only up to an undetermined constant. But, from Eq. 4.13 to Eq. 4.21, we see that
most of the thermo-mechanical quantities are expressed only in terms of ∆(F ), instead of
W (F ), so they can be determined exactly by measuring ∆(F ).
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we note that the results in this section hold for the 2D chains as well as the
3D chains except that the prefactor in Eq. 4.14 should be replaced by 1/2 in
3D case (see [19] and also the discussions on the relation between 2D and 3D
chains in the latter section 4.8).

4.4 Hinged-hinged 2D chain

As has been shown in the previous section, all the thermo-mechanical quanti-
ties can be expressed in terms of W (F ) and its derivatives. In what follows we
obtain analytic expressions for this function for a general 2D heterogeneous
chain with hinged-hinged boundary conditions.

For a hinged-hinged chain (Fig. 6.1(a)), one end of the chain is fixed at the
origin while the other end is constrained on the X̂ aixs, in other words, the Y
coordinate of the end of the chain is 0. This position constraint expressed in
terms of the configuration tangent angles θi is:

g(θi) =
1

l
·
∫ L

0

sin θ ds ≈
N∑
i=1

θi = 0. (4.24)

g is called the constraint function and it has been nondimensionalized. We will
use the Laplace method [20] below to evaluate the partition function, so it is
sufficient to expand sin θ up to the first order in Eq. 4.24 (see the discussions
below and also footnote 4).

The partition function (Eq. 4.6), which sums over all the allowed configu-
rations determined by the constraint function g(θi) (Eq. 4.24), can be written
in an integral form:

Z =

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp [−β(E − Fx) ] δ(g) d~θ, (4.25)

where d~θ = [ dθ1 dθ2 · · · dθN ] and δ(g) is the Dirac delta function acting on
g(θi).

Note that the exact integral limits should be θi = ±π. But, noticing that
the term β(E − Fx) reaches its minimum value (−βFL) at θi ≡ 0, we have
applied the Laplace method to approximate the integral by extending its limit
to θi = ±∞ [20]. Further, by using the Fourier transform of the Dirac delta
function δ [20]:

δ(g) =
1

2π

∫ +∞

−∞
exp(Ikg)dk, (4.26)

where I is the imaginary identity that satisfies I2 = −1, we can rewrite the
partition function Eq. 4.25 as:

Z =
1

2π

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp [−β(E − Fx) + Ikg] d~θ dk. (4.27)
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Consider the exponent in the partition function Eq. 4.27: the Hamiltonian
β(E − Fx) is quadratic in θi and independent of k (see Eq. 4.4) and the
constraint function g is linear in θi (see Eq. 4.24). So the whole exponent
[−β(E−Fx) + Ikg] is quadratic in θi and k and therefore we can write it in a

matrix form4 −~ΘTM~Θ (excluding a constant term βFL, which can be taken

out of the integral), where ~Θ = [θ1, θ2, · · · θN , k]T . Then the partition function
Eq. 4.27 can be evaluated analytically:

Z =
eβFL

2π

∫ +∞

−∞
exp

[
−
(
~ΘTM~Θ

)]
d~Θ (4.28)

=
eβFL

2π

√
πN+1

det M
. (4.29)

The (N + 1) dimensional matrix M, whose upper N × N submatrix is a
tridiagonal matrix, can be written compactly as5:

[M]ij =

{
β(κi−1 + κi + f)δij − βκt · δ(|i−j|,1) 1 ≤ i, j ≤ N

−[1− δi,(N+1)δj,(N+1)] · I/2 otherwise
(4.30)

where t = min(i, j) and δ is the Kronecker delta. A similar mathematical
technique for evaluating the partition function has been applied for circular
DNA by [10].

Eq. 4.29 is the analytic expression for the partition function that involves
a determinant det M. We calculate this determinant in Appendix B and the
result is:

det M =
NβN−1

4
×

N−1∏
i=1

λi, (4.31)

where λi is a sequence that contains information about the bending modulus
sequence κi:

λ1 = 2κ1 + f, λi = (2κi + f)− κiκi−1

λi−1

(i = 2, 3, · · ·N − 1). (4.32)

Plugging the expression for det M (Eq. 4.31) into the partition function
(Eq. 4.29), we get:

logZ = −N − 1

2
log β + FLβ − 1

2
log

(
N
∏N−1

i=1 λi
πN−1

)
. (4.33)

Comparing Eq.4.33 with Eq. 4.10 and noticing that the number of degrees
of freedom is D = (N − 1) because we have one position constraint on the end

4One of the three steps in the Laplace method is to expand the exponent around its
minimum point [20], so it is proper to use the Taylor expansion expressions Eq. 4.4 and
Eq. 4.24.

5Here to make the expression compact, we introduce κ0 = κN = 0
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of the chain, we get the analytic expression for W (F ):

W (F ) =
1

2

[
N−1∑
i=1

log λi + log

(
N

πN−1

)]
. (4.34)

Therefore,

∆(F ) =
dW (F )

dF
=

1

2

N−1∑
i=1

λ′i
λi
, (4.35)

where λ′i = dλi/dF .
By substituting Eq. 4.34 and Eq. 4.35 into Eq. 4.12 through Eq. 4.21, we get

all the thermo-mechanical quantities for the 2D heterogeneous hinged-hinged
chain. In particular, the force-extension relation is:

〈x〉 = L− kBT ·∆(F ) = L− kBT

2
·
N−1∑
i=1

λ′i
λi
. (4.36)

To verify our result, we apply Eq. 4.36 to a homogeneous chain and compare
it with the known theory for the homogeneous hinged-hinged continuous rod.
We consider the limit as the segment length l → 0 while the contour length
L = Nl is held fixed so that the discrete chain becomes a continuous rod. We
show in Appendix C that in this special limit case, Eq. 4.36 exactly reduces
to the well-known force-extension relation for a homogeneous fluctuating rod
[17]:

〈xhomo〉 = L− LkBT

4
√
KF

coth

(
FL√
KF

)
+
kBT

4F
. (4.37)

Another special case is a continuous rod with 2 separated regions of bending
modulus KI and KII respectively. This special heterogeneous rod is suitable
for studying the forced-unfolding of proteins because the bending moduli of
folded and unfolded proteins are expected to be different. Let LI and LII be
the contour length of the 2 homogeneous sub-rods (LI + LII = L). We show
in Appendix D that the extension of such a rod is given by:

〈x〉 = L−
kBT

2


1

E1
√

F
cosh

(√
F
F1

)
+ 2K−1/2

F
sinh

(√
F
F1

)
+ 1

E0
√

F
cosh

(√
F
F0

)
+ ∆K−1/2

F
sinh

(√
F
F0

)
4K−1/2 sinh

(√
F
F1

)
+ 2∆K−1/2 sinh

(√
F
F0

) −
1

F

 ,
(4.38)

where

K−1/2 =
1

2

(
1√
KI

+
1√
KII

)
, ∆K−1/2 =

1√
KI

− 1√
KII

, (4.39)

E1 =

(
L√

KIKII

+
LI
KI

+
LII
KII

)−1

, E0 =

(
L√

KIKII

− LI
KI

− LII
KII

)−1

,

(4.40)
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F1 =

(
LII√
KII

+
LI√
KI

)−2

, F0 =

(
LII√
KII

− LI√
KI

)−2

. (4.41)

Note that in general, the extension of the rod is not the sum of the exten-
sions of the two homogeneous sub-rods (Eq. 4.37) because (1) the two sub-rods
do not necessarily satisfy the hinged-hinged boundary conditions, so Eq. 4.37
is not applicable to either of them; (2) there is bending cooperativity at the
interface of the two sub-rods.

4.5 Partially Clamped 2D Chain

For the partially clamped conditions, one end of the chain is still fixed at the
origin but the other end is free to have transverse displacement instead of
being constrained on the X̂ axis (Fig. 6.1(b)). However, moments are applied
such that both angles at the two ends are zero:

θ1 = θN = 0. (4.42)

With the conditions in Eq. 4.42, the Hamiltonian (Eq. 4.4) can be rewritten
in terms of only (N − 2) angles from θ2 to θN−1:

β(E − Fx) =
N−1∑
i=2

β(κi−1 + κi + f)θ2
i − 2

N−2∑
i=2

βκiθiθi+1 − βFL. (4.43)

The partition function for a partially clamped chain is:

Z =

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp [−β(E − Fx)] d~θ, (4.44)

where d~θ = [ dθ2 · · · dθN−1 ].
We plug in the Hamiltonian (Eq. 4.43) into Eq. 4.44 and again write the

exponent in Eq. 4.44 in matrix form −(~θTM~θ) (excluding a constant term
βFL, which can be written outside the integral), so that the partition function
now becomes:

Z = eβFL
∫ +∞

−∞
exp

[
−~θTM~θ

]
d~θ = eβFL

√
πN−2

det M
, (4.45)

where in this case, M is a (N − 2) dimensional tridiagonal matrix and it can
be written compactly as:

[M]ij = β (κi + κi+1 + f) δij − βκt+1δ|i−j|,1, (4.46)

with t = min(i, j).
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By performing elementary row operations on M and evaluating its eigen-
values, we find that its determinant is given by:

det M = βN−2 ×
N−2∏
i=1

λi, (4.47)

where the sequence λi, different from the one in the hinged-hinged case, is
given by:

λ1 = κ1 + κ2 + f, λi = (κi + κi+1 + f)− κ2
i

λi−1

(i = 2, 3, · · ·N − 2). (4.48)

By substituting Eq. 4.47 into Eq. 4.45 and comparing the expression of
logZ with Eq. 4.10, we obtain the analytic expression for W (F ) and ∆(F ):

W (F ) =
1

2

[
N−2∑
i=1

log λi − (N − 2) log π

]
, (4.49)

∆(F ) =
1

2

N−2∑
i=1

λ′i
λi
, (4.50)

where again λ′i = dλi/dF .
Suprisingly, ∆(F ) has the same form as in the hinged-hinged case. But, we

emphasize that the sequence λi here is different from the one in the hinged-
hinged case (Eq. 4.32 and Eq. 4.48).

Again, by substituting Eq. 4.49 and Eq. 4.50 into Eq. 4.12 through Eq. 4.21,
we obtain all the thermo-mechanical quantities.

4.6 Clamped-clamped 2D Chain

For the clamped-clamped chain, the two tangent angles at the ends are con-
strained to zero and the ends of the chain are constrained on the X̂ axis
(Fig. 6.1(c)). The Hamiltonian is the same as the one in the partially clamped
case given in Eq. 4.43.

The position constraint function, Eq. 4.24, which states that the end of the
chain must lie on the X̂ axis, can also be expressed in terms of the (N − 2)
angles θ2, θ3, · · · θN−1:

g ≈
N−1∑
i=2

θi = 0. (4.51)

The partition function for a clamped-clamped chain is:

Z =

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp [−β(E − Fx)] δ(g) d~θ (4.52)

=
1

2π

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp [−β(E − Fx) + Ikg] d~θ dk, (4.53)
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where Eq. 4.26 has been used and d~θ = [ dθ2 · · · dθN−1 ].
Again, to evaluate the partition function, we plug Eq. 4.43 and Eq. 4.51 into

Eq. 4.53 and express the exponent in a quadratic form −~ΘTM~Θ (excluding

a constant term βFL, which can be written outside the integral), where ~Θ =
[θ2, · · · θN−1, k]T , then the partition function can be evaluated analytically as:

Z =
eβFL

2π

√
πN−1

det M
, (4.54)

where the (N − 1) dimensional matrix M in this case is:

[M]ij =

{
β (κi + κi+1 + f) δij − βκt+1δ|i−j|,1 1 ≤ i, j ≤ N − 2

−I(1− δi,(N−1)δj,(N−1))/2 otherwise
(4.55)

again, t = min(i, j).
We show in Appendix E that in this case, the determinant det M is:

det M =

(
βN−3R

4

)N−2∏
i=1

λi, (4.56)

with the sequence of λi being the same as the one in the partially clamped
case given in Eq. 4.48 and the quantity R is given by:

R =
N−2∑
i=1

(κi + κi+1 + f)g2
i − 2

N−3∑
i=1

κi+1gigi+1, (4.57)

with

gN−2 =
ρN−2

λN−2

, gi =
ρi + κi+1gi+1

λi
(i = N − 3, N − 2, · · · 1), (4.58)

ρi = 1 +
i−1∑
j=1

(
i∏

s=i−j+1

κs
λs−1

)
. (4.59)

We plug Eq. 4.56 into Eq. 4.54, compare the expression for logZ with
Eq. 4.10 to find the expressions for W (F ) and ∆(F ) (note that the number of
degrees of freedom in this case is D = N − 3):

W (F ) =
1

2

[
N−2∑
i=1

log λi + logR− (N − 3) log π

]
, (4.60)

∆(F ) =
1

2

[
N−2∑
i=1

λ′i
λi

+
R′

R

]
, (4.61)

where R′ = dR/dF .
With Eq. 4.60 and Eq. 4.61, all the thermo-mechanical quantities can be

computed. In particular, the force-extension relation for a clamped-clamped
chain is:

〈x〉 = L− kBT ·∆(F ) = L− kBT

2

[
N−2∑
i=1

λ′i
λi

+
R′

R

]
. (4.62)
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4.7 Fluctuation of a 2D Chain

In addition to the thermo-mechanical quantities discussed above, we are also
interested in the quantity 〈θi · θj〉, because it reflects how much the chain is
fluctuating. Also, by calculating 〈θi · θj〉, we immediately get the fluctuation
of the chain in the Y direction, which has been measured in experiments for
some biopolymers [21]:

〈y2
i 〉 =

〈(
i∑

j=1

l sin θj

)(
i∑

k=1

l sin θk

)〉
≈ l2

i∑
j,k=1

〈θj · θk〉, (4.63)

where yi is the transverse displacement of the i-th segment in the Y direction
(Fig. 6.1).

The quantity 〈θi · θj〉 by definition is:

〈θi · θj〉 =
1

Z

∑
ν

(θi · θj) exp[−β(Eν − Fxν)]. (4.64)

By writing it in integral form, we can evaluate it using the following formula
[22, 10]:

〈θi · θj〉 =

∫ +∞
−∞ (θi · θj) exp[−~ΘTM~Θ] d~Θ∫ +∞

−∞ exp[−~ΘTM~Θ] d~Θ
(4.65)

=
1

2

(
M−1

)
ij
, (4.66)

where the detailed expressions and dimensionality of M and ~Θ depend on the
boundary conditions as has been discussed in the previous sections (Eq. 4.30,
Eq. 4.46 and Eq. 4.55). For the analytic formula of the inverse of a tridiagonal
matrix, we refer the reader to [23].

Note that for the partially clamped chain, from Eq. 4.46, we know that:

〈θi · θj〉 =
1

2

(
M−1

)
ij
∼ β−1 ∼ T, (4.67)

and therefore using Eq. 4.63, we conclude that the transverse fluctuation of
the chain scales linearly with respect to T:

〈y2
i 〉 ∼ T. (4.68)

Recall that the variance in the extension x scales as T 2 (Eq. 4.16). So
as temperature T increases, the fluctuation in x should be more significant
compared to the transverse fluctuation.

We show in Appendix F that Eq. 4.67 also holds for the hinged-hinged
chain and the clamped-clamped chain. So the conclusion that the transverse
fluctuation scales as T holds for all the boundary conditions discussed in this
chapter.
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4.8 Theory for the 3D Chains

We will show in this section that by choosing a suitable set of angles that
represents the configuration of the chain, the results for a 2D chain can be
easily generalized to a 3D one.

Let X̂, Ŷ and Ẑ be the standard reference triad in 3D space. As before, a
force ~F = FX̂ is acting on one end of the chain while the other end is fixed at
the origin. We denote the unit tangent vector of the 3D chain as t̂(s), which
forms an angle θ(s) with respect to the X̂ axis. The projection of t̂ on the
Ŷ -Ẑ plane forms an angle φ with respect to the Ŷ axis so that t̂(s) can be
written as:

t̂ = [cos θ, sin θ cosφ, sin θ sinφ]. (4.69)

It follows then: ∣∣∣∣ dt̂ds
∣∣∣∣2 = θ̇2 + sin2 θφ̇2, (4.70)

where θ̇ and φ̇ are the derivative of θ and φ with respect to the arc length s.
We will discuss the 3D hinged-hinged chain below in detail. 3D chains

under the other two boundary conditions can be studied following the same
procedure, though some detailed steps are different, the final results turn out
be the same and we will give a summary in the end of this section.

We define:
ϑx = θ cosφ, ϑy = θ sinφ, (4.71)

so that:
ϑ2
x + ϑ2

y = θ2, ϑ̇x
2

+ ϑ̇y
2

= θ̇2 + θ2φ̇2. (4.72)

Representation of the 3D chains using ϑx and ϑy has been discussed in [19].
The Hamiltonian of the 3D chain, up to a quadratic approximation, can

be written as 6:

H3D = β(E − Fx) =

∫ L

0

βK

2

∣∣∣∣ dt̂ds
∣∣∣∣2 ds− βF ∫ L

0

cos θds (4.73)

≈
∫ L

0

βK

2

(
θ̇2 + θ2φ̇2

)
ds− βF

∫ L

0

(
1− θ2

2

)
ds (4.74)

=

[∫ L

0

βK

2
ϑ̇x

2
ds− βF

∫ L

0

(
1− ϑ2

x

2

)
ds

]
(4.75)

+

[∫ L

0

βK

2
ϑ̇y

2
ds− βF

∫ L

0

(
1−

ϑ2
y

2

)
ds

]
+ βFL. (4.76)

6We assume there are no torsional constraints here. Problems with torsional or other
constraints can be addressed using the same method as long as the Hamiltonian can be
expressed quadratically. Also, see [4] for explanations on the simplification of the twist
energy.
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Here Eq. 4.70 and Eq. 4.72 have been used. Comparing Eq. 4.76 with Eq. 4.3,
we conclude that:

H3D = H2D(ϑx) + H2D(ϑy) + βFL, (4.77)

where H2D(ϑ) represents the Hamiltonian of the 2D chain with tangent angle
denoted as ϑ.

There are two constraints for the 3D chain: the Y and Z coordinates of
the end of the chain should be zero. They relate to the constraint function
in the 2D problem in the following ways (see Eq. 4.24 for the 2D constraint
function):

gY =

∫ L

0

sin θ cosφ ds ≈
∫ L

0

ϑxds = g2D(ϑx), (4.78)

gZ =

∫ L

0

sin θ sinφ ds ≈
∫ L

0

ϑyds = g2D(ϑy). (4.79)

Note that the two constraint functions are decoupled in terms of the angles ϑx
and ϑy up to a linear approximation, which is sufficient for using the Laplace
method to evaluate the partition function, as we have shown in the 2D case.

Hence, using Eq. 4.77, Eq. 4.78 as well as Eq. 4.79, the partition function
for a 3D chain is:

Z3D =

∫ +∞

−∞

∫ +∞

−∞
exp (−H3D) δ(gY )δ(gZ)d~ϑxd~ϑy (4.80)

= e−βFL
∫ +∞

−∞
e−H2D(ϑx)δ [g2D(ϑx)] d~ϑx ·

∫ +∞

−∞
e−H2D(ϑy)δ [g2D(ϑy)] d~ϑy(4.81)

= e−βFL(Z2D)2. (4.82)

Eq. 4.82 relates the 3D partition function with the 2D partition function,
from which we further get:

logZ3D = −βFL+ 2 logZ2D = −βFL+ 2

[
−D2D

2
log β + FLβ −W2D(F )

]
(4.83)

= −D3D

2
log β + βFL− 2W2D(F ), (4.84)

where Eq. 4.10 has been used. Here the number of degrees of freedom of a 3D
chain is twice of that of a 2D chain (D3D = 2D2D) because for each segment,
we have θi and also φi. Comparing Eq. 4.84 with Eq. 4.10, we get:

W3D(F ) = 2W2D(F ), (4.85)

and therefore:

∆3D(F ) = 2 ·∆2D(F ), ∆′3D(F ) = 2 ·∆′2D(F ). (4.86)

With the relations of 2D and 3D ∆(F ), we conclude using Eq. 4.12 through
Eq. 4.19 that for a 3D chain, the following quantities are twice of those of the
2D chain: the entropy S, the shrinking of the chain L − 〈x〉, average energy
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〈E〉, the heat capacity CF and the variances of the extension and the energy
〈(∆x)2〉, 〈(∆E)2〉.

To relate the fluctuation of a 3D chain with a 2D one, note that the trans-
verse displacement of the 3D chain is:

〈 y(s)2
3D + z(s)2

3D 〉 =

〈(∫ s

0
sin θ cosφ ds

)2

+

(∫ s

0
sin θ sinφ ds

)2
〉

(4.87)

≈

〈(∫ s

0
ϑxds

)2

+

(∫ s

0
ϑyds

)2
〉

(4.88)

= 2〈 y(s)2
2D 〉. (4.89)

So the transverse fluctuation is twice larger for the 3D chain.
Finally, we note that for the partially clamped and clamped-clamped 3D

chain, the corresponding boundary conditions are that for the first and last
segment of the chain:

θ = ϑx = ϑy = 0 (4.90)

The derivations are almost the same as the hinged-hinged chain and are not
shown here. The results of Eq. 4.85, Eq. 4.86 as well as Eq. 4.89 remain the
same as for the hinged-hinged chain.

4.9 Monte Carlo Simulation

To verify our theory, we have done Monte Carlo (MC) simulations for the 2D
fluctuating chains under an external applied force for all the three boundary
conditions. The chain is represented by the N tangent angles θi as in the
theoretical model and it is initially straight.

At each MC step, a new conformation is generated from the existing one by
randomly varying N of the θi. Each valid change of the configuration should
satisfy the boundary conditions. A new conformation is accepted with a prob-
ability according to the Metropolis criterion [24] and the thermo-mechanical
quantities and fluctuations of the chain are recorded. To check if equilibrium
has been reached in a given simulation, we ensure that the equipartition the-
orem (Eq. 4.8) is satisfied. Results are recorded only at equilibrium.

4.10 Results and Application

4.10.1 Thermo-mechanical properties of the chain

Fig. 4.3 shows the thermo-mechanical quantities for a homogeneous fluctuating
500-segment chain under different boundary conditions. The contour length
of the chain is L = 2.5nm and the bending modulus is K = 2.5kBT ·nm so
that ξp/L = 2 (2D), where ξp is the persistence length of the chain. Several
interesting results are shown in this figure: (1) All the results show that the
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hinged-hinged chain is the most flexible. It has the smallest extension under
an applied force and it has the largest variances in extension and energy.
On the other hand, the clamped-clamped chain is the least flexible, which
is expected because it has the smallest number of degrees of freedom. (2)
The variances of extension and energy are decreasing functions of the applied
force F . In other words, force suppresses the fluctuations of the chain. (3)
Coefficient of thermal expansion α is negative and it is increasing with F .
(4) The hinged-hinged chain and partially clamped chain have similar results
for the thermo-mechanical quantities that are determined only by ∆(F ) and
∆′(F ), but not W (F ). This can be understood by comparing the expressions
of ∆(F ) for these two boundary conditions (Eq. 4.35 and Eq. 4.50).

Eq. 4.23, which relates the response of the chain to the force and to tem-
perature, is verified in MC simulations. Average extension and thermal expan-
sion coefficient are recorded in simulations under forces varying from 150pN
to 1150pN. The result is shown in Fig. 4.4.

The force-extension relation for a homogeneous continuous rod has been
studied under all the three boundary conditions [17]. To check our results, we
plot the force extension relation for a homogeneous chain and compare it with
the known theory for the rod in Fig. 4.5. Here we choose a large N = 50000
so that l = L/N << L and the chain is approximately a smooth rod. Fig. 4.5
shows that our formulae for all the boundary conditions reduce to the known
theory for the homogeneous rods when N is large and l is small.

The computational complexity using the formulae for thermo-mechanical
properties shown in this chapter is O(N). This is true not only for homoge-
neous chains, but for any heterogeneous chain under all the three boundary
conditions. Note that we need at least N values of Ki to specify an arbitrary
heterogeneous chain, so O(N) is the optimal computational complexity for the
problem.

4.10.2 Fluctuation and correlation of the angle θi

Fig. 4.6 shows the fluctuation in θi (i.e., 〈θ2
i 〉) along the chain. The profile de-

pends strongly on the boundary conditions when ξp/L > 1 (Fig. 4.6(a) shows
the case when ξp/L = 5). In this case, the hinged-hinged chain has maxi-
mum fluctuation at the two ends whereas the partially clamped and clamped-
clamped chains have minimum fluctuations there, which is expected because
θ1 = θN ≡ 0 for these two chains. In the middle point of the chain, the hinged-
hinged chain and the partially clamped chain achieve their smallest and largest
fluctuations respectively. It is interesting that the maximum fluctuation for the
clamped-clamped chain does not occur in the middle of the chain (Fig. 4.6(a)
black). When ξp/L becomes small, the boundary conditions only influence the
profile near the two ends of the chain (Fig. 4.6(b)). Away from the two ends,
the profiles almost coincide for different boundary conditions.

Fig. 4.7 shows the dependence of the 〈θ2
i 〉 profile on the heterogeneity of the

chain. The theoretical predictions are compared to the MC simulation results
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for all the three boundary conditions. For all the cases studied here, a jump
in the bending modulus leads to a corresponding jump in the 〈θ2

i 〉 profile. The
larger the bending modulus, the smaller the value of 〈θ2

i 〉. The figures imply
that the heterogeneity of the chain has a significant influence on 〈θ2

i 〉.
Fig. 4.8 shows the correlation in the θ angles. In particular, we show

〈θ(s) · θ(L/2)〉 here. Clearly, the profiles should have a peak at s = L/2 and
decrease as s moves away from L/2. The smaller the persistence length ξp
is compared to the contour length L, the faster the profile decreases. Again,
the results show that the profiles depend strongly on the boundary conditions
when ξp/L ≈ 1. For the partially clamped chain, our theory predicts that
the correlation decreases but remains positive along the chain whereas for
the hinged-hinged and clamped-clamped chains, the correlations can become
negative near the two ends of the chain, although for the clamped-clamped
chain, due to the constraints that θ1 = θN ≡ 0, the correlation is exactly 0 at
the ends. The MC simulation results confirm our predictions. In order to show
the theoretical prediction clearly, we plot the simulation results separately in
(b), (d) and (f). In addition, we show in Fig. 4.8(g) (theory) and (h) (MC
simulation) that the correlation profile is not symmetric for a heterogeneous
chain. The correlation decreases faster where the bending modulus is smaller.

4.10.3 Transverse fluctuation of the chains 〈y2〉
Fig. 4.9(a) shows the transverse fluctuation of the chain in the Y direction.
As shown in the figure, the transverse fluctuation depends on the bound-
ary conditions and the heterogeneity of the chain. For chains with the same
bending modulus, the partially clamped chain has the largest transverse fluc-
tuation while the clamped-clamped chain has the smallest fluctuation, which
is expected because the clamped-clamped chain has the smallest number of
degrees of freedom. Fig. 4.9(b) shows that the fluctuation decreases when the
force increases. The theoretical predictions and the MC simulation results
match quite well.

Fig. 4.10(a)-(c) show that for a fixed persistence length, the chain that
has longer contour length has more transverse fluctuation. Our theoretical
predictions and the MC simulation results match quite well for all the three
boundary conditions.

4.10.4 Application to the protein unfolding problem

The mechanical behavior of proteins is studied in experiments by stretching
oligomers in an atomic force microscope. As the protein chain is stretched, the
number of unfolded oligomers increases in steps and this gives rise to a char-
acteristic saw-tooth pattern in the force-extension profile as seen in Fig. 4.11
(experimental data from [25]). The loss of structural integrity in the unfolded
regions is expected to change the stiffness of the chain. We can study these
effects through our heterogeneous fluctuating chain model. To see how this
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can be achieved we refer the reader to the force-extension curves in Fig. 4.11.
The blue dotted curves in Fig. 4.11 are the experimental data of forced un-
folding of a chain of ubiquitins under constant velocity pulling from [25]. Each
peak in the profile represents an unfolding event where the force drops precip-
itously. There are six experimental curves in Fig. 4.11 (see the descriptions
in [25]) and the last curve corresponds to the force-extension relation of a
chain of purely unfolded ubiquitins. We model the entire protein oligomer as
a fluctuating chain with two bending moduli Kf (for folded proteins) and Ku

(for unfolded proteins), each part with length NfLfs and NuLus, where Nf ,
Nu are the number of folded and unfolded proteins (they are changing from
curve to curve) and Lfs, Lus are the contour lengths of a single folded and
unfolded protein respectively. We first fit the last curve, which corresponds to
six unfolded ubiquitins, with the homogeneous model (Eq. 4.37) and obtain
two parameters Ku and Lus for the unfolded protein. Similarly, we fit the first
curve to obtain the other two parameters Kf and Lfs for the folded protein
(Fig. 4.11(a), red circles are the fitted data and black curves are the fitting
results). Then without any more free parameters, we apply the force-extension
relation for a ‘special heterogeneous chain’ (Eq. 4.38, 3D version) to predict all
the intermediate curves using different values of Nf and Nu (Fig. 4.11(b), red
curves). As shown in Fig. 4.11(b), our prediction matches the experimental
data quite well.

4.11 Conclusions

In this chapter we have developed a method to determine the thermo-mechanics
of heterogeneous fluctuating elastic rods and chains with arbitrary boundary
conditions. In particular, we are able to compute the force-extension relation
and the variance of transverse fluctuation of the chain. Our results are in
excellent agreement with Monte Carlo simulations. We have demonstrated
the usefulness of our method by using it to interpret experimental data on
the stretching of proteins. Our method assumes that there are no torsional
constraints on the rod. But, problems with torsional or other constraints can
be addressed using this method as long as the energy can be expressed as a
quadratic form in the kinematic variables. The framework developed in this
chapter is not restricted to one-dimensional rods or chains alone. In fact, our
goal is to extend this technique to two- and three-dimensional problems, such
as, those involving the mechanics of networks of filaments.
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Figure 4.3: Thermo-mechanical quantities for a fluctuating chain. Blue:
hinged-hinged boundary conditions; red: partially clamped boundary condi-
tions; black: clamped-clamped boundary conditions. (a) Force-extension pro-
file of the chain. Inset: local profile shows that the hinged-hinged chain (blue)
has smaller extension and thus is more flexible (to show the figure clearly, we
have changed the circles into lines with the same colors); (b) Variance of the
extension. Inset: local profile shows that the hinged-hinged chain (blue) fluc-
tuates more than the partially clamped chain (to show the figure clearly, we
have changed the circles into lines with the same colors); (c) Average energy
of the chain versus the applied force; (d) Variance of the energy; (e) Thermal
expansion coefficient α versus the applied force; (f) Isothermal extensibility χ
versus the applied force.
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Figure 4.5: Force-extension relation for homogeneous chains (blue curve) and
rods (red circle, theory in [17]). (a) Hinged-hinged boundary conditions; (b)
partially clamped boundary conditions; (c) clamped-clamped boundary condi-
tions. K = 2.5kBT ·nm, L = 2.5nm. The figures show that our force-extension
relations for the chains reduce to the known formulae for the continuous rods
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Figure 4.6: Dependence of the fluctuation of θ angles on the boundary con-
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partially clamped chain, the fluctuation is at maximum and minimum respec-
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more than the clamped-clamped chain (black). (a) ξp/L = 5, the dependence
on the boundary conditions is significant througout the chain; (b) ξp/L = 0.2
the dependence on the boundary conditions is significant only at the two ends
of the chain. To make the figures clear, the MC simulation results are not
shown in the same figures.
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Figure 4.7: Dependence of the fluctuation of θ angles on the heterogeneity of
the chain. Blue: homogeneous chain with K = 2.5kBT · nm; black: corre-
sponding MC simulation results; red: heterogeneous chain with two bending
moduli: KI = 0.5kBT ·nm at the first half of the chain and KII = 4.5kBT ·nm
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boundary conditions respectively. The figures show that jumps in the bending
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Figure 4.8: Correlation in the tangent angle θ. (a-f): results for the ho-
mogeneous chains. Blue: ξp/L = 5; red: ξp/L = 1; black: ξp/L = 0.2.
(a),(c),(e) are the theoretical results for the hinged-hinged, partially clamped
and clamped-clamped chains respectively. To make the plots clear, we plot
the corresponding MC simulation results separately in (b),(d) and (f) (cir-
cles). The figures show that the correlation in θ depends strongly on ξp/L.
When ξp/L > 1 (blue), the profile also significantly depends on the boundary
conditions. (g-h): results for a heterogeneous chain with L = 1nm. The first
half and the second half of the chain have bending moduli of KI = 0.5kBT ·nm
and KII = 4.5kBT · nm respectively. (g) is the theoretical predictions and (h)
is the MC simulation results. Blue, red and black colors are for the hinged-
hinged, partially clamped and clamped-clamped boundary conditions respec-
tively. The correlation profile loses its symmetry and decreases faster at the
first half of the chain where the bending modulus is smaller.
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Figure 4.10: Dependence of the transverse fluctuation on the countour length
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Figure 4.11: Unfolding of six copies of ubiquitins under constant velocity
pulling condition. Blue dotted curves are the experimental data from [25].
Each peak in the profile represents a unfolding event where the force drops.
The first and the last experimental curves are fitted to obtain the contour
lengths and the bending moduli of the folded and unfolded proteins (Fig.(a):
red circles are the fitted data and the black curves are the fitting results).
The intermediate curves are then predicted without any free parameters using
the 3D version of Eq. 4.38 (Fig.(b), red curves). Figure.(b) shows that the
predictions match well with the experimental data.
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Chapter 5

Statistics of the Heterogeneous
Wormlike Chain

Main results of this chapter:

1 Distributions of (1) the end-to-end extension, and (2) the
transverse displacement of the free end of a wormlike chain
are evaluated analytically. The theory is simple, yet valid
for any heterogeneous chain under any boundary condition.

2 Both the distributions are found to be asymmetric in gen-
eral. Also, the most probable extension is found to coincide
with the average extension.

3 The theory can be applied to the freely-jointed chain model
as well. The results are verified by comparison to the known
theory for the distribution function of a freely-jointed chain.

Since the introduction of the wormlike chain model, many studies have
addressed the statistical behavior of a semiflexible polymer as defined by the
model and its several variants [1, 2, 3, 4]. Below, we shall show that using the
general theory developed in the previous chapter (section 4.3), we can evaluate
the distribution functions of several interesting quantities for the wormlike
chain, or fluctuating rod.

5.1 Distribution of the End-to-end Extension

P (x)

In this section, we study the distribution function of the end-to-end exten-
sion P (x) for a wormlike chain in a constant force and constant temperature
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ensemble.
By definition, the probability P (x) is the sum over the probability for the

configurations ν with extension x:

P (x) =
∑
ν,xν=x

Pν =
1

ZF

∑
ν,xν=x

exp [−β(Eν − Fxν) ] (5.1)

=
exp(βFx)

ZF

∑
ν,xν=x

exp (−βEν) , (5.2)

Here ZF is the partition function for a fixed force ensemble. The term exp(βFx)
can be pulled out of the summation because all the configurations considered
have the same extension xν = x. Noticing that the last term in Eq. 5.2 is
nothing but the partitioin function Zx of a fixed extension ensemble, we can
write the distribution function as:

P (x) = exp(βFx)× Zx
ZF

, (5.3)

or
logP (x) = βFx+ logZx − logZF . (5.4)

As an aside, here we see that the dependence of P (x) on x comes from the
term exp(βFx)Zx (Eq. 5.3). However, recall the relation between Zx and ZF :

ZF =

∫ +∞

−∞
exp(βFx) Zx dx, (5.5)

which is nothing but a Laplace transform:

ZF (−βF ) = L (Zx). (5.6)

Therefore, it is not surprising that many previous works have used the tool of
Laplace transform to study the distribution functions [2].

Also, consider the Fourier transform of (exp(βFx) Zx):

F [exp(βFx) Zx] =

∫
exp

(
−E − Fx

kBT

)
exp (−ikx)D(t̂) (5.7)

=

∫
exp

(
−E − (F − ikBTk)x

kBT

)
D(t̂), (5.8)

where D is the path integral over all the configurations. Eq. 5.8 is nothing
but the partition function of a fixed force ensemble with an effective force
Fe = F − ikBTk. Therefore, the probability distribution function Eq. 5.3 can
also be written as:

P (x) =
F−1 [ZF (F − ikBTk)]

ZF
. (5.9)

It is because of this relation that the tool of Fourier transform has also been
widely used to derive P (x) [5, 6, 7, 8].
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Coming back to Eq. 5.4, we already know from the previous chapter (sec-
tion 4.3) that the expression for logZF is:

logZF = −DF

2
log β + FLβ −W (F ), (5.10)

where DF is the number of degrees of freedom in the fixed force ensemble,
W (F ) is the unkown function whose physical meaning is the area below the
force-extension curve (up to an undetermined constant) shown in Fig. 4.2.

Using the same method for the fixed extension ensemble (see Appendix G),
we get the expression for logZx:

logZx = −Dx

2
log β − βA(x) + C0(T ) (5.11)

where Dx is the number of degrees of freedom in the fixed extension ensemble,
A(x) =

∫
Fdx is the area under the force-extension curve and C0 is a constant

independent of x.
Plugging in Eq. 5.10 and Eq. 5.11 into Eq. 5.4, we get:

logP (x) = βFx− βA(x) + C(T, F ), (5.12)

which is the distribution of the end-to-end extension in terms of an unknown
but measurable function A(x). Eq. 5.12 can be also written as:

P (x) = P0 · exp [ βFx− βA(x) ] , (5.13)

where P0 is a constant determined by the normalization condition
∫
Pdx = 1.

There are three important properties of the distribution function Eq. 5.13:

1. When F = 0, the distribution is:

P̄ (x) = P0 exp [−βA(x)] . (5.14)

Here we use P̄ to denote the distribution in a zero force ensemble. This
formula has been derived for the classical freely-jointed chain model with
A(x) being interpreted as the work done by the external force [5]. Here
we show the same result holds for a wormlike chain as well, even if it
is heterogeneous. More importantly, Eq. 5.13 implies that to evaluate
the distribution function P (x) in a finite force ensemble, we only need
to know P̄ for a zero force ensemble, since the contribution of F only
comes from the term exp(βFx) in Eq. 5.13:

P (x) = P0 P̄ (x) exp(βFx). (5.15)

Here again, P0 is a constant determined by the normalization condition∫
Pdx = 1. It may be different from the one in Eq. 5.13. The result

that P (x) is closely related to P̄ (x) is consistent with the discussion in
the Introduction of this proposal, where we show that the behavior of a
polymer under a finite applied force is closely related to and completely
determined by its behavior under zero force (Eq. 1.6).
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2. Using Eq. 5.12, the most probable extension x can be evaluated as:

∂ logP

∂x
= 0 ⇒ F =

∂A

∂x
= F (x). (5.16)

This means that most probable extension is the average extension in this
problem.

3. Another universal feature of Eq. 5.13 is that when Fx >> A(x), we have
P ∼ exp(βFx). The distribution function in this limit is independent of
A(x), the energy function that includes all the detailed information of
the model. In other words, in the region Fx >> A(x), chains under any
boundary condition and with any heterogeneous mechanical property
should have roughly the same end-to-end distance distribution.

To plot the distribution function, we need an expression for A(x), which
is again the area below the force-extension curve, or the energy stored in the
system. For the 3D freely-jointed chain (we assume the equipartition theorem
is valid), the force-extension relation is usually expressed as x = x(F ) (Eq. 1.1).
So it is convenient to calculate the complementary energy A′(F ) =

∫
xdF first

and then get A(x) by A(x) = Fx− A′(F ):

A(x) = Fx−
∫ F

0

x dF =
kBT

l

[
L−1x− L log

sinh (L−1)

L−1

]
. (5.17)

Here L−1 is the inverse of the Langevin function L(ξ) = coth(ξ)−1/ξ evaluated
at x/L. It has a series expansion which reads [5, 9]:

L−1(z) = 3z +
9

5
z3 +

297

175
z5 +

1539

785
z7 + · · · (5.18)

On the other hand, the end-to-end distribution function for the freely-
jointed chain model under zero force has been solved using the Fourier trans-
form method [5, 6, 7, 8]:

P̄ (x) =
1

π(kBT )N

∫ +∞

0

[
sin(kl)

k

]N
cos(kx) dk. (5.19)

Eq. 5.19 can be integrated [7], but the result is rather cumbersome and for
large N , direct numerical integration is just as convenient [6]. We plot Eq. 5.19
together with our result discussed above (Eq. 5.14) in Fig. 5.1. The two
theories match well with each other. But our theory can be easily extended
for the wormlike chain model, as we shall discuss below.

For the homogeneous hinged-hinged wormlike chain, the force extension
relation is [10]:

x = L− kBT

2
√
KbF

[
coth

(
L

√
F

Kb

)
− 1

L

√
Kb

F

]
. (5.20)
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Figure 5.1: End-to-end distance distribution function P (x) using Eq. 5.14 (red
circles) and Eq. 5.19 (blue). Here the external force is F = 0pN, the segment
length is l = 1nm and the contour length is L = 50nm. The two theories
match well with each other.

Again, by integrating the above relation, we get the complementary energy
A′(F ) and the stored energy A(x) (there will be an unkown funtion of T
when we do the integral, but that unkown function will be absorbed into the
normalization constant):

A′(F ) =

∫
xdF = LF − kBT log

[
sinh

(
L

√
F

Kb

)]
− kBT

2
logF, (5.21)

A(F ) = xF − A′(F ) = Fx− LF + kBT log

[
sinh

(
L

√
F

Kb

)]
− kBT

2
logF.

(5.22)
With the expressions for A(x), we can now plot the end-to-end distance

distribution function (Eq. 5.20).
We plot Eq. 5.13 for different contour lengths and under different forces in

Fig. 5.2 (freely-jointed chain) and Fig. 5.3 (wormlike chain). For short chains,
the result shows that the distribution is not symmetric. When the contour
length of the chain increases and becomes larger than its persistence length,
the profile looks more symmetric. Further, increasing the applied force causes
the profile to shift to the right and makes the peak sharper, as one can see in
Fig. 5.2B and Fig. 5.3B. We note that similar results for the distribution pro-
files using the Monte Carlo simulation techniques have been reported recently
(see Fig. 2 in reference [11]).
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Figure 5.2: (A): End-to-end distance distribution function P (x) for a freely-
jointed chain with different contour lengths L = 5, 10, 25nm. Here F = 10pN
and the Kuhn length is l = 5nm. The profile looks symmetric only when
the contour length of the chain is long compared to its Kuhn length. (B)
Distribution P (x) for a freely-jointed chain under different values of tensile
forces: F = 5, 10, 20pN. As the force increases, the profile shifts to the right
and the peak becomes sharper. For both plots, T = 300K.
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Figure 5.3: (A): End-to-end distance distribution function P(x) for a wormlike
chain with different contour lengths L = 1, 5, 25nm. Here F = 1000pN. For
short chain, the profile is clearly not symmetric. When the contour length
of the chain increases and becomes comparable to its persistence length, the
profile looks more symmetric. (B) Distribution P(x) for a wormlike chain under
different values of tensile forces: F = 50, 100, 300pN. As the force increases,
the profile shifts to the right and the peak becomes sharper. For both plots,
T = 300K, Kb = 2.5kBT · nm.
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5.2 Distribution of the Transverse Displace-

ment

In this section, we consider a wormlike chain under hinged-free boundary con-
ditions 1 and try to calculate the probability distribution of the transverse
displacement of the free end. This quantity has been calculated previously in
reference [4] using a different theory.

Let the position of the end of the chain be (x, r), where x is the end-to-end
distance projected on the X̂ axis (the direction of the applied force) and r
is the transverse displacement. The question we address here is what is the
probability P (r, x) that the end of the chain is at (x, r)?

Again, we sum all the Boltzmann factors for the configurations with end
of the chain at (x0, r0):

P (r0, x0) =
∑

ν,rν=r0,xν=x0

P (ν) =
∑

ν,rν=r0,xν=x0

exp [−β (Eν − Fxν)]

ZF
(5.23)

=
exp(βFx0)

ZF
×

∑
ν,rν=r0,xν=x0

exp (−βEν) . (5.24)

The interesting thing is that although the last term in Eq. 5.24 has two con-
straints on the summation, it is still a partition function for a hinged-hinged
chain in a fixed extension ensemble. But now the fixed extension is

√
x2

0 + r2
0

instead of x0. So the distribution function Eq. 5.24 can be rewritten as:

P (r0, x0) =
exp(βFx0)

ZF
· Zx

(
x =

√
x2

0 + r2
0

)
. (5.25)

We should be careful about the meanings of the two partition functions
used in Eq. 5.25: (I) ZF is the partition function in fixed F ensemble, with
boundary conditions of hinged-free ends. (II) Zx is the partition function in
fixed x ensemble, with boundary conditions of hinged-hinged ends.

We can further write the distribution function as:

logP (r0, x0) = βF0x0 + logZx

(√
x2

0 + r2
0

)
− logZF . (5.26)

Using Eq. 5.11 again for the expression of logZx, we obtain:

P (r, x) = P0 exp
[
βFx− βA

(√
x2 + r2

)]
, (5.27)

where P0 is determined by
∫ ∫

P dx dr = 1.
Further, note that the P (r, x) calculated above is the probability that the

end of the chain is located on a point (r, x). Taking into account the fact that
the end of the chain can have different positions for the same r, we get:

P (r, x) = P1r exp
[
βFx− βA

(√
x2 + r2

)]
, (5.28)

1Although in experiments, filaments are usually under clamped-free boundary conditions,
here, for the sake of simplicity, we use the hinged-free boundary conditions.
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where P1 = 2πP0.
Plugging Eq. 5.17 or Eq. 5.22 into Eq. 5.28, we obtain the distribution

P (r, x) for a freely-jointed chain or a wormlike chain. For simplicity, here for
the wormlike chain, we use the formula:

F =
(kBT )2

Kb

[
1

4
(
1− x

L

)2 −
1

4
+
x

L

]
, (5.29)

so that the stored energy is:

A(x) =
(kBT )2

4Kb

(
L2

L− x
− x+

2x2

L

)
. (5.30)

Then the analytic expression of the distribution function for a wormlike
chain is:

P (r, x) = P1r exp

[
βFx− kBTL

4Kb

(
L′

L′ − x
− x

L′
+

2x2

L′2

)]
, (5.31)

where L′ = Lx/
√
x2 + r2.

The distributions P (r, x) for a freely-jointed chain and a wormlike chain are
plotted in Fig. 5.4 for the following parameters: (1) Temperature T = 300K;
(2) Kuhn length l = 1nm (freely-jointed chain) or bending modulus Kb =
2.0kBT (wormlike chain); (3) Contour length L = 25 nm; (4) Fixed force
F = 50pN. Here the extension x is fixed and P as a function of r is plotted.
The distribution is asymmetric with P (r = 0) = P (r → +∞) = 0. When the
fixed extension x increases, the peak in the distribution profile moves towards
r = 0 and becomes sharper (Fig. 5.4). This is because a chain with larger
extension has less freedom to fluctuate in the transverse direction.

5.3 Conclusions

In this chapter, we have shown one of the applications of the general theory
discussed in the previous chapter (section 4.3). This general theory is pow-
erful because it packs all the information about the boundary conditions and
heterogeneity into an energy function that is measurable in experiments, as
long as the energy is quadratic. Therefore, the theory is valid for any het-
erogeneous chain under any boundary condition. This is a great advantage
when we study a short chain whose contour length is comparable to its persis-
tence length. Moreover, almost all the expressions in this general theory are
simple because all the complexity has been packed into the energy function.
Using this theory, we have evaluated the end-to-end distance distribution and
the also the transverse displacement distribution for a wormlike/freely-jointed
chain.

85



0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

r / nm

P
(r

) 
 (

no
t n

or
m

al
iz

ed
)

contour length L=25nm
Kuhn length l=1nm
F=50pN
Blue curve: x

0
=23nm

Red curve: x
0
=20nm

Black curve: x
0
=10nm

A

0 5 10 15
0

0.2

0.4

0.6

0.8

r (nm)

P
(r

) (
no

t n
or

m
al

iz
ed

)
x=20

x=23

B

Figure 5.4: Distribution P (r, x) for (A) a freely-jointed chain and (B) a worm-
like chain. The chains are subjected to hinged-free boundary conditions. x, r
are respectively the extension and transverse displacement of the free end.
Here x is fixed for each curve and P (r) versus r is plotted. The parame-
ters are (1) Temperature T = 300K; (2) Kuhn length l = 1nm (freely-jointed
chain) or bending modulus Kb = 2.0kBT (wormlike chain); (3) Contour length
L = 25 nm; (4) Fixed force F = 50pN. The figures show that as the fixed x
increases, the peak in the distribution profile becomes sharper. This makes
sense because a chain with large extension has less freedom to fluctuate in the
transverse direction.
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Chapter 6

Fluctuating Elastic Filaments
Under Distributed Loads

Main results of this chapter:

1 We study the thermo-mechanical properties of an extensi-
ble thermally fluctuating elastic filament under distributed
forces in this chapter.

2 For the force-extension relation under uniform tangent dis-
tributed loads τ , we show that the filament is equivalent to
one under end-to-end applied force F = τL0/2 where L0 is
the length of the filament.

3 Applications to the stretching and fluctuation of DNA in
non-uniform microfluidic channels are discussed at the end
of the chapter.

6.1 Introduction

The wormlike chain model, or the fluctuating elastic filament model, has been
extensively used to describe the mechanical behavior of semi-flexible polymers
like DNA, actin and other long macromolecules [1, 2, 3, 4]. In particular, its
force-extension relation is usually fitted to the experimental data of stretched
polymers to extract their mechanical properties like the bending and stretching
moduli [2]. Some authors have also used the model to predict the transverse
fluctuations of the polymers and compare the results with experiments and
simulations [5, 6, 7]. To account for the new and detailed results obtained
using sophisticated experimental techniques, the fluctuating rod model is be-
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ing continuously improved and generalized. For example, as the length scale
at which people probe the mechanics of the polymers becomes shorter and
shorter, boundary conditions and heterogeneity of the filament can not be
ignored. To account for these effects, we have recently generalized the classi-
cal wormlike chain model to study polymers with heterogeneous mechanical
properties that are loaded under different boundary conditions [7].

Most of the studies so far consider only the behavior of a polymer under
end-to-end applied forces and torques. The reason for this may be that the
majority of force-extension measurements on macromolecules are carried out
in optical tweezers, magnetic tweezers, or atomic force microscopes (AFM),
all of which apply forces at the end of the polymer chains. But, there are
many other cases where biological filaments are subjected to distributed loads.
For example, DNA in a nanofluidic or microfluidic channel is subjected to
distributed drag force applied by the surrounding fluid flow. Molecular motors
exert point loads, which are a special case of distributed loads, to the long
actin filaments in cells and muscles. Also, a uniformly charged polymer in a
constant electric field behaves as if it is stretched by a force that varies along
the contour. The behavior of a filament under such distributed loads is not
well understood. In fact, if one simply uses an end-to-end force model to fit the
extension data for a piece of DNA subjected to uniform flow, the fitted drag
coefficient is much lower than the true measured value [8]. A few groups have
tried to tackle this problem theoretically in recent years [11, 12, 13]. Some of
these works relied on phenomenological arguments [11], while some solved the
problem in the limit of a weak force field [12].

In this chapter, we first calculate analytically the force-extension relation
for a continuous filament under uniform distributed load. We show using
Fourier series that under uniform tangential force per unit reference length
τ along the filament, it suffers the same extension as one under end-to-end
force of magnitude F = τL0/2, where L0 is the contour length. However, a
Fourier analysis of this kind is easy to do only when τ is uniform. To consider
more general loadings, we use our theoretical framework [7] developed earlier
to investigate the thermo-mechanical properties of a discretized filament. In
particular, we first find the ground state, or the minimum energy state, for
a filament under distributed loads. Then the thermal fluctuation around this
ground state is studied using a statistical mechanical approach. In particular,
the partition function is obtained analytically using multi-dimensional Gaus-
sian integrals. Once we get the partition function, the free energy of the system
is derived immediately, and the thermo-mechanical properties of the system
are calculated by differentiating the free energy. This method is capable of
reproducing the classical wormlike chain results [7]. Moreover, because of the
discretization, it can easily deal with filaments with heterogeneous mechani-
cal properties. Here, we apply this framework to study the fluctuation of a
filament under distributed loads.
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6.2 Theory

q(s0)
τ(s0)

y

x

Figure 6.1: A fluctuating elastic filament (extensible wormlike chain) under
distributed forces. The origin of the x−y coordinate system is set at the head
of the filament, which is hinged. The other end of the filament is constrained
to move only in the x direction. One possible deformed configuration of the
filament is shown in dashed line.

6.2.1 Theory for a continuous elastic filament

Consider a semi-flexible polymer, or fluctuating elastic filament with stretching
modulus Ks and bending modulus Kb. One end of the filament is hinged at
the origin of the x−y coordinate system shown in Fig. 6.1, while the other end
is constrained to move only in the x-direction. The reference configuration of
the filament (the state under zero loads at zero temperature) is straight, lying
on the x axis. The coordinate of its center line is [x, y] = [s0, 0]. Here s0 is the
reference arc length with s0 ∈ [0, L0], and L0 being the undeformed contour
length. Under distributed tangential force τ(s0) per unit reference length and
distributed normal force q(s0) per unit reference length, the filament deforms
into [x, y] = [s0 + u,w], where u(s0) and w(s0) are the tangential and normal
displacements respectively. Axial strain develops in the deformed filament and
it can be expressed in terms of the displacements u(s0) and w(s0) assuming
moderate rotations as:

ε(s0) =
ds− ds0

ds0

≈ ∂u

∂s0

+
1

2

(
∂w

∂s0

)2

. (6.1)

Here ds is the infinitesimal deformed arc length, and we keep terms up to the
order of O(u,w2) in the approximation.

The energy of the deformed filament, as a sum of its stretching, bending,
and potential energies, is:

E =

∫ L0

0

Ks

2
ε2 ds0 +

∫ L0

0

Kb

2

(
∂2w

∂s2
0

)2

ds0−
∫ L0

0

τu ds0−
∫ L0

0

q w ds0, (6.2)

where Ks and Kb are the stretching and bending moduli of the filament. They
are not necessarily constants and can be functions of the arc length s0 in the
reference configuration. As discussed by Odijk [3], rather than express the
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energies in terms of the displacements u(s0) and w(s0), it is more convenient
to use ε(s0) and w(s0) as independent variables, because the total energy can
be decoupled using these two variables. This is true even when the filament
is under distributed loads. Using Eq. 6.1, u(s0) in Eq. 6.2 can be eliminated
and the energy can be grouped into two decoupled terms – one involving ε(s0)
only, and the other involving w(s0) only:

E = Eε + Ew, (6.3)

where the expressions for the two energy terms are:

Eε =

∫ L0

0

[
Ks

2
ε2 − τ

∫ s0

0

ε ds0

]
ds0, (6.4)

Ew =

∫ L0

0

[
Kb

2

(
∂2w

∂s2
0

)2

+
τ

2

∫ s0

0

(
∂w

∂s0

)2

ds0 − qw

]
ds0. (6.5)

The minimum energy configuration can be evaluated by setting the vari-
ations δEε = 0 and δEw = 0. The former variation gives the strain of the
minimum energy configuration:

εmin(s0) =
1

Ks

∫ L0

s0

τ(s0) ds0, (6.6)

while the latter variation yields a 4th order ODE for the transverse displace-
ment wmin(s0) of the minimum energy configuration:

(Kbw
′′
min)

′′ −
(
w′min ·

∫ L0

s0

τ ds0

)′
− q = 0, (6.7)

with hinged-hinged boundary conditions w(0) = w′′(0) = w(L0) = w′′(L0) =
0. Here we use ′ to denote the derivative d/ds0. We note again that in deriving
these results, we do not assume the moduli Ks and Kb to be uniform. They
can vary along the filament. By specifying the distributed loads τ(s0) and
q(s0), we can solve Eq. 6.6 and Eq. 6.7 to get εmin and wmin respectively. Then
by using Eq. 6.1, we can obtain the longitudinal displacement umin. Thus, the
deformed configuration of the filament, without taking thermal fluctuations
into account, is known. This minimum energy configuration is the ground
state of the filament around which the system is fluctuating.

While the partition function and fluctuations of a discrete semi-flexible
chain can be evaluated under rather general loading conditions, which we
will discuss in the next section, it is difficult to compute the same quantities
analytically for a continuous filament unless the distributed load is uniform.
Here we briefly discuss how one can evaluate the average end-to-end extension
of a continuous filament under constant τ , by using a Taylor expansion of the
path integral [9], and the Fourier series method [2, 10] respectively for the
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small and large τ limits. For simplicity, we also set the normal distributed
force q = 0 for now.

In the small τ limit, the potential energy term involving τ in the Boltzmann
factor can be expanded using exp(x) ≈ 1 + x. After carrying out this exercise
the Boltzmann weighted average end-to-end extension reads:

〈∆x〉 =
1

Z

∫
x(L0) · exp

(
−
Eb + Es − τ

∫ s
0
x ds0

kBT

)
D~r (6.8)

= βτ

〈∫ s

0

x(s0) · x(L0) ds0

〉
0

+O(τ 2), (6.9)

where Z is the partition function, β = 1/kBT , Eb and Es are the bending and
stretching energies respectively. The key step here is that, after the expansion,
the potential energy part in the Boltzmann factor is factored out and so the
average 〈·〉0 in Eq. 6.9 is evaluated in a τ = 0 ensemble.

Now, the problem in the small τ limit is how to do the average in a τ = 0
ensemble. To solve this problem, we recall that for a wormlike chain in a
τ = 0 ensemble, the correlation of its tangent angle θ satisfies: 〈θ(s) · θ(s′)〉 =
exp (−|s− s′|/ξp) [9], which can be used to evaluate

〈∫ s
0
x(s0) · x(L0) ds0

〉
0

in

Eq. 6.9, given x(s0) =
∫ s0

0
cos θds0. Here ξp is the persistence length of the

wormlike chain. The calculation is tedious but the final result for 〈∆x〉 turns
out to be linear, as expected, in the small τ limit:

〈∆x〉 =
2ξpL0

DkBT

[
1− ξp

L0

(
1− e−L0/ξp

)]
· τL0

2
+
τL2

0

2Ks

, (6.10)

with D being the dimension of space, i.e, D = 2, 3 for a 2D and 3D chain
respectively. The last term in the above equation is the contribution of the
pure stretching term in the energy.

When L0 >> ξp, the force-extension relation is simply:

〈∆x〉 =
2ξpL0

DkBT
· τL0

2
+
τL2

0

2Ks

. (6.11)

One may recognize that the force-extension relation shown here for a filament
under small uniform τ is in exactly the same form as the relation for a filament
under small end-to-end force F , with F being replaced by τL0/2. Therefore,
we conclude that, as far as the force-extension relation is concerned, at small
loads a uniformly distributed tangential force is equivalent to an end-to-end
force Feff = τL0/2.

In the large τ limit, on the other hand, where the approximation of the
tangent angle θ << 1 holds, one can use the Fourier series method to tackle
the problem. As usual, we expand the tangent angle θ = ∂w/∂s0 in a Fourier
cosine series:

θ(s0) =
+∞∑
n=1

an cos

(
2nπs0

L0

)
. (6.12)
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There is no a0 term here because the hinged-hinged boundary condition re-
quires

∫ L0

0
θds0 = 0. Plugging the Fourier series into Eq. 6.5, the energy of the

filament contributed by w becomes:

Ew =
+∞∑
n=1

(
Kbπ

2n2

L
+
τL2

8

)
a2
n. (6.13)

The equipartition theorem of statistical mechanics states that each quadratic
mode should have an average energy equal to kBT/2, which leads to:

〈a2
n〉 =

kBT

2
(
Kbπ2n2

L
+ τL2

8

) , (6.14)

Using Parseval’s theorem, we obtain the expression for
∫ L0

0
〈θ2〉ds0 from Eq. 6.14,

which finally leads to the force-extension relation of a chain under uniform τ :

〈∆x〉 = L0 −
kBT

4
√
KbτL0/2

[
coth

(
L0

√
τL0

2Kb

)
− 1

L0

√
2Kb

τL0

]
+
τL2

0

2Ks

. (6.15)

Here again the last term is the independent contribution from the stretching
energy Eε. Once again, we see that the force-extension relation, in the large τ
limit, has the same form as a wormlike chain under a large effective end-to-end
force Feff = τL0/2. Hence, we have shown that this equivalent relation holds
for both small and large τ . Following Marko and Siggia [2], the force-extension
relation for a filament under uniform τ can be written as:

τLξp
2kBT

=
1

4

(
1− x

L0

)−2

− 1

4
+

x

L0

− τL0

2Ks

. (6.16)

From here on, we will focus on the large τ limit only because the filament
under small loads behaves as a linear entropic spring.

We saw in the above discussion that the Fourier series method works only
when τ is a constant. It is possible to deal with non-uniform distributed
force if one ignores the boundary conditions and applies the wormlike-chain
constitutive law to an infinitesimal segment on the continuous filament, and
then integrates to recover the end-to-end extension of the entire filament. In
particular, let f(s0) be the internal force along the filament in the tangential
direction. Balance of forces on an infinitesimal segment ds0 reads (Fig. 6.2A):

f(s0 + ds0)− f(s0) + τds0 = 0, (6.17)

which leads to ∂f/∂s0 = −τ , whose solution with boundary condition f(L0) =
0 is:

f(s0) =

∫ L0

s0

τ(s0) ds0. (6.18)
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This tells us that, when τ > 0, the internal stress decreases from the fixed end
to the other end, which makes sense because τ is positive when pointing away
from the fixed end. On the other hand, the stretch λ(s0) = ε(s0) + 1 for a 2D
extensible wormlike chain is [3]:

λ =
∂x

∂s0

= 1− kBT

4
√
Kbf

[
coth

(
L

√
f

Kb

)
− 1

L

√
Kb

f

]
+

f

Ks

. (6.19)

Plugging Eq. 6.18 into Eq. 6.19, eliminating f and solving the ODE for x(s0),
we can obtain ∆x = x(L0)− x(0). Note that this procedure works regardless
of whether τ is a constant. In particular, if τ is uniform along the length of
the filament, the result is:

〈∆x〉 = L0 −
kBT

2τL0

log

[
sinhω

ω

]
+
τL2

0

2Ks

, (6.20)

where ω = L
√
τL0/Kb. Eq. 6.20 is not exactly the same as Eq. 6.15. This

is because to derive Eq. 6.20, we have ignored the boundary condition that
leads to the force-extension relation of a wormlike chain, and used it as the
constitutive relation for an infinitesimal segment. However, we will show later
(Fig. 6.2B) that the force-extension curves from the two equations are close
though not exactly the same.

The advantage of analyzing a continuous filament as we have done above
is that we get analytic closed form results. However, as we have already seen,
the analysis is either limited to special cases or relies on some additional as-
sumptions that are not easy to verify. To get the exact thermal fluctuations of
a filament under general distributed loads, it is convenient to first discretize it
into segments. The partition function of the system, which is a path integral
for a continuous filament, becomes a multi-dimensional Gaussian integral for
a discretized filament or chain, and can be evaluated easily [14, 7]. In the
limit where the discretized segment length l0 → 0, the number of discretized
segments N → +∞, while L0 = Nl0 is kept constant, the discrete chain be-
comes the desired continuous filament. Below, we discuss a discrete fluctuating
filament under distributed forces.

6.2.2 Energy of a discretized elastic filament or semi-
flexible chain

We use the following notations for a discrete chain. Ksi, Kbi are the stretching
and bending moduli of segment i of the chain. They can be different for differ-
ent i, and i ∈ [1, N ]. The reference coordinate of the ith node of the chain is
(xi, yi) = (il0, 0), so that the chain is straight lying on the x axis. Under dis-
tributed loads τi and qi per unit length on the ith segment, the node moves to
(xi, yi) = (il0 +ui, wi), with (ui, wi) being the nodal displacements. The axial
strain for each segment is represented by the vector ~ε T = [ε1, ε2, · · · , εN ]. Fur-
thermore, we define the discrete version of the tangent angle θ(s0) = dw/ds0

94



as follows: θi = (wi − wi−1) /l0. We wish to write the energy of the discrete

chain in terms of the strains ~ε and the angles ~θ = [θ1, · · · θN ].
The discretized version of the energies (Eq. 6.4 and 6.5) are quadratic

expressions which can be written compactly in matrix form. In particular, the
discretized version of the energy term involving ε is (Eq. 6.4):

Eε =
N∑
i=1

[
Ksi l0

2
ε2i − τil20

i∑
j=1

εj

]
, (6.21)

and it can be written compactly as:

Eε =
1

2
~ε T · [Kε]~ε+ ~R T

ε · ~ε, (6.22)

with the N×N stiffness matrix being [Kε]ij = Ksil0δij, and the ith component

of the vector ~Rε being −l20
∑N

j=i τj. Similarly, the energy term involving only

w (Eq. 6.5) can be written in terms of ~θ:

Ew =
N∑
i=1

[
Kbi

2l0
(θi − θi−1)2 +

τil
2
0

2

i∑
j=1

θ2
j − qil20

i∑
j=1

θj

]
(6.23)

=
1

2
~θ T · [Kθ] ~θ + ~R T

θ · ~θ. (6.24)

We note that the stiffness matrix [Kθ] is a sparse tridiagonal matrix.
Finally, to impose the boundary condition and to constrain the end of the

chain such that w(L0) = 0, we add a penalty energy:

Ep =
Kp

2
[w(L0)− 0]2 =

Kp

2

(
N∑
i=1

θil0

)2

(6.25)

=
1

2
~θ T · [Kp] ~θ. (6.26)

Eq. 6.24 and Eq. 6.26 can be combined, and therefore, we can write the
total energy of the chain E = Eε + Ew + Ep as:

E =

{
1

2
~ε T · [Kε]~ε+ ~R T

ε · ~ε
}

+

{
1

2
~θ T · [Kθp] ~θ + ~R T

θ · ~θ
}
, (6.27)

where [Kθp] = [Kθ] + [Kp].
As for a continuous filament, the ground state of the discrete chain is

computed first by solving ∂E/∂εi = 0 and ∂E/∂θi = 0. These result in two
linear sets of equations:

[Kε]~εmin = −~Rε, [Kθp] ~θmin = −~Rθ, (6.28)

which are solved to determine the ground state around which the chain fluc-
tuates.
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We next consider the thermal fluctuation around the ground state. We
define the deviations from the ground state as ∆~ε = ~ε − ~εmin, ∆~θ = ~θ − ~θmin.
Then the energy (Eq. 6.27) in terms of these deviation variables is simply:

E = Emin +
1

2
∆~ε T · [Kε] ∆~ε+

1

2
∆~θ T · [Kθp] ∆~θ, (6.29)

where Emin is the ground state energy. Note that the linear terms disappear
when the energy is expressed in terms of the deviation variables.

6.2.3 Partition function and free energy

For a semi-flexible chain, the elastic and potential energies are usually com-
parable to the thermal energy kBT at room temperature, where kB is the
Boltzmann constant and T is the temperature in Kelvin, set to be 300K in
this study. Therefore, the chain does not stay in the ground state forever.
Instead, it fluctuates and samples different configurations, labelled as ν below,
around the ground state with Boltzmann statistics: Pν ∼ exp(−Eν/kBT ).
Here Pν is the probability that a configuration ν with energy Eν is sampled.
The thermo-mechanical behavior of this fluctuating elastic chain can be evalu-
ated using statistical mechanics by computing the partition function Z, which
is the sum of Boltzmann factors over all the allowed configurations. In our
case, the energy of the system has been written in a quadratic matrix form
(Eq. 6.29) and the partition function is:

Z =

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp

(
− E

kBT

)
d (∆~ε) d

(
∆~θ
)

(6.30)

= e−βEmin ·

√
(2πkBT )N

det [Kε]
·

√
(2πkBT )N

det [Kθp]
, (6.31)

where β = 1/kBT and Kε and Kθp are N × N matrices. From the partition
function Z, we get the free energy G of the system:

G = −kBT logZ (6.32)

= Emin +
kBT

2
log det [Kε] + +

kBT

2
log det [Kθp]− kBTN log(2πkBT ). (6.33)

We note thatG is the Gibbs free energy because the partition function (Eq. 6.31)
is evaluated for a fixed temperature, fixed loads ensemble. Therefore, we have:

dG = −S · dT −
N∑
i=1

ui · d (τil0)−
N∑
i=1

wi · d (qil0) . (6.34)

By differentiating the free energy we can get the thermo-mechanical properties,
like the force-extension relation, of the chain.
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6.2.4 Force-extension relation

Noticing that τN l0 and uN (distributed force on the last segment and longi-
tudinal displacement of the last node) is a conjugate pair with respect to the
energy (Eq. 6.34), we have:

〈uN〉 = − ∂G

∂ (τN l0)
. (6.35)

In this chapter, 〈·〉 denotes the usual ensemble average of all sampled configu-
rations weighted by the Boltzmann factor. The average end-to-end extension
of the chain is 〈∆x〉 = 〈x(L0)− x(0)〉 = 〈x(L0)〉 = L0 + 〈uN〉, which turns out
to be:

〈∆x〉 = ∆xmin −
kBT

2l0
· ∂

∂τN
(log det [Kθp]) . (6.36)

where ∆xmin is the extension of the chain in the ground state without thermal
fluctuation. Here we have used the facts that L0 − ∂Emin/∂ (l0τN) = ∆xmin,
and also that the stiffness matrix [Kε] does not depend on the distributed
loads τ . We note that the last term in Eq. 6.36, which is proportional to the
thermal energy kBT , is the contribution of the average extension from thermal
fluctuation. When T = 0 and there is no thermal fluctuation, 〈∆x〉 = ∆xmin,
as it should be, because the only configuration sampled is the minimum energy
state.

6.2.5 Thermal fluctuation around the ground state

For the quantities that do not have clear conjugate pairs, their fluctuations
can be evaluated directly from a Boltzmann weighted sum. The key is to use
the following multi-dimensional Gaussian integral formula [16]:

〈f(~x)〉 =

∫
f(~x) · exp

(
−1

2 ~x
T · [A] ~x

)
d~x∫

exp
(
−1

2 ~x
T · [A] ~x

)
d~x

= exp

1

2

N∑
i,j=1

[A]−1
ij

∂

∂xi

∂

∂xj

 f(~x)

∣∣∣∣
~x=~0

.

(6.37)

Here f(~x) can be some general polynomial functions which are weighted by the
Boltzmann factor in the numerator. The denominator on the left-hand-side
is just the partition function, which serves as the normalization factor to the
weighted average. On the right-hand-side, the exponential operating on the
differential operator is understood as a power series: exp(a) = 1+a+a2/2+· · · .

Using Eq. 6.37, the thermal fluctuation in strain can be evaluated. In
particular, for the strain ε, the mean deviation and mean square deviation
from the ground state are respectively:

〈∆εi〉 = 0 (6.38)

〈∆εi ·∆εj〉 = kBT [Kε]
−1
ij =

δijkBT

Ksil0
. (6.39)

97



Similarly, the fluctuation in the angles ~θ is:

〈∆θi〉 = 0 (6.40)

〈∆θi ·∆θj〉 = kBT [Kθp]
−1
ij . (6.41)

We see that the mean square thermal fluctuations around the ground state in-
crease linearly as we increase the temperature, and decrease as the we increase
the mechanical stiffness of the system, in agreement with intuition.

In experiments one typically measures the fluctuations in displacements.
These can be calculated directly from Eq. 6.37, or alternatively, using Eq. 6.39
and 6.41. In particular, the fluctuation in the transverse displacement is:

〈∆wi〉 = l0

i∑
m=1

〈θm〉 = 0, (6.42)

〈∆wi ·∆wj〉 = l20

i∑
m=1

j∑
n=1

〈∆θm ·∆θn〉. (6.43)

Similarly, the fluctuation in displacement u can be obtained by using the fourth
moment of the multi-dimensional Gaussian distribution:

〈∆ui〉 = − l0
2

i∑
m=1

〈θ2m〉, (6.44)

〈∆u2i 〉 = kBT l0

i∑
m=1

1

Ksm
(6.45)

+
l20
4

i∑
m=1

i∑
n=1

(
〈∆θ2m〉 〈∆θ2n〉+ 2〈∆θm ·∆θn〉2 + 4θ̄mθ̄n〈∆θm ·∆θn〉

)
. (6.46)

Here θ̄ is the angle for the ground state configuration. We note that while
〈∆wi · ∆wj〉 is the fluctuation around the ground state, 〈∆ui · ∆uj〉 is not;
because 〈∆wi〉 = 0 and 〈∆ui〉 is not.

6.3 Results

We first show in Fig. 6.2 that the theories for a continuous rod and the theory
for a discrete chain yield the same result when τ is a constant along the arc
length. For large τ , the thermal fluctuations are already stretched out, so that
the force-extension curve is almost linear, due to elastic stretching.

We next focus on the results from the discrete model and compare the
behavior of a chain under distributed force and end-to-end force. Average
end-to-end extension of the semi-flexible chain 〈∆x〉 versus τ is plotted again
in Fig. 6.3 in red solid line. If we turn off the thermal fluctuations, the chain
behaves just as a linear elastic rod and the force-extension relation is shown
in red dashed line in the same figure. To make a comparison, we apply a point
force F at the end of the chain. Under the same net force: F = τL0, the
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Figure 6.2: Comparison between the continuous models and the discrete
model. (A) Force balance for an infinitesimal segment of a continuous rod.
(B) Comparison of the results for a continuous rod (Black curve: Fourier se-
ries method and Eq. 6.15; Blue (almost overlaps with the black curve): method
using force balance on infinitesimal segment and Eq. 6.20) and a discrete chain
(red circles). The filament is under constant τ along the arc length so that
Fourier series method can be applied. Here a 100nm chain is discretized into
1000 segments. The results match quite well.

chain under end-to-end force suffers larger extension (Fig. 6.3 blue) than the
one under distributed load. This is in agreement with result from the Fourier
series method for a continuous rod, which tells us the effective end-to-end force
for a distributed load is τL0/2, instead of τL0. Another way to understand this
result is by doing force balance on the chain. Under end-to-end applied force,
the stress along the chain is uniform: σ ≡ F/A = τL0/A, where A is the cross
sectional area of the chain. Under distributed force, on the other hand, the
stress along the chain varies linearly σ = τ(L0 − s0)/A, and it is smaller than
the stress in the previous case everywhere except at s0 = 0. Therefore, it is not
surprising that a chain under end-to-end force suffers larger extension. The
fact that uniform distributed τ causes less internal tension in the chain than
the end-to-end force F = τL0 is also reflected in the transverse fluctuation
profile (Fig. 6.4). Because internal tension stiffens the filament, a chain with
less internal tension is expected to have larger thermal fluctuation. Indeed, our
result shows that the magnitude of transverse fluctuation is significantly larger
for a chain under uniform distributed force. Moreover, unlike the end-to-end
force case, internal tension is not a constant along the arc length when the
chain is subjected to uniform τ ; therefore, the transverse fluctuation profile
is not symmetric. The end of the chain with less internal force has more
fluctuations, as shown in Fig. 6.4.

Next, as a practical application of our methods, we analyze the stretch-
ing and fluctuations of a piece of DNA in a linear microfluidic channel and
a constant-strain-rate channel, both of which have been fabricated in experi-
ments [15]. For a linear channel, the channel width varies as w(x) = ax + b,
where a and b are two constants. On the other hand, a constant-strain-rate
channel has a shape w(x) = a/(1 +x/b) (Fig. 6.5A). Since the fluid velocity is
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Figure 6.3: Force-extension relations for a wormlike chain (1: red solid line)
under uniform distributed load τ with thermal fluctuations, (2: red dashed
line) under uniform distributed load τ without thermal fluctuations, (3: blue
solid line) under end-to-end force F = τL0 with thermal fluctuations, and (4:
blue dashed line) under end-to-end force without thermal fluctuations. The
reference contour length of the chain is L0 = 50nm. The persistence length is
5nm. The segment length is 0.5nm with N = 100 segments.

inversely proportional to the channel width w, a polymer confined in the chan-
nel experiences drag force τ = dtv(x) that varies along its arc length. Here dt
is the drag coefficient per unit length and it is set to dt = 1.2pN · ms · µm−2

[15] in our calculation. Fig. 6.5B and C show respectively the extension and
fluctuations of the polymer in fluid flow. With the same entrance width (width
on the leftmost side) and exit width (width on the rightmost side), a constant-
strain-rate channel is narrower in most of its middle region compared to a
linear channel. Therefore, a polymer suffers larger drag force and less trans-
verse fluctuations in a constant-strain-rate channel. This leads to a larger
end-to-end extension. In Fig. 6.5C, we also compare the fluctuations of a
hinged-hinged polymer (dashed line) and a hinged-free polymer, whose right
end is not constrained on the x axis. The fluctuation for the hinged-free poly-
mer is larger than that for the hinged-hinged polymer, as expected. In this
study, we neglect the entropic force due to the non-uniform channel width.

Finally, in Fig. 6.6, we show the transverse fluctuation of a chain subjected
to uniform τ plus a point load in the middle. The figure shows that the point
load stretches the left half of the chain and reduces the fluctuation there.

6.4 Conclusions

We analyze the thermoelastic behavior of a fluctuating elastic filament under
distributed loads in this chapter. We obtain, by means of a Fourier analysis
on a continuous filament, analytic results when the polymer is under uniform
distributed load. We find that a filament under uniform distributed load τ
per unit reference length can be viewed as one under an effective end-to-end
force of τL0/2 if we are only interested in the force-extension relation. How-
ever, to get the fluctuations of a filament under general loadings, we need to
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Figure 6.4: Transverse fluctuation of a chain under uniform distributed τ =
5pN/nm (red), and under end-to-end applied force F = τL0 (blue). Under
distributed force, the chain has larger thermal fluctuations with an asymmetric
fluctuation profile.

first discretize the filament and approximate the path integral for the parti-
tion function as a multi-dimensional Gaussian integral. Once the partition
function is calculated, all other quantities can be obtained by differentiation
using standard thermodynamic techniques. As an illustration, we apply our
methods to DNA under non-uniform distributed loads as is the case for DNA
stretched by flow fields in microfluidic channels.
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Figure 6.5: DNA in non-uniform microfluidic channels. (A) A piece of DNA
confined in a linear channel and a constant-strain rate channel. Both channel
types have been fabricated in experiments [15]. (B) The velocity in the non-
uniform channel is inversely proportional to the channel width. Therefore,
given the velocity vf at the exit (rightmost) end, the entire velocity profile in-
side the channel is known, which then leads to the drag force τ = dtv along the
polymer. Here the end-to-end extension of the polymer is plotted against vf .
As we increase the flow velocity, the strain along polymer increases, resulting
in a larger end-to-end extension. Red: DNA in a linear channel. Blue: DNA
in a constant-strain-rate channel. Dashed/Solid lines: extension with/without
the contribution of thermal fluctuations. (C) Transverse fluctuations along the
polymer arc length. Red and blue for DNA in a linear and a constant-strain-
rate channel respectively. Solid line is for a DNA with one end hinged and the
other end free to fluctuate. Dashed line is for the same DNA with both ends
hinged on the x aixs.
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Figure 6.6: Transverse fluctuation of a chain under uniform distributed τ plus
a point load F in the middle. The left half of the chain has less fluctuation
because the stretching of the point loads reduces the thermal fluctuations.
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Chapter 7

Transition Between Two
Regimes Describing Internal
Fluctuation of DNA in a
Nanochannel

Main results of this chapter:

1 We measure the thermal fluctuations of the internal seg-
ments of a piece of DNA confined in a nanochannel about
50−100nm wide. This local thermodynamic property is key
to accurate measurement of distances in genomic analysis.

2 For DNA in ∼100nm channels, we observe a critical length
scale ∼10µm for the mean extension of internal segments,
below which the de Gennes’ theory describes the fluctuations
with no fitting parameters, and above which the fluctuation
data falls into Odijk’s deflection theory regime.

3 By analyzing the probability distributions of the extensions
of the internal segments, we infer that folded structures of
length 150−250nm, separated by ∼10µm exist in the con-
fined DNA during the transition between the two regimes.

4 We show that existing theories for the end-to-end exten-
sion/fluctuation of polymers can be used to study the inter-
nal fluctuations only when the contour length of the polymer
is many times larger than its persistence length.

5 Our results suggest that introducing nicks in the DNA will
not change its fluctuation behavior when the nick density is
below 1 nick per kbp DNA.

105



7.1 Introduction

Stretching DNA in nanochannels has emerged as an important technique for
separating DNA, performing genome mapping, and also studying repressor-
DNA interactions, etc [1, 2, 3]. On the other hand, DNA confined in nanochan-
nels also serves as a simplified model for studying single polymer behavior in
concentrated polymeric solutions and melts [4, 5]. For these reasons, mechan-
ical behaviors of DNA inside nanochannels have attracted a long-standing
interest. The two most well-known scaling theories in this field are those de-
scribed by de Gennes [5] and by Odijk [6]. de Gennes’ blob theory, which was
later generalized by Schaefer and Pincus [7], assumes that the channel width
D is much greater than the persistence length ξp of the polymer. It models
the moderately confined DNA as a chain of spherical blobs inside a cylindrical
channel and gives the following expression for the end-to-end extension 〈x〉 of
the polymer [5, 7, 8]:

〈x〉
L

= A

(
w ξp
D2

)1/3

, (7.1)

where L,w are the contour length and effective molecule width of the DNA
respectively. The prefactor A is found to be close to unity [9]. Odijk’s theory,
on the other hand, works for DNA under strong confinement in whichD << ξp.
In this regime, the polymer is deflected back and forth by the channel walls
and the end-to-end extension is predicted to be [6]:

〈x〉
L
≈ 1− α◦

(
D

ξp

)2/3

, (7.2)

where α◦ = 0.17 is a constant whose value was determined recently by simu-
lations [10]. Aside from the scaling theories, Wang and Gao [11] showed that
the end-to-end extension of a strongly confined polymer in the Odijk regime
can be derived analytically by modeling the confinement effect as a quadratic
potential U = 1/2 Ξ|~r⊥|2. Here Ξ is the stiffness of the effective quadratic
potential, which depends on the channel width D, and ~r⊥ is the transverse
displacement of the polymer from the axis of the nanochannel. Wang and Gao
considered a confined chain under end-to-end applied force F and obtained
an expression for the total extension 〈x〉 as a function of Ξ and F . We set
F = 0pN, substitute the relation between Ξ and D (see Appendix) into their
expression, and find:

〈x〉
L

= 1− 1

5

(
D

ξp

)2/3

, (7.3)

which is the same as Eq.L.1, confirming the scaling theory of Odijk, and at
the same time validating the use of quadratic confinement potentials in the
strongly confined regime.

Both de Gennes’ and Odijk’s theories have been tested by experiments as
well as simulations over the years [10, 12, 13, 14, 15, 16]. However, most of the
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Figure 7.1: Measurement of the fluctuations of the internal segments of con-
fined DNA. (A) Image of a dye label (Alexa-546) on a DNA backbone (back-
bone not shown) with 80ms exposure time. (B) 2D surface plot of the raw
image (intensity of the dye vs. the X Y coordinates). (C) Image of one T4
DNA fragment (∼ 36 microns) with backbone (red) and internal labels (green).
(D) Time series (8 seconds) of the DNA showing the fluctuations of backbone
and internal labels. In (D), the red trace is the backbone and the green traces
are the trajectories of internal dye labels.

studies so far have focused on the properties of the entire DNA, for example,
the end-to-end extension 〈x〉, the corresponding end-to-end fluctuation σx, and
also the relaxation time τ of the entire DNA etc. Local properties of a confined
polymer, on the other hand, like the extension and fluctuation of its internal
segments, are rarely investigated. In fact, local conformation and alignment of
the confined DNA have been probed only recently [17, 18]. It is also not well
understood whether the existing theories developed for an entire piece of DNA
can be applied locally for its internal segments. These are important issues
because, if one considers the case of genome mapping, it is the local fluctuation
of the internal segments that determines the resolution of the mapping.

In this chapter, we measure the longitudinal internal fluctuation of a piece
of DNA confined in rectangular channels about 50−100nm wide. We show
that neither de Gennes’ blob theory nor Odijk’s deflection theory can com-
pletely describe the measured internal fluctuation versus mean extension pro-
file. A critical length scale of ∼10µm for the mean extension is observed,
below which the internal DNA segments are more ‘blob’-like, and above which
Odijk’s deflection theory works better. From the histograms of extension of the
internal segments, we further infer that there exist folded structures of length
150−250nm separated by ∼10µm along the backbone of the DNA during the
transition between the two regimes. To justify the use of existing theories for
studying the internal fluctuation, we focus on the Odijk regime and propose
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Figure 7.2: Internal fluctuation of λ DNA confined in a 80nm×130nm channel.
(A) The measured rms fluctuation σ versus mean extension 〈x〉 for the internal
segments of the DNA agrees very well with de Genne’s theory with no fitting
parameters (red curve, Eq.7.4). (B) A linear σ2 − 〈x〉 profile confirms the 0.5
power law of σ ∼ 〈x〉1/2 of the de Gennes’ theory. Note, however, that here we
have maximum 〈x〉 . 10µm. As shown in a subsequent figure (Fig.7.4) and in
the text, for longer polymer with a maximum 〈x〉 & 10µm, the data deviates
significantly from de Gennes’ theory and even the 0.5 power law is lost.

a method to explicitly calculate the internal fluctuation of a strongly confined
DNA. We model the confinement effects by quadratic potentials and show
that one can use the existing theories for end-to-end extension/fluctuation to
describe the internal segments of the DNA when the contour length of the
polymer is many times larger than its persistence length. Our model, which
views the confined DNA as a discrete wormlike chain, can describe the fluc-
tuations of heterogeneous polymers confined in non-uniform channels. It is
also capable of capturing effects, like the influence of nicking sites on the DNA
fluctuation profiles, which we will discuss at the end of the chapter.

7.2 Results and Discussion

To visualize the internal segments, dye-labeled (Alexa-546) nucleotides are
introduced into the backbones of the nicked λ DNA (48.5kbp, L ≈ 16.5µm), T4
DNA (166kbp, L ≈ 56.4µm) and bacterial artificial chromosome (BAC) human
DNA clones (MCF7 BAC clone 9I10, fragmented, full length ∼ 180kbp, L ≈
61.2µm) (Fig.7.1) [19]. The DNA molecules are then driven by electric field
into the nanochannels. With the Alexa-546 labels excited by light, extension
of each internal segment is recorded frame-by-frame. Average extension 〈x〉
and the root mean square (rms) fluctuation σ =

√
〈x2〉 − 〈x〉2 for each internal

segmenet are calculated and plotted in the σ − 〈x〉 profile.
In Fig.7.2, we first show the result for λ DNA confined in a 80nm×130nm

channel. The maximum 〈x〉, which is roughly the mean extension of the entire
DNA, is about 10µm, in agreement with the measurements of Tegenfeldt et al
[12]. The internal fluctuation σ increases with 〈x〉 with a 0.5 power law. This
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Figure 7.3: Probability distributions P (x) for 2 internal segments of λ DNA
inside a 80nm×130nm channel. The experimental data is fitted to Eq.7.7
(red). The fitting value C (Eq.7.7), when plugged back to Eq.7.6-2, recovers
de Gennes’s formula Eq.7.4.

0.5 power law and even the magnitude of the fluctuation can be well captured
by de Gennes’ theory (discussed below) with no fitting parameters.

The longitudinal fluctuation of the confined DNA in de Gennes’ theory can
be evaluated using the effective stiffness keff of the polymer: σ2 = kBT/keff

∼=
(4/15)L(wξpD)1/3 [12, 20]. Using this expression and Eq.7.1 to eliminate L,
we get the relation between σ and 〈x〉:

σ ∼=
√

4D

15
·
√
〈x〉. (7.4)

Therefore, de Gennes’ theory predicts a 0.5 power law for the σ−〈x〉 profile. It
is interesting to note that the prefactor in Eq.7.4 depends only on the channel
width D, but not on the effective molecule width w, nor on the persistence
length ξp. This implies that the σ − 〈x〉 profile is independent of the ionic
strength of the experimental buffer. To compare the theory with the measured
internal fluctuation, we plot Eq.7.4 together with the experimental data in
Fig.7.2. Surprisingly, the data matches with the theory very well without
any fitting parameters. Both the 0.5 power law and the magnitude of the
fluctuation are correctly predicted by Eq.7.4.

de Gennes’ theory also gives the distribution of the extension P (x), which
we can compare to our measurement. We consider the recently proposed
“renormalized” Flory-type free energy F for a confined polymer [21] and its
corresponding prediction of the longitudinal fluctuation:

βF = A
x2

(N/g)D2
+B

D(N/g)2

x
, σ2 =

(
∂2 (βF)

∂x2

)−1

, (7.5)

where β = 1/kBT , A,B are two constants, N, g are the total number of
monomers and the number of monomers inside a blob respectively [21]. Both
of the relations can be rewritten in terms of 〈x〉 (which is the solution of
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∂F/∂x = 0) as:

βF = C

(
x2

2D〈x〉
+
〈x〉2

Dx

)
, σ =

√
D

3C

√
〈x〉, (7.6)

with C = (2A)2/3B1/3 being a constant. The probability distribution P (x) is
therefore:

P (x) = P0 exp(−βF) = P0 exp

[
−C

(
x2

2D〈x〉
+
〈x〉2

Dx

)]
. (7.7)

Here P0 is a constant determined by the normalization condition. In our
experiments, we record the extension x of each internal segment frame-by-
frame and then calculate the distribution P (x) for each segment. Fig.7.3
shows the measured P (x) for two internal segments and their fitting results
to Eq.7.7 (red). The result again implies that, for λ DNA confined in a
80nm×130nm channel, the behavior of the internal segments can be well cap-
tured by de Gennes’ theory. Moreover, by fitting the distribution P (x) to
Eq.7.7, we obtain the constant C, which, when plugged back into Eq.7.6-2,
yields: σ = 0.58

√
D
√
〈x〉 ≈

√
4D/15

√
〈x〉 (here D =

√
80× 130 = 102nm).

Therefore, starting from the “renormalized” Flory-type free energy Eq.7.5, we
recover Eq.7.4 with the same prefactor. This indicates that the prefactor in
Eq.7.4 is quite accurate although it is derived from a scaling theory. It also
explains why Eq.7.4 matches with the measured σ − 〈x〉 profile without any
fitting parameters (Fig.7.2). It is important to note that, for λ DNA confined
in a 80nm×130nm channel, the maximum 〈x〉 is less than ∼10µm (Fig.7.2).
We shall show next that for longer DNA whose maximum 〈x〉 is greater than
∼10µm, the measurement no longer agrees with de Gennes’ theory. In partic-
ular, the 0.5 power law in the σ − 〈x〉 profile is lost.

Fig.7.4A shows the σ − 〈x〉 profile for the internal segments of T4 DNA
in a 80nm×130nm channel. The maximum 〈x〉, which is roughly the mean
extension of the entire DNA, is about 30µm, in agreement with the simulation
result of Jung et al [14]. Fitting of σ ∼ 〈x〉γ to the experimental data yields γ =
0.19, which is very different from the prediction of de Gennes’ theory (Eq.7.4).
Similar results are found for DNA in channels of different sizes: γ = 0.15 for
T4 DNA confined in 60nm×100nm channels (Fig.7.4B) and γ = 0.11 for λ
DNA in 50nm×70nm channels (Fig.7.4C). In all these cases the maximum 〈x〉
is greater than 10µm. We note, however, that in Fig.7.4, the experimental data
for segments with 〈x〉 . 10µm still matches with de Gennes’ theory (except
for the 50×70nm channel case, which we will explain later). It is the data with
〈x〉 & 10µm that deviates significantly from de Gennes’ prediction. In fact, if
we plot the fluctuation results for short segments with 〈x〉 . 10µm for λ and
T4 DNA together, the two profiles are almost identical, satisfying de Gennes’
theory (see figure in the Appendix).

To rule out the possibility that the observed difference between λ DNA and
T4 DNA stems from sequence variations, we perform the same experiments on
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Figure 7.4: Fluctuation of the internal segments of (A) T4 DNA in
80nm×130nm, (B) T4 DNA in 60nm×100nm and (C) λ DNA in 50nm×70nm
channels. For all cases, the maximum mean extension 〈x〉 > 10µm. For
(A) and (B), the data 〈x〉 . 10µm agrees with de Gennes’s theory (red, no
fitting parameters). Deviation from de Gennes’ theory begins at a critical
〈x〉 ∼ 10µm, above which the data falls into the black curve predicted by the
deflection theories of Odijk [6], Wang and Gao [11]. For tighter channels (C),
the transition occurs earlier with most data falling in the deflection regime.
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Figure 7.5: Internal fluctuation σ versus mean extension 〈x〉 for BAC (red
squares) and T4 DNA (black circles) in a 80nm×130nm channel. This figure
shows that DNAs from two different sources give almost identical results, which
suggests that agreement with de Gennes theory for short internal segments,
and deviation from de Gennes’ theory for long internal segments, are both
sequence independent.
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Figure 7.6: (A) Folded structures in the backbone of confined DNA. Each
branch of the structure is about 150− 250nm, about the width of the channel
size. The structures are separated by a distance ∼10µm. (B, C) Distribution
of extension P (x) for 2 internal segments that contain the folded structures. In
disagreement with de Gennes’ prediction, the distributions show 2 peaks, from
which we infer the existence of the folded structures. However, the structures
are not stable as the two peaks in the distributions are comparable in height.
The red curves fitted to the left peaks on the histogram are from de Gennes’
theory (Eq.7.7) and the ones superimposed on the right peaks are from the
deflection theory (Eq.7.10). (D) Extension x versus time for a single internal
segment that shows two peaks in the distribution P (x). The extension of
this particular internal segment seems to fluctuate around two values shown
by the dashed lines. This gives rise to the two peaks seen in the probability
distribution.

the bacterial artificial chromosome (BAC) human DNA clones (MCF7 BAC
clone 9I10), which also has maximum 〈x〉 & 10µm. As shown in Fig. 7.5,
the results for the BAC DNA are almost identical to those for the T4 DNA.
In particular, for small 〈x〉 < 10µm, both match with de Gennes’ prediction
without any fitting parameters, while for 〈x〉 > 10µm, both identically deviate
from de Gennes’ prediction. This suggests that the deviation from de Gennes’
theory for long internal segments truly stems from segment size, not from
sequence variations.

To better understand the deviation from de Gennes’ prediction, we further
look into the local structures of the confined DNA. Odijk showed recently
that even in a 135nm channel, DNA can fold back on itself, giving rise to
a global persist ence length much larger than 50nm, the intrinsic persistence
length of the DNA [18, 22]. Because of this, Odjik argued that the transition
from Odijk’s regime to de Gennes’ regime could be delayed with the increase
of the channel size [18]. To check whether such local folded structures exist
in the DNA in our experiments, we measure the extension distribution P (x)
for each single internal segment (see “Materials and Methods” for details).
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We find that for most internal segments whose mean extension is longer than
10µm, the distribution P (x) shows two or more peaks (Fig.7.6B-C). From this
observation, we infer that there indeed exist some folded structures in those
internal segments – one peak in the distribution corresponds to the folded
configuration, and the second peak corresponds to the extended configuration
(Fig.7.6). The existence of folded structures can be also inferred from the
typical extension x versus time plot as shown in Fig. 7.6D, where the steps in
x correspond to different states of the internal segments. Furthermore, we find
that in the distribution P (x), the measured distances between any two peaks
are always integral multiples of 400−500nm, indicating that the difference in
extension of a single folded structure and its extended form is about 500nm, ten
times the persistence length of the DNA. This further implies that each branch
of the folded structure is about 150−250nm, if we assume each folded structure
has two (loop) or three (hairpin) branches (Fig.7.6). Also, by checking the
location of the internal segments that show multiple-peak distributions, we
find that the folded structures are separated by ∼10µm, which roughly agrees
with the value of 〈x〉 above which de Gennes’ theory fails to match with the
experimental data (Fig.7.4). In the following we show that for 〈x〉 & 10µm
the fluctuation data is better described by Odijk’s deflection theory.

To exactly (rather than in a scaling sense) evaluate the fluctuation of DNA
in the Odijk deflection regime, we extend the theory recently developed by
Wang and Gao [11]. This theory represents the DNA as a strongly confined
wormlike chain (fluctuating elastic rod) subjected to an additional end-to-end
force F and produces the relation between the mean extension 〈x〉 and Ξ,
the stiffness of the effective confinement potential (which is a function of the
channel width D):

〈x〉 = L− kBTL

2
√
κ

1√
F + 2

√
Ξ(D)κ

, (7.8)

where again, kBT is the thermal energy, κ is the bending modulus of the
polymer, and in a rectangular channel the stiffness of the confinement potential

can be expressed as Ξ = 4c4
[
kBT/(κ

1/4D2)
]4/3

, with c being a constant. Using

Eq.I.1, we calculate the effective stiffness of the DNA as keff = (∂〈x〉/∂F )−1,
and then evaluate the fluctuation as σ2 = kBT/keff:

σ =
D

2
√

8ξpc3
·

[
1− 1

4c

(
D

ξp

)2/3
]−1/2√

〈x〉. (7.9)

Leaving c as a free parameter, we fit Eq.7.9 to the experimental data with
〈x〉 > 10µm in Fig.7.4A-C (black curves) and obtain c = 1.03, 0.94 and 0.99
respectively. For the BAC DNA confined in 80nm×130nm channels shown
in Fig. 7.5, we obtain c = 0.9 from a similar fit. The fact that all the four
sets of experimental data for different channel widths yield the same c ≈ 1
makes sense because c is expected to be a universal constant independent of
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Figure 7.7: (A) Phase diagram showing two regimes on the L − D plane,
assuming ξp = 50nm for DNA. Transition from de Gennes’ to Odijk’s regime
can occur when D decreases with L fixed, or when L increases with D fixed.
(B) DNA with local folded structures as an intermediate state between de
Gennes’s and Odijk’s regimes. In experiments, we observe heterogeneity in
the intensity profile of YOYO-1 dye along the backbone of a confined DNA,
which suggests the existence of the local folded structures (see Appendix).

D. Moreover, the constant c comes from the expression for the free energy of
confined chains in the Odijk regime and it has been estimated by Burkhardt to
be c = 1.1[23], which is very close to our fitting results. This strongly suggests
that in the large mean extension regime 〈x〉 > 10µm, the DNA segments are
better described by the deflection theory.

Furthermore, from Fig.7.4A to C, we observe that the length of the error
bars decreases with the decrease of the channel size. The reason for this may
be that for moderately confined DNA, the local folded structures can form
and unravel with comparable rates, as indicated by the similar height of the
two peaks in the distribution in Fig.7.6B-C. Therefore, the behaviors of the
confined polymer is a competition between de Gennes’ type and Odijk type
regimes and the error bar is large. As the channel size becomes smaller, Odijk’s
theory begins to dominate, resulting in smaller error bars.

By integrating the force-extension relation Eq.I.1, we obtain the free en-
ergy expression G(x) in the Odijk (or Wang and Gao) deflection regime (see
Appendix), which further leads to the distribution for the extension P (x):

P (x) = P0 exp

(
Bx− A

L− x

)
, (7.10)

where A = L2/4ξp, B = 4c2ξ
1/3
p /D4/3 and P0 is the normalization factor. We

fit this expression to the right peaks in Fig.7.6B-C and find that reasonable
parameters (L ≈ 15µm, ξp ≈ 50nm) give excellent matches with the measured
probability distributions in experiments. In fact, we can use this free energy
expression to understand the transition from a different point of view. We
note that the internal segments are expected to stay in the regime with lower
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Figure 7.8: Discrete wormlike chain model for confined DNA in a nanochannel.
The confined wormlike chain, subjected to and end-to-end applied force in
general, has bending energy represented by a spring of stiffness κ at each
node.

free energy, and that regime transition occurs when the free energies in the
two regimes are equal. By comparing the free energies in the two regimes, we
draw a phase diagram on the L−D plane in Fig. 7.7. The result shows that
as D decreases, the transition length L decreases. Theoretically, the phase
diagram involves an undetermined constant, which we fit such that transition
occurs in the range L ≈ 8 − 12µm when D = 100nm. Then the result shows
that at D = 60nm, the transition length is 3−5µm, which roughly agrees with
our experimental result for λ DNA in a 50nm×70nm channel (Fig. 7.4C). The
phase diagram shows that transition from de Gennes’ to Odijk’s regime can
occur when D decreases with L fixed, or when L increases with D fixed.

We also measure the end-to-end extension for DNA with different lengths
(longer than 10 microns) in a 60nm×100nm channel and the result agrees with
Odijk’s theory (Fig. S3).

In the above analysis, we have applied the theories (de Gennes, Odijk,
Wang and Gao) for the end-to-end extension/fluctuation to evaluate the inter-
nal, or local extension/fluctuation of a confined DNA. The assumption behind
this is that when the internal segments are much longer than the persistence
length of the DNA, the behavior of the segments is not very different from that
of the entire DNA (with the same length) because the boundary conditions
do not play a significant role [24, 25, 26]. To verify such an assumption, we
explicitly calculate the internal fluctuation in Odijk’s regime by extending a
theory we developed earlier [26], and then compare our results to the theories
developed for an entire piece of DNA.

Following the procedure in ref.[26], we model the polymer as a confined
discrete N−segment wormlike chain, or fluctuating elastic rod (Fig.7.8). The
Hamiltonian consists of 3 terms (Eq.7.11): (1) bending energy, (2) confinement
energy, and (3) potential energy of an end-to-end applied force as shown in
Fig.7.8.

H =

∫ L

0

κ(s)

2

∣∣∣∣ dt̂ds
∣∣∣∣2 ds+

∫ L

0

Ξ

2
y2ds− F∆x (7.11)

=
1

2
~θT ·K~θ − FL. (7.12)
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Figure 7.9: Fluctuation versus mean extension of internal segments of the
strongly confined DNA in 60nm channels (Eq.7.13 and Eq.7.14). The contour
lengths of the DNA are (A) L = 10µm, (B) 5µm, (C) 1µm and (D) 250nm.
For a long DNA (A and B), data from internal segments of various locations of
the chain collapse on the a curve with 0.5 power law (light green). The result
agrees with Eq.7.9 (blue), which is derived for the end-to-end fluctuation of
a confined DNA. For short DNA however (C and D), no power law is found
as data from various locations of the chain do not collapse onto a single curve
(light green). Therefore, formulae derived for the end-to-end fluctuation of
the confined DNA, such as Eq.7.9 (blue), cannot be used for internal fluctua-
tion. The boundary effect is so significant that the rms fluctuation σ not only
depends on 〈x〉, but also on the location of the internal segments.

In the bending energy term, κ(s) is the bending modulus of the DNA and it can
vary along the arc length s so that the polymer is not necessarily homogeneous
in mechanical properties. t̂ is the tangent vector along the polymer. For the
confinement potential term, we follow Wang and Gao’s approach [11] and use
an effective quadratic energy characterized by the coefficient Ξ, with y being
the transverse displacement. In general, Ξ can be a function of the arc length
s in case the confinement is not uniform. Also, for 3D chains in rectangular
channels, Ξ can be different in the two transverse directions. For the potential
energy term, we consider the chain subjected to an end-to-end force F , which
can be set to zero if no force is applied. ∆x = x(L) − x(0) is the end-to-end
extension of the chain. Up to a second order approximation, the Hamiltonian
can be written in matrix form as shown in Eq.7.12, with θi being the discretized
tangent angles and K being the N ×N stiffness matrix of the chain [26].

It has been shown that when there are no constraints on twist (as is the
case here), thermodynamic properties of a 3D chain can be easily generated
from those of two 2D chains [26]. Therefore, for simplicity, here we describe
the theory for 2D chains and plot the results for the corresponding 3D chains.

To get the internal fluctuation, we first need to calculate (1) the partition
function, and (2) the angle fluctuation 〈θiθj〉. These are evaluated in the
“Materials and Methods” section. Finally, for any internal segment between
node i and node j of the discrete chain, the mean extension 〈xij〉 and the
corresponding rms fluctuation can be explicitly calculated as:

〈xij〉
l

= (j − i)−
〈θ2
i+1〉+ · · ·+ 〈θ2

j 〉
2

, (7.13)
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Figure 7.10: Fluctuation as a function as the position of an internal segment for
a short chain. The contour length of the entire chain is short (250nm), so that
the fluctuation not only depends on the length of the internal segment, but
also on its position. Here we plot the fluctuation versus position for internal
segments with the same size: 50nm (red) and 10nm (blue). For the internal
segments close to the boundaries, the fluctuation is larger because they have
more freedom compared to the segments inside the chain.

σ2
ij

l2
=
〈(xj − xi)2〉 − 〈xj − xi〉2

l2
=

1

2

j∑
m=i+1

j∑
n=i+1

〈θmθn〉2, (7.14)

where l is the segment length of the discrete chain. In Fig.7.9, we consider
DNA in 60nm×60nm channels and plot σij versus 〈xij〉 for all the pairs of
internal nodes (i, j) and see if the profiles match with the theories developed
for the entire piece of DNA. Fig.7.9(A) shows the result for a chain with
contour length L = 10µm, which is much larger than its persistence length
ξp = 50nm. The internal fluctuation profile agrees exactly with Eq.7.9, which
is derived for the end-to-end fluctuations. In particular, all the data collapses
into a single curve with 0.5 power law. As the contour length of the polymer
decreases, however, (Fig.7.9B-D), the internal fluctuation profile begins to
scatter around the curve for the end-to-end fluctuation. This implies that, for
short chains, the magnitude of internal fluctuation can be different, even if
two internal segments have the same mean extension. The magnitude of the
fluctuation depends strongly on where the internal segment is located. In fact,
we show in Fig. 7.10 that the internal segments located at the two boundaries
have larger fluctuation because they have more freedom to fluctuate compared
to the segments inside the chain. The strong boundary effects on short chains
(such as, DNA with contour length 0.6-7µm) have been discussed by several
groups recently [24, 26, 25]. Our results suggest that the accuracy of DNA
sizing depends on the DNA contour length. For a short DNA with contour
length L < 1µm confined in a 60nm×60nm channel, the uncertainty of the
measurement will be high. For the experimental results we discussed earlier,
the λ DNA, T4 DNA and BAC DNA all have contour lengths of tens of
microns, for which boundary effects can be neglected. Therefore, it is safe to
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1 nick/kbp 

Figure 7.11: Fluctuation of a 18µm long chain with persistence length ξp =
50nm confined in a 60nm×60nm channel. From bottom to top: (1) 4: no
nicks; (2) +: 10 nick in 18µm; (3) ©: 50 nicks in 18µm; (4) ×: 100 nicks
in 18µm; (5) �: 200 nicks in 18µm. This figure shows that when the density
of nicks is lower than 50 nicks per 18µm, or 1 nick per kbp of DNA, the
fluctuation profile is almost the same as that for a chain without nicks.

use the formulae for end-to-end extension/fluctuation to estimate the internal
properties of the confined DNA in our experiments.

To measure the internal fluctuation, we have introduced nicks into the
DNA so that internal sites along the DNA can be labeled. Since the theory
discussed above allows for arbitrary bending modulus κ(s) as a function of the
arc length s, we can model the effect of nicking by setting κ = 0 on some nodes
of the discrete chain and see whether the nicks have significant effects on the
behavior of the DNA. For simplicity, we assume here that the nicks are equally
spaced along the chain. Fig.7.11 shows that the fluctuation profile does not
significantly deviate from the homogeneous chain with uniform κ when there
are less than 50 nicks along a 18µm chain (∼50kbp DNA in a 60nm×60nm
channel). In our experiments, the fluorescent tagging is introduced at the
nicking endonuclease recognition sequence sites, which have much lower den-
sity than 1 nick/kbp in λ, T4 and BAC DNA. Therefore, the nicks will not
significantly affect the DNA internal fluctuation.

To summarize, in this chapter, we have investigated the thermal fluctua-
tions of the internal segments of a piece of confined DNA in a nanochannel.
The channel size is on the order of the persistence length of the DNA and
we have compared the fluctuation data to several theories in literature. We
have found that for channel widths on the order of 100nm there exists a critical
length scale ∼10µm for the mean extension of an internal segment below which
the de Gennes’ theory describes the internal fluctuations and above which the
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data agree better with Odijk’s deflection theory. For long DNAs confined in
nanochannels we have inferred that there are folded structures whose branches
are about 3 times the persistence length of DNA which are separated by seg-
ments with mean extension ∼10µm. We surmise that these folded structures
are indicative of a transition from the Odijk regime, in which the DNA is rel-
atively straight, to the deGennes regime, in which the DNA is more blob-like.
We have also presented a more detailed theory based on small fluctuations and
incorporating the effects of confinement. We have shown that one can use the
existing theories for end-to-end extension/fluctuations to study the statistical
properties of internal segments only when the contour length of the chain is
much larger than the persistence length of the molecule so that boundary ef-
fects play no role. Our calculations suggest that introducing nicks into the
DNA can change its fluctuation behavior if the density of nicks is greater than
about 1 nick per kbp DNA.

7.3 Materials and Methods

7.3.1 Sequence specific labeling and DNA staining

In a 20µl reaction native, duplex DNA samples 50ng/µl (λ, T4 DNA and
also MCF7 BAC clone 9I10) are incubated with 0.5U of Nb.BbvCI (0.5U/µl)
(NEB, Ipswich, MA) in 1× NEB buffer 2 (NEB) for 1 hr at 37◦C and 20 min at
65◦C. The nicked DNA samples (12.5ng/µl) are then incubated for 30 min at
50◦C in 1×NEB thermopol buffer with DNA polymerase Vent (exo-) (NEB) at
0.5U/µl in presence of a mixture of 75nM dAGC and 75nM Alexa-546 labeled
dUTP. Then, the DNA (4ng/µl) samples are stained with intercalating dye
YOYO-1 iodide at 1 dye molecule per 10 base pairs of DNA (Invitrogen Inc,
Carlsbad, CA) in presence of 0.4M DTT (Promega Inc, Madison, WI).

7.3.2 Loading DNA into nanochannels

Fabrication of silicon based nanochannel chips has been described elsewhere
[27, 28]. The DNA sample is diluted by 2 times using the flow buffer consisting
of 1×TBE, 3.6% Tween, and 10% Polyvinylpyrrolidone (PVP). Ultrapure dis-
tilled water is used for making solutions (Invitrogen Corp., Ultrapure water).
The DNA molecules are driven by electric field (3 − 5V) at the port of en-
trance of the chip and allowed to populate there for 2− 3 minutes [29]. Under
higher voltage (∼10V), the populated molecules are moved to the locos and
then through the micro pillar structure of the chip to convert from a compact
globular conformation to an open relaxed one. At the 300nm channel area the
molecules adopt a more relaxed linear form with some heterogeneity on the
backbone. With one end entering the nanochannel under the electric field, the
DNA molecules elongate to a linear conformation with almost homogeneous
backbone. Most of the structural heterogeneity progressively disappears as it
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interacted with the nanochannels, adopting fully confined equilibrium confor-
mation after the field is off (relaxation time 10 − 15s). A buffer consisting
0.5×TBE, 1.8% Tween 20, 5% PVP has been used to flow the DNA molecules
resulting in a stretch of 65%.

7.3.3 Microscopy and image processing

The epi-fluorescence imaging is done in Olympus microscope (Model IX-71,
Olympus America Inc, Melville, NY) using a 100×SAPO objective (Olympus
SApo 100X/1.4 oil). YOYO-1, the DNA backbone staining dye (∼491nm ab-
sorption, ∼509nm emission) is excited using 488nm laser (BCD1, Blue DDD
Laser Systems, CVI Melles Griot, Rochester, NY) whereas Alexa-546 (∼550nm
absorption, ∼570nm emission) is excited using 543nm green laser (Voltex Inc,
Colorado Springs, CO). The same filter cube consisting triple band dichroic
and dual band pass emission filters (Z488/532/633rpc, z488/543m respec-
tively) (Custom made, Chroma Technology Corp. Rockingham, VT) is used
for detection of YOYO-1 and Alexa-546 emission by alternative laser excita-
tion (using external laser shutters, Thorlabs, Newton, NJ). The emission signal
is magnified 1.6× and detected by a back-illuminated, thermoelectric cooled
charge coupled device (EMCCD) detector (iXon) (Andor, Ireland). About 200
sequential images of the labeled DNAs confined in nanochannels are recorded
at 60− 80ms exposure time in blue-green alternative laser excitation.

7.3.4 Recording and calculations

The intensity profile I(x, y) of each Alexa-546 label is fitted by a 2D Gaus-
sian function to determine the position of the label (xc, yc) in the channel
(Fig.7.1B). The position of each internal label is followed frame-by-frame at
a time interval of about 160ms. The probability distribution, the mean value
and the corresponding standard deviation of the distance between each pair
of internal labels are calculated.

7.3.5 Partition function and angle fluctuation

The partition function for a confined DNA, whose Hamiltonian is expressed
in Eq.7.12, is: Z =

∫
exp (−H/kBT ) d~θ = exp (FL/kBT )

√
(2πkBT )N/ det K,

where N is the number of segments in the discrete chain. The angle fluctu-
ation or correlation is the Boltzmann weighted average of (θiθj) over all the
configurations [26, 30]:

〈θiθj〉 =
1

Z

∫
θi · θj exp

(
− H
kBT

)
d~θ = kBT

(
K−1

)
ij
. (7.15)

Using Eq.7.15, we can explicitly calculate the mean extension and fluctuation
of the internal segments (Eq.7.13-7.14).
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Chapter 8

Entropically Driven Motion of
Polymers in Non-uniform
Nanochannels

Main results of this chapter:

1 In nanofluidic devices, non-uniform confinement induces an
entropic force that automatically drives biopolymers towards
less confined regions to gain entropy.

2 We first analyze the diffusion of an entropy-driven parti-
cle system. The derived Fokker-Planck equation reveals an
effective driving force as the negative gradient of the free
energy. The derivation also shows that both the diffusion
constant and drag coefficient are location dependent on an
arbitrary free energy landscape.

3 We then investigate DNA motion and deformation in non-
uniform channels. Typical solutions reveal large gradients
of stress on the polymer where the channel width changes
rapidly. Migration and deformation of DNA in several non-
uniform channels are discussed.

8.1 Introduction

The development of techniques for confining DNA in nanofluidic channels has
pushed genomic studies up to a new level. Researchers are now capable of using
nano-channels to stretch a single DNA molecule, to sort DNAs based on their
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sizes, and to study repressor-DNA interactions, etc [1, 2, 3, 4]. To interpret
the experimental data, theorists have been developing models to predict the
free energy, the average extension, relaxation time, etc, of a confined polymer
[5, 6, 7, 8, 9]. Among those theories, the two most well-known in the field are
those described by de Gennes [5] and by Odijk [6].

de Gennes’ theory is applicable for a moderately confined polymer. The
theory requires D >> p, where D is the channel width and p is the persistence
length of the polymer. In this regime, DNA forms blob-like structures aligned
along the channel. Evaluated at the average extension, the free energy G of
the confined DNA scales as G ∼ D−5/3 in this regime [9, 10]. This tells us that,
with the increase of the channel size, the free energy of the polymer decreases.

On the other hand, Odijk’s theory studies a strongly confined polymer
with D << p. In this regime, DNA is deflected back and forth by the channel
walls, extending its backbone almost linearly inside the channel. Evaluated
at the average extension 〈∆z〉, the free energy (per unit length) in this strong
confinement regime takes the form [11]:

G|∆z=〈∆z〉 =
ckBT

p1/3 D2/3
, (8.1)

where kB is the Boltzmann constant, T is the absolute temperature and c = 2.5
is a constant for a cylindrical channel. This expression again suggests that
the free energy is a decreasing function of D. The consequences of such a
dependence of the free energy on the channel width are rarely investigated
because many of the studies so far have focused on confining polymers in a
uniform channel. However, in a non-uniform channel the dependence ofG onD
implies a free energy gradient, and therefore an effective driving force along the
channel axis. This effective force can automatically drive the DNA to migrate
along the channel without fluid flow or applied electric fields. Understanding
this force can therefore help design new nanofluidic channels for better DNA
manipulation.

The effective force described here is essentially an entropic force: by mov-
ing to a wider region inside a non-uniform channel, DNA experiences less
confinement, gains more degrees of freedom and thus increases its entropy.
This lowers the free energy of the system. Entropic forces of this kind can
be found in problems like translocation of DNA through nanopores, where
DNA is driven by an electric field, against an entropic force, to pass through a
nanopore that separates two wide compartments [12, 13]. The entropic force
acting on the DNA is revealed by the spontaneous retracting motion of the
molecule when it is partly inserted into the nano-channel [14]. Such retracting
motion was modelled by Mannion et al. [14] by performing a force balance
where the drag force on the DNA due to the surrounding fluid counteracts
a constant entropic force. For simplicity, evolution of the local deformation
of the DNA during its motion was neglected in these studies. Aside from
non-uniform confinement, entropic forces on translocating polymers can also
arise from reversible binding of particles (proteins, for instance) on one end
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of the polymer chain, which creates the so-called entropic Langmuir pressure
[15]. Entropic forces have also been reported to play a role in unfolding DNA
molecules in channels [16]. In an even broader context, the widely studied
diffusiophoresis phenomena on colloidal particles is also created by entropic
forces [17, 18, 19].

The goals of this chapter are (1) to understand the channel-shape depen-
dence of the confinement induced entropic force on a polymer, and (2) to study
the coupled migration and deformation of a polymer in a non-uniform channel.
To understand the entropic force, we first study the diffusion of particles on
a free energy landscape with varying entropy. A Fokker-Planck equation is
derived, which reveals an effective entropic force fent = −∇G, automatically
driving the system to reduce the free energy per particle G. The deriva-
tion also reveals that both the diffusion ‘constant’ and the drag coefficient
become location-dependent as long as ∇G 6= 0. Using the derived effective
entropic force, we further study the motion and deformation of a polymer in
a non-uniform channel. The problem is governed by a second order partial
differential equation (PDE), whose solution gives both the migration velocity
and the strain distribution along the polymer backbone.

Another issue arising in the context of a polymer confined in a non-uniform
channel is the possible transition between the de Gennes’ and Odijk’s regimes.
It is commonly acknowledged that the transition channel width for a stress free
DNA is roughly D ∼ 50 − 100nm, although more complex phenomena have
been reported in this transition regime [20, 21]. As the polymer moves and
deforms inside a non-uniform channel, stress can develop along its backbone
so that the transition width is no longer D ∼ 50− 100nm. Even in a uniform
channel, when electrical force is applied, the transition width is expected to
increase. In this chapter we estimate the transition width D as a function of
the applied force so that we know roughly which theory to use based on the
current location of the DNA and its local stress state. For simplicity, we will
focus on a piece of DNA moving in a narrow non-uniform channel such that
it is entirely in Odijk’s regime. Then, we will discuss possible generalization
of the theory to the de Gennes’ regime.

8.2 Entropically Driven Diffusion

Before investigating the migration of DNA in non-uniform channels, we first
briefly discuss entropically driven diffusion of particles in this section.

Consider a 1D random walk of an ensemble of particles on a free energy
landscape with varying entropy (Fig. 8.1). Unlike in the classical random
walk model, the particles considered here have different internal states. In free
space where no spatial constraints are imposed, each particle has Ωtot internal
states with energy Ei (i = 1, 2, · · ·Ωtot). Along the z-axis, the 1D random
walk domain, some spatially-varying constraints are imposed, reducing the
number of accessible states for each particle to Ω(z) ≤ Ωtot at location z
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(Fig. 8.1). The spatial constraints are non-uniform and therefore Ω(z) depends
on z. The particles are on an entropy-varying landscape. In the context of
confined DNA in nano-channels, one can think of the different internal states
as different configurations of the DNA. The non-penetration constraint posed
by the non-uniform channel wall forbids some of the configurations and reduces
the number of accessible states. We define the location dependent partition
function as Ξ(z) =

∑Ω(z)
i=1 exp(−βEi), and the z-dependent free energy as

G(z) = −kBT log Ξ(z). Note that in defining the partition function and the
free energy, we have assumed local equilibrium.

# of states

Ωtot

z z+∆zz-∆z

Ω(z)

free energy G

z

available
states

forbidden
states

... ...... ...

Figure 8.1: 1D random walk of particles (blue) in the z-direction. In its
natural condition, each particle has Ωtot internal states (Ωtot = 6 in the figure).
Some z-dependent spatial constraints reduce the number of accessible states
at location z to Ω(z) ≤ Ωtot (the blank boxes), creating an entropy varying
landscape. Free energy is lower where there are more states to explore. An
entropic force arises from this random walk model, driving the system towards
regions with lower free energy.

One can derive the Fokker-Planck equation rigorously for this problem,
which turns out to be:

∂P

∂t
=

∂

∂z

[
D∂P
∂z
−
(
−dG/dz

ξ

)
P

]
, (8.2)

with P (z, t) being the probability density for a particle being at location z at
time t, D being the diffusion ‘constant’, and ξ being the drag coefficient.

Compared with the Fokker-Planck equation for a random walk with a ‘real’
applied force (say, by an optical tweezer or other instruments) [22], Eq. 8.2 re-
veals that the non-uniform spatial constraint creates an effective force−dG/dz,
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which drives the system towards regions with higher entropy to reduce the free
energy. We note that free energy gradient has been shown to be a good ap-
proximation to the Langmuir pressure (an entropic force) in problems where
ejection of DNA from bacteriophage is speeded up by the entropic effects of
reversible binding of proteins in the host cell [15]. Here in our model, the free
energy gradient is exactly, instead of approximately, the entropic force.

It is important to note that in an entropy-varying landscape, the diffusion
‘constant’ D is location-dependent:

D ∼ Ξ(z). (8.3)

This result comes out naturally in deriving the Fokker-Planck equation. It
suggests that the particles diffuse faster where there are more states for explo-
ration. This is analogous to the case of diffusion in porous media, where the
effective diffusion constant is found to be proportional to the porosity of the
media [23]. Furthermore, the Stokes-Einstein relation Dξ = kBT implies that
the drag coefficient ξ is also location-dependent when there are non-uniform
spatial constraints. This is not surprising since it is well-known that the prox-
imity of walls can change the drag coefficient on bodies in low Reynolds number
flows [24].

Using conservation of mass: P,t = −J,z, we obtain from Eq. 8.2 the particle
flux J as:

J = −D ∂P

∂z
− dG/dz

ξ
P. (8.4)

An analytic steady state distribution can be found, even with both D and ξ
being functions of z, by setting J to be a constant:

Psteady(z) = P0 Ξ(z)

∫
dz

Ξ2(z)
, (8.5)

where we recall that G(z) = −kBT log Ξ(z) and P0 is a normalization constant.
This is the steady state probability density of particles on an arbitrary free-
energy landscape with a non-uniform diffusion constant. To verify if this
solution is correct, we consider a random walk in z ∈ [z0, z1] with G(z) ∝
log(z). The boundary condition at z = z0 is a hard wall, and at z = z1 it is
an absorption wall. Without any fitting, Eq. 8.5 agrees almost exactly with
the result from a Kinetic Monte Carlo (KMC) simulation (Fig. 8.2). Here the
KMC simulation was performed using the algorithms given in Voter [25].

Further, we note that the first term on the right-hand-side of Eq. 8.4 is the
diffusive flux, while the second term is the drift flux (v − vfluid)P . Therefore,
the mean velocity v of the system is:

v = vfluid +
fapp − dG/dz

ξ
. (8.6)

Here vfluid is the fluid velocity and fapp is an external applied force. Eq. 8.6
is essentially an equation for force balance if, again, −dG/dz is interpreted as
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Figure 8.2: Steady state distribution Psteady(z) (y-axis on the left) on a free
energy landscape G(z) ∝ log(z) (y-axis on the right). The random walk
domain is z ∈ [1, 100], with z = 1 being a hard wall and z = 100 being an
absorption wall. Eq. 8.5 predicts a linear steady state distribution (blue line),
which is confirmed, without any fitting, by the Kinetic Monte Carlo simulation
results (blue circles). The numbers in this figure are in SI units.

an effective entropic force:

fapp︸︷︷︸
external force

+

(
−dG
dz

)
︸ ︷︷ ︸

entropic force

+ ξ (vfluid − v)︸ ︷︷ ︸
drag force

= 0. (8.7)

Eq. 8.7 without the entropic force term has been used to model macromolecules
stretched in fluid flow [26]. Here we show that a non-uniform spatial constraint
gives rise to an effective entropic force term that must be included in the
macroscopic force balance equation.

Interestingly, exactly the same results as presented above for particles in an
entropy varying landscape can be derived by using another method – starting
from the Sackur-Tetrode formula for the entropy of an ideal gas and considering
the heat production rate. We show the derivation in Appendix N.

8.3 DNA Confined in Non-uniform Channels

– Theory and Computation

We now analyze the migration and deformation of a DNA molecule in a non-
uniform channel. Under strong confinement, a DNA molecule (or any semi-
flexible polymer) can be modelled as a fluctuating 1D rod (Fig. 8.3) [26]. The
rod is parametrized by its arc length s ∈ [0, L], with L being the contour
length of the polymer. We denote the location of the DNA inside the channel
at time t as z(s, t), so that ∂z/∂t = ż is the local velocity and ∂z/∂s = λ is
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z

Figure 8.3: A DNA molecule is modelled as a 1D rod confined in a non-
uniform channel. Typically, inside a nano-channel the DNA molecule can be
subjected to stretching force fint, drag force fdrag exerted by the surrounding
fluid flow, entropic force fent due to the non-uniform confinement and also
electrical force fele since the DNA is charged. The figure shows balance of
force for an infinitesimal segment on the rod.

the local stretch of the DNA. Note that ż > 0 if the polymer is moving from
left to right (Fig. 8.3).

Below, we first analyze different forces that act on the polymer. Of par-
ticular interest are the entropic force and the drag force. As pointed out in
the previous section, the free energy gradient −dG/dz serves as an effective
entropic force per unit length fent. Using Eq. 8.1, we obtain:

fent =
5

3

kBT

p1/3D5/3

dD

dz
. (8.8)

This entropic force is positive when dD/dz > 0. Therefore, it drives the
system towards regions with higher entropy. Also, like other entropic forces
in polymer science, it depends linearly on the thermal energy kBT [22, 15].
Moreover, its magnitude is governed not only by the gradient of the channel
width, but also by the property of the polymer, like the persistence length
p. A very stiff polymer with large persistence length p would be extended
linearly along the channel without feeling much confinement. Therefore, the
entropic force due to non-uniform confinement will be weak on stiff polymers.
The total entropic force acting on the entire DNA can be estimated as:∫ L

0

(−dG/dz)ds ≈
c
[
D−2/3(0)−D−2/3(L)

]
βλp1/3

. (8.9)

Using Eq. 8.9, a divergent channel with D(0) = 25nm and D(L) = 50nm will
pose a total entropic force of approximately 0.15pN on a strongly confined
DNA with λ ≈ 0.8 and p = 50nm. This force is significant because the typical
thermal force scale on a DNA molecule is kBT/p ≈ 0.08pN.
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Translating polymers in a nanochannel also experience a fluid drag. When
the confinement is strong, hydrodynamic interactions between the polymers
and the channel walls become important and cannot be neglected. For ex-
ample, for a slender body of contour length L and radius a moving between
two walls that are separated by a distance D << L, the longitudinal drag
coefficient per unit length is [27]:

dt2 =
2πµ

log (D/a)− 0.453
, (8.10)

with µ being the viscosity of the fluid. The subscript 2 stands for confinement
by two walls. dt2 is much larger than dt0 = 2πµ

log(L/2a)+c
with c ≈ O(1), which is

the drag cooefficient for the same slender body moving in a fluid with no nearby
walls [24]. In our problem, a polymer in a nanochannel can be modelled as a
slender body confined by four walls. Using superposition [28] and the fact that
dt2 >> dt0 [24], the drag coefficient for such a slender body is approximately:

dt ≈
4πµ

log (D/a)− 0.453
. (8.11)

It has been shown, by several independent studies, that the method of super-
position for calculating the drag coefficient yields reasonably good agreement
with experimental measurements [29, 30, 31], even though it is not exact.

To determine dt, we still need to know the radius a of the slender body.
Marko and Siggia [32] suggested that the effective radius should be taken as
the transverse size R⊥ of the elongated polymer. This depends not only on the
width D of the channel, but also on the persistence length p of the polymer.
Given the stretch λ of the polymer, we estimate R⊥ in Appendix O, and the
result is:

R⊥ = a0λ+ 0.7445
(
pD2

)1/3√
1− λ2 , (8.12)

with a0 = 1.0nm being the geometric width (radius) of a DNA molecule [33,

34, 35]. Since (pD2)
1/3

>> a0, R⊥ is a decreasing function of λ, which makes
sense because for an inextensible rod, the perpendicular deflections should
decrease as the stretch increases.

A substitution of R⊥ into a in Eq. 8.11 suggests that a polymer with less
transverse fluctuation experiences less drag. In particular, for D = 50nm, the
drag coefficient per unit length is about 39.6 pN ms µm−2 at zero force. In
comparison, it has been estimated that when there is no confinement, the drag
coefficient is about 0.61 pN msµm−2 for a DNA molecule [36]. In micron scale
channels, on the other hand, the drag coefficient is about 1.2 pN ms µm−2

[36]. Our estimate shows that when the channel width is on the nanometer
scale, the drag coefficient increases significantly. Further, we note that λ and
R⊥ depend on the internal stretching force fint (discussed below in Eq. 8.14).
Therefore, dt is also a function of fint. We show their relation in Fig. 8.4.
As expected, increasing the stretching force reduces the transverse size of the
polymer, which leads to a smaller dt.
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Figure 8.4: Drag coefficient per unit length as a function of the stretching
force fint at different channel widths D (calculated using Eq. 8.11, Eq. 8.12
and Eq. 8.14).

Next, we do a force balance on an infinitesimal segment of the rod, which,
aside from the above mentioned two forces, also experiences (Fig. 8.3): (1)
internal stretching force fint exerted by its neighbouring segments, and (2)
electrical force per unit length fele arising from the applied electric fields.
Balance of forces in the longitudinal direction (Eq. 8.7) requires these forces
sum to zero:

∂fint

∂s
− dt

(
∂z

∂t
− vfluid

)
+ fele + fent = 0. (8.13)

In this force balance analysis, long-range hydrodynamic interactions between
different material points on the DNA are neglected because the polymer is
under strong confinement. A random force can be added, but, to study the
average behavior, we do not include it in Eq. 8.13. Also, since the Reynolds
number is low in a nanofluidic channel, it is legitimate to ignore inertia. We
also note that the drag force may also depend on the strain rate ∂vfluid/∂z
[37], but in this study we neglect this effect. This is consistent with Eq. 8.7.

To solve for the two unknowns z(s, t) and fint(s, t), we also need a consti-
tutive equation [26]. In particular, following Marko and Siggia [32], we will
apply the constitutive relation locally on the polymer. For a strongly confined
DNA, Wang and Gao [38] showed that the force-stretch relation is:

fint =
1

βp

[
1

4(1− λ)2
− c2

( p
D

)4/3
]
, (8.14)

where again λ = ∂z/∂s is the local stretch of the DNA and c = 2.5 is a
constant for a cylindrical channel. Eq. 8.13 and Eq. 8.14 form the governing
equations for the problem.

To identify the relative order of magnitude of each term in the governing
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equations, we scale the problem using the following non-dimensional quantities:

z̄ =
z

L
, s̄ =

s

L
, D̄ =

D

p
, ā0 =

a0

p
, (8.15)

f̄int = fintβp, f̄ele = fele

(
3

5
βpL

)
, (8.16)

t̄ =
5t

3βdt∗pL2
, v̄fluid = vfluid

(
3

5
βdt∗pL

)
. (8.17)

Here dt∗ = 4πµ is the numerator of the drag coefficient dt (Eq. 8.11). The
scaling suggests that the typical time scale for the problem is on the order
of τ ∼ βdt∗pL

2 ≈ 10s for a DNA molecule about 20µm long in water with
viscosity 10−3 Nsm−2. For a wider micron scale channel, however, the time
scale is expected to be smaller since the drag coefficient is smaller and the
molecules move faster. As a comparison, the Rouse bead and spring model
predicts the first-mode structural relaxation time τ1 of a polymer chain as
τ1 = βξL2 [39], with ξ being the drag coefficient per bead. Using ξ = dtl
and l ∼ p, where l is the natural length of each spring, we recover the time
scale τ for our governing equations. We note that, more generally, a stretched
polymer has two different relaxation times, one in the longitudinal direction
τ‖ and one in the transverse direction τ⊥ [40]. The time scale τ ∼ βdt∗pL

2 for
our governing equations is for the deformation in the longitudinal direction
because t appears in our equations as ∂z/∂t.

The two governing equations for z(s, t) and fint(s, t) (Eq. 8.13 and Eq. 8.14)
can be decoupled. By plugging the constitutive law into the equation for force
balance, we can eliminate f̄int and the result is an evolution law for z̄(s, t):

H(λ)
∂z̄

∂t̄
=

3

10
(
1− λ̄

)3

∂λ̄

∂s̄
+

(
5λ̄

D̄7/3
+

1

D̄5/3

)
dD̄

dz̄
+ V̄ . (8.18)

Here, the function H(λ) =
[
log(D̄/R̄⊥)− 0.453

]−1
is the contribution of the

polymer-wall hydrodynamic interaction. V̄ = H(λ)v̄fluid + f̄ele can be viewed as
an effective flow that combines the actual drag force with the electrical force.
Eq. 8.18 is the central equation for the problem because its solution gives
the velocity ∂z/∂t and also the deformation λ = ∂z/∂s of the DNA inside a
non-uniform channel.

It is possible to design a non-uniform channel in which a DNA molecule
remains stationary. The key is to use the fluid flow and applied electric field
to exactly balance the entropic force. The shape of this special channel can
be determined by setting ∂z̄/∂t̄ = 0 in Eq. 8.18, so that what remains is an
ordinary differential equation (ODE) for the channel shape D = D(z). To see
this, we note that all the three terms on the right-hand-side of Eq. 8.18 can
be written as functions of D because (1) by setting fint = 0, λ̄ = λ̄(D̄) by the
constitutive law, and (2) for an incompressible flow, v̄ = v̄(D̄) because of mass
conservation. We do not set up the ODE here for the sake of brevity.

133



0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

st
re

tc
h 

λ

s/L
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

di
m

en
si

on
le

ss
 fo

rc
e 

βp
fstretch λ(s)

dimensionless force βpf(s)

Figure 8.5: Stretch and force distributions along the arc length s of a stationary
DNA in a uniform nanofluidic channel. The stretch distribution is non-linear:
(1−λ̄) ∼ (−s̄)−1/2 while the force distribution is always linear with slope being
−5V̄/3.

Eq. 8.18 does not have an analytical solution for most cases. To solve the
problem numerically, we discretize the rod into segments and do force balance
using the wormlike-chain constitutive relation (with effects of confinement)
for each of them. The local velocity and stretch of each segment are deter-
mined using the method discussed above. The discrete version of our governing
equations essentially constitutes a string of beads connected by wormlike-chain
linkers.

8.4 DNA Confined in Non-uniform Channels

– Results

8.4.1 Stationary DNA in nanochannels

As the simplest special case, we first briefly discuss the results for a stationary
DNA in a uniform channel. In this case, Eq. 8.18 reduces to:

∂λ̄

∂s̄
= −10V̄

3

(
1− λ̄

)3
. (8.19)

Assuming uniform flow, i.e, V̄ = constant is independent of z̄ (since H de-
pends weakly on λ, we neglect the dependence of H on λ here. When we do
numerical simulations in the later discussions, this dependence will be taken
into account), we get the analytic solutions:

λ̄(s̄) = 1− 1

2
√
A−

(
5V̄/3

)
s̄
, f̄int(s̄) = −5V̄ s̄

3
− c2

D̄4/3
+ A. (8.20)
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Figure 8.6: Entropically driven DNA crossing a sharp interface where the
channel width changes suddenly. The channel shape is shown in (a). No
fluid flow or electrical force is applied, so the DNA is driven only by the
entropic force. The numbers in the circles represent snapshots of the molecule
at different times. The process can be divided into two stages. Stage-(I):
DNA moving across the interface at z = z∗ ( 1© – 3©). In this stage, a large
force/strain gradient occurs at z = z∗ as is apparent in (b). This force/strain
gradient is caused by the migration speed gradient as shown in the enlarged
figure in (a) (v0 > vl, v0 > vr). The strain gradient travels along the DNA
backbone until it completely enters into the wider region. Total extension of
the DNA decreases in this stage as is apparent in (c). Stage-(II): DNA leaving
the interface ( 3© – 4©). In this stage, the force/strain gradient slowly relaxes as
is apparent in (b). The total extension of the DNA stops decreasing, instead,
it increases to reach an equilibrium value as is apparent in (c).

Here c = 2.5 and A is a constant determined by the boundary condition. For
example, f̄int(1) = 0 for a free end leads to A = 5V̄/3 + c2D̄−4/3.

The solution in Eq.8.20 suggests that the force distribution along the arc
length is always linear while the stretch varies non-linearly as (1 − λ̄) ∼
(−s̄)−1/2 (Fig. 8.5). Moreover, when V̄ > 0, both f̄int and λ̄ are decreas-
ing functions of s̄. This implies that the strain along the DNA is highest at its
‘upstream’ end and lowest at its ‘downstream’ end, regardless of the boundary
conditions posed. This is reasonable because forces applied at the ‘upstream’
end should balance the drag force along the entire DNA, so that the polymer
can stay stationary.

8.4.2 Migration and deformation of DNA in non-uniform
channels

We now analyze the entropy-driven migration of DNA in non-uniform channels.
Firstly, we consider a channel with a sudden change in its width as shown in
Fig. 8.6(a). Similar channels have been used to study the transport of DNA
in nanopits [41], although in this section we will focus on channels narrow
enough that the polymer is purely in Odijk’s regime. The channel shape is
modelled as a hyperbolic function D(z) ∼ tanh(z/η), where η is a parameter
characterizing the length scale over which the channel changes its width. As
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Figure 8.7: Movement of the right end of the DNA (z(L, t) as a function of
t) in channels with different η. No fluid flow or electrical force is applied, so
the DNA is driven only by the entropic force. For a channel that changes its
shape more rapidly (smaller η = 0.01, blue), the DNA moves faster because of
larger entropic force. The initial condition is a stress free state. The boundary
conditions are fint = 0 at s = 0 and s = L.

η → 0, D(z) becomes a step function.
To study the entropic effect, fluid flow and electric field are set to zero,

so that the DNA is driven purely by the entropic force. We solve Eq. 8.18
numerically to obtain z(s, t), with a stress-free initial condition fint(s, 0) = 0
and stress-free boundary conditions fint(0, t) = fint(L, t) = 0. As expected,
the DNA migrates to the wider region. The entire process can be divided into
two stages, as explained in detail below.

Stage-(I): DNA moving across the interface z = z∗, at which the chan-
nel width changes ( 1©– 3© in Fig. 8.6). In this stage, the material point at
the interface z∗ experiences a large entropic force. Therefore, it moves with
a larger velocity to the left compared to its neighbouring material points (see
the enlarged figure in Fig. 8.6(a)). This stretches the material on the right
of the interface and compresses the material on the left. As a result, a large
force/strain gradient appears at the interface. This force/strain gradient trav-
els along the DNA backbone as it moves across z = z∗, as shown in Fig. 8.6(b).
This result implies that, if a polymer were to undergo structural change in a
nano-channel, the change is most likely to occur at the interface where the
channel shape changes most rapidly. Interestingly, some nanopores in cells,
such as those in proteasomes, have indeed been found to cause structural
changes in proteins [42, 43].

A second observation in this stage is that both ends of the DNA migrate at
constant velocities (Fig. 8.7 shows the migration of the end s = L). This can be
understood by looking into the central equation (Eq. 8.18). Before completely
moving across the interface z = z∗, the stretch λ at both ends remains almost
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a constant and does not change with time. Therefore, Eq. 8.18 suggests an
almost constant ż. This result holds even when there is fluid flow in the channel
(V̄ 6= 0). Our results also show a decrease in the total extension of the DNA in
this stage (Fig. 8.6(c) 1©– 3©). This is expected because during the migration,
a larger portion of the DNA moves into the wider region, where it suffers less
stretch.

Stage-(II): DNA leaving the interface ( 3©– 4© in Fig. 8.6). As the entire
DNA molecule enters into the wider part of the channel, the force/strain gra-
dient slowly relaxes and finally disappears (Fig. 8.6(b)). At the same time,
the total extension of the polymer stops decreasing, and increases to reach an
equilibrium value (Fig. 8.6(c)).

Smoothing the change in width of the channel by increasing η can reduce
the entropic force. Therefore, DNA is expected to migrate slower in a chan-
nel with a gently varying cross-section. This is confirmed by the solution to
the central equation (Eq. 8.18). In Fig. 8.7, z(L, t) is plotted for DNA in
two different channels with η = 0.01 and 1 respectively, to show the velocity
difference. No fluid flow is applied and the electrical force is set to zero.

Other more complicated non-uniform channels have also been fabricated
in recent years, although most of them are at the micron scale [36]. We show
the migration of a piece of DNA in four different types of such channels (in
nanoscale so that the polymer is in Odijk’s regime) in Fig. 8.8. The channel
shape is D(z) = (az+ b)n, with n = 1,−1/2,−2 and −1 for the four channels.
a and b are two constant parameters. No fluid flow or electrical force is applied,
so the DNA is driven only by the entropic force. Our results suggest that with
the same entrance width and exit width, a linear channel with n = 1 drives
the polymer to move most slowly and the polymer suffers less stretch in this
channel type (Fig. 8.8).

We next consider symmetric channels with two shape-changing regions as
shown in Fig. 8.9(a) and (d). Again, the fluid velocity and electrical force are
set to zero. These channels can exert entropic pulling and pushing forces on
the molecule. In the channel shown in Fig. 8.9(a), the two ends are wider while
the middle region is narrower. This creates a pair of pulling entropic forces on
the confined polymer. Therefore, even without fluid flow or electrical force,
stress/strain along the backbone quickly builds up and reaches a maximum in
the middle where the confinement is stronger (Fig. 8.9(b)). The total extension
of the polymer increases in response to the opposite entropic stretching and
achieves equilibrium after some time as the polymer reaches a stationary state
(Fig. 8.9(c)).

Fig. 8.9(d) is another symmetric channel with two narrow ends and a wide
middle region. In this case, the entropic forces push the DNA into the middle
region. However, as the DNA contracts, negative force builds up along the
backbone, pushing against the entropic force until force balance is established
(Fig. 8.9(e)). During the process, total extension of the polymer decreases in
response to the entropic pushing (Fig. 8.9(f)). Again, we see large stress/strain
gradients at the regions where the channel changes its shape.
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A fluid flow or an applied electric field in the channel shown in Fig. 8.9(a)
can break the symmetry of the problem. The DNA now migrates in response
to the flow, or the electric field, through the nano-channel. The results with
vfluid > 0 and fele = 0 are shown in Fig. 8.10(b). The total stretch of the DNA
increases as the polymer squeezes through the narrow region (Fig. 8.10(b)).
Two force/strain gradients travel along the backbone of the DNA sequentially
during the entire process (Fig. 8.10(c)).

Finally, we also investigate the dependence of the migration speed on the
polymer contour length L and persistence length p. Three polymers with
different contour lengths and persistence lengths (L = 8, 3 and 8µm, p = 50,
50 and 100nm respectively) are placed in a periodic channel with fluid flow
vfluid > 0 (Fig. 8.11(a)). Electrical field is again set to zero. Our results
show that longer DNA moves faster in the periodic channel. At t = 5s, the
long DNA with L = 8µm has already been separated from the short DNA
with L = 3µm by 6 − 7 microns (Fig. 8.11(b)). Changing the persistence
length of the polymer does not significantly affect the migration velocity, at
least in the case we studied. Fig. 8.11(b) shows that a polymer with p = 50nm
migrates as fast as one with p = 100nm. This can be explained in the following
way. Increasing the persistence length has two effects. Firstly, it reduces the
drag coefficient since the effective radius of the polymer rod is less. This
speeds up the migration. Secondly, it also reduces the entropic force (Eq. 8.8),
which drives the polymer motion. This lowers the migration velocity. These
two effects cancel each other, making the migration velocity not significantly
dependent on the persistence length.

8.4.3 Transition to the de Gennes regime under non-
zero force

The framework described above can be generalized to the de Gennes’ regime
by (1) adding proper force terms in the force balance equation (Eq. 8.13) since
for a moderately confined DNA, volume exclusion effect and also the hydro-
dynamic force cannot be neglected any more, (2) changing the constitutive
law for a blob-like polymer. To completely solve the problem of DNA in non-
uniform channel, we also need to know at which channel width D the transition
from the Odijk to de Gennes regime occurs. Although it is well-known that
transition for a stress free DNA happens at channel width about 50− 100nm,
transition width for a DNA under finite stress is unknown. Below we try to
estimate the transition width between the two regimes as a function of the
force.

We shall find the transition width in the following way. Odijk’s theory
assumes that under strong confinement, the angle fluctuation of the polymer
is small such that second order approximation is proper. We shall find, in the
f −D plane, regions where the small angle approximation is valid. The other
regions of the f − D plane where small angle approximation is not valid are
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assumed to be in de Gennes’ regime.
Let θ(s) be the angle formed by the polymer with respect to the axis of the

channel. In the Odijk regime, using the small angle quadratic approximation,
the mean angle fluctuation of a confined chain under end-to-end force f is
found to be [38]:

〈θ2〉 =
1√

βpf + c2 (p/D)4/3
, (8.21)

In deriving this result, cos θ ≈ 1 − θ2/2 was used. The ratio between the
dropped quartic term θ4/24 and the retained quadratic term θ2/2 is:

e =
θ4/24

θ2/2
=
θ2

12
. (8.22)

In order for the theory to be self-consistent, we need e to be small. Therefore,
we try to find the regions on the f −D plane where e is small and assume the
rest of the plane corresponds to the deGennes’ regime. The expression for 〈e〉
as a function of f and D is:

〈e〉 =
〈θ2〉
12

=
1

12

√
βfp+ c2 (p/D)4/3

. (8.23)

We plot on the f−D plane curves corresponding to e = 3% and 5% respectively
in Fig. 8.12. For the region with e less than 3%, we claim the polymer is in
Odijk’s regime, for the zone with error larger than 5%, the polymer is more
likely to be in de Gennes’ regime. In between, there is uncertainty as to which
regime best describes the behavior of the DNA. In fact, complex phenomena
have been reported in the transition regions even when f = 0 [20, 21]. Fig. 8.12
shows that the transition occurs at wider channel width as the stress in the
DNA increases. At f = 0, the transition width is around 50 − 100nm, as
expected.

8.5 Conclusions

The configuration and deformation of a confined polymer molecule depends
on the channel width. But a non-uniform channel width results in more than
a non-uniform deformation along the polymer. It actually drives the polymer
to move in a direction perpendicular to the confinement. The driving force is
entropic in essence, and it is revealed by a random walk model as fent = −∇G.
The negative sign indicates that the force is driving the system to minimize
its free energy. Including this force in the force balance analysis, we study the
coupled deformation and motion of a piece of DNA in a non-uniform channel.
The problem is governed by a second order PDE, whose solutions give the
migration velocity and also the strain distribution along the polymer. DNA in
different channel shapes are analyzed. A common feature is that large stress
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gradient occurs where the channel width changes dramatically. Longer DNA
migrates faster through a nanochannel with fluid flow while the persistence
length seems to have little effect on the migration velocity. Transition from
Odijk’s to de Gennes’ regimes can occur in a non-uniform channel and is shown
to be delayed if the stress along the polymer is high.
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Figure 8.8: Migration of a piece of DNA in different types of nanochannels.
The polymer is driven purely by entropic forces (V̄ = 0). (a) z̄ at s̄ = 0
versus dimensionless time. (b) Total stretch ∆z/L = [z(L) − z(0)]/L versus
dimensionless time. Different lines are for different channel shapes D(z). Blue
circles: linear channel with D(z) = az+ b. Red triangles: D(z) = (az+ b)−1/2.
Black squares: D(z) = (az+ b)−2. Cyan stars: D(z) = (az+ b)−1. Here a and
b are different constants for different channel types. For comparison, a and b
for each channel type are chosen so that the entrance/exit widths of the four
channels are the same.
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Figure 8.9: Motion and deformation of a piece of DNA in symmetric non-
uniform channels without fluid flow or applied electric fields. (a–c): In the
symmetric channel shown in (a), the initially stress-free polymer is pulled by
a pair of entropic forces created by the channel. As a result, force and strain
build up along the polymer backbone. In particular, large force gradient occurs
at locations where the channel changes its shape most rapidly (b). The total
extension of the polymer increases initially in response to the entropic pulling
and then reaches equilibrium (c). (d–f): The symmetric channel shown in (d)
creates a pair of entropic forces, which pushes the DNA inwards. In response,
strain is developed along the polymer backbone (e). The total extension of
the DNA decreases because of the pushing and then reaches equilibrium (f).
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Figure 8.10: (a) A piece of DNA migrates along a non-uniform nano-channel
with fluid flow V̄ > 0. The numbers 1,2,3,4,5,6 represent snapshots in time.
(b) Total stretch of the DNA increases as the polymer squeezes through the
middle narrow region of the channel. (c) Two strain/stress gradients travel
through the polymer backbone sequentially because there are two locations
where the width of the channel varies rapidly.
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Figure 8.11: Migration of three different pieces of DNA in a periodic channel
as shown in (a) (width in the wide/narrow region is D = 50nm and D = 25nm
respectively, only one DNA molecule is shown). No electrical force is applied.
Fluid in the channel flows to the right vfluid > 0. (b) z at s = 0 versus time.
Blue: L = 8µm, p = 50nm. Red: L = 3µm, p = 50nm. Black: L = 8µm,
p = 100nm. At t = 5s, the long DNA (blue) and the short DNA (red) have
been separated by 6.6 microns.
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Figure 8.12: Transition between Odijk’s and de Gennes’ regimes. The two
curves on the f −D plane correspond to errors e = 3% (black), and 5% (blue)
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with e < 3%, we claim the polymer is in Odijk’s regime. On the other hand,
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two regimes occurs. The transition channel width is shown to increase with
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Part III

Statistical Mechanics of
Filamentous Networks
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Chapter 9

Entropic Elasticity of
Fluctuating Filament Networks

Key concepts of this chapter:

1 We analyze the thermo-mechanical properties of a 2D filamentous
network in this chapter. The static equilibrium state for the structure
is determined first. Potential energy around the static equilibrium
state is approximated to quadratic order, so that the network is lo-
cally characterized by a stiffness matrix. Using statistical mechanics
and multidimensional Gaussian integral, we show that thermal fluc-
tuation around the static equilibrium state is governed by the inverse
of the stiffness matrix.

2 Buckling of filaments is common in deformation of filamentous net-
works. In this chapter, we introduce “imperfections” into the initial
configurations of the filaments, so that we can follow the post-
buckling path smoothly in our calculations. We show that, near the
buckling point, the stiffness of the filamentous network is reduced,
which leads to significant thermal fluctuations.

3 A network made up of linear elastic filaments always shows strain
softening behavior under isotropic expansion, if no thermal fluctua-
tions are taken into account. On the other hand, when we include
thermal fluctuations into the solutions, the network shows strain
stiffening behavior. This is because stretching out thermal fluctua-
tions is a strain stiffening process.

4 Pure expansion, simple shear and uniaxial tension are applied on a
hexagonal filamentous network. Taking thermal fluctuations into ac-
count, material properties of the network, such as, Young’s modulus,
shear and bulk moduli, and also Poisson’s ratio are determined.
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9.1 Introduction

In the previous chapters, our focus was on the properties and fluctuations of
a single rod-like polymer. However, biofilaments in cells do not function in
isolation. With some notable exceptions such as DNA, most filaments in cells
are linked together as part of a network, which may extend throughout the
interior of the cell [1]. For example, the nuclear lamina is a dense (∼ 30 to
100 nm thick) fibrillar network inside the nucleus [2]. Besides providing me-
chanical support, this network is involved in most nuclear activities including
DNA replication, RNA transcription, nuclear and chromatin organization, cell
cycle regulation, cell development and differentiation, nuclear migration, and
also apoptosis [3]. Understanding the mechanical response of these filamen-
tous networks is important since many critical cellular processes are known to
be mediated by mechanical stimuli. For the nuclear lamina network described
above, researchers have shown that changes in the structural and mechanical
properties of the lamina can cause diseases including the segmental premature
aging disease Hutchinson-Gilford progeria syndrome (HGPS) [4]. Also, it has
been found that the mechanical properties of the extracellular matrix, which is
also a filamentous network, can determine the differentiation of stem cells [5].
In this chapter, we shall study the statistical mechanics of two-dimensional
networks. The elastic behavior of such a network (assuming homogeneity) is
a function of the right Cauchy-Green strain tensor C only. In two dimensions
this tensor has three independent components. Hence, we need three indepen-
dent tests to completely determine the elastic response of the network. For
this reason we will study uniaxial tension, shear and pure dilatation of various
types of two-dimensional networks.

Different theories have been proposed to study the constitutive relation
of a network. Typically, a macroscopic deformation gradient is posed on the
network first, displacement fields are determined and the filaments are de-
formed accordingly. The Helmholtz free energy of the individual filaments is
calculated based on their uniaxial strain. The sum of these free energies is
the strain energy (density) of the network, whose proper differentiation leads
to the macroscopic stress, such as, the Piola-Kirchoff stress. Thus, the stress-
strain relation is established [6, 7]. These theories assume that the filaments all
deform according to the posed deformation gradient, and therefore the defor-
mation is affine. Also, the Helmholtz free energy is taken from that of a single
filament under tension and interactions between filaments are neglected. We
will illustrate this method in the next section by applying affine deformations
to a simple triangular network.

Filament networks are also widely studied in experiments and in numerical
simulations. These studies show that typical networks stiffen at low strain [8].
Also, various studies show that, as one increases the density of the network,
or the bending modulus of the filaments, a transition from non-affine deforma-
tion to affine deformation occurs [9, 10, 11, 12, 13, 14]. In affine deformation,
the elastic energy of the network is mainly stored in form of the stretching
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energy, while in non-affine deformation, the elastic energy is stored mostly as
bending energy. It has also been shown that heterogeneity in a network, like
adding stiff filaments in a soft network, can tune the cross-over between the
two regimes [15]. In fact, most biofilament networks are heterogeneous, con-
sisting of elements with very different mechanical properties (Fig. 9.1). Such
heterogeneity in the network composition has not been adequately studied in
the theoretical models in literature. The model to be proposed here is capable
of handling any type of heterogeneity in a network. Some studies have also
focused on the dynamic modulus of the network, which show that the mechan-
ical properties of the network depend on the loading frequency [16]. Here we
will confine ourselves to the study of equilibrium properties alone.

The thermo-mechanical properties of a network are determined by several
factors. One factor is the properties of the individual filaments, which was our
focus in the previous chapters. A second important factor is the cross-linking
density of the network [17]. For a network with very high concentration of
cross-linking proteins, the distance between cross-linked locations on filaments
is short, thus the configuration space explored by the thermal fluctuations is
small. As a result the entropic contribution to the free energy is small and the
response is more enthalpic like a Hooke’s law material. On the other hand, for
a network with very low concentration of cross-linking proteins, deformations
consist of localized bending of filaments rather than affine stretching defor-
mations. Quantitative models that span the entire spectrum from entropic to
enthalpic response are still in their infancy. One of the goals of this chapter
is to systematically change the density of filaments, determine the mechanical
response of the network, and see how it compares with experiments. Since
we work in two dimensions we will assume that there is a cross-link at every
intersection of filaments.

For a general set of load or displacement boundary conditions, individual
filaments in a network can be under tension or compression. For filaments sub-
jected to compression, buckling can occur when the compressive force reaches
a critical value. For a hinged-hinged filament the well-known Euler buckling
force [19] is:

F =
π2EI

L2
=
π2Kb

L2
, (9.1)

where E is the Young’s modulus of the elastic material, I is the moment of
inertia of the cross section of the beam, Kb = EI is the bending modulus and
L is the length of the beam. For an F-actin filament, the persistence length
is about ξp ∼ 12µm [20]. Its contour length in vivo varies because the fila-
ments are constantly gaining and losing monomers depending on the amount
of free monomers present in cells. Typically, 370 monomers make a filament
one micron in length. Using these numbers, the buckling force for the F-actin
filament is about Fb ∼ 0.5pN. In comparison, a single cytoskeletal filament can
generate ∼ 1pN force as it polymerizes against a load [20, 21]. Also, a single
molecule of myosin can contract with a force of ∼ 5pN [20, 22, 23]. Both these
forces are large enough to trigger buckling if they are acting in compression
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Figure 9.1: Illustration of the primary plant cell wall, which is a network
consisting of various filaments with very different mechanical properties. The
cellulose microfibrils are thick and provide tensile strength for the cell walls
while the polysaccharide pectins, much smaller in the cross section dimen-
sions, fill the spaces between the cellulose microfibrils and provide resistance
to compression [18].

mode. Moreover, the contour length of 1µm used above is the typical value
in vivo. In vitro, the length of an actin filament can reach > 10µm, which
makes the critical buckling force even smaller, since F ∼ L−2. In this case,
the individual F-actin filaments cannot carry any compressive load. We note,
however, that microtubules are able to bear large compressive loads in living
cells because of the lateral reinforcement from the contractile cytoskeleton [24].
This fact reinforces the importance of studying heterogeneous networks. But,
first it is necessary to systematically understand what happens to individual
filaments under compressive loads when thermal fluctuations are present. To
include the buckling and post-buckling behaviors of filaments, one must use
nonlinear theories and perform force and moment balances in the current con-
figuration. Since we will use nonlinear theories of filaments, the energy is not
quadratic globally and this allows us to follow the post-buckling path. Once we
have understood the behavior of a single filament under compression we will
extend the method discussed in the previous chapters to study the statistical
mechanical properties of a network.

9.2 Expansion of a Triangular Network

We will apply the framework discussed in the previous chapters to investigate
the properties of a general network in later sections, i.e, write down the en-
ergy of the network, calculate the partition function, free energy, and thermal
fluctuation of the filaments, etc. Before doing so, we first use a simpler ap-
proach (assuming affine deformations) to discuss the expansion of a triangular
network. The network is made up of only three inextensible wormlike chains,
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as shown in Fig. 9.2. We would like to know its expansion behavior under
hydrostatic tension p.

p

pp

Figure 9.2: A triangular network made up of 3 wormlike chains.

In this section, we denote F, kB, T, ξ, z, L as the force, Boltzmann constant,
absolute temperature, persistence length, extension and contour length of the
polymer respectively. The force-extension relation for a wormlike chain is:

Fξ

kBT
=
z

L
+

1

4 (1− z/L)2 −
1

4
, (9.2)

which gives the free energy w(z) =
∫ z

0
Fdz of the polymer as:

w(z) =
kBTL

4ξ

[
2
( z
L

)2

−
( z
L

)
− 1 +

1

1− z/L

]
. (9.3)

We note that w is not the elastic energy, but instead, the Helmholtz free energy
of a single wormlike chain.

The free energy of the triangular network under isotropic expansion pres-
sure p can be written as:

W =
kBTL

4ξ

3∑
i=1

[
2
(zi
L

)2

−
(zi
L

)
− 1 +

1

1− zi/L

]
− pA(zi). (9.4)

where zi is the extension of each polymer and A is the area of the triangle.
Eq. 9.4 is an approximation, since it neglects the contribution of the expansion
on the entropy of the single filaments. Minimizing W gives the average zi
under temperature T . Since the loading and geometry are both symmetric,
we simplify the free energy to:

W =
3kBTL

4ξ

[
2

(
d

L

)2

−
(
d

L

)
− 1 +

1

1− d/L

]
− pA(d), (9.5)
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where d = z1 = z2 = z3. Now define the dimensionless free energy W̄ , dimen-
sionless pressure p̄ and dimensionless length d̄ = d/L:

W̄ =
W

3kBTL/4ξ
, p̄ =

√
3pξL

3kBT
, d̄ =

d

L
, (9.6)

After substituting for A(d) eq. 9.5 can be rewritten as:

W̄ = (2− p̄)d̄2 − d̄− 1 +
1

1− d̄
. (9.7)

Since d̄ < 1, we can expand the last term rigorously and get:

W̄ = (3− p̄)d̄2 + d̄3 + d̄4 +
+∞∑
i=5

d̄i. (9.8)

When p̄ ≤ 3, the only solution within d̄ ∈ [0, 1] is d̄ = 0. So the average area
〈A〉 = 0. This tells us that the network cannot be expanded for small pressure.
The critical pressure of p̄ = 3 corresponds to:

p =
9kBT√

3ξpL
. (9.9)

When p̄ ≥ 3, the non-zero solution is:

d̄ =
4p̄− 9−

√
8p̄− 15

4p̄− 8
, (9.10)

and the average dimensionless area is 〈Ā〉 = d̄2. Below, we discuss the expan-
sion of the network at p̄ slightly larger than 3, and much larger than 3. In the
small pressure limit (p̄− 3 << 1), Eq. 9.10 becomes:

d̄ =
2

3
(p̄− 3)− 16

27
(p̄− 3)2 +O

(
(p̄− 3)3

)
. (9.11)

The average area of the triangle in this small pressure limit is:

〈Ā〉 =
4

9
(p̄− 3)2 (9.12)

In the large pressure limit (p̄ >> 1), eq. 9.10 becomes:

d̄ = 1− 1

2

√
3

p̄
. (9.13)

The average area of the triangle is:

〈Ā〉 =

(
1− 1

2

√
3

p̄

)2

. (9.14)

The full pressure versus average area relation is shown in Fig. 9.3. This ap-
proach assumes affine deformations and is good for this special case where we
study pure dilatations. In general the deformations do not have to be affine
and we have to consider more sophisticated methods.
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Figure 9.3: Expansion of a triangular network made up of 3 wormlike chains.
There is a phase transition at p̄ = 3.

9.3 Entropic Elasticity of a General 2D Net-

work – Theory

Figure 9.4: Illustration of a discrete fluctuating filament network.

We now apply the framework in the previous chapters to study the thermo-
mechanical properties of a 2D network. We first discretize each filament in
the network into segments (Fig. 9.4). The filaments are extensible and can be
stretched, bent and rotated, so that the deformed state of each discrete segment
is characterized by its axial strain ε and its rotation angle θ with respect to its
reference orientation. If there are no constraints on the configuration of the
network, a system with N discrete segments will have 2N degrees of freedom.
We denote these as the generalized coordinates qi, and the generalized force
conjugate to qi as pi, so that the energy of the network-load system can be
written as E = E(qi, pi). Here the system is conservative and the energy E
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includes both the elastic energy and the potential energy due to generalized
forces acting on the network.

The elastic energy of a filament is:

Eelastic =

∫ L

0

Ks

2
ε2ds+

∫ L

0

Kb

2
θ̇2ds (9.15)

=
N∑
i

Ksl0
2

ε2i +
N−1∑
i

Kb

2l0
(θi+1 − θi)2 . (9.16)

where Ks, Kb are the stretching and bending moduli respectively. The second
expression is a discrete version of the energy and the summation is over the N
segments along the filament. On the other hand, the potential energy caused
by a point force ~F on a node is:

Eforce = −~F · ~r, (9.17)

where ~r is the position vector of the node. It is a function of the general coor-
dinates ~r = ~r(qi). The potential energy caused by live pressure, or hydrostatic
tension p is:

Epressure = −pA(qi), (9.18)

where A is the area of the network as a function of qi. In the end, the energy
E is a function of qi and pi. This section tries to answer the following two
questions: (1) Given the loading pi, what is the equilibrium static configuration
qi? (2) Given the equilibrium state qi under loads pi, what is the fluctuation
around this equilibrium state?

9.3.1 Stable equilibrium states

To answer the first question, we note that an equilibrium state is one that
satisfies:

∂E

∂qi
= 0. (9.19)

In order that the equilibrium state is stable, the stiffness matrix [K]ij =
∂2E/∂qi∂qj must be positive definite. In particular, det K > 0 is a neces-
sary condition. Now, for a problem involving instabilities and buckling, the
energy usually involves terms higher than quadratic order. Therefore, Eq. 9.19
are not linear equations. Here we will solve Eq. 9.19 incrementally, as discussed
below.

Suppose (qi, pi) is a known equilibrium state, we would like to compute a
new equilibrium state (qi + δqi, pi + δpi), where δpi are given small quantities
and δqi are desired. Usually, the load-free equilibrium state at pi = 0 is known
and can serve as the initial state for the computation. To compute δqi, we
note that since (qi + δqi, pi + δpi) is an equilibrium state, we have:

∂E

∂qi

∣∣∣∣
(qi+δqi,pi+δpi)

= 0. (9.20)
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These non-linear equations can be solved using the Newton−Raphson method.
We use (qi, pi + δpi) as the initial values and repeat the following scheme until
the solution converges:

∂E

∂qi

∣∣∣∣
(qi,pi+δpi)

+
∂2E

∂qi∂qj

∣∣∣∣
(qi,pi+δpi)

δqj = 0. (9.21)

Note that both the derivatives in the above equations are evaluated at the
current configuration and pi + δpi.

By increasing the loads step by step from pi = 0, we know the equilibrium
state (qi, pi). However, the computational scheme discussed above does not
guarantee that the obtained equilibrium state is stable. For example, if we
start with a straight filament and apply a compressive force on it, the scheme
will always lead to straight compressed configurations, no matter how large
the compressive force is. The straight configuration is stable at small force,
but unstable at a force that is large enough to trigger a buckling. Unstable
configurations are not desirable because (1) a real system never goes into the
unstable regime, especially when thermal fluctuations and perturbations are
significant, and (2) an unstable system has a negative det K, which will cause
the partition function and fluctuation of the system to diverge, as we will see
later.

To avoid unstable configurations, we perturb the initial state of the fila-
ments and start with curved configurations. The motivation to do so is that in
most biofilament networks, thermal fluctuation causes the filaments to be in
curved states. Beginning with the curved configurations, the computed equi-
librium state smoothly follows one of the stable bifurcation buckling paths,
avoiding both the singularities at the buckling point, and the unstable regime
after the buckling point. The effects of initial curved configurations, or so-
called “imperfections”, are well-known in structural mechanics. The sensitivity
of the stability of a structure to the initial imperfection is crucial [19].

As an example, consider a hinged-hinged rod under compression. As has
been mentioned above, without initial perturbation, the computational scheme
leads to unstable straight configurations. With small perturbation on the
initial straight state, we obtain the correct post-buckling configurations as
shown in Fig. 9.5. The problem of rod buckling is mathematically identical
to the problem of large oscillations of a pendulum and the solutions are well
known [19]. To make sure that we obtain the correct post-buckling behavior,
we compare our computational results with these known solutions. In Fig. 9.6,
we show (1) the tangent angle at the end of the rod θ0 = θ(s = 0), (2) deflection
at the middle of the rod, and (3) end-to-end distance of the rod, all as functions
of the compressive force. Our computational scheme correctly reproduces the
known stable solutions before and after buckling occurs. Note that all the plots
show a sharp rise once buckling occurs. This indicates that after buckling, the
filament deforms a lot while the compressive force remains almost a constant
[19]. We also note that these plots give only the static results without taking
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Figure 9.5: Configuration of a hinged-hinged buckled rod. The rod is under
uniaxial compression. If we start with a perfectly straight rod, the computa-
tional scheme always leads to a straight configuration, which is unstable when
the compressive force is large. With initial perturbation, however, we obtain
the correct post-buckling configurations, as shown in the figure.

into account the thermal fluctuations. The effects of thermal fluctuations are
summarized in the next section.

9.3.2 Thermal fluctuations around the static state

In the previous subsection, we discussed how to obtain the static configuration
of a network (or a filament) without going into the unstable regime. Now we
investigate the thermal fluctuation around the static stable configurations.
In this section, we denote the static configuration using a subscript m, as it
corresponds to an energy minimum. Around the static state, the energy can
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Figure 9.6: Buckling of a hinged-hinged rod. (A) Tangent angle at s = 0, (B)
Deflection at the middle of the rod, and (C) ∆x = L − x(L) as a function of
the compressive force. Blue: exact solution. Red: Computational results.
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be approximated as quadratic:

E = Em +
1

2
~∆q

T
K · ~∆q, (9.22)

where ∆q = q − qm is the deviation from the static configuration. Thermal
fluctuations and correlations of the generalized coordinates satisfy Boltzmann
statistics (muti-dimensional Gaussian distribution). They are given by:

〈∆qi〉 = 0, (9.23)

〈∆qi∆qj〉 = kBT [K]−1
ij . (9.24)

Now consider a quantity A that depends on the generalized coordinates:
A = A(q1, · · · qN). For example, A can be the area of a network, or the end-
to-end extension of a filament, etc. Assuming small fluctuations, the thermal
average of A is:

〈A〉 = 〈A(qi)〉 (9.25)

=

〈
A(qmi ) +

∂A

∂qi
∆qi +

1

2

∂2A

∂qi∂qj
∆qi∆qj

〉
(9.26)

= Am +
1

2

∂2A

∂qi∂qj
〈∆qi∆qj〉. (9.27)

We see that thermal average of a quantity 〈A〉 is in general different from the
static value Am, as long as ∂2A/∂qi∂qj 6= 0. This means the fluctuation is not
symmetric around the static values for those quantities.

Before investigating the properties of a network, we first apply the frame-
work described above to the extension and compression of a single filament.
The thermal average of the end-to-end extension of the filament is computed
under different tensile loadings. The result is shown in Fig. 9.7. The result
from the computation matches exactly with the analytic solution for an ex-
tensible wormlike chain:

〈x〉 = L+
FL

Ks

− kBT

4
√
KbF

[
coth

(
L

√
F

Kb

)
− 1

L

√
Kb

F

]
. (9.28)

Results for compressing a single filament are shown in Fig. 9.8. Small pertur-
bations are applied to the initially straight rod, so that the static configuration
transitions smoothly to the post-buckling path. The role of thermal fluctu-
ation is non-trivial – the solid line and the dashed line cross each other on
the plot. Around the buckling point the stiffness suddenly decreases, but after
transition to the post-buckling path, the rod regains stability. For small forces,
the thermal fluctuations cause the end-to-end distance of the rod to be less
than that in the purely static configuration, but at larger forces the thermal
fluctuations cause the end-to-end distance to be more than that in the purely
static configuration. This result agrees with a current study on the role of
thermal fluctuation on a buckled rod [27].
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Figure 9.7: Extension a hinged-hinged rod. Blue dashed line: without thermal
fluctuation. Blue circles: with thermal fluctuation. Red: analytic solution.
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Figure 9.8: Compression of a hinged-hinged rod. Dashed line: without thermal
fluctuation. Solid line: with thermal fluctuation. Small perturbations are
applied to the initial configuration of the rod.
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Figure 9.9: Influence of the initial imperfection. When the imperfection is
small, the path is closer to the singularity and a large peak shows in the force-
extension curve. When there is no imperfection, the curve will go to infinitely.
When the imperfection is large, the path is further away from the singularity
and the curve transition smoothly to the post-buckling regime. (B) is the
enlarged figure of (A) around the peak. Blue: 0.1◦. Red: 0.5◦. Black: 1.0◦.
Green: 2.0◦. Cyan: 3.0◦.

The peak in Fig. 9.8 is caused by the instability around the buckling point.
It strongly depends on the amount of imperfection in the initial configura-
tion (see Fig. 9.9). When the imperfection is small, the path is closer to the
singularity so the peak is large. When the imperfection is large, the path is
further away from the singularity so the transition is smoother. If the filament
is fluctuating due to thermal motion we expect the initial configurations to be
bent so that the overall response would look smooth.

The force-extension curve for a compressed filament depends on the mate-
rial properties as shown in Fig. 9.10. Increasing the bending modulus shifts
the instability peak to the right and at the same time smoothens the peak. On
the other hand, increasing the stretching modulus shifts the instability peak
to the left. But, the force-extension curve is much more sensitive to a change
in the the bending modulus than a change in the stretching modulus. We had
to decrease the stretching modulus by ∼ 100 folds to see a different response
in the force-extension curve, while changing the bending modulus by 2 fold is
enough to change the curve dramatically (see Fig. 9.10).

Lastly, the force-extension curve for a compressed filament depends on the
boundary conditions. For example, a clamped-clamped boundary condition
leads to a buckling force 4 times that of the hinged-hinged filament. To account
for this kind of effects, we put a rotational spring of stiffness kθ at the two ends
of the filament and show the results for different kθ in Fig. 9.11. As expected,
when kθ → ∞, the rod buckles at 4pN which is 4 times the load required for
buckling a hinged-hinged filament in the earlier plots. Increasing the stiffness
of the rotational spring shifts the force-extension curve to the right.
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Figure 9.10: Influence of the material properties on the compression behavior.
(A) Force-extension curve for different bending modulus Kb. Increasing the
bending modulus shift the peak to the right and decreases the intensity of
the peak. Blue: Kb = 150kBT · nm. Red: Kb = 250kBT · nm. Black:
Kb = 350kBT · nm. Green: Kb = 450kBT · nm. Cyan: Kb = 550kBT · nm.
(B) Force-extension curve for different stretching modulus Ks. Increasing the
bending modulus shift the peak to the left. Blue: Ks = 2.0kBT/nm. Red:
Kb = 4.0kBT/nm. Black: Kb = 1000kBT · nm. The force-extension behavior
of a single filament is more sensitive to a change in the bending modulus than
a change in the stretching modulus.
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Figure 9.11: Influence of the boundary conditions on the compression behavior.
Rotational springs are added to the two ends of the rod. When the stiffness
of the spring becomes infinity, the rod is under clamped-clamped conditions.
Black: Kθ = 0.0kBT . Red: Kθ = 10.0kBT . Black: Kθ = 1000.0kBT . The
clamped-clamped rod buckles at F = 4pN, as expected.
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9.4 Entropic Elasticity of a Hexagon

Now, that we fully understand the behavior of a single filament, we move on to
simple two-dimensional networks. We first consider a single hexagon and apply
hydrostatic edge tension (constant in value and normal to the local tangent),
simple shear and uniaxial tension on it.

9.4.1 Hydrostatic edge tension on a hexagon

Many soft biopolymer gels, such as, fibrin gels, become stiffer when deformed
[28]. This is a mechanism to protect the materials from large deformations [29].
In this subsection, we argue that, for a network linear elastic filaments, ther-
mal fluctuations play a crucial role in its strain stiffening behavior. Without
thermal fluctuations and under hydrostatic edge tension, the network shows
strain softening behavior instead.

First, we analyze the static expansion behavior of a network without ther-
mal fluctuations. Assume the filaments inside a network are uniformly dis-
tributed (which is true for a hexagon), so that under hydrostatic edge tension,
the boundary of the network deforms almost like a circle (Fig. 9.12A). This
boundary circle is characterized by its radius r, with reference value (unde-
formed configuration) r0 at zero hydrostatic tension. Bending energy of the
boundary circle is:

Eb =

∫ L0

0

Kb

2

(
∂2~r

∂s2
0

)2

ds0 =
Kbπ

r0

. (9.29)

Here L0 = 2πr0 is the reference perimeter of the circle, s0 ∈ [0, L0] is the
reference arc length, and ~r is the position vector. Note that in Eq. 9.29, the
“curvature” is calculated as the second derivative with respect to the reference
arc length s0. Eq. 9.29 shows that isotropic expansion of a circular ring does
not change its bending energy, because under such deformation, there is no
change in the tangent angles for all material points. This suggests that, during
pure dilatation deformation, elastic energy is stored in the form of stretching
energy. In particular, it is the sum of the stretching energies of the boundary
filaments and the interior filaments:

Es =

∫ L0

0

Ks

2
ε2ds0 +

nKs

2
ε2 (2r0) = (π + n)Ksr0

(
r

r0

− 1

)2

. (9.30)

Here n is the number of interior filaments inside the network (see Fig. 9.12A
for an example of n = 6). Including the potential energy of the hydrostatic
edge tension p, the total potential energy of the network is:

E = (π + n)Ksr0

(
r

r0

− 1

)2

− pπr2, (9.31)
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Figure 9.12: (A) Hydrostatic edge tension on a filament ring with n = 6 interior
filaments. (B) If we assume linear elasticity and do not consider thermal
fluctuations, the network always becomes softer at larger hydrostatic tension.

where the constant contribution from the bending energy is neglected. The
static configuration of the network can be evaluated by ∂E/∂r = 0, which
leads to:

r

r0

=
1

1− pr0/Keff

, (9.32)

where the effective stiffness Keff = (1+n/π)Ks depends on both the stretching
modulus of the filaments and the number of interior filaments n in the network.
A plot of Eq. 9.32 is shown in Fig. 9.12B, the network shows strain softening
behavior. Furthermore, from Eq. 9.32, we can compute the static bulk modulus
of the hexagon as follows:

Kbulk = A
dp

dA
=
Keff

2r
. (9.33)

Here A = πr2 is the area of the network. The fact that Kbulk ∼ r−1 again
suggests that the network softens as we expand it. Also, since Keff = (1 +
n/π)Ks, Eq. 9.33 suggests that the bulk modulus depends linearly on the
filament density ρ0 = n/A0, with A0 being the initial area of the network. The
initial static bulk modulus can be computed by setting r = r0 in Eq. 9.33.
For a network of filaments with Ks = 10kBT/nm and r0 = 20nm, we have
Kbulk, initial = 2pN/nm.

We note that the strain softening behavior discussed above comes from
an analysis that does not take the effects of thermal fluctuations into account.
Stretching out fluctuations, on the other hand, is a stiffening process, especially
when Ks and n are large. Therefore, if a network (in its linear elastic regime)
shows strain stiffening effect during pure dilatation, we argue that it is thermal
fluctuations that play a crucial role. Below, we analyze the effects of thermal
fluctuation quantitatively.
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Suppose the number of interior filaments is large, so that we can neglect the
boundary filaments. Then under hydrostatic tension p, each interior filament
is subjected to a force F = p(2πr)/n, where r and n are again the radius of
the network and the number of interior filaments respectively (Fig. 9.12A).
Then, using the 2D wormlike chain model for each interior filament, we have:

2πrξp
kBTn

p =
3r

4L
+

1

8 (1− r/L)2 −
1

8
, (9.34)

which, if we define λ = r/L, reduces to:

2πξpL

kBTn
p =

3

4
+

1

8λ(1− λ)2
− 1

8λ
. (9.35)

Interestingly, at the low pressure limit, this relation reduces to:

p =
kBTn

2πξpL

(
1 +

3

8
λ

)
, (9.36)

which again suggests that a finite (non-zero) hydrostatic tension pcritical =
kBTn/(2πξpL) is needed to expand the network (critical p at λ = 0). This
result is similar to Eq. 9.9. On the other hand, at high p, the result is:

πξpL

kBTn
p ≈ 1

8λ(1− λ)2
. (9.37)

The result of Eq. 9.35 is shown in Fig. 9.13A. Note that we have strain stiffening
effect in this simple model. In particular, the bulk modulus is:

Kbulk = A
dp

dA
=
kBTn

8πξpL
· λ(3− λ)

1− λ
. (9.38)

Fig. 9.13B shows Kbulk as an increasing function of the λ.
For a single hexagon, the number of interior filament is n = 3. Neglecting

the boundary filaments is not a valid assumption. Therefore, we use the theo-
retical framework described in the previous section to calculate the expansion
behavior that includes the thermal fluctuations below. Fig. 9.14A shows the
static configurations of a hexagon under pure dilatation. The contour length
and persistence length of the filaments are L = 20nm and ξp = 10nm respec-
tively. Stretching modulus of the filaments is Ks = 10kBT/nm. We observe
that the hexagon first deforms into a circular shape, then expands (almost)
isotropically. Fig. 9.14B shows the static configurations of a hexagon with
larger stretching modulus Ks = 100kBT/nm.

Fig. 9.15A shows the area versus hydrostatic tension relation for the hexagon
with Ks = 10kBT/nm. Dashed line is the static relation without thermal fluc-
tuations. The solution agrees almost exactly with Eq. 9.32 except at low
hydrostatic tension. The reason is that when p is small, the deformation pro-
cess is not the expansion of a ring, instead, it is a deformation from a hexagon

165



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

dimensionless p

λ 
= 

r /
 L

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

λ

di
m

en
si

on
le

ss
 K

bu
lk

A B

Figure 9.13: (A) Plot of Eq. 9.35. The size of the network versus the di-
mensionless hydrostatic tension p̄ = βπξpLp/n. (B) Plot of Eq. 9.38. The
dimensionless bulk modulus is defined as Kbulk · (8πξpL/(kBTn)).

−40 −20 0 20 40

-20

0

20

40

x (nm)

y 
(n

m
)

−30 −20 −10 0 10 20 30

−20

−10

0

10

20

30

x (nm)

y 
(n

m
)

A B

Figure 9.14: Expansion of two hexagons under hydrostatic tension. Each
filament is 20nm long. Their persistence length is 10nm. (A) Stretching
modulus is 10kBT/nm. Black: undeformed configuration. Red: deformed
configuration under p = 0.5pN/nm. Green: deformed configuration under
p = 1.0pN/nm. Blue: deformed configuration under p = 1.5pN/nm. (B)
Stretching modulus is 100.0kBT/nm. Black: undeformed configuration. Red:
deformed configuration under p = 0.5pN/nm. Green: deformed configuration
under p = 2.5pN/nm. Blue: deformed configuration under p = 5pN/nm.
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Figure 9.15: Expansion of a hexagon under hydrostatic tension p. Each fil-
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thermal fluctuations. Circles are the analytic solutions of Eq. 9.32. (A)
Persistence length ξp = 10nm, stretching modulus Ks = 10kBT/nm. The
results with thermal fluctuations shows strain stiffening, i.e, the bulk modu-
lus increases during the expansion process. The bulk modulus changes from
Kbulk = 0.07pN/nm (fitting from p = 0 to 0.06pN/nm) to Kbulk = 1.29pN/nm
(fitting from p = 0.3 to 0.6pN/nm). (B) ξp = 5nm, Ks = 10kBT/nm (red).
Changing the bending modulus does not change the static solution. But,
the results with thermal fluctuation changes a lot. In particular, the initial
bulk modulus is Kbulk = 0.02pN/nm (fitting from p = 0 to 0.06pN/nm). For
p = 0.3 to 0.8pN/nm, the bulk modulus is Kbulk = 1.18pN/nm. The re-
sults in plot A are superimposed as blue lines and circles. (C) ξp = 10nm,
Ks = 100kBT/nm (red). Changing the stretching modulus (compared to A)
affects both the static and thermo-mechanical solutions. The fittings for Kbulk

are for the intervals p = 0 to 0.06pN/nm and p = 0.4 to 0.8pN/nm respec-
tively. The results in plot A are superimposed as blue lines and circles. (D)
ξp = 10nm, Ks = 100kBT/nm (red). The fittings are for the intervals p = 0
to 0.05pN/nm and p = 0.15 to 0.3pN/nm respectively. The results in plot A
are superimposed as blue lines and circles.
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to a ring. Solid line in Fig. 9.15A is the result that takes thermal fluctuation
into account. A fit to the plot shows that the bulk modulus changes from
Kbulk = 0.07pN/nm to Kbulk = 1.29pN/nm. The hexagon is initially easy to
expand because of thermal fluctuations. It is stiffened at large p.

Next, we decrease the bending modulus of the filaments, changing the
persistence length from ξp = 10nm to ξp = 5nm. The results are shown in
Fig. 9.15B (red lines, the results in plot A are superimposed as blue lines).
As predicted by Eq. 9.32, changing the bending modulus does not change the
static solution at all. However, the results with thermal fluctuations changes
a lot by changing ξp. The hexagon becomes softer when ξp is smaller. The
reason is that a network of filaments with less bending modulus have more
fluctuations and is easier to expand at small p. This result tells us that, even
though the static expansion behavior does not depend on the bending modulus,
the behavior with thermal fluctuations is affected by tuning the persistence
length.

Fig. 9.15C and D (red lines) show the results with different stretching
modulus: Ks = 100kBT/nm, 1kBT/nm respectively. Persistence length ξp =
10nm is the same as plot A. The results in plot A are superimposed as blue
lines. As expected, changing the stretching modulus changes the static solution
as well as the results with thermal fluctuations. The static solutions again
agree with Eq. 9.32.

Adding/removing filaments to/from the hexagon can also changes the ex-
pansion behavior. In particular, adding filaments stiffens the structure, while
removing filaments softens the hexagon. Fig. 9.16D shows the area (with
thermal fluctuations) versus hydrostatic tension relation for three different
networks (structures shown in plot A-C). The results show that thermal fluc-
tuation is reduced for a network with more interior filaments.

Next, to study the rate at which thermal fluctuations are stretched out, we
expand a single triangle with size L = 20nm and persistence length ξp = 10nm.
The stretching modulus is set to beKs = 300kBT/nm. We define the difference
between the static size and the “thermal” size of the network as:

∆r =

√
Astatic

π
−
√
Athermal

π
, (9.39)

where Astatic and Athermal are the area of the network with and without thermal
fluctuations respectively. They are both functions of the hydrostatic tension
p. A fitting for the relation between ∆r and p reveals ∆r ∼ p−1 (Fig. 9.17).
The −1 power law suggests that thermal fluctuations are stretched out faster
than predicted by the simple model proposed in the previous section (Eq. 9.13
predicts a −0.5 power law). The reason may be that the simple model assumes
the triangle always deforms into a triangle. It only considers the entropy loss
due to stretching in the filament directions. But, in a real expansion process,
entropy loss can also result from bending of the filaments.

We now return to the single hexagon. The deformation of a network can
be studied using the deformation gradient FiJ = ∂xi/∂XJ , where ~x( ~X) is the
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Figure 9.16: (A)-(C): Three different hexagonal structures. The structures
shown in (B) and (C) are obtained by removing and adding filaments from/into
(A). (D): Expansion behaviors of the three structures shown in A-C are shown
in red, blue and black, respectively. Thermal fluctuation is significantly re-
duced for network (C).
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Figure 9.17: Scaling law of stretching the thermal fluctuations. An equilateral
triangle whose initial length for the sides is L = 20nm is under hydrostatic
tension p. The persistence length of the filaments is ξp = 10nm. ∆r, as defined
in Eq. 9.39, characterizes the size difference between the static solution and the
thermal solution. The fitting result suggests ∆r ∼ p−1. Thermal fluctuation
is stretched out faster than the −0.5 power law.

deformed position of a material point whose reference position is ~X. The ma-
terial is assumed to deform according to ~x = F ~X+ ~C, where ~C is a translation
vector. For each triangle inside the hexagon, we compute the deformation
gradient using its three vertices (i = 1, 2, 3): X1 Y1 1

X2 Y2 1
X3 Y3 1

 F11

F12

C1

 =

 x1

x2

x3

 ,
 X1 Y1 1

X2 Y2 1
X3 Y3 1

 F21

F22

C2

 =

 y1

y2

y3

 .
(9.40)

The average F for the six triangles is approximately the deformation gradient
of the network. The left and right Cauchy-Green tensors are respectively:

C = FTF = λ2
i~e

0
i ~e

0
i , (9.41)

B = FFT = λ2
i~ei~ei, (9.42)

where λi are the principal stretches, ~ei = F~e 0
i are the principal axes in the

deformed configuration, and ~e 0
i are the principal axes in the reference config-

uration. For a 2D problem, we have two principal stretches λ1 and λ2. They
can be decomposed into a pure dilatation or expansion part and a shear part:

λex =
√
λ1 · λ2, (9.43)

λsh =

√
λ1

λ2

. (9.44)
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Figure 9.18: Principal stretch during an expansion process. Denote the prin-
cipal stretches as λ1 and λ2, then the stretch associate with expansion and
with shear are respectively λex =

√
λ1λ2, λsh =

√
λ1/λ2. For the expansion of

a hexagon, λex versus the the hydrostatic tension is plotted in blue, while λsh

versus p is plotted in red.

This decomposition can be understood in a slightly different way. One can
view the deformation process as a pure expansion process plus a pure shear
process:

F = Fex · Fsh (9.45)

= JI · 1

J
F, (9.46)

where J = det F = λ1λ2. The principal stretch associated with Fex is
√
λ1λ2,

while the principal stretch associated with Fsh is
√
λ1/λ2.

In Fig. 9.18, we plot λex and λsh versus the hydrostatic tension p for the
expansion of a hexagon. As expected, λsh remains almost 1 during the process,
which means λ1 = λ2. Therefore, every direction in the 2D plane is a prin-
cipal direction. To understand how changing the bending modulus changes
the behavior of the network, we expand two hexagons, one with persistence
length ξp = 10nm, the other with ξp = 20nm. The length of the filament is
again 20nm. The results are shown in Fig. 9.19. The difference is significant
at low hydrostatic tension p, while at high tension, the two networks have
similar behavior. This again suggests that at low p, bending dominates the
deformation, while at high tension, stretching plays a more important role.

9.4.2 Simple shear on a hexagon

Next, we study the shear deformation of a single hexagon (Fig. 9.21A). Uni-
form shear forces, in opposite directions, are applied on the top and bottom
filaments of the hexagon to cause shear deformation. Each filament is 20nm
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Figure 9.19: Expansion of two hexagons. (A) λex (blue) and λsh (red) versus
hydrostatic tension p. (B) Average area versus p. Solid line: hexagon whose
filaments have persistence length ξp = 10nm. Dashed line: hexagon whose
filaments have persistence length ξp = 20nm. The behavior of the two networks
is different at low p, because bending dominates at this regime.

long with persistence length ξp = 10nm. Stretching modulus of the filament is
Ks = 10kBT/nm.

Suppose that we can neglect the buckling behavior of the filaments, and
that the hexagon is under affine shear deformation with a deformation gradi-
ent:

F =

[
1 F12

0 F22

]
. (9.47)

Here we leave F22 as an unknown. The solution should tell us whether the
hexagon, under shear, contracts or expands in the y direction. Now assuming
all the filaments in the hexagon deform according to Eq. 9.47, the stretching
energy of the network can be computed and the result is:

Es
2Ksl0

=
3

2
F 2

12 +
3

2
F 2

22 −
√

(1−
√

3F12)2 + 3F 2
22 −

√
(1 +

√
3F12)2 + 3F 2

22.

(9.48)
On the other hand, the potential energy of the shear stress τ can be computed
by Eτ = −

∫
τxdX for the top and bottom filaments. Eventually, the total

elastic energy of the network is:

E

Ksl0
=

3

2
F 2

12 +
3

2
F 2

22−
√

(1−
√

3F12)2 + 3F 2
22−

√
(1 +

√
3F12)2 + 3F 2

22−
√

3τ l0F12

2Ks
.

(9.49)

The equilibrium configuration for the affine deformation can be computed
using ∂E/∂F = 0. Interestingly, a simple analytic solution exists for these
equations, and the final results are:

F12 =
4√
3

τ̄

(1− τ̄ 2)2
, F 2

22 =
4

3(1− τ̄)2
− 1

3

[
1 +

4τ̄

(1− τ̄ 2)2

]2

. (9.50)

172



0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

dimensionless τ

F
12

  (
bl

ue
) 

 a
nd

  F
22

  (
re

d)

Figure 9.20: Analytic static solutions for simple shear on a hexagon. Two
components, F12 (blue) and F22 (red) of the deformation gradient F is plotted
as a function of the applied shear stress τ . Dashed lines are the asymptotic
behavior at small τ . Dimensionless shear stress is defined as τ̄ = τ l0/2Ks, with
l0 and Ks being the contour length and stretching modulus of the filaments.

Here the dimensionless shear stress is defined as τ̄ = τ l0/2Ks. When τ̄ << 1,
the solution is:

F12 =
4√
3
τ̄ , F22 = 1− 2

3
τ̄ 2. (9.51)

Eq. 9.50 and 9.51 are plotted as functions of τ̄ in Fig. 9.20 in solid and dashed
lines respectively. In particular, Eq. 9.51 tells us that the initial shear modulus
of a hexagon is:

G =

√
3Ks

2l0
. (9.52)

Note that like the static bulk modulus for the hexagon, G depends only on the
stretching modulus. Plugging in the numbers l0 = 20nm and Ks = 10kBT/nm,
we obtainG = 1.78pN/nm. Eq. 9.51 also tells us that the hexagon will contract
in the y direction during shear, because F22 ≤ 1. This is an interesting result,
because many materials expand during simple shear. For example, for a Neo-
Hookean solid under simple shear γ, the Cauchy stress tensor is:

σ =

 2µγ2/3 µγ 0
µγ −µγ2/3 0
0 0 −µγ2/3

 , (9.53)

with µ being the shear modulus of the solid. We see that both σyy and σzz for
the Neo-Hookean material are negative (although the magnitude is small, on
the order of γ2). Therefore, the material tends to expand in the y and z di-
rections during the shear. Filament networks, however, usually show negative
normal force under shear, i.e., the network tends to contract in the direc-
tion perpendicular to the shear direction. Our result in Eq. 9.51 confirms
this unusual behavior for a hexagonal network, even without taking thermal
fluctuations into account.
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We note that the same analysis can be applied to an empty hexagon without
the interior filaments. Interestingly, the results turn out to be exactly the same,
except that the dimensionless τ̄ has to be redefined as τ̄ = τ l0/Ks. The static
shear modulus is G =

√
3Ks/4l0, which is half of that for a regular hexagon

with the interior filaments.
This simple model assumes that the filaments are all under affine defor-

mation without bending and buckling. Under shear deformation, however,
some of the filaments are under compression and will buckle. Now we use the
theoretical framework described in the previous section to study the simple
shear of a hexagon. To avoid the singularity, we start with an initial curved
configuration.

Static deformed configurations are shown in Fig. 9.21. If we do not take
the effects of thermal fluctuations into account, a hexagon is difficult to shear
initially. The reason is that a hexagon is made up of triangles. When the
filaments are almost inextensible, the triangles are almost undeformable (see
Fig. 9.21 B→ C). When the shear force is large enough, the filaments that are
under compression will buckle (see Fig. 9.21D). This reduces the stiffness of the
structure, making the hexagon easier to deform under further shear. In fact,
after buckling occurs, the hexagon deforms significantly even when the shear
stress increases only by a little (see Fig. 9.22). This sudden loss of stiffness is
similar to the buckling of a single filament. However, the hexagon as a whole
does not lose stability completely. After the buckling events, the hexagon can
still sustain shear, although it is much easier to deform (see Fig. 9.21 D→ E).
The above observation suggests that, for a triangular network of filaments with
high stretching modulus, large static deformation is possible only after some
buckling events soften the network. Many cellular networks are hexagonal
and are made up of triangles. The filaments have large stretching modulus.
But, they can easily achieve large deformation. This tells us that some of the
deformations must be achieved by stretching out the thermal fluctuations.

To prove that high stretching modulus is the reason for the initial high
stiffness of the system, we reduce the stretching modulus to Ks = 1kBT/nm
and re-do the shear. The result is that the hexagon can achieve large static
shear deformation without buckling until the structure completely loses sta-
bility (see Fig. 9.23). We emphasize here that the configurations shown in
Fig. 9.21, 9.22 and 9.23 are the static configurations without taking thermal
fluctuations into account.

To understand the thermo-mechanics of the shear deformation quantita-
tively, we calculate the displacements and strains during the deformation next.
We first investigate the relative displacement, in x direction, between the top
and bottom filaments. We calculate the x direction separation ∆x between
node 1 and node 2 (see Fig. 9.21A) as a function of the shear stress τ . The
stiffness in x direction can be characterized by k = τ/∆x (in units of pN/nm2).
The results, with and without thermal fluctuations, are shown in Fig. 9.24A.
Dashed line is the result without thermal fluctuations. We observe buckling
events at τ ≈ 0.04pN/nm. The relation between ∆x and τ is linear before
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Figure 9.21: (A) Illustration of shear on a single hexagon. Uniform distributed
forces in ±x direction are applied on the top and bottom filaments of hexagon
to cause the shear deformation. Some filaments that are under compression
will buckle during the shear deformation. Each filament is 20nm long. Their
persistence length is 10nm. Stretching modulus is 10kBT/nm. (B) Reference
configuration with initial perturbation. (C-E) Deformed configurations with
buckled filaments.
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Figure 9.22: When buckling occurs, the hexagon undergoes significant defor-
mation for even a small increases in the shear stress (compared to B → C in
Fig. 9.21). Black: τ = 40fN/nm. Blue: τ = 45fN/nm. Red: τ = 50fN/nm.
The deformation shown here is significant compared the the deformation before
buckling at τ < 40fN/nm (Fig. 9.21).
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Figure 9.23: Shear on a hexagon with small stretching modulus Ks =
1kBT/nm. Unlike the deformation shown in Fig. 9.21, the hexagon can achieve
large shear deformation without buckling when the stretching modulus is
small. Filaments in many cellular networks have large stretching modulus.
They achieve large deformation by stretching out thermal fluctuations.
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Figure 9.24: X direction separation of the top and bottom filaments. ∆x is
the distance between node 1 and node 2 shown in Eq. 9.21A. This quantity
is plotted as a function of the shear stress τ . Effective stiffness is defined as
k = τ/∆x here. Dashed line is the result without thermal fluctuation. The
hexagon is much softer after buckling if thermal fluctuation is not taken into
account. Solid line is the result with thermal fluctuations. The hexagon be-
comes stiffer after buckling when thermal fluctuation is taken into account.
Circles are the results from the analytic static solutions assuming affine de-
formation (Eq. 9.50). They match with our computational results at small τ .
For large τ , buckling occurs and the deformation of the hexagon is non-affine.
(A) and (B) are for different persistence length ξp = 10nm and ξp = 5nm
respectively.

and after the buckling. The stiffness k = τ/∆x decreases from 34.2fN/nm2

to 3.20fN/nm2 for the static solution. This is again because buckling re-
duces the stiffness of the network. We also note that the static solution before
buckling agrees very well with the simple affine deformation model (Eq. 9.50).
After the buckling occurs, however, the deformation is no longer affine and
the simple model underestimates the deformation of the structure. Solid line
in Fig. 9.24A includes the contribution from thermal fluctuations. We observe
that, before buckling, the stiffness (9.80fN/nm2) is significantly less than the
static solution. This suggests that thermal fluctuation makes the hexagon de-
formable at the beginning of the shear. In particular, shear stress is used to
stretch out the thermal fluctuations. After buckling, the stiffness k (with ther-
mal fluctuation) does not change very much. The hexagon is actually stiffer
compared to the static solution. This tells us that thermal fluctuation plays
different roles before and after buckling. Before buckling occurs, thermal fluc-
tuation makes the hexagon softer and easier to shear. After buckling, thermal
fluctuation makes the hexagon stiffer and more difficult to shear. We also ob-
serve a peak appearing when the buckling occurs. This is similar to buckling
of a single filament discussed in the previous section.

To prove that it is the thermal fluctuation that makes the hexagon de-
formable at the initial state, we decreases the persistence length of the fil-
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Figure 9.25: Average separation between the top and bottom filaments as
a function of the shear stress. (A) and (B) are the results without and with
thermal fluctuations respectively. The results show that the hexagon contracts
in the direction perpendicular to the shear direction. At small shear stress,
the deformation is affine. The static solution (shown in A) roughly agrees with
Eq. 9.50 (shown in circles). The difference is caused by the perturbations on
the initial configuration. For the result with thermal fluctuations (shown B),
a fitting to the solution shows that the separation decreases quadratically.

aments to ξp = 5nm (note that the contour length of the filaments is L =
20nm= 4ξp). The result is shown in Fig. 9.24B. The initial stiffness k re-
duces to 3.30fN/nm2 before buckling. This is because filaments with smaller
persistence length have more thermal fluctuations and therefore are easier to
shear. Buckling occurs earlier compared to Fig. 9.24A, as expected, because
the bending modulus of the filaments is smaller.

We next discuss the y direction deformation during the shear. We calculate
the separation between the top and the bottom filaments as a function of the
shear stress. The results with and without thermal fluctuation are shown
in Fig. 9.25 A and B respectively. Our results again show that a hexagon
indeed contracts during shear. Before buckling, the contraction ∆y (including
thermal fluctuations) scales as ∆y ∼ −τ 2.017, which suggests the separation in
the y direction decreases quadratically when the deformation is still affine (no
buckling).

Shear strain of the hexagon can be defined as γ = ∆x/∆y, where ∆x and
∆y are the relative displacements between the top and bottom filaments, in x
and y directions respectively. An effective shear modulus can be introduced as
G = dτ/dγ. We show the relation between γ and τ in Fig. 9.26A. For the static
solution, the shear modulus is significantly reduced (from G = 1.26pN/nm to
G = 0.08pN/nm) after buckling. We note that the initial shear modulus agrees
well with the simple affine deformation model, which predicts G = 1.78pN/nm
(Eq. 9.52).

For the results that include thermal fluctuations, the shear modulus does
not change very much. The reason is that before buckling, the shear modulus
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Figure 9.26: Shear strain γ as a function of the shear stress τ . Effective shear
modulus can be defined as G = τ/γ. Dashed line: static solution. Solid line:
result including the thermal effects. The strain and stress relation is linear
before and after buckling at τ ≈ 40fN/nm. For the static solution, the shear
modulus decreases significantly after buckling. For the result that includes
the thermal fluctuation, shear modulus does not change a lot before and after
buckling. The reason is that before buckling, the shear modulus is much less
than that of the static solution because of the fluctuations. Figure A and B
are for ξp = 10nm.and 5nm respectively. Contour length of the filaments is
L = 20nm. Stretching modulus is Ks = 10kBT/nm.

that takes thermal fluctuations into account is much less that from the static
solution. We conclude that the modulus before buckling is due to thermal
fluctuations, while the modulus after buckling is due to elastic stretching.
Indeed, we change the persistence length of the filaments from ξp = 10nm
to ξp = 5nm, the initial static shear modulus does not change very much
(1.26pN/nm versus 1.15pN/nm), while the initial shear modulus that includes
thermal fluctuations changes significantly (0.19pN/nm versus 0.03pN/nm).

We mentioned previously that an affine deformation can be described lo-
cally by a linear transformation:

~x = F ~X + ~C, (9.54)

where ~x and ~X are the deformed and reference position of a material point
respectively. Filament networks do not always deform in an affine way. To
investigate the effect of affine and non-affine deformation, we calculate the
difference between the affine displacement field and the actual displacement
field. Firstly, the average deformation gradient F and translation vector C are
computed using Eq. 9.40. Then the difference between the affine displacement
field and the actual displacement field is characterized by a parameter α:

α =
1

N

∑
all nodes

|~xaffine − ~xactual|
|~xactual − ~X|

, (9.55)
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Figure 9.27: Affine, non-affine deformation during shear on a hexagon.
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Figure 9.28: (A) λex and λsh as a function of the shear stress τ . (B) Eigen-
direction (direction of ~e 0

1 ) as a function of the shear stress. The other eigen-
direction ~e 0

2 is perpendicular to ~e 0
1 .

where the summation is over all nodes (not only the vertices, but all the dis-
crete nodes), and N is the number of nodes in the network. If the deformation
is affine, α should be small. On the other hand, if the deformation is non-
affine, this quantity should be large. The result as a function of the shear
force is shown in Fig. 9.27. Our result shows that when the filaments buckle,
the deformation becomes less affine.

Further, we plot the shear stretch λsh and expansion stretch λex as a func-
tion of the shear stress τ in Fig. 9.28. λex is clearly less than 1, even though
we do not apply hydrostatic tension on the network. This is caused by the
thermal fluctuation. The orientation of the principal axis ~e 0

1 is also plotted in
Fig. 9.28. ~e 0

1 changes from π/2 to π/4 (with respect to the x axis) as the shear
stress increases. When buckling occurs, the orientation angle drops until the
system regains stability.
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9.4.3 Pure tension on a hexagon

Lastly, we apply pure tension on the hexagon. The uniaxial tension q is applied
as shown in Fig. 9.30A. Each filament has contour length L = 20nm and
persistence length ξp = 10nm. The stretching modulus is Ks = 10kBT/nm.

Again, we first assume the deformation is affine, with deformation gradient
given by:

F =

[
F11 0
0 F22

]
. (9.56)

Let all the filaments in the hexagon deform according to Eq. 9.56, then the
potential energy of the network is:

E

Ksl0
=

(√
F 2

11 + 3F 2
22 − 2

)2

+ 2(F11 − 1)2 − 3ql0F11

Ks

. (9.57)

Minimum energy state can be computed using ∂E/∂F = 0, which leads to:

F11 = 1 +
3ql0
Ks

, F 2
22 =

4

3
− 1

3

(
1 +

3ql0
Ks

)2

. (9.58)

The asymptotic solution for q → 0 is:

F11 = 1 +
3ql0
Ks

, F22 = 1− ql0
Ks

. (9.59)

From Eq. 9.59, we know that the initial Young’s modulus and Poisson’s ratio
of the hexagon is:

E =
Ks

3l0
, ν =

1

3
. (9.60)

Plugging in the number Ks = 10kBT/nm and l0 = 20nm, we get E =
0.67pN/nm. Plots of Eq. 9.59 (solid lines) and 9.60 (dashed lines) are shown
in Fig. 9.29.

This simplified model assumes affine deformation and does not consider
buckling of the filaments. Below, we use the theoretical framework described in
the previous section to study the thermo-mechanical properties of the hexagon
under uniaxial tension. Typical deformation is shown in Fig. 9.30 B-E. We
again observe buckling of the diagonal filaments during the deformation. The
direction of the buckling depends on the initial perturbation we apply on
the filaments. If we reduce the stretching modulus of the filaments to Ks =
1.0kBT/nm, the hexagon can deform significantly without buckling (Fig. 9.31).

For the hexagon with Ks = 10kBT/nm (Fig. 9.30), we calculate its height
and the width during the deformation. The height ∆y is defined as the av-
erage y direction separation between the top and bottom filaments, while the
width ∆x is defined as the average x direction separation between the left
and right filaments. Results with and without thermal fluctuations are shown
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Figure 9.29: Analytic static solutions for uniaxial tension on a hexagon. Two
components, F11 (blue) and F22 (red) of the deformation gradient F are plotted
as functions of the applied tensile stress q. Dashed lines are the asymptotic be-
havior at small q. Dimensionless tensile stress is defined as q̄ = 3ql0/KS, with
l0 and Ks being the contour length and stretching modulus of the filaments.

in Fig. 9.32. Interestingly, when taking the thermal fluctuations into account,
height of the hexagon increases in the initial state of the uniaxial pulling. This
would suggests a negative Poisson’s ratio, which we will discuss below.

Let ∆x0, ∆y0 be the initial width and height of the hexagon respectively.
Then the stretch in these two directions can be defined as: λx = ∆x/∆x0 and
λy = ∆y/∆y0. We show these stretches as a function of the tensile stress q in
Fig. 9.33A. Similar to the results of shear, thermal fluctuations cause larger
stretch/strain in the hexagon. This is because the network has smaller size at
its initial state when fluctuation is taken into account. Result for a hexagon
with smaller stretching modulus Ks = 1.0kBT/nm is shown in Fig. 9.33C.

Poisson’s ratio ν = (1 − λy)/(λx − 1) as a function of q is shown in
Fig. 9.33B. For the result including fluctuations, Poisson’s ratio is initially
negative, because stretching out the thermal fluctuation increases the height
of the hexagon. The ratio eventually becomes positive and remains constant
for large q. Interestingly, when the thermal fluctuation is not taken into ac-
count, Poisson’s ratio is close to 1, which is the upper limit of ν for a material in
2D [30, 31]. For a hexagon with smaller stretching modulus Ks = 1.0kBT/nm,
Poisson’s ratio is smaller (Fig. 9.33D).

Principal stretches (as defined in Eq. 9.43 and Eq. 9.44 in the dilatation
section) are also computed during the pulling process. The shear stretch λsh

and expansion stretch λex are plotted in Fig. 9.34. Here we show the results for
a hexagon with Ks = 1.0kBT/nm. As expected, shear deformation dominates
and the eigenvector ~e 0

1 and ~e 0
2 are in the x and y direction respectively.
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Figure 9.30: (A) Uniaxial tension on a hexagon. Each filament is 20nm long.
Their persistence length is 10nm. Stretching modulus is 10kBT/nm. (B-E)
Deformed configurations with buckling of the diagonal filaments.
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Figure 9.32: Width of the hexagon (∆x) is defined as the average x direction
separation between the left and right filaments. Height (∆y) is defined as the
average y direction separation between the top and bottom filaments. This
figure shows ∆x (blue) and ∆y (red) as functions of the tension q with (solid
lines) and without (dashed) thermal fluctuations. Solid lines are always below
the dashed lines because of thermal fluctuation. Interestingly, height of the
hexagon increases in the initial state of the tensile pulling.
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Figure 9.33: Pure tension on a hexagon. (A) and (B): ξp = 10nm, Ks =
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EC,thermal = 0.07pN/nm. (B) and (D): Poisson’s ratio as a function of the
tensile stress q. Solid lines are the results with thermal fluctuations. Dashed
lines are the results without thermal fluctuations.
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9.5 A Comparison with Other Networks

We compare pure dilatation of the hexagonal networks and square networks
in this section. Again, live hydrostatic tension load −p acts on the boundary
of these networks to cause the dilatation. Our results show that the filaments
inside the square networks play a key role in stabilizing them, while removing
the filaments inside the hexagonal networks does not significantly change the
expansion behavior of the network. This may be one of the reasons nature
chose hexagonal networks for building cytoskeleton, as defects in the filaments
do not significantly weaken the network.

9.6 Conclusions

We investigate the entropic elasticity of network in this section. To extend
the theory for a single filament to a theory for a network, one of the main
problems is that buckling almost always happens under general deformation
in a network. Using the idea of ”imperfection” in structural mechanics, we
introduce perturbation to the initial configuration of the filament networks to
avoid the singularity caused by buckling. This enables us to follow the post-
buckling path smoothly to obtain the minimum energy configuration. Thermal
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fluctuation is considered for different loadings, including pure expansion, shear
and pure tension. It is shown that buckling can soften the network and cause
large thermal fluctuations, although typically, soon after entering the post-
buckling regime, the network can regain stability.
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Chapter 10

Conclusions and Future Work

This thesis develops theoretical methods to efficiently evaluate the statistical
mechanical properties of rod-like filaments and filamentous networks. The fil-
ament or filamentous network under investigation is viewed as a mechanical
structure. The structure is discretized into segments using finite difference or
finite element method. Its static equilibrium state under a given loading is
determined in the first step. In the second step, we study the thermal fluc-
tuations around the static equilibrium state using statistical mechanics. The
energy around the ground state is approximated to quadratic order, so that
the system is characterized by a stiffness matrix. Using the multidimensional
Gaussian integral technique, partition function of the system is shown to be
governed by the determinant of the stiffness matrix, while the thermal fluctua-
tion is governed by the inverse of the stiffness matrix. Connections to penalty
methods and spectral methods are also discussed.

Using the theoretical framework discussed above, we investigate the thermo-
mechanical properties of a single filaments under end-to-end pulling force,
distributed loads, and also under confinements. We also study the entropic
elasticity of a 2D network under hydrostatic edge tension, simple shear and
uniaxial tension. Taking the thermal fluctuations into account, material prop-
erties like the Young’s modulus, shear and bulk moduli, as well as the Poisson’s
ratio are determined.

In other applications, we study the internal fluctuation of DNA in nanochan-
nels used for genome mapping. The channel is about 100nm wide and we find
a length-dependent transition between the de Gennes and Odijk regimes. Such
a transition may result from the formation of local folded structures along the
extended DNA backbone. For non-uniform channels, an entropic force causes
the DNA to migrate to regions of higher entropy. We analyze a random walk
model and derive the expression for the entropic force for a strongly confined
polymer. Coupled migration and deformation of the polymer in various non-
uniform channels are solved.

We also discuss forced unfolding of protein under different loading condi-
tions using a system of three equations. Unlike previous Monte Carlo simula-
tion methods, we do not assume zero folding rate in this thesis. As a result,

191



refolding events, such as folding-unfolding hoppings, are predicted in both
constant force pulling mode and linearly increasing force pulling mode.

Future work in the entropic elasticity of polymer networks should include
the study of square networks and also random networks. For the network prob-
lem, this thesis mainly focuses on the properties of a single hexagon, which
represents a triangular network. But, it is of interest to know the depen-
dence of the properties on the cross-linking density, on the network structure,
on the heterogeneity of the filaments, and also on the properties of individ-
ual filaments. Using the theoretical framework developed in this thesis, it is
also possible to describe the transition between affine and non-affine deforma-
tions of a network. Future investigations should also include 3D networks and
twisted filaments.
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Appendix A

Evaluating the Partition
Function

We evaluate the partition function for a general discrete system in this section.
In Eq. 3.3, we have the partition function of the system:

Z = exp (−βH0)

∫
exp

(
−~θ

T
K · ~θ

)
d~θ, (A.1)

where K = βM/2. Since K is a real symmetric matrix, it can be diagonalized:

K = RTΛ ·R. (A.2)

Changing the variables in Eq. A.1 from ~θ to ~φ, we arrive at:

Z = exp (−βH0)
D∏
i=1

∫
exp

(
−Λiφ

2
i

)
dφi = exp (−βH0)

√
πD

det Λ
. (A.3)

Finally, since det R = 1, the partition function can be expressed as:

Z = exp (−βH0)

√
πD

det K
= exp (−βH0)

√
(2πkBT )D

det M
. (A.4)
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Appendix B

detM for the Hinged-hinged
Chain

The (N + 1) dimension matrix M for the hinged-hinged case is given by
(Eq. 4.30), which is:

M =



β(κ1 + f) −βκ1 0 · · · 0 −I/2
−βκ1 β(κ1 + κ2 + f) −βκ2 · · · 0 −I/2

0 −βκ2 β(κ2 + κ3 + f) · · · 0 −I/2
· · · · · · · · · · · ·

0 0 0 · · · −βκN−1 −I/2
0 0 0 · · · β(κN−1 + f) −I/2
−I/2 −I/2 −I/2 · · · −I/2 0


(B.1)

To evaluate the determinant of M, we introduce another matrix M∗ as:

M∗ = RTPMQR, (B.2)

where the (N+1) dimensional matrices R, P and Q are:

P = diag
(
β−1, β−1, · · · , β−1, 2I

)
, (B.3)

Q = diag (1, 1, · · · , 1, 2Iβ) , (B.4)

R =



1 0 0 · · · 0 0 0
1 1 0 · · · 0 0 0
1 1 1 · · · 0 0 0
· · · · · · · · · · · ·

1 1 1 · · · 1 0 0
1 1 1 · · · 1 1 0
0 0 0 · · · 0 0 1


(B.5)

From Eq. B.2 and the definitions of the matrics P, Q and R, we get:

det M = −β
N−1

4
det M∗. (B.6)
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Now we need to evaluate det M∗.
Using Eq. B.2, we get the matrix M∗:

M∗ =

(
Min

~G
~GT 0

)
, (B.7)

where the N dimensional Min is given by:

Min =


Nf (N − 1)f (N − 2)f · · · 2f f

(N − 1)f κ1 + (N − 1)f (N − 2)f · · · 2f f
(N − 2)f (N − 2)f κ2 + (N − 2)f · · · 2f f

· · · · · · · · · · · ·
2f 2f 2f · · · κN−2 + 2f f
f f f · · · f κN−1 + f

(B.8)

and N dimensional vector ~GT is given by:

~GT = [N,N − 1, N − 2, · · · , 2, 1] . (B.9)

But for the type of matrix in form of Eq. B.7, we have the following formula
(see [1]):

det M∗ = − det Min

(
~GT ·M−1

in
~G
)
. (B.10)

So now we need to compute det Min as well as ~GT ·M−1
in
~G.

We first perform elementary row operations on Min, transform it into a
diagonal matrix and find its determinant given by:

det Min = f
N−1∏
i=1

λi, (B.11)

where the sequence λi is given by:

λ1 = 2κ1 + f, λi = (2κi + f)− κiκi−1

λi−1

(i = 2, 3, · · ·N − 1). (B.12)

Next, to evaluate ~GT ·M−1
in
~G, we define ~g as:

Min ~g = ~G, (B.13)

so that
~GT ·M−1

in
~G = ~gT ·Min ~g, (B.14)

where the symmetry property of Min has been used. But Eq. B.13 is easy to
solve and one can verify that:

~gT =
[
f−1, 0, 0, · · · , 0, 0

]
, (B.15)

and therefore using Eq. B.8, Eq. B.14 and Eq. B.15, we get:

~GTM−1
in
~G =

N

f
. (B.16)

Finally, Eq.B.6, Eq. B.10, Eq. B.11 together with Eq. B.16 leads to:

det M =
NβN−1

4
×

N−1∏
i=1

λi. (B.17)
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Appendix C

Force-extension Relation for a
Homogeneous Wormlike Chain

For a homogeneous chain, we have Ki ≡ K and κi ≡ κ. Using the definition
of the sequence λi for a hinged-hinged chain (Eq. 4.32), one can verify by
mathematical induction that:

N−1∏
k=i

λk = λi · pN−i−1 − rd · pN−i−2, (i ≤ N − 2) (C.1)

where r, d are given by:

r =
2κ+ f +

√
4κf + f 2

2
, d =

2κ+ f −
√

4κf + f 2

2
, (C.2)

and the sequence pi is given by:

pi =
ri+1 − di+1

r − d
. (C.3)

Using Eq. C.1 to Eq. C.3 and also Eq. 4.32, we get:

N−1∏
k=1

λk = λ1 · pN−2 − rd · pN−3 =
rN − dN

r − d
. (C.4)

Hence,

N−1∑
k=1

λ′i
λi

=
d

dF

(
log

N−1∏
k=1

λk

)
(C.5)

=
Nr′

r
·

1−
(
d
r

)′ · (d
r

)N−1

1−
(
d
r

)N − r′

r
·

1−
(
d
r

)′
1−

(
d
r

) . (C.6)

Using the definitions of r, d (Eq. C.2) as well as those for κ, f (Eq. 4.5),
we get:

r =
K

2L
N +

√
KF

2
+O(N−1), (C.7)
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r′ =
1

4

√
K

F
+

L

4N
+O(N−2), (C.8)

d =
K

2L
N −

√
KF

2
+O(N−1), (C.9)

d′ = −1

4

√
K

F
+

L

4N
+O(N−2). (C.10)

Plugging Eq. C.7 to Eq. C.10 into Eq. C.6, taking the limit as N → +∞,
we get:

lim
N→∞

N−1∑
k=1

λ′i
λi

=
1

2

[
L√
KF

coth

(
L

√
F

K

)
− 1

F

]
. (C.11)

Putting Eq. C.11 into Eq. 4.36, we recover the force-extension relation for
a homogeneous hinged-hinged continuous rod [2]:

〈xhomo〉 = L− LkBT

4
√
KF

coth

(
FL√
KF

)
+
kBT

4F
. (C.12)
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Appendix D

Force-extension Relation for a
Special Heterogeneous
Wormlike Chain

For a special heterogeneous wormlike chain, we have

κi =

{
κI 1 ≤ i ≤ s

κII (s+ 1) ≤ i ≤ N
(D.1)

Here s is an integer indicating the segment that separates the two regions of
the chain (s is not the arc length in this section).

Hence, under hinged-hinged conditions, the sequence λi is (Eq. 4.32):

λi =


2κI + f i = 1

2κI + f − κ2
I

λi−1
2 ≤ i ≤ s

2κII + f − κIκII
λs

i = s+ 1

2κII + f − κ2
II

λi−1
s+ 2 ≤ i ≤ (N − 1)

(D.2)

Using mathematical induction, one can verify that:

N−1∏
k=i

λk =


pN−i−1λi − r2d2 · pN−i−2 (s+ 1) ≤ i ≤ (N − 2)

pN−s−1λs − κIκII · pN−s−2 i = s

pN−i−1λi − r1d1 · pN−i−2 1 ≤ i ≤ (s− 1)

(D.3)

where pi, ri and di are given by:

pi =


ri+1
2 −di+1

2
r2−d2

0 ≤ i ≤ (N − s− 2)

(r2 + d2)pN−s−2 − r2d2pN−s−3 i = N − s− 1
ri−N+s+2
1 −di−N+s+2

1
r1−d1

· pN−s−1 −
ri−N+s+1
1 −di−N+s+1

1
r1−d1

· κIκII · pN−s−2 N − s ≤ i ≤ (N − 2)

(D.4)

r1 =
2κI + f +

√
4κIf + f 2

2
, d1 =

2κI + f −
√

4κIf + f 2

2
, (D.5)
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r2 =
2κII + f +

√
4κIIf + f 2

2
, d2 =

2κII + f −
√

4κIIf + f 2

2
. (D.6)

In particular, using Eq. D.3 and setting i = 1, we get:

N−1∏
k=1

λk =

(
rN−s2 − dN−s2

) (
rs+1
1 − ds+1

1

)
− κIκII

(
rN−s−12 − dN−s−12

)
(rs1 − ds1)

(r1 − d1)(r2 − d2)
.(D.7)

Note that Eq. D.7 reduces to the homogeneous case (Eq. C.4) when we set
s = 0, or s = N − 1, or r1 = r2, d1 = d2.

Using Eq. D.5, Eq. D.6 as well as Eq. 4.5, we have:

r′i
ri

=
L

2Ki

√
Ki

F

1

N
+O(N−3), (D.8)

di
ri

= 1− 2L
√
KiF

KiN
+

2FL2

KiN2
+O(N−3), (D.9)

(
di
ri

)u
= exp(

−2uL
√
KiF

NKi

) +O(N−2) (D.10)

where u is a function of N and it satisfies u(N) ∼ N as N → +∞.

d′i
r′i

= −1 + 2L

√
F

Ki

1

N
+O(N−2), (D.11)

κi
ri

= 1− L
√
KiF

KiN
+O(N−2). (D.12)

Here to make the formulae compact, we use κ1, κ2, K1, K2 to denote κI ,
κII , KI and KII . Note that the subscripts 1 and 2 in this section do not mean
the 1st and 2nd segments of the chain.

Similarly as in Appendix C, we can use Eq. D.8 to Eq. D.12 to evaluate∑
λ′i/λi and then the function ∆(F ) (take N → +∞ while keeping Nl = L

fixed), the result is:

∆(F ) =

1
E1
√

F
cosh

(√
F
F1

)
+ 2K−1/2

F
sinh

(√
F
F1

)
+ 1

E0
√

F
cosh

(√
F
F0

)
+ ∆K−1/2

F
sinh

(√
F
F0

)
8K−1/2 sinh

(√
F
F1

)
+ 4∆K−1/2 sinh

(√
F
F0

) −
1

2F
. (D.13)

The meanings of K−1/2, ∆K−1/2, E1, E0, F1 and F0 are given in Eq. 4.39
to Eq. 4.41. Using x = L − kBT∆(F ) (Eq. 4.13), we get the force-extension
relation for a special heterogeneous rod, which is shown in the main text
(Eq. 4.38).
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Appendix E

detM for the Clamped-clamped
Chain

The (N − 1) dimensional matrix M for the clamped-clamped chain is given
by Eq. 4.55, which is:

M =



β(κ1 + κ2 + f) −βκ2 0 · · · 0 −I/2
−βκ2 β(κ2 + κ3 + f) −βκ3 · · · 0 −I/2

0 −βκ3 β(κ3 + κ4 + f) · · · 0 −I/2
· · · · · · · · · · · ·

0 0 0 · · · −βκN−2 −I/2
0 0 0 · · · β(κN−2 + κN−1 + f) −I/2
−I/2 −I/2 −I/2 · · · −I/2 0


(E.1)

To evaluate the determinant of M, we introduce another matrix M∗ as:

M∗ = PMQ, (E.2)

where the (N − 1) dimensional matrix P and Q are:

P = diag
(
β−1, β−1, · · · , β−1, 2I

)
, (E.3)

Q = diag (1, 1, · · · , 1, 2Iβ) . (E.4)

Note that the matrics P and Q defined here are the same as those defined
for the hinged-hinged chain (Eq. B.3 and Eq. B.4) except that their dimen-
sionalities are different.

From Eq. E.2 and the definitions of the matrics P, Q, we get:

det M = −β
N−3

4
det M∗. (E.5)

Now we need to evaluate det M∗.
Using Eq. E.2, we get the matrix M∗:

M∗ =

(
Min

~G
~GT 0

)
, (E.6)
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where the (N − 2) dimensional Min in this case is given by:

Min =



κ1 + κ2 + f −κ2 0 · · · 0
−κ2 κ2 + κ3 + f −κ3 · · · 0

0 −κ3 κ3 + κ4 + f · · · 0
· · · · · · · · ·

0 0 0 · · · −κN−2

0 0 0 · · · κN−2 + κN−1 + f

(E.7)

and (N − 2) dimensional vector ~GT is given by:

~GT = [1, 1, 1, · · · , 1, 1] . (E.8)

Again, for the type of matrix in form of Eq. E.6, we have the formula [1]:

det M∗ = − det Min

(
~GT ·M−1

in
~G
)
. (E.9)

So now we need to compute det Min as well as ~GT ·M−1
in
~G.

We first perform the elementary row operations on Min and find that its
determinant is given by:

det Min =
N−2∏
i=1

λi, (E.10)

where the sequence λi is given by:

λ1 = κ1 + κ2 + f, λi = (κi + κi+1 + f)− κ2
i

λi−1

(i = 2, 3, · · ·N − 2). (E.11)

Next, to evaluate ~GT ·M−1
in
~G, which we will denote as R below, we again

define ~g as:
Min ~g = ~G, (E.12)

so that
R = ~GT ·M−1

in
~G = ~gT ·Min ~g. (E.13)

We solve Eq. E.12 and get ~g:

gN−2 =
ρN−2

λN−2

, gi =
ρi + κi+1gi+1

λi
. (i = N − 3, N − 4, · · · 1) (E.14)

where the sequence ρi is given by:

ρi = 1 +
i−1∑
j=1

(
i∏

s=i−j+1

κs
λs−1

)
. (E.15)

Therefore using Eq. E.7, Eq. E.13 and Eq. E.14, we get:

R =
N−2∑
i=1

(κi + κi+1 + f)g2
i − 2

N−3∑
i=1

κi+1gigi+1. (E.16)

Finally, Eq.E.5, Eq. E.9, Eq. E.10, Eq. E.13 together with Eq. E.16 lead
to:

det M =

(
βN−3R

4

)N−2∏
i=1

λi. (E.17)
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Appendix F

Transverse Fluctuation Scales as
T

We need to show 〈y2
i 〉 ∼ T for the hinged-hinged and clamped-clamped chain

in this section. For chains under both the boundary conditions, the matrix M
have the form (see Eq. B.1 and Eq. E.1):

M =

(
βJ ~v
~vT 0

)
. (F.1)

Using Eq. F.1, one can verify by matrix multiplication (or see [1]) that:

M−1 =

(
β−1

[
J−1 − J−1~v

(
~vTJ−1~v

)−1
~vTJ−1

]
J−1~v

(
~vTJ−1~v

)−1(
~vTJ−1~v

)−1
~vTJ−1 −β

(
~vTJ−1~v

)−1

)
. (F.2)

Note that 〈θi · θj〉 is determined by the upper corner submatrix of M−1

(Eq. 4.66, the rest of the elements in the matrix M−1 correspond to 〈θi · k〉,
which we are not interested in. Here k is from the Fourier transform of the
Dirac delta function in Eq. 4.26). Therefore, noticing that both J and ~v do
not depend on β, we have:

〈θi · θj〉 =
(
M−1

)
ij

= β−1
[
J−1 − J−1~v

(
~vTJ−1~v

)−1
~vTJ−1

]
ij
∼ T. (F.3)

Finally, using the relation between 〈y2
i 〉 and 〈θi ·θj〉 (Eq. 4.63), we conclude

that:
〈y2
i 〉 ∼ T. (F.4)
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Appendix G

Partition Function for a Fixed
Extension Ensemble

In this section, we shall derive the general expression for the partition function
for a wormlike chain in a fixed extension ensemble.

By definition, the partition function is the sum of the Boltzmann weight
for all the allowed configurations:

Zx =
∑
ν

exp(−βEν). (G.1)

The average energy relates to the partition function by:

〈E〉 =
1

Zx

∑
ν

Eν exp(−βEν) = −∂ logZx
∂β

. (G.2)

On the other hand, the equipartition theorem reads:

〈E〉 = Ee(x) +
Dx

2
kBT, (G.3)

where Ee(x) is the ground state energy for the fixed extension ensemble and
Dx is the degrees of freedom of the system.

Eq. G.2 and Eq. G.3 leads to a partial differential equation for Zx:

∂ logZx
∂β

= −Ee(x)− Dx

2
kBT, (G.4)

the solution of which is:

logZx = −βEe(x)− Dx

2
log β − U(x), (G.5)

where U(x) is an unknown function of x whose physical meaning will be dis-
cussed below. The important point here is that U(x) is independent of the
temperature T .
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The free energy of the fixed extension ensemble can be evaluated from the
partitioin function:

G = −kBT logZx = Ee(x) +
Dx

2
kBT log β + kBTU(x). (G.6)

Therefore, the force extension relation is:

F =
∂G

∂x
=

∂

∂x
[Ee(x) + kBTU(x)] . (G.7)

This relation tells us that the area A(x) below the force-extension curve,
up to a unknown constant is:

βA(x) = βEe(x) + U(x) + C0(T ). (G.8)

Plugging the above equation back to Eq. G.5, we obtain:

logZx = −Dx

2
log β − βA(x) + C0(T ). (G.9)
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Appendix H

Theory for the 2D Chains

Let t̂(s) be the tangent vector of a 2D chain along the arc length s. In a
standard reference diad {ê1, ê2}, the tangent vector can be expressed as:

t̂(s) = [ cos θ, sin θ ], (H.1)

where θ(s) is the angle formed between t̂(s) and ê1. Here ê1 is chosen to be
the direction of the axis of the microchannel.

The energy of the 2D chain consists of the bending, confinement and po-
tential energies and can be written as:

E =

∫ L

0

[
K(s)

2

∣∣∣∣ dt̂ds
∣∣∣∣2 +

Ξ(s)

2
y2

]
ds− Fx(L). (H.2)

To use the Gaussian integral method, we discretize the chain into 2N seg-
ments, and denote the tangent angle with respect to the ê1 axis for each
segment as θi (i = 1, 2, · · · , 2N). The energy of the chain depends not only
on these 2N configurational angles but also on where the chain is located in-
side the channel. A chain located close to the channel wall would have higher
energy than one with the same {θi} but located at the center of the channel.
To take this into account, we denote yN as the y coordinate of the midpoint
of the chain, and the energy of the discretized chain can be written as:

The configuration of the chain is characterized by these 2N angles and the
y coordinate of the midpoint of the chain.

The internal section we are interested in is i ∈ [p, q]. Then Eq. H.2 becomes
a quadratic expression in terms of θi:

E =

2N∑
i=1

aiθ
2
i − 2

2N−1∑
i=1

κiθi θi+1 +
N∑

m=1

N∑
n=1

Θtθmθn − 2
N∑

i=1

Θtθ0θi + 2
2N∑

i=N+1

Θtθ0θi + Θ0θ
2
0 − FL, (H.3)

where

κi =

 0 (if i = 0 or 2N)

Ki/(2l) (else)
ai = κi−1 + κi + f (H.4)
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The partition function of the virtual system can be evaluated as:

Z = exp

(
− E0

kBT

)∫
exp

(
−
~θTM · ~θ
kBT

)
d~θ = exp

(
− E0

kBT

)
· (kBTπ)N/2√

det M

(H.5)
The free energy of the system is therefore:

G = E0 −
NkBT

2
log(kBTπ) +

kBT

2
log det M. (H.6)

The angle fluctuation is:

〈θiθj〉 =

∫
(θiθj) exp

(
−~θTM·~θ

kBT

)
d~θ∫

exp
(
−~θTM·~θ

kBT

)
d~θ

=
kBT

2

(
M−1

)
ij

(H.7)
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Appendix I

Relation Between the
End-to-end Extension 〈x〉 and
Channel Width D for Wang and
Gao’s Theory

For a strongly confined DNA under force F , the total extension 〈x〉 as a
function as F and Ξ (stiffness of the effective confinement potential) is found
to be [3]:

〈x〉 = L− kBTL

2
√
κ

1√
F + 2

√
Ξ(D)κ

, (I.1)

where κ is the bending modulus of the polymer, Ξ relates to the channel width
D in the following way:

Ξ =
c4

4

(
kBT

κ1/4D2

)4/3

., (I.2)

and c = 2.5 is a constant for a cylindrical channel [3]. Setting F = 0 and
plugging Eq.I.2 into Eq.I.1, we obtain:

〈x〉 = L

[
1− 1

5

(
D

ξp

)2/3
]
. (I.3)
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Appendix J

Fluctuation for Short Internal
Segments

The fluctuation for short internal segments is expected to be in the de Gennes’
moderately confined regime. In Fig. J.1, we plot the internal fluctuation pro-
files for short segments with 〈x〉 < 10µm for 4 different sets of DNA: (1) λ
DNA, (2) T4 DNA, (3) fragmented T4 DNA and (4) BAC DNA. Note that
here we not only have short DNA, like λ DNA, but also long DNA like T4 and
BAC DNA, but we discuss only the short internal segments on them in this
section. The results for all the 4 sets of DNA are almost identical, and they
all match with de Gennes’ theory with NO fitting parameters. This result
suggests that for all internal segments with 〈x〉 ≤ 10µm, irrespective of the
sequence and length, de Gennes’ theory works.
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Figure J.1: σ versus 〈x〉 profile for the 〈x〉 ≤ 10µm region. Fluctuation of
short internal DNA segments from different sources matches with de Gennes’
theory with NO fitting parameters.
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Appendix K

Heterogeneity on the Backbone
of DNA

In experiments, we observe heterogeneity in the intensity profile of the YOYO-
1 dye along the backbone of the DNA (Fig. K.1), which can be evidence for
the formation of local folded structures. For the left figure of Fig. K.1, in the
intensity profiles corresponding to 0s and 1.6s, localized peaks are clearly ap-
parent (Fig. K.1). These localized peaks could represent the deGennes’ blobs
or local folded structures. On the other hand, regions of uniform intensity
could correspond to DNA in the Odijk regime. Heterogeneity in the DNA
backbone fluorescence intensity is also shown in the right figure of Fig. K.1.
This figure shows two internal labels coming together, which is evidence for
formation of local folded structure. Although these images gives us a visual
picture of DNA confined to a nanochannel, we believe that the two-peak prob-
ability distributions shown in the main text provide much stronger evidence of
the transition between the deGennes’ and Odijk regimes than the fluorescence
intensity profiles.
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The backbone intensity image of a T4-DNA fragment (~ 34 µm) stained with YOYO-1 iodide
inside 80x130 nm Channel recorded at time interval 1.6 s. This image shows the hairpin
formation (or structural heterogeneity) on the backbone.

0 s

1.6 s

3.2 s

6 µm

regions with high
�uorescence density

Figure K.1: (A) The backbone intensity images of a confined DNA fragment
(∼34µm) stained with YOYO-1 iodide in a 80nm×130nm channel. The images
are recorded at time interval of 1.6s. From the heterogeneity of the intensity
profile, we infer that there exist some local structures on the backbone. (B)
Images of the time series (8 seconds) of a T4 DNA fragment (∼32µm). The
backbone of the DNA is shown in red and the internal dyes are shown in
green. The region with high fluorescence density is the area with local folded
structures. The green traces are the trajectories of internal dye labels in the
time series. This image shows two internal dyes coming together, which is
evidence of formation of local folded structures.
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Appendix L

Total Extension versus L
Relation

As another evidence that the deflection theory works for segments with 〈x〉 &
10µm, we measure the end-to-end extension for DNA with different lengths
(but with mean end-to-end extension greater than 10 microns) in a 60nm×100nm
channel and plot the result against the contour length (Fig.L.1). A linear re-
lation is found with a fitting result of 〈x〉 = 0.5L. This is consistent with
the deflection theories (formulae shown below), which, with numerical values
plugged in, gives 〈x〉 ≈ 0.7L.

〈x〉
L
≈ 1− α◦

(
D

ξp

)2/3

, α◦ = 0.17, (Odijk, [4]) (L.1)

〈x〉
L

= 1− 1

5

(
D

ξp

)2/3

, (Wang and Gao, [3]) (L.2)
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Figure L.1: Mean end-to-end extension 〈x〉 versus contour length L of confined
DNA in a 60nm×100nm channel. The fitting result is x = 0.5L, which is
consistent with the prediction of the Odijk deflection theory: x = 0.7L.
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Appendix M

Distribution of Extension in the
Deflection Regime

The force-extension relation for a 3D confined chain in Odijk’s regime is given
in Eq.I.1 [3].

Since dG = −xdF , we can integrate Eq.I.1 to obtain the free energy G =
G(F, T ):

G = −
∫
xdF (M.1)

= −
∫ [

L− kBTL

2
√
K

1√
F + 2

√
ΞK

]
dF (M.2)

= −(kBTL)2

4K

2x− L
(L− x)2

+ const (M.3)

This is the free energy in a fixed force ensemble, i.e G(F, T ) = E−TS−Fx.
We need the free energy in a fixed extension ensemble. Therefore:

G(x, T ) = G(F, T ) + Fx (M.4)

=
(kBTL)2

4K

1

L− x
− 2
√

ΞKx+ const (M.5)

Denote ρ = x/L, then the free energy is:

G(ρ, T )

kBT
=

A

1− ρ
−Bρ+ const, (M.6)

where

A =
L

4ξp
, B =

4c2ξ
1/3
p L

D4/3
, c = 1.1 (M.7)

Therefore, the probability distribution is:

P (ρ) = P0 exp

[
Bρ− A

1− ρ

]
(M.8)

with A,B given in Eq. M.7 and P0 being the normalization constant.
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Appendix N

Results of Entropy-induced
Migration Derived from the
Sackur-Tetrode Equation

The conclusions drawn from the random walk model in the main text can be
understood from a different point of view by considering the heat production
rate of the system. In this section, we show that exactly the same results can
be re-derived using the Sackur-Tetrode formula for the entropy of ideal gases.

Again, we imagine N particles diffusing on the z axis. In any infinitesimal
interval dz, there are NP (z)dz number of particles, where P (z) is the particle
density distribution. Using the Sackur-Tetrode formula [5], the entropy at
position z can be written as:

S(z) = NP (z)kB log

[
V (z)

h3
(2πmkBT )3/2

]
−NP (z)kB log [NP (z)] +

5

2
NP (z)kB,

(N.1)

where h is the Planck constant and m is the mass of an individual particle.
Note that the second term on the right-hand-side is the Boltzmann entropy for
a probability distribution P, arising from the Gibbs’ correction to the entropy
of an ideal gas and will eventually lead to pure diffusion, as we shall show
later.

Heat production rate of the system can be evaluated using Eq. N.1, conser-
vation of mass: P,t = −J,z and integration by parts with boundary conditions
J(±∞) = 0. The result turns out to be:

Q̇ = T
∂

∂t

∫
z

S(z)dz (N.2)

= NkBT

∫
z

[
d (log V )

dz
− ∂P/∂z

P

]
J dz. (N.3)

On the other hand, heat generation can be evaluated using the local power
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density [6]: w = P (ξJ/P ) (J/P ) = ξJ2/P :

Q̇ = N

∫
z

ξJ2

P
dz. (N.4)

A comparison between Eq. N.3 and Eq. N.4 yields:

J = −D∂P
∂z

+
−dG/dz

ξ
P, (N.5)

where dG = −kBTd (log V ) has been used as the gradient of the free energy
for a single particle under the condition that temperature is a constant [5].
This result agrees exactly with the one obtained from the microscopic model
(Eq. 8.4). Plugged into the mass conservation law, Eq. N.5 gives the evolution
law for P (z, t) shown in Eq. 8.2. We note that the first term in Eq. N.5
is pure diffusion and it comes from the Boltzmann entropy for a probability
distribution P in Eq. N.1.

Compared to the random walk model, the theory discussed here considers
the problem from a different point of view. Here a non-uniform entropy/free
energy landscape causes heat production when a particle flux sweeps through.
This contributes to the system as a source of heat. The framework for this
model has been used to derive equations for thermal diffusion problems where
a temperature gradient drives the diffusion of ideal gas [6]. Here we have used
it for diffusion in an entropy-varying landscape.
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Appendix O

Transverse Size of a Strongly
Confined Polymer

Given a polymer under uniform stretch λ = ∂z/∂s inside a nano-channel of
width D, we estimate the transverse displacement R⊥ of the polymer in this
section.

θ

l

Figure O.1: Given θ, we find the l that minimizes the energy of the confined
chain.

Since the stretch λ is uniform, for an inextensible chain, the tangent angle
θ (the absolute value) is a constant along the contour. Therefore, the config-
uration of the polymer, modeled as a chain of links, is piece-wise linear, as
shown in Fig. O.1. There is only one free parameter for this configuration: l
which is the length of each piece-wise linear segment. Below, we find lmin that
minimizes the energy of the chain, from which we can obtain the transverse
displacement as a function of the stretch. The energy per unit length of the
chain is:

E = Eb + Ec + Ep =
2Kbθ

2

l2
+

Ξθ2

24
l2 +

1

2
fθ2, (O.1)

where Kb is the bending energy, Ξ is the quadratic confinement potential [3],
and f is the applied force. The lmin that minimizes this energy is:

lmin =

(
48Kb

Ξ

)1/4

. (O.2)

Plugging in the relation between Ξ and D [3], we have the scaling relation:
lmin ∼ p1/3D2/3, which agrees exactly with the prediction of Odijk and that of
Burkhardt [4, 7, 8].
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For the transverse displacement at the nodes (Fig. O.1), we have: R⊥ =
sin θ l/2+a0 cos θ, where a0 is the effective width of the DNA molecule without
fluctuation. Therefore, the transverse displacement R⊥ that minimizes the
energy is:

R⊥ = a0
∂z

∂s
+

(
3Kb

Ξ

)1/4
√

1−
(
∂z

∂s

)2

. (O.3)

When ∂z/∂s = 1, there is no thermal fluctuation, so the minimizer R⊥ = a0,
as expected. Plugging in the relation between Ξ and D [3], we obtain:

R⊥ = a0λ+ 0.7445
(
pD2

)1/3√
1− λ2. (O.4)

218



Bibliography

[1] Zhang, Y., Crothers, D.M., 2003. Statistical mechanics of sequence-
dependent circular DNA and its application for DNA cycliza-
tion. Biophys. J. 84(1), 136-153.

[2] Purohit, P.K., Arsenault, M.E., Goldman, Y., Bau, H.H., 2008. The
mechanics of short rod-like molecules in tension. Int. J. Non-linear
Mech. 43(10):1056-1063.

[3] Wang, J., Gao, H., 2007. Stretching a stiff polymer in a tube. J.
Mater. Sci. 42:8838-8843.

[4] Odijk, T., 1983. On the statistics and dynamics of confined or
entangled stiff polymers. Macromolecules 16:1340-1344.

[5] Huang, K., Statistical Mechanics (John Wiley & Sons, Inc., New York,
London, Sydney, 1963).

[6] Christen, T., 2007. Modelling diffusion in nonuniform solids using
entropy production rate. J. Phys. D 40:5723.

[7] Odijk, T., 1986. Theory of lyotropic polymer liquid crystals. Macro-
molecules 19:2313.

[8] Burkhardt, T.W., 1995. Free energy of a semiflexible polymer con-
fined along an axis. J. Phys. A-Math. Gen. 28:L629.

219


