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ABSTRACT 
 

EXAMINATIONS INTO THE CALCIUM HYPOTHESIS OF 

ALZHEIMER’S DISEASE 

 

Dustin J. Shilling 

J. Kevin Foskett, Ph.D. 

 

Alzheimer’s disease (AD) is devastating to the patient, their family and friends, 

and represents a significant fiscal burden to our society. Currently available therapeutics 

provide only mild symptomatic relief and do not alter the course of the disease. 

Developing the next generation of disease modifying therapies requires an understanding 

of the early cellular changes responsible for AD. A hindrance to progress is the fact that 

most patients develop AD sporadically. However, mutations in the presenilin (PS) 

homologs cause dominantly inherited, early-onset AD. These mutations provide an 

important tool for understanding the cellular changes that cause AD. One consequence of 

PS mutations is exaggerated intracellular Ca2+ ([Ca2+]i) signaling. However, the 

mechanisms underlying this phenomenon remain controversial and its role in AD 

pathogenesis is unknown. Presented here are data indicating that exaggerated [Ca2+]i 

signaling is dependent upon the inositol 1,4,5-trisphosphate receptor (InsP3R) and 

contributes to AD pathogenesis in vivo. We began our studies by testing multiple 

proposed mechanisms for exaggerated [Ca2+]i signaling. To do this we employed multiple 

Ca2+ imaging protocols and Ca2+ indicators to directly measure ER Ca2+ dynamics in 
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several cell systems. We found that decreasing InsP3R protein levels rescues exaggerated 

[Ca2+]i signaling in primary cortical neurons and hippocampal slices from mice 

expressing mutant PS1. We then determined the contribution of exaggerated [Ca2+]i 

signaling to AD pathogenesis. Using a combination of genetic, biochemical, 

electrophysiological and behavioral techniques, we found that rescue of exaggerated 

[Ca2+]i signaling attenuates mild cognitive impairment and AD-like phenotypes in mouse 

models. Reduction of InsP3R1 protein level in the PS1M146V knock-in AD mouse 

rescued enhanced hippocampal ryanodine receptor protein level, enhanced hippocampal 

synaptic potentiation, and constitutive activation of the CaMKIV-CREB transcriptional 

pathway. In 3xTg AD mice, reduced InsP3R1 protein level attenuated Aβ and phospho-

tau accumulation and hippocampal electrophysiology and memory impairments. 

Together, these results reveal that mutant PS-associated exaggerated [Ca2+]i signaling is 

InsP3R1-dependent, a proximal event, and contributes to the development of AD in vivo. 

These findings advance our understanding of the pathological role of exaggerated [Ca2+]i 

signaling in AD and identify several novel targets for the development of disease 

modifying therapeutics. 
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Chapter 1: Introduction 
 

The long-term goals of this project are to understand the mechanisms and 

contributions of exaggerated intracellular Ca2+ ([Ca2+]i) signaling to the pathogenesis of 

Alzheimer’s disease (AD). Ca2+ homeostasis is disrupted by familial Alzheimer’s disease 

(FAD) presenilin (PS) mutations and potentially influences the pathological processes of 

the disease. This dissertation focuses on understanding how FAD mutations in PS1 

influence [Ca2+]i homeostasis and how exaggerated [Ca2+]i signaling influences the 

development of AD. Prior studies, in combination with the data presented in this 

dissertation, suggest that FAD mutations in PS result in a gain-of-function enhancement 

of inositol 1,4,5-trisphosphate receptor (InsP3R) gating as the underlying mechanism of 

exaggerated [Ca2+]i signaling, and that this dysregulation contributes to AD pathogenesis 

in vivo. These findings suggest that disruption of InsP3R-mediated [Ca2+]i signaling plays 

an important role in FAD and may contribute to the more prevalent sporadic form of 

Alzheimer’s disease. This dissertation provides novel insights into the mechanisms by 

which FAD mutant PS causes AD. 

Alzheimer’s Disease 

AD is the most common form of dementia, estimated to affect 5.4 million US 

citizens in 2012 and results in an estimated cost of $200 billion dollars (Alzheimer's 

Association, 2012). Because the largest known risk factor for developing AD is advanced 

age, the prevalence of the disease will increase as the average life expectancy increases. 

In fact, it is projected that by 2050 the number of US citizens with AD will triple to 16 

million (Alzheimer's Association, 2012). AD patients are commonly cared for by family 
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members, so this increase in prevalence will cause a significant social burden as well as 

fiscal costs. 

Alois Alzheimer first described AD in 1906 as a progressive neurodegenerative 

disease that results in death. It is characterized by specific end-stage histopathological 

brain lesions, which are located primarily in the hippocampus and neocortex. These 

lesions consist of intracellular neurofibrillary tangles (NFT), composed of 

hyperphosphorylated aggregates of the microtubule-associated tau protein, and 

extracellular plaques composed of amyloid-β (Aβ).  

Although the disease affects everyone differently, there are several common 

symptoms. In the earliest stages of the disease, individuals demonstrate anterograde long-

term episodic amnesia - impairments in recalling new facts (declarative memory) and 

recent events (episodic memory). These memory functions are dependent on the temporal 

and neocortical brain regions, the first areas affected in the disease. As AD progresses, 

patients commonly display confusion, irritability, mood swings and some may act out 

aggressively.  

Diagnosis of AD is based on performance on memory and cognitive tests, brain 

scans, apolipoprotein E (APOE) genotyping (discussed below) and cerebral spinal fluid 

analysis. Average life expectancy following diagnosis is approximately seven years 

(Molsa et al., 1986). There is no cure or preventative therapeutics available to treat AD, 

and current drugs only provide limited symptomatic relief. Clearly, further research is 

needed to develop disease-modifying therapies. 
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Alzheimer’s Disease Genetics 

Two types of AD have been identified, sporadic and familial. Sporadic AD (SAD) 

has a late age of onset (>60 yr of age), slow progression, and accounts for the vast 

majority of AD cases. In contrast, FAD is inherited in an autosomal dominant pattern and 

characterized by an early age of onset - patients typically develop symptoms between 30-

60 yr of age - and rapid mental decline. FAD comprises less than 1% of all AD cases.  

Sporadic Alzheimer’s disease genetics 

Although called sporadic, SAD does have a strong genetic component. However, 

the genetics underlying this form of AD are very complex, with several less penetrate 

genetic factors, epigenetic influences, and environmental factors conferring 

susceptibility. The only well established susceptibility gene is the one encoding the 

APOE protein. This gene is located on chromosome 19 and exists in three alleles, with 

APOE4 being a risk factor for AD. A single copy of the APOE4 allele confer a 2-3 fold 

increase in an individual’s chance of developing AD, whereas two copies (homozygote 

APOE4) confer an 8-12 fold increase, compared to non-carriers (Myers et al., 1996; 

Slooter et al., 2004). APOE4 decreases the age of AD onset (Goldstein et al., 2001; 

Hsiung et al., 2004; Olarte et al., 2006), influences the severity of the disease by causing 

faster cognitive decline (Martins et al., 2005), increases hippocampal atrophy (Geroldi et 

al., 2000; Mori et al., 2002) and increases pathology at autopsy (Tiraboschi et al., 2004; 

Drzezga et al., 2009), and decreases survival time (Dal Forno et al., 2002). However, 

40% of SAD patients do not carry an APOE4 allele indicating that other genetic factors 

must also contribute to the disease (Myers et al., 1996). In fact, genome-wide association 

studies have identified other susceptibility genes, but the effects they observe are 
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minimal, ranging from a 1.1 to 1.5 fold increase in the chance of developing AD (Harold 

et al., 2009; Lambert et al., 2009; Ertekin-Taner, 2010; Seshadri et al., 2010; 

Hollingworth et al., 2011). 

Familial Alzheimer’s disease genetics 

In comparison to SAD, the genetics underlying FAD are much less complex and 

relatively well understood. The autosomal dominant inheritance pattern has allowed for 

the genes involved to be identified as those encoding the amyloid precursor protein 

(APP) (Goate et al., 1991) and the two PS homologs (Levy-Lahad et al., 1995; 

Sherrington et al., 1995), which share approximately 60% sequence identity.  

The gene encoding APP is located on chromosome 21. Over 30 mostly missense 

mutations in the APP gene have been identified, accounting for 10-15% of all FAD 

pedigrees (Campion et al., 1999; Janssen et al., 2003). Nearly all APP mutations cluster 

around the three major processing sites that are relevant to the generation of Aβ (see 

below) and result in an increase in Aβ generation or alter the ratio of the more 

amyloidogenic Aβ42 to the less hydrophobic Aβ40 (Eckman et al., 1997; Tsubuki et al., 

2003; Sahlin et al., 2007). Mutations in APP are fully penetrant, but different mutations 

do have varying ages of disease onset (Campion et al., 1999). In addition to mutations, 

duplication of the APP gene is observed in FAD pedigrees. Trisomy of chromosome 21 

(Down’s Syndrome) also results in early-onset AD (Rovelet-Lecrux et al., 2006; Sleegers 

et al., 2006).  

The gene encoding PS1 is located on chromosome 14, and the gene encoding PS2 

is located on chromosome 1. More than 150 fully penetrant mutations have been 

identified in the gene encoding PS1 and account for approximately 50% of FAD, whereas 
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fewer than 20 FAD causing mutations have been found in the gene encoding PS2 

(Campion et al., 1999). PS2 mutations confer the widest range of disease onset and are 

not fully penetrant (Sherrington et al., 1996; Finckh et al., 2000; Tedde et al., 2003). PS 

mutations tend to be located in the transmembrane regions of the proteins and are located 

throughout the proteins’ lengths. The majority of these are missense mutations but small 

deletions and insertions have been described (Bettens et al., 2010). PS FAD mutations 

cause a loss of catalytic activity and/or cleavage site specificity, which alters the ratio of 

the more amyloidogenic Aβ42 to the less hydrophobic Aβ40 (Chavez-Gutierrez et al., 

2012). 

The Cellular Functions of Familial Alzheimer’s Disease Proteins 

The initiating events in SAD are unknown, and tools to study this form of AD are 

lacking. Although FAD presents earlier in life than SAD, the two forms of AD share 

hallmark features, suggesting overlapping pathogenic mechanisms. Therefore, 

researchers have turned to FAD genetics to understand the molecular events causing AD. 

Over two decades of researcher has provided insights into the normal cellular functions 

of PSs and APP and how FAD mutations cause AD. 

Amyloid precursor protein 

The APP holoprotein is a type 1 transmembrane protein and appears to have 

several cellular functions, but genetic ablation in mice does not lead to a strong 

phenotype (Zheng et al., 1996). This is most likely due to compensation by the amyloid 

precursor-like proteins, APLP1 and APLP2 (Heber et al., 2000). Studies have suggested 

that the APP holoprotein may act as an axonal transport receptor by binding to the light 
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chain subunit of the kinesin 1 microtubule motor protein (Kamal et al., 2000), function in 

modulating signal transduction via an association with the G-protein, Go (Nishimoto et 

al., 1993; Okamoto et al., 1996; Mbebi et al., 2002), or function as a cell surface receptor 

or as a synaptic adhesion molecule (Soba et al., 2005; Young-Pearse et al., 2007; Wang et 

al., 2009; Dahms et al., 2010; Zheng and Koo, 2011).  

The cleavage products of APP may also have physiological functions. APP 

metabolism is a two-step proteolytic process commencing with either α-secretase or β-

secretase cleavage. Both cleavage pathways result in a soluble APP product. The 

truncated membrane-bound APP is then subjected to an intramembrane cleavage by γ-

secretase, causing the release of a peptide fragment called p3 (following α-secretase 

cleavage), or Aβ (following β-secretase cleavage), and an APP intracellular domain 

(AICD). The soluble fragment released following α-secretase cleavage is neuroprotective 

and promotes neurite outgrowth and synaptogenesis (Mattson et al., 1993; Furukawa et 

al., 1996a; Furukawa et al., 1996b; Mattson, 1997; Gakhar-Koppole et al., 2008; Ma et 

al., 2009). In fact, in vivo studies have found that this fragment promotes learning and 

memory (Meziane et al., 1998; Taylor et al., 2008). In contrast, the soluble fragment 

released following APP cleavage by β-secretase is cell toxic. Studies have found that this 

fragment can be further cleaved to become a ligand for death receptor 6, which activates 

caspase 6, and causes axonal pruning and neuronal death (Nikolaev et al., 2009). 

Both α- and β-secretase cleavage result in a truncated APP that is subsequently 

subjected to γ-secretase cleavage. This second cleavage releases either p3, which is 

rapidly degraded and does not have a cellular function, or Aβ, and the AICD (Lu et al., 

2000; Passer et al., 2000; Sastre et al., 2001; Yu et al., 2001). Aβ has been extensively 
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studied for its role in AD and is neurotoxic. AICD is rapidly degraded, and therefore 

rarely detected in vivo. However, in vitro studies have found that AICD has a role in 

transcription following complex formation with Fe65 and Tip60, and may regulate 

expression of several genes, including p53, glycogen synthase kinase-3β (GSK-3β) and 

the epidermal growth factor receptor (EGFR) (Baek et al., 2002; Kim et al., 2003; Cao 

and Sudhof, 2004; Pardossi-Piquard et al., 2005; Alves da Costa et al., 2006; Zhang et al., 

2007). Over-expression of AICD is cytotoxic, an effect mediated either by its binding 

partners or the genes it regulates (Lu et al., 2000; Taru et al., 2002; Kim et al., 2003; 

Alves da Costa et al., 2006; Xu et al., 2007). 

 Lastly, APP can also be cleaved by caspase at its carboxy-terminal, releasing a 

short peptide fragment (Lu et al., 2003). Mutation of the caspase cleavage site prevents 

seizure susceptibility observed in mutant APP expressing mice, suggesting this fragment 

is also neurotoxic (Galvan et al., 2006). 

Presenilins 

PSs are nine transmembrane helix proteins (Laudon et al., 2005; Spasic et al., 

2006) that reside in the endoplasmic reticulum (ER) in their immature holoprotein forms. 

They are interchangeable in function and display a variety of cellular functions, including 

acting as the catalytic subunit of the γ-secretase complex, regulating [Ca2+]i signaling (see 

below), autophagy (Nixon and Yang, 2011), β-catenin turnover (Kang et al., 2002), 

axonal transport (Morfini et al., 2002; Pigino et al., 2003), modulating signaling 

pathways (Weihl et al., 1999; Baki et al., 2004; Kang et al., 2005), and trafficking and 

turnover of membrane proteins (Repetto et al., 2007). Genetic ablation of the gene 

encoding PS1 results in prenatal death (Shen et al., 1997; Wong et al., 1997), whereas 



	   - 8 -  

PS2 null mice exhibit only minor pulmonary fibrosis and hemorrhages with age 

(Herreman et al., 1999). Forebrain specific conditional double knock-out (DKO) of both 

PS genes in adult mice causes cortical and hippocampal degeneration, indicating that PSs 

are needed for proper neuronal physiology (Feng et al., 2004; Saura et al., 2004). 

Although PSs have many cellular functions, they are best studied as the catalytic 

core of the γ-secretase responsible for cleaving ~60 type 1 membrane proteins (Prox et 

al., 2012), including APP (De Strooper et al., 1998). Following assembly of the γ-

secretase complex composed of PS, nicastrin, presenilin enhancer-2, and anterior 

pharynx-defective-1, PS undergoes endoproteolysis and the complex is exported from the 

ER (Dries and Yu, 2008). The γ-secretase is then able to function in APP metabolism, 

generating Aβ, which is the main component of the extracellular plaques observed in AD.  

Hypothesized Mechanisms of Alzheimer’s Disease Pathogenesis 

Possible etiological mechanisms for AD have largely focused on extracellular Aβ 

plaques, driven by the finding that PSs comprises the catalytic core of γ-secretase, the 

protease responsible for APP cleavage and Aβ release. These observations have lead to 

the amyloid-cascade hypothesis of AD, which places Aβ as the key initiator of the 

disease (Hardy and Selkoe, 2002). The amyloid cascade hypothesis postulates that 

accumulation of Aβ, resulting from overproduction, altered processing or a failure of 

clearance, is the initiating molecular event that triggers neurodegeneration in sporadic 

and familial Alzheimer’s disease (Hardy and Selkoe, 2002). However, extensive research 

during the last two decades has failed to convincingly produce data consistent with the 

idea that amyloid is the main cause of AD. It has become apparent that Aβ load does not 
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correlate well with disease severity. Moreover, this hypothesis does not fully explain 

formation of neurofibrillary tangles. 

In addition to cleavage of APP PSs have several cellular functions that are 

disrupted by FAD mutations, including a role in [Ca2+]i homeostasis (LaFerla, 2002). An 

alternative, but not mutually exclusive hypothesis is the Ca2+ hypothesis of AD, which 

states that sustained disturbances in [Ca2+]i homeostasis are a proximal cause of 

neurodegeneration in AD (Khachaturian, 1994). In fact, a substantial and growing body 

of literature (see below) demonstrates that FAD mutations in PS result in [Ca2+]i
 

dysregulation as a proximal event, and that [Ca2+]i
 dysregulation can contribute to AD 

pathogenesis. These studies have provided support for the Ca2+ hypothesis of AD. 

Ca2+ Homeostasis 

[Ca2+]i signaling is a dynamic process involving the plasma membrane (PM), the 

ER, acidic organelles and mitochondria. Sub-cellular compartments have strikingly 

different [Ca2+], and deviations from narrow concentration ranges within these 

compartments results in incorrect activation of signaling pathways. Therefore [Ca2+] is 

tightly regulated in time, space, and intensity.  

Ca2+ is maintained at very low resting levels in the cytosol (50-300 nM) by 

multiple mechanisms, including plasma membrane Ca2+ ATPases (PMCA), which 

extrude Ca2+ from the cell, the secretory pathway Ca2+ ATPases (SPCA) that sequester 

Ca2+ into acidic secretory pathway organelles, and sarco/endoplasmic reticulum Ca2+ 

ATPase (SERCA) pumps, which are responsible for Ca2+ uptake into the ER. Ca2+ signals 

arise from influx across the PM or release from the ER, the major intracellular Ca2+ store 

with [Ca2+] ~100-700 µΜ, in response to agonist binding of PM localized G-proteins. 
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This binding causes activation of phospholipase C, which catalyzes the hydrolysis of 

phosphatidylinositol 4,5-bisphosphate to generate InsP3, the ligand for the ER localized 

InsP3R. InsP3R-dependent Ca2+ release is amplified by Ca2+ release through the 

ryanodine receptor (RyR) in a Ca2+-induced Ca2+ release (CICR) manner. In opposition to 

the ER filling function of SERCA, a constitutively active, passive ER Ca2+ leak exists, 

which allow for Ca2+ to flow down its concentration gradient from the ER to the cytosol. 

Although controversial, it has been suggested that the PS holoprotein forms channels that 

mediate the ER Ca2+ leak (Tu et al., 2006). 

Disruption of Ca2+ Homeostasis in Alzheimer’s Disease  

PSs do not contain any known Ca2+ binding motifs, so their effects on [Ca2+]i 

signaling must be indirect, mediated through a binding partner, due to a γ-secretase 

cleavage product, or a currently unknown function of PSs. The effects of FAD PS 

mutations on [Ca2+]i signaling are: (1) enhanced magnitudes of Ca2+ release from ER 

stores upon stimulation of the InsP3R or RyR, (2) increased sensitivity to agonists of Ca2+ 

release and (3) elevated cytosolic [Ca2+] (Ito et al., 1994; Guo et al., 1996; Hirashima et 

al., 1996; Etcheberrigaray et al., 1998; Leissring et al., 1999a; Leissring et al., 1999b; 

Chan et al., 2000; Leissring et al., 2000; Smith et al., 2002; Stutzmann et al., 2004; Smith 

et al., 2005; Lee et al., 2006; Stutzmann et al., 2006; Tu et al., 2006; Nelson et al., 2007; 

Stutzmann et al., 2007; Cheung et al., 2008; Lopez et al., 2008; Cheung et al., 2010; 

McCombs et al., 2010; Nelson et al., 2010; Zhang et al., 2010; Muller et al., 2011; Boyle 

et al., 2012; Honarnejad et al., 2013). These abnormalities are commonly referred to as 

exaggerated [Ca2+]i signaling and have been reported in a variety of FAD patients’ cell 

lines, neuronal and non-neuronal cell lines, and mouse models of AD. Additionally, this 
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phenomenon occurs during the initial phases of AD, before onset of overt symptoms and 

canonical histopathology, suggesting that disturbances in [Ca2+]i homeostasis may be a 

proximal event in AD pathogenesis.  

Patient cell lines 

Studies on AD patients’ skin fibroblasts provided the first indication that [Ca2+]i 

homeostasis is disrupted in the disease. These experiments demonstrated exaggerated ER 

Ca2+ signaling – enhanced [Ca2+]i signals in response to application of InsP3-generating 

agonists (bradykinin and bombesin) and responses to lower concentrations of agonists – 

compared to controls (Ito et al., 1994; Hirashima et al., 1996). These abnormalities 

precede the clinical manifestations of AD; aberrations in [Ca2+]i signaling were present in 

a large proportion of FAD patients’ fibroblasts prior to clinical onset of AD, but not 

present in family members that survived symptom-free past the average age of onset for 

the family (Etcheberrigaray et al., 1998). Recently, these observations were confirmed in 

human B lymphoblast cells from FAD patients (Cheung et al., 2010). These studies 

established the existence of exaggerated [Ca2+]i signaling in FAD patients. 

Neuronal and non-neuronal cell lines 

Neuronal and non-neuronal cell lines have been used to further study FAD mutant 

PS-associated exaggerated [Ca2+]i signaling. Studies on PC12 cells (a neuronal-like cell 

line derived from a pheochromocytoma of the rat adrenal medulla) stably expressing 

FAD mutant PS alleles observed exaggerated [Ca2+]i signaling in response to both 

carbocol and bradykinin (Guo et al., 1996). To determine if this difference was due to 

alterations in InsP3 production, subsequent studies employed caged InsP3 injected into 
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Xenopus oocytes expressing FAD mutant PS1 or PS2. These studies observed larger 

magnitudes of Ca2+ releases following InsP3 uncaging in oocytes expressing FAD mutant 

PS alleles than in controls, indicating that this phenomenon is not due to differences in 

InsP3 generation (Leissring et al., 1999a; Leissring et al., 1999b). Investigators observed 

exaggerated caffeine-induced (a RyR agonist) Ca2+ release in hippocampal neurons from 

PS1M146V-knock-in (M146V) embryos compared to WT (Chan et al., 2000). This study 

confirmed that FAD mutant PS causes alterations in hippocampal neuron [Ca2+]i 

handling. Subsequently, several groups have reproduced these observations in a variety 

of cell types, including fibroblasts from FAD mutant PS transgenic mice (Leissring et al., 

2000), PS DKO mouse embryonic fibroblasts (MEF) that were subsequently transfected 

to express human PS FAD alleles (Cheung et al., 2010), neurons from FAD PS 

expressing mice (Smith et al., 2005; Lopez et al., 2008; Cheung et al., 2010), SH-SY5Y 

human neuroblastoma cells (Smith et al., 2002; Muller et al., 2011; Boyle et al., 2012), 

DT40 chicken B cells (Cheung et al., 2008), human embryonic kidney cells (HEK) over-

expressing FAD mutant PS alleles (Honarnejad et al., 2013) and Sf9 insect ovarian cells 

(Cheung et al., 2008; Cheung et al., 2010). These in vitro studies have repeatedly 

confirmed the effects of FAD mutant PS expression on [Ca2+]i signaling. 

Alzheimer’s disease mouse models 

FAD mutant PS-associated exaggerated [Ca2+]i signaling has also been studied in 

ex vivo experiments conducted on brain slices from mutant PS expressing mice. Using 

whole-cell patch clamping, investigators loaded cortical neurons in brain slices from 

M146V, 3xTg (which contain the M146V mutation) and WT mice with a caged InsP3 and 

a Ca2+ indicator. Photolysis of the caged InsP3 revealed faster rates and increased 
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magnitudes of Ca2+ release in AD mice compared to WT (Stutzmann et al., 2004; 

Stutzmann et al., 2006; Stutzmann et al., 2007; Chakroborty et al., 2009; Goussakov et 

al., 2010a; Goussakov et al., 2010b). These experiments were conducted on young (5-

6-wk-old) animals, and the M146V mouse does not display accumulation of Aβ or 

hyperphosphorylated tau even at old ages, suggesting that exaggerated [Ca2+]i signaling is 

a proximal event in AD, independent of AD pathology. 

Contributions of Exaggerated [Ca2+]i Signaling to Alzheimer’s Disease Pathogenesis 

The observation that exaggerated [Ca2+]i signaling precedes other AD phenotypes 

suggests that it may play a central role in disease development. Ca2+ regulates many 

cellular and neuronal processes, including APP metabolism, tau kinase activity, cell 

death, neurotransmitter release and synaptic plasticity. Accumulating in vitro and in vivo 

evidences suggests that alterations in [Ca2+]i signaling may contribute to AD 

pathogenesis by affecting these pathways. 

Amyloid precursor protein processing and Aβ  generation 

Studies demonstrating that changes in [Ca2+]i handling alter APP metabolism 

(Buxbaum et al., 1994; Querfurth and Selkoe, 1994; Querfurth et al., 1997; Yoo et al., 

2000; LaFerla, 2002; Pierrot et al., 2004; Lesne et al., 2005; Pierrot et al., 2006; Cheung 

et al., 2008; Green et al., 2008; Hoey et al., 2009; Bordji et al., 2010; Verges et al., 2011) 

are in agreement with the hypothesis that AD might result from a life-long 

“calciumopathy.” Initial studies addressing the influence of Ca2+ on APP metabolism 

employed HEK cells over-expressing APP. These studies examined the effects of 

elevated cytosolic [Ca2+] on Aβ generation, and observed that elevated cytosolic [Ca2+], 
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resulting from either Ca2+ entry from extracellular sources or from ER Ca2+ store release, 

enhanced Aβ secretion (Querfurth and Selkoe, 1994; Querfurth et al., 1997). In PCNs, 

sustained increases in cytosolic [Ca2+] inhibit α-secretase and trigger the accumulation of 

the β-secretase cleavage products (Pierrot et al., 2004; Pierrot et al., 2006). Mechanistic 

insights are provided by the observation that prolonged treatment of PCNs with sub-lethal 

concentrations of N-methyl-D-aspartic acid (NMDA), an agonist for the Ca2+-permeable 

NMDA receptor, increases the production and secretion of Aβ (Lesne et al., 2005), 

whereas short NMDA receptor activation with low agonist concentrations stimulates α-

secretase processing of APP (Hoey et al., 2009). In sum, these studies suggest Ca2+ entry 

through NMDA receptors can either activate (Lesne et al., 2005) or inhibit (Hoey et al., 

2009) Aβ production depending on the duration of the rise in cytosolic [Ca2+]. These 

conflicting effects may be due to activation of different populations of NMDA receptors 

– activation of extra-synaptic NDMA receptors, but not synaptic NMDA receptors, was 

found to increase Aβ production by modulating APP pre-mRNA splicing towards Kunitz 

protease inhibitor domain-containing APP that favors amyloid production (Bordji et al., 

2010). 

Other Ca2+-dependent mechanisms appear to influence APP processing in a rapid 

manner, independent of de novo transcription. In vivo experiments have found that APP 

has a role in modulating synapse function (Priller et al., 2006). In fact, interstitial fluid 

Aβ levels are directly influenced by synaptic activity (Kamenetz et al., 2003; Cirrito et 

al., 2005) and Aβ inhibits neuronal excitability (Kamenetz et al., 2003; Shankar et al., 

2008). Recently, it was observed that interstitial fluid Aβ levels are affected in opposite 

directions depending on the dose of NMDA administered (Verges et al., 2011). Lower 
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NMDA doses increased synaptic transmission and led to elevated Aβ production, 

whereas high doses of NMDA diminished Aβ production (Verges et al., 2011).  

Alternatively, research has also suggested that Ca2+ can increase Aβ generation by 

activating the Ca2+-dependent phosphatase calcineurin. Subsequently, calcineurin 

dephosphorylates and activates the nuclear factor of activated T-cells (NFAT) 

transcription factor, leading to elevated expression of β-secretase (Cho et al., 2008). 

Increased levels of active calcineurin and NFAT are observed in the nuclear fraction of 

cortical tissues obtained from AD patients (Wu et al., 2010) and β-secretase expression 

and enzymatic activity are enhanced in the brains of AD mice and human subjects 

(Fukumoto et al., 2002; Apelt et al., 2004). Although the mechanisms are not well 

understood, previous research clearly indicates that Ca2+ influences APP metabolism. 

Tau hyperphosphorylation 

Tau is a microtubule-associated protein that promotes microtubule assembly and 

stability. Although no mutations in tau are linked to AD, hyperphosphorylated tau is the 

major component of NFT. Multiple kinases regulate the function of tau by acting on 84 

phosphorylatable residues (Morishima-Kawashima et al., 1995a; Morishima-Kawashima 

et al., 1995b; Hanger et al., 2007; Hanger et al., 2009). Tau obtained from AD brains is 

phosphorylated at forty of these sites, compared to only nine in unaffected individuals 

(Hanger et al., 2007; Hanger et al., 2009).  

Ca2+ may influence the production of NFT by activating tau kinases, including 

GSK-3β and cyclin-dependent kinase 5 (CDK5). Studies have found that tau is 

phosphorylated in response to elevated somal [Ca2+] in a duration-dependent manner 
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(Hartigan and Johnson, 1999). In cultured neurons, Ca2+ influx resulting from a 30 min 

membrane depolarization is sufficient to induce phosphorylation of tau mediated by both 

GSK-3β and CDK5 (Pierrot et al., 2006). GSK-3β is a constitutively active kinase whose 

activity is inhibited by phosphorylation on Ser-9 and enhanced by phosphorylation on 

Tyr-216. Treatment of SH-SY5Y cells with a low concentration of Ca2+ ionophore results 

in tyrosine phosphorylation of GSK-3β and GSK-3β-dependent tau phosphorylation 

(Hartigan and Johnson, 1999). GSK-3β is a substrate for proline-rich tyrosine kinase 2 

(Pyk2), and [Ca2+]i signaling, resulting from activation of the endogenous InsP3-

generating pathway, causes Pyk2- and GSK-3β-dependent tau phosphorylation (Sayas et 

al., 2006). GSK-3β transgenic mice display tau hyperphosphorylation and 

neurodegeneration (Lucas et al., 2001). GSK-3β co-localizes with NFT (Pei et al., 1997), 

and its expression is upregulated in peripheral lymphocytes in AD patients and patients 

with mild cognitive impairment (MCI), a condition commonly preceding AD (Hye et al., 

2005). 

Increased cytosolic [Ca2+] may also activate CDK5-mediated tau phosphorylation. 

p35, the membrane-bound activator of CDK5, is cleaved in a Ca2+- and calpain-

dependent manner into the more stable and soluble p25, which causes prolonged and 

mislocalized activity of CDK5 (Lee et al., 2000). Ca2+ influx in PCN induces the 

production of p25 (Lee et al., 2000), and p25 accumulates in the brains of AD patients 

(Patrick et al., 1999). Mice over-expressing p25 show hyperphosphorylation of tau 

(Ahlijanian et al., 2000) and double transgenic mice over-expressing p25 and tauP301L 

develop NFT (Noble et al., 2003). These studies clearly demonstrate that changes in 

[Ca2+]i homeostasis can affect the phosphorylation state of tau. 
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Neurodegeneration 

Elevated cytosolic [Ca2+] activates the necrotic cell death pathway, which is 

thought to contribute to the neurodegeneration observed in AD. The necrotic pathway is 

dependent on the Ca2+-activated calpain protease, which cleaves a variety of cellular 

proteins. Calpain is aberrantly activated in the brains of AD patients, (Saito et al., 1993) 

and the level of calpain’s endogenous inhibitor, calpastatin, is decreased (Nilsson et al., 

1990). Aberrant calpain activation appears to be involved in AD as treatment of APPSWE 

and PS1M146L transgenic mice with calpain inhibitors restores normal synaptic function 

in hippocampal slices and improves spatial-working memory and associative fear 

memory (Trinchese et al., 2008). In agreement, administration of a calpain inhibitor to 

3xTg mice lowered Aβ levels and phospho-tau accumulation (Medeiros et al., 2012). 

Over-expression of the endogenous calpain inhibitor, calpastatin, in AD mice correlated 

with reduced plaque burden and phospho-tau accumulation (Liang et al., 2010). These 

studies found that inhibition of calpain was associated with reduced levels of β-secretase 

expression and CDK5 activation (Liang et al., 2010; Medeiros et al., 2012), indicating 

that aberrant Ca2+-dependent calpain activation may contribute to AD pathogenesis. 

Synaptic deficits 

Ca2+ release from intracellular stores plays an important role in hippocampal 

synaptic plasticity (Bashir et al., 1993; Futatsugi et al., 1999; Fujii et al., 2000; Raymond 

and Redman, 2006; Mellentin et al., 2007) and is known to modulate different forms of 

long-term potentiation (LTP) (Raymond and Redman, 2006). If fact, enhanced LTP is 

observed in mice lacking either RyR3 (Futatsugi et al., 1999), or InsP3R1 (Fujii et al., 
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2000), indicating that intracellular Ca2+ store release plays an opposing role to Ca2+ influx 

via the NMDA receptor in LTP induction.  

Genetic ablation of the two PS genes has confirmed their essential role in proper 

synaptic function and plasticity. PSs are involved in homeostatic synaptic scaling (Pratt et 

al., 2011), a form of plasticity that functions to maintain action potential firing rates in an 

optimal range. Additionally, PSs were reported to associate with NMDA receptors, and 

genetic deletion of both PS homologs resulted in lower synaptic NMDA receptor levels, 

and synaptic dysfunction (Saura et al., 2004). Studies on hippocampal region CA1 or 

CA3 conditional PS DKO mice revealed that presynaptic (CA3) PS expression is 

essential for modulating [Ca2+]i signaling that, in part, regulates neurotransmitter release 

(Zhang et al., 2009). These studies confirmed a role for PSs in synaptic transmission and 

plasticity. 

The effects of FAD mutant PS expression on synaptic transmission and plasticity 

have been investigated in the M146V mouse (Odero et al., 2007; Auffret et al., 2010). 

These studies reported enhanced hippocampal region CA1 early-LTP (E-LTP) and 

NMDA receptor-mediated transmission. E-LTP is a form of transient synaptic plasticity 

resulting from a single tetanus and is normally short-term (~1 hr). Previous studies on 

FAD mutant PS expressing mice have identified enhancements in the induction (the 

initial change in synaptic strength following tetanus application) and maintenance (the 

long-lasting, maintained changes in synaptic strength) phases of E-LTP and found that 

these phenomena are due to a decease in the threshold for eliciting potentiation without 

changes in the maximum amount of potentiation achievable (Zaman et al., 2000; 

Schneider et al., 2001). This decreased threshold is postulated to be due to changes in 
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[Ca2+]i handling associated with FAD mutant PS (Parent et al., 1999; Barrow et al., 2000; 

Schneider et al., 2001; Odero et al., 2007). 

Reports on young 3xTg mice also suggest that exaggerated [Ca2+]i signaling 

results in changes in hippocampal basal synaptic transmission and synaptic plasticity 

(Chakroborty et al., 2009). These studies found that enhanced RyR-mediated Ca2+ release 

masks subtle changes in hippocampal synaptic transmission, presynaptic facilitation and 

LTP, which only became apparent following inhibition of RyR-mediated Ca2+ release 

(Chakroborty et al., 2009).  

AD pathology also appears to affect hippocampal plasticity. Initial reports on 

3xTg mice observed an age-dependent impairment in hippocampal CA1 region late-LTP 

(L-LTP) present in mice 6-mths-of-age (Oddo et al., 2003). L-LTP is a form of long-

lasting synaptic potentiation that is elicited by multiple increases in cytosolic [Ca2+], 

which activate de novo CREB-dependent gene expression. The age dependence of this 

impairment lead the author’s to postulate that it is due to AD pathology accumulation. In 

sum, these findings suggest that PSs have a role in synaptic homeostasis and plasticity 

and that loss of PS expression or FAD mutations in PSs are sufficient to disrupt 

hippocampal circuits independent of AD pathology.  

Targeting exaggerated [Ca2+]i signaling 

The potential contribution of exaggerated [Ca2+]i signaling to AD pathogenesis is 

further emphasized by studies showing that pharmacologic or genetic targeting of [Ca2+]i 

signaling influences Aβ generation and tau kinase activation. Over-expression of 

SERCA, which results in overfilling of the ER Ca2+ stores and enhanced [Ca2+]i 

signaling, causes an increase in Aβ generation. In agreement, knock-down of SERCA 
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decreases Aβ generation (Green et al., 2008). Similarly, depletion of ER Ca2+ stores by 

inhibition of the SERCA pump results in a depression in Aβ release (Buxbaum et al., 

1994). Genetic ablation of all three InsP3R homologs dramatically reduces the level of 

Aβ secreted from APPSWE expressing cells and rectifies the PS1M146L enhancement of 

Aβ secretion (Cheung et al., 2008). GSK-3β-dependent tau phosphorylation is blocked by 

a RyR antagonist (Resende et al., 2008), and stabilization of neuronal [Ca2+]i
 signaling 

decreases calpain activation, p25 production, and subsequent CDK5 mediated tau 

phosphorylation (Chen et al., 2008). In conclusion, these data suggest that exaggerated 

[Ca2+]i signaling may contribute to AD pathogenesis, and normalizing these signals could 

impinge upon AD histopathology. 

Recent in vivo studies investigating the contribution of exaggerated [Ca2+]i 

signaling to AD pathogenesis have employed pharmacological approaches targeting RyR 

but have produced conflicting results. One study identified a worsening of AD-like 

phenotypes (Zhang et al., 2010) and two reported amelioration (Oules et al., 2012; Peng 

et al., 2012). Although all three reports employed the same RyR antagonist, they used 

different routes of administration, dosing parameters, and employed different AD mouse 

models. These differences make the conflicting results of these studies difficult to 

interpret and suggest that future experiments should employ a consistent method to 

rescue exaggerated [Ca2+]i signaling. 

Hypothesized Mechanisms of Familial Alzheimer’s Disease Mutant PS Exaggerated 

[Ca2+]i Signaling  

Although FAD PS mutations have repeatedly been shown to result in exaggerated 

[Ca2+]i signaling, the mechanism underling this phenomenon is controversial (Kasri et al., 
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2006; Stutzmann et al., 2006; Tu et al., 2006; Cheung et al., 2008; Green et al., 2008; 

Rybalchenko et al., 2008). Hypothesized mechanisms can be grouped into two categories:  

(1) Increased driving force due to elevated ER [Ca2+], termed the ER overfilling 

hypothesis, which results in enhanced Ca2+ release upon Ca2+ release channel activation. 

Hypothesized mechanisms postulate that FAD PS mutations either: 

(A) Result in a gain-of-function enhancement of SERCA ER filling activity (Green 

et al., 2008). Support for this hypothesis comes from studies showing that PSs are 

SERCA binding partners (Green et al., 2008; Jin et al., 2010), that lack of PS 

expression results in smaller releases of Ca2+ from ER stores via the passive ER 

Ca2+ leak, and that over-expression of WT PSs increases clearance rates of 

cytosolic Ca2+, which are further enhanced by over-expression of FAD mutant PS 

alleles (Green et al., 2008). In agreement with this proposed mechanism, it was 

recently found that FAD mutant PS expressing cells have attenuated store-

operated Ca2+ re-entry, a cellular process to refill depleted ER Ca2+ stores, which 

was rescued by inhibition of SERCA activity (Boyle et al., 2012). However, it has 

also been reported that WT PS2 and FAD mutant PS2 reduce SERCA activity in 

SH-SY5Y and MEF cells (Brunello et al., 2009). 

(B) Decrease the conductance of the passive ER Ca2+ leak channel (Tu et al., 

2006). Support for this mechanism comes from the observation that ER Ca2+ 

release, following SERCA inhibition, is elevated in cells expressing mutant PS1 

(Leissring et al., 2000). Additionally, Tu and colleagues reported that WT PS, but 

not FAD mutant PS, form low-conductance divalent cation permeable pores in 
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planar lipid bilayers (Tu et al., 2006; Nelson et al., 2007). However, several 

groups have not made observations consistent with this mechanism. Kasri et al. 

found a decrease in ER [Ca2+] as measured by ER-targeted aequorin (Kasri et al., 

2006) and Zatti et al. observed that several FAD mutations in PS1 and PS2 cause 

a decrease in ER [Ca2+], as measured by both fura-2 and aequorin in three 

different cell lines (Zatti et al., 2006). Other studies have also produced data 

conflicting with the hypothesis that PSs form the passive ER Ca2+ leak channel, a 

function disrupted by FAD mutations (Stutzmann et al., 2004; Zatti et al., 2004; 

Giacomello et al., 2005; Smith et al., 2005; Cheung et al., 2008; Brunello et al., 

2009; Cheung et al., 2010; Jin et al., 2010; McCombs et al., 2010; Muller et al., 

2011; Boyle et al., 2012).  

Recently, the first crystal structure of an intramembrane aspartate protease 

(PS-like) protein was reported (Li et al., 2012). The authors identified a large hole 

that transverses the entire protein, lined by hydrophobic residues on 

transmembrane (TM) regions TM2, TM3, TM5, and TM7. The hydrophobicity of 

the pore lead the authors to postulate that is it likely plugged by lipid molecules 

and/or PS binding partners (Li et al., 2012). Additionally, previous reports 

mapping the putative conductance pore of the PS holoprotein suggested that the 

pore was on the opposite side of TM7, lined by residues on TM7 and TM9 

(Nelson et al., 2011).  

(2) Increased Ca2+ conductance of the ER membrane. The hypothesized mechanisms in 

this category postulate that FAD PS mutations cause exaggerated Ca2+ release by: 
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(A) Acting indirectly to upregulate expression of the InsP3R (Kasri et al., 2006). 

Kasri et al. reported a 4-fold increase in InsP3R1 expression as the likely 

mechanism for the reduced ER [Ca2+] they observed in PS DKO MEF cells (Kasri 

et al., 2006). This report has not been independently verified. 

(B) Acting indirectly to upregulate expression of the RyR (Chan et al., 2000). 

Several groups have suggested that upregulation of RyR may underlie FAD 

mutant PS exaggerated [Ca2+]i signaling (Chan et al., 2000; Stutzmann et al., 

2006; Stutzmann et al., 2007). In fact, two-photon imaging experiments 

conducted on cortical neurons in ex vivo brain slices revealed that M146V-

associated exaggerated [Ca2+]i signaling is largely attenuated by a RyR antagonist 

(Stutzmann et al., 2006; Stutzmann et al., 2007). However, there are conflicting 

reports regarding the specific isoform that is upregulated, with groups reporting 

either RyR2 (Chakroborty et al., 2009) or RyR3 (Chan et al., 2000). 

RyR3 upregulation – Initial reports observed that RyR3 is upregulated in FAD 

mutant PS expressing PC12 cells and in hippocampal neurons from M146V mice 

(Chan et al., 2000). Subsequently, RyR3 upregulation has been reported in 

cortical neurons from TgCRND8 mice (Supnet et al., 2006; Supnet et al., 2010). 

RyR2 upregulation – Other groups have observed that FAD mutant PS expression 

results in RyR2 upregulation. RyR2 mRNA is elevated in 3xTg hippocampal 

tissues compared to WT mice (Chakroborty et al., 2009) and in mid-temporal 

tissues from mild-cognitive impairment patients (Bruno et al., 2012). 
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(C) A direct physical interaction that modulates the gating properties of the RyR 

(Rybalchenko et al., 2008). Studies have shown that the N-terminus of PS1 and 

PS2 can interact with RyR and increase single channel activity (Hayrapetyan et 

al., 2008; Rybalchenko et al., 2008). An analysis of how FAD PS mutations affect 

RyR gating has not been reported.  

(D) A direct physical interaction that modulates the gating properties of the 

InsP3R (Cheung et al., 2008). PSs physically interacts with the InsP3R, and FAD 

mutations in PS enhance the modal gating activity of the InsP3R, stabilizing the 

channel’s open-state and increasing its ligand sensitivity (Cheung et al., 2008; 

Cheung et al., 2010). Although other studies have made observations consistent 

with this hypothesis (McCombs et al., 2010), independent replication of the 

effects of FAD mutant PS on InsP3R gating have not been reported. 

Rationale 

Developing a better understanding of the mechanisms and contributions of 

exaggerated [Ca2+]i signaling to AD pathogenesis may identify new therapeutic targets to 

treat FAD, and could provide insights into the more common, sporadic form of AD. 

Therefore, in Chapter 2 we test the hypotheses that PSs acts as the Ca2+-permeable leak 

channel within the ER membrane, with FAD-linked mutations disrupting this function 

and resulting in overfilling of the ER Ca2+ stores. In Chapter 3 we show that exaggerated 

[Ca2+]i signaling is mediated by InsP3R1, a proximal event in AD, and contributes to the 

onset and progression of the disease. The experiments presented in this dissertation serve 
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to elucidate the manner in which FAD mutant PS disrupts [Ca2+]i signaling and determine 

the role of exaggerated [Ca2+]i signaling to AD pathogenesis in vivo.  
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SUMMARY 

Familial Alzheimer’s disease (FAD) is linked to mutations in the presenilin (PS) 

homologs. FAD mutant PS expression has several cellular consequences, including 

exaggerated intracellular Ca2+ ([Ca2+]i) signaling due to enhanced agonist sensitivity and 

increased magnitude of [Ca2+]i signals. The mechanisms underlying these phenomena 

remain controversial. It has been proposed that PS are constitutively active, passive ER 

Ca2+ leak channels, and that FAD PS mutations disrupt this function resulting in ER store 

overfilling that increases the driving force for release upon ER Ca2+ release channel 

opening. To investigate this hypothesis, we employed multiple Ca2+ imaging protocols 

and indicators to directly measure ER Ca2+ dynamics in several cell systems. However, 

we did not observe consistent evidence that PS act as ER Ca2+ leak channels. 

Nevertheless, we confirmed observations made using indirect measurements employed in 

previous reports that proposed this hypothesis. Specifically, cells lacking PS or 

expressing a FAD-linked PS mutation displayed increased area under the ionomycin-

induced [Ca2+]i vs time curve (AI) compared with cells expressing WT PS. However, an 

ER-targeted Ca2+ indicator revealed that this did not reflect overloaded ER stores. 

Monensin pre-treatment selectively attenuated the AI in cells lacking PS or expressing a 

FAD PS allele. These findings contradict the hypothesis that PS form ER Ca2+ leak 

channels and highlight the need to use ER-targeted Ca2+ indicators when studying ER 

Ca2+ dynamics. 
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INTRODUCTION 

Alzheimer’s disease (AD)2 is the most common cause of dementia among 

individuals over 60 years old, affecting ~2% of people in industrialized countries. 

Although most AD is idiopathic with late onset (>60 years of age), a small percentage of 

AD is characterized by early-onset and dominant-negative inheritance. Familial AD 

(FAD) is linked to mutations in three genes encoding the amyloid precursor protein 

(APP) and the two presenilin (PS) homologs. Mutations in PS1 cause the majority of 

FAD cases.  

PS are nine transmembrane helix proteins (Laudon et al., 2005; Spasic et al., 

2006) that reside in the endoplasmic reticulum (ER) in their immature holoprotein forms. 

Following assembly of the γ-secretase complex composed of PS, nicastrin, pen-2, and 

aph-1, PS undergoes endoproteolysis and the complex is exported from the ER (Dries and 

Yu, 2008). Possible etiological mechanisms for AD pathogenesis have focused on one of 

its two major histopathological hallmarks, extracellular Aβ plaques, driven by the finding 

that PS comprises the catalytic core of γ-secretase, the protease responsible for APP 

cleavage and Aβ release (Herreman et al., 2000). However, a large body of evidence 

suggests that PS is involved in intracellular Ca2+ ([Ca2+]i) homeostasis, and that FAD 

mutations result in [Ca2+]i dysregulation (Stutzmann, 2005; Gandy et al., 2006; 

Thinakaran and Sisodia, 2006; Marx, 2007; Mattson, 2007; Bezprozvanny and Mattson, 

2008; Berridge, ; Mattson). 

Studies of FAD patients’ fibroblasts provided the first evidence that [Ca2+]i 

homeostasis is disrupted in the disease. These experiments demonstrated increased 

sensitivity and enhanced Ca2+ release in response to InsP3-generating agonists in FAD 
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patients’ fibroblasts compared with those from unaffected family members (Ito et al., 

1994; Hirashima et al., 1996; Etcheberrigaray et al., 1998). These findings have since 

been extended in numerous in vitro and in vivo studies (Stutzmann et al., 2004; Smith et 

al., 2005; Kasri et al., 2006; Stutzmann et al., 2006; Stutzmann et al., 2007; Cheung et al., 

2008; Green et al., 2008; Chakroborty et al., 2009; Cheung et al., 2010). Despite 

intensive investigation, the mechanisms of mutant PS-enhanced Ca2+ signaling remain 

controversial (Smith et al., 2005; Kasri et al., 2006; Tu et al., 2006; Zatti et al., 2006; 

Nelson et al., 2007; Cheung et al., 2008; Green et al., 2008; Cheung et al., ; McCombs et 

al., ; Nelson et al., ; Zhang et al., ; Nelson et al.).  

[Ca2+]i signaling is a dynamic process involving the plasma membrane (PM), the 

ER, acidic organelles and mitochondria. Basal cytoplasmic [Ca2+] is maintained at ~100 

nΜ by multiple mechanisms, including plasma membrane Ca2+ ATPases (PMCA), which 

extrude Ca2+ from the cell, the secretory pathway Ca2+ ATPases (SPCA) that sequester 

Ca2+ into acidic secretory pathway organelles, and sarco/endoplasmic reticulum Ca2+ 

ATPase (SERCA) pumps, which are responsible for Ca2+ uptake into the ER. The ER is 

the major intracellular Ca2+ store, with basal [Ca2+]ER ~100-700 µΜ. Ca2+ is released 

from the ER through two main ion channels, the inositol 1,4,5-trisphosphate (InsP3R) (by 

InsP3) and the ryanodine receptor (RyR) (by Ca2+-induced Ca2+ release). A constitutively 

active, passive ER Ca2+ leak also exists, although its molecular identity is controversial.  

It has been proposed that PS holoproteins are Ca2+ channels that comprise the 

passive ER Ca2+ leak, with FAD PS mutations disrupting this function (Tu et al., 2006; 

Nelson et al., 2007; Nelson et al., ; Zhang et al., ; Nelson et al.). Disruption of this 

function was suggested to result in Ca2+ overloading of the ER store, with consequent 
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exaggerated Ca2+ release in response to agonists. However, overfilling of ER Ca2+ stores 

has not been observed in several studies (Kasri et al., 2006; Zatti et al., 2006; Cheung et 

al., 2008; Cheung et al., ; McCombs et al.). Furthermore, the putative channel function of 

PS has been reported by only one laboratory (Tu et al., 2006; Nelson et al., 2007; Nelson 

et al., ; Zhang et al., ; Nelson et al.). Accordingly, we here investigated the hypothesis 

that PS form Ca2+ permeable leak pathways in the ER. We performed a series of imaging 

experiments designed to directly measure ER Ca2+ filling rates, basal ER Ca2+ levels, and 

ER passive Ca2+ leak rates, using multiple cell systems, Ca2+ indicators, and imaging 

protocols. Our results fail to provide consistent evidence in agreement with predictions 

made by the hypothesis that PS holoproteins function as ER Ca2+ leak channels. 
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EXPERIMENTAL PROCEDURES 

Transgenic mice – PS1M146V knock-in (KIN) mice were generated and 

characterized previously (Guo et al., 1999) and kindly provided by Dr. M. Mattson 

(NIH). Mice were housed in a pathogen-free, temperature and humidity controlled 

facility, with a 12 hr light/dark cycle. Mice were fed a standard laboratory chow diet and 

double distilled water, ad libitum. All procedures involving mice were approved by the 

Institutional Animal Care and Use Committee of the University of Pennsylvania, in 

accordance with the NIH’s Guidelines for the Care and Use of Experimental Animals. 

Isolation of primary cell lines – Primary cortical neuron (PCN) cultures were 

established from single E14-16 mouse embryos following described protocols (Miller, 

2003). Cultures were maintained in neurobasal (Invitrogen) medium supplemented with 

B27 (Invitrogen), L-glutamine (Mediatech) and antibiotics and antimycotics (Invitrogen) 

at 37°C with 5% CO2. Half of the medium was replaced every other day. Experiments 

were performed on 7- to 8-day-old cultures. Genotyping of embryos was conduced on 

non-cortical brain tissue obtained from each embryo, using described protocols (Guo et 

al., 1999). PS conditional double knock-out (PS cDKO) and WT B cells were kindly 

provided by Dr. D. Allman (University of Pennsylvania) and used within 10 hr of 

isolation. 

Mouse embryonic fibroblast (MEF) cell line culture – PS double knock-out (PS 

DKO) MEF cells and retrovirally transfected PS DKO cells were generated previously 

(Repetto et al., 2007), and cultured in Dulbecco’s modified Eagle’s/F12 media 

(Invitrogen) containing 10% fetal bovine serum (Hyclone) and antibiotics and 
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antimycotics (Invitrogen). Retrovirally transfected MEF cell lines were maintained in 3 

µg/ml puromycin (Calbiochem). All cell lines were maintained at 37°C with 5% CO2.  

MEF cell line transfection – MEF cells were transfected with the D1-ER-

cameleon plasmid, kindly provided by Dr. R. Tsien (University of California, San Diego) 

or the D1-Golgi-cameleon plasmid, kindly provided by Dr. T. Pozzan (University of 

Padua, Italy), using Lipofectamine 2000 (Invitrogen) following the manufacturer’s 

recommended protocol.  

Ca2+ measurements – All imaging was conducted on a Nikon Eclipse microscope 

using a Perkin Elmer Ultraview imaging system. Permeabilized cells: MEF cells were 

incubated with 10 µM Mag-Fura 2-AM (Invitrogen) in Hepes Hank’s balanced salts 

solution (HHBSS): HBSS supplemented with (mΜ): 10 Hepes, 4.2 NaHCO3, 1.8 CaCl2, 

pH 7.3, with 1% bovine serum albumin (BSA) at room temperature for 30 min. The same 

protocol was used to load PCN, but at 37°C and 5% CO2. Cells were washed briefly with 

cytoplasmic-like media (CLM) (mΜ): 100 KCl, 20 NaCl, 1 EGTA, 0.375 CaCl2, 20 

Pipes, pH 7.3 to remove the loading solution, and then permeabilized under microscopic 

observation for 45 s with 2 µg/ml digitonin. Prior to recording, cells were perfused at a 

rate of 1-2 ml/min with CLM for 25 min. Imaging of Mag-Fura 2 was conducted by 

capturing images at 510 nm every 15 s following excitation at 340 nm and 380 nm. 

Microsoft® Excel was used to perform background subtraction for each time point, and 

Igor Pro was used to fit single exponential functions to the intracellular Ca2+ store filling 

and release phases, and to determine the Δ(340/380) for each cell. Using an iterative 

nonlinear least square fitting algorithm, the single-exponential equation F(t) = Δ(340/380) 

[1-exp(-t/τfill) + Fo was fitted to the observed data for the filling phase, where Fo is the 
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basal 340/380 ratio and 1/τfill is the filling rate. The steady-state fill level is F(t→∞). 

Similarly, the release phase was fitted with a single-exponential equation F(t) = (Fo – 

Fmin) exp(-t/τrelease) + Fmin, with 1/τrelease being the release rate. Single exponential 

functions are the simplest model that assumes only time independence of the multiple 

complex processes involved in ER Ca2+ filling and release, and they provide reasonable 

fits to the observed data. For example, analyses of Figure 1 data revealed fitting errors of 

8% and 17% for the fill and release phases, respectively, which reflect the 95% 

confidence interval. It should be noted that this analysis assumes linearity of the 

relationship between indicator signal and free [Ca2+]ER and does not considered the 

possible effects of ER Ca2+ buffering on the fluorescence measurements. To confirm 

indicator saturation does not occur at steady-state Ca2+ fill levels, saturation emission 

ratios were determined. The average Rmax for Mag-Fura 2 was 0.89, well above the 

steady-state emission ratios observed in our experiments. In intact cells the basal 

emission ratio of D1-ER cameleon was 88% of the total ∆R (e.g. the ratio at saturating 

[Ca2+] less the ratio at 0-Ca2+), and the basal emission ratio of D1-Golgi cameleon was 

54% of ∆R. Both of these values are within the linear region of the %∆R vs [Ca2+] curve 

(Palmer et al., 2004). All cells for each experiment were averaged for presentation and 

data analyses. Imaging of the cameleon Ca2+ indicators was conducted by capturing 

images at 535 nm (yellow fluorescent protein (YPF)) and 485 nm (cyan fluorescent 

protein (CFP)) following excitation at 440 nm. Background subtraction and data analysis 

were conducted as described above. Cyclopiazonic acid (CPA) was purchased from 

Calbiochem; InsP3 from Invitrogen. Intact cells: Cells were loaded with 2 µM Fura 2 for 

30 min in HHBSS with 1% BSA at room temperature. Images were captured every 10 s 
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using the emission/excitation parameters described above for Mag-Fura 2. Background 

subtracted 340/380 ratios for each time point were analyzed off-line for individual cells, 

and were averaged for each experiment for presentation. Igor Pro software was used to 

determine the [Ca2+]i⋅s under the ionomycin-induced Ca2+ release vs time curve using the 

standard equation (Grynkiewicz et al., 1985). Ionomycin was purchased from Invitrogen. 

Experiments using the D1-Golgi-cameleon indicator were conducted as described for D1-

ER. Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich, and were 

of the highest purity.  

Protein extraction and immunoblotting – Cells were sonicated in lysis buffer 

(mM): 1% triton X-100, 50 Tris pH 8.0, 250 NaCl and protease inhibitors (Roche). 

Homogenates were spun at 14,000 rpm for 15 min at 4°C. The supernatant was added to 

4x loading buffer (mM): 250 Tris pH 6.8, 275 sodium dodecyl sulfate, 5.7 bromophenol 

blue, 40% glycerol, 8% β-mercaptoethanol (Bio-Rad), incubated at 95°C for 2 min, and 

stored at -20°C until used. Lysates were run on SDS-PAGE or Tris Acetate 3-8% 

gradient gels (RyR) (NuPAGE), transferred onto a nitrocellulose membrane (GE 

Healthcare), blocked with 5% non-fat dried milk, and probed with primary antibody at 

4°C. We used anti-amino-terminal fragment (NTF)-PS1 1:1000 (Millipore), anti-

carboxy-terminal fragment (CTF)-PS1 1:500 (Cell Signaling), anti-CTF-PS2 1:2000 

(Calbiochem), anti-InsP3R1 1:1000, kindly provided by Dr. S. Joseph (Thomas Jefferson 

University), and anti-panRyR 1:2000 (Affinity Bioreagents), and secondary horseradish 

peroxidase conjugated antibodies: 1:4000 anti-rat (Chemicon), 1:10,000 anti-mouse (Cell 

Signaling), 1:10,000 anti-rabbit (GE Healthcare). An Alpha Innotech FlourChem® Q 

imaging system was used to visualize proteins bands. Bands were quantified with respect 
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to anti-β-tubulin 1:5000 (Invitrogen) or anti-heat shock protein 90 (HSP90) 1:1000 (Cell 

Signaling) using AlphaView® software version 3.1.1.0. 

RNA extraction, reverse transcription and real-time polymerase chain reaction 

(RT-PCR) – RNA was isolated using Qiagen RNeasy Mini Kit and manufacturer’s 

recommended protocol. 5 µg total RNA was used to synthesize cDNA using 

Oligo(dT)12-18 primers (Invitrogen), a M-MLV Reverse Transcriptase kit (Invitrogen), 

and manufacturer’s recommended protocols. A volume of cDNA, corresponding to 10 ng 

of starting RNA, was evaluated using a 7300 Real Time PCR System (Applied 

Biosystems), SYBR green PCR Master Mix (Applied Biosystems), 3 µM primers, and 

cycling of: 2 min at 50°C, 10 min at 95°C, followed by 40 cycles at 95°C for 15 s and 

60°C for 1 min. Primer specificity was validated by the presence of a single PCR product 

for each primer set following agarose gel analysis. Additionally, a dissociation phase was 

used at the end of each RT-PCR assay, which yielded only a single peak for each primer 

set. Oligonucleotide primers were synthesized by Integrated DNA Technologies: InsP3R1 

forward (F): 5’-GTATGCGGAGGGATCTACGA-3’ reverse (R): 5’-

AACACAACGGTCATCAACCA-3’, InsP3R2 (F): 5’-GTCAATGGCTTCATCAGCAC-

3’ (R): 5’-TGAACTTCTTGGGTGGGTTG-3’, InsP3R3 (F): 5’-

GACCGTTGTGTGGTGGAAC-3’ (R): 5’-GTTCATGGGGCACACTTTG-3’, RyR1 

(F): 5’-CATCTGCTCTGGCTGTGAAG-3’ (R): 5’-CAGAAGGGGAGATGGTCAAA-

3’, RyR2 (F): 5’-GCGAGGATGAGATCCAGTTC-3’ (R): 5’-

CTGCTGTTCTTTGTGGATGG-3’, RyR3 (F): 5’-ATGTAGGTCTGCGGGAACAT-3’ 

(R): 5’-ACCTTTGTTTGGAAGCAGGA-3’, PMCA1 (F): 5’-

GTGGGCAGGTCATCCAGATA-3’ (R): 5’-CCATCAGCTGGAAGAAGGTC-3’, 
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PMCA2 (F): 5’-ATCTCCCTGGGACTGTCCTT-3’ (R): 5’-

GCTTCACCTTCATCCTCTGC-3’, PMCA3 (F): 5’-GAGGTGGCTGCTATCGTCTC-3’ 

(R): 5’-CACCAGACACATTCCCACAG-3’, PMCA4 (F): 5’-

GGGAGATATTGCCCAGATCA-3’ (R): 5’-CCTGGATTAGAATTCCATCTGC-3’. 

The geometric mean of three reference genes (Actin) (F): 5’-

CCAACCGTGAAAAGATGACC- 3’ (R): 5’-ACCAGAGGCATACAGGGACA- 3’), β2 

microglobin (B2M) ((F): 5’-CTGACCGGCCTGTATGCTAT- 3’ (R): 5’-

TATGTTCGGCTTCCCATTCT- 3’), and β-glucuronidase (GUSB) ((F): 5’-

GGTTTCGAGCAGCAATGGTA- 3’ (R): 5’-TGCTTCTTGGGTGATGTCATT- 3’) was 

used to control for [cDNA]. The comparative cycle threshold (ΔΔCt) method was used to 

analyze amplification data. 

Statistical Analyses – Statistical analysis was performed using STATA software. 

Unpaired two-tailed Student’s t-test or analysis of variance (ANOVA), when more than 

two independent variables were present, were used. Statistical significance was set at a 

threshold of p < 0.05. All data are reported as mean ± standard error of the mean (S.E.M). 
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RESULTS 

Neuronal ER Ca2+ dynamics are not affected by the PS1M146V FAD mutation  

To investigate whether PS form constitutively active Ca2+ leak channels in the 

ER, and if FAD-linked mutations disrupt such a function, we directly measured ER Ca2+ 

dynamics in PCN expressing endogenous levels of FAD mutant PS. We employed a 

PS1M146V-KIN FAD mouse, in which the M146V mutation has been targeted to the 

PS1 locus, resulting in expression of the FAD-linked PS allele at endogenous levels and 

under proper regulatory controls (Guo et al., 1999). PCN were isolated from individual 

embryos generated from PS1M146V+/- crosses to allow for comparisons between 

littermates (Fig. 1A). In agreement with previous reports (Guo et al., 1999), WT and 

PS1M146V+/+ PCN expressed similar levels of PS1 (Fig. 1B). Also in agreement with 

previous reports (Thinakaran et al., 1996), we detected high levels of the mature PS1-

amino-terminal fragment (NTF), but were unable to detect immature holoprotein (data 

not shown). 

If FAD mutations disrupt the ER Ca2+ leak function of PS, we predicted that cells 

expressing PS1M146V would be able to more quickly fill depleted ER Ca2+ stores, have 

a higher steady-state ER Ca2+ fill level and display a decreased rate of passive Ca2+ leak 

from the ER. To test these predictions, neurons were loaded with the low affinity 

ratiometric Ca2+ indicator, Mag-Fura 2. The plasma membrane was then permeabilized 

with a low concentration of digitonin under visual inspection to allow escape of 

cytoplasmic dye and pharmacological access to intracellular Ca2+ stores, while leaving 

Mag-Fura 2-loaded intracellular compartments intact. PCN were then perfused with a 

cytoplasmic-like medium (CLM) lacking MgATP to allow for digitonin washout and ER 
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Ca2+ depletion. Following a baseline recording, the perfusion solution was switched to 

CLM containing MgATP, which stimulated the SERCA pump to fill the intracellular 

Ca2+ stores (Fig. 1, C and D). WT and PS1M146V+/+ PCN had similar store filling rates 

(WT: 0.022 ± 0.0027 s-1, PS1M146V+/+: 0.018 ± 0.00096 s-1; p > 0.1) (Fig. 1D). In 

addition, the steady-state level of ER filling (the asymptote approached by the single 

exponential fit of the filling rate) was not different (Δ(340/380): WT: 0.19 ± 0.018, 

PS1M146V+/+: 0.22 ± 0.020; p > 0.2) (Fig. 1, C and E). Upon filling of the ER Ca2+ 

stores, the cells were perfused with CLM lacking MgATP and containing the SERCA 

pump inhibitor cyclopiazonic acid (CPA). This allowed for direct measurement of the 

passive leak of Ca2+ from the ER. There were no differences (p > 0.9) between the two 

groups; WT and PS1M146V+/+ PCN had leak rates of 0.0019 ± 0.00023 s-1 and 0.0018 ± 

0.00023 s-1, respectively (Fig. 1, C and F). 

Upregulation of RyR Ca2+ release channels does not compensate for loss of putative PS 

leak channels in PS1M146V+/+ primary cortical neurons 

It has been suggested that enhanced expression of the RyR Ca2+ release channel 

may compensate for loss of PS-mediated ER Ca2+ leak in FAD PS-expressing cells 

(Zhang et al.). To test this possibility, we preformed reverse transcriptase real time 

polymerase chain reaction assays (RT-PCR) on lysates obtained from PS1M146V+/+ and 

WT PCN. PCN express RyR isoforms 2 and 3 (Fig. 2A), but not isoform 1 (data not 

shown). PS1M146V+/+ PCN had ~50% the levels of RyR2 and RyR3 mRNAs compared 

with WT PCN (n = 2 embryos of each genotype) (Fig. 2A). Western blot analysis of 

PS1M146V+/+ and WT PCN lysates (n = 4 embryos of each genotype), using an antibody 
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that detects all three murine RyR isoforms indicated a trend (p > 0.05) towards decreased 

total RyR protein level in PS1M146V+/+ PCN compared to WT PCN (Fig. 2, B and C). 

Thus, the observed lack of differences in ER Ca2+ store handling between PCN from WT 

and PS1M146V+/+ cannot be accounted for by upregulation of RyR expression.  

ER Ca2+dynamics are not altered in MEF PS DKO cells expressing FAD-linked 

PS1M146L 

Our results do not support the hypothesis that FAD mutations in PS disrupt the 

passive Ca2+ permeability properties of the ER. To extend these studies further, we 

employed mouse embryonic fibroblasts (MEF) with both PS alleles genetically ablated 

(MEF PS DKO) (Herreman et al., 2000) that were retrovirally transduced to 

constitutively express either recombinant WT human PS1 (hPS1) or PS1 harboring the 

FAD-linked M146L mutation (hPS1M146L) (Repetto et al., 2007). These cells allow for 

comparisons between the two PS alleles without confounding effects of endogenous PS 

expression. PS DKO MEF cells lack PS1 expression, but retroviral transduction with 

hPS1 or hPS1M146L induced expression and rapid endoproteolysis resulting in low 

levels of PS1 holoprotein, with the mature N- and C-terminal fragments readily 

detectable (Fig. 3A).  

The above described plasma membrane permeabilization protocol was applied to 

the two cell lines (hPS1 and hPS1M146L), using Mag-Fura 2 as the Ca2+ indicator. The 

rate of loading of Ca2+ into the ER (0.019 ± 0.00072 s-1 and 0.019 ± 0.00067 s-1; p > 0.9), 

the steady-state level of store loading (Δ(340/380): 0.16 ± 0.0081 and 0.15 ± 0.0071; p > 

0.9), and the passive Ca2+ leak rate (0.00022 ± 0.000062 s-1 and 0.00034 ± 0.000094 s-1; p 

> 0.2) were not different between WT hPS1 and hPS1M146L-expressing MEF cells (Fig. 
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3, B-E). These findings also fail to support the notion that FAD-linked PS mutations 

disrupt ER Ca2+ leak pathways. 

To explore this further, we considered that contributions from non-ER 

intracellular compartments might have minimized subtle differences between the cell 

lines. To test this, we employed the genetically-encoded, ER-targeted D1-ER-cameleon 

Ca2+ indicator in the above described permeabilization protocol. This indicator provides 

sensitive and specific measurements of [Ca2+]ER (Palmer and Tsien, 2006). The hPS1 

cells had a faster ER filling rate compared with the hPS1M146L cells (0.020 ± 0.00055 s-

1 vs 0.016 ± 0.00083 s-1; p < 0.005) (Fig. 4, A and B), a lower steady-state ER Ca2+ fill 

level (Δ(YFP/CFP): 0.53 ± 0.016 vs 0.60 ± 0.0088; p < 0.0005)) (Fig. 4, A and C), and a 

slower ER Ca2+ leak rate (0.0019 ± 0.00018 s-1 vs 0.0027 ± 0.00028 s-1; p < 0.05)) (Fig. 

4, A and D). While the elevated steady-state ER Ca2+ fill level observed in the 

hPS1M146L cells is consistent with the hypothesis that the PS1M146L allele disrupts an 

ER Ca2+ permeability, the faster rate of filling and the slower leak rate observed in these 

cells do not support such a model. 

PS1 holoprotein level does not affect ER Ca2+ dynamics in MEF cells 

Our results indicate that PS1M146V and PS1M146L FAD mutations do not 

disrupt ER Ca2+ leak permeability in primary cortical neurons and fibroblasts, 

respectively. However, it has been suggested that the Ca2+ leak channel function of PS 

resides within the holoprotein (Tu et al., 2006), whereas we observed that the ER-

localized PS holoprotein rapidly undergoes endoproteolysis. We therefore performed 

additional experiments using cells expressing PS1 that accumulates in the ER as a 

holoprotein. Aspartic acid at position 257 (D257) is required for intramolecular cleavage 
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of PS1 into mature fragments. Mutation of this residue causes the accumulation of PS 

holoprotein in the ER (Dries and Yu, 2008; Fassler et al., 2010) (Fig. 3A). Importantly, 

this mutation was reported to be without effect on the putative Ca2+ leak channel function 

of PS1 (Tu et al., 2006). We therefore performed experiments using MEF PS DKO cells 

and a MEF PS DKO cell line constitutively expressing hPS1 containing a D257A 

missense mutation (hPS1D257A). Using the above described permeabilization protocol 

with Mag-Fura 2 as the Ca2+ indictor, we observed a difference in the steady-state Ca2+ 

fill level (Δ(340/380): 0.14 ± 0.0072 PS DKO vs 0.17 ± 0.0074 hPS1D257A; p < 0.05) 

(Fig. 3, B and D), but no differences in the Ca2+ filling rate (0.018 ± 0.00078 s-1 PS DKO 

vs 0.018 ± 0.00069 s-1 hPS1D257A; p > 0.9) (Fig. 3, B and C) or leak rate (0.00033 ± 

0.000068 s-1 PS DKO vs 0.00033 ± 0.000060 s-1 hPS1D257A; p > 0.9) (Fig. 3, B and E) 

between the two cell lines. None of these results are consistent with the notion that PS 

holoprotein acts as a passive ER Ca2+ leak channel. 

To verify these findings, we performed similar experiments using D1-ER. By 

comparison with the PS DKO cells, hPS1D257A-expressing cells had a faster ER Ca2+ 

filling rate (0.024 ± 0.00085 s-1 vs 0.020 ± 0.00038 s-1; p < 0.00005) (Fig. 4, A and B), 

and a decreased steady-state ER Ca2+ fill level ((ΔYFP/CFP): 0.50 ± 0.011 vs 0.58 ± 

0.0094; p < 0.0005) (Fig. 4, A and C), both results are inconsistent with PS acting as an 

ER Ca2+ leak channel. Furthermore, the two cell lines did not differ in their ER Ca2+ leak 

rates (0.0015 ± 0.00018 s-1 vs 0.0017 ± 0.00018 s-1; p > 0.8) (Fig. 4, A and D).  

In agreement, comparison of PS DKO and hPS1 ER Ca2+ filling rates (Fig. 3, B 

and C, Fig. 4 A and B), steady-state ER Ca2+ fill levels (Fig. 3, B and D, Fig. 4 A and C), 

and ER Ca2+ leak rates (Fig. 3, B and E, Fig. 4 A and D) identified only a decrease in 
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hPS1 steady-state ER Ca2+ fill level ((ΔYFP/CFP): 0.58 ± 0.0094 PS DKO vs 0.53 ± 

0.016 hPS1; p < 0.05) (Fig. 4 A and C) with use of the D1-ER cameleon as the Ca2+ 

indicator. No other differences in ER Ca2+ dynamics were observed between these two 

cell lines. Thus, no evidence was found in these cell-based assays for a Ca2+ leak 

permeability associated with PS1, even in cells that expressed quite high levels of ER-

localized PS1 holoprotein. 

We considered that the permeabilization protocol might result in the loss of a 

critical cytoplasmic co-factor(s) required for PS Ca2+ leak channel function. To test this 

possibility, we employed D1-ER to monitor resting [Ca2+]ER and the passive leak of Ca2+ 

from the ER in intact cells following inhibition of the SERCA pump, in PS DKO, hPS1 

and hPS1D257A MEF cells. A period of perfusion in Ca2+-containing Hepes Hank’s 

balanced salts solution (HHBSS) was used to determine the resting (YFP/CFP) ratio of 

the cameleon indicator in each cell line (Fig. 5A). The basal (YFP/CFP) ratio was not 

different (p > 0.10 for all comparisons) among the three cell lines (YFP/CFP: PS DKO: 

1.84 ± 0.017; hPS1: 1.83 ± 0.019; hPS1D257A: 1.87 ± 0.010) (Fig. 5B). Switching the 

perfusion solution to HHBSS containing CPA resulted in a diminution of [Ca2+]ER due to 

passive leak of Ca2+ from the ER. However, no differences were observed (p > 0.9 for all 

comparisons) in the rates of Ca2+ leak from the ER among PS DKO (0.0015 ± 0.00016 s-

1), hPS1 (0.0013 ± 0.00020 s-1), and hPS1D257A (0.0015 ± 0.00015 s-1) cells (Fig. 5, A 

and C). These results in intact cells are in good agreement with those obtained from 

permeabilized cells, and again indicate that PS is not an ER Ca2+ leak channel. 
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RyR and InsP3R ER Ca2+ release channels do not compensate for loss of the putative 

PS Ca2+ leak channel in MEF PS DKO cells 

As mentioned above, it has been suggested that upregulation of RyR may 

compensate for loss of the putative PS-mediated ER Ca2+ leak in cells expressing FAD 

PS alleles (Zhang et al.). However, we did not detect RyR1-3 protein (Western blot) or 

mRNA (RT-PCR) in the MEF cells (data not shown). To verify these molecular data, we 

conducted imaging experiments on permeabilized cells using the Mag-Fura 2 Ca2+ 

indicator. Following Ca2+ store loading, cells were perfused with 2 mM caffeine, a RyR 

agonist. However, no Ca2+ release was observed (Fig. 6A). These data suggest that 

upregulation of RyR is not responsible for any putative Ca2+ leak compensation in PS 

DKO cells. 

Upregulation of the expression of InsP3R1 has been reported in MEF PS DKO 

cells (Kasri et al., 2006). In agreement, RT-PCR experiments revealed a ~3-fold increase 

in InsP3R1 mRNA in PS DKO cells compared with hPS1-expressing cells (Fig. 6B). 

InsP3R2 and InsP3R3 mRNA levels were both slightly diminished (PS DKO/hPS1 ~ 

0.65) (Fig. 6B). Western blot analysis confirmed that InsP3R1 protein level was elevated 

(p < 0.05) in the PS DKO cells by ~1.6-fold compared with the hPS1 cell line (Fig. 6, C 

and D). To evaluate the contribution of enhanced InsP3R1 expression in PS DKO cells to 

the passive ER Ca2+ leak, we repeated the permeabilization experiments in the presence 

of 100 µg/ml heparin, an inhibitor of InsP3-induced Ca2+ release. Consistent with a 

previous report (Kasri et al., 2006), there was no difference (p > 0.8) in the ER Ca2+ leak 

rate between the PS DKO (0.000082 ± 0.000035 s-1) and hPS1 (0.000065 ± 0.000036 s-1) 

cells in the presence of 100 µg/ml heparin (Fig. 6E). This result suggests that the 



	   - 44 -  

observed upregulation of InsP3R1 expression in the PS DKO cells does not compensate 

for a putative loss of PS-mediated ER Ca2+ leak.  

PS does not influence ER Ca2+ dynamics in primary B cells from PS cDKO mice 

To rule out the possibility that use of stable cell lines occluded the observation of 

a role for the PS holoprotein as an ER Ca2+ leak channel, we repeated experiments using 

primary B cells obtained from mice in which peripheral B cells lack expression of both 

PS isoforms (PS cDKO) (Fig. 7). The PS2 locus in these mice was disrupted by deletion 

of exon 5. Exon 4 of PS1 is flanked by loxP elements, which was deleted in mature B 

cells using CD19+/Cre mice (Rickert et al., 1995). The Cre-mediated deletion of the 

floxed alleles is initiated in bone marrow pre-B cells and is completed as B cells first 

enter peripheral lymphoid tissues. As shown in Figure 7A, the PS cDKO B cells have no 

PS2 nor PS1 holoprotein expression, whereas B cells obtained from WT littermates 

express both PS homologs. 

With Mag-Fura 2 as the ER Ca2+ indicator, WT B cells had a faster (p < 0.05) rate 

of ER Ca2+ filling compared with PS cDKO B cells (0.025 ± 0.0011 s-1 vs 0.029 ± 00015 

s-1) (Fig. 7, B and C). However, no differences in the steady-state fill level (Δ(340/380): 

0.11 ± 0.0075 vs 0.10 ± 0.0080; p > 0.5) (Fig. 7, B and D) or the passive Ca2+ release rate 

(0.0019 ± 0.00049 s-1 vs 0.0022 ± 0.00033 s-1; p > 0.5) (Fig. 7, B and E) were observed. 

Again, these data fail to provide support for a role for the PS holoprotein as an ER Ca2+ 

leak channel.  
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PS influence total cellular, but not ER, ionomycin-induced Ca2+ release in fibroblasts 

Our results, obtained in several cell systems with two ER Ca2+ indicators, failed to 

observe a putative Ca2+ leak function associated with expression of PS. How can we 

account for the different conclusions reached by the other lab (Tu et al., 2006; Nelson et 

al., 2007; Nelson et al., ; Zhang et al., ; Nelson et al.)? The previous reports ascribing a 

Ca2+ channel function to PS largely utilized the increase in [Ca2+]i upon application of the 

Ca2+ ionophore ionomycin as an indirect measurement of [Ca2+]ER. We therefore 

employed this indirect approach, using Fura 2 to measure [Ca2+]i. Using the four MEF 

cell lines described above, resting [Ca2+]i in HHBSS was recorded before cells were 

perfused with 5 µΜ ionomycin in 0-Ca2+ HHBSS. Ionomycin caused a rapid elevation in 

[Ca2+]i due to release from intracellular stores that subsequently declined to baseline 

levels. Of note, the elevation of [Ca2+]i was more prolonged in the MEF PS DKO cells, 

and to a lesser extent in the hPS1M146L cells, compared with the hPS1 and hPS1D257A 

cells (Fig. 8A). The areas under the ionomycin-induced [Ca2+]i vs time curves (AI; the 

metric used in the previous studies) in PS DKO (111 ± 4.25 µM⋅s) and PS1M146L (63 ± 

2.21 µM⋅s) were larger (p < 0.0001) than those observed in hPS1 (45.4 ± 1.03 µM⋅s) and 

hPS1D257A (42.5 ± 1.34 µM⋅s) cells (Fig. 8B open bars). There was no difference in the 

AI between hPS1 and hPS1D257A cells (p > 0.09). These results recapitulate and are 

consistent with previous observations that lead to the hypothesis that PS function as ER 

Ca2+ leak channels, disrupted by FAD-linked mutations (Tu et al., 2006; Nelson et al., 

2007; Nelson et al., ; Zhang et al., ; Nelson et al., 2011).  

How can we reconcile the failure to obtain results consistent with PS as Ca2+ leak 

channels in the multiple experiments described above with the results obtained using 
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ionomycin? To rule out the possibility that the different AI were a result of different rates 

of Ca2+clearance across the plasma membrane, we performed RT-PCR for plasma 

membrane Ca2+-ATPase isoforms 1-4. However, no differences in expression of these 

genes were observed (data not shown). If PS holoproteins are ER Ca2+ leak channels, the 

prolongation of the ionomycin-induced Ca2+ signal in the PS DKO cells compared with 

the hPS1 cells should be specific to the ER. To test this, we repeated the ionomycin 

experiments using D1-ER (Fig. 8C). Contrary to findings using Fura 2, we observed a 

larger fall of [Ca2+]ER in hPS1 cells compared with PS DKO cells (Δ(YFP/CFP): 0.57 ± 

0.0089 vs 0.52 ± 0.0067; p < 0.0001) (Fig. 8D). Using this direct measure of ER Ca2+, 

these results again do not support the proposition that PS function as ER Ca2+ leak 

channels. In contrast, these results suggest that PS may influence Ca2+ homeostasis within 

non-ER intracellular stores. 

Several subcellular compartments act as Ca2+ stores, including the Golgi 

apparatus. To determine if PS influences resting [Ca2+]Golgi or ionomycin-induced Ca2+ 

release from the Golgi, we employed D1-Golgi-cameleon (Lissandron et al.). Basal Golgi 

apparatus YFP/CFP ratios were not different (p > 0.1) between the PS DKO (2.45 ± 0.07) 

and hPS1 (2.61 ± 0.07) cells (Fig. 9, A and B). Switching the perfusion solution to 

HHBSS with 0-Ca2+ and ionomycin also revealed no difference (p > 0.7) in the 

Δ(YFP/CFP) between the PS DKO (0.57 ± 0.04) and hPS1 (0.59 ± 0.03) cells. This 

suggests that the influence of PS1 on intracellular Ca2+ homeostasis is not a result of 

changes in [Ca2+]Golgi. 
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PS alleles influence the kinetics of ionomycin-induced Ca2+ release in fibroblasts 

Ionomycin is a H+/Ca2+
 exchanger with a 1:1 Ca2+ stoichiometry (Liu and 

Hermann, 1978). Consequently, it is expected that its rate of Ca2+ release will depend 

upon the membrane potential and pH (Fasolato et al., 1991). We reasoned that the larger 

AI seen here and previously (Tu et al., 2006; Nelson et al., 2007; Nelson et al., 2010; 

Zhang et al., 2010; Nelson et al., 2011) might reflect the influence of PS in the 

maintenance of intracellular ionic composition. To test this hypothesis, we repeated the 

ionomycin experiments in the four MEF cell lines following pre-treatment with 2.5 µg/ml 

monensin, a Na+/H+ exchanger, for 2 min to dissipate pH gradients. Monensin pre-

treatment reduced the AI specifically in PS DKO (68.3 ± 1.55 µM⋅s; p < 0.0005) and 

hPS1M146L (54.6 ± 1.42 µM⋅s; p < 0.005) cells, whereas it was without effect on the AI 

for hPS1 (44.4 ± 1.75 µM⋅s; p > 0.6) and hPS1D257A (42.7 ± 1.13 µM⋅s; p > 0.8) cells 

(Fig. 8B filled bars). Notably, this decrease in area was due to a faster return of the 

(340/380) ratio to baseline. This finding suggests that the AI is influenced by factors 

other than the [Ca2+]ER and is therefore not a reliable indicator of the amount of Ca2+ in 

the ER lumen. 
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DISCUSSION 

Many studies have reported aberrant [Ca2+]i homeostasis associated with 

expression of FAD-linked PS alleles (Stutzmann, 2005; Gandy et al., 2006; Thinakaran 

and Sisodia, 2006; Marx, 2007; Mattson, 2007; Bezprozvanny and Mattson, 2008; 

Berridge, ; Mattson). Several mechanisms have been proposed to account for these 

phenomena (Kasri et al., 2006; Stutzmann et al., 2006; Tu et al., 2006; Stutzmann et al., 

2007; Cheung et al., 2008; Green et al., 2008; Cheung et al., 2010), including the 

hypothesis that FAD mutations in PSs disrupt their normal function as an ER Ca2+ leak 

channel (Tu et al., 2006; Nelson et al., 2007; Nelson et al., 2010; Zhang et al., 2010; 

Nelson et al., 2011). However, our observations here, as well as those from other labs 

(Kasri et al., 2006; Zatti et al., 2006; McCombs et al.), do not support predictions made 

by this hypothesis. Another mechanism proposed to explain aberrant [Ca2+]i homeostasis 

observed in FAD PS expressing cells postulates that these mutations result in a gain-of-

function interaction with the SERCA pump, and thereby result in enhanced filling of ER 

Ca2+ stores (Green et al., 2008). Although we did not analyze this hypothesis explicitly in 

the present study, our results do not provide consistent evidence to support it.  

Our experiments employed direct monitoring of ER Ca2+ dynamics in three cell 

systems, including mouse primary cortical neurons, fibroblasts and primary PS cDKO B 

cells. We found that cells expressing FAD-linked mutant PS1 and cells devoid of PS 

expression do not have diminished ER [Ca2+] leak rates or consistent differences in ER 

loading rates or steady-state [Ca2+]ER compared with cells expressing WT PS1. 

Additionally, no compensatory upregulation of RyRs (Zhang et al.) was observed that 

could account for failure to observe phenotypes consistent with the notion that PS 
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function as ER Ca2+ channels. Although we did observe some differences in ER Ca2+ 

dynamics between cell lines expressing WT hPS1 and those expressing FAD-linked hPS1 

alleles, these differences were not consistently observed using different cell lines or 

experimental paradigms, calling into question their biological significance. We conclude, 

therefore, that PS do not function as ER Ca2+ leak channels. 

Although we have not specifically investigated the role of PS2 in ER Ca2+ 

homeostasis in our current study, other studies (Zatti et al., 2004; Giacomello et al., 2005; 

Zatti et al., 2006; Brunello et al., 2009) have shown that expression of FAD mutant PS2 

alleles do not result in overfilling of ER Ca2+ stores, consistent with our results here with 

PS1. 

Previous reports suggesting that PS holoproteins form ER Ca2+ leak channels used 

several experimental protocols but nevertheless relied heavily on the ionomycin-induced 

Ca2+ release protocol. Initial studies employed planar lipid bilayer experiments, in which 

increases in conductance were observed upon incorporation of WT PS1 and PS2, but not 

upon incorporation of PS harboring FAD mutations (Tu et al., 2006; Nelson et al., 2007). 

However, single channel conductance could not be resolved, requiring noise analysis to 

estimate unitary currents. Studies to more firmly establish a Ca2+ channel basis for the 

conductance have not been forthcoming. Another approach used by the authors was to 

gauge the level of ER filling by monitoring increases in [Ca2+]i following SERCA pump 

inhibition in intact MEF PS DKO and WT MEF (Tu et al., 2006). However, this indirect 

measurement is compromised by strong influences of Ca2+ clearance and buffering. Mag-

Fura 2 was measured in permeabilized PS DKO and WT MEF cells (Tu et al., 2006) and 

in PS DKO transiently and stably expressing FAD mutants (Nelson et al., ; Nelson et al.) 
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to quantify [Ca2+]ER. However, Mag-Fura 2 may compartmentalize into many distinct 

intracellular compartments. As shown here, differential results can be obtained depending 

upon whether Mag-Fura 2 or D1-ER, as a direct indicator of [Ca2+]ER is used. Subsequent 

reports employed D1-ER measurements in transfected primary hippocampal neurons 

from triple transgenic mice (harboring the PS1M146V-KIN mutation), but only a 

qualitative description was provided without quantitative analyses of leak rates (Zhang et 

al., 2010). The use of the AI as an indirect estimate of [Ca2+]ER to infer conclusions 

regarding the role of PS in ER Ca2+ permeability has been the basis of the primary 

quantitative analysis in the previous studies (Tu et al., 2006; Nelson et al., 2007; Nelson 

et al., 2010; Zhang et al., 2010). When we measured the AI, we observed the 

phenomenon reported in these studies - PS DKO and hPS1M146L expressing fibroblasts 

had an enhanced area under their whole cell ionomycin-induced Ca2+ release vs time 

curve compared to WT hPS1 and hPS1D257A expressing cells. Notably, the increase in 

AI was mainly due to a slower decay of [Ca2+]i back to basal levels. Importantly, our 

results obtained using the ER-targeted cameleon Ca2+ indicator found that this increase in 

AI in PS DKO cells is not due to enhanced filling of the ER.  

A question is why the different protocols do not produce the same experimental 

answer. We observed that pre-treatment with the Na+/H+ exchanger monensin before 

ionomycin application resulted in a specific decrease in the area under the ionomycin-

induced Ca2+ release vs time curve in PS DKO and hPS1M146L cells, whereas it was 

without effect on hPS1 and hPS1D257A cells. The mechanism underlying the attenuation 

by monensin is not clear. However, it does reveal the pitfall of utilizing the kinetics of 
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ionomycin-induced [Ca2+]i transients to infer the Ca2+ content of specific organelles such 

as the ER.  

In summary, we have shown that PS holoproteins do not form ER Ca2+ leak 

channels, in contrast to what has been previously proposed (Tu et al., 2006; Nelson et al., 

2007; Nelson et al., ; Zhang et al., ; Nelson et al.). This conclusion is based on 

quantitative analyses of ER Ca2+ filling rates, steady-state ER Ca2+ fill levels and ER Ca2+ 

leak rates, from three different cell systems, and using different Ca2+ indicators. 

Upregulation of intracellular Ca2+ release channels as compensatory mechanisms cannot 

account for the failure to provide evidence in support of a function of PS as ER Ca2+ leak 

channels. We have identified an experimental detail that may account for the 

discrepancies between these conclusions and those of previous reports. Thus, use of the 

indirect approach to estimate [Ca2+]ER, integrating the area under the whole cell 

ionomycin-induced Ca2+ release vs time curve, is influenced by factors other than 

[Ca2+]ER. Our findings highlight the need to use ER-targeted Ca2+ indicators when using 

ionomycin to study ER Ca2+ levels. When we performed such an experiment, we found 

that PS does not confer an ER Ca2+ permeability. 
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FIGURES AND LEGENDS 
 
Figure 2.1 

Figure 2.1 Single cell ER Ca2+ dynamics in wild-type (WT) and PS1M146V+/+ 
(M146V) primary cortical neurons. 
 
A, Genotyping of PCN obtained from individual embryos. B, Western blot analysis of 
PCN lysates, using an antibody specific to the PS1 amino-terminus. An antibody against 
β-tubulin was used as loading control. C, Representative single cell Mag-Fura 2 signals 
in permeabilized WT (blue) and M146V (red) PCN during exposure to a cytoplasmic-like 
medium (CLM). Addition of 1.5 mM MgATP enhanced ER luminal [Ca2+] whereas 
removal of MgATP and addition of cyclopiazonic acid (CPA), to inhibit SERCA, 
revealed the passive Ca2+ leak. D-F, Summaries of single cell intracellular Ca2+ store 
loading rates following SERCA pump activation (D), steady-state Ca2+ loading (E), and 
passive Ca2+ leak rates following SERCA pump inhibition (F). D-F, Data presented as 
mean ± S.E.M. N = 3 embryos of each genotype. n ≥ 25 cells of each genotype. No 
differences were observed (p > 0.05) by Student’s t-test.  
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Figure 2.2 

 
Figure 2.2 Ryanodine receptor (RyR) expression in wild-type (WT) and 
PS1M146V+/+ (M146V) primary cortical neurons.  

A, RT-PCR analysis of PCN RNA for RyR2 and RyR3 expression, using primer sets 
specific to each. The RyR1 isoform was not detected. The relative expression ratio 
(M146V/WT) is presented. N = 2 embryos of each genotype. B, RyR Western blot 
analysis of lysates obtained from M146V and WT PCN using an antibody that detects all 
three murine RyR isoforms. HSP90 used as loading control. C, Quantification of total 
RyR protein expression in WT and M146V PCN. N = 4 embryos of each genotype. A and 
C, Data presented as mean ± S.E.M. No differences were observed (p > 0.05) by 
Student’s t-test. 
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Figure 2.3 

 
 
Figure 2.3 Single cell ER Ca2+ dynamics in permeabilized MEF PS DKO (DKO) 
cells and MEF PS DKO cells retrovirally transfected to express hPS1 (WT), 
hPS1M146L (M146L), or hPS1D257A (D257A).  

A, Western blot analysis of cell lysates using antibodies specific to PS1 N- and C-termini. 
The N-terminus antibody also detected the PS1 holoprotein. β-tubulin used as a loading 
control. B, Representative single cell Mag-Fura 2 signals in permeabilized MEF DKO 
(yellow), WT (blue), M146L (red), and D257A (green) cells in response to protocols as 
described in Figure 1. C-E, Summaries of single cell intracellular Ca2+ store loading rates 
following SERCA pump activation (C), steady-state Ca2+ loading (D), and passive Ca2+ 
leak rates following SERCA pump inhibition (E). C-E, Data presented as mean ± S.E.M. 
N ≥ 3 experiments per cell line. n ≥ 52 cells per cell line. *p ≤ 0.05 by ANOVA. 
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Figure 2.4 

Figure 2.4 Single MEF cell ER Ca2+ dynamics in permeabilized cells measured with 
D1-ER-cameleon.  

[Ca2+]ER was imaged in D1-ER-cameleon-expressing permeabilized MEF PS DKO 
(DKO) cells and MEF PS DKO cells retrovirally transfected to express hPS1 (WT), 
hPS1M146L (M146L), or hPS1D257A (D257A). A, Representative single cell traces for 
DKO (yellow), WT (blue), M146L (red), and D257A (green) cells in response to 
protocols described in Figure 1. B-D, Summaries of single cell ER Ca2+ loading rates 
following SERCA pump activation (B), steady-state Ca2+ loading (C), and passive Ca2+ 
leak rates following SERCA pump inhibition (D). B-D, Data presented as mean ± S.E.M. 
N ≥ 3 experiments per cell line. n ≥ 78 cells per cell line. *** p ≤ 0.0005; ** p ≤ 0.005; * 
p ≤ 0.05 by ANOVA. 
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Figure 2.5 

Figure 2.5 Single MEF cell ER Ca2+ dynamics in intact cells measured with D1-ER-
cameleon.  

[Ca2+]ER was imaged in D1-ER-cameleon-expressing intact MEF PS DKO (DKO) cells 
and MEF PS DKO cells retrovirally transfected to express hPS1 (WT) or hPS1D257A 
(D257A). A, Representative single cell traces for DKO (yellow), WT (blue), and D257A 
(green) cells perfused with HHBSS and then with HHBSS containing cyclopiazonic acid 
(CPA) to inhibit the SERCA pump. B-C, Summaries of single cell [Ca2+]ER measured as 
the resting YFP/CFP emission ratio (B), and passive Ca2+ leak rates following SERCA 
pump inhibition (C). B and C, Data presented as mean ± S.E.M. N = 3 experiments for 
each cell line. n ≥ 38 cells for each cell line. No differences were observed (p > 0.05) by 
ANOVA. 
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Figure 2.6 

Figure 2.6 RyR and InsP3R do not compensate for loss of putative Ca2+ channel 
function of PS1.  

A, Representative single cell Mag-Fura 2 signal in permeabilized MEF PS DKO cells in 
response to activation of the SERCA pump by addition of 1.5 mM MgATP, and 
subsequent responses to addition of 2 mM caffeine. B, Relative mRNA expression ratio 
of the three InsP3R isoforms (DKO/WT MEF cells) determined by RT-PCR. Area 
between horizontal lines indicates a less than a 1.5-fold change in expression level. C, 
Western blot analysis of DKO and WT MEF cell lysates using an InsP3R1-specific 
antibody, and β-tubulin as loading control. D, Quantification of InsP3R1 protein 
expression in DKO and WT MEF cells. E, Quantification of ER Ca2+ leak rates in the 
presence of 100 µg/ml heparin. B, D and E, Data presented as mean ± S.E.M. N ≥ 3 
experiments for each cell line. n ≥ 22 cells for each cell line. *p ≤ 0.05 by Student’s t-test. 
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Figure 2.7 

Figure 2.7 Single cell ER Ca2+ dynamics in permeabilized primary B cells isolated 
from PS cDKO (DKO) and wild-type (WT) mice.  

A, Expression of PS1 holoprotein and PS2 C-terminal fragment in WT and DKO B cells. 
Antibodies specific to PS1 or PS2 were used to detect expression; β-tubulin as loading 
control. B, Representative single permeabilized cell Mag-Fura 2 signals for DKO 
(yellow) and WT (blue) cells in response to protocols described in Figure 1. C-E, 
Summaries of single cell ER Ca2+ loading rates following SERCA pump activation (C), 
steady-state Ca2+ loading (D) and passive Ca2+ leak rates following SERCA pump 
inhibition (E). C-E, Data presented as mean ± S.E.M. N = 4 experiments for each 
genotype. n ≥ 82 cells for each genotype. *p ≤ 0.05 by Student’s t-test. 
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Figure 2.8 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Ionomycin-induced Ca2+ release in MEF PS DKO (DKO) cells and MEF 
PS DKO cells retrovirally transfected to express hPS1 (WT), hPS1M146L (M146L), 
or hPS1D257A (D257A).  

A, Representative single cell [Ca2+]i responses in Fura 2 loaded DKO (yellow), WT 
(blue), M146L (red), and D257A (green) MEF cells in response to 5 µM ionomycin in 
the absence of extracellular Ca2+. B, Quantification of the area under the ionomycin-
induced [Ca2+]i vs time curve without (open bars), or with (filled bars) pre-treatment with 
2.5 µg/ml monensin for 2 min (n.s.; not significant). C, Representative single cell 
[Ca2+]ER recordings from D1-ER-cameleon expressing DKO (yellow) and WT (blue) 
MEF cells in response to 5 µM ionomycin in the absence of extracellular Ca2+. Insert 
shows quantification of the Δ(YFP/CFP) emission ratio. B and C, Data presented as mean 
± S.E.M. N ≥ 3 experiments for each cell line. n ≥ 76 cells for each cell line. *p < 0.0001; 
**p < 0.005 by ANOVA B, or Student’s t-test C. 
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Figure 2.9 

Figure 2.9 Trans-Golgi [Ca2+] in MEF PS DKO (DKO) cells and MEF PS DKO cells 
retrovirally transfected to express hPS1 (WT).  

A, Representative single cell recordings of D1-Golgi-cameleon in response to 5 µM 
ionomycin in absence of extracellular Ca2+ in DKO (yellow) and WT (blue) MEF cells. 
B-C, Summaries of the resting D1-Golgi-cameleon (YFP/CFP) ratio in each cell line (B), 
and the ionomycin-induced Δ(YFP/CFP) emission ratio of each cell line following 
ionomycin perfusion (C). N ≥ 3 experiments for each cell line. n ≥ 25 cells for each cell 
line. Data presented as mean ± S.E.M.  
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SUMMARY 

The majority of familial Alzheimer’s disease (FAD) is linked to mutations in the 

presenilin (PS) homologs. FAD mutations have several cellular consequences, including 

exaggerated intracellular Ca2+ ([Ca2+]i) signaling – increased magnitudes and rates of 

intracellular Ca2+ store release and enhanced sensitivity to agonists of ER Ca2+ release. 

Single channel recordings suggest that exaggerated [Ca2+]i signaling is due to an 

interaction between FAD mutant PS and the inositol 1,4,5-trisphosphate receptor 

(InsP3R) that modulates its gating. However, the in vivo significance of the PS-InsP3R 

interaction to exaggerated [Ca2+]i signaling and the contribution of exaggerated [Ca2+]i 

signaling to the development of AD are unknown. If exaggerated [Ca2+]i signaling is 

InsP3R-dependent, we hypothesize that decreasing InsP3R protein expression will 

normalize [Ca2+]i signaling. Therefore, we crossed the Opisthotonos (Opt) mouse, 

deficient in InsP3R1 protein, to the PS1M146V knock-in (M146V) and triple transgenic 

(3xTg) AD-mouse models. We observed that the Opt allele rescues exaggerated [Ca2+]i 

signaling in vitro and ex vivo in both AD models. Additionally, we observed that the Opt 

allele rescues mild cognitive impairment-(MCI) and AD-like phenotypes in these mice. 

In M146V mice, the Opt allele rescued enhanced hippocampal ryanodine receptor protein 

level, enhanced hippocampal synaptic potentiation, and constitutive activation of the 

CaMKIV-CREB transcriptional pathway. In 3xTg mice, the Opt allele attenuated Aβ and 

phospho-tau accumulation and hippocampal electrophysiology and memory impairments. 

These findings indicate that FAD mutant PS-associated exaggerated [Ca2+]i signaling is 

InsP3R1-mediated, occurs early in AD, and contributes to the progression of AD in vivo. 
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INTRODUCTION 

Alzheimer’s disease (AD) is the most common form of dementia, estimated to 

affect 5.4 million people in the United States with an estimated cost of 200 billion dollars 

in 2012 (Alzheimer's Association, 2012). It is characterized by memory impairment and 

its end-stage pathology, including extracellular plaques composed of Aβ and intracellular 

tangles composed of hyperphosphorylated tau. Most patients develop AD sporadically, 

but mutations in the genes encoding the presenilin (PS) homologs or the amyloid 

precursor protein (APP) are linked to early onset, familial AD (FAD). Although FAD 

presents earlier in life than sporadic AD, it shares the hallmark features of the disease 

suggesting overlapping pathogenic mechanisms. The observation that PSs form the 

catalytic core of the γ-secretase enzyme responsible for APP cleavage and Aβ release 

gave rise to the amyloid cascade hypothesis, which places Aβ as the key initiator of the 

disease (Hardy and Selkoe, 2002). However, the repeated failure of clinical trials 

targeting Aβ calls into question the significance of this peptide to the development of AD 

and highlights the need to understand how other aberrant physiology observed may 

contribute to AD pathogenesis.  

PSs have several cellular consequences that are disrupted by FAD mutations, 

including a role in intracellular calcium ([Ca2+]i) release (LaFerla, 2002). FAD mutations 

in PS result in enhanced magnitudes and release rate of Ca2+ from the endoplasmic 

reticulum (ER) stores, the major Ca2+
 store within the cell, and an increase in sensitivity 

to agonists of Ca2+ release (Stutzmann et al., 2004; Smith et al., 2005; Stutzmann et al., 

2006; Stutzmann et al., 2007; Cheung et al., 2008; Cheung et al., 2010). 
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Accumulating evidence suggests that alterations in [Ca2+]i signaling are a 

proximal event and may contribute to AD pathogenesis. Exaggerated [Ca2+]i signaling is 

observed in fibroblasts obtained from FAD patients (Ito et al., 1994; Hirashima et al., 

1996) and at early ages in AD mouse models (Stutzmann et al., 2004; Stutzmann et al., 

2006). Ca2+ regulates many cellular and neuronal processes, including kinase activity, 

gene expression, apoptosis and necrosis, neurotransmitter release, and synaptic plasticity 

(Berridge, 1998; Berridge et al., 2000; Woods and Padmanabhan, 2012). In fact, multiple 

groups have observed that alterations in [Ca2+]i signaling can affect Aβ production, tau 

phosphorylation  and synaptic plasticity (Bashir et al., 1993; Buxbaum et al., 1994; 

Querfurth et al., 1997; Futatsugi et al., 1999; Hartigan and Johnson, 1999; Fujii et al., 

2000; Pierrot et al., 2004; Lesne et al., 2005; Pierrot et al., 2006; Cheung et al., 2008; 

Green et al., 2008; Hoey et al., 2009). These reports have provided evidence in support of 

the calcium hypothesis of AD, which postulates that sustained changes in [Ca2+]i 

homeostasis could provide a final common pathway for the neuropathological changes 

associated with AD (Khachaturian, 1994). 

Although the phenomenon has been widely reported, the mechanism by which 

FAD PS mutations disrupt [Ca2+]i signaling is controversial (Stutzmann et al., 2004; 

Stutzmann et al., 2006; Tu et al., 2006; Nelson et al., 2007; Stutzmann et al., 2007; 

Cheung et al., 2008; Green et al., 2008; Hayrapetyan et al., 2008; Rybalchenko et al., 

2008; Cheung et al., 2010; Nelson et al., 2010; Zhang et al., 2010; Nelson et al., 2011; 

Shilling et al., 2012). Recently, it was reported that FAD mutations in PS result in a gain-

of-function enhancement of the ER localized inositol-1,4,5-trisphosphate receptor’s 

(InsP3R) gating properties and enhance its ligand sensitivity (Cheung et al., 2008; Cheung 
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et al., 2010). Here we test this hypothesis in vivo using a genetic approach. We reasoned 

that if FAD mutant PS results in exaggerated [Ca2+]i signaling through an enhancement of 

InsP3R-mediated Ca2+ release, decreasing the amount of InsP3R present may restore 

normal [Ca2+]i signaling.  

InsP3R1 is the predominant InsP3R in the central nervous system (Furuichi et al., 

1993), and it is strongly expressed in hippocampal neurons (Hertle and Yeckel, 2007). 

Therefore, we crossed the Opisthotonos (Opt) mouse (Street et al., 1997), deficient in 

InsP3R1 protein, to two AD mouse models, the PS1M146V knock-in (M146V) (Guo et 

al., 1999) and the triple transgenic (3xTg), which harbors the PS1M146V-KIN mutation 

and the human APPSWE and tauP301L transgenes (Oddo et al., 2003). The Opt allele is a 

spontaneous occurring in-frame deletion of exons 2 and 3 of the ITPR1 gene that encodes 

the InsP3R1 receptor. This deletion removes two exons from the mRNA, but does not 

interrupt the translational reading frame (Street et al., 1997). Studies on mice with 

targeted deletion of the InsP3R1 identified an analogous phenotype to the Opt mouse – 

severe ataxia, convulsions, and early death (Matsumoto et al., 1996). However, 

heterozygote InsP3R1 knock-out mice do not demonstrate obvious impairments, showing 

only minor deficits in the rotating rod test without differences in spontaneous motor 

activity, muscle strength or walking patterns (Ogura et al., 2001). 

Here we study the effects of the Opt allele on M146V-associated exaggerated 

[Ca2+]i signaling and the contribution of exaggerated [Ca2+]i signaling to the development 

of AD in vivo. We observe that a single Opt allele rescues M146V-associated 

exaggerated [Ca2+]i signaling in vitro and ex vivo in both AD-mouse models. Further, we 

report that a single Opt allele rescues several phenotypes observed in these AD-mice, 
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including increased hippocampal ryanodine receptor (RyR) type 2 protein levels and 

enhanced hippocampal synaptic potentiation in the M146V mouse and AD-like pathology 

and hippocampal late long-term potentiation (L-LTP) and memory deficits in the 3xTg 

mouse. These observations suggest that exaggerated [Ca2+]i signaling is a proximal event 

in AD and contributes to the development AD-like phenotypes in these mouse models. 

 



	   - 69 -  

EXPERIMENTAL PROCEDURES 

Transgenic mice – M146V knock-in (Guo et al., 1999), 3xTg (Oddo et al., 2003) 

and InsP3R1Opt+/- (Opt) (Street et al., 1997) mice were generated and characterized 

previously and kindly provided by Dr. M. Mattson (National Institutes of Health), Dr. H. 

Wei (University of Pennsylvania) and Dr. J. Chen (University of San Diego), 

respectively. Mice were housed in a pathogen-free, temperature and humidity controlled 

facility, with a 12 hr light/dark cycle. Mice were fed a standard laboratory chow diet and 

double distilled water, ad libitum. All procedures involving mice were approved by the 

Institutional Animal Care and Use Committee of the University of Pennsylvania, in 

accordance with the NIH’s Guidelines for the Care and Use of Experimental Animals. 

To generate PS1M146V+/+;InsP3R1Opt+/- (M146V;Opt) and control mouse lines, 

M146V+/+ mice were crossed to Opt mice (both on the C57BL/6 background). First 

generation M146V+/-;Opt were crossed to M146V+/-; InsP3R1Opt-/- littermates to generate 

the M146V;Opt line and to isolate the Opt allele on the wild-type (WT) background. Two 

sets of crosses were used to produce the four genotypes employed in our experiments; 

M146V+/+ mice were mated to M146V;Opt mice and Opt mice were mated to WT mice. 

Genotyping was conducted as previously described (Street et al., 1997; Guo et al., 1999). 

To generate the 3xTg;InsP3R1Opt+/- (3xTg;Opt) and its respective control mouse 

lines, a C57BL/6 mouse carrying the Opt allele was crossed to C57BL/6/129S6 3xTg 

mice. First generation 3xTg+/-;Opt were either backcrossed to parental 3xTg mice to 

restore M146V to homozygosity and the APPSWE and tauP301L transgenes’ copy number, 

or crossed to InsP3R1Opt-/- littermates to generate Opt and WT control lines. Real-time 

polymerase chain reaction (RT-PCR) experiments were conducted on genomic DNA to 
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verify restoration of the APPSWE and tauP301L transgenes’ copy number in the 3xTg;Opt 

line using a 7300 Real Time PCR System (Applied Biosystems), SYBR green PCR 

Master Mix (Applied Biosystems), 3 µM primers, and cycling of: 2 min at 50°C, 10 min 

at 95°C, followed by 40 cycles at 95°C for 15 s and 60°C for 1 min. Primer specificity 

was validated by the presence of a single PCR product for each primer set following 

agarose gel analysis. Additionally, a dissociation phase was used at the end of each RT-

PCR assay, which yielded only a single peak for each primer set. Two sets of primers for 

each transgene were used. Oligonucleotide primers were synthesized by Integrated DNA 

Technologies: APP set 1 forward (F): 5’-GGACCAAAACCTGCATTGAT-3’, reverse 

(R): 5’-CTGGTTGGTTGGCTTCTACC-3’; APP set 2 (F): 5’-

CACCAGGAGAGGATGGATGT-3’, (R): 5’-CTACCCCTCGGAACTTGTCA-3’; tau 

set 1 (F): 5’-GGGGGACAGGAAAGATCAG-3’, (R): 5’-

GTGACCAGCAGCTTCGTCTT-3’; tau set 2 (F): 5’-AAGACGAAGCTGCTGGTCAC-

3’, (R): 5’- GGCGATCTTCGTTTTACCAT-3’. Two sets of primers for β-actin (set 1 

(F): 5’-ACTGGGACGACATGGAGAAG-3’, (R): 5’-CTTTTCACGGTTGGCCTTAG-

3’; set 2 (F): 5’-TACAGCTTCACCACCACAGC-3’, reverse (R): 5’-

TCTCCAGGGAGGAAGAGGAT-3’) were used to control for [DNA]. The comparative 

cycle threshold (ΔΔCt) method was used to analyze amplification data. Six back-crosses 

to parental 3xTg were required to restore transgene copy number, after which two sets of 

crosses were used to produce the four genotypes employed in our experiments; 3xTg 

mice were mated to 3xTg;Opt mice and Opt mice were mated to WT mice. 

Reverse transcriptase RT-PCR (RT-RTPCR) – Immediately after euthanization 

brains were quickly removed and washed in ice-cold phosphate buffered saline (PBS). 
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Hippocampal and cortical tissues were isolated and stored in RNAlater (Qiagen) 

following manufacturer’s protocol. Samples were stored at -80° C until processing for 

RNA isolation. RNA was isolated using an RNeasy Mini Kit (Qiagen) and 

manufacturer’s recommended protocol. To synthesize cDNA, a M-MLV Reverse 

Transcriptase kit (Invitrogen), Oligo(dT)12-18 primers (Invitrogen) and manufacturer’s 

recommended protocols, or a high capacity reverse transcription kit (Applied 

Biosystems) using random primers and manufacturer’s recommended protocols were 

used. A volume of cDNA, corresponding to 10 ng of starting RNA, was evaluated using a 

7300 Real Time PCR System as described above. RyR2 (Chakroborty et al., 2009) (F): 

5’-TCAAACCACGAACACATTGAGG-3’, (R): 5’-AGGCGGTAAAACATGTCAG-3’, 

PS1 (F): 5’-GTCTGAGGACAGCCACTCCA-3’, (R): 5’-

TGGCTCAGGGTTGTCAAGTC-3’, human tau (htau) primer sets described above. The 

relative mRNA expression was calculated using the (ΔCt) method, with 2(Ct(ref) – Ct(exp)) as 

the reported value. 

Isolation of primary cell lines – Primary cortical neuron (PCN) cultures were 

established from single E14-16 mouse embryos following described protocols (Miller, 

2003). Cultures were maintained in neurobasal (Invitrogen) medium supplemented with 

B27 (Invitrogen), L-glutamine (Mediatech) and antibiotics and antimycotics (Invitrogen) 

at 37°C with 5% CO2. Half of the medium was replaced every third day. 1 µM cytosine 

β-D-arabinofuranoside was added to the culture medium 3 days after plating. 

Experiments were performed on 9-day-old cultures. Genotyping of embryos was 

conducted on non-cortical brain tissue obtained from each embryo.  
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Ca2+ measurements – All imaging was conducted on an Eclipse FN1 (Nikon) 

microscope with a mounted Live Scan Swept Field Confocal head equipped with an 

Innova 70C Ar/Kr ion laser (Coherent) and operated from NIS-Elements software 

(Nikon). A Cascade 512B EM-CCD camera (Photometrics) was used with continuous 

exposure through slit mode. ImageJ (National Institutes of Health) was used for image 

analysis and Microsoft® excel was used to perform background subtraction at each time 

point. Igor Pro was used to determine the magnitudes and rates of the Ca2+ indicator’s 

fluorescence change. The magnitude of the change in Ca2+ indicator fluorescence is 

expressed as the ratio (∆F/F0) of the change in fluorescence (F-F0) relative to the resting 

fluorescence (F0). To determine rates, curves were filtered using the minimum amount of 

Gaussian smoothing required to obtain a dominant peak in the graph of the derivative of 

∆F/F0 vs time. This value is reported as ∂(∆F/F0)/∂t. PCN imaging: PCNs were plated 

onto poly-D-lysine coated glass coverslips at a density of 50,000/ml. Prior to loading, 

PCNs were washed once in the buffer used for loading and imaging (mM): 120 NaCl, 4 

KCl, 20 HEPES, 2 CaCl2, 1 MgSO4, 15 glucose, then incubated for 60 min at 37°C and 

5% CO2 with 1 µM Oregon Green 488 BAPTA-1 AM (Oregon Green) (Invitrogen) and 5 

µM caged InsP3-AM (c-InsP3) (Sirius Fine Chemicals). Since Ca2+ stores are depleted in 

PCNs of this age (Smith et al., 2005), a 90 s depolarization pulse was provided by 

replacing Na+ with K+ to a [K+] of 50 mM, followed by a 60 s recovery period prior to 

each photolysis experiment. Photolysis of c-InsP3 was achieved by whole field 

illumination (350-400 nm; ~40 mW/mm2) derived from a X-Cite 120 PC (Lumen 

Dynamics) coupled to a shutter (Uniblitz) and controlled by a Master-8 pulse generator 

(A.M.P.I.). Images were captured at 25 Hz using a 16x water immersion lens (N.A.= 0.8). 
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Stimulus strength was regulated by pulse duration and use of neutral density (ND) filters. 

Only one ultra-violet (UV) pulse was applied to each coverslip. Ex vivo slice imaging: 

Brains were quickly removed from 10-12 day-old pups and transferred to ice-cold 

sucrose artificial cerebral spinal fluid (aCSF) (mM): 87 NaCl, 75 sucrose, 2.5 KCl, 26 

NaHCO3, 1.25 NaH2PO4, 1 CaCl2, 2 MgSO4, 10 glucose bubbled with 95%O2/5%CO2. 

Following removal of the cerebellum, the tissue was mounted to the stage of a vibratome 

and 300 µm coronal sections containing hippocampal tissue were obtained. Non-

hippocampal tissue was trimmed from sections prior to loading with 4 mM Oregon Green 

in sucrose aCSF bubbled with 95%O2/5%CO2 at 39°C for 60 min. Slices were then 

transferred to a holding chamber containing sucrose aCSF until used. 

For imaging, slices were transferred to a recording chamber and perfused at a rate 

of 1-2 ml/min with aCSF (mM): 125 NaCl, 2.5 KCl, 26 NaHCO3, 1.25 NaH2PO4, 2 

CaCl2, 1 MgSO4, 10 glucose bubbled with 95%O2/5%CO2 for 10 min prior to the start of 

each experiment. Images were captured at 10 Hz using a 40x water immersion lens 

(N.A.= 0.8). Following a baseline recording, the solution was switched to aCSF 

containing 10 µM dihydroxyphenylglycine (DHPG) for the remainder of the recording 

period. When more than one Ca2+ release event was observed, only the first was 

analyzed.  

Protein extraction and immunoblotting – PCNs or brain tissue was sonicated in 

lysis buffer (mM): 1% triton X-100, 5 EGTA, 50 Tris pH 7.4, 100 NaCl, protease 

inhibitors (Roche), phosphatase inhibitor (Roche). Homogenates were spun at 14,000 

rpm for 20 min at 4°C. The supernatant was added to 4x loading buffer (mM): 250 Tris 

pH 6.8, 275 sodium dodecyl sulfate, 5.7 bromophenol blue, 40% glycerol, 8% β-
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mercaptoethanol (Bio-Rad), incubated at 95°C for 2 min, and stored at -80°C until used. 

Lysates were run on SDS-PAGE or Tris Acetate 3-8% gradient gels (RyR) (NuPAGE), 

transferred onto a nitrocellulose membrane (GE Healthcare), blocked with 5% non-fat 

dried milk, and probed with primary antibody at 4°C overnight. We used anti-InsP3R1 

1:1000, kindly provided by Dr. R. Neumar (University of Pennsylvania), anti-CaMKIV 

1:2000 (Cell Signaling), anti-phospho-CaMKIV (Thr-196) 1:1000 (Santa Cruz 

Biotechnology), anti-CREB 1:2000 (Cell Signaling), anti-phospho-CREB (Ser-133) 

1:1000 (Millipore), anti-c-fos 1:1000 (Cell Signaling), anti-nNOS 1:1000 (Cell 

Signaling), anti-BDNF 1:1000 (Millipore), anti-GAPDH 1:1000 (Millipore), anti-acetyl-

histone 3 (H3) 1:1000 (Millipore) anti-panRyR 1:2000 (MA3-925, Affinity Bioreagents), 

anti-RyR2 1:1000 (MA3-916, Affinity Bioreagents), anti-RyR3 1:1000 (AB9082, 

Millipore), anti-β-amyloid 1:500 (clone 6E10, Covance), anti-htau 1:500 (clone HT7, 

Thermo Scientific), anti-phospho-tau 1:500 (AT8, Thermo Scientific; AT180, Thermo 

Scientific) and secondary horseradish peroxidase conjugated antibodies: 1:5000 anti-

mouse (GE Healthcare), 1:5000 anti-rabbit (GE Healthcare). An Alpha Innotech 

FlourChem® Q imaging system was used to visualize proteins bands. Bands were 

quantified with respect to anti-β-tubulin 1:5000 (Invitrogen) or anti-heat-shock protein 90 

(HSP90) 1:1000 (Cell Signaling) using AlphaView® software version 3.1.1.0. 

Immunofluorescence – Fresh frozen tissue: Brains were quickly removed and 

immediately washed in ice-cold PBS followed by embedding in OCT. Tissue was stored 

at -80°C until processed. 8 µm sections were obtained using a cryostat and stored at -

80°C.  For staining, slides were transferred to -20°C for 20 min, then immersed for 10 

min in ice-cold PBS to remove OCT. Sections were fixed for 10 min in 4% 
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paraformaldehyde in PBS, washed 3 times for 10 min each in cold PBS, then 

permeabilized for 30 min at room temperature (RT) in PBS containing 5% bovine serum 

albumin (BSA), pH 7.4 (BSA/PBS) and 0.05% Triton X-100. Sections were blocked in 

PBS/BSA for an hr at RT followed by overnight incubation at 4°C in a moist chamber 

with anti-RyR2 1:100 (Millipore) in BSA/PBS. On the following day slides were washed 

3 times for 10 min each in PBS/BSA, incubated for 90 min in 1:500 anti-rabbit 488 alexa 

fluor (Invitrogen) in BSA/PBS, and washed 3 times for 10 min each in PBS/BSA. Slides 

were mounted using anti-fade medium with DAPI (hardest, vectashield) and kept in the 

dark at 4°C until analysis using a Zeiss confocal microscope (LSM 710). Paraffin 

embedded tissue - Half of the brain was paraformaldehyde-fixed (4% in PBS) overnight 

at 4°C and then processed for paraffin embedding by the University of Pennsylvania 

Cancer Histology Core. 5 µm sections were mounted onto silane-coated slides and dried 

overnight at 37°C. Slices were de-paraffinized by: 2 washes in 100% xylene (Fisher 

Scientific) for 20 min at 37 °C, 2 washes in 100% ethanol for 10 min, one wash in 90% 

ethanol for 10 min, one wash in 70% ethanol for 10 min and 2 washes in H2O for 10 min. 

Antigen retrieval was accomplished by placing slices in 96°C Target Retrieval Solution 

(Dako) for 30 minutes followed by a 20 min cool-down incubation at RT. Slides were 

then washed twice for 10 min in H2O, permeabilized for 30 min in BSA/PBS containing 

0.025% triton X-100, and blocked for 1 hr in BSA/PBS at RT. Following blocking, 

kimwipes were used to wipe around each section and primary antibodies - anti-phospho-

CaMKIV (Thr-196) 1:100 (Santa Cruz), anti-phospho-CREB (Ser-133) 1:100 (Cell 

Signaling), and anti-InsP3R1 (1:100) (kindly provided by Dr. R. Neumar) - diluted in 

BSA/PBS, were added to each slice. Slices were incubated in primary antibody overnight 
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at 4°C in a moist chamber. The next day, slices were washed 3 times for 10 min each in 

BSA/PBS at RT. Slices were incubated with secondary Alexa fluor antibodies (1:500) in 

BSA/PBS for an hr at RT, then washed 3 times for 10 min in BSA/PBS at RT, mounted 

using Vectashield with Dapi (Vector Laboratories) and sealed with nail polish. Slides 

were stored in the dark at 4°C for up to 10 wk. A Zeiss confocal scanning microscope 

(LSM 710) was used to visualize the sections. 

Immunohistochemistry (IHC) – Half of the brain was fixed and processed as 

described for immunofluorescence with the following modifications: 10 µm sections 

were obtained and antigen retrieval was accomplished by placing slides into 96°C PT 

Module Buffer 1 (Thermo Scientific) (antibodies AT180 and AT8) for 30 minutes 

followed by a 30 min cool-down incubation at RT, or 70% formic acid for 30 min 

(antibodies 6E10 and 12F4). Following overnight incubation with primary antibody (AT8 

1:100; AT180 1:250; 6E10 1:1000; 12F4 1:1000), a DAB detection system (Covance) 

was used to visualize antigen localization using manufacturer’s recommended protocol. 

Slices were counter stained using Hematoxylin Gill 3x (Fisher) for 20 s, rinsed in tap 

water, and cleared by: 95% ethanol for 5 min, 2 washes in 100% ethanol for 10 min, 2 

washes in xylene for 10 min. Slides were mounted using Permount (Fisher).  

Enzyme-linked immunosorbent assay (ELISA) – Invitrogen ELISA kits were used 

to determine Aβ content in cortical and hippocampal lysates following the 

manufacturer’s recommended protocol. Briefly, homogenates were prepared from 

dissected cortical or hippocampal tissue by adding eight v/w 5 M guanidine buffered with 

50 mM Tris HCl pH 8.0 in 90 µl aliquots and grinding thoroughly with a hand-held pestle 

after each addition. Homogenates were then rocked at RT for 3-4 hrs. All lysates were 
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stored at -80°C till used. All samples of each age were run on a single ELISA plate 

following manufacturer’s recommended protocol. Plates were read on a Spectr max 340 

pc (Molecular Devices). Plate results were normalized to total [protein] in each 

homogenate as determined by protein assay (Bio-Rad) using an Evolution 60 

spectrophotometer (Thermo Scientific). 

Hippocampal electrophysiology – Mice were sacrificed by cervical dislocation, 

and hippocampi quickly collected in ice-cold oxygenated sucrose aCSF bubbled with 

95% O2/5% CO2. Transverse, 400 µm hippocampal slices were obtained using a 

Mcllwain tissue chopper, transferred to an interface recording chamber, and perfused (1-2 

ml/min) with oxygenated aCSF containing (mM): 124 NaCl, 4.4 KCl, 1.3 MgSO4, 1 

NaH2PO4, 26.2 NaHCO3, 2.5 CaCl2 and 10 D-glucose at 28°C for at least 2 hr prior to 

recording. A bipolar 0.5 mm nichrome stimulating electrode (AM Systems) was 

positioned in the Shaffer collateral pathway and a glass micropipette (2-5 mΩ) (AM 

Systems) filled with oxygenated aCSF was placed adjacent to the stimulating electrode in 

the CA1 hippocampal region. Data were acquired using Clampex 9.2 and a Digidata 1322 

A/D converter (Axon Instruments) at 20 KHz and low pass filtered at 2 KHz. Slices were 

used only if they provided a maximum amplitude response ≥ 5 mV. Synaptic strength 

was measured by the initial slope of the field excitatory post-synaptic potential (fEPSP) 

and the pre-synaptic fiber volley (PFV) amplitude resulting from application of voltages 

to the stimulation electrode starting at 30 V and decreasing stepwise until the PFV was 

not longer detected. Long-term potentiation (LTP) experiments were conducted by 

applying a stimulus strength that elicited 40% of the maximum evoked fEPSP amplitude. 
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The first 20 min baseline values were averaged and used to normalize the initial fEPSP 

slopes. Tetani were applied at 100 Hz for 1s. 

Behavioral experiments – All behavioral experiments were conducted in the 

Behavioral Core at the University of Pennsylvania. Mice were singly-housed for one 

week followed by five days of handling prior to testing. Handling was done in the 

experimental room for 90 s per day for each mouse. Spatial object recognition 

experiments were conducted as previously described (Wimmer et al., 2011). Briefly, 

mice were placed into the training arena four times, each for 10 min. Between trials, mice 

were returned to their home cage. The first session was a context habituation period 

without objects in the arena, whereas for the next 3 sessions mice were placed into the 

arena with 2 distinct objects. The objects used were a glass bottle, a metal rectangular 

tower, and a plastic cylinder tower. Objects and the training arena were cleaned with 70% 

ethanol prior to each session. 24 hr after training, mice were placed back into the arena 

for a 10 min trial with one of the objects displaced to a new location while the other 

object was not moved. All sessions were recorded using a digital camera and 

subsequently scored for time spent exploring each object, blinded to the mouse genotype. 

Object exploration was defined as the amount of time a mouse was oriented toward the 

object with its nose within 0.5 cm of the object. Object preference was calculated as the 

time spent exploring the displaced object relative to the total time spent exploring both 

objects.  

Open-field testing was conducted to assess locomotion. Mice were brought to the 

testing room and allowed to acclimate for 30 min prior to testing. Mice were placed into a 

Plexiglas arena (14 in2) with a white floor and clear walls. Activity data was collected as 
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beam breaks during a 10 min trial for each mouse using a Photobeam Activity System 

(San Diego Instruments). 

Fear conditioning tests were conducted by placing mice into a conditioning 

chamber (Med Associates) for 2 min prior to the onset of a 2800 Hz, 85 dB tone for 30 s. 

During the last 2 s of the tone a 0.7 mA continuous foot shock was applied. The mouse 

remained in the chamber for 30 s following foot shock application, then was returned to 

its home cage. 24 hr later the mouse was tested for time spent frozen (motionless except 

for respiratory movements) in the chamber during a 3 min period. Mice were also placed 

into a novel chamber with unique context. Following a 2 min habituation period mice 

were tested for time spent frozen in response application of a 2800 Hz, 85 dB tone during 

a 3 min period. Scoring of time spent frozen was automated using FreezeScan software. 

Materials – The photoactivatable membrane-permeant InsP3 was dissolved in 

dimethyl sulfoxide (DMSO) with 10% Pluronic F-127 to a stock concentration of 2.5 

mM, aliquoted and stored at -80°C until needed. Each aliquot was thawed only once. 

Oregon Green was dissolved in DMSO with 10% Pluronic F-127 to a stock concentration 

of 4 mM and used fresh daily. Unless otherwise stated, all chemicals were purchased 

from Sigma-Aldrich, and were of the highest purity.  

Statistical Analyses – Statistical analysis was accomplished by performing 

hypothesis-driven unpaired two-tailed Student’s t-tests using STATA software. To 

determine if the AD mouse models were abnormal, the null hypothesis that AD mice = 

WT was tested. If rejected, two additional Student’s t-tests were perform to determine if 

the Opt allele attenuated or rescued the abnormality; AD-mice;Opt = WT and AD-

mice;Opt = AD-mice. Multiple testing adjustments were not necessary since all Student’s 
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t-tests performed were hypothesis driven. For LTP data, STATISTICA software was used 

to conduct repeated ANOVA tests. Statistical significance was set at a threshold of p ≤ 

0.05. All data are reported as mean ± standard error (SE). 
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RESULTS 

M146V-associated exaggerated [Ca2+]i signaling is InsP3R1-dependent 

If FAD mutant PS-associated exaggerated [Ca2+]i signaling is due to an 

enhancement of InsP3R gating (Cheung et al., 2008; Cheung et al., 2010), we predict that 

decreasing InsP3R protein levels will normalize the phenotype. To test this hypothesis, 

we employed the Opt mouse. This spontaneous mutation acts as a null-like allele, 

resulting in approximately half of the level of InsP3R1 hippocampal protein compared to 

WT littermates (Supp. Figs. 1E, 2A, 3A & 5, B and F), without compensatory 

upregulation of InsP3R2 or InsP3R3 expression (data not shown). We crossed the Opt 

mouse to the M146V AD-mouse model that contains a targeted FAD mutation in the 

endogenous PS1 locus (Guo et al., 1999) (Supp. Fig. 1, A and B). In agreement with 

previous reports (Guo et al., 1999), we found that PS is expressed at similar levels in 

M146V and WT mice, and we did not observe an effect of the Opt allele on PS 

expression (Supp. Fig. 5G). 

The Opt allele rescues M146V-associated exaggerated [Ca2+]i signaling in vitro 

To determine if the Opt allele is capable of normalizing FAD mutant PS-

associated exaggerated [Ca2+]i signaling, PCN cultures were established from single 

embryonic day 14-16 embryos. Following 9 days in vitro (DIV), PCNs obtained from 

M146V;Opt embryos have 0.48 ± 0.05 (n = 4; p < 0.005) of the amount of InsP3R1 

protein as WT PCNs, whereas M146V PCNs have a similar amount (1.02 ± 0.08, n = 4) 

compared to WT (Supp. Fig. 2A). Additionally, at 9-DIV M146V PCNs do not express 

different amounts of RyR protein compared to WT (M146V 2.35 ± 0.61, n = 4; p = 0.11) 

(Supp. Fig. 2A).  
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For imaging, PCNs were loaded with the Oregon Green Ca2+ indicator and a 

membrane permeable, caged InsP3. Because PCNs of this age have depleted Ca2+ stores 

(Smith et al., 2005), we included a 90 s perfusion with 50 mM K+ to the imaging protocol 

(data not shown). This perfusion step depolarizes the PCN, causing voltage-gated Ca2+ 

channels to open, thereby allowing Ca2+ to enter the cell. Some of this Ca2+ is then taken 

up into InsP3 sensitive Ca2+ stores. After repolarization, a 10 s baseline recording was 

obtained, followed by application of a whole-field UV light pulse of varying duration 

(~1-500 ms), providing fine control of [InsP3] (Fig. 1, A and B).  

To determine if the Opt allele normalizes M146V-associated exaggerated [Ca2+]i 

signaling, we analyzed both the magnitudes (∆F/F0) and rates (∂(∆F/F0)/∂t) of Oregon 

Green fluorescence change following UV illumination. When the magnitudes of the 

increase in somal [Ca2+] were analyzed, we observed that PCNs obtained from M146V 

embryos have larger magnitudes of [Ca2+]i signals compared to PCNs obtained from WT 

embryos in response to UV pulse durations of 50 ms (∆F/F0: M146V 0.25 ± 0.02 vs WT 

0.16 ± 0.02; p < 0.005), 100 ms (∆F/F0: M146V 0.24 ± 0.03 vs WT 0.17 ± 0.01; p < 

0.05), and 500 ms (∆F/F0: M146V 0.23 ± 0.02 vs WT 0.18 ± 0.02; p < 0.05) (Fig. 1, B 

and D). No differences in magnitudes of [Ca2+]i signals were observed in response to UV 

flash durations of 25 ms, 10 ms, or 20 ms with a 4xND filter in place (~5 ms exposure). 

Only M146V PCNs responded to a 16 ms UV illumination with a 16xND filter in place 

(~1 ms exposure) (Fig. 1, B and D). When the magnitudes of [Ca2+]i signals were 

analyzed for PCNs obtained from M146V;Opt embryos, we did not observe differences 

in response to UV pulse durations of 50 ms, 100 ms or 500 ms compared to WT PCNs 

(∆F/F0: 50 ms 0.16 ± 0.02, 100 ms 0.17 ± 0.02, 500 ms 0.15 ± 0.02) (Fig. 1, B and D). 
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These findings suggest that the Opt allele rescues the exaggerated magnitudes of [Ca2+]i 

signals observed in M146V PCNs.  

We then analyzed the rates of Ca2+ release from intracellular stores. We observed 

that PCNs obtained from M146V embryos have faster Ca2+ stores release rates, compared 

to PCNs obtained from WT embryos in response to UV pulse durations of 25 ms 

(∂(∆F/F0)/∂t): M146V 0.19 ± 0.04 s-1 vs WT 0.08 ± 0.01 s-1; p < 0.05), 50 ms 

(∂(∆F/F0)/∂t): M146V 0.37 ± 0.05 s-1 vs WT 0.12 ± 0.04 s-1; p < 0.005), 100 ms 

(∂(∆F/F0)/∂t): M146V 0.41 ± 0.09 s-1 vs WT 0.13 ± 0.02 s-1; p < 0.005), and 500 ms 

(∂(∆F/F0)/∂t): M146V 0.33 ± 0.04 s-1 vs WT 0.14 ± 0.02 s-1; p < 0.005) (Fig. 1, B and E). 

No differences in Ca2+ release rates were observed in response to UV flash durations of 

10 ms or 20 ms with a 4xND filter in place. Interestingly, M146V;Opt PCN Ca2+ release 

rates in response to 50 ms, 100 ms or 500 ms UV illuminations were not different than 

WT PCN Ca2+ release rates (∂(∆F/F0)/∂t): 50 ms 0.13 ± 0.03 s-1, 100 ms 0.14 ± 0.03 s-1, 

and 500 ms 0.15 ± 0.03 s-1) (Fig. 1, B and E). However, in response to 25 ms UV 

exposures, M146V;Opt PCNs had slower Ca2+ release rates (∂(∆F/F0)/∂t): 0.05 ± 0.01; p 

< 0.05) compared to PCNs obtained from WT embryos (Fig. 1, B and E). These results 

indicate that the Opt allele rescues the exaggerated release rates of Ca2+ from intracellular 

stores observed in M146V PCNs.  

The Opt allele rescues M146V-associated exaggerated [Ca2+]i signaling ex vivo 

The experiments described above suggest that the Opt allele is capable of rescuing 

FAD mutant PS-associated exaggerated [Ca2+]i signaling. The in vitro experimental 

system used has the benefit of providing fine control of [InsP3], but it may not accurately 
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reflect the in vivo scenario. To better understand the effects of the Opt allele on 

exaggerated [Ca2+]i signaling in vivo, we employed an experimental paradigm using acute 

hippocampal slices obtained from post-natal day 10-12 (P10-12) mice. At this age 

hippocampi obtained from M146V;Opt mice have 0.57 ± 0.06 (n = 6; p < 0.005) of the 

amount of InsP3R1 protein as those obtained from WT mice, whereas hippocampi 

obtained from M146V mice have a similar amount of InsP3R1 protein (1.32 ± 0.15, n = 

6) compared to WT (Supp. Fig. 3A). We did not observe differences in hippocampal RyR 

protein levels between M146V (1.11 ± 0.12, n = 6; p = 0.40) and WT P10-12 mice using 

a pan-RyR antibody that detects all three murine RyR isoforms, or when using RyR2 

(M146V 1.12 ± 0.18, n = 6; p = 0.45) or RyR3 (M146V 1.28 ± 0.23, n = 6; p = 0.27) 

isoform specific antibodies (Supp. Fig. 3A).  

To determine the effect of the Opt allele on [Ca2+]i signaling, hippocampal slices 

were loaded with the Oregon Green Ca2+ indicator and granular cell layer neurons in the 

dentate gyrus were imaged. Following a baseline recording, 10 µM DHPG, a group I 

metabotropic glutamate receptor agonist, was used to induce InsP3R-mediated Ca2+ 

release (Fig. 2, A and B; Supp. Fig. 3C). This release is independent of neuronal 

depolarization (Supp. Fig. 3, C and D). We observed that neurons in slices obtained from 

M146V animals displayed enhanced magnitudes and faster rates of Ca2+ release 

compared to WT (∆F/F0: M146V 0.34 ± 0.02 vs WT 0.23 ± 0.02; p < 0.005, ∂(∆F/F0)/∂t: 

M146V 0.23 ± 0.02 s-1 vs WT 0.11 ± 0.01 s-1; p < 0.005) (Fig. 2, B, C and D). In 

agreement with the findings from the in vitro system, hippocampal neurons in slices 

obtained from M146V;Opt mice did not display enhanced magnitudes or release rates 

compared to WT (M146V;Opt ∆F/F0 0.25 ± 0.02; ∂(∆F/F0)/∂t) 0.14 ± 0.01) (Fig. 2, B, C 
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and D). These results indicate that the Opt allele rescues agonist-induced exaggerated 

[Ca2+]i signaling observed in acute hippocampal slices from M146V P10-12 animals. 

Exaggerated [Ca2+]i signaling underlies MCI-like phenotypes of the M146V AD-

mouse model 

Having demonstrated that the Opt allele rescues FAD mutant PS-associated 

exaggerated [Ca2+]i signaling, we wanted to determine the contribution of exaggerated 

[Ca2+]i signaling to the development of AD. The M146V mouse does not develop the 

canonical histopathology associated with AD, but it does recapitulate several 

abnormalities reported in pre-symptomatic FAD mutant PS carriers and patients suffering 

from mild cognitive impairment (MCI), a condition commonly preceding AD. These 

include enhanced RyR2 expression (Stutzmann et al., 2006; Bruno et al., 2012) and 

hippocampal hyperactivity (Dickerson et al., 2005; Odero et al., 2007; Auffret et al., 

2010; Quiroz et al., 2010; Reiman et al., 2012). The M146V;Opt mouse provides the 

opportunity to determine if exaggerated [Ca2+]i signaling contributes to these phenotypes. 

The Opt allele rescues enhanced RyR protein level in M146V mice 

To determine the contribution of exaggerated [Ca2+]i signaling to hippocampal 

RyR2 upregulation, we conducted Western blot analysis on hippocampal lysates obtained 

from 5-wk-old animals. At this age, hippocampi from M146V;Opt mice have 0.57 ± 0.03 

(n = 7; p < 0.005) of the amount of InsP3R1 protein compared to WT, whereas 

hippocampi obtained from M146V mice have 0.95 ± 0.09 (n = 7) of the amount of 

InsP3R1 protein as WT (Supp. Fig. 5B).  Western blot analysis using a pan-RyR antibody 

revealed increased RyR protein in hippocampal lysates obtained from 5-wk-old M146V 
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animals (1.77 ± 0.33, n = 6; p < 0.05) compared to WT (Fig. 3A). Isoform specific 

antibodies identified that this increase in M146V hippocampal RyR protein is 

predominantly due to increased RyR2 protein (1.27 ± 0.08, n = 4; p < 0.05) without 

changes in RyR3 protein level (1.01 ± 0.11, n = 5) compared to WT (Fig. 3A). 

Interestingly, we did not observe enhanced RyR protein levels in hippocampi obtained 

from M146V;Opt mice using either a pan-RyR antibody (1.11 ± 0.15, n = 6), or a RyR2 

specific antibody (0.60 ± 0.11, n = 4). In fact, we observed a decrease in RyR2 protein in 

M146V;Opt hippocampal lysates (p < 0.05) compared to WT (Fig. 3A). To confirm these 

biochemical data we performed immunofluorescence experiments on brain slices 

obtained from 5-wk-old animals using the RyR2 specific antibody. In agreement with the 

Western blot findings, we observed an overall enhancement in hippocampal RyR2 

staining in slices obtained from M146V mice compared to WT, which was most 

prominent in hippocampal region CA1 (Fig. 3B; Supp. Fig. 4B). The enhanced RyR2 

staining was not observed in slices obtained from M146V;Opt mice (Fig. 3B; Supp. Fig. 

4B). This suggests that the Opt allele rescues enhanced RyR2 protein levels in M146V 

mice. 

To verify that the observed RyR2 upregulation in 5-wk-old M146V animals is not 

due to developmental differences in RyR expression (Mori et al., 2000), we repeated our 

experiments in adult (3-mth-old) mice. Hippocampi from adult M146V;Opt mice have 

0.48 ± 0.06 (n = 6; p < 0.005) of the amount of InsP3R1 protein compared to WT, 

whereas hippocampi obtained from M146V mice have 1.20 ± 0.17 (n = 6) of the amount 

of InsP3R1 protein as WT (Supp. Fig. 5F). Again, we observed that M146V mice have 

increased levels (1.42 ± 0.15, n = 7; p < 0.05) of hippocampal RyR2 protein compared to 
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WT. In contrast, RyR2 protein levels in M146V;Opt hippocampal lysates (0.91 ± 0.19, n 

= 7) were not different than WT (Supp. Fig. 4C). Therefore, developmental differences 

do not account for the observed elevation in hippocampal RyR2 protein level in M146V 

mice. 

In contrast to previous reports (Chakroborty et al., 2009), we did not observe that 

the increase in RyR2 hippocampal protein is due to increased transcription; RT-RTPCR 

failed to reveal differences in hippocampal RyR2 mRNA levels between M146V and WT 

mice at 5-wks and 3-mths-of-age (Supp. Fig. 4, A and D).  

The Opt allele rescues enhanced hippocampal potentiation in young and adult M146V 

mice by attenuating aberrant transcriptional pathway activation 

Early biomarkers for AD have remained elusive. However, increases in 

hippocampal activation during the performance of associative memory tasks are observed 

in pre-symptomatic FAD mutant PS carriers and MCI patients (Dickerson et al., 2005; 

Quiroz et al., 2010; Reiman et al., 2012) and represent a deleterious process rather than a 

beneficial compensatory function (Bakker et al., 2012; Sanchez et al., 2012). Although 

the cause of this hyperactivity is not known, studies on M146V mice provide a similar 

observation - enhanced synaptic potentiation in hippocampal region CA1 early LTP (E-

LTP) studies. This enhancement is postulated to be a result of exaggerated [Ca2+]i 

signaling (Odero et al., 2007; Auffret et al., 2010) and is manifested as larger post-tetanus 

potentiation and maintained increases in synaptic strength in response to a single increase 

in post-synaptic [Ca2+]. Normally multiple increases in post-synaptic [Ca2+] are normally 

required to activate the de novo, CREB-dependent gene expression required for long-

lasting L-LTP.  
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To determine if normalizing exaggerated [Ca2+]i signaling attenuates enhanced 

synaptic potentiation in M146V mice, we conducted single tetanus-induced hippocampal 

E-LTP studies on 5-wk-old animals. To accomplish this, we analyzed fEPSP in 

hippocampal area CA1 following stimulation of the Schaeffer collateral pathway. We did 

not observe any difference in basal synaptic transmission between M146V;Opt, M146V, 

and WT mice when we analyzed the slopes of the input (PFV)-output (fEPSP slope) 

curves (M146V;Opt 1.78 ± 0.31 ms-1 vs M146V 1.91 ± 0.19 ms-1 vs WT 1.91 ± 0.24 ms-

1), the ratio of the fEPSP slope to the PFV amplitude at each applied voltage (M146V;Opt 

2.89 ± 0.49 ms-1 vs M146V 4.18 ± 0.75 ms-1 vs WT 3.21 ± 0.31 ms-1), or the maximum 

evoked fEPSP slope (M146V;Opt 7.5 ± 1.0 mV/ms vs M146V 9.5 ± 1.9 mV/ms vs WT 

8.7 ± 1.1 mV/ms) (Fig. 4A; Supp. Fig. 5A).  

Following a 20 min baseline recording we applied a single 100 Hz, 1 s stimulus to 

the Schaeffer collateral pathway and monitored the ensuing changes in synaptic strength 

for 2 hr. Consistent with previous reports, we observed larger potentiation during the first 

10 min post-tetanus in slices obtained from M146V mice (245 ± 13% of baseline, n = 5; p 

< 0.005) compared to those obtained from WT animals (176 ± 9% of baseline, n = 6) 

(Fig. 4B). We also observed maintained increases in synaptic strength in slices obtained 

from M146V mice. During the last 20 min of the recordings, slices from M146V mice 

demonstrated fEPSP slopes of 182 ± 7% of baseline (n = 5; p < 0.005), whereas slices 

obtained from WT mice demonstrated fEPSP slopes of 121 ± 7% of baseline (n = 6)  

(Fig. 4B). Slices obtained from M146V;Opt mice did not exhibit differences in post-

tetanus potentiation (168 ± 10% of baseline, n = 5), or in synaptic strength during the last 

20 min of recording (115 ± 7% of baseline, n = 5) compared to WT mice. These 
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observations suggest that the Opt allele rescues the enhanced hippocampal potentiation 

observed in M146V mice. 

Recently, it was reported that M146V mice display constitutive activation of the 

Ca2+-dependent CaM kinase IV (CaMKIV) cAMP response element binding protein 

(CREB) transcriptional pathway (Muller et al., 2011). This constitutive activation results 

in increased expression of CREB-dependent genes known to be important for the 

conversion of E-LTP to L-LTP (Lu et al., 2008; Steinert et al., 2010; Muller et al., 2011). 

To provide mechanistic insight into the Opt allele’s rescue of enhanced hippocampal 

potentiation in the M146V mouse, we investigated the activation of this transcriptional 

pathway. To accomplish this, we performed Western blot analysis on hippocampal 

lysates obtained from 5-wk-old mice. In agreement with previous reports (Muller et al., 

2011), we observed that M146V mice have an increased proportion (2.05 ± 0.40, n = 5; p 

< 0.05) of their total CaMKIV phosphorylated at Thr-196, a Ca2+-dependent 

autophosphorylation that activates its kinase activity (Selbert et al., 1995), compared to 

WT (Fig. 4C). Immunofluorescence analysis confirmed this biochemical finding, 

demonstrating strong somal staining for phospho-CaMKIV in hippocampal neurons of 

M146V mice compared to WT (Fig. 4D; Supp. Fig. 5C). Remarkably, we did not observe 

a difference in the proportion of CaMKIV phosphorylated at Thr-196 in hippocampal 

lysates obtained from M146V;Opt mice (1.02 ± 0.19, n = 5) compared to WT animals, or 

differences in immunofluorescence staining patterns between M146V;Opt and WT slices 

(Fig. 4D; Supp. Fig. 5D). These findings suggest that the Opt allele rescues the 

constitutive activation of CaMKIV in M146V mice. 
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Having determined that the Opt allele rescues constitutive CaMKIV activation in 

M146V mice, we then wanted to investigate the consequence on the downstream CREB 

transcriptional pathway. Therefore, we preformed Western blot analysis using an 

antibody specific to CREB phosphorylated on Ser-133, a phosphorylation that activates 

its transcriptional activity (Gonzalez and Montminy, 1989). We found that M146V mice 

have an increased proportion of total CREB in a phosphorylated state (1.93 ± 0.06, n = 5; 

p < 0.005) compared to WT.  Interestingly, we did not observe a difference in the 

proportion of CREB phosphorylated at Ser-133 in hippocampal lysates obtained from 

M146V;Opt mice (1.00 ± 0.09, n = 5) compared to WT (Fig. 4C). Immunofluorescence 

analysis, using the phospho-CREB specific antibody, produced strong nuclear staining in 

M146V hippocampal neurons that was not observed in hippocampal neurons in WT or 

M146V;Opt slices (Fig. 4E; Supp. Fig. 5D).  

To confirm that rescue of constitutive CREB transcriptional activity underlies the 

Opt allele’s rescue of enhanced neuronal potentiation in M146V mice, we performed 

Western blot analysis on hippocampal lysates for several CREB-dependent genes 

(neuronal nitric oxide synthase (nNOS), c-fos and brain-derived neurotrophic factor 

(BDNF)). In M146V hippocampal lysates we observed increased protein levels of nNOS 

(1.84 ± 0.25, n = 5; p < 0.05), BDNF (1.65 ± 0.26, n = 5; p < 0.05) and c-fos (1.87 ± 0.20, 

n = 5; p < 0.005) compared to WT (Fig. 4C). Strikingly, we did not observe a difference 

in the protein levels of these CREB-dependent genes in hippocampal lysates obtained 

from M146V;Opt mice (nNOS 0.67 ± 0.17, BDNF 0.95 ± 0.13, c-fos 1.20 ± 0.13, n = 5) 

compared to WT (Fig. 4C). These findings confirm that the Opt allele rescues the 

constitutive transcriptional activity of the CaMKIV-CREB pathway in M146V mice. 
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To verify the specificity of CREB-pathway activation in M146V mice we 

investigated a CREB-independent gene, glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), which was not elevated in M146V hippocampal lysates (0.97 ± 0.09, n = 5) 

compared to WT (Supp. Fig. 5B). Additionally, we did not observe any difference in 

genomic accessibility, as measured by histone-3 acetylation (Turner, 1998), in M146V 

hippocampal lysates (0.93 ± 0.16, n = 5) compared to WT (Supp. Fig. 5B). These 

findings suggest that increases in CREB-target gene protein level is due to specific 

activation of the pathway, not a genome-wide increase in expression.  

We confirmed that enhanced hippocampal potentiation and constitutive CREB 

pathway activation are not due to developmental differences between WT and M146V 

mice. We did not observe any differences in basal synaptic transmission between 3-mth-

old M146V;Opt, M146V and WT mice when we analyzed the input-output slope 

(M146V;Opt 2.49 ± 0.27 ms-1 vs M146V 2.81 ± 0.44 ms-1 vs WT 2.45 ± 0.65 ms-1), the 

ratio of the fEPSP slope to the PFV amplitude at each applied voltage (M146V;Opt 4.06 

± 0.25 ms-1 vs M146V 4.69 ± 0.84 ms-1 vs WT 2.99 ± 0.32 ms-1) or the maximum evoked 

fEPSP slope (M146V;Opt 10.6 ± 1.0 mV/ms vs M146V 11.5 ± 1.9 mV/ms vs WT 7.5 ± 

0.4 mV/ms) (Fig. 4F; Supp. Fig. 5E). Consistent with the findings in 5-wk-old animals, 

we observed larger potentiation during the first 10 min post-tetanus in slices obtained 

from M146V mice (303 ± 30% of baseline, n = 5; p < 0.05) compared to those obtained 

from WT animals (214 ± 13% of baseline, n = 5), and larger maintained increases in 

synaptic strength during the last 20 min of the recordings in slices from M146V mice 

(202 ± 10% of baseline, n = 5; p < 0.005) compared to WT (129 ± 6% of baseline, n = 5) 

(Fig. 4G). In slices obtained from 3-mth-old M146V;Opt mice we did not observe 
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differences in potentiation during the first 10 min post-tetanus (192 ± 6% of baseline, n = 

5), or in synaptic strength during the last 20 min of recording (133 ± 9% of baseline, n = 

5) compared to WT (Fig. 4G). 

Biochemical analysis of hippocampal lysates obtain from adult M146V mice 

revealed an increased proportion of total CaMKIV (1.61 ± 0.20, n = 6; p < 0.05) and 

CREB (1.65 ± 0.14, n = 6; p < 0.05) in a phosphorylated state, and increased protein 

levels of CREB-dependent genes compared to WT (nNOS 1.84 ± 0.32; p < 0.05, BDNF 

1.37 ± 0.13; p < 0.05, c-fos 1.82 ± 0.24, n = 6; p < 0.05) (Fig. 4H). No differences in 

hippocampal GAPDH protein levels were observed in M146V mice (1.03 ± 0.10, n = 7) 

compared to WT (Supp. Fig. 5F). Western blot analysis of M146V;Opt hippocampal 

lysates revealed no differences in the proportion of total CaMKIV (1.22 ± 0.20, n = 6) or 

CREB (0.96 ± 0.13, n = 6) in a phosphorylated state, or differences in protein levels of 

CREB-dependent genes: nNOS (1.54 ± 0.22, n = 6), BDNF (1.12 ± 0.09, n = 6) and c-fos 

(1.46 ± 0.24, n = 6) compared to WT (Fig. 4H). These findings suggest that 

developmental differences do not underlie enhanced synaptic potentiation and 

constitutive activation of the CaMKIV-CREB transcriptional pathway in M146V mice.  

Exaggerated [Ca2+]i signaling contributes to AD-like phenotypes of the 3xTg AD-

mouse model 

To determine the contribution of exaggerated [Ca2+]i signaling to the development 

of canonical AD phenotypes – pathology accumulation and hippocampal impairments – 

we transferred the Opt allele onto the 3xTg’s genome, which contains the PS1M146V-

KIN mutation and human APPSWE and tauP301L transgenes (Supp. Fig. 1, C and D).  
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The Opt allele rescues exaggerated [Ca2+]i signaling in the 3xTg mouse 

First, we verified that the Opt allele rescues exaggerated [Ca2+]i signaling 

observed in 3xTg mice using the in vitro and ex vivo experimental paradigms described 

above. Following 9-DIV, PCNs obtained from 3xTg;Opt have 0.49 ± 0.03 (n = 5; p < 

0.005) of the amount of InsP3R1 protein compared to WT PCNs, whereas 3xTg PCNs 

have a similar amount (0.91 ± 0.08, n = 5) of InsP3R1 protein compared to WT PCNs 

(Supp. Fig. 2B). Additionally, 3xTg PCNs do not express differing amounts of RyR 

protein compared to WT PCNs (3xTg 1.72 ± 0.62, n = 6; p = 0.29) (Supp. Fig. 2B). 

Following a 10 s baseline recording, PCNs were subjected to a whole-field UV light 

pulse of varying duration (Fig. 1C). When the subsequent increases in somal [Ca2+] were 

analyzed, we observed that PCNs obtained from 3xTg embryos have exaggerated 

magnitudes of [Ca2+]i signals, compared to WT, in response to UV pulse durations of 10 

ms (∆F/F0: 3xTg 0.23 ± 0.02 vs WT 0.15 ± 0.02; p < 0.05), 50 ms (∆F/F0: 3xTg 0.25 ± 

0.02 vs WT 0.18 ± 0.02; p < 0.05), 100 ms (∆F/F0: 3xTg 0.30 ± 0.02 vs WT 0.19 ± 0.02; 

p < 0.005) and 500 ms (∆F/F0: 3xTg 0.36 ± 0.05 vs WT 0.21 ± 0.02; p < 0.05) (Fig. 1F). 

No differences in magnitudes of [Ca2+]i signals were observed in response to UV flash 

durations of 25 ms or 20 ms with a 4xND filter in place. Only 3xTg PCNs responded to a 

16 ms UV illumination with a 16xND filter in place (Fig. 1, C and F). When we 

examined PCNs obtained from 3xTg;Opt embryos, we did not observe differences in 

their magnitudes of [Ca2+]i signals in response to UV pulse durations of 10 ms, 50 ms, 

100 ms or 500 ms compared to WT (∆F/F0: 10 ms 0.14 ± 0.02, 50 ms 0.15 ± 0.02, 100 ms 

0.19 ± 0.02, 500 ms 0.20 ± 0.02) (Fig. 1F). These findings suggest that the Opt allele 

rescues exaggerated magnitudes of [Ca2+]i signals in 3xTg PCNs. 
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Analysis of the rates of Ca2+ release revealed that PCNs obtained from 3xTg 

embryos have faster release rates, compared to PCNs obtained from WT embryos, in 

response to all UV pulse durations for which both genotypes responded – 20 ms with 

4xND filter (∂(∆F/F0)/∂t): 3xTg 0.09 ± 0.02 s-1 vs WT 0.05 ± 0.01 s-1; p < 0.05), 10 ms 

(∂(∆F/F0)/∂t): 3xTg 0.22 ± 0.03 s-1 vs WT 0.13 ± 0.03 s-1; p < 0.05), 25 ms (∂(∆F/F0)/∂t): 

3xTg 0.41 ± 0.08 s-1 vs WT 0.23 ± 0.04 s-1; p < 0.05), 50 ms (∂(∆F/F0)/∂t): 3xTg 0.34 ± 

0.05 s-1 vs WT 0.16 ± 0.03 s-1; p < 0.005), 100 ms (∂(∆F/F0)/∂t): 3xTg 0.37 ± 0.05 s-1 vs 

WT 0.21 ± 0.04 s-1; p < 0.05) and 500 ms (∂(∆F/F0)/∂t): 3xTg 0.62 ± 0.14 s-1 vs WT 0.32 

± 0.06 s-1; p < 0.05) (Fig. 1G). Interestingly, in response to 10 ms, 50 ms or 100 ms UV 

illumination 3xTg;Opt PCN Ca2+ release rates were not different than WT Ca2+ release 

rates (∂(∆F/F0)/∂t): 10 ms 0.09 ± 0.02 s-1, 50 ms 0.12 ± 0.03 s-1, 100 ms 0.13 ± 0.02 s-1) 

(Fig. 1G). However, in response to a 20 ms UV pulse with a 4xND filter in place 

(∂(∆F/F0)/∂t): 0.03 ± 0.01 s-1; p < 0.05), a 25 ms (∂(∆F/F0)/∂t): 0.09 ± 0.01 s-1; p < 0.005) 

and a 500 ms (∂(∆F/F0)/∂t): 0.16 ± 0.02 s-1; p < 0.05) UV illumination, 3xTg;Opt PCNs 

had slower Ca2+ release rates compared to WT (Fig. 1F). These results indicate that the 

Opt allele rescues exaggerated rates of Ca2+ release in 3xTg PCNs. 

We confirmed these in vitro findings in our ex vivo experimental paradigm. 

Hippocampi isolated from P10-12 3xTg;Opt mice have 0.69 ± 0.09 (n = 7; p < 0.05) of 

the amount of InsP3R1 protein as WT, whereas hippocampi obtained from 3xTg mice 

have a similar level of InsP3R1 protein (1.03 ± 0.06, n = 7) compared to WT (Supp. Fig. 

3B). No differences in total RyR, RyR2, or RyR3 hippocampal protein levels were 

observed between 3xTg and WT mice (n ≥ 6 for each genotype) (Supp. Fig. 3B). Slices 

were loaded with the Oregon Green Ca2+ indicator and dentate gyrus granular cell layer 
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neurons were imaged. Following a baseline recording, slices were perfused with 10 µM 

DHPG (Fig. 2E). We observed that neurons in 3xTg hippocampal slices displayed 

exaggerated magnitudes of [Ca2+]i signals (∆F/F0: 3xTg 0.62 ± 0.03 vs WT 0.30 ± 0.02; p 

< 0.005) and faster rates of Ca2+ release (∂(∆F/F0)/∂t): 3xTg 0.29 ± 0.02 s-1 vs WT 0.12 ± 

0.02 s-1; p < 0.005) compared to WT (Fig. 2, E, F and G). Also in agreement with 

previous findings, we observed that the magnitudes (∆F/F0: 0.29 ± 0.02) and release rates 

(∂(∆F/F0)/∂t): 0.13 ± 0.01 s-1) of DHPG-induced Ca2+ release in 3xTg;Opt neurons were 

not significantly different from WT (Fig. 2, E, F and G). These results indicate that the 

Opt allele rescues the agonist-induced exaggerated [Ca2+]i signaling observed in 3xTg 

hippocampal neurons.  

The Opt allele attenuates hippocampal AD-like pathology in the 3xTg AD-mouse 

model 

Having demonstrated the Opt allele’s rescue of 3xTg exaggerated [Ca2+]i 

signaling, we then investigated its impact on the age-dependent development of AD-like 

pathology in this mouse. Initial reports on the 3xTg detected hippocampal Aβ 

accumulation in mice 6-mths-of-age, whereas pathological phosphorylation of tau was 

first observed in the hippocampus of 12-mth-old 3xTg mice (Oddo et al., 2003). 

Therefore, we conducted time course studies employing Aβ40 and Aβ42 specific ELISA 

and Western blot analysis on hippocampal tissues isolated from mice ranging from 3- to 

18-mths-of-age. Over this age range we observe that hippocampi from 3xTg;Opt mice 

have ~50% (n = 3-5; p < 0.05) of the amount of InsP3R1 protein compared to WT, 
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whereas hippocampi obtained from 3xTg mice (n = 5) have a similar amount of InsP3R1 

protein compared to WT (Supp. Fig. 6A).  

Prior to conducting ELISA studies, we verified equivalent hippocampal human 

APP (hAPP) protein levels in 3xTg and 3xTg;Opt mice by Western blot analysis (Fig. 

5A). In the ELISA studies, Aβ levels in hippocampal homogenates obtained from Opt 

and WT mice (n = 3 of each genotype per time-point) were always below the assay’s 

detection threshold. In contrast, we were able to detect Aβ accumulation in 3xTg;Opt and 

3xTg mice at 6-mths-of-age (Fig. 5B). At this age we observed that hippocampal 

homogenates obtained from 3xTg;Opt mice have lower levels of Aβ40 (0.01 ± 0.003 

pmol/mg protein, n = 6) compared to 3xTg (0.03 ± 0.01 pmol/mg protein, n = 6; p < 

0.05). However, we did not observe differences in Aβ42 levels (3xTg;Opt 0.01 ± 0.001 

pmol/mg protein, n = 6 vs 3xTg 0.03 ± 0.01 pmol/mg protein, n = 6). In hippocampal 

homogenates obtained from 9-mth-old 3xTg;Opt mice we observed attenuated levels of 

Aβ40 (3xTg;Opt 0.03 ± 0.004 pmol/mg protein, n = 6 vs 3xTg 0.04 ± 0.002 pmol/mg 

protein, n = 6; p < 0.05) and Aβ42 (3xTg;Opt 0.04 ± 0.01 pmol/mg protein, n = 6 vs 3xTg 

0.08 ± 0.01 pmol/mg protein, n = 6; p < 0.005) compared to 3xTg littermates. In mice 12-

mth of age we again detected an attenuation in 3xTg;Opt hippocampal Aβ content 

compared to 3xTg littermates (Aβ40: 3xTg;Opt 0.13 ± 0.03 pmol/mg protein, n = 6 vs 

3xTg 0.37 ± 0.07 pmol/mg protein, n = 6; p < 0.05; Aβ42: 3xTg;Opt 0.42 ± 0.11 pmol/mg 

protein, n = 5 vs 3xTg 1.37 ± 0.19 pmol/mg protein, n = 6; p < 0.005). At 15-mths-of-age 

we observed that the Opt allele is not associated with a decrease in hippocampal Aβ40 

accumulation (3xTg;Opt 0.84 ± 0.27 pmol Aβ40/mg protein, n = 6 vs 3xTg 6.0 ± 2.5 
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pmol/mg protein, n = 5; p = 0.10), but does attenuate levels of Aβ42 (3xTg;Opt 4.5 ± 1.4 

pmol Aβ42/mg protein, n = 6 vs 3xTg 11.9 ± 3.0 pmol/mg protein, n = 5; p < 0.05). At the 

oldest age investigated, 18-mths, we observed that hippocampal homogenates obtained 

from 3xTg;Opt mice have dramatically attenuated levels of Aβ40 (3xTg;Opt 5.0 ± 2.1 

pmol/mg protein, n = 5 vs 3xTg 26.5 ± 5.4 pmol/mg protein, n = 7; p < 0.05) and Aβ42 

(3xTg;Opt 14.5 ± 5.1 pmol/mg protein, n = 5 vs 3xTg 41.3 ± 3.8 pmol/mg protein, n = 7; 

p < 0.05) compared to 3xTg. 

To visualize these ELISA findings we performed IHC analysis on hippocampal 

slices obtained from 18-mth-old mice using antibodies 6E10 (recognized both Aβ species 

and full length APP) and 12F4 (specific to Aβ42) (Fig. 5C). IHC analysis of 3xTg 

hippocampal slices using antibody 6E10 produced strong extracellular and intracellular 

staining, the latter of which is most likely full length APP (Winton et al., 2011). In 

contrast, 3xTg;Opt hippocampal slices have less extracellular immunoreactivity without 

obvious differences in intracellular staining. Analysis with antibody 12F4 provided a 

similar extracellular staining pattern without detectable intracellular signal. In 3xTg 

hippocampal slices we observed strong immunoreactivity that was largely attenuated in 

littermates containing an Opt allele. These findings suggest that the Opt allele attenuates 

accumulation of Aβ40 and Aβ42 in the hippocampus of 3xTg mice. 

To determine the Opt allele’s effect on hippocampal tau pathology we used 

specific antibodies to htau to monitor transgene protein levels and the accumulation of 

phospho-htau. We did not observe differences in htau protein levels in hippocampal 

lysates obtained from 3- (1.03 ± 0.14, n = 5) or 6-mth-old 3xTg;Opt mice (0.85 ± 0.15, n 

= 5) compared to 3xTg littermates. However, we did observe deceased htau protein levels 
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in 3xTg;Opt mice at 9-mths-of-age and older compared to 3xTg littermates (9-mth: 0.79 

± 0.04 n = 5; p < 0.05; 12-mth: 0.67 ± 0.11 n = 5; p < 0.05; 15-mth: 0.75 ± 0.07 n = 5; p 

< 0.05; 18-mth: 0.59 ± 0.05, n = 3; p < 0.05) (Fig. 5A). These differences in total htau 

protein levels are not due to differences in transgene transcription (see below). Rather, 

this observation is in agreement with previous studies that have found Aβ inhibits 

proteasomal degradation of tau (Tseng et al., 2008; Martinez-Coria et al., 2010). We first 

observed pathologic phosphorylation of htau at 12-mths-of-age using antibodies specific 

to htau phosphorylated at Ser-202 (AT8) and Thr-231 (AT180). As normalized to 3xTg 

littermates, we observed that 12-mth-old 3xTg;Opt animals have 0.69 ± 0.01 (n = 3; p < 

0.005) of the amount of htau phosphorylated at Ser-202, and 0.59 ± 0.13 (n = 4; p < 0.05) 

of the amount of htau phosphorylated at Thr-231. Analysis of hippocampal lysates 

obtained from 15-mth-old mice revealed that 3xTg;Opt mice have 0.67 ± 0.08 (n = 5; p < 

0.05) of the amount of htau phosphorylated at Ser-202, and 0.59 ± 0.09 (n = 5; p < 0.05) 

of the amount of htau phosphorylated at Thr-231 as 3xTg mice. In lysates obtained from 

18-mth-old mice we observed that the Opt allele dramatically attenuates pathologic tau 

phosphorylation. At this age, 3xTg;Opt mice have 0.25 ± 0.17 (n = 3; p < 0.05) of the 

amount of htau phosphorylated at Ser-202, and 0.32 ± 0.10 (n = 3; p < 0.05) of the 

amount of htau phosphorylated at Thr-231, as 3xTg mice.  

IHC analysis on hippocampal slices obtained from 18-mth-old mice confirmed 

these biochemical data. We observed strong somatic and neuritic staining using 

antibodies AT8 and AT180 in hippocampal region CA1 in slices obtained from 3xTg 

mice (Fig. 5C). In contrast, we observed less staining by both antibodies in slices 
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obtained from 3xTg;Opt mice. These results suggest that the Opt allele attenuates 

accumulation of pathologically phosphorylated htau in the hippocampus of 3xTg mice. 

The Opt allele attenuates cortical AD-like pathology in the 3xTg AD-mouse model 

Having observed that the Opt allele attenuates hippocampal AD-like pathology, 

we then wanted to determine its effects on 3xTg cortical AD-like pathology. Initial 

reports on 3xTg mice detected cortical Aβ at 3-mths-of-age, whereas pathological 

phosphorylation of tau was first observed at 15-mths-of-age (Oddo et al., 2003). 

Therefore we collected cortical tissue from mice ranging in age from 3- to 18-mths for 

Western blot and ELISA analysis. Over this age range we observe that cortical tissue 

from 3xTg;Opt mice has ~50% (n = 3-5, p < 0.05) of the amount of InsP3R1 protein 

compared to cortical tissue isolated from WT mice, whereas tissue obtained from 3xTg 

mice (n = 5) has a similar level of InsP3R1 protein compared to WT (Supp. Fig. 6B). 

Western blot analysis confirmed equivalent cortical hAPP protein levels in 3xTg 

and 3xTg;Opt mice over the range of ages investigated (Supp. Fig. 6B). ELISA analysis 

failed to detect Aβ in WT or Opt cortical homogenates (n = 3 of each genotype per time-

point). However, analysis of 3xTg and 3xTg;Opt cortical homogenates revealed that the 

Opt allele decreases the accumulation of Aβ40 and Aβ42 (Supp. Fig. 6C). At 6-mths-of-

age we observed that cortical homogenates obtained from 3xTg;Opt mice have attenuated 

levels of Aβ40 (3xTg;Opt 4.0 ± 0.5 fmol/mg protein, n = 6 vs 3xTg 9.3 ± 1.0 fmol/mg 

protein, n = 6; p < 0.005) and Aβ42 (3xTg;Opt 4.0 ± 0.2 fmol/mg protein, n = 6 vs 3xTg 

7.5 ± 0.4 fmol/mg protein, n = 6; p < 0.005) compared to 3xTg. In cortical homogenates 

obtained from 9-mth-old mice, we again observed that 3xTg;Opt mice have diminished 
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levels of Aβ40 (3xTg;Opt 14 ± 1 fmol/mg protein, n = 6 vs 3xTg 18 ± 1 fmol/mg protein, 

n = 6; p < 0.05) and Aβ42 (3xTg;Opt 15 ± 1 fmol/mg protein, n = 6 vs 3xTg 18 ± 1 

fmol/mg protein, n = 6; p < 0.05) compared to 3xTg littermates. In mice 12-mth-of-age 

we observed a decrease in Aβ content in cortical homogenates obtained from 3xTg;Opt 

mice compared to 3xTg (Aβ40: 3xTg;Opt 14 ± 1 fmol/mg protein, n = 6 vs 3xTg 43 ± 8 

fmol/mg protein, n = 6; p < 0.05; Aβ42: 3xTg;Opt 8 ± 1 fmol/mg protein, n = 6 vs 3xTg 

32 ± 8 fmol/mg protein, n = 6; p < 0.05). At 15-mths-of-age the Opt allele is associated 

with attenuated hippocampal Aβ40 (3xTg;Opt 8 ± 1 fmol/mg protein, n = 5 vs 3xTg 51 ± 

15 fmol/mg protein, n = 5; p < 0.05) and Aβ42 accumulation (3xTg;Opt 12 ± 3 fmol/mg 

protein, n = 4 vs 3xTg 82 ± 21 fmol/mg protein, n = 5; p < 0.05). At the oldest time-point 

investigated, 18-mths, we observed that cortical homogenates obtained from 3xTg;Opt 

mice have dramatically reduced levels of Aβ40 (3xTg;Opt 44 ± 4 fmol/mg protein, n = 5 

vs 3xTg 185 ± 57 fmol/mg protein, n = 7; p < 0.05) and Aβ42 accumulation (3xTg;Opt 

132 ± 52 fmol/mg protein, n = 5 vs 3xTg 1440 ± 435 fmol/mg protein, n = 7; p < 0.05) 

compared to 3xTg. These findings demonstrate that the Opt allele attenuates 

accumulation of Aβ40 and Aβ42 in the cortex of 3xTg mice. 

We attempted to determine the Opt allele’s effect on cortical htau pathology. 

However, we were not able to detect phospho-htau by Western blot analysis using 

antibodies AT8 or AT180 in cortical lysates obtained from 12-, 15-, or 18-mth-old 

animals. Interestingly, we did observe attenuated cortical htau protein levels in 3xTg;Opt 

mice, as normalized to 3xTg littermates, at 6-mths-of-age and older (6-mth: 0.51 ± 0.02, 

n = 5; p > 0.005; 9-mth: 0.52 ± 0.09, n = 5; p < 0.005; 12-mth: 0.52 ± 0.06, n = 5; p < 
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0.005; 15-mth: 0.46 ± 0.08, n = 5; p < 0.005; 18-mth: 0.39 ± 0.01, n = 3; p < 0.005). This 

difference in htau transgene protein level was not observed in 3-mth-old mice (3xTg;Opt 

0.92 ± 0.24, n = 5) (Supp. Fig. 6B), and is not due to a disparity in transgene expression 

as RT-RTPCR did not identify differences in cortical htau mRNA levels between 6-mth-

old 3xTg;Opt and 3xTg mice (Supp. Fig. 6D). 

The Opt allele delays the onset and attenuates the severity of hippocampal L-LTP 

impairments in 3xTg mice 

The attenuation of 3xTg AD-like hippocampal pathology by the Opt allele raises 

the question of whether it can also rescues 3xTg hippocampal functional deficits. Initial 

reports on 3xTg mice detected impaired hippocampal region CA1 L-LTP in slices 

obtained from 6-mth-old animals that was not present in 3xTg mice at 1-mth-of-age 

(Oddo et al., 2003). This impairment was manifested as both a decrease in potentiation 

following tetani application and failure to maintain long lasting increases in synaptic 

strength. 

Hippocampal electrophysiological experiments were conducted by monitoring 

fEPSP in hippocampal area CA1 following stimulation of the Schaeffer collateral 

pathway. We did not observe any differences in basal synaptic transmission between 6-

mth-old 3xTg;Opt, 3xTg and WT mice when we analyzed the input-output slope 

(3xTg;Opt 2.12 ± 0.50 ms-1, n = 9 vs 3xTg 2.81 ± 0.44 ms-1, n = 7 vs WT 2.42 ± 0.50 ms-

1, n = 10), the ratio of the fEPSP slope to the PFV amplitude at each applied voltage 

(3xTg;Opt 3.15 ± 0.47 ms-1 vs 3xTg 4.86 ± 0.82 ms-1 vs WT 4.03 ± 0.70 ms-1) or the 
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maximum evoked fEPSP slope (3xTg;Opt 9.99 ± 1.02 mV/ms vs 3xTg 8.79 ± 1.81 

mV/ms vs WT 10.34 ± 1.13 mV/ms) (Fig. 6A; Supp. Fig. 7A).  

Following a 20 min baseline recording period, we applied four 100 Hz, 1 s stimuli 

with a 5 min inter-stimulus interval to the Schaeffer collateral pathway and monitored the 

ensuing changes in synaptic strength for 160 min. In slices obtained from 3xTg mice we 

observed decreased potentiation during the first 20 min post-tetani (224 ± 11% of 

baseline, n = 5; p < 0.005) compared to WT (336 ± 23% of baseline, n = 5). Additionally, 

we observed impaired long-term maintenance of increases in synaptic strength during the 

last 20 min of recording in slices obtained from 3xTg mice (fEPSP slope 135 ± 11% of 

baseline, n = 5; p < 0.05) compared to WT (fEPSP slope 176 ± 9% of baseline, n = 5) 

(Fig. 6B). In hippocampal slices obtained from 3xTg;Opt mice we did not observe 

differences in post-tetani potentiation (315 ± 24% of baseline, n = 6), or in long lasting 

increases in synaptic strength (191 ± 17% of baseline) compared to WT mice. These 

observations suggest that the Opt allele is able to rescue impaired hippocampal function 

in 3xTg animals. 

To track the duration of hippocampal L-LTP rescue by the Opt allele we extended 

these studies to 9- and 12-mth-old animals. At 9-mths-of-age we did not observe any 

difference in the input-output slope in slices obtained from 3xTg;Opt and 3xTg animals 

compared to WT (3xTg;Opt 2.09 ± 0.38 ms-1, n = 6 vs 3xTg 1.47 ± 0.42 ms-1, n = 8 vs 

WT 1.95 ± 0.23 ms-1, n = 6) (Fig. 6B; Supp. Fig. 7B). However, we did observe a 

decrease in the ratio of the fEPSP slope to the PFV amplitude at each applied voltage in 

3xTg slices (3xTg 2.30 ± 0.21 ms-1; p < 0.05) compared to WT (3.87 ± 0.60 ms-1) and a 

decrease in the maximum evoked fEPSP slope  (3xTg 4.54 ± 0.44 mV/ms; p < 0.05) 
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compared WT (7.33 ± 0.98 mV/ms). In contrast, we did not observed differences in basal 

synaptic transmission in slices obtained from 3xTg;Opt mice (fEPSP/PFV 2.40 ± 0.25 

ms-1, maximum evoked fEPSP slope 6.57 ± 0.72 mV/ms) compared to WT (Supp. Fig. 

7B). Following tetani application, we observed impaired potentiation in slices obtained 

from 9-mth-old 3xTg mice (200 ± 9% of baseline, n = 5; p < 0.005) compared to WT 

(360 ± 24% of baseline, n = 5) and impaired long-term maintenance of increases in 

synaptic strength during the last 20 min of the recording (134 ± 9% of baseline; p < 

0.005) compared WT (193 ± 8% of baseline) (Fig. 6D). In slices obtained from 3xTg;Opt 

mice we did not observe differences in post-tetani potentiation (284 ± 28% of baseline, n 

= 5) or long-term maintenance of increases in synaptic strength (174 ± 8% of baseline) 

compared to WT. 

At 12-mths-of-age we did not observe any differences in basal synaptic 

transmission in slices obtained from 3xTg, 3xTg;Opt and WT animals (input-output 

curve slope: 3xTg;Opt 2.19 ± 0.75 ms-1 vs 3xTg 1.81 ± 0.24 ms-1 vs WT 2.23 ± 0.51 ms-

1; fEPSP/PFV: 3xTg;Opt 2.76 ± 0.30 ms-1 vs 3xTg 2.96 ± 0.41 ms-1 vs WT 2.64 ± 0.45 

ms-1; max fEPSP: 3xTg;Opt 6.54 ± 0.88 mV/ms vs 3xTg 5.84 ± 1.07 mV/ms vs WT 4.70 

± 1.02 mV/ms, n = 5 for all genotypes) (Fig. 6E; Supp. Fig. 7C). Following tetani 

application to the Schaeffer collateral pathway, we observed impaired potentiation in 

slices obtained from 3xTg mice (199 ± 5% of baseline, n = 5; p < 0.005) compared to 

WT (309 ± 14% of baseline, n = 5) and impaired long-term maintenance of increases in 

synaptic strength (3xTg: 130 ± 3% of baseline; p < 0.005) compared to WT (187 ± 5% of 

baseline) (Fig. 6F). In slices obtained from 12-mth-old 3xTg;Opt mice, we observed 
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impaired post-tetani potentiation (245 ± 7% of baseline; p < 0.005) and impaired long-

term maintenance of increases in synaptic strength (155 ± 2% of baseline; p < 0.005) 

compared to WT. However, impairments in 3xTg;Opt slices were significantly less (p < 

0.005) than those observed in 3xTg slices. These findings indicate that the Opt allele 

delays the onset and attenuates the severity of hippocampal impairments observed in 

3xTg mice.  

The Opt allele rescues 3xTg hippocampal-dependent memory impairments 

 Changes in synaptic strength are thought to be the molecular basis of memory 

formation. Therefore, we wanted to determine if the Opt allele’s rescue of 3xTg 

hippocampal L-LTP impairments extended to hippocampal-dependent memory. To do 

this, we conducted three hippocampal-dependent memory tests on mice 12 to 13 mth-of-

age, an age at which 3xTg mice display hippocampal-dependent memory deficits 

(Clinton et al., 2007). The first test we conducted was the spatial object recognition 

(SOR) test, which assays for hippocampal-dependent spatial memory. As compared to 

other tests of spatial navigation, SOR does not employ aversive stimuli, such as the threat 

of drowning, to motivate the animal’s performance. Rather, SOR takes advantage of the 

animal’s innate curiosity to explore its environment (Wimmer et al., 2011).  

SOR training consisted of three 10 min exposures to an arena that contained two 

distinct objects. 24 hr after the last training trial mice were returned to the arena, but one 

object was displaced (DO) to a new location. The preference for the DO was calculated 

as the percent of exploration time dedicated to it. When we analyzed the preference of 

mice for the DO, we observed that WT animals spent 61 ± 2% (n = 16) of their 

exploratory time investigating the DO (Fig. 6G). In comparison, 3xTg mice spent a 
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smaller proportion of their exploratory time investigating the DO (49 ± 3%, n = 15; p < 

0.005), indicating that 3xTg mice have impaired spatial memory. This decrease in 

preference was not observed in 3xTg littermates containing an Opt allele (60 ± 4%; n = 

14) (Fig. 6G), and is not due to differences in mobility between the genotypes, as 

determined by open-field testing (3xTg 741 ± 93 beam breaks, n = 16 vs WT: 941 ± 58 

beam breaks, n = 17; p = 0.08) (Supp. Fig. 7D). 

To confirm this deficit in 3xTg hippocampal-dependent memory, we performed 

contextual fear conditioning tests. For these tests, mice were placed into a conditioning 

chamber. Following a 2 min habituation period, mice were subjected to a 30 s tone, the 

last 2 s of which was paired with a foot shock. 24 hrs after training mice were tested for 

their freezing response during a 3 min period in the context of the conditioning chamber. 

We observed 3xTg mice spent less time frozen (55 ± 3%; n = 13) compared to WT (67 ± 

3%, n = 16; p < 0.05), whereas 3xTg;Opt mice did not (73 ± 4%; n = 19) (Fig. 6H).  

Previous reports have identified significant AD-like pathology accumulation in 

the amygdala of 3xTg mice (Oddo et al., 2003). Therefore, we extended these fear 

conditioning studies to test amygdala-dependent associative memory. To do this, mice 

were placed into a novel chamber, with a unique context, and following a 2 min 

habituation period they were tested for their freezing response during a 3 min application 

of the conditioning tone. We observed 3xTg mice (44 ± 6%; n = 16) spent less time 

frozen compared to WT (69 ± 3%, n = 17; p < 0.005), whereas 3xTg;Opt mice did not 

(61 ± 5%; n = 15) (Fig. 6I). Together, these behavioral experiments demonstrate that 

3xTg mice have hippocampal and amygdala-dependent memory impairments that are 

rescued by the Opt allele. 
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DISCUSSION 

The identification of proximal cellular events predicting the development of AD 

has remained elusive. However, compelling evidence suggests that FAD PS mutations 

result in proximal changes in [Ca2+]i signaling, which may contribute to AD pathogenesis 

(Buxbaum et al., 1994; Ito et al., 1994; Hirashima et al., 1996; Querfurth et al., 1997; 

Hartigan and Johnson, 1999; LaFerla, 2002; Pierrot et al., 2004; Stutzmann et al., 2004; 

Smith et al., 2005; Pierrot et al., 2006; Stutzmann et al., 2006; Cheung et al., 2008; Green 

et al., 2008; Hoey et al., 2009; Cheung et al., 2010). Changes in [Ca2+]i handling can alter 

cellular transcriptional pathways (Hardingham and Bading, 1999; Muller et al., 2011), 

synaptic plasticity (Bashir et al., 1993; Futatsugi et al., 1999; Fujii et al., 2000; Raymond 

and Redman, 2006), APP metabolism (Buxbaum et al., 1994; Querfurth et al., 1997; 

LaFerla, 2002; Pierrot et al., 2004; Lesne et al., 2005; Pierrot et al., 2006; Cheung et al., 

2008; Green et al., 2008; Hoey et al., 2009), and activate kinases responsible for tau 

phosphorylation (Hartigan and Johnson, 1999; Pierrot et al., 2006; Sayas et al., 2006). 

Here we examined the in vivo mechanism and contribution of exaggerated [Ca2+]i 

signaling to the development of AD. Our results indicate that FAD mutant PS-associated 

exaggerated [Ca2+]i signaling is InsP3R1-dependent and a proximal event occurring in 

PCNs and hippocampal neurons from P10-12 mice. We also demonstrate that rescue of 

exaggerated [Ca2+]i signaling attenuates AD pathogenesis in two AD mouse models. Our 

results indicate InsP3R1 as a potential new drug target for treatment of FAD.  

FAD-mutant PS-associated exaggerated [Ca2+]i signaling is InsP3R1-dependent 

FAD mutations in PS are hypothesized to modulate the gating of the InsP3R1 

receptor (Cheung et al., 2008; Cheung et al., 2010). In agreement with these reports, we 
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observed that decreasing InsP3R1 protein level in M146V and 3xTg mice (which harbor 

the PS1M146V-KIN mutation) normalizes M146V-associated enhancement in the 

magnitudes and release rates of Ca2+ stores. These observation were made in both an in 

vitro experimental system, which provided fine control over intracellular [InsP3], and in 

an ex vivo experimental system that allowed us to study neurons in hippocampal tissues. 

Additionally, we found that M146V and 3xTg PCNs responded to lower [InsP3] than 

WT, M146V;Opt, and 3xTg;Opt PCNs. In sum, these in vitro and ex vivo observations 

are in agreement with the hypothesis that exaggerated [Ca2+]i signaling is InsP3R1-

dependent and due to an interaction that stabilizes the InsP3R open state and increases the 

receptor’s sensitivity to InsP3 (Cheung et al., 2008; Cheung et al., 2010).  

The Opt allele rescues M146V MCI-like phenotypes 

The M146V mouse demonstrates phenotypes reminiscent of pre-symptomatic 

FAD mutant PS carriers and MCI patients, including enhanced RyR2 expression 

(Stutzmann et al., 2006; Bruno et al., 2012) and neuronal hyperactivity (Dickerson et al., 

2005; Odero et al., 2007; Auffret et al., 2010; Quiroz et al., 2010; Reiman et al., 2012). 

Our results demonstrated that the Opt allele rescues enhanced RyR2 protein levels 

observed in M146V animals, indicating that this abnormality is downstream of 

exaggerated [Ca2+]i signaling. Previous reports on 3xTg found that increased RyR2 

hippocampal protein levels are due to increased transcription (Chakroborty et al., 2009). 

We did not confirm such a mechanism, although differences in genetic background 

between the M146V and 3xTg mouse lines may account for this discrepancy. 

Ca2+release from intracellular stores plays an important role in hippocampal 

plasticity (Bashir et al., 1993; Futatsugi et al., 1999; Fujii et al., 2000; Raymond and 
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Redman, 2006; Mellentin et al., 2007). Previous studies on the M146V mouse (Odero et 

al., 2007; Auffret et al., 2010) and transgenic mice expressing several different FAD 

mutant alleles (Parent et al., 1999; Barrow et al., 2000; Zaman et al., 2000; Schneider et 

al., 2001; Auffret et al., 2009) have observed enhanced hippocampal synaptic 

potentiation. Such studies have found that this enhancement is due to a decease in the 

threshold for potentiation without changes in the maximum amount of potentiation 

achievable (Zaman et al., 2000; Schneider et al., 2001), and postulate that this 

phenomenon is due to changes in [Ca2+]i handling associated with FAD mutant PS 

(Parent et al., 1999; Barrow et al., 2000; Schneider et al., 2001; Odero et al., 2007). This 

indiscriminant long-term enhancement in synaptic potentiation may occlude the selective 

synaptic enhancement required for normal learning. In fact, several groups have observed 

that FAD mutant PS expressing mice have selective improvements and deficits in spatial 

memory tests (Huang et al., 2003; Sun et al., 2005; Odero et al., 2007). 

Our hippocampal electrophysiology experiments demonstrated that the Opt allele 

rescues M146V-associated long-lasting increases in synaptic potentiation resulting from a 

single increase in [Ca2+]i, supporting the hypothesis that enhanced synaptic potentiation is 

due to exaggerated [Ca2+]i signaling. However, this effect may be indirect, mediated by 

constitutive activation of the CaMKIV-CREB transcriptional pathway. In agreement with 

previous reports, we observed that FAD mutant PS causes constitutive activation of the 

CaMKIV-CREB transcriptional pathway in an InsP3R-dependent manner (Muller et al., 

2011). CaMKIV overexpressing mice demonstrate enhanced hippocampal synaptic 

potentiation (Fukushima et al., 2008), whereas CaMKIV-deficient mice, or mice 

expressing dominant negative CaMKIV, exhibit impaired neuronal CREB 
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phosphorylation, CREB-dependent gene expression, and L-LTP (Ho et al., 2000; Kang et 

al., 2001). CREB is a known target of CaMKIV (Matthews et al., 1994; Sun et al., 1994) 

and CREB is important for the conversion of transient to long-lasting changes in synaptic 

strength (Yin and Tully, 1996). Mice harboring constitutively active CREB demonstrate a 

lowered threshold for eliciting long-lasting increases in synaptic strength independent of 

de novo transcription without changes in the maximum amount of potentiation achievable 

with repeated tetanus application (Barco et al., 2002). It is postulated that constitutive 

CREB transcriptional activity provides cell-wide synaptic priming for synapse specific 

long-lasting potentiation by a single stimulus (Barco et al., 2002). 

We observed that the Opt allele rescued elevated protein levels of CREB-

dependent genes, including BDNF and nNOS, which are specifically upregulated in 

M146V mice. Both BDNF (Lu et al., 2008) and nNOS (Steinert et al., 2010) have 

significant roles in regulating synaptic plasticity. In fact, BDNF application can induce 

transformation of E-LTP to L-LTP in the presence of protein synthesis inhibitors (Pang 

and Lu, 2004) and was identified as an important component for synaptic capture of L-

LTP (Barco et al., 2005). These findings suggest that enhanced hippocampal potentiation 

in M146V mice results from constitutive activation of the CREB-CaMKIV 

transcriptional pathway, which in turn is driven by exaggerated [Ca2+]i signaling.  

MCI patients demonstrate enhanced hippocampal activation during performance 

of memory task (Dickerson et al., 2005). Recently, this observation was also made in pre-

symptomatic FAD mutant carriers (Quiroz et al., 2010; Reiman et al., 2012). 

Administration of levetiracetam, an anticonvulsant that inhibits intracellular Ca2+ release 

(Angehagen et al., 2003), reduces hippocampal activation in AD mice (Sanchez et al., 
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2012) and MCI patients (Bakker et al., 2012) and improves memory performance, 

suggesting that hippocampal hyperactivation is deleterious and does not serve a 

beneficial compensatory function. Our findings identify a potential molecular mechanism 

that may underlie enhanced hippocampal activation in MCI patient and pre-symptomatic 

FAD patients - constitutive activation of the CaMKIV-CREB pathway resulting from 

exaggerated [Ca2+]i signaling.  

The Opt allele rescues 3xTg AD-like phenotypes 

Previous in vitro studies have suggested aberrant [Ca2+]i handling may contribute 

to AD pathogenesis (Buxbaum et al., 1994; Querfurth et al., 1997; Hartigan and Johnson, 

1999; Pierrot et al., 2004; Lesne et al., 2005; Pierrot et al., 2006; Cheung et al., 2008; 

Green et al., 2008). Recent in vivo studies investigating the role of exaggerated [Ca2+]i 

signaling to AD pathogenesis have employed pharmacological approaches targeting RyR, 

but have produced conflicting results. One study identified a worsening of AD-like 

phenotypes (Zhang et al., 2010) and two studies reported amelioration (Oules et al., 2012; 

Peng et al., 2012). Although all three reports employed the same RyR antagonist, they 

used different routes of administration, dosing parameters, and employed different AD 

mouse models. These differences make the confounding results from these studies 

difficult to interpret. Our novel 3xTg;Opt mouse lines allowed us to circumvent such 

confounding issues and it is the first investigation of the contribution of InsP3R-

dependent [Ca2+]i signaling to the development of AD-like pathology in vivo. 

Strikingly, we observed that the Opt allele was able to attenuate pathology 

accumulation in the 3xTg mouse. Time course analysis on mice 6- to 18-mths-of-age 

revealed that 3xTg;Opt mice had a slower accumulation of both Aβ species in the 
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hippocampus and cortex indicating that exaggerated [Ca2+]i signaling may influence APP 

metabolism in vivo. This observation is consistent with previous in vitro studies that 

found genetic ablation of InsP3R dramatically attenuated Aβ production (Cheung et al., 

2008). Previous groups have observed that Ca2+ can either activate (Lesne et al., 2005) or 

inhibit (Hoey et al., 2009) Aβ production depending on the duration of the increase in 

[Ca2+] with longer rises in cytosolic [Ca2+] promoting Aβ production. It follows that 

environmental insults or genetic susceptibilities may result in proximal changes in [Ca2+]i 

signaling and result in enhanced Aβ production and accumulation by promoting β-

secretase-mediated APP processing. Additionally, it has been suggested that APP 

functions in synapse formation and function (Priller et al., 2006). In fact, Aβ levels are 

directly influenced by synaptic activity (Kamenetz et al., 2003; Cirrito et al., 2005; Bero 

et al., 2011) and Aβ inhibits neuronal excitability and plasticity (Kamenetz et al., 2003; 

Shankar et al., 2008). Therefore, early increases in neuronal excitability, resulting from 

exaggerated [Ca2+]i signaling, may lead to increased Aβ generation. This may explain the 

observation that prodromal AD patients with the highest level of hippocampal 

hyperactivity demonstrate the greatest clinical decline (O'Brien et al., 2010).  

Additionally, we found that 3xTg mice carrying the Opt allele have less 

hippocampal phospho-tau accumulation than 3xTg littermates without the Opt allele. 

Again, the mechanism underlying this observation requires further investigation. 

However, this effect on tau phosphorylation may be due to decreased activity of several 

tau kinases, including GSK-3β and CDK5, which are activated in a Ca2+-dependent 

manner (Pierrot et al., 2006). Studies have found that tau is phosphorylated in response to 

elevated somal [Ca2+] in a duration-dependent manner (Hartigan and Johnson, 1999), 
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suggesting that changes in [Ca2+]i homeostasis may result in enhanced phospho-tau 

accumulation. Recent evidence suggests that selective silencing of GSK-3 isoforms 

attenuates AD-like pathology in vivo (Hurtado et al., 2012). Alternatively, attenuated 

phospho-tau levels in 3xTg;Opt mice may be mediated by a decrease in proteasomal 

inhibition by Aβ (Tseng et al., 2008). Our observation of decreased total htau levels in 

3xTg;Opt mice support such a mechanism. 

We found that the Opt allele’s attenuation of AD-like pathology in the 3xTg was 

correlated with an attenuation of hippocampal L-LTP impairments at 6-, 9- and 12-mths-

of-age, and hippocampal-dependent memory impairments at 12-mths-of-age. In 

agreement with previous reports, we observed a deficit in L-LTP present in 6-mth-old 

3xTg mice. At this age we were able to detect low levels of Aβ in 3xTg mice, but 

phospho-tau was not detected until 12-mths-of-ages. This suggests that synaptic 

dysfunction is an early manifestation in AD and may be caused by low [Aβ]. However, 

exaggerated Ca2+ release may also directly or indirectly contribute to 3xTg L-LTP 

impairments independent of its possible effects on APP metabolism; 9-mth-old 3xTg;Opt 

mice did not demonstrate synaptic dysfunction despite having similar hippocampal Aβ 

loads as 6-mth-old 3xTg mice. Intracellular Ca2+ release is critical for proper synaptic 

plasticity. In fact, enhanced LTP is observed in mice lacking either RyR3 (Futatsugi et 

al., 1999) or InsP3R1 (Fujii et al., 2000), suggesting that [Ca2+]i signaling plays an 

opposing role to Ca2+ influx via the NMDA receptor in LTP induction. Additionally, Ca2+ 

has been found to enhance formation of Aβ oligomers (Itkin et al., 2011), the Aβ species 

thought responsible for impaired LTP maintenance in vivo (Walsh et al., 2002). This 

suggests that exaggerated [Ca2+]i signaling may affect LTP both directly and indirectly.  
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The behavioral significance of the observed attenuation in 3xTg L-LTP deficits 

was determined by conducting hippocampal-dependent memory tests. We found that the 

Opt allele rescued 3xTg spatial, associative and contextual memory impairments. These 

findings provide significant support for a role of exaggerated [Ca2+]i signaling in AD 

pathogenesis.  

In the current study, we have shown that the InsP3R is necessary for exaggerated 

[Ca2+]i signaling linked to the PS1M146V mutation. Additionally, we have implicated 

InsP3R-dependent exaggerated [Ca2+]i signaling as a proximal event in vivo, that 

contributes to the MCI-like phenotypes in M146V mice and AD-like phenotypes in 3xTg 

mice. These data suggest that early targeting of the InsP3R in patients at risk for 

developing AD may be a potential therapeutic strategy.  
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FIGURES AND LEGENDS 
 
Figure 3.1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Oregon Green Ca2+ imaging in PCNs loaded with caged InsP3. 

PCN cultures were established from single embryonic day 14-16 mouse embryos and 
experiments were performed on 9-day-old cultures. Photolysis of caged InsP3 was 
achieved by whole field illumination (350-400 nm; ~40 mW/mm2) and stimulus strength 
was regulated by pulse duration and use of neutral density (ND) filters. Each cover slip 
was subjected to a single UV illumination, and experiments were performed on PCNs 
obtained from at least three different embryos for each genotype per UV illumination 
duration. A, Following a baseline recording (F0), a 100 ms UV pulse was applied. B & C, 
Representative single cell traces for each genotype following UV illuminations (indicated 
by arrows) ranging from ~1 ms to 500 ms. D-G, Magnitudes (D & F), and rates (E & G) 
of Oregon Green fluorescence change following UV illumination. Data presented as 
mean ± SE *p < 0.05, **p < 0.005, (n.s.) not significant. 
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Figure 3.2 
 

Figure 3.2 Ex vivo Oregon Green Ca2+ imaging in hippocampal dentate gyrus 
granular cell layer neurons. 

300 µm thick brain slices containing hippocampal tissue were obtained from 10-12 day-
old pups. A, Following a baseline recording (F0), the solution was switched to aCSF 
containing 10 µM dihydroxyphenylglycine (DHPG) for the remainder of the recording 
period. B & E, Representative traces for (B) M146V lines and (E) 3xTg lines. C & F, 
Magnitudes of Oregon Green fluorescence change in (C) M146V lines and (F) 3xTg lines 
following DHPG perfusion. D & G, Rates of Oregon Green fluorescence change in (D) 
M146V lines and (G) 3xTg lines following DHPG perfusion. Experiments were 
conducted on slices obtained from at least three mice for each genotype. Data presented 
as mean ± SE **p < 0.005. 
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Figure 3.3 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 The Opt allele rescues elevated RyR protein level in M146V mice. 

A, Western blot analysis of hippocampal lysates obtained from 5-wk-old animals using a 
pan-RyR antibody or antibodies specific to RyR2 or RyR3, and heat-shock protein 90 as 
a loading control (n ≥ 4 of each genotype). B, Immunofluorescence on brain slices 
obtained from 5-wk-old animals using an antibody specific to RyR2. Hippocampal region 
CA1 is shown. Data presented as mean ± SE*p ≤ 0.05, **p ≤ 0.005. 
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Figure 3.4 
 

Figure 3.4 The Opt allele rescues enhanced hippocampal potentiation and aberrant 
activation of the CaMKIV-CREB transcriptional pathway in M146V mice. 
 
A & F, Input (PFV)-output (fEPSP) curves obtained from electrophysiological 
experiments conducted in hippocampal region CA1 of (A) 5-wk-old mice (n ≥ 6 mice of 
each genotype) and (F) 3-mth-old mice (n ≥ 6 mice of each genotype). B & G, 
Hippocampal E-LTP resulting from a single 100 Hz, 1s tetanus applied at t = 0 in slices 
obtained from (B) 5-wk-old mice (n ≥ 5 mice of each genotype) and (G) 3-mth-old mice 
(n ≥ 5 mice of each genotype). The average of the baseline fEPSPs (black), and those 
recorded during the last 20 min (red) are presented. C & H, Western blot analysis of 
hippocampal lysates obtained from (C) 5-wk-old mice (n = 5 mice of each genotype) and 
(H) 3-mth-old mice (n = 6 mice of each genotype) for CaMKIV-CREB pathway 
activation and protein levels of CREB-dependent genes (phospho-CaMKIV (Thr-196) 
phospho-CREB (Ser-133)). D & E. Immunofluorescence in hippocampal sections from 5-
wk-old mice for (D) phospho-CaMKIV (Thr-196) and (E) phospho-CREB (Ser-133). 
Data presented as mean ± SE *p < 0.05, **p < 0.005. 
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Figure 3.5 
 

Figure 3.5 The Opt allele attenuates hippocampal Aβ  and phospho-tau pathology in 
3xTg mice. 
 
A, Western blot analysis of hippocampal lysates obtained from mice 3- to 18-mths-of-age 
using antibodies specific for human APP (hAPP) (6E10), human tau (htau) (HT7), htau 
phosphorylated at Ser-202 (AT8) or Thr-231 (AT180), and tubulin as a loading control (n 
≥ 3 for each genotype). Representative blots are from experiments conducted on 18-mth-
old mice. B, ELISA analysis in hippocampal homogenates for Aβ40 (top) and Aβ42 
(bottom) in mice ranging in age from 6- to 18-mths-old (n ≥ 5 for each genotype). Aβ 
content in homogenates obtained from WT and Opt animals were always below the 
detection limit of the ELISA. C, Immunohistochemistry on hippocampal slices obtained 
from 18-mth-old animals for Aβ and tau pathology. Data presented as mean ± SE *p ≤ 
0.05, **p ≤ 0.005. 
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Figure 3.6 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 The Opt allele delays the onset and attenuates the severity of 
hippocampal deficits in 3xTg mice. 

A, C & E, Input-output curves for each genotype at (A) 6- (n ≥ 7 mice for each genotype) 
(C) 9- (n ≥ 5 mice for each genotype) and (E) 12-mths-of-age (n ≥ 5 mice for each 
genotype). B, D & F, L-LTP in hippocampal region CA1 induced by application of four 
100 Hz, 1s tetani with a 5 min inter-stimulus interval applied at t = 0. Experiments were 
conducted on slices obtained from mice (B) 6- (n ≥ 5 mice for each genotype) (D) 9- (n = 
5 mice for each genotype) and (F) 12-mths-of-age (n = 5 mice for each genotype). The 
average of the baseline fEPSPs (black), and those recording during the last 20 min (red) 
are presented. Comparisons were made over the first 20 min post-tetani and over the last 
20 min of the recording. G, Percentage preference for the displaced object (DO) during 
spatial object recognition testing on mice 12- to 13-mths-of-age (n ≥ 14 for WT, 3xTg 
and 3xTg;Opt; n = 7 for Opt). The dotted line indicates 50% (chance) preference. H & I, 
Percent of time spent frozen during a 3 min (H) contextual fear conditioning probe trial 
and (I) a 3 min cued fear conditioning probe trial (n ≥ 13 for WT, 3xTg and 3xTg;Opt; n 
= 7 for Opt). Data presented as mean ± SE  *p ≤ 0.05, **,††,¥¥p ≤ 0.005. 
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Supplemental Figure 3.1 
 
 

Supplemental Figure 3.1 Creation of the PS1M146V-KIN, InsP3R1Opt+/- 
(M146V;Opt) and 3xTg, InsP3R1Opt+/- (3xTg;Opt) mouse lines. 
 
The Opisthotonos (Opt) allele is a spontaneously occurring in-frame deletion of exons 2 
and 3 of the ITPR1 gene, which encodes the InsP3R1 receptor, the major InsP3R 
expressed in the central nervous system. A & B, A C57BL/6 mouse carrying the Opt 
allele was crossed to a C57BL/6 mouse homozygote for the PS1M146V-KIN mutation. 
First generation M146V+/-;Opt+/- mice were crossed to M146V+/- littermates without the 
Opt allele to (A) isolate the Opt allele on the WT background and (B) to generate the 
M146V;Opt line. C & D, A C57BL/6 mouse carrying the Opt allele was crossed to a 
C57BL/6/129S6 3xTg mouse (containing the PS1M146V-KIN mutation and the human 
APPSWE and tauP301L transgenes). C, First generation 3xTg+/-;Opt+/- mice were 
backcrossed to parental 3xTg mice to restore the PS1M146V-KIN mutation to 
homozygosity and the APPSWE and tauP301L transgenes’ copy number. The bar graph 
presents data from real-time PCR experiments conducted on 3xTg;Opt genomic DNA for 
the APPSWE and tauP301L transgenes following six backcrosses to the 3xTg line. D, First 
generation 3xTg+/-;Opt+/- mice were crossed to littermates without the Opt allele to 
generate the control lines. E, Immunofluorescence analysis on hippocampal slices 
obtained from 5-wk-old mice using an antibody specific to InsP3R1. 
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Supplemental Figure 3.2 
 
 
 
 
 
 

 

 

Supplemental Figure 3.2 InsP3R1 and RyR protein levels in PCNs. 

A & B, InsP3R1 and RyR protein levels in PCNs obtained from (A) M146V (n = 4 of each 
genotype) and (B) 3xTg (n ≥ 5 of each genotype) lines, and tubulin as a loading control. 
Data presented as mean ± SE *p < 0.05; **p < 0.005. 
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Supplemental Figure 3.3 

 
 
 
 

 

 

Supplemental Figure 3.3 Ex vivo Oregon Green Ca2+ imaging in hippocampal 
dentate gyrus granular cell layer neurons. 

A & B, Western blot analysis of hippocampal lysates obtained from 10-12-day-old mice 
from (A) M146V lines (n = 6 for each genotype) and (B) 3xTg lines (n ≥ 6 for each 
genotype) using a pan-RyR antibody or antibodies specific to RyR2, RyR3 or InsP3R1, 
and tubulin as a loading control. C, Magnitudes and (D) rates of Oregon Green 
fluorescence change in dentate gyrus granular cell layer neurons in WT mice (M146V 
control line) with and without tetrodotoxin present (n = 2 mice). Data presented as mean 
± SE*p ≤ 0.05, **p ≤ 0.005. 
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Supplemental Figure 3.4 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 3.4 The Opt allele rescues elevated RyR protein level in 
M146V mice. 

A & D, RT-RTPCR on RNA isolate from hippocampal tissue of (A) 5-wk-old and (D) 3-
mth-old animals using primers specific for RyR2 (n = 3 animals of each genotype). B, 
Immunofluorescence on brain slices obtained from 5-wk-old animals using an antibody 
specific for RyR2. C, Western blot analysis of hippocampal lysates obtained from 3-mth-
old animals using a RyR2 specific antibody, and tubulin as a loading control (n =7 of 
each genotype). Data presented as mean ± SE*p ≤ 0.05. 
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Supplemental Figure 3.5 
 
 
 

 

Supplemental Figure 3.5 The Opt allele rescues enhanced hippocampal potentiation 
and aberrant activation of the CaMKIV-CREB transcriptional pathway in M146V 
mice. 

A & E, Basal synaptic transmission in hippocampal region CA1 as measured by the slope 
of the input-output curve, the ratio of the fEPSP slope to PFV amplitude at each applied 
voltage, and the maximum evoked fEPSP slope for slices obtained from (A) 5-wk-old 
mice (n ≥ 6 mice of each genotype) and (E) 3-mth-old mice (n ≥ 6 mice of each 
genotype). B, Hippocampal InsP3R1, GAPDH and acetyl-H3 in 5-wk-old mice (n ≥ 5 
mice of each genotype). C & D, Immunofluorescence analysis on hippocampal slices 
obtained from 5-wk-old mice for (C) phospho-CaMKIV (Thr-196) and (D) phospho-
CREB (Ser-133). F, Hippocampal InsP3R1 and GAPDH protein levels in 3-mth-old mice 
(n ≥ 6 mice of each genotype). G, RT-RTPCR on hippocampal RNA isolated from 3-mth 
old animals for PS1 expression (n = 3 mice of each genotype). Data presented as mean ± 
SE  *p < 0.05, **p < 0.005. 
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Supplemental Figure 3.6 

 
 
 
 
 
 

 

 

Supplemental Figure 3.6 The Opt allele attenuates hippocampal and cortical AD-
like pathology in 3xTg mice.  

A, Western blot analysis on hippocampal lysates obtained from mice 3- to 18-mths-of-age 
using an antibody specific for InsP3R1, and tubulin as a loading control (n ≥ 3 for each 
genotype). Data are normalized to WT. Representative blots are from experiments 
conducted on 18-mth-old mice. B, Western blot analysis of cortical lysates obtained from 
mice 3- to 18-mths-of-age, using antibodies specific for InsP3R1 (data is normalized to 
WT), human APP (6E10), human tau (HT7), and tubulin as a loading control (n ≥ 3 for 
each genotype). Representative blots are from experiments conducted on 18-mth-old 
mice. C, ELISA analysis of cortical homogenates for Aβ40 (top) and Aβ42 (bottom) in 
mice ranging in age from 6- to 18-mths (n ≥ 4 for each genotype). Aβ content in 
homogenates obtained from WT and Opt animals were always below the detection limit 
of the ELISA. D, RT-RTPCR for htau expression conducted on cortical RNA isolated 
from 6-mth old animals (n = 3 mice of each genotype). Data presented as mean ± SE *p ≤ 
0.05, **p ≤ 0.005. 
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Supplemental Figure 3.7 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 3.7 The Opt allele delays the onset and attenuates the severity 
of hippocampal deficits in 3xTg mice. 

A-C, Basal synaptic transmission in mice at (A) 6- (n ≥ 7 mice for each genotype) (B) 9- 
(n ≥ 5 mice for each genotype) and (C) 12-mths-of-age (n ≥ 5 mice for each genotype) as 
measured by the slope of the input-output curve, the ratio of the fEPSP slope to the PFV 
amplitude at each applied voltage, and the maximum evoked fEPSP slope. D, 10 min 
open-field test conducted on mice 12- to 13-mths-of-age to measure activity (n ≥ 16 for 
WT, 3xTg and 3xTg;Opt; n = 7 for Opt). Data presented as mean ± SE *p ≤ 0.05.  
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Chapter 4: Discussion 
 

AD is the most prevalent form of dementia, resulting in cognitive decline and 

death. The aberrant molecular mechanisms responsible for the disease remain elusive. 

However, recent studies suggest that cellular changes occur decades prior to symptom 

onset (Jack et al., 2013). The work described in the previous chapters extends our 

understanding of the mechanisms and contributions of aberrant [Ca2+]i signaling to AD 

pathogenesis. In this thesis, we present data supporting the hypothesis that FAD 

mutations in PSs cause exaggerated [Ca2+]i signaling through an interaction with the 

InsP3R1 that results in a gain-of-function enhancement of InsP3R1 gating and ligand 

sensitivity. Additionally, we observed that exaggerated [Ca2+]i signaling contributes to 

AD pathogenesis. Specifically, in Chapter 2, we test postulated mechanisms by which 

FAD mutant PS is hypothesized to cause exaggerated [Ca2+]i signaling. However, we 

were unable to confirm the hypotheses that FAD mutations in PS disrupt its normal 

function as an ER Ca2+ leak channel (Tu et al., 2006) or that they provide a gain-of-

function enhancement of SERCA pump activity, thereby resulting in enhanced filling of 

ER Ca2+ stores (Green et al., 2008). In Chapter 3, we show that decreasing the amount of 

InsP3R1 protein present in hippocampal and cortical tissues rescues exaggerated [Ca2+]i 

signaling. This allowed us to determine the in vivo contribution of exaggerated [Ca2+]i 

signaling to AD pathogenesis. We found that InsP3R1-dependent exaggerated [Ca2+]i 

signaling contributes to MCI- and AD-like phenotypes present in AD mouse models. 

Together these findings support the idea that proximal changes in [Ca2+]i signaling, due to 
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a gain-of-function enhancement of InsP3R1 gating by FAD mutant PS, contribute to AD 

pathogenesis. 

Exaggerated [Ca2+]i Signaling is InsP3R1-dependent 

 Our findings, consistent with the hypothesis that FAD mutations in PS result in 

exaggerated [Ca2+]i signaling by a gain-of-function enhancement of InsP3R1 gating, raise 

a very important question for future research - what regions of the PS and InsP3R proteins 

interact? Clues to the location come from the literature. 

Previous studies employed co-immunoprecipitation to demonstrate an interaction 

between both WT and FAD PS1 or PS2 and InsP3R1 or InsP3R3 (Cheung et al., 2008). 

Although the effects of FAD mutant PS on InsP3R2 gating have not been investigated, 

exaggerated [Ca2+]i signaling is observed in FAD mutant PS expressing astrocytes, which 

predominantly express InsP3R2 (Kuchibhotla et al., 2009). This suggests that a PS-

InsP3R2 interaction may also occur. These observations indicate that conserved elements 

between the two PS homologs and the three InsP3R homologs must be involved.  

PSs are known to interact with many proteins. In fact, the N-terminus residues 1-

87 of PS1 and PS2 interact with the RyR receptor, the other main ER Ca2+ release 

channel (Hayrapetyan et al., 2008; Rybalchenko et al., 2008). The PS2-RyR interaction is 

highly dependent upon [Ca2+] (Takeda et al., 2005), suggesting that PS2 binding might be 

dependent upon the conformation state of the RyR or that PSs might share an overlapping 

binding site with Ca2+ or a Ca2+-activated RyR binding protein (Lanner et al., 2010). The 

possibility of a conformation state or context specific interaction should also be 

considered when investigating the PS-InsP3R interaction. 
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Recently, the first crystal structure of a PS family member was published (Li et 

al., 2012). Although the protein crystallized is a distant relative of human PS, the 

structure does identify a possible interaction site with the InsP3R. This study observed a 

large membrane spanning hydrophobic pore surrounded by TM regions TM2, TM3, TM5 

and TM7. The large diameter and hydrophobic nature of the residues lining the pore 

suggest that it may be a binding pocket for interacting proteins. Future studies mapping 

the PS-InsP3R interaction should focus on conserved regions of the PS and InsP3R 

homologs, consider conformation or context specific interactions, and the possibility that 

either the PS N-terminus and/or its hydrophobic pore are the sites of InsP3R binding. The 

fact that PS mutations tend to segregate to the TM regions suggest that the later may be 

the most likely location. In fact, PSs TM3 contains 11% of FAD mutations.  

Mechanisms of Ca2+-induced Alzheimer’s Disease Pathogenesis 

 The work presented in this thesis supports a causative role for exaggerated [Ca2+]i 

signaling in AD pathogenesis in vivo, and lays the groundwork for future studies 

investigating how Ca2+ activates pathological processes. 

Amyloid precursor protein metabolism 

Although the mechanisms are not well understood, elevations in cytosolic [Ca2+] 

clearly affect APP metabolism. To-date, mechanistic studies have largely focused on 

understanding how Ca2+ entry through NMDA receptors influences APP metabolism 

rather than Ca2+ released from intracellular stores. Although the source of a Ca2+ signal 

does play a large role in determining its effect, insights from studies on NMDA-mediated 

increases in cytosolic [Ca2+] may be applicable to InsP3R-mediated elevations. Previous 
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groups have observed that NMDA-mediated Ca2+ entry can either activate (Lesne et al., 

2005) or inhibit (Hoey et al., 2009) Aβ production depending on the duration of the 

increase in cytosolic [Ca2+], with maintained elevations promoting Aβ production. A 

subsequent report suggested that this paradoxical effect of Ca2+ on APP metabolism is 

due to the population of NMDA receptors activated, with extra-synaptic NDMA receptor 

activation but not synaptic NMDA receptor activation, found to increase Aβ production 

(Bordji et al., 2010). The activation of extra-synaptic NDMA receptors resulted in a 

smaller rise in cytosolic [Ca2+] compared to synaptic receptor activation, and favored 

APP pre-mRNA splicing towards amyloid favoring slice variants (Bordji et al., 2010). 

However, this mechanism cannot account for the observed attenuation of Aβ 

accumulation in our studies because the 3xTg mouse transgenically expresses the 

neuronal isoform of the APP gene, which cannot be alternatively spliced. An explanation 

for our observations most likely comes from studies indicating that APP functions in 

synapse formation and function (Priller et al., 2006). In fact, synaptic activity appears to 

influence APP processing in a rapid manner, independent of de novo transcription. 

Synaptic activity influences Aβ levels directly (Kamenetz et al., 2003; Cirrito et al., 

2005), and Aβ inhibits neuronal excitability (Kamenetz et al., 2003; Shankar et al., 2008). 

Recently it was found that interstitial fluid Aβ levels are affected in opposite directions 

depending on the dose of NMDA administered (Verges et al., 2011). Low NMDA doses 

increased synaptic transmission and lead to elevated Aβ production, whereas high doses 

diminished Aβ production (Verges et al., 2011). This difference was suggested to be due 

to differential phosphorylation of extracellular signal-regulated kinase (ERK), which in 
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its phospho-state can influence the activity of the secretases involved in APP metabolism 

(Verges et al., 2011). 

The contradictory findings of these studies highlight one of the major pitfalls of 

using mice to study AD – they do not develop Alzheimer’s disease. Transgenic 

expression of multiple mutant human genes is required to observe AD-like 

histopathology. This artificial system does not reflect the events occurring in the human 

disease and may give rise to histopathology through physiological irrelevant pathways. 

Therefore, better systems are needed to understand how increases in cytosolic [Ca2+], 

arising from both extracellular and intracellular sources, influence APP metabolism. 

Future studies to address this issue should use FAD patients’ fibroblasts in combination 

with induced pluripotent stem cell technology. This would allow for the study of APP 

metabolism in human “neuronal” cells with all genes under the control of endogenous 

promoters and post-translational modification mechanisms. Such a system would allow 

for the dissection of how FAD mutant PS associated exaggerated [Ca2+]i signaling 

influences APP metabolism, either through pre-mRNA slicing, post-translational 

modification of APP, and/or modification of signal transduction pathways. 

Tau hyperphosphorylation 

Our studies revealed that exaggerated [Ca2+]i signaling contributes to phospho-tau 

accumulation. Cytosolic [Ca2+] clearly affects the kinases involved in tau 

phosphorylation, including GSK-3β and CDK5. However, questions still remain 

regarding the mechanisms by which this occurs.  

GSK-3’s role in AD pathogenesis is clearly demonstrated by a double-blind 

placebo-controlled clinical trail on MCI patients treated with lithium, a GSK-3β 
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antagonist. This study found a significant reduction in cerebrospinal fluid levels of 

phospho-tau in lithium treated individuals compared to placebo (Forlenza et al., 2011). 

Additionally, selective silencing of GSK-3α or -3β in AD mice diminished AD pathology 

accumulation (Hurtado et al., 2012). GSK-3β is constitutively active, but phosphorylation 

can inhibit or further activate is kinase activity. Both the insulin/PI3K/Atk and Wnt 

signaling pathways negatively regulate GSK-3 activity (Grimes and Jope, 2001), whereas 

Pyk2 phosphorylation enhances its activity (Sayas et al., 2006). Despite the observations 

that GSK-3β-dependent tau phosphorylation is induced by treatment of SH-SY5Y cells 

with low concentrations of a Ca2+ ionophore (Hartigan and Johnson, 1999) or in response 

to Ca2+ release from internal stores (Sayas et al., 2006), how Ca2+ affects GSK-3β activity 

is not established. Studies suggest that it may be through the Ca2+-dependent activation of 

Pyk2 (Sayas et al., 2006). However, the effects of tyrosine phosphorylation on GSK-3β 

activity are not well studied. Future studies should investigate the contexts and effects of 

this phosphorylation on GSK-3β’s activity and its contribution to phospho-tau 

accumulation.  

Alternatively, FAD PS mutants could affect GSK-3β activity in a Ca2+-

independent manner by either inhibiting PS-dependent PI3K/Akt signaling, which 

normally acts to inhibit GSK-3β activity (Baki et al., 2004), or through promoting Aβ 

generation that also inhibits PI3K/Akt signaling (Takashima et al., 1996). Future studies 

are needed to determine the Ca2+-dependence, and mechanism by which exaggerated 

[Ca2+]i signaling contributes to GSK-3β activation.  

In contrast, a mechanism for CDK5 activation by the Ca2+-dependent calpain 

protease is well established. Calpain is aberrantly activated in the brains of AD patients 
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(Saito et al., 1993) and the level of calpain’s endogenous inhibitor, calpastatin, is 

decreased (Nilsson et al., 1990). Treatment of AD mice with calpain inhibitors or over-

expression of calpastatin decreased phospho-tau accumulation (Liang et al., 2010; 

Medeiros et al., 2012), restored normal synaptic function in hippocampal slices, and 

improved spatial-working memory and associative fear memory (Trinchese et al., 2008). 

These studies found that inhibition of calpain correlated with reduced levels of CDK5 

activation (Liang et al., 2010; Medeiros et al., 2012), suggesting that calpain is a link 

between exaggerated [Ca2+]i signaling and tau hyperphosphorylation. However, these 

studies are correlative rather than causative. Future studies should address the necessity 

of CDK5 activity for phospho-tau accumulation, perhaps by viral silencing, as was done 

for the GSK-3 isoforms (Hurtado et al., 2012).  

Alternatively, or in addition to normalization of aberrantly activated tau kinases, 

decreasing InsP3R1-mediated exaggerated [Ca2+]i signaling may also decrease phospho-

tau accumulation by activating the autophagy pathway. Autophagy is an intracellular 

pathway for degradation of abnormal proteins and prevents their accumulation. Inhibition 

of InsP3R-mediated Ca2+ release induces autophagy (Cardenas et al., 2010), and 

enhancing autophagy provides rescue in animal models of neurodegenerative disease 

(Garcia-Arencibia et al., 2010). Future studies should investigate the effects of the Opt 

allele on the activity of the autophagy pathway. 

Synaptic deficits  

Ca2+ release from [Ca2+]i stores plays an important role in hippocampal plasticity 

(Bashir et al., 1993; Futatsugi et al., 1999; Fujii et al., 2000; Raymond and Redman, 

2006; Mellentin et al., 2007), and findings in this thesis indicate that FAD mutant PS-
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associated exaggerated [Ca2+]i signaling contributes directly to aberrant hippocampal 

synaptic plasticity. Our E-LTP studies revealed two distinct effects of exaggerated [Ca2+]i 

signaling on E-LTP: (1) an enhancement in the induction phase (the change in synaptic 

strength directly following tetanus application, also known as post-tetanic potentiation 

(PTP)), and (2) maintenance (≥ 80 min post-tetanus application) of enhanced synaptic 

strength resulting from a single tetanus. 

(1) Enhanced PTP: The mechanisms underlying PTP are mainly mediated by changes in 

the pre-synaptic terminal, through adjustments to the release probability (Pr) of synaptic 

vesicles and the size of the readily releasable pool (RRP) of synaptic vesicles. Changes in 

the Pr are mediated by tetanus-induced increases in pre-synaptic terminal [Ca2+]. 

Normally, mitochondria act to buffer these increases in [Ca2+], and following termination 

of the tetanus the mitochondria leak the Ca2+ back into the pre-synaptic terminal. This 

results in a prolonged period of elevated pre-synaptic [Ca2+]. Since the fusion of synaptic 

vesicles with the pre-synaptic membrane is Ca2+-dependent, this long-lasting elevation in 

presynaptic [Ca2+] increases the Pr (Lee et al., 2007). FAD mutant PS-associated 

exaggerated [Ca2+]i signaling may enhance PTP by causing further elevations in 

presynaptic [Ca2+] during tetanus application. This could increase the magnitude of the 

PTP. 

In addition to changes in the Pr, exaggerated [Ca2+]i signaling may influence the 

size of the RRP, which is dependent upon activation of the Ca2+-dependent binding of 

calmodulin to myosin light chain kinase (MLCK). Active MLCK phosphorylates myosin 

light chain, thereby altering the trafficking of synaptic vesicles from the slowly releasing 

pool to locations where they can be readily released (Lee et al., 2010). Therefore, FAD 
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mutant PS-associated exaggerated [Ca2+]i signaling may enhance PTP by increasing basal 

levels of calmodulin activation and/or causing enhanced activation of calmodulin 

following tetanus application. Future experiments should be conducted to investigate 

differences in pre-synaptic [Ca2+] dynamics between WT and M146V mice during PTP.  

(2) Maintenance of enhanced synaptic strength resulting from a single tetanus. We 

believe that the association between exaggerated [Ca2+]i signaling and long-lasting 

changes in synaptic strength induced by a single tetanus observed in hippocampal slices 

from M146V mice is indirect, mediated by constitutive activation of the CaMKIV-CREB 

transcriptional pathway. CREB transcription is important for the conversion of transient 

to long-lasting changes in synaptic strength (Yin and Tully, 1996). Mice over-expressing 

CaMKIV (Fukushima et al., 2008) or harboring constitutively active CREB (Barco et al., 

2002) demonstrate a lowered threshold for eliciting long-lasting increases in synaptic 

strength independent of de novo transcription. Consistent with the idea that this effect is 

indirect, we observed elevated protein levels of CREB-dependent genes, including BDNF 

and nNOS, specifically in M146V mice. Both BDNF (Lu et al., 2008) and nNOS 

(Steinert et al., 2010) have significant roles in regulating synaptic plasticity. In fact, 

BDNF application can induce transformation of E-LTP to L-LTP in the presence of 

protein synthesis inhibitors (Pang and Lu, 2004). Future experiments should determine 

the contribution of these molecules to M146V-associated enhanced synaptic strength 

maintenance by using viral techniques to knock-down BDNF expression in M146V mice, 

crossing the M146V mouse to a BDNF+/- line (Chourbaji et al., 2004), or treatment with 

BDNF antibodies to deplete BDNF levels in the hippocampus (Mu et al., 1999). 
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Contributions of nNOS to enhanced LTP should be investigated using pharmacological 

inhibitors. 

Interestingly, MCI patients demonstrate enhanced hippocampal activation during 

performance of memory tasks (Dickerson et al., 2005). Recently this observation was 

made in pre-symptomatic FAD mutant carriers (Quiroz et al., 2010; Reiman et al., 2012). 

Our findings suggest this may be due to constitutive activation of the CaMKIV-CREB 

pathway resulting from exaggerated [Ca2+]i signaling. Further studies should investigate 

the activity of the CaMKIV-CREB transcriptional pathway in these patients as an early 

biomarker for AD. 

Implications for Therapeutic Approaches 

In the current study, we have shown that InsP3R-dependent exaggerated [Ca2+]i 

signaling is a proximal event in vivo that contributes to the MCI-like phenotypes in 

M146V mice and AD-like phenotypes in 3xTg mice. These data strongly suggest that 

early targeting of InsP3R-mediated Ca2+ release might be a potential therapeutic strategy 

for treating patients at risk for developing AD. 

Current therapeutic approaches  

Currently there are four drugs approved to treat AD, three of which are 

acetylcholinesterase inhibitors. The other is memantine, an uncompetitive moderate-

affinity NMDA receptor antagonist. Unfortunately, these current therapeutic approaches 

provide only symptomatic relief and do not appear to significantly alter the course of AD 

pathogenesis. This may in part be due to the fact that they are typically prescribed to 

patients suffering from advanced stages of the disease. Therefore, early biomarkers for 
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AD must be identified that allow for current therapies to be used more effectively. Our 

findings indicated that exaggerated [Ca2+]i signaling may be one such biomarker, and 

assaying for CaMKIV-CREB pathway activation might be a potential indirect, but high-

throughput assay to diagnose AD in its early stages.  

Future therapeutic approaches  

 The findings in this thesis identify potential drug targets for treating AD 

including: (1) molecules upstream of the InsP3R, (2) the InsP3R, (3) molecules that 

disrupt the FAD mutant PS-InsP3R interaction or (4) molecules downstream of the 

InsP3R. 

(1) Molecules upstream of the InsP3R – previous studies have found that lithium is 

beneficial in altering the course of AD if given early. Lithium has several targets, 

including GSK-3β and the inositol monophosphatase (IMPase) involved in InsP3 

generation. Studies have found that lithium’s protective effects maybe due to IMPase 

inhibition (Teo et al., 2009). However, the multiple targets of lithium obscure the truth. 

Our studies suggest that inhibition of IMPase activity may be lithium’s mechanism of 

action, and suggest that specific inhibitors of phosphatidylinositol metabolism should be 

identified and tested as AD therapeutics. 

(2) The InsP3R – Our studies specifically targeted the InsP3R1, the predominant InsP3R 

expressed in the CNS. We found that reduction of InsP3R1 protein by ~50% had no 

deleterious effects, indicating a potential therapeutic window. This suggests that InsP3R1 

specific inhibitors may prove beneficial in treating AD. Alternatively, siRNA, viral, or 

zinc finger exonuclease technology could be used to decrease expression of InsP3R1. 



	   - 140 -  

However, decreasing InsP3R1 expression might be technically challenging as too 

complete of a decrease in InsP3R1 protein level results in motor discoordination, seizures 

and death in mice (Street et al., 1997). 

(3) Molecules that disrupt the FAD mutant PS-InsP3R interaction – The WT PS-InsP3R 

interaction does have minor effects on InsP3R gating, however genetic ablation of both 

PS homologs does not result in significantly altered InsP3R gating properties (Cheung et 

al., 2010). This indicates that disruption of the PS-InsP3R interaction, with a small 

molecule or peptide, may be physiologically tolerable and a valid therapeutic approach. 

(4) Molecules downstream of the InsP3R – Our results suggest that InsP3R-mediated 

exaggerated [Ca2+]i signaling contributes to AD pathogenesis by modulating the activity 

of several downstream pathways. These pathways could be targeted in a multipronged 

approach, and would need to include inhibitors of APP metabolism and tau kinases 

and/or the molecules that activate tau kinases. This treatment strategy has the benefit that 

the developed molecules could be used individually to treat diseases in which only one of 

these pathways is aberrantly activated (e.g. frontotemporal dementia).  

Regardless of which avenue provides success, our results lay the groundwork for 

future investigators to better understand early abnormalities in AD and identify and target 

disease-modifying processes in AD. 
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