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Spin Structures of Tetragonal Lamellar Copper Oxides
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The spin Hamiltonian of tetragonal lamellar antiferromagnets is shown to contain several novel
anisotropies. Symmetry allows bond-dependent anisotropic exchange interactions, which lead to
(s) interplsne mean-field coupling snd (b) sn in-plane snisotropy which vanishes classically but
arises from quantum zero point energy (QZPE). A similar QZPE involving the interplsne isotropic
interaction prefers collinear spins. Adding also dipolar anisotropy, the competition between all these
effects explains for the Grst time the spin structures of many cuprates.

PACS numbers: 75.30.Et, 75.25.+z, 75.30.Ds

The discovery of high-temperature superconductivity
[1] initiated intense interest in the properties of the doped
lamellar copper oxide systems. Hopefully, a step towards
the understanding of the superconductivity of these sys-
tems would be to understand the simpler undoped sys-
tems, which are antiferromagnetic. In this Letter we
consider two structural families of such tetragonal sys-
tems, the "123" compounds, which are isomorphic to
YBa2CusOs (YBCO) [2], and the "214" compounds,
isostructural to LazCu04 (LCO) [3], as shown in Fig.
1.

The magnetic structure of members in the latter fam-

ily has been studied for more than twenty years. Fa-
mous examples [4] include KzNiF4, in which the spins
order perpendicular to the basal plane, and RbzMnF4,
where they order in that plane. The latter is also true of
many cuprates, including orthorhombic LCO, and the
tetragonal systems SrzCuClzOz [5], PrzCu04 [6], and
Nd2Cu04 [6]. The magnetic properties of all these sys-
tems are very well described by an isotropic Heisenberg
model in two dimensions, as demonstrated by the strik-

ing comparison between the theoretical predictions [7] for
the temperature evolution of the correlation length and
the corresponding experimental values at high temper-
atures [8—10]. However, some of the magnetic proper-
ties of these systems depend on more subtle interactions
and are less well understood. In particular, the two di-

mensional isotropic Heisenberg model would not have a
phase transition at a finite temperature. In orthorhombic
LCO, the transition was explained by the finite coupling
between planes and by the antisymmetric spin exchange
anisotropy [3]. However, in tetragonal systems the latter
snisotropy is absent, and earlier calculations gave only
isotropic Heisenberg exchange [11]. The interplane cou-

pling, which tetragonally averages out in the mean-Geld

sense, has also not been expected to contribute. Phe-
nomenologically, the transitions were explained to result
from a crossover to an XY model, due to some small

easy plane anisotropy, followed by a crossover to three
dimensional long range order, due to some very weak in-
terplanar coupling [6,8]. The easy plane anisotropy has

only recently [12,13] been explained to result from the in-

terplay of spin-orbit and Coulomb exchange interactions,
and its calculated [13] magnitude was consistent with the
out-of-plane spin-wave gaps in all the cuprates. However,

(a) the relative ordering of spins in different planes, and

(b) the low-temperature directions of the spins within the
easy planes, which indicate a breaking of the in-plane
XY rotational invariance, remained unexplained. The
latter is particularly mysterious for the cuprates, where
the spin 1/2 eliminates any single ion anisotropy. The
issue becomes even more intriguing when one notes sug-

gestions in the literature for the different spin directions
in 123 and 214 systems (see Fig. 1). These issues, which

we show to be interrelated, are addressed and explained
in this Letter.

Topic (a) has been addressed for the case of isotropic
Heisenberg interactions. In that case, for the 214 sys-

tems, there is a classical degeneracy, in that the mean
field exerted by one layer on an adjacent layer vanishes

for tetragonal symmetry. As first shown by Shender [14],
such degeneracies are partially removed by the spin-wave

quantum zero point energy (QZPE), and the lowest en-

ergy state is one with the spins collinear. Denoting the
ground state spin direction at site i in the anth plane

by n o, , where o, = +1 and n = xcos8 + ysin8

FIG. 1. IJnit cells of 214 (left) snd 123 (&ight) lliieiisr coP-

per oxide tetragonal systems, with spin directions suggested
for LCO [3] snd YBCO [2], respectively.
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(x and y are unit vectors along the Cu-Cu bonds in the
basal plane), Ref. [15] showed that the relevant QZPE
per spin is given by

Ezs = B—) cos(28 —28~+i), (1)

where B = CsJ,„,S/J to leading order in J«t. Here
J«t is the isotropic exchange interaction between nearest
neighbors (nn) in adjacent planes (e.g. , between the Cu
ions in the center and in the corner of the 214 unit cell in
Fig. 1), J is the average exchange within the plane, and
Cs is numerically given [15,16] to be 0.032. In LCO the

difference between difFerent J«q's due to the orthorhom-
bic distortion is [3,8] 5 x 10 s eV and [3] J = 0.13 eV. Us-

ing the rough estimate [17] 6J«q/J«q —106r/r 0.02
(r is the distance), this yields J,«2.5 x 10 eV,
and hence B = 2 x 10 s eV [18]. Collinearity means
that all the n 's are parallel, but there is no correlation
between the o s in difFerent planes. For isotropic in-
teractions, three dimensional long range ordering of the
antiferromagnetic planes requires an even smaller energy,
b' E, involving either interactions Jz between second near-
est neighboring planes [16] (6E J2z/J) or efFects which
are higher order in J,«/J [15] (6E J4«/Js). These en-
ergies are much too small to explain the relative spin ori-
entations of the adjacent planes in the cuprates. In this
Letter we consider several new relevant energies, some of
which compete with Eq. (1), and show that the relative
spin orientations are determined by a delicate balance

between these energies.
We now turn to question (b). Tetragonal symmetry

actually allows a novel bond-dependent pairwise spin in-

teraction between nn Cu ions in the basal plane, of the
form

'pf(i, j) = J)~S, S + JzS; S + J,S;S~, (2)

where z, [~ (or J ) denote the directions perpendicular to
the plane, and parallel (or perpendicular) to the bond
connecting ions i and j in the plane, respectively. In ad-
dition to the easy plane anisotropy, which is related to
AJ = J,„—J„where J„=(J~~ + J~)/2, Eq. (2) also
contains a bond depen-dent easy axis anisotropy, scaled by
6Ji„= J~~

—J~. Although allowed by the symmetry, this
anisotropy was ignored until Ref. [13] derived Eq. (2)
explicitly from spin-orbit and Coulomb exchange inter-
actions, and found 6Ji„ to be of the same order as b,J
[19]. Here we present the first analysis of Eq. (2), and
also discuss similar novel interplanar bond-dependent ef-

fects. In tetragonal symmetry, a sum over all the bonds
in the plane yields a mean-field energy which is rota-
tionally invariant in the plane. Similarly, a harmonic
spin-wave analysis predicts a vanishing energy of the zero
wave vector in-plane mode. Our first major result con-
cerns the modification in the spin-wave spectrum when
the anisotropy scaled by 6J;„ is treated appropriately.
Using the Holstein-Primakoff transformation for spin S,
the linearized spin-wave spectrum for Eq. (2) is found to
have two branches, with energies buy(q) given by

[haul(q)]z J,c+ J,(6J;„)+ + ' &'" cos(28)c+c 6 [2(hJ)c+ —(6J;„)cos(28)c ], (3)4JViS j 8V av RV

where cy = cos(q~a) 6 cos(q„a) and 8 represents 8~. Note that the dependence on 8 is scaled by 6Ji„.
One unusual interesting consequence of Eq. (3) is the anisotropy in ru(q) with respect to q. For example, for small

q the energy of the in-plane mode is given by

[~ (q)] = 4(J, + J,„)S2az[J, q —z(6J~„)cos(28)(q, —q„)] .

This unusual anisotropy is quite small here since [19]
6J;„/J 10 4. The anisotropy in [he+(q)]z is even
smaller, being of order 6J6Ji„cos(28)(q2 —q~z).

As mentioned, the in-plane mode at q = 0 has zero
frequency, within noninteracting spin-wave theory. How-
ever, this result is modified by spin-wave interactions.
To see this, we follow Ref. [14] and consider the QZPE.
Apart from a 8-independent additive constant, this is
given by Ez = zhg [co+(q) + u (q)]. Expanding Eq.
(3) in powers of 6J;„one obtains the 8 dependence of Ez.

Ez(8) = Ez(0)+ |i(6J~„) Ssin (28)/J
—= Ez(0) + K;„[1—cos(48)] . (5)

Numerical evaluations of Ez confirmed that Eq. (5)
accurately represented the 8 dependence of Ez, as one
would expect since 6J;„/J is extremely small. These cal-
culations gave Cq 0.02. Using the previous estimates of
6Ji~ [19] and J we obtain K;„=2 x 10 eV [18]. If we
neglect the coupling between planes, the 8 dependence

of Ez implies that (i) the staggered magnetization picks
out a direction, in this case a [100) direction, and (ii)
the in-plane mode at q = 0 must have a nonzero energy.
We estimate this energy by making a spin-wave expan-
sion of Eg, i.e., treating Ez as a term in the spin-wave
Hamiltonian. The result is

(q = 0) = 8/2K;„J,
i.e. , of order ~6J~„]. Taking K;„and J as above, we find
that bc' (q = 0) = 10 s eV. At present, there is no ex-
perimental estimate for this quantity. The modification
of the in-plane modes due to Ez also changes the q de-
pendence in Eq. (3), mainly for Jaq ( hu (q = 0).

We now turn to the question of three dimensional spin
ordering. Since for the cuprates 6J is positive and larger
than ]6J;„][19], all the spins order antiferromagnetically
in the plane. We thus consider only such ordering. The
question then is what determines the orientations of the
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spins within the easy plane. Choosing o = 1 for the spin
at the origin of the mth plane, the direction of that spin is
along n . For the 123 structure the origins of all planes
are taken to dier only in their z coordinate. For the 214
structure the origins in even and odd numbered planes
are at (0, 0) and at (a, a)/2, respectively. In addition to
Ez and Egs the spin structure is determined by three
other energies (per spin). The potentially dominant en-

ergy is simply the isotropic exchange energy between nn
spins in adjacent planes. Indeed, for the 123 structure
this energy is dominant and causes neighboring planes to
orient antiparallel to one another.

In contrast, we already mentioned that for the 214
structure this energy vanishes in the mean-field sense.
Our next novel result shows that this cancellation is no
longer true when one includes the anisotropic parts of
the exchange tensor between nn spins in adjacent planes
(e.g. , the spins in the center and in a corner of the 214
cell in Fig. 1). Note that this bond lies in a (110) mir-

ror plane. Since the midpoint of this bond is a center
of inversion symmetry, the exchange tensor J,«must be
symmetric [20]. The mirror plane indicates that one prin-

cipal axis of J~«(denoted "J ") is perpendicular to the
mirror plane and the other two ("1"and "2") are in that
plane, with "1" oriented at some angle P (not fixed by
symmetry) with respect to the tetragonal z axis perpen-
dicular to the CuOz planes. Given the exchange tensor

J&&« for one such pair, the corresponding tensors for all

other nn pairs are determined by symmetry. Summing
over all nn pairs, we get the interaction energy between

planes m and rn + 1 to be

V = 2S sin(8 +8~~i)[J „~sin P+ J,„tcos P —J,„,]
—:D sin(8 i 8 +g) . (7)

To estimate the value of D, we assume that the relative

anisotropy (J „I —J «)/ J~« is similar to 6J/ J. Then
our estimate for J,„t gives iDi = 10 s eV [18]. However,

this estimate should be taken as an upper bound, since we

did not consider the P dependence of the square brackets
in Eq. (7). For instance, for the 123 structure, symmetry

dictates that P = 0 and Ji„1t = Ji„so that D = 0.
The last energy to be discussed is the dipolar interac-

tion between [21] planes m, and m' which is of the form

VD(m, rn') = A'cos(8~ —8~ ) (8)

if planes m and rn' are in registry (i.e. , if they have the
same origin), and is given by

V~(m, m') = —A" sin(8 + 8 ) (9)

for out of registry planes in the 214 structure. Here A' is

positive and A" is given by

A" = 3g p~S ) x,,y;,o, /r. . . (1o)
qEm'

where r,~
= r; —r~, i is the origin of plane m and j is

summed over all sites in plane rn' [22]. We find that the
sum in Eq. (10) must be carried over at least 100 shells

of neighbors. For the lattice parameters of LCO (a = 3.9
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A, c = 13.2 A) and for rn' = m+ 1 the sum assumes the
value 1.7 x 10 A s, so that A" = 4.4 x 10 s eV [18].
Note that the energy of Eq. (7) ean be combined with

the dipolar energy by rede6ning the constant A" of Eq.
(9) into A = A" —D. Noting the uncertainties in both
the sign and size of D, the sign of A is not obvious.

Finally we discuss the spin structures one would pre-
dict on the basis of the above energies. We start with

the 123 systems, which turn out to be the simplest. Here
there is no frustration. The dipolar interaction given
in Eq. (8) leads to an antiferromagnetic interaction be-

tween planes, which can be included in the already
present antiferromagnetic Heisenberg exchange interac-
tion. The collinearity energy Ezs is also minimized by an
antiferromagnetic arrangement of adjacent planes. The
only remaining energy to consider, then, is the in-plane

anisotropy energy of Eq. (5). This energy forces the
staggered moment to lie along a [10] direction within the
plane. Indeed, this structure (see Fig. 1) has been de-

duced from experiments [2] although the situation is not
entirely clear [23].

Next we consider tetragonal 214 systems. Here the
total energy is

E = —A) sin(8~+ 8~+i) —B) cos(28 —28 +i)
m m

—Ki„) cos(48 ) . (11)
m

The minima of E depend on the relative signs and magni-

tudes of A, I3, and K;„(K;„)0, recall). For ]A] ) 4K;»
the minimum occurs for 8 = (A/iA[)rr/4 for all m if
& ) Ki„and for 8 = 0 for rn even and (A/]A])rr/2 for m
odd if 8 ( K;„. Consider now Srz CuC1202. Here one has

[5] c = 15.6 A. and a = 3.9 A. whence A" = 1.2 x 10 s eV.
Since the interplanar distances are larger than in LCO,
we also expect D to be smaller than estimated after Eq.
(7). Thus, we expect that A ) 0 and that both A and
8 dominate Km. Minimization of E then yields the spin
structure shown on the left panel of Fig. 1, in agreement
with the experimental suggestions [5,23].

Other 214 structures may be similarly analyzed. For
instance, consider PrzCu04, which has the structure
shown in Fig. 2 with the singlet ground state ion Pr+s.
Since the Pr ions have induced magnetic moments [6],
pp„we must also consider the Cu-Pr and Pr-Pr interac-
tions. The largest relevant energy is now the (isotropic)
Cu-Pr next-nearest-neighbor (nnn) antiferromagnetie ex-

change [24] J„„„=4.5 x 10 4 eV between, e.g. , planes

1 and 3 (or 2 and 4) in the left panel of Fig. 2. These
force the Pr spins in plane 3 (or 2) to be antiparallel to
the nn Cu spins in plane 1 (or 4). This is also preferred

by the relevant dipolar interaction, Eq. (8). Thus, if

planes 1 and 4 have angles 8 and 8~+i, then planes 3

and 2 must have the angles 8~+ rr and 8~~q+ rr, respec-
tively. The whole spin structure is thus characterized by
the angles 8 of the CuOz planes. As we now show, the
effective interplane coupling is dominated by the nn Cu-
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effects of all these energies led to a consistent explana-
tion of several observed spin structures. We expect these
ideas to work for many other similar systems.
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Grant No. DMR-91-22784 and that at Tel Aviv by the
U.S.-Israel Binational Science Foundation.

FIG. 2. Magnetic structure of Pr2Cu04 (left) and Ndz-
Cu04 (right) as for "214" in Fig. 1, except that open circles
represent the rare earth ions.

Pr interactions, due to the small distance between these
ions. The next largest energies involve the dipolar inter-
actions of the nn Pr-Pr and interplanar nn Cu-Cu mo-
ments, given by Eq. (9). These three energies are scaled

Ac„c„——8 x 10 s eV, resPectively. Note that Ap p
Ac p since pc„) pp, = 0.08ts~ [6]. Assuming that
the effective D remains small, the resulting efFective term

Eq. (11) ow has A = Ac„c„—2Ac„p, +Ap, p, ( 0.
Next consider the analog of Eq. (1), caused by the Pr-Cu
exchange interactions, J», which average to zero in the
mean-field sense. Although the geometry here is not ex-
actly the same as in Ref. [15], and there are short range
differences, we still expect the corresponding 8 to be of
order Cs J2„S/J. Taking J„„)J„„„gives8 ) 4 x 10 s

eV. Thus both A and 8 dominate K~„, and minimiza-
tion of Eq. (11) then yields the apparently observed [6]
structure shown in Fig. 2 [23].

Now what can we say about the other observed struc-
tures, such as the various phases of Nd2Cu04 [6]? The
low-temperature phase of this material is shown on the
right panel in Fig. 2, and it contradicts everything said in
the previous paragraph. Possible explanations could be
as follows: (a) If this state is dominated by the exchange
interactions between planes 1 and 3 (or 2 and 4), then
these would have to be ferromagnetic. (b) A small com-
pression along the axis of the staggered moments would
lead to an appropriate net mean-field coupling between
adjacent planes. However, this works only if J„„„is very
small, given the small upper limit on such a distortion
[6]. (c) The parameter D for the nn Cu-Pr might be suf-
ficiently large to make A in Eq. (11) both negative and
also large enough to overcome the other energies. We
hope these considerations wi11 help in the resolution of
this puzzle.

In summary, we have identified several novel sources
of anisotropy in the antiferromagnetic tetragonal lamel-
lar perovskite structures. These include the in-plane
QZPE given by Eq. (5), and the interplanar mean-field
anisotropy given by Eq. (7). In addition, we allowed the
dipolar energy to depend on the relative ordering of the
spins in different planes [Eq. (8) or (9)], and added the
Shender-like interplanar QZPE of Eq. (1). The combined

[1) J. G. Bednorz and K. A. Muller, Z. Phys. B 64, 189
(1986).

[2) J. Rossat-Mignod et al. , in Selected Topics in Super
conductivity, edited by L. C. Gupta and M. S. Multani
(World Scientific, Singapore, 1993), p. 265.

[3) T. Thio et al. , Phys. Rev. B 88, 905 (1988).
[4] R. J. Birgeneau et al. , Phys. Rev. B 1, 2211 (1970).
[5] D. Vaknin et al. , Phys. Rev. B 41, 1926 (1990).
[6] M. Matsuda et al. , Phys. Rev. B 42, 10098 (1990).
[7] S. Chakravarty et al. , Phys. Rev. B 89, 2344 (1989); D.

P. Arovas and A. Auerbach, Phys. Rev. B 88, 316 (1988).
[8] B. Keimer et al. , Phys. Rev. B 46, 14034 (1992).
[9] M. Greven et al. , Phys. Rev. Lett. 72, 1096 (1994).

[10) R. J. Birgeneau, Phys. Rev. B 41, 2514 (1990).
[11) For example, L. Shekhtman et al , Phys. R. ev. B 47, 174

(1993).
[12) F. Barriquand and G. A. Sawatzky (to be published).
[13] T. Yildirim, A. B. Harris, O. Entin-Wohlman, and A.

Aharony (to be published).
[14] E. F. Shender, Sov. Phys. JETP 56, 178 (1982).
[15] T. Yildirim, A. B. Harris, and E. F. Shender (to be pub-

lished).
[16] E. Rastelli et al. , J. Phys. Condens. Matter 2, 8935

(1990).
[17] D. Bloch, Ann. Phys. (Paris) 1, 93 (1966). See p. 119.
[18] For numerical estimates we replace S by the average Cu z

component of spin 0.2, or the corresponding z component
of moment p,c„=0.4p,~.

[19] According to Ref. [13] EJ/J is positive and larger in
magnitude than 6J;„/J, but both quantities are of order
10 . Here, J = (J& + J& + Jll)/3 = 0.13 eV.

[20] T. Moriya, Phys. Rev. 120, 91 (1960).
[21] The dipolar energy of a square-lattice antiferromagnet

with the staggered moment confined to the plane of the
lattice is independent of the orientation of staggered mo-
ment. This energy does favor spin directions perpendic-
ular to the CuOz plane [e.g. , C. Pich and F. Schwabl,
Phys. Rev. B 47, 7957 (1993)], but we neglect it since
we find it to be less than 10% of the energy ~ 4J which
favors the spins to be in the CuOq plane.

[22] The role played by the dipolar energy was already con-
sidered in Ref. [5]. However, these authors assumed a
collinear spin structure, with 8 allowed to be only z/4
or 5z./4.

[23] In the comparisons with experiments one should keep in
mind that there is always some difficulty in determining
the direction of the staggered moment within the plane,
due to the occurrence of domains. See G. Shirane, Acta
Crystallogr. 12, 282 (1959).

[24] J„,defined via 'M = J»„pp,pc„/ps, is deduced from
Fig. 7 and Eq. (3) of Ref. [6].

3713


