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Abstract 

A simulator for connectionist networks which uses gradient methods of nonlinear optirniza- 
tion for network learning is described. The simulator (GRADSIM) was designed for temporal 
flow model connectionist networks. The complete gradient is computed for networks of general 
connectivity, including recurrent links. The simulator is written in C, uses simple network and 
data descriptors for flexibility, and is easily modified for new applications. 

A version of the simulator which precompiles the network objective function and gradient 
computations for greatly increased processing speed is also described. Benchmark results for 
the simulator running on the DEC VAX 8650, SUN 3/260 and CYBER 205 are presented. 

1 Introduction 

The GRADSIM package is a collection of software modules in C that together constitute a gen- 
eral purpose connectionist network simulator which offers several methods of iterative gradient 
optimization techniques for training networks of axbitrary connectivity. It is designed to simulate 
networks which respond to binary and real-valued data, using simple network and data descrip- 
tors and standard unit functions. The package is modular and easily modified to accommodate 
variations in user problems and modeling requirements. 

The GRADSIM package also contains a network compiler which produces C-code to compute 
the objective function and gradient vector for a specific network. The compiled C-code is optimized 
for processing speed. 

This package was produced over the course of nearly two years during research in connectionist 
networks for speech recognition. The initial work in this area was undertaken using an early 
version of the Rochester Simulator [5,21]. This simulator was modified initially to permit use of the 
back-propagation algorithm for networks with recurrent links. Eventually, however, speed became 
an overriding consideration, and so a simulator was written that was streamlined for speed. The 
structures of the Rochester Simulator which provide generality and support interactive examination 
of network behavior were costly computationally. 

In addition, several second-order methods for nonlinear optimization were being investigated[20,17], 
which would have required further modification to the Rochester Simulator. 

This report describes GRADSIM Version 1.4, which has been regularly improved from previous 
versions. The hope in describing GRADSIM in this report is that it will be found useful as a 
research tool by other groups, and be enhanced in the course of being applied t o  different sets of 
problems. 



2 Design Considerations 

The GRADSIM simulator was developed with the following design criteria in mind: 

1. Speed 

2. Flexibility 

3. Modularity 

The speed criterion arose because of the application of connectionist networks to  speech recog- 
nition problems, in which large amounts of data are required for network training, and in which 
network architectures which have recurrent links were employed. Speed was accomplished in one 
respect by making simplifying assumptions about the need to  modify network unit functions. By 
writing these functions directly into the simulator, the structures which provide increased generality 
were excluded, with an associated savings in speed. 

Flexibility was a design criterion because the network configurations and speech recognition 
experiments were varying over short time intervals as new insights were gained into network capa- 
bilities. It was decided to  use ASCII network descriptor files for specifying network connectivity 
and characteristics. These files could be easily generated and modified using a standard editor 
(EMACS), as well as generated by UNIX shell scripts. This was preferred to a network generator 
in which the network was precompiled for a new version of the simulator. 

Modularity was also an important consideration because of the need to investigate several 
learning algorithms, both first and second order, the desire to  check these algorithms on standard 
binary valued test problems such as XOR and various coding problems, and the desire to modify 
unit functions, and the associated function and gradient computations. Consequently, the design 
that emerged uses a modular approach in which these types of changes can be made to  independent 
parts of the package. 

2.1 Learning 

The design of GRADSIM reflects a perspective on machine learning that is decidedly de-psychologized. 
Following a definition of learning by Tsypkin as [15] 

a process of forcing the system to  have a particular response to a specific input signal 
(action) by repeating the input signals and then correcting the system externally 

the perspective of learning as a design problem was adopted. In this case, there is no require- 
ment that the learning algorithm be biologically plausible, and the question then becomes which 
algorithm is computationally most effective. 

This is not to say that learning as a psychological problem is not interesting and important, 
or that it cannot be addressed using GRADSIM. It  is only to  point out that GRADSIM includes 
learning methods such as back-propagation, steepest descent and second order methods, which have 
not been shown to be biologically plausible learning methods. 

2.2 Temporal Flow Model 

The design of GRADSIM was also affected by its original application to speech recognition using 
a model called the temporal flow model [21,19,22,20]. This model represents time implicitly and 
relatively, using delay links instead of time-spatialized units. The model is also characterized by 
internal recurrent links to  provide dynamic temporal properties. This has lead to particular forms 



of the gradient computation, which are discussed later in this report. The point here is that the 
simulator is general with respect to connectivity and link delay, up to  the constraints in effect when 
the simulator is compiled. 

3 Overview 

The GRADSIM connectionist simulator is compiled from a small number of C modules which are 
tailored to the optimization algorithm of choice, and the application problem. Once compiled, a 
particular simulator is capable of handling a wide variety of network architectures and experimental 
designs. The compilation relies on several "include" files to specify various maximum network 
dimensions. 

3.1 Modules 

The simulator is divided into several types of module, which are specific t o  the simulator, the 
optimization method, and the application. 

3.1.1 Simulator Modules 

The simulator modules handle reading and writing of the network and experiment descriptors, and 
perturbation of the link weights at initialization. 

 weight.^ Handles reading and writing of network descriptor. 

read.c Handles reading of experiment descriptor file. 

map.c Performs internal mapping between link and array data structures, and provides general 
calls for objective and gradient evaluations. 

 perturb.^ Performs initialization of network by adding a random small number to each link weight. 

3.1.2 Optimization Modules 

The simulator is compiled separately for each of four possible nonlinear optimization algorithms, 
which are listed here. In addition, all but the back-propagation algorithm employ the linesearch 
module. 

bp.c Implements the standard back-propagation algorithm, with fixed learning and momentum 
constants. 

grad.c Implements the steepest descent gradient optimization algorithm using a linesearch routine. 

dfp .c Implements the Davison-Fletcher- Powell quasi-Newton method. 

bfgs.c Implements the Broyden-Fletcher- Goldfarb- Shanno quasi-Newt on method. 

1inesearch.c Implements a linesearch algorithm using cubic and quadratic interpolation and ex- 
trapolation. 



3.1.3 Application Modules 

The application modules provide code for the unit functions, and computation of the objective 
function value and gradient vector. 

 speech.^ Provides for speech data input based on experiment descriptor and scaling of speech 
data. 

unit.c Supplies routines to compute unit output function and forward pass through the network, 
using the potential function. Supports computation of objective function and gradient vector. 

gauss-targ.c Supplies Gaussian target function values for objective and gradient computation, as 
well as target function gradient routines for adapting target function parameters. 

compile-de1ay.c A network compiler which generates a network specific unit function module 
which is optimized for speed. 

3.2 Include Files 

The include files listed below specify the data types shared between modules and the maximum sizes 
of several import ant data structures. These constraints are checked during most of the simulation, 
although it is still possible to dump core. 

net.h Contains the maximum network size, number of input units, the link data structure, and 
several other parameters. 

read.h Contains the definition of the experiment descriptor data structure and related constants. 

vect0r.h Contains the vector data structure definition and maximum link count parameter. Con- 
trols the basic simulator size, especially for the second order methods. 

3.3 Compilation 

Generation of the simulator is by means of a standard "makefile" using the UNIX "make" utility. 
An example "makefile" is included here for illustration. 

CFLAGS = -0 

bfgs : bfgs.0 perturb.0 unit.0 weight.0 line-search.0 speech.0 
map.0 gauss-targ.0 read.0 
cc $CCFLAGS) -0 bfgs bfgs.0 perturb.0 unit.0 weight.0 
line-search.0 speech.0 map.0 gauss-targ.0 read.0 -Im 

read.0 speech.0 : read.h 
bf gs. o line-search .o map. o speech. o unit. o : vector. h 
map.0 perturb.0 speech.0 unit.0 weight.0 : net.h 



3.4 Calling sequence 

The simulator is called by the name of the optimization algorithm selected for compilation. Thus, 
for example, a simulator based on the Broyden method would be called by 

bfgs -c original-net .l experiment .4x 

The "-c" option instructs the simulator not to perturb the link weights as read from the network 
configuration file, "originalaet.1". This enables optimization to continue properly from a point of 
interruption, such as a power failure or system crash, which can easily occur in the three weeks it 
takes to optimize some networks! 

Intermediate results are written to  a file called "net.tmp.tmpV so that work is not lost. If the 
simulator terminates normally, a final configuration file, "net.x.finV is also written. Care must be 
exercised in saving these files between runs of the simulator in the same directory. 

3.5 Network Meta-Compiler 

A network meta-compiler was developed which generates C-code for the "unit.? module to 
provide objective function and gradient evaluation subroutines for a particular network. 

The meta-compiler was designed to  generate code that is optimized for speed. Speed enhance- 
ments were accomplished by a number of means. The gradient and unit output array indices are 
precomputed using the network link delay values. The inner loops are unwound, and replaced 
by the correct number of explicit operations. This saves counter increment and test operations. 
Register variables, data pointers and autoincrement arithmetic operators are also used for speed. 

In the process of optimizing the code, it was observed from an examination of the assembly 
code of the inner loops that multiple float/double conversions were being generated in the calls to  
the exponential function. Changing the data types consistently to "double" solved this problem. 

Minimizing array initialization was done by sorting the links by delay and controlling the se- 
quence of value initialization and increment. 

The network meta-compiler speed enhancements have been measured in benchmark tests as 
described in Section 5. The compiler has been used on MASSCOMP ', DEC VAX and SUN 31200 
series computers. 

The meta-compiler is itself compiled, and then called for each network separately, to  generate 
a module which replaces c unit.^" in the simulator compilation makefile described above. 

3.6 Network Descriptor 

The network descriptor is an ASCII file that consists of a threshold unit identifier and link descrip- 
tors. The descriptor is defined in terms of a unit index, which is based at zero. A single threshold 
unit is identified explicitly. Each link is defined in terms of its from unit, to unit, delay and initial 
weight values, as shown in the example below. 

Threshold Unit 26 
0 16 1 0.05 
1 16 1 0.05 
2 16 10.05 
3 16 1 0.05 

'Bruce Ladendorf, Siemens Research and Technology. 
'It includes a switch option in order to correctly handle the difference between MASSCOMP and UNIX in treating 

exponential function overflow. 



The input units are assumed to begin at  unit 0, and extend for the number of units defined in 
"net.hm as 'INPUT-UNITS'. There are no other restrictions on the order of link descriptors, or unit 
indexing. The number of links must not exceed "MAX-VECTOR", which is defined in "vector.h". 
The highest unit index should be less than "MAX-NUM-UNITS" in "net.h9. 

The number of output units is controlled by the NUM-OUTPUT-UNITS constant in "net.h7'. 
The indices of the output units is specified in the experiment descriptor. 

3.7 Experiment Descriptor 

An experiment descriptor is an ASCII file which describes the network output units, the input data 
files, and the target value parameters for each output unit and input file. 

The output units descriptor consists of an output unit count, and a corresponding number of 
output unit indices. The output units must be fewer in number than "MAX-OUTPUT-UNITS" 
in "read.hV. This is followed by an arbitrary number of data file names, up to  the maximum given 
by " MAX-TRAIN" in "read.h7'. 

For each data file, the target function for each output unit is specified by a + or -, and two 
parameters. These parameters can be used to characterize the target function, by giving the mean 
and standard deviation for a Gaussian, for example. 

The experiment descriptor is easy to generate and modify. The only caution in using it is that 
the output unit indices must match the network being optimized. If the experiment descriptor is 
used in an optimization experiment with a network descriptor which it doesn't match, unpredictable 
results will occur. This problem can only partially be solved by checks in the descriptor 1/0 routines, 
since output units cannot be implicitly defined. 

4 Simulator Theory 

The problem of learning using connectionist networks, in which the network connection strengths 
are modified systematically so that the response of the network increasingly approximates the 
desired response, can be structured as a nonlinear optimization problem. This section presents 
very briefly some of the optimization methods which are included in the simulator. More detailed 
information can be obtained about the theory of nonlinear optimization from other sources [ll]. The 
application of nonlinear optimization to connectionist network learning is discussed in a separate 
technical report[l6]. 

The methods described here have in view a learning process in which the network performance 
is improved by minimizing a mean squared error measure. The gradient methods have in common 
the computation of the partial derivative of the error with respect to the weight values, and proceed 
iteratively by modifying the weights in the direction of the negative gradient. 



4.1 Gradient Computation 

The computation of the gradient of the error surface for feedforward connectionist networks is 
straightforward. A method for approximating the gradient for networks with recurrent links was 
presented [21] which relied on truncating the recursion in the gradient computation after a fixed 
number of steps. 

A method for computing the complete gradient for networks of general connectivity was derived 
by Kuhn[lO] which proceeds from left-to-right in time, accumulating partial results. A similar 
method was developed by Ladendodl81, in which the computation of network activation proceeds 
from left-to-right, with a single right-to-left pass to compute the gradient. Thus, two methods exist 
for computing the complete gradient in networks of arbitrary connectivity. 

4.2 Back Propagation 

The back propagation (BP), or error propagation algorithm for learning in connectionist networks 
was reported by Rumelhart, Hinton and Williams3[14,13]. 

The algorithm is an iterative method in which a step in the negative gradient direction is taken 
at each iteration. The step size is a fixed constant. The name error- or back propagation derives 
from the definition of an error value for each unit, which is recursively computed from the error 
values of units to which it is connected. The error at the output units is defined as the difference 
between the actual and desired values. 

An accelerated gradient technique for back propagation has been published called 'momentum' 
[13]. The momentum term is defined by: 

where wij is the connection strength from unit i to unit j ,  E is the error function value, 7 is the 
learning constant and p is the momentum constant. The effect of the momentum term is to magnify 
the learning constant for regions of weight space where the gradient is essentially constant, and to 
focus the movement in a downhill direction by averaging out the components of the gradient which 
alternate in sign [16]. 

In the present GRADSIM simulator, the learning constant and the momentum term are com- 
piled constants, ETA and MU. 

4.3 Steepest Descent 

Steepest descent is a gradient optimization method in which the error function is fully minimized 
along the direction of the negative gradient, at which point the gradient is recomputed and the 
process is iterated. 

For connectionist learning theory, it should be noted that this method is not a local method; 
that is, the modification of the weights must be controlled by a central process which monitors the 
minimizing step size for each gradient direction. This is true also of the quasi-Newton methods. If 
the focus of research is on solutions to problems rather than biologically feasible learning algorithms, 
steepest descent provides important advantages over back propagation. 

3 ~ s  the authors indicate, it appears that similar learning algorithms were proposed by Parker [12] and Le Cun 
[13]. An earlier version due to Werbos is more recently credited [23]. 



4.3.1 Line Search 

Line search is an optimization method which is the basis for steepest descent, and is generally a 
standard component in more complex optimization algorithms. The problem is to find the minimum 
value of the objective function along a particular direction of search. 

where a is a scalar, and a is the search direction vector. 
There are three aspects of the line search, bracketing, sectioning, and interpolation [7]. A 

bracket maintains the permissible range for a, which is reduced in a controlled way as the search 
progresses. The bracket is used to protect against undesirable results of an interpolation algorithm 
for which assumptions about the objective function are not met; for example, extrapolation from a 
point in a function which is not convex in the interval could lead to values of a outside the interval, 
and result in a failure to converge. 

Sectioning is a method for subdividing the range of a in order to reduce the interval in which 
the minimum must lie. It is generally assumed that the objective function is unimodal in the region 
of interest, and that the process of sectioning can be carried out to isolate the neighborhood of that 
minimum. 

The methods of interpolation (and extrapolation) are based on low-order polynomial approxi- 
mations to the objective function. The coefficients of the polynomial can be computed from a few 
points, and the corresponding minimum estimated directly. 

The line search is in practice the most critical part of an optimization algorithm, and involves 
many design decisions. These include criteria for terminating the line search, controlling the sec- 
tioning limits, the initial value of a, and the details of the interpolation algorithm (see Appendix A). 
Modification of the simulator in this regard may be indicated for some applications, and requires a 
thorough knowledge of the theory [ll] . 

4.4 Quasi-Newton Methods 

The second derivative of the error with respect to the network weights gives information about 
the curvature of the error surface, and is the basis for a set of powerful optimization algorithms. 
The inverse of the second derivative matrix can be used in conjunction with the gradient to more 
accurately estimate the point of function minimum value. 

Since the computation of the second derivative may be very complex, and computationally 
expensive, and since the matrix inversion is O(IV3) , the so-called quasi-Newton methods were de- 
veloped in which the inverse matrix is approximated iteratively. This avoids the direct computation 
of the second derivative, and the computational complexity is reduced by a factor of O(N) [7]. 

The basic quasi-Newton algorithm consists of the following steps: 

1. set a search direction a = -Hg 

2. minimize f along a 

3. update H 

where H is the approximate inverse second derivative matrix. 
The heart of the algorithm is the update strategy for the approximate inverse matrix. One 

method is called the Davidon-Fletcher-Powell (DFP) method [4,8], and is given as: 



where 7; = g;+l - g; and 6; = $;+I - 2;. 
Another method is due to Broyden, Fletcher, Goldfarb and Shanno [3,6], the BFGS algorithm: 

The initial inverse matrix H is usually selected to be I. 
These algorithms are implemented very directly in GRADSIM. They are currently based on a 

square matrix of dimension MAX-VECTOR; this data structure could be reduced by approximately 
one-half because of symmetry to reduce memory usage, so larger networks could be handled. 

5 Speed Enhancements 

This section investigates the effect of several speed enhancement techniques on simulator per- 
formance. These include the algorithmic gradient computation improvement and network meta- 
compilation. 

A benchmark program was used for performance evaluation which consisted of 11 iterations of 
the back-propagation algorithm on a simple two-layer temporal flow model network with 27 units 
and 164 links, including self-recurrent links at the 8 hidden and 2 output units. The training data 
consisted of two speech files, and a linear target function was used for training. The benchmark 
corresponds to the nojgo problem described in [21]. 

The baseline version of the algorithm included a form of gradient computation in which the 
gradient is computed from left-to-right in time, and approximates the gradient by limiting the 
backward recurrent series to a fixed number of iterations[21]. This number was set to 3 for this 
case. 

The second version shows the improvement due to the new gradient algorithm, which computes 
the complete gradient in a single right-to-left pass. 

The third version of the simulator involves using multiple output arrays to store network re- 
sponses to each training token separately. This trades memory for time, by reading and scaling 
the training data once. It also permits a single call to the forward pass function in the gradient 
computation, since the forward pass is computed in the objective function, which is always called 
prior to the gradient. 

The meta-compiled version of the simulator uses C-code for the objective and gradient com- 
putation generated automatically for an individual network, as described above. This simulator 
performance is given for the multiple forward pass version, followed by the single forward pass 
version. 

Table 1 lists the benchmark resource utilization statistics for the various simulator versions. 
The simulator versions were compared using the VMS C-compiler "vcc" on a VAX 8650 at the 
University of Pennsylvania. The values listed in the table are the average of three runs of the 
benchmark program, and show timing and program parameters obtained from the "time" utility 
under UNIX. The user time is given in seconds, the shared text size and unshared stack size are 
given together, the number of blocks on input and output are shown together, followed by the 
number of major page faults. The number of swaps was also recorded for each case, and was 
uniformly zero. 



Table 1: Speed Enhancements 

The user benchmark time is seen to decrease for the improvements listed from 55.2 seconds for 
the baseline to 10.2 seconds for the best version tested. 

The new gradient computation is the source of an improvement of 30% in the user time, from 
55.2 to 38.1 seconds. This improvement is a function of MAXTAU, and would be increasingly 
significant with larger values of MAXTAU. 

It can be seen that the compilation process results in a speed-up of a factor of 2 over the 
uncompiled form, both for the single output array version (38.1 versus 17.9) and the multiple 
output array version (21.2 versus 10.2). 

The use of multiple output arrays, and the consequent single forward pass, contributes nearly 
another factor of 2 in performance: 1.8 for the uncompiled version (38.1 versus 21.2) and 1.75 for 
the compiled version (17.9 versus 10.2). 

The program size is also seen to vary with simulator version. The use of multiple output arrays 
is seen to increase the unshared stack size (1096 and 841) relative to the single output array versions 
(331, 448 and 574). 

The use of multiple output arrays has reduced the number of blocks on input by a factor of 
7.5 for the standard version (15 versus 112), and 11.6 for the meta-compiled version (8 versus 
93). This corresponds approximately to the number of iterations in the experiments. The limit 
to this improvement is reached when the program exceeds the available memory. Future versions 
of the simulator may allocate memory dynamically to take maximum advantage of the space/time 
tradeoff. 

It is noted that the number of page faults is zero for noncompiled versions and nonzero for the 
compiled versions. The reason for this difference is unknown at present. 

The conclusion of this comparison is that the improved gradient computation, which is also 
correct and complete, has significantly reduced the computation time for optimization. The use 
of multiple output arrays and generation of optimized C-code using a network meta-compiler has 
resulted in an additional factor of nearly 4 in performance. 

Version 
Baseline 
New Gradient 
Single Forward 
Compiled 
Cmpld Sgl Fwd 

6 Extensions 

1/0 
141+60 
112+40 
15+25 
93+26 
8+14 

Several extensions to GRADSIM would improve its utility. First, it would be desirable to imple- 
ment dynamic memory allocation for network data structures, and especially for experiment data 
structures. This would guarantee optimal space/time tradoffs in performance. 

Now that the simulator has been written, debugged and used for some time, it could be cleaned 
up and rewritten. This would be especially important in making it more general purpose. A module 
should also be written which handles feedforward networks and binary data, for standard problems, 
such as encoding. This was done at an earlier stage and needs to be updated. 

Finally, a graphical interface for the simulator is under development (GRADVIEW) and should 
be documented in the near future. It is currently running on the SUN 3 workstations. 

PageFaults 
0 
0 
0 
36 
35 

Time 
55.2 
38.1 
21.2 
17.9 
10.2 

Size 
29+331 
29+448 
31+1096 
36+574 
38+841 
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A Line Search 

Line search is a method for locating the point of minimum function value along a particular direction 
of search. This can be stated as a minimization problem as follows: 

min f ( s o  + ~ 0 )  
ff>O 

where f is the objective function, s o  is the initial value, o is a search direction, and a is a scalar. Line 
search is a standard component of many minimization algorithms, including steepest descent and 
higher order algorithms, such as the quasi-Newton methods included in the GRADSIM simulator. 

The method for solving a one-dimensional minimization problem plays an important role in the 
overall minimization strategy. The control structure for a good line search algorithm is moderately 
complex, due to the need to use Limiting values of a and other methods to  avoid infinite loops in the 
search. In addition, the need to prevent numerical problems such as floating point overflow makes 
careful analysis of the algebra of hte interpolation methods necessary for proper implementation 
of the algorithm. Consequently, the basis for the line search algorithm is derived and discussed in 
some detail. 

A . l  Cubic Interpolation 

Interpolation is used to compute values of a for which the objective function is at a minimum, based 
on a polynomial approximation to the objective function. The polynomial approximation is based 
on several sample points and their associated gradients, depending on the order of the polynomial. 
This section derives the formulae for computing the minimum of a third order polynomial. Second 
order polynomials are discussed in Section A.2 

The derivation proceeds by solving for the points where the first derivative is zero, and then 
applying the constraint for a minimum that the second derivative be positive. 

A.1.1 ProblemDefinition 

Suppose, the objective function, f ,  is approximated by a cubic as follows: 

f ( a )  = b3a3 + b2a2  + b l a  + bo 

Then, the first derivative is given by: 

and the second derivative as: 
fl'(a) = 6b3a + 2b2 

Also suppose that the objective function value and first derivative is known for two values of 
a ,  that is a1 and az. 

Now, solve for amin such that: 

under the condition that f" > 0: 

The quadratic formula is used to solve the first equation, which becomes: 

12 



This solution is invalid for b3 = 0, in which case the function is quadratic, and the solution for 
this case is developed in Section A.2 below. 

It  is also assumed that a p  > a1, which can normally be assured by the order of the search 
points. If a 2  = a l ,  the search has collapsed; this condition is discussed in Section A.2.2. 

The cubic approximation equation is solved by solving for b3, bz and bl, and then substituting 
in the quadratic formula of Equation 7. 

A.1.2 Coefficient Solutions 

Using the two known function values, bo can be eliminated from Equation 4 to  obtain bl in terms 
of b2 and b3. Note that bo can be solved given the other coefficients and the values of f and a at 
either point. 

fl = b3a: + baa: + b l a l  + bo 

Subtracting, 
( f 2  - fl)  = b3(a; - a:) + b2(4  - a f )  + bl(a2 - a l )  

Factoring ( a 2  - a l l ,  and dividing, since a 2  # a l :  

Similarly, the known first derivatives can be used to eliminate bl from Equation 5, solving for 
b2 in terms of b3. 

fi = 3b3af + 2b2al + b~ 

Subtracting yields: 
(f; - f l )  = 3b3(4 - a:) + 2b2(a2 - ~ 1 )  

Again, factoring ( a2  - all, and rearranging, 

Now, introduce the following definitions for compact notation: 

Now, Equation 5 is used for known values of a and f ;  choosing a1 and fi: 

Now, replace b2 in this equation using Equation 9, to obtain bl in terms of b3: 

f{ = 3b34 + (t - 3b3(a2 + ~ I ) ) Q I  + b i  



which becomes: 
bl = fi + ~ l ( 3 b 3 ~ 2  - t )  

Now solve for b3 substituting Equations 9 and 10 in Equation 8: 

After some algebra, this yields: 

b3 = f; + f; - 26 
( a 2  - all2 

Note that the value of this term will determine whether the approximating polynomial is quadratic 
(b3 = 0) or cubic. 

A.1.3 Cubic Radical 

Now, solve for the radical of the quadratic form of Equation 7 in terms of b3: 

After some manipulation, this becomes: 

Substituting Equation 11 gives the following result, after some algebra: 

Again, for compactness, define: 
z = f; + f; - 36 

and 
w = J- 

Thus, the solution to this point becomes: 

In order for the equation to have a real-valued solution, the radical must be positive: 

(fi + fi - 36)2 - fifi > 0 

When this condition is not met, alternative action must be taken to establish a new value for a ,  
based on the search interval limits. 

A.1.4 Cubic Substitution 

Now, substitute for b2 in Equation 7 using Equation 9 to obtain: 

- t-3b3(az+al)f w 
2 f f2 - a1  

Qmin = 
3b3 

Finally, substitute for b3 using Equation 11 to obtain the solution: 



A.1.5 Cubic Curvature 

The curvature condition now must be applied to this solution, in order to ensure that 

which reduces t o  the condition: 
3b3amin t b2 > 0 

First, substitute for a,;, using Equation 12 to obtain: 

Since (a2 - a l )  > 0, this can be reduced to: 

Since w is taken to be positive, this condition holds only for tw. Thus, Equation 13 becomes: 

a,;, = a1 + ( a 2  - 
[ I -  f ; + z - w  I 3 ( f i  t f ;  - 26) 

A.2 Quadratic Case 

This section discuss the case when bs is found to be zero, and the approximating cubic reduces to 
a quadratic. In this case, Equation 5 becomes: 

whence 

Now, Equation 10 becomes, with b3 = 0: 

Also, Equation 9 becomes: 
2b2 = 

By substituting Equations 16 and 17 in Equation 15, the following solution is obtained: 

Note that this solution is valid only for fi # fi; the solution for the exceptional case is discussed 
in the next section. 



A.2.1 Quadratic Curvature Conditions 

Now, the conditions on the curvature which make the point of inflection a minimum are that 
fN(a,;,) > 0. Thus, for bs = 0, Equation 6 becomes: 

f "(a,;,) = 2b2 > 0 (19) 

From Equation 17 above, this implies that 

Since a 2  > al, this implies that fi - fi > 0, or 

It is assumed that fi < 0, since the search direction is chosen to be downhill. Note that if 
fi > 0 this implies that fi must be more positive, and thus the minimum point is to the left of a l :  
a,;, < a l .  If fi < 0, fi must not be more negative, and a,;, > al. 

If f; = f i ,  the approximation is a straight line; if f; < f;, the quadratic has a maximum at 
the solution point. In both cases, the lack of quadratic convex behavior indicates that the search 
is not in the neighborhood of a minimum, so some compensatory action is required. A reasonable 
solution in this case is to choose: 

a,;, = a1 + 2(a2 - a l )  

A.2.2 Interval Collapse 

If a2 approaches al, the search interval is diminishing. If this interval decreases below a selected 
value, the search is considered to have failed, and appropriate action at a higher level needs to 
be taken. This could involve terminating the optimization procedure, or reorienting the search 
direction by reinitializing the Hessian. 



B GRADSIM on the CYBER 205 

This section discusses the implementation of GRADSIM on the CYBER 205, a vector super- 
computer, at  the John Von Neumann Center in Princeton, NJ. This section includes benchmark 
performance figures for the CYBER 205, SUN 31260 and DEC VAX 8650. 

The Control Data Corporation CYBER 200 Series Computer is an SIMD vector processing 
computer, a "large-scale, high-speed, arithmetic-computing system" [I]. The central processing 
unit includes a scalar processor and a vector processor which may consist of 1,2 or 4 vector pipes. 
The scalar processor has a 20 nanosecond minor cycle time, and a 256 64-bit word register file. The 
main memory access time is 80 nanoseconds, and uses either 4K bipolar RAMS (400 series) or 16K 
MOS RAM (600 series). 

Since the simulator is written in C, the decision was made to use the VECTORC compiler 
[2] for the CYBER 205, rather than recode everything in FORTRAN. It was understood that in 
the process, vectorization would have to be done explicitly, since VECTORC is not a vectorizing 
compiler. It was also stated that the resulting performance would still be about 80% of what 
was obtainable using FORTRAN because of the mismatch between the machine architecture and 
the programming language C. However, the changeover was expected to be easy using the same 
source code, and the 20% performance difference appeared to be a small price to pay for avoiding 
a recoding exercise. 

B.l  Scalar Implement at ion 

This section reports the transfer and implementation of a scalar version of the simulator. The C 
source code for GRADSIM was transferred to the DEC VAX 8650 front-end processor using "ftp", 
and the shell scripts generated for transfering the appropriate files to the CYBER 205 and running 
compilations using the necessary passwords and job-control directives. 

What follows is a list of the problems encountered in getting the simulator running on several 
simple test problems. 

B .1.1 Command Line Arguments 

The simulator was configured to solve a standard nonlinear optimization test problem, in order to 
test the overall structure of the simulator on the simplest case available. The Rosenbrock function 
was used for this test. The simulator is written in this case to require floating point arguments on 
the command line, which give the coordinates of initial search point. 

The period, however, is a VSOS line terminator. Therefore, the decimal point in the floating 
point argument must be enclosed in quotes: 

BFGS-ROSEN "-1.2" "1.00" 

However, the quotes cause problems for the C-shell which generates the job control file for the 
CYBER. This requires the following syntax: 

BFGS-ROSEN \"-I. 2\" \"I. 00\" 

B .1.2 External Array Length 

The length must be included with the declaration of external arrays in order to use the [*I vector 
reference format : 



ext ern weight [MAX-VECTOR~ ; 

x = weight [*I @ . q [*I ; 

Otherwise, the length is taken as zero. Note that this syntax is different from what would be 
expected in the C environment, and as far as I know is not documented. 

B .1.3 Missing Include Files 

Certain 'include' files referenced in the VECTORC manual are used in the connectionist simulator. 
As it happened, the include files were missing because of a problem with the archiving process 
which had wiped out part of the pool of 'include' files. This problem was fixed by JVNC staff. 

B.1.4 Variable and Function N a m e s  

The CYBER uses fixed limits on the length of variable and function names. This generated nu- 
merous 'non-unique entry point' errors, which were fixed by renaming functions and variables. 

B.1.5 Reading Files 

Since the file structure on the CYBER 205 is radically different from that in UNIX environment, file 
1/0 is also affected. As a result, a data file had to be first opened with 'open' with the appropriate 
flags for the corresponding file types. For the binary speech data files, the flags '0-RTU' and 
0-RDONLY' were used. The '0-RTU' flag specifies a VSOS U record type, which is treated as 
an unformatted byte stream. The '0-RDONLY' flag was used to prevent unexpected writes to the 
data files from having any effect. 

The binary data is then read by requesting the maximum number of samples, and using the 
actual number read as the size of the file: 

count = f read(input ,Bytecount ,MAX-DURATION ,fp) ; 
if (count == MAX-DURATION) 

fprintf(stderr,"Read Max Count - %d\nU,count); 
exit (0) ; 
3 

f close(fp) ; 

However, if the data file is not an exact multiple of 'ByteCount', fread returns MAX-DURATION, 
causing a fatal error and exit. This appears to be an artifact of the CYBER file I/O, and does not 
conform to standard C usage. 

Standard ASCII files, such as the network and experiment descriptors can be read with simple 
'fopen' calls, as in the original C code. 



B .1.6 Writing Files 

File names on the CYBER are expected to be upper case, and without extensions. Using 'fopen' to  
create a file called 'net.tmp' resulted in an error, whereas 'nettmp7 is acceptable. This is somewhat 
unexpected, since the VECTORC manual [2] states that files are read ignoring the dot: 

For example, <sys/file.h> really reads as FILEH, "myheader-file" really reads as MY- 
HEADER, and so forth. 

B.1.7 Data Files 

Binary speech data files were transferred to the CYBER using the 'MFLINK' "GET" utility, and 
given VSOS file type 'U', which is unformatted binary data. The files were then made permanent on 
the CYBER for future reference in experiments using the 'DEFINE7 utility. The following fragment 
illustrates this method: 

PURGE,CVOORWll. 
MFLINK(CVOORWII,ST=VA6,DD=UU,JCS=\"USER watrous $mix-passwd\", 

\"GET /usr/user4/watrous/cvx/cv00rull. eng\") 
SWITCH,CVOORWIl,RT=U. 
DEFINE,CVOORWIl. 

B .1.8 Memory Allocation 

The declaration of global two-dimensional arrays was problematic. The original module contained 
such a data structure for the unit outputs, and would compile successfully by itself. When compiled 
in conjunction with the rest of the simulator, the META assembler would generate the following 
error: 

-THE MAXIMUM LENGTH OF A MSEC IS REACHED 
-ASSEMBLY ABORTED IN PASS 2 
LAST STATEMENT NUMBER 1/0035 

11.48.24 CC,IN=SPEECHC,BPC,READC,WEIGHTC,UNITC,MAPC,GAUSSC, 
11.48.24 LIB=LIBM,CN=BPS,LINK=M. 
11.48.26 CPP SPEECHC Q6CP2995 
11.48.38 CCOM -N SPEECHC Q6CP2995 Q6CC2959 
11.49.00 META,INPUT=QGCC2959,BINARY=BINARY 
11.49.03 META 2.3 670B 
11.49.06 ** ASSEMBLY ABORTED ** 
11.49.06 1 MODULES ASSEMBLED 
11.49.06 .410 SECONDS ASSEMBLY TIME 
11.49.06 Fatal META error(s) 

Another technique was suggested in which the array was allocated dynamically, using 'malloc'. 
This got through the compilation phase, but resulted in a crash a t  execution time. This created 
an impasse, a t  which point the effort was abandoned for several months. 



B.1.9 New C Compiler 

When the effort t o  use the CYBER 205 was resumed, a new experimental VECTORC compiler 
was made available, which had the effect that the memory allocation problem, and a problem with 
the scalar exponential function were solved, and the simulator ran for the first time on speech data. 

B.2 Conclusions on Simulator Transfer 

Several conclusions may be drawn from the experience of porting the GRADSIM connectionist 
network simulator to  the CYBER 205. These conclusions are based on experiencing the conse- 
quences of the differences in hardware and software between VECTORC running under VSOS on 
the CYBER 205 and C running under UNIX on DEC VAXes and SUN workstations. 

C Compiler The problems with the earlier version of the VECTORC compiler were serious enough 
to  preclude the possibility of generating operable software. The conclusion from this fact is 
that the original version of VECTORC was not complete or correct, and should not have 
been oflered for use as a working compiler. Discovering the inadequacy of the VECTORC 
compiler consumed several weeks of effort, which was largely wasted. 

Software Development Effort Because of the differences between C and VECTORC, such as 
the VECTORC restrictions on name lengths, VSOS constraints on file names and differences 
in file I/O, the versions of the simulator which will run under VECTORC are significantly 
different from the original C code. There is also presently no tools to  automate conversion 
from C to VECTORC. Thus, the effort to  make the transition from C to VECTORC is 
considerable, and requires programmer expertise and direct code modification. Thus, it is 
difficult to  maintain version compatibility between simulator code for UNIX machines and 
the CYBER 205. This has the effect of doubling the software maintenance effort. 

The first conclusion from this observation is the conversion from UNIX C to  VSOS VECTORC 
should be done as few times as possible. Consequently, it is best that only stable code should 
be transfered to  a vector machine; code that is under development should be completed in 
one environment before being transferred t o  another. However, this advice may be difficult 
t o  observe in practice; the motivation for using the supercomputer t o  begin with may be 
to  get results more rapidly in an exploratory stage of a scientific research project where the 
simulation tool may be modified in response to experimental results. 

Secondly, the software development effort needs to  be amortized over sufficiently long usage 
time in order for the speed-ups achievable at supercomputer performance rates to make it 
worth the effort. 

Software Development Costs VECTORC does not run on the VAX 8650 under UNIX; all 
software development had to be done on the CYBER 205 itself. Thus, the cost for the 
discovery and correction of all of the problems encountered was charged at CYBER 205 
rates, which was expensive (approximately $9,000). 

Code Optimization The VECTORC compiler is not a vectorizing compiler. In order to ob- 
tain supercomputer performance from the CYBER 205, the software has to  be explicitly 
vectorized. In addition, the scalar code should also be optimized for performance. These op- 
timization efforts require knowledge of the VECTORC compiler and the CYBER 205. This 
requires time and effort, which is impacted by the software development effort in porting an 
application to the VSOS environment. The conclusion of this observation is that additional 



code vectorization and optimization time must be allocated in estimating the performance 
tradeoffs of using the supercomputer. In the present case, the software development effort 
consumed so much time relative to the available time for the project that insufficient time 
was left for vectorization and scalar optimization 

B.3 Vectorization 

Vectorization of the GRADSIM code was carried out in reference to the vector operations and algo- 
rithmic structures [9]. The vectorization of the GRADSIM simulator was carried out with respect 
to the vector operations resulting from an analysis of the optimization algorithms considering one 
token at a time. This was done for two reasons; first, it was easier since this required less extensive 
code modifications, and second, because the benchmark which was being used to evaluate perfor- 
mance on the CYBER 205 consisted of only two tokens. It was discovered that the problem does 
not vectorize well under this approach, since the resulting vectors are small, and close to  the point 
where the overhead of vector setup time outweighs the efficiency of the vector processor. 

Restructuring the algorithm for multiple tokens would result in long vectors where the vector 
efficiency would be fully achievable. However, this would require care in dealing with arbitrary 
numbers of tokens, in which case the maximum vector length could be exceeded; this would result 
in code necessary to pack tokens appropriately for maximum length vectors. 

Restructuring of the algorithm required to exploit the vector processing of the CYBER 205 
requires expertise, time and software modifications. This aspect of the implementation of the 
GRADSIM package on the CYBER 205 generates and strengthens many of the same conclusions 
listed above under Software Development Effort. 

B.4 Performance 

This section describes a benchmark comparison between the CYBER 205 , DEC VAX 8650 and 
Sun 3/260. The problem is described, and the performance figures given and analyzed. This leads 
to  a decision regarding use of the CYBER 205. 

B.4.1 Benchmark 

The benchmark problem was taken as a network optimization problem described in Section 5 above, 
in which a temporal flow model was trained to distinguish the word pair "no/go" [21]. It should 
be noted that the CYBER version of the simulator does not include the random perturbation of 
the network at initialization. This is done by the front-end VAX, and the simulation begins with 
a pre-randomized network descriptor. 

B.4.2 Results 

The optimization algorithm was run for 10 iterations on each of three machines, and timed on the 
UNIX machines using the "time" utility. 

- -- 

Table 2: Benchmark Execution Times in Seconds 

Sun 3/260 
124.5 

The CYBER 205 scalar processor is described as a 50 MIPS machine (20 ns cycle) and had been 
promoted as giving a minimum of 8 times the performance of the DEC VAX 8650. This benchmark 

VAX 8650 
72.3 

CYBER Scalar 
76.7 

CYBER Vector 
49 -4 



shows that the CYBER 205 scalar processor, which was described subsequent to this experiment as 
a 20 MIPS machine, is no faster than the DEC VAX 8650. The reason for this discrepancy must lie 
in the VECTORC compiler. The Sun 31260 with FPA, a 4 MIPS machine, runs in approximately 
70% more time than the 8650. The vectorized version requires 68% of the time of the 8650, for a 
speed-up of nearly 50%. 

A second benchmark was run on the CYBER for 50 instead of 10 iterations, in order to estimate 
the amount of initialization cost. In this case, the 10 iteration version ran in 83.1 seconds, and 
required 368.9 seconds for 50 iterations. This corresponds to 7.145 seconds per iteration, and 
implies an initialization time of 11.65 seconds. 

It is noted that vectorization must be complete in order to achieve full vector processor rates. 
Thus, if an application has a non-vectorizable residue which consumes 10% of the processing time, 
then the maximum speed-up using the vector processor is a factor of 10. 

B.5 Conclusions on Performance 

The conclusions from this benchmark are that 

1. The scalar processor is effectively no faster than the VAX 8650, and only 40% faster than the 
SUN 31260. Since the use of the scalar processor is charged at full vector processor rates, it 
should only be used if it is less expensive than the VAX 8650, or less than 65% more expensive 
than the SUN 31260. 

2. The GRADSIM package does not vectorize well as structured for one token at a time. 

3. The performance improvements due to  optimization of the GRADSIM C code and the network 
compiler are such that use of the CYBER 205 should be discontinued for the present time. 
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