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ABSTRACT 
 
 

THE INTRACELLULAR DOMAIN OF THE FRAZZLED/DCC RECEPTOR IS A 

TRANSCRIPTION FACTOR REQUIRED FOR COMMISSURAL AXON GUIDANCE 

 

Alexandra Neuhaus-Follini 

Greg J. Bashaw 

 

During embryonic development, conserved families of attractive and repulsive cues steer 

axons by signaling through receptors that are expressed on axonal growth cones. In the 

canonical model of axon guidance receptor signaling, ligand binding induces the 

formation of protein complexes on receptor cytoplasmic domains, which locally remodel 

the growth cone plasma membrane and underlying cytoskeleton. Many axons navigate to 

their final synaptic targets by passing through a series of intermediate targets, at which 

they switch their responsiveness to one or more guidance cues. My thesis research 

identified a new mechanism of axon guidance receptor signaling: the intracellular domain 

(ICD) of Frazzled (Fra), the Drosophila ortholog of the conserved guidance receptor 

Deleted in Colorectal Cancer (DCC), functions as a transcription factor to control axon 

responsiveness to the embryonic ventral midline. In Chapter 1, I introduce the embryonic 

ventral midline as a model system for studying how axons modulate their responsiveness 

to guidance cues at intermediate targets and I discuss mechanisms through which DCC 

transduces signals from its Netrin ligands into local membrane and cytoskeletal 

rearrangements. In Chapter 2, I present data supporting the idea that the Fra ICD 

functions as a transcription factor to regulate axonal responsiveness to Slit-Robo 
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repulsion at the midline of the Drosophila embryo. In Chapter 3, I discuss questions that 

remain regarding the mechanism through which Fra functions as a transcription factor 

and I examine the implications of this work, focusing on the possibilities that Fra 

regulates other transcriptional targets and that other axon guidance receptors function as 

transcription factors. 
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Chapter 1 
 
Introduction 
 

During embryonic development, conserved families of attractive and repulsive 

cues steer axons by signaling through receptors that are expressed on axonal growth 

cones. In the canonical model of axon guidance receptor signaling, ligand binding 

induces the formation of protein complexes on receptor cytoplasmic domains, which 

locally remodel the growth cone plasma membrane and underlying cytoskeleton. Many 

axons navigate to their final synaptic targets by passing through a series of intermediate 

targets, at which they switch their responsiveness to one or more guidance cues. My 

thesis research identified a new mechanism of axon guidance receptor signaling: the 

intracellular domain (ICD) of Frazzled (Fra), the Drosophila ortholog of the conserved 

guidance receptor Deleted in Colorectal Cancer (DCC), functions as a transcription factor 

to control axon responsiveness to the embryonic ventral midline. In the first part of this 

chapter, I introduce the embryonic ventral midline as a model system for studying how 

axons modulate their responsiveness to guidance cues at intermediate targets. In the 

second part of this chapter, I review canonical DCC signaling: the mechanisms through 

which DCC transduces signals from its Netrin ligands into local membrane and 

cytoskeletal rearrangements.  
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Regulation of axon responsiveness at the ventral midline 

Axons navigate a series of intermediate targets, or choice points, en route to their 

final synaptic targets. At each intermediate target, axons must switch their responsiveness 

to guidance cues, so that they are initially drawn to the intermediate target and 

subsequently repelled from it. The embryonic midline is an intermediate target for 

commissural axons in all bilaterally symmetric animals and precise navigation at the 

midline is essential for coordination of the left and right sides of the body. Commissural 

axons must first be directed across the midline and then be prevented from re-crossing in 

order to ensure proper midline connectivity. Here, I discuss studies of commissural axon 

guidance at the ventral midline of vertebrates and insects, paying particular attention to 

the insights they have provided into mechanisms growing axons use to modulate their 

responsiveness to cues as they navigate toward their final targets. Specifically, I discuss 

two populations of neurons: commissural interneurons in the spinal cord and in the 

Drosophila ventral nerve cord.  

The cell bodies of spinal commissural neurons differentiate in the dorsal spinal 

cord and project their axons ventromedially toward the floor plate (Dodd et al., 1988; 

Figure 1.1A). These axons subsequently exit the floor plate on the contralateral side and 

turn anteriorly toward the brain (Bovolenta and Dodd, 1990; Figure 1.1C). Pre- and post-

crossing axonal segments can be differentially labeled using antibodies that recognize 

cell adhesion molecules that are expressed in spatially restricted patterns (Figure 1.1A 

and B). In addition, the spinal cord can be opened at the roof plate to create an “open-

book” preparation and commissural neurons and their axons can be labeled and 
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visualized with lipophilic dyes; this preparation is particularly useful for analysis of post-

crossing axonal trajectories (Figure 1.1C). 

The ventral nerve cord of the Drosophila embryo has a segmentally repeated 

structure. Each abdominal hemisegment contains approximately 270 interneurons, most 

of which extend axons across the midline in either the anterior or posterior commissure 

(Rickert et al., 2011). All axons in the central nervous system can be labeled by antibody 

staining (Figure 1.1D) and the fact that most abdominal interneurons project axons 

contralaterally (Rickert et al., 2011) facilitated forward genetic screens which identified 

genes that play key roles in commissural axon guidance (Seeger et al., 1993; Hummel et 

al., 1999). In addition, subpopulations of neurons can be labeled with genetically encoded 

Gal4 elements, which can be used to drive the expression of axonal markers and other 

transgenes. This approach allows for quantitative comparison of axonal trajectories in 

wild-type and mutant backgrounds and also provides a powerful system in which to 

evaluate cell-specific and protein domain requirements in transgenic rescue experiments 

(Figure 1.1D). Comparison of these two systems has revealed remarkable similarity in 

many of the core molecules and mechanisms that direct axon guidance at the midline. A 

recurring theme of these studies is the diversity of mechanisms that have evolved to 

spatially and temporally restrict the activity of cell surface guidance receptors in order to 

ensure appropriate transitions in axon responsiveness.  

 

Growth toward the midline 

As commissural axons approach the midline, they are preferentially responsive to 

midline attractants while suppressing their responsiveness to midline repellents. The first 
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guidance cues to be implicated in commissural axon attraction were proteins of the Netrin 

family, which were initially identified for their roles in axon guidance and mesodermal 

cell migration in the nematode C. elegans (Hedgecock et al., 1990; Ishii et al., 1992). 

Netrins are secreted from the floor plate and ventral spinal cord, forming a ventral high to 

dorsal low gradient during the time when spinal commissural axons are growing toward 

the ventral midline (Kennedy et al., 1994; Serafini et al., 1996; Kennedy et al., 2006). In 

vitro assays demonstrated that Netrin-1 elicits outgrowth of axons from spinal cord 

explants (Serafini et al., 1994) and induces attractive turning responses (Kennedy et al., 

1994). Netrins are thought to signal both outgrowth and attraction through the receptor 

DCC, which is expressed on commissural axons as they approach the midline (Keino-

Masu et al., 1996). In the spinal cords of mouse embryos mutant for either Netrin-1 (the 

only Netrin expressed in the mouse spinal cord (Serafini et al., 1996; Kennedy et al., 

2006)) or Dcc, the ventral commissure is thin, but not absent; many axons stall before 

reaching the floor plate and commissural axons that normally project ventromedially in a 

tight bundle misproject laterally and are defasciculated (Serafini et al., 1996; Fazeli et al., 

1997). The observation that the ventral commissure is thinner in Netrin-1 mutants than in 

Dcc mutants (Xu et al., 2014) and in vitro data indicating that Dcc mutant spinal cord 

explants retain some Netrin-responsiveness (Ly et al., 2008; Xu et al., 2014) suggest that 

Netrin may promote midline crossing through both DCC-dependent and DCC-

independent mechanisms.  

One additional receptor through which Netrin might signal midline attraction is 

the DCC paralog, Neogenin (Neo), which is expressed on commissural axons (Xu et al., 

2014). Neo mutants have no defects in commissural axon guidance, but in Dcc, Neo 
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double mutants, the ventral commissure is thinner than in Dcc single mutants and 

comparably thin to the ventral commissure in Netrin-1 mutants (Xu et al., 2014). 

Chickens have a single member of the DCC/Neo family, which has greater homology to 

mouse Neo than to mouse DCC. RNAi knockdown of this gene produces defects in 

commissural axon guidance in the chicken spinal cord reminiscent of the mouse Dcc 

mutant phenotype (Phan et al., 2011). However, Neo-dependent outgrowth and/or turning 

responses of spinal commissural neurons in response to Netrin have yet to be 

demonstrated. Netrin can bind to Neo (Wang et al., 1999), but it does so with much lower 

affinity than Neo’s canonical repulsive ligand Repulsive Guidance Molecule (RGMa; 

Rajagopalan et al., 2004). RGMa mRNA is broadly expressed in the spinal cord 

(Niederkofler et al., 2004), but its potential role in the guidance of spinal commissural 

axons has not been evaluated. Thus, it is not yet clear how Neo contributes to the 

establishment of the ventral commissure.  

Down Syndrome Cell Adhesion Molecule (DSCAM) has also been proposed to 

function as an attractive Netrin receptor in spinal commissural neurons. Both insect and 

vertebrate Netrin proteins can bind to DSCAM in a variety of in vitro assays (Andrews et 

al., 2008; Ly et al., 2008; Liu et al., 2009). Disruption of DSCAM function by RNAi or 

expression of dominant negative forms of DSCAM causes many commissural axons to 

fail to reach the floor plate in rat and chicken spinal cords (Ly et al., 2008; Liu et al., 

2009). However, analysis of mice with Dscam null mutations suggests that DSCAM is 

not required for Netrin-dependent midline attraction (Palmesino et al., 2012). Dscam 

mutants have no defects in commissural guidance in the spinal cord and Dscam, Dcc 

double mutants have commissural guidance defects comparable to Dcc mutants. It is 



 6 

conceivable that in Dscam null mutants – but not in animals subject to acute Dscam 

knockdown – a compensatory mechanism emerges to allow for normal midline crossing; 

notably, DCC and Neo mRNA and protein levels are unchanged in Dscam mutants 

(Palmesino et al., 2012), indicating that if there is compensation, it can not be explained 

by up-regulation of the expression of other known Netrin receptors. A less likely 

possibility is that DSCAM plays essential roles in Netrin-dependent midline attraction in 

rat and chicken that are not conserved in the mouse. Alternatively, the RNAi phenotypes 

may represent an artifact of some sort, underscoring the ideas that knockdown data 

should be interpreted with caution and that genetic nulls should be analyzed whenever 

possible. The advent of new methods for genome modification that bypass the need for 

ES cell targeting should facilitate the analysis of null alleles in vertebrates other than 

mice.  

Netrins and DCC play conserved roles to promote midline axon crossing. Flies 

have two Netrin genes, NetA and NetB, which are expressed transiently in midline 

neurons and persistently in midline glia during embryogenesis (Harris et al., 1996; 

Mitchell et al., 1996) and only one ortholog of Dcc/Neo, Fra, which encodes a protein 

that is expressed on commissural axons in the ventral nerve cord (Kolodziej et al., 1996). 

In embryos lacking both fly Netrin genes (NetAB) and in fra mutants, commissures are 

thin, but not absent, with posterior commissures more sensitive to loss of Netrin or Fra 

than anterior commissures (Kolodziej et al., 1996; Brankatschk and Dickson, 2006). fra 

mutants display more severe commissural guidance defects than NetAB mutants, 

implying that Fra promotes midline crossing in part through a Netrin-independent 

mechanism (Garbe et al., 2007; Yang et al., 2009; see below for further discussion). In fly 
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embryos engineered so that the only Netrin protein is membrane-tethered, both the 

anterior and posterior commissures develop normally (Brankatschk and Dickson, 2006), 

suggesting that long-range diffusion of Netrins is not required for commissural axon 

attraction. In C. elegans, Netrin has been shown to polarize neurons in a DCC-dependent 

manner (Adler et al., 2006; Xu et al., 2009), but this output of Netrin-DCC signaling has 

yet to be implicated in midline crossing. In both insects and vertebrates, the extents to 

which defects in commissural axon guidance in Netrin and Dcc mutants reflect defects in 

outgrowth, attraction, polarization, and/or regulation of gene expression remain 

unknown. Identification and disruption of distinct cytoplasmic motifs or residues that are 

required for these diverse signaling outputs would allow the relative contributions of 

these pathways to be dissected in vivo.  

DSCAM’s role in midline crossing and its potential function as a Netrin receptor 

have also been investigated in Drosophila. Dscam mutants are phenotypically normal 

with respect to midline axon crossing, but Dscam, fra double mutants have more severe 

midline crossing defects than either NetAB or fra mutants alone. Overexpression of 

DSCAM in ipsilateral neurons induces ectopic midline crossing, even in NetAB mutant 

embryos (Andrews et al., 2008). These genetic data imply that DSCAM promotes midline 

axon crossing through a Netrin-independent mechanism, but they do not exclude the 

possibility that DSCAM also functions as an attractive Netrin receptor. Many axons cross 

the midline even in Dscam, fra double mutants, suggesting that midline attractive or 

lateral repulsive signaling pathways that guide commissural axons toward the midline 

remain to be identified. The fact that additional cues and receptors have not been isolated 

in mutagenesis screens that have approached genomic saturation (Seeger et al., 1993; 
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Hummel et al., 1999) suggests that these genes may have earlier roles in embryogenesis 

that preclude analysis of midline axon crossing phenotypes and/or that their functions 

may be redundantly encoded.  

In vertebrates, parallel pathways that guide commissural axons toward the ventral 

midline have been studied in greater detail. The residual ability of Netrin-1-mutant floor 

plate tissue to elicit turning of commissural axons (Serafini et al., 1996; Charron et al., 

2003) is partially blocked by cyclopamine, a pharmacological inhibitor of the Sonic 

Hedgehog (Shh) effector Smoothened (Smo), and turning assays performed on 

dissociated commissural neurons have provided direct evidence that Shh can act as a 

chemoattractive cue (Charron et al., 2003; Yam et al., 2009). Conditional deletion of Smo 

in commissural neurons in the dorsal spinal cord causes commissural axons to misproject 

laterally and defasciculate as they are growing toward the floor plate (Charron et al., 

2003). Genetic ablation of the Shh receptor Boc, which is expressed in commissural 

neurons, produces a similar phenotype, and RNAi knockdown of Boc inhibits the turning 

of commissural neurons toward a source of Shh (Okada et al., 2006). Shh appears to 

signal chemoattraction without regulating gene expression, as neither pharmacological 

inhibition of transcription nor expression of a dominant repressor of Gli transcription 

factors blocks Shh-induced turning responses in vitro (Yam et al., 2009), but this question 

has not been investigated in vivo. Analysis of Gli2 conditional knockouts in spinal 

commissural neurons would test whether canonical Shh signaling impinges on midline 

crossing.  

Netrin-1 mutant floor plate retains some ability to elicit attractive turning even in 

the presence of cyclopamine, suggesting that the floor plate might produce additional 
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attractive guidance cues (Charron et al., 2003). Recently, Vascular Endothelial Growth 

Factor A (VEGF), which is expressed in the floor plate during commissural axon 

guidance, was identified as a chemoattractant for commissural neurons (Ruiz de 

Almodovar et al., 2012). In embryos that are floor plate haplodeficient for Vegf or in 

which the VEGF receptor Flk-1 has been conditionally deleted from spinal commissural 

neurons, commissural axons misproject laterally and are defasciculated as they grow 

toward the floor plate. Dissociated commissural neurons turn toward a source of VEGF in 

vitro, and this turning response is antagonized by the presence of function-blocking 

antibodies against Flk-1.  

Finally, in the spinal cord, roof plate-derived repellents collaborate with floor 

plate-derived attractants to guide commissural axons toward the ventral midline. In the 

absence of a floor plate, commissural axons navigate normally through the dorsal part of 

the spinal cord before stalling (Bovolenta and Dodd, 1991; Hatta et al., 1991; Placzek et 

al., 1991; Yamada et al., 1991), suggesting that cues from another source must guide 

these axons during the early part of their trajectories. Roof plate tissue repels axons from 

spinal cord explants and this activity can be mimicked by cell aggregates expressing 

members of the Bone Morphogenetic Protein (BMP) family, BMP7 and GDF7, which are 

expressed in the roof plate during commissural axon outgrowth (Augsburger et al., 1999). 

BMPs likely signal repulsion through BMP receptor IB (BMPRIB), as roof plates from 

Bmp7 of Gdf7 mutants lack the ability to repel commissural axons (Augsburger et al., 

1999; Butler and Dodd, 2003) and spinal cord explants from BmprIb mutants are 

unresponsive to roof plate-induced repulsion (Yamauchi et al., 2008). However, spinal 

cords from Bmp7, Gdf7, and BmprIb mutants display only modest defects in commissural 
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axon guidance, with commissural axons occasionally invading the roof plate or taking an 

aberrant medial trajectory (Butler and Dodd, 2003; Yamauchi et al., 2008), suggesting 

that other factors – potentially the complement of floor plate-derived attractants – can 

compensate for the loss of roof plate repulsion.  

 

Exit from the midline 

After commissural axons have reached the midline, they switch their 

responsiveness to midline cues, so that they can exit the midline and proceed toward their 

synaptic targets on the contralateral side of the embryo. During this phase of axon 

guidance, commissural axons are preferentially responsive to repellents expressed at the 

midline. The prototypical midline repulsive cues are Slit proteins, which signal repulsion 

through Roundabout (Robo) receptors. Slits and Robos were initially implicated in 

midline axon repulsion through forward genetic screens in Drosophila (Seeger et al., 

1993; Hummel et al., 1999). Slit is expressed in midline glia throughout embryogenesis 

(Rothberg et al., 1990; Kidd et al., 1999); Robo is expressed on axons and shows a 

striking localization to longitudinal connectives, but is largely excluded from 

commissural segments (Kidd et al., 1998; Kidd et al., 1999). In robo mutant fly embryos, 

ipsilateral axons ectopically cross the midline and both ipsilateral and commissural axons 

re-cross the midline (Seeger et al., 1993; Kidd et al., 1998). slit mutants have an even 

more dramatic phenotype, in which all axons collapse on the midline (Kidd et al., 1999). 

Flies have three genes encoding Robo receptors and the observation that embryos mutant 

for both robo and robo2 are phenotypically indistinguishable from slit mutants with 

respect to midline crossing (Rajagopalan et al., 2000a; Simpson et al., 2000b) suggests 
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that these two Robo receptors signal midline repulsion in response to Slit and that Slit-

Robo signaling accounts for all midline repulsion in the fly. (Robo3 is not required for 

midline repulsion, but it plays an important role in mediolateral positioning of ipsilateral 

and post-crossing commissural axons (Rajagopalan et al., 2000b; Simpson et al., 2000a)). 

Subsequent analysis of mouse mutants has confirmed that Slit-Robo signaling 

plays a conserved role in midline repulsion. In mice, three Slit genes are expressed in the 

floor plate (Holmes et al., 1998; Brose et al., 1999; Li et al., 1999; Yuan et al., 1999) and 

function redundantly to repel post-crossing commissural axons. In mice lacking all three 

Slit genes (Slit 1/2/3), many commissural axons stall at the floor plate and some turn back 

toward the ipsilateral side (Long et al., 2004). Mice express four Robo genes, three of 

which are involved in midline repulsion, while Robo4 is specifically expressed in the 

vascular system (Park et al., 2003). Robo1 and Robo2 proteins are expressed at low levels 

on pre-crossing commissural axons and are up-regulated post-crossing (Long et al., 

2004). Spinal commissural axons in Robo 1/2 double mutants stall at the floor plate, but 

these defects are not as frequent as in Slit 1/2/3 mutants, and Robo 1/2 mutants never 

display re-crossing errors (Jaworski et al., 2010), implying the existence of another 

repulsive Slit receptor. Robo3 seems to repel post-crossing commissural axons but also 

plays a key role in preventing premature Slit responsiveness in pre-crossing commissural 

axons (Sabatier et al., 2004; Chen et al., 2008; see below for further discussion). 

The absence of Slit signaling in the mouse does not lead to a complete loss of 

midline repulsion (Long et al., 2004), suggesting that vertebrates require other midline 

repellents to collaborate with Slits to prevent ectopic midline crossing and to facilitate 

midline exit. The class 3 secreted Semaphorin, Sema3B, is expressed in the floor plate 
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and ventral spinal cord during the period of commissural axon guidance (Zou et al., 2000) 

and its co-receptors Neuropilin-2 (Nrp2) and Plexin-A1 (PlexA1) are expressed on 

commissural axons, with PlexA1 expression enriched on axons during and after crossing 

(Nawabi et al., 2010). In mouse embryos mutant for Sema3b, Nrp2, or PlexA1, many 

commissural axons fail to exit the midline (Zou et al., 2000; Nawabi et al., 2010; 

Delloye-Bourgeois et al., 2015). In addition, PlexA1 can function as a repulsive Slit 

receptor, as Slit2 binds to PlexA1 and can induce growth cone collapse of Robo 1/2 

mutant spinal commissural neurons in a PlexA1-dependent manner (Delloye-Bourgeois 

et al., 2015). This observation suggests that PlexA1 may be the additional Slit receptor 

implied by the difference in the strengths of the Robo 1/2 and Slit 1/2/3 mutant 

phenotypes. Compound mutants in which Slit and Sema3B signaling are perturbed in 

combination have yet to be analyzed, so it is not clear whether additional repulsive 

signaling pathways facilitate floor plate exit and prevent inappropriate midline crossing.   

 

Regulation of responsiveness to midline cues 

How do commissural neurons regulate their sensitivity to midline cues so that 

they are preferentially responsive to midline attractants pre-crossing, but preferentially 

responsive to midline repellents post-crossing? The persistence of Netrin-1 and Shh 

expression in the floor plate past the time when commissural axons have crossed the 

midline (Kennedy et al., 1994; Kennedy et al., 2006; Yam et al., 2012) suggests that 

commissural neurons might actively silence their attraction to midline cues once they 

have reached the floor plate. The idea that commissural neurons may repress their 

attraction to Netrin in response to Slit exposure has emerged from a series of in vitro 
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experiments (Stein and Tessier-Lavigne, 2001). Dissociated Xenopus spinal neurons turn 

toward a source of Netrin in culture and even though these neurons are not repelled by 

Slit, exposure to Slit blunts their attraction to Netrin. In this context, Slit triggers a 

physical interaction between the cytoplasmic domains of DCC and Robo1 and Slit’s 

ability to silence responsiveness to Netrin depends on DCC-Robo1 binding. The 

cytoplasmic motifs in these receptors that mediate the interaction are required for the 

silencing response and artificially restoring these receptors’ abilities to interact with each 

other also restores Slit’s ability to block attraction to Netrin. This model has yet to be 

tested in vivo.  

Like Netrin, Shh continues to be expressed in the floor plate throughout spinal 

cord development, but commissural axons switch the polarity of their responsiveness to 

Shh after they reach the floor plate (Figure 1.2). After exiting the midline, most spinal 

commissural axons turn anteriorly. However, disruption of Shh signaling through a 

variety of pharmacological and genetic approaches causes post-crossing commissural 

axons to choose an anterior or posterior trajectory at random (Bourikas et al., 2005; Parra 

and Zou, 2010; Yam et al., 2012). Shh mRNA and protein are expressed in the spinal 

cord in a posterior high to anterior low gradient (Bourikas et al., 2005; Yam et al., 2012), 

suggesting that Shh might signal repulsion in post-crossing commissural neurons. When 

dissociated spinal commissural neurons are cultured and exposed to a gradient of Shh, the 

polarity of their response depends on their age (Yam et al., 2012). Neurons that have been 

cultured for a short time are attracted to Shh, while neurons that have been cultured for 

longer are repelled by Shh, consistent with the idea that as they are growing toward the 

midline, commissural neurons are attracted to floor plate-derived Shh, but after crossing 
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the midline, they are repelled by the high concentration of Shh in the posterior spinal 

cord. This switch is mediated by 14-3-3 adaptor proteins, which are preferentially 

expressed in post-crossing commissural axons and whose expression increases over time 

in cultured commissural neurons. In vitro, Shh-dependent repulsion can be blocked in 

aged neurons by pharmacological manipulations that antagonize 14-3-3 and can be 

mimicked in young neurons by premature expression of 14-3-3 or by manipulations that 

induce 14-3-3 activity independent of Shh. In the spinal cord, treatment with 14-3-3 

inhibitors randomizes anterior-posterior turning after midline crossing, but has no effect 

on midline attraction, suggesting that 14-3-3 is specifically required for post-crossing 

commissural axon guidance in response to Shh. As 14-3-3 mRNA expression patterns 

have not yet been described in pre- and post-crossing commissural neurons, it is not clear 

at what level 14-3-3 expression is regulated to switch on repulsion in response to Shh. 

Shh-dependent repulsion appears to be Smo-dependent, as conditional deletion of 

Smo from spinal commissural neurons leads to randomization of anterior-posterior 

turning (Yam et al., 2012). In chickens, mRNA for Hedgehog-interacting protein (Hhip), 

an inhibitor of Shh signaling, is transiently expressed in commissural neurons once their 

axons have reached the midline and RNAi knockdown of Hhip causes both midline 

stalling and aberrant posterior turns of post-crossing commissural axons (Bourikas et al., 

2005). These defects have been interpreted as evidence that Hhip is a receptor through 

which Shh signals repulsion in post-crossing commissural neurons (Bourikas et al., 2005; 

Wilson and Stoeckli, 2013). However, Hhip has not been shown to signal in response to 

Shh in any context and is instead thought to antagonize Hh signaling by sequestering Hh 

proteins and restricting their diffusion (Chuang and McMahon, 1999; Chuang et al., 
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2003; Jeong and McMahon, 2005). A requirement for Hhip in mediating Shh-dependent 

repulsion has yet to be established through turning or collapse assays, and mice mutant 

for Hhip do not display anterior-posterior turning defects (Yam et al., 2012). The 

observation that Hhip knockdown causes midline stalling (Bourikas et al., 2005) suggests 

the alternative possibility that Hhip may be transiently expressed in commissural neurons 

to blunt attraction to floor plate-derived Shh as commissural axons are exiting the 

midline. Functional studies assessing the potential contributions of the Shh receptors Boc, 

Cdo, and Gas1 in the guidance of post-crossing spinal commissural axons have not been 

reported. Gas1 repels enteric axons from gut-derived Shh (Jin et al., 2015), raising the 

possibility that Gas1 may signal Shh-dependent axon repulsion in other contexts. 

In addition, considerable evidence has emerged indicating that commissural 

neurons actively inhibit their responsiveness to midline repellents while they are growing 

toward the midline. Vertebrates limit Robo repulsion in pre-crossing commissural axons 

through Robo3 (Figure 1.3). In mouse embryos mutant for Robo3, all spinal commissural 

axons fail to cross the midline (Sabatier et al., 2004). While floor plate tissue elicits 

outgrowth of axons from wild-type spinal cord explants, Robo3 mutant axons fail to grow 

out of explants when exposed to wild-type floor plate tissue. Blockade of Slit activity 

with a soluble Robo2 ectodomain restores the ability of Robo3 mutant explants to 

respond to floor plate-derived outgrowth signals. Likewise, a combination of Netrin-1 

and Slit2 induces axonal outgrowth from wild-type, but not Robo3 mutant explants, 

suggesting that the endogenous function of Robo3 in pre-crossing commissural axons is 

to prevent precocious Slit responsiveness (Sabatier et al., 2004). Genetic data support the 

idea that the failure of Robo3 mutant commissural axons to reach the floor plate in vivo is 



 16 

due to excessive Slit repulsion through Robo1 and Robo2, as reduction in Robo1, Robo2, 

or Slit gene dosage partially rescues Robo3 mutants (Sabatier et al., 2004; Jaworski et al., 

2010). However, even the complete loss of Robo1 and Robo2 fails to fully rescue midline 

crossing defects in Robo3 mutants, suggesting that Robo3 promotes midline crossing in 

part through Robo1- and Robo2-independent mechanisms (Jaworski et al., 2010). Robo3, 

Slit 1/2/3 compound mutants have not been analyzed, so it is not yet clear whether this 

mechanism is Slit-dependent. In light of the observation that Robo1 and Robo2 are 

expressed at very low levels on pre-crossing commissural axons (Long et al., 2004), these 

genetic data imply that the activity of this small pool of Robo1 and Robo2 must be 

antagonized to prevent premature repulsion. A recent study suggests that Robo3 may 

promote midline attraction in addition to antagonizing midline repulsion (Zelina et al., 

2014). Robo3 mutant spinal cord explants display a reduced outgrowth response when 

exposed to Netrin-1 and, although Robo3 does not directly bind to Netrin, it does form a 

complex with DCC. Rescue experiments with a form of DCC that cannot bind to Robo3 

would test whether Netrin-DCC attraction depends on this Robo3-DCC complex.  

Robo3 is alternatively spliced, yielding two variants that differ in their 

cytoplasmic domains (Chen et al., 2008). One splice variant, Robo3.1, is specifically 

expressed on pre-crossing commissural axons, while the other, Robo3.2, is specifically 

expressed on post-crossing commissural axons. Isoform-specific rescue and RNAi 

experiments suggest that Robo3.1 is required to facilitate midline crossing, while 

Robo3.2 contributes to midline repulsion in post-crossing commissural axons. Notably, 

Robo3.2 knockdown in a Robo1, Robo2 background causes occasional re-crossing of 

commissural axons, a phenotype observed in Slit 1/2/3 mutants, but not in Robo1, Robo2 
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mutants. It has been speculated that perhaps Robo3.1 acts as a Slit sink, preventing 

Robo1 and Robo2 from binding to Slit, but lacking the ability to signal repulsion, while 

Robo3.2 functions as a classical Robo receptor, signaling repulsion in response to Slit 

(Sabatier et al., 2004; Chen et al., 2008). However, this possibility seems unlikely in light 

of reports that mammalian Robo3 proteins do not bind Slit (Camurri et al., 2005; 

Mambetisaeva et al., 2005; Li et al., 2014; Zelina et al., 2014), leaving the questions of 

how Robo3.1 antagonizes Robo1 and Robo2 activity and how Robo3.2 signals midline 

repulsion unresolved. In addition, the mechanisms regulating the alternative splicing of 

Robo3 remain unknown. Thus, many aspects of Robo3 function in commissural neurons 

both before and after midline crossing warrant further exploration.    

In addition to limiting their responsiveness to Slits, pre-crossing commissural 

neurons suppress their responsiveness to Sema3B, in part through proteolytic degradation 

of PlexA1 (Nawabi et al., 2010; Figure 1.4). As commissural axons are growing toward 

the midline, they express only a low level of PlexA1, but PlexA1 expression is up-

regulated on commissural axons after they have reached the midline. Spinal commissural 

neurons display increased PlexA1 expression upon exposure to floor plate-conditioned 

media, suggesting that the floor plate produces soluble factors that promote PlexA1 

expression. PlexA1 is a substrate for calpain cleavage and blunting calpain activity either 

by RNAi knockdown or with pharmacological inhibitors causes spinal commissural 

neurons, which are ordinarily unresponsive to Sema3B, to undergo growth cone collapse 

when exposed to Sema3B. When mouse spinal cords are treated with calpain inhibitors, 

commissural axons stall at the floor plate, consistent with a role for calpain proteolysis in 

sensitizing commissural neurons to floor plate-derived repellents. Experiments with a 
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calpain-insensitive variant of PlexA1, which would be predicted to be active pre-crossing 

and therefore to prematurely signal midline repulsion, could validate the model that 

calpain proteolysis of PlexA1 is indeed responsible for limiting Sema3B responsiveness 

in pre-crossing commissural neurons.  

Exposure to floor plate-conditioned media antagonizes calpain activity in dorsal 

spinal cord tissue (Nawabi et al., 2010), implying the existence of soluble floor plate-

derived factors that block calpain activity. Glial cell line-derived neurotrophic factor 

(GDNF) is expressed in the floor plate during commissural axon guidance and it mimics 

the abilities of floor plate-conditioned medium to sensitize commissural neurons to 

Sema3B-induced growth cone collapse and to reduce both calpain activity and the 

abundance of PlexA1 proteolytic fragments in the spinal cord (Charoy et al., 2012). 

Medium conditioned by floor plate tissue from Gdnf mutant mice has reduced ability to 

sensitize commissural neurons to Sema3B-induced growth cone collapse. In embryos 

mutant for Gdnf or its receptor Neural Cell Adhesion Molecule (NCAM), spinal 

commissural axons frequently stall in the floor plate, consistent with GDNF’s proposed 

function in promoting midline repulsion (Charoy et al., 2012). Other floor plate-derived 

factors that sensitize commissural neurons to Sema3B repulsion have been identified, 

including Shh (Parra and Zou, 2010) and Neuronal Cell Adhesion Molecule (NrCAM), 

which is cleaved to release a soluble ectodomain (Nawabi et al., 2010). NrCAM inhibits 

PlexA1 expression (Nawabi et al., 2010), but it is not clear whether either of these soluble 

factors regulates calpain activity.   

In flies, there is no evidence that commissural neurons modulate their 

responsiveness to midline attractants. However, like vertebrates, flies inhibit Slit-Robo 
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repulsion in pre-crossing commissural neurons, but through a different mechanism 

(Figure 1.5). The endosomal protein Commissureless (Comm) binds Robo and prevents 

its trafficking to the growth cone, instead targeting it for lysosomal degradation (Keleman 

et al., 2002; Keleman et al., 2005). Expression of comm mRNA is tightly 

spatiotemporally controlled so that comm is specifically expressed in commissural 

neurons as they are sending their axons across the midline, but not before or after, and 

comm is rarely expressed in ipsilateral neurons (Keleman et al., 2002). This pulse of 

comm expression in commissural neurons reduces their responsiveness to Slit during 

midline crossing. comm mutants have a dramatic phenotype in which no axons cross the 

midline (Seeger et al., 1993; Tear et al., 1996) and analysis of robo, comm double 

mutants indicates that robo is epistatic to comm (Seeger et al., 1993). Surprisingly, 

embryos in which the endogenous robo gene is replaced with a mutant version that 

cannot be sorted by Comm are phenotypically normal (Gilestro, 2008), suggesting that 

Comm can regulate Slit-Robo repulsion through an additional mechanism.  

comm expression is regulated, in part, by Fra. In fra mutants, comm expression is 

reduced in commissural neurons, but this output of Fra is Netrin-independent, as comm 

expression is unaffected in NetAB mutants (Yang et al., 2009). It is not clear whether 

Fra’s ability to regulate comm is ligand-dependent or at what level it is regulated to 

produce the appropriate temporal pattern of comm expression. Fra appears to regulate 

comm transcription rather than the stability of comm mRNA, as comm pre-mRNA is 

reduced in fra mutants (Yang et al., 2009). fra mutants have much milder midline 

crossing defects than comm mutants, suggesting that parallel mechanisms must exist to 

regulate comm.  
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Conclusion 

 In the past two decades, many cues and receptors that attract commissural axons 

toward and repel them away from the ventral midline have been identified, and loss of 

function genetic data suggest that additional cues and receptors that regulate commissural 

axon pathfinding still await discovery. Both intrinsic (i.e. 14-3-3) and extrinsic (i.e. 

GDNF) factors that enable axons to modulate their responsiveness to midline cues have 

been identified, but our understanding of the cellular mechanisms that allow axons to 

switch their responsiveness to cues is incomplete. Regulation of receptor expression 

appears to be a common mechanism through which axonal sensitivity to cues can be 

gated. Recent reports that axon guidance receptors themselves can regulate both 

transcription (Taniguchi et al., 2003; Goldschneider et al., 2008; Yang et al., 2009) and 

translation (Tcherkezian et al., 2010) raise the intriguing possibility that guidance 

receptors may be able to directly regulate their own expression or the expression of other 

receptors.  

 

Local Netrin-DCC signaling 

As discussed above, precise regulation of axon guidance receptor expression is 

critical for the establishment of appropriate neural connectivity, both at the midline and 

elsewhere in the developing nervous system. But once these receptors are properly 

expressed, how do they signal to regulate growth cone guidance? The observation that the 

cytoplasmic domains of many axon guidance receptors, including DCC, do not contain 

obvious catalytic motifs led to the idea that these receptors might function as docking 

sites for protein complexes that catalyze local growth cone remodeling in response to 
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their ligands (reviewed in Huber et al., 2003). In this way, guidance receptors are thought 

to transduce gradients of cues into asymmetrical changes in the membrane and 

underlying cytoskeleton of growth cones, to steer them toward sources of attractive cues 

and away from sources of repellents. Here, I review the mechanisms through which 

Netrin-DCC signaling has been shown to regulate local growth cone dynamics and 

highlight ways in which these mechanisms exemplify signaling strategies that are broadly 

used by classical axon guidance receptors (DCC, Robo, Plexin, Eph).  

 

Rho GTPases and upstream regulators of Rho GTPase activity 

Members of the Rac homology (Rho) family of small GTPases, which are well-

established regulators of cell morphology that can remodel the cytoskeleton through 

many different effectors, have been broadly implicated in axon guidance receptor 

signaling, including Netrin-DCC signaling (reviewed in Hall and Lalli, 2010). Netrin 

stimulation recruits the Rho GTPases Rac1 and Cdc42 to DCC and activates Rac1 and 

Cdc42 in DCC-expressing cells, including cultured spinal commissural neurons (Li et al., 

2002; Shekarabi and Kennedy, 2002; Shekarabi et al., 2005). In addition, Netrin activates 

Rac1 in embryonic mouse brains (Briançon-Marjollet et al., 2008). Rho GTPase 

activation is required for many cellular responses to Netrin, as pharmacological inhibition 

of Rho GTPase activity partially blocks Netrin-dependent outgrowth of spinal cord 

explants and expression of dominant negative forms of Rac1 and Cdc42 inhibits Netrin-

DCC-dependent changes in cell morphology in a variety of cell lines (Li et al., 2002; 

Shekarabi and Kennedy, 2002). Expression of dominant negative forms of Rac and 

Cdc42 also prevents Netrin-induced growth cone expansion and filopodial formation in 
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cultured spinal commissural neurons (Shekarabi et al., 2005). Rho GTPases play 

pleiotropic roles in embryonic development and have been implicated in the signaling 

outputs of many different axon guidance receptors, confounding interpretation of their 

mutant phenotypes (Jin and Strittmatter, 1997; Kuhn et al., 1999; Vastrik et al., 1999; 

Vikis et al., 2000; Wahl et al., 2000; Driessens et al., 2001; Hu et al., 2001; Zanata et al., 

2002; Fan et al., 2003; Oinuma et al., 2004a; Oinuma et al., 2004b; Turner et al., 2004; 

Gallo, 2006; Uesugi et al., 2009).   

How is Rho GTPase activity spatially and temporally regulated to direct growth 

cone navigation? GTPases cycle between an active, GTP-bound state and an inactive 

GDP bound state. GTPase activating proteins (GAPs) stimulate GTP hydrolysis, 

inactivating GTPases, while guanine nucleotide exchange factors (GEFs) exchange GDP 

for GTP, restoring GTPases to their active state. Physical and genetic interactions 

between members of all families of classical axon guidance receptors and specific Rho 

GAPs and Rho GEFs have been demonstrated and in some cases the recruitment of these 

GAPs and GEFs to the receptors has been shown to be ligand-dependent, suggesting a 

potential mechanism through which axon guidance cues can modulate the local activity 

of Rho GTPases (Shamah et al., 2001; Aurandt et al., 2002; Driessens et al., 2002; Perrot 

et al., 2002; Swiercz et al., 2002; Lundström et al., 2004; Barberis et al., 2005; Cowan et 

al., 2005; Forsthoefel et al., 2005; Hu et al., 2005; Sahin et al., 2005; Toyofuku et al., 

2005; Yang et al., 2006; Beg et al., 2007; Iwasato et al., 2007; Shi et al., 2007; 

Wegmeyer et al., 2007; Briançon-Marjollet et al., 2008; Li et al., 2008; Demarco et al., 

2012).  
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The Rho GEF UNC-73/Trio physically interacts with the cytoplasmic domains of 

Fra and DCC (Forsthoefel et al., 2005; Briançon-Marjollet et al., 2008). Addition of 

recombinant Netrin to mouse brain extracts does not enhance this binding (Briançon-

Marjollet et al., 2008), suggesting that Trio may be constitutively bound to DCC, rather 

than recruited in a ligand-dependent manner; however, Trio-DCC binding has not been 

investigated in Netrin mutant tissue. Netrin-dependent Rac1 activation is abolished in 

Trio mutant mouse brains and Netrin-dependent axon outgrowth is reduced in both spinal 

cord explants and dissociated cortical neurons from Trio mutants, indicating that Trio is 

required for Netrin responsiveness in vitro (Briançon-Marjollet et al., 2008). Worms, flies, 

and mice mutant for Trio/unc-73 have defects in axon growth and guidance, but to what 

extent these defects reflect a loss of Netrin-DCC signaling remains unclear. In C. elegans, 

many axons are guided toward the ventral nerve cord through opposing gradients of 

ventrally expressed UNC-6/Netrin, which signals attraction through UNC-40/DCC 

receptors, and dorsally expressed SLT-1/Slit, which signals repulsion through SAX-

3/Robo receptors (Hedgecock et al., 1990; Ishii et al., 1992; Chan et al., 1996; 

Wadsworth et al., 1996; Zallen et al., 1998; Hao et al., 2001). Null mutants for any of 

these genes have partially penetrant defects in ventral axon guidance, providing a simple 

system in which to analyze the contribution of any gene to either the Netrin-DCC 

pathway or the Slit-Robo pathway. Disruption of a gene that acts in the Netrin-DCC 

pathway should enhance the defects caused by ablation of Slit or Robo function, and vice 

versa; indeed, slt-1, unc-6 double mutants have more frequent defects in ventral axon 

guidance than either single mutant (Yu et al., 2002). unc-73 mutants have defects in axon 

growth and guidance, including failure to grow ventrally (Hedgecock et al., 1987; 
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Siddiqui, 1990; Siddiqui and Culotti, 1991; McIntire et al., 1992; Steven et al., 1998), but 

it is not clear whether these defects reflect a loss of ventral attraction or a loss of dorsal 

repulsion. Loss of function mutations in unc-73 do not suppress excessive axon 

outgrowth caused by neuronal expression of a myristoylated UNC-40 cytoplasmic 

domain (Myr-UNC-40), suggesting that UNC-40 can promote outgrowth independent of 

unc-73 (Gitai et al., 2003). However, the relevance of this finding to Netrin-DCC 

signaling in general and to Netrin-dependent attraction in particular is not obvious, as 

Myr-UNC-40 is a constitutively active form of the receptor that does not require Netrin to 

signal and only promotes outgrowth, without directing guidance. Analysis of animals 

with mutations in unc-73 and either unc-6 or unc-40 would reveal whether unc-73 is 

required for Netrin-DCC-dependent axon guidance in the worm, but these phenotypes 

have not been reported. In the fly, trio mutants display many different axon guidance 

defects, including breaks in longitudinal fascicles, motor axon stalling, and mistargeting 

of photoreceptor and mushroom body axons (Awasaki et al., 2000; Bateman et al., 2000; 

Liebl et al., 2000; Newsome et al., 2000). However, these phenotypes do not overlap with 

those of Netrin or fra mutants (Harris et al., 1996; Kolodziej et al., 1996; Mitchell et al., 

1996; Brankatschk and Dickson, 2006; Timofeev et al., 2012). Specifically, trio mutants 

do not have defects in commissural axon guidance (Liebl et al., 2000; Forsthoefel et al., 

2005) and have qualitatively different defects in motor axon targeting (Mitchell et al., 

1996; Bateman et al., 2000). The class of photoreceptors with reported targeting defects 

in trio mutants does not express Fra and the class of photoreceptors with defects in Netrin 

and fra mutants has not been examined in trio mutants (Newsome et al., 2000; Timofeev 

et al., 2012). Heterozygosity for trio enhances loss of midline crossing in both Netrin and 
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fra mutants in the fly, consistent with a function for trio in a parallel pathway that 

promotes midline crossing (Forsthoefel et al., 2005). Analysis of brains and spinal cords 

of mouse Trio mutants revealed axon guidance defects in the spinal cord and brain that 

are similar to, but for the most part milder than, those reported in Netrin-1 or Dcc mutants 

(Serafini et al., 1996; Fazeli et al., 1997; Briançon-Marjollet et al., 2008). It is not clear 

whether these defects reflect a requirement for Trio in Netrin-DCC signaling. Analysis of 

Trio, Netrin-1 or Trio, Dcc double mutants would help resolve this question.  

Another Rho GEF that physically interacts with DCC is Dock180 (Li et al., 2008). 

Dock180 and DCC are constitutively bound in embryonic cortical neurons, and Netrin 

stimulation increases this association; Dock180-DCC binding has not been analyzed in 

Netrin mutant tissue. Disruption of Dock180 function by RNAi or expression of a 

dominant negative form of Dock180 inhibits both Netrin-dependent activation of Rac1 

and Cdc42 and Netrin-induced outgrowth and turning of dissociated cortical neurons and 

spinal cord explants. RNAi knockdown of Dock180 also causes spinal commissural 

neurons to stall before reaching the floor plate, consistent with a role for Dock180 in 

promoting outgrowth and/or attraction in response to midline-derived Netrin, but mutant 

phenotypes have not been analyzed. Additionally, genetic interaction experiments to 

determine whether this Dock180 loss-of-function phenotype reflects compromised 

Netrin-DCC signaling are lacking. There is no evidence that Dock180 plays a role in 

Netrin-DCC signaling in invertebrates.  

A third Rho GEF, tiam-1, genetically interacts with unc-6 and unc-40 in C. 

elegans (Demarco et al., 2012), although physical interactions between this GEF and 

DCC have not been demonstrated. tiam-1 mutants do not have defects in ventral axon 



 26 

guidance, but tiam-1, unc-73 double mutants do, suggesting that these two GEFs may 

function redundantly in ventral axon guidance. Mutations in tiam-1 suppress Myr-UNC-

40-induced ectopic axon outgrowth and do not enhance ventral axon guidance defects 

produced by RNAi against unc-40, suggesting that TIAM-1 may be required for Netrin-

DCC signaling in the worm. The potential contribution of TIAM-1 to Netrin-DCC 

signaling in flies or vertebrates has not been investigated.  

Src family kinase (SFK) activity has also been suggested to regulate Rho GTPase 

activity in response to Netrin. The SFK Fyn phosphorylates Trio, and this 

phosphorylation is required for Netrin-dependent Rac1 activation and axon outgrowth 

(DeGeer et al., 2013). Netrin also induces tyrosine phosphorylation of DCC through Fyn 

and Fyn-dependent phosphorylation of a particular cytoplasmic tyrosine residue on DCC 

is required for Netrin-DCC-dependent Rac1 activation and neurite outgrowth in vitro 

(Meriane et al., 2004). Interestingly, in vitro experiments have implicated SFK activation 

in all three vertebrate midline attractive pathways: Netrin-DCC, Shh-Boc, and VEGF-

Flk-1 (Li et al., 2004; Liu et al., 2004; Meriane et al., 2004; Yam et al., 2009; Ruiz de 

Almodovar et al., 2012). Exposure to Netrin, Shh, or VEGF activates SFKs and 

pharmacological or genetic inhibition of SFK activity blunts the abilities of these cues to 

elicit turning responses in a variety of assays. These data suggest that SFK activation may 

be an intracellular signaling event on which multiple chemoattractive pathways converge. 

Commissural axon guidance has not been closely studied in mice deficient for one or 

more SFKs, but the large number of vertebrate SFKs and the abilities of SFKs to 

functionally compensate for each other in other contexts (Stein et al., 1994) caution that it 

may be difficult to evaluate whether SFK activation is indeed a requisite step for midline 
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chemoattraction in intact vertebrate embryos. To date, the question of whether SFK 

activity is required for midline axon crossing has only been investigated in vivo in flies 

(O’Donnell and Bashaw, 2013), which have only two genes encoding SFKs. In 

Drosophila, reduction in SFK gene dosage causes ipsilateral axons to ectopically cross 

the midline and suppresses commissural axon guidance defects in genetic backgrounds in 

which midline attraction is disrupted. These data are consistent with a requirement for 

SFKs in midline repulsion, but not midline attraction, raising the possibility that flies and 

vertebrates use SFKs in opposite ways with respect to midline crossing. Alternatively, the 

vertebrate in vitro data implicating SFK activation in Netrin responsiveness may not 

reflect the in vivo functions of SFKs. In addition, a Fra receptor in which all cytoplasmic 

tyrosines are replaced with phenylalanines is capable of transducing responses to Netrin 

in commissural and motor neurons in vivo, arguing that tyrosine phosphorylation of DCC 

is not a requisite step for Netrin responsiveness in the fly (O’Donnell and Bashaw, 2013).  

 

Downstream effectors of Rho GTPase activity  

How does Rho GTPase activation transduce Netrin signals into cytoskeletal 

changes? Several actin-regulatory proteins have been implicated in this process, 

including Enabled (Ena), which binds barbed ends of actin filaments and antagonizes 

filament capping, promoting filament elongation (Bear et al., 2002; Barzik et al., 2005; 

Breitsprecher et al., 2008; Hansen and Mullins, 2010; Breitsprecher et al., 2011; 

Winkleman et al., 2014). Ena is concentrated at the leading edge of lamellipodia (Gertler 

et al., 1996; Reinhard et al., 1992; Rottner et al., 1999) and at filopodial tips in growth 

cones (Lanier et al., 1999), where it colocalizes with its binding partner Lamellipodin 
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(Krause et al., 2004). When Ena is mis-targeted to mitochondria, filopodial formation and 

extension and Netrin-dependent changes in growth cone morphology are blocked in vitro, 

implying that peripherally localized Ena is required for these processes (Lebrand et al., 

2004). Mitochondrial mis-targeting of Lamellipodin induces the mis-localization of Ena, 

but mitochondrial mis-targeting of Ena has no effect on Lamellipodin localization, 

suggesting that Lamellipodin may recruit Ena to the growth cone periphery (Krause et al., 

2004).  

Studies of axon polarization, outgrowth, and guidance in C. elegans have 

provided evidence that Lamellipodin is required for Netrin-DCC-dependent signaling 

downstream of Rac. Neurons with ventrally projecting axons are polarized, such that their 

axons extend from the ventral side of their cell bodies, and this polarization is disrupted 

in both unc-6 and unc-40 mutants. MIG-10/Lamellipodin accumulates at the ventral edge 

of these neurons and its localization is disrupted in unc-6 mutants, suggesting that a 

localized source of Netrin can induce the local accumulation of MIG-10 (Adler et al., 

2006). Mutations in mig-10 suppress Myr-UNC-40-induced ectopic axon outgrowth and 

enhance ventral axon guidance defects in slt-1 mutants, suggesting that mig-10 is 

required for UNC-6-UNC-40-dependent axon outgrowth and guidance (Chang et al., 

2006; Quinn et al., 2006). Lamellipodin binds to a constitutively active form of Rac, but 

not to a constitutively inactive form of Rac and MIG-10 localization is disrupted in 

worms with mutations in the Rac gene ced-10 (Quinn et al., 2008). Both mig-10 and ced-

10 single mutants display ventral axon guidance defects and the frequency of these errors 

is not increased in the double mutants, suggesting that these two genes act in a common 

pathway. Moreover, mutations in mig-10 suppress ectopic axon outgrowth induced by 
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expression of a constitutively active form of CED-10. Together, these data imply that 

Netrin stimulates the recruitment of Lamellipodin to activated Rac, which, in light of 

Lamellipodin’s ability to recruit Ena, suggests a mechanism through which Netrin could 

stimulate localized F-actin elongation.  

However, in vivo evidence that Ena is an effector of Netrin signaling remains 

scarce. C. elegans unc-34/ena mutants have mild defects in ventral axon guidance, but 

mutations in unc-34 do not enhance the frequency of ventral axon guidance errors in slt-1 

mutants (Yu et al., 2002). However, mutations in unc-34 suppress Myr-UNC-40-induced 

ectopic axon outgrowth (Gitai et al., 2003), suggesting that UNC-34 may signal 

downstream of UNC-40 in some contexts, but not others. Although Lamellipodin has 

been shown to recruit Ena in other contexts (Krause et al., 2004), ventral localization of 

UNC-34 in ventrally projecting neurons in C. elegans has not been demonstrated and 

UNC-34 localization in unc-6, unc-40, or mig-10 mutants has not been assessed. 

Evaluation of Ena’s contribution to Netrin-DCC signaling in the fly is confounded by the 

observation that Ena positively regulates Slit-Robo midline repulsion (Bashaw et al., 

2000). However, heterozygosity for ena suppresses the gain-of-function phenotype 

produced by overexpression of a chimeric receptor consisting of the Robo ectodomain 

and the Fra cytoplasmic domain, which signals attraction in response to Slit (Bashaw et 

al., 1999), suggesting that Ena may play a role in DCC signaling in the fly (Forsthoefel et 

al., 2005). Mice have three Ena-like genes and animals null for all three fail to initiate 

axons (Kwiatkowski et al., 2007), preventing the analysis of axon guidance phenotypes. 

Mice mutant for just one of these genes, Mena, have defects in formation of the corpus 

callosum (Lanier et al., 1999), a phenotype that is also seen in Netrin-1 and Dcc mutants 
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(Sabatier et al., 1996; Fazeli et al., 1997), but it is not clear whether the acallosal 

phenotype of Mena mutants reflects a loss of Netrin-DCC signaling. Thus, the 

contribution of Ena to Netrin-dependent axon attraction in vertebrates has not been 

determined in vivo.  

Another cytoskeletal regulator that has been implicated downstream of Rho 

GTPases in Netrin-DCC signaling is UNC-115/actin-binding LIM (abLIM), which binds 

F-actin in vitro (Roof et al., 1997; Struckhoff and Lundquist, 2003) and contains a villin 

headpiece domain, which has been shown to induce the polymerization of G-actin to F-

actin in other proteins (Friederich et al., 1992). unc-115 mutants have axon guidance 

defects, including mild defects in ventral axon guidance (Wightman et al., 1997; 

Lundquist et al., 1998; Struckhoff and Lundquist, 2003). Mutations in unc-115 enhance 

the ventral axon guidance defects caused by mutations in the Rac genes ced-10 and mig-2, 

but not those caused by RNAi knockdown of a third Rac gene rac2. In addition, 

mutations in unc-115 suppress ectopic axon formation induced by expression of a 

constitutively active form of RAC-2, but not constitutively active forms of CED-10 or 

MIG-2, suggesting that UNC-115 and RAC-2 act in a common pathway to regulate axon 

outgrowth and guidance (Struckhoff and Lundquist, 2003). Mutations in either ced-10 or 

unc-115 partially suppress ectopic axon outgrowth induced by Myr-UNC-40, but these 

defects are not further suppressed in ced-10, unc-115 double mutants, suggesting that 

these two genes can regulate UNC-40-dependent axon outgrowth in the same pathway 

(Gitai et al., 2003). These genetic data imply that UNC-115 regulates axon growth and 

guidance downstream of Racs, but further work is needed to determine whether UNC-

115 is truly an effector of Netrin-DCC signaling.  
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Local plasma membrane dynamics 

As the cytoskeleton is expanding in the direction of axonal growth, the 

surrounding plasma membrane must grow to accommodate it. Recent work has suggested 

that Netrin signals through DCC to stimulate local exocytosis and asymmetrically expand 

the plasma membrane (Cotrufo et al., 2011). DCC directly interacts with the t-SNARE 

component Syntaxin-1 (Sytx1) and forms a complex with both Sytx1 and the v-SNARE 

tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP). DCC-

Sytx1 binding is stimulated by Netrin-1 treatment in vitro and is weaker in brains from 

Netrin-1 mutant mice. Experiments using botulinum toxins that specifically cleave 

different combinations of v-SNAREs revealed that Netrin-1-dependent membrane 

addition and directed axonal outgrowth toward a source of Netrin-1 depend on Sytx1. In 

addition, expression of a dominant negative form of Sytx1 or RNAi knockdown of either 

Sytx1 or TI-VAMP causes some spinal commissural axons to stall before reaching the 

midline, but it is it is not clear whether this phenotype reflects a loss of Netrin-dependent 

attraction. Nevertheless, this study establishes a mechanism through which Netrin 

binding to DCC can trigger polarized membrane insertion to accommodate asymmetrical 

growth cone expansion. 

 

Conclusion 

A host of in vitro studies have identified cytoplasmic proteins that can interact 

with axon guidance receptors, including DCC, and have suggested mechanisms through 

which guidance cues can direct local asymmetric changes in growth cone morphology. 

Testing these models in vivo remains a challenge for the field. Specifically, in vivo 
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genetic evidence linking particular cytoskeletal and membrane regulators to Netrin-

dependent axon guidance is lacking.  

In the following chapter, I present data supporting the idea that, in addition to 

signaling locally to regulate growth cone dynamics, Fra regulates axon guidance through 

a very different mechanism: it is cleaved to generate a soluble ICD that functions as a 

transcription factor to regulate axonal responsiveness to midline cues in the fly embryo. I 

also discuss the possibility that other axon guidance receptors may be able to signal 

through similar mechanisms.  
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Figure 1.1. Commissural interneurons in the embryonic spinal cord of mouse and 
ventral nerve cord of Drosophila.  
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Figure 1.1. Commissural interneurons in the embryonic spinal cord of mouse and 
ventral nerve cord of Drosophila.  
 
A) Transverse section of the mouse spinal cord at embryonic day 11.5. Pre-crossing 

spinal commissural neurons navigate ventromedially and express the cell adhesion 

molecule Tag1.  

B) Transverse section of the mouse spinal cord at embryonic day 11.5. Post-crossing 

commissural neurons express the cell adhesion marker L1.  

C) Open book preparation of the mouse spinal cord at embryonic day 11.5. Commissural 

neurons are labeled by DiI injection into the dorsal spinal cord. The majority of post-

crossing commissural axons turn anteriorly. The bracket indicates the position of the 

floor plate.  

D) Three segments of the Drosophila ventral nerve cord at stage 16. MAb BP102 

(magenta) labels all axons in the central nervous system. eg-Gal4 drives GFP expression 

(green) in a subset of commissural neurons.  

 

FP, floor plate. LF, lateral funiculus. VF, ventral funiculus. AC, anterior commissure. PC, 

posterior commissure.  

 

Note: the images in panels A-C were shared by Patricia Yam and Frédéric Charron 

(Institut de Recherches Cliniques de Montréal) and are used here with their permission.  
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Figure 1.2. Commissural axons switch the polarity of their response to Shh.  
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Figure 1.2. Commissural axons switch the polarity of their response to Shh.  

In pre-crossing spinal commissural neurons, the receptor Boc signals attraction to 

midline-derived Shh. These neurons turn anteriorly after they have crossed the midline, in 

response to a posterior high to anterior low gradient of Shh, but the relevant Shh receptor 

is not known. 14-3-3 is specifically expressed in post-crossing commissural neurons and 

is required for Shh-dependent repulsion, but not attraction. Both attractive and repulsive 

Shh signaling depend on Smo, but it is not clear whether the Shh co-receptor Patched, 

which relieves repression of Smo to permit Shh signaling in other contexts, is required 

for Shh-dependent attraction or repulsion.  
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Figure 1.3. Robo3 regulates Slit responsiveness of commissural axons.  
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Figure 1.3. Robo3 regulates Slit responsiveness of commissural axons.  

In pre-crossing spinal commissural neurons, Robo3.1 inhibits Slit repulsion through 

Robo1 and Robo2. After crossing, Robo3.1 is no longer expressed and Robo3.2 

collaborates with Robo1 and Robo2 to signal midline repulsion. 
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Figure 1.4. GDNF modulates Sema3B responsiveness by regulating PlexA1 
proteolysis.  
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Figure 1.4. GDNF modulates Sema3B responsiveness by regulating PlexA1 
proteolysis.  
 
As spinal commissural axons are growing toward the midline, calpain cleaves the 

Sema3B receptor PlexA1 to reduce sensitivity to Sema3B. When these neurons reach the 

midline, GDNF signals through NCAM and its co-receptor GFRα1 to reduce calpain 

activity. Sema3B then signals repulsion through Nrp2 and PlexA1.  
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Figure 1.5. Comm regulates Slit responsiveness by inhibiting trafficking of Robo to 
the growth cone.  
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Figure 1.5. Comm regulates Slit responsiveness by inhibiting trafficking of Robo to 
the growth cone.  
 
In Drosophila, as commissural neurons grow toward the midline, they express the 

endosomal protein Comm, which targets newly synthesized Robo for lysosomal 

degradation. Fra regulates comm transcription independent of its canonical ligands, 

Netrins. After crossing, Comm expression is extinguished and Robo is trafficked to the 

growth cone, where it signals repulsion in response to Slit.  
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Chapter 2 
 
The intracellular domain of the Frazzled/DCC receptor is a 
transcription factor required for commissural axon guidance 
 
 In commissural neurons of Drosophila, the conserved Frazzled (Fra)/Deleted in 

Colorectal Cancer (DCC) receptor promotes midline axon crossing by signaling locally in 

response to Netrin and by inducing transcription of commissureless (comm), an 

antagonist of Slit-Roundabout (Robo) midline repulsion, through an unknown mechanism. 

Here, we show that Fra is cleaved to release its intracellular domain (ICD), which shuttles 

between the cytoplasm and the nucleus, where it functions as a transcriptional activator.  

Rescue and gain-of-function experiments demonstrate that the Fra ICD is sufficient to 

regulate comm expression and that both γ-secretase proteolysis of Fra and Fra’s function 

as a transcriptional activator are required for its ability to regulate comm in vivo. Our data 

uncover an unexpected role for the Fra ICD as a transcription factor whose activity 

regulates the responsiveness of commissural axons at the midline and raise the 

possibility that nuclear signaling may be a common output of axon guidance 

receptors.  
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Introduction 

 During the development of the nervous system, chemotropic cues serve as 

navigational signals for growing axons. These cues signal through axon guidance 

receptors, which are expressed on axonal growth cones. In the canonical view of axon 

guidance receptor signaling, ligand binding induces the formation of protein complexes 

on receptor cytoplasmic domains, which locally remodel the growth cone plasma 

membrane and underlying cytoskeleton. In this way, guidance receptors are thought to 

transduce gradients of cues into asymmetrical structural changes in growth cones, to steer 

them toward sources of attractants and away from sources of repellents (reviewed in 

O’Donnell et al., 2009). A particularly dramatic demonstration that local signaling is 

sufficient to execute some chemotropic responses comes from the observation that 

isolated growth cones that have been physically severed from their cell bodies remain 

capable of responding to guidance cues (Campbell and Holt, 2001).  

 Growing axons must also modulate their responsiveness to guidance cues in order 

to navigate intermediate targets on the way to their final synaptic partners. One of the 

best-studied examples of this phenomenon is the growth of commissural axons across the 

ventral midline of the embryonic central nervous system in bilaterally symmetric animals 

(reviewed in Dickson and Zou, 2010; Evans and Bashaw, 2010a). Throughout the period 

of time when commissural axons are crossing the midline, cells at the midline produce a 

host of chemotropic cues, including both attractants and repellents. In both insects and 

vertebrates, these include Netrins, which signal attraction through Frazzled (Fra)/Deleted 

in Colorectal Cancer (DCC) receptors (Serafini et al., 1994; Kennedy et al., 1994; Harris 

et al., 1996; Keino-Masu et al., 1996; Kolodziej et al., 1996; Mitchell et al., 1996; 
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Serafini et al., 1996; Fazeli et al., 1997; Brankatschk and Dickson, 2006), and Slits, 

which signal repulsion through Roundabout (Robo) receptors (Seeger et al., 1993; 

Holmes et al., 1998; Kidd et al., 1998a; Brose et al., 1999; Kidd et al., 1999; Li et al., 

1999; Rajagopalan et al., 2000; Simpson et al., 2000; Long et al., 2004; Jaworski et al., 

2010). As commissural neurons are growing toward the midline, their responsiveness to 

midline-derived repellents, including Slits, is suppressed. Once these axons have crossed 

the midline, they become responsive to Slits and other midline repellents, which 

facilitates midline exit and prevents re-crossing (Seeger et al., 1993; Kidd et al., 1998a; 

Kidd et al., 1998b; Zou et al., 2000; Keleman et al., 2002; Sabatier et al., 2004; Keleman 

et al., 2005; Chen et al., 2008; Nawabi et al., 2010; Parra and Zou, 2010; Charoy et al., 

2012; Yam et al., 2012). 

 In Drosophila, while commissural axons are crossing the midline, the endosomal 

protein Commissureless (Comm) reduces sensitivity to Slit by inhibiting the trafficking 

of Robo to the growth cone plasma membrane (Keleman et al., 2002; Keleman et al., 

2005). Expression of comm mRNA is tightly spatially and temporally regulated such that 

commissural neurons transiently express comm while their axons are crossing the midline, 

but not before or after. Ipsilateral neurons, whose axons do not normally cross the 

midline, rarely express comm (Keleman et al., 2002). Previously, we found that in 

addition to its canonical role in signaling Netrin-dependent outgrowth and/or 

chemoattraction, Fra has a second way of promoting midline axon crossing: independent 

of Netrins, Fra induces comm mRNA expression in commissural neurons (Yang et al., 

2009). However, the mechanism(s) by which Fra regulates gene expression remain 

unknown.   
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 Here, we report that Fra is cleaved by γ-secretase, releasing its ICD, which 

shuttles between the cytoplasm and the nucleus. This proteolysis is required for Fra’s 

ability to regulate comm expression. In rescue and gain-of-function assays in vivo, the Fra 

ICD is sufficient to induce comm expression and midline crossing. In addition, the 

conserved P3 motif in the Fra ICD encodes a transcriptional activation domain. A point 

mutant variant of Fra that is specifically deficient for transcriptional activation, but is 

intact for other P3-dependent functions, cannot regulate comm expression in vivo. 

Moreover, comm-regulatory function can be restored to this receptor with a heterologous 

transcriptional activation domain, providing strong in vivo evidence for a requirement for 

Fra’s transcriptional activation function. Thus, Fra acts in two different cellular 

compartments to control midline crossing: at the growth cone, Fra regulates local 

membrane and cytoskeletal dynamics in response to its canonical Netrin ligands, and in 

the nucleus, Fra functions as a transcription factor to modulate growth cone sensitivity to 

Slit-Robo repulsion. 

 

Results 

Fra is cleaved by γ-secretase 

 Fra’s vertebrate orthologs, DCC and Neogenin (Neo) are substrates for 

metalloprotease-dependent ectodomain shedding and subsequent γ-secretase-dependent 

intramembrane proteolysis (Galko and Tessier-Lavigne, 2000; Taniguchi et al., 2003; 

Parent et al., 2005; Goldschneider et al., 2008; Bai et al., 2011; Okamura et al., 2011), 

prompting us to examine whether Fra also undergoes proteolytic processing. We pan-

neurally expressed C-terminally-tagged UAS-Fra-Myc with elav-Gal4 and probed 
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embryo lysates with an antibody against Myc (Figure 2.1A). We detected a ~200 kDa 

band corresponding to the full-length receptor, as well as smaller C-terminal fragments of 

approximately 50 kDa, 35 kDa and 25 kDa (ICD A, B, and C, respectively). We made a 

transgenic line that allowed us to express the ICD of Fra, without any extracellular or 

transmembrane residues, under Gal4/UAS control. When we expressed UAS-Fra ICD-

Myc with elav-Gal4, we detected a doublet that corresponds in size to the largest of these 

C-terminal fragments, as well as the smaller C-terminal species (Figure 2.1A). To 

determine whether these C-terminal fragments are specific cleavage products of the Fra 

cytoplasmic domain, we replaced the Myc epitope with the smaller HA epitope and again 

examined the sizes of Fra ICD fragments. Consistent with our observations using the 

Myc-tagged receptor, we detected three C-terminal fragments in lysates from embryos 

pan-neurally expressing Fra-HA (Figure 2.1B). All three of these fragments are shifted to 

lower molecular weights (~45 kDa, 30 kDa and 20 kDa), commensurate with the 

decrease in the size of the epitope tag.  We also examined lysates from embryos 

expressing a truncated, C-terminally HA-tagged Fra receptor that is missing its entire 

cytoplasmic domain (Fra∆C-HA) and did not detect Fra ICD fragments (Figure 2.1B). 

Together these observations indicate that the Fra receptor can be processed to generate 

distinct C-terminal fragments.  

 γ-secretase cleaves its substrates in the membrane, releasing their ICDs, which 

can signal intracellularly in a variety of ways (reviewed in Haapasalo and Kovacs, 2011). 

The largest C-terminal peptide generated by proteolysis of Fra is approximately the size 

of the Fra ICD, suggesting that this fragment might be a product of γ-secretase 

proteolysis. To investigate whether Fra is cleaved by γ-secretase, we examined lysates 
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from embryos in which γ-secretase function was reduced. Presenilin (Psn) is the catalytic 

subunit of γ-secretase (Wolfe et al., 1999), a multi-protein complex that also includes 

Aph-1, Nicastrin, and Pen-2 (Yu et al., 2000; Francis et al., 2002; Goutte et al., 2002; 

Edbauer et al., 2003; Fraering et al., 2004). We analyzed lysates from genetically 

heterogeneous populations of embryos in which C-terminally epitope-tagged UAS-Fra 

transgene expression was pan-neurally driven by elav-Gal4 only in psn or aph-1 mutant 

embryos. To restrict UAS-Fra expression to mutant embryos, we used flies in which the 

Gal4 and UAS elements were recombined onto mutant chromosomes or we used flies in 

which the chromosomes bearing the mutations were maintained as heterozygotes with 

balancer chromosomes ubiquitously expressing the Gal4 repressor Gal80 (see Figure 

2.1C-D for details). As γ-secretase components are maternally deposited (Ye et al., 1999; 

Hu et al., 2002), we analyzed late stage 17 embryos (20-24 hours) in order to minimize 

the amount of Psn or Aph-1 present. In these embryos, Psn or Aph-1 function is likely 

strongly reduced, but not absent. In either lysates or immunoprecipitates from psn12 or 

aph-1D35 mutant embryos, the abundance of both the Fra ICD and the smaller C-terminal 

fragments of Fra is reduced (Figure 2.1E-H), suggesting that the Fra ICD is a product of 

γ-secretase proteolysis. In addition, these experiments suggest that even though the 

smaller fragments are not likely to be directly generated by γ-secretase proteolysis, 

subsequent processing of the ICD depends on γ-secretase cleavage. DCC and Neo are 

cleaved approximately in the middle of their ICDs by caspases and this proteolysis is 

required for the abilities of these receptors to induce apoptosis (Mehlen et al., 1998; 

Matsunaga et al., 2004). The caspase cleavage site in DCC and Neo is not conserved in 
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Fra, but there are several aspartate residues in the Fra ICD that are candidate caspase 

cleavage sites.  

 

The Fra ICD is sufficient to induce comm expression 

 Fra promotes midline crossing of commissural axons both by signaling outgrowth 

and/or chemoattraction in response to Netrins and by promoting comm transcription, 

independent of Netrins, to inhibit Slit-Robo midline repulsion. We reasoned that if the 

Fra ICD is regulating comm by acting as a transcription factor, it should be sufficient to 

perform the aspects of Fra’s function that are due to its regulation of comm, but not the 

aspects that are due to its ability to transduce Netrin signals. To test this idea, we 

examined the ability of the Fra ICD to rescue fra loss-of-function phenotypes. The eg-

Gal4 element is expressed in a subset of neurons in the embryo, including three 

commissural EW interneurons per abdominal hemisegment (Dittrich et al., 1997). We 

used eg-Gal4 to drive the expression of UAS-Tau-Myc-GFP, a marker that labels the 

axons and cell bodies of the EW neurons and facilitates quantitative evaluation of axonal 

trajectories. We combined this labeling with fluorescent in situ hybridization, using a 

probe that recognizes comm mRNA, so that we could score comm expression in each 

individual EW neuron. In embryos that are wild-type for fra or heterozygous for fra3, 

axons of the EW neurons have reached the midline by stage 14, the time when these 

neurons express maximal amounts of comm mRNA (Figure 2.2A-C; Keleman et al., 

2002; Yang et al., 2009). In fra3 mutants, these neurons often fail to express comm and 

their axons fail to cross the midline at the appropriate time (Figure 2.2A-C; Yang et al., 

2009). These midline crossing and comm expression defects can be rescued by expression 
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of a full-length UAS-Fra transgene with eg-Gal4 (Figure 2.2B-C; Yang et al., 2009). In 

addition, expression of UAS-Fra ICD with eg-Gal4 partially rescues midline crossing 

defects and fully rescues comm expression in the EW neurons of fra3 mutants (Figure 

2.2A-C).  

 We also examined the Fra ICD’s ability to regulate comm expression in a subset 

of ipsilateral neurons, using a similar approach. The ap-Gal4 element is expressed in 

three ipsilateral interneurons per abdominal hemisegment (the ap neurons; O’Keefe et al., 

1998), which stochastically express comm at stage 17 (Figure 2.3A-C; Keleman et al., 

2002; Yang et al., 2009). Expression of either full-length UAS-Fra or UAS-Fra ICD with 

ap-Gal4 induces ectopic midline crossing of ap axons and ectopic expression of comm in 

the dorsal ap neuron (Figure 2.3A-C; Yang et al., 2009). These effects are dose-

dependent, as expressing two copies of either UAS-Fra or UAS-Fra ICD produces more 

frequent midline crossing events than single copy expression (Figure 2.3B). The Fra ICD 

is a less potent inducer of ectopic midline crossing than full-length Fra, but the full-length 

receptor and the ICD are comparable in their abilities to induce comm expression (Figure 

2.3A-C). Together, these rescue and gain-of-function genetic data support the idea that 

the Fra ICD is sufficient to carry out the transcriptional regulatory component of Fra’s 

activity, but not the local, Netrin-dependent component. 

 

γ-secretase proteolysis of Fra is required for Fra to regulate comm expression  

We used this gain-of-function assay to test whether Fra’s ability to regulate comm 

expression depends on its proteolysis by γ-secretase. When we analyzed embryos in 

which UAS-Fra was misexpressed with ap-Gal4 in psn mutants, we found that Fra’s 
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ability to induce comm expression is fully suppressed in two different psn mutant 

backgrounds (Figure 2.3C), suggesting that γ-secretase proteolysis of Fra is required for 

Fra’s ability to regulate comm. Interpretation of midline crossing phenotypes in these 

experiments is confounded by several factors, including reports that proteolysis of DCC 

can antagonize canonical Netrin-DCC signaling (Galko and Tessier-Lavigne, 2000; Bai 

et al., 2011); the observation that Robo activity, which plays a key role in preventing the 

ap neurons from crossing the midline, is regulated by metalloprotease-dependent 

ectodomain shedding (Coleman et al., 2010), an event which is typically followed by γ-

secretase proteolysis; and the likelihood that ectopic crossing events induced by full-

length Fra are primarily a consequence of Netrin-dependent attraction (Figure 2.6D; 

O’Donnell et al., 2013). 

 

The Fra ICD shuttles between the cytoplasm and the nucleus 

If Fra regulates comm expression by functioning as a transcription factor, its ICD 

should be localized in nuclei. We initially investigated the subcellular localization of Fra 

in Drosophila S2R+ cells expressing C-terminally epitope-tagged Fra ICD or full-length 

Fra. In these experiments, we labeled nuclei by staining cells with an antibody against 

nuclear lamin, a component of the nuclear envelope. Under control conditions, the Fra 

ICD appears to be excluded from the nucleus. However, when nuclear export is blocked, 

either pharmacologically, with leptomycin B, an inhibitor of CRM1-dependent nuclear 

export, or genetically, by deleting P3, which encodes Fra’s nuclear export signal (NES), 

the Fra ICD accumulates in the nucleus (Figure 2.4A), suggesting that the Fra ICD 

normally shuttles between the nucleus and the cytoplasm.  When we expressed full length 
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Fra in S2R+ cells, we could not detect its C-terminus in the nucleus, even when nuclear 

export was blocked (Figure 2.4A and data not shown), suggesting that one or more 

components required for the receptor proteolysis that we observe in vivo are not present 

or active in our S2R+ cell cultures or, alternatively, that the amount of nuclear ICD 

generated from full-length receptor is too low to detect in this assay.  

To examine the subcellular localization of the Fra ICD in vivo, we expressed 

UAS-Fra ICD-Myc with ap-Gal4, which allows for single cell resolution of nuclear 

localization. We observed some cells in which the Fra ICD is enriched in the nucleus and 

others in which the Fra ICD is mostly cytoplasmic (Figure 2.4B). When we expressed 

UAS-Fra ICD-∆P3-Myc with either eg-Gal4 or ap-Gal4, we detected its expression in the 

nucleus in every cell we examined, suggesting that the Fra ICD shuttles between the 

nucleus and cytoplasm in vivo and indicating that the NES we mapped in vitro appears to 

have the same activity in vivo (data not shown). Using a variety of Gal4 drivers, we were 

never able to detect the C-terminus of full-length Fra in nuclei in vivo, even using Fra∆P3, 

which lacks a NES (data not shown).  

Our inability to detect the C-terminus of full-length Fra in nuclei is reminiscent of 

reports that the C-terminus of full-length Notch cannot be detected in the nucleus by 

conventional immunostaining (Fehon et al., 1991; Lieber et al., 1993; Rebay et al., 1993), 

despite the finding that nuclear localization of the Notch ICD is necessary for its function 

(Struhl and Adachi, 1998). We reasoned that the nuclear abundance of the C-terminus of 

full-length Fra might, likewise, be too low at any given time for us to detect by 

conventional methods. Therefore, we designed a reporter for Fra nuclear localization, in 

order to label cells in which Fra has entered the nucleus, with the expectation that this 
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approach should be more sensitive than immunostaining (Figure 2.4C). We generated a 

transgene (UAS-Reporter) in which a transcription factor consisting of a DNA-binding 

domain from the bacterial transcription factor LexA (LexA DBD) and an activation 

domain from the yeast transcription factor Gal4 (Gal4 AD) is inserted at the very C-

terminus of full-length Fra (Figure 2.4C). The LexA DBD that we used to make this 

reporter has mutations that abolish its intrinsic ability to enter the nucleus (mutLexA 

DBD; Rhee et al., 2000; Marshall et al., 2007) and the Gal4 AD does not localize to the 

nucleus (Silver et al., 1988). We pan-neurally expressed this transgene with elav-Gal4 in 

embryos in which a membrane-bound GFP is under the control of lexAop (lexAop-mCD8-

GFP). Thus, GFP should only be expressed if the Fra ICD has access to the nucleus. 

Indeed, we detected GFP expression throughout the CNS in these embryos, including on 

commissural axons (Figure 2.4D), indicating that Fra can translocate to nuclei of 

commissural neurons in vivo.  

We attempted to make a variant of the Fra ICD that lacks the ability to enter the 

nucleus, in order to test whether nuclear localization of the Fra ICD is required for its 

ability to regulate comm. We made serial deletions across the entire Fra ICD and tested 

the localization of these variants in S2R+ cells. Using this assay, we did not identify a 

sequence that is required for nuclear localization (data not shown). We also used a 

reporter assay in yeast to test which sequences within the Fra ICD are sufficient to confer 

nuclear localization. We used a strain of yeast in which a lexAop insertion upstream of 

the ADE2 gene disrupts endogenous ADE2 expression, causing the cells to accumulate a 

red pigment. In this strain, ADE2 is under the control of lexAop, so expression of a 

transcriptional activator with a LexA DBD causes the yeast to turn white (Figure 2.5A). 
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We fused a series of sequences spanning the entire Fra ICD to the mutLexA DBD-Gal4 

AD transcriptional activator and expressed these fusion proteins in ADE2 reporter yeast. 

We identified three different regions of the Fra ICD that are sufficient to confer nuclear 

localization (Figure 2.5B). This redundancy prevented us from generating a Fra ICD 

variant that is defective for nuclear localization. 

 

The Fra ICD encodes a transcriptional activation domain 

The ICDs of DCC and Neo have been shown to function as transcriptional 

activators in reporter assays in vitro; however, whether these ICDs function as 

transcription factors in vivo and what, if any, is the biological significance of their 

transcriptional outputs is unknown (Taniguchi et al., 2003; Goldschneider et al., 2008).  

To determine whether the Fra ICD, like its vertebrate orthologs, contains an activation 

domain, we returned to the ADE2 reporter yeast strain. For these experiments, we took 

advantage of the fact that expression of a transcription factor consisting of a LexA DBD 

(fused, in this case, to a strong nuclear localization signal (NLS)) and any activation 

domain drives expression of ADE2, causing the yeast to turn white (Figure 2.6A). 

Expression of a LexA DBD-Fra ICD fusion produces white yeast, indicating that the Fra 

ICD can function as a transcriptional activator (Figure 2.6B). A fusion between a LexA 

DBD and a Fra ICD lacking the conserved P3 motif (Fra ICD∆P3) fails to drive reporter 

expression, while a fusion between LexA DBD and P3 functions as a transcriptional 

activator, indicating that P3 is necessary and sufficient for Fra’s transcriptional activation 

function (Figure 2.6B).   

 



 69 

Fra regulates midline axon crossing and comm expression by functioning as a 
transcriptional activator 
 

To determine whether Fra’s ability to regulate commissural axon guidance and 

comm expression depends on its function as a transcriptional activator, we examined 

whether Fra∆P3, which lacks Fra’s activation domain, could rescue fra loss-of-function 

phenotypes. Expression of UAS-Fra∆P3 with eg-Gal4 fails to rescue comm expression in 

the EW neurons of fra3 mutants (Figure 2.7). To more directly test whether this lack of 

rescue is a consequence of the loss of Fra’s activation domain or reflects other defects in 

the receptor, we performed a domain replacement experiment using the VP16 AD.  

Expression of UAS-Fra∆P3-VP16AD with eg-Gal4 does not rescue comm expression in 

fra3 mutants (Figure 2.7).  

 This result could either mean that Fra’s function as a transcriptional activator is 

not required for its ability to regulate comm or that P3 has an additional function in Fra’s 

comm-regulatory pathway besides its function as an activation domain. To distinguish 

between these possibilities, we attempted to make mutations in Fra that specifically 

abrogate its transcriptional function, while leaving P3, which forms an alpha helix 

(Hirano et al., 2011; Wei et al., 2011), structurally intact. We performed an alanine 

mutagenesis scan across P3 and determined whether each point mutant had a functional 

activation domain and NES (Figure 2.6C). We used the presence of a functional NES as a 

proxy for the structural integrity of P3, as leucine-rich NESs, such as the one in P3, are 

alpha helices and this structure, rather than primary sequence, is the basis for their 

recognition by the nuclear export karyopherin CRM1 (Dong et al., 2009). Therefore, we 

reasoned that mutant ICDs that lacked functional activation domains, but retained 

functional NESs were good candidates to have specific deficits in transcriptional 
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activation without deficits in other P3-dependent functions. To determine whether a point 

mutant ICD had a functional activation domain, we fused it to LexA DBD and expressed 

it in ADE2 reporter yeast. To determine whether a point mutant ICD had a functional 

NES, we fused it to a C-terminal epitope tag and examined its localization in S2R+ cells. 

Using this approach, we identified two point mutants, L1351A and E1354A, that are 

deficient for transcriptional activation, but are normally exported from the nucleus 

(Figure 2.6C) and we selected E1354A for further study. When we misexpressed UAS-

FraE1354A with ap-Gal4, we found that it induces ectopic midline crossing almost as 

effectively as wild-type Fra, suggesting that this mutant is able to carry out canonical 

Netrin signaling (Figure 2.6D). In contrast, expression of UAS-Fra-∆P3 with ap-Gal4 

causes a much weaker ectopic crossing phenotype (Figure 2.6D). 

 Having defined specific mutations that disrupt transcriptional activation without 

disrupting other P3-dependent activities of the receptor, we next tested whether 

FraE1354A is able to rescue Fra’s midline guidance and transcriptional regulatory 

activities. Expression of UAS-FraE1354A with eg-Gal4 fails to rescue the loss of comm 

expression in EW neurons of fra3 mutants, strongly suggesting that Fra’s transcriptional 

activation function is required for this activity (Figure 2.8B). We were surprised to find 

that FraE1354A provides no rescue of midline crossing (Figure 2.8A), even though this 

receptor is likely intact for Netrin-dependent signal transduction (Figure 2.6D). In fact, 

we found that expression of FraE1354A antagonizes midline crossing in embryos 

heterozygous for fra3 (Figure 2.9), suggesting that FraE1354A acts as a dominant 

negative with respect to midline crossing. To rigorously test whether FraE1354A’s 

inability to rescue midline crossing and comm expression stems from the disruption of 
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Fra’s activation domain, we generated a UAS-FraE1354A transgene with the VP16 AD 

fused to its C-terminus and evaluated its ability to rescue midline crossing and comm 

expression in fra3 mutants.  Strikingly, we found that addition of a heterologous VP16 

AD to the FraE1354A receptor restores its ability to rescue both midline crossing and 

comm expression, providing compelling in vivo evidence that Fra’s function as a 

transcriptional activator is required for its ability to promote midline crossing and 

regulate comm (Figure 2.8A-B).  

 

Discussion 

In this study, we identify the Fra ICD as a transcription factor that regulates the 

expression of comm, a key modulator of axonal responsiveness at the midline. γ-secretase 

proteolysis of Fra releases its ICD, which is capable of nuclear translocation and is 

sufficient to promote midline crossing and regulate comm expression in rescue and gain-

of-function assays in vivo. The conserved P3 motif within the Fra ICD functions as a 

transcriptional activation domain and this activity is required for Fra’s regulation of 

comm expression. Thus, in addition to its canonical role signaling locally to regulate 

growth cone dynamics, Fra functions as a transcription factor to regulate axonal 

responsiveness at the midline. 

 

Regulation of Fra’s function as a transcription factor 

comm is expressed in commissural neurons with exquisite temporal specificity 

(Keleman et al., 2002). How might the transcriptional activity of the Fra ICD be 

regulated to contribute to comm’s expression pattern? γ-secretase proteolysis is typically 
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the second cleavage event in a proteolytic cascade, preceded by ectodomain shedding. 

Indeed, pharmacological experiments suggest that DCC’s ectodomain is shed as a result 

of metalloprotease cleavage and that this proteolytic event is required for subsequent γ-

secretase-dependent processing (Galko and Tessier-Lavigne, 2000; Bai et al., 2010). 

Metalloprotease-dependent ectodomain shedding is often ligand-dependent, while 

subsequent γ-secretase processing depends on the shape of the membrane-tethered 

metalloprotease cleavage product. For example, metalloprotease-dependent shedding of 

the Notch ectodomain is stimulated by the binding of Notch ligands (Brou et al., 2000; 

Mumm et al., 2000), and the subsequent γ-secretase cleavage of the membrane-tethered 

ICD is constitutive (Struhl and Adachi, 2000). As Fra regulates comm independent of 

Netrins (Yang et al., 2009), Fra ectodomain shedding may occur in response to the 

binding of a different ligand. Alternative ligands for DCC have been identified, including 

the vertebrate-specific proteins Draxin (Ahmed et al., 2011) and Cerebellin 4 (Haddick et 

al., 2014). In addition, the secreted protein MADD-4 physically associates with the C. 

elegans ortholog of Fra/DCC, UNC-40, and guides sensory neurons and muscle arms in 

an UNC-40-dependent manner (Seetharaman et al., 2011; Chan et al., 2014). The 

function of the Drosophila ortholog of MADD-4, CG31619, has not been investigated, 

nor has its ability to bind to Fra.  

It seems unlikely that the transcriptional activity of the Fra ICD is controlled at 

the level of nuclear localization. When we express Fra ICD∆P3 (lacking a NES) in the 

commissural EW neurons in vivo, it accumulates in the nucleus at the earliest 

developmental stages we can observe (data not shown), suggesting that the Fra ICD is 

constitutively imported into the nucleus. We observe nuclear accumulation of full length 
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Fra ICD (with a NES) only occasionally (Figure 2.4B and data not shown), implying that 

after the Fra ICD translocates to the nucleus, it is rapidly exported. The fact that Fra’s 

NES and activation domain are both encoded by P3 raises the possibility that when Fra is 

engaged in transcriptional activation, the association of co-activators with P3 might 

prevent it from associating with nuclear export machinery, coupling Fra’s nuclear activity 

to its nuclear retention.  

 

Mechanism of Fra’s function as a transcription factor 

Our finding that Fra’s ability to regulate comm expression depends on its function 

as a transcriptional activator implies that the Fra ICD can associate with chromatin, but 

the Fra ICD does not contain an obvious DNA-binding domain. A Neo DNA-binding 

domain has not been identified either, but chromatin immunoprecipitation experiments 

have demonstrated that the Neo ICD associates with chromatin in vitro (Goldschneider et 

al., 2008). The Fra ICD’s DNA-binding activity and specificity likely arise from 

associations between the Fra ICD and DNA-binding partners, as is the case with Notch. 

The Notch ICD has no DNA-binding activity of its own and associates with DNA as part 

of a complex including an obligate CSL (CBF1/RBPjκ, Su(H), Lag-1) DNA-binding 

partner (Nam et al., 2006; Wilson and Kovall, 2006). If the Fra ICD can associate with 

multiple DNA-binding proteins, it might allow the Fra ICD to regulate the expression of 

many different target genes, depending on which of its DNA-binding partners are 

expressed in particular cell types or developmental contexts.  

The observation that a structurally intact P3 is required for Fra-dependent 

transcription (Figure 2.7) suggests that P3 plays another role in Fra’s transcriptional 
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output besides its function as an activation domain. One possibility is that P3 is required 

for Fra’s association with chromatin, perhaps by functioning as a binding interface for 

Fra’s DNA-binding co-factors. This idea is supported by our observation that FraE1354A 

antagonizes midline crossing in both fra mutants and heterozygotes, while Fra∆P3 has 

only a mild effect (Figures 2.8A-B and 2.9). Perhaps the ICD of FraE1354A inhibits 

midline crossing by occupying chromatin sites that are normally targets of both Fra and 

other transcriptional activators that act in a parallel pathway; the ICD of Fra∆P3 would 

not have this effect if P3 is required for Fra’s association with chromatin. Fra E1354A is 

not likely to be inhibiting endogenous Fra in our rescue experiments, as fra3 is either a 

strong hypomorphic or null allele (Kolodziej et al., 1996; Yang et al., 2009). This model 

predicts that Fra has other transcriptional targets in EW neurons that are relevant for 

commissural axon guidance. It will be informative to identify additional transcriptional 

targets of Fra both in embryonic commissural neurons and in other cell types. In the 

retina, R8 photoreceptor axons have targeting defects that are much milder in Netrin 

mutants than in fra mutants (Timofeev et al., 2012), raising the possibility that the Netrin-

independent output of Fra signaling in this system might be through the transcriptional 

pathway we have identified.  

 
Proteolytic regulation of axon guidance receptor signaling  

 Cleavage of axon guidance receptors has been shown to regulate the activities of 

these receptors in a number of different ways. Degradation of axon guidance receptors 

can provide temporal control of axonal sensitivity to guidance cues. In vertebrates, this 

mode of regulation controls axonal responsiveness to members of the class 3 family of 

secreted Semaphorins (Sema3s), which signal repulsion through Neuropilin (Nrp)/Plexin 
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(Plex) co-receptors. Calpain proteolysis of PlexA1 in pre-crossing spinal commissural 

neurons reduces their sensitivity to Sema3B, which is expressed in the ventral spinal cord 

as these axons are growing toward the ventral midline (Nawabi et al., 2010). ADAM 

metalloprotease cleavage of Nrp1 reduces the sensitivity of proprioceptive sensory axons 

to Sema3A allowing them to terminate in the ventral spinal cord, where Sema3A 

expression is high (Romi et al., 2014). In addition, γ-secretase proteolysis of DCC in 

vertebrate motor neurons inhibits their responsiveness to midline-derived Netrin, 

preventing them from ectopically projecting toward the midline (Bai et al., 2011).  

Proteolytic processing has also been implicated as a requisite step in local 

repulsive Robo signaling in Drosophila (Coleman et al., 2010). The Robo ectodomain is 

cleaved by the ADAM metalloprotease Kuzbanian and this proteolytic event is required 

for Robo’s ability to transduce repulsive signals in vivo and for Slit-dependent 

recruitment of effectors of local Robo signaling in vitro. As γ-secretase-dependent 

intramembrane proteolysis is typically constitutive following ectodomain shedding, and 

occurs subsequent to metalloprotease processing of the human Robo1 receptor (Seki et al., 

2010), it is likely that Drosophila Robo is cleaved to produce a soluble ICD. The 

observation that Robo proteolysis is required for local Slit-Robo signaling does not 

exclude the possibility that the Robo ICD may also have a nuclear function that 

contributes to axon guidance in the fly, but this possibility has not yet been explored. 

Proteolysis has also been identified as a regulator of contact-mediated axonal 

repulsion. Eph receptors signal repulsion in response to their transmembrane ephrin 

ligands; ephrins can also function as receptors, signaling repulsion in response to Eph 

binding. Metalloprotease and subsequent γ-secretase cleavage of both Ephs and ephrins 
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have been demonstrated, providing a mechanism through which adhesive interactions can 

be broken to allow for repulsive signaling (Hattori et al., 2000; Janes et al., 2005; Tomita 

et al., 2006; Litterst et al., 2007; Lin et al., 2008; Gatto et al., 2014). The importance of 

this mode of regulation for axon targeting has not yet been established in vivo and a 

recent study using an EphA4 variant that is insensitive to metalloprotease cleavage 

suggests that EphA4 proteolysis is not required for EphA4-dependent motor axon 

targeting (Gatto et al., 2014).  

Here, we have identified a new way in which axon guidance receptor proteolysis 

can influence axon responsiveness to guidance cues. γ-secretase-dependent processing of 

Fra releases its ICD, which translocates to the nucleus, where it functions as a 

transcription factor to regulate the guidance of commissural axons (Figure 2.10). We 

propose that the ability to signal from the nucleus may be a common property of axon 

guidance receptors and may serve as a general mechanism through which axon guidance 

receptors regulate their own activity or the activities of other receptors. Human Robo1 is 

processed by sequential metalloprotease and γ-secretase cleavage and its ICD localizes to 

the nucleus in vitro (Seki et al., 2010). It remains to be seen whether the ICDs of Ephs, 

ephrins, and Neuropilins, which are cleaved by γ-secretase, and of Plexins, which are 

proteolytically processed, but have not yet been identified as γ-secretase substrates, 

translocate to the nucleus as well. It will also be interesting to determine whether the 

ICDs of other axon guidance receptors signal from the nucleus to regulate aspects of 

neuronal morphogenesis and function besides axon pathfinding. Finally, recent work 

indicating that the cleaved C-terminus of the Drosophila Wnt receptor Frizzled 

translocates to the nucleus and contributes to the establishment of postsynaptic structures 
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by regulating RNA export (Mathew et al., 2005; Mosca and Schwarz, 2010; Speese et al., 

2012) serves as a reminder that the trafficking of cell surface receptor fragments to the 

nucleus may allow these fragments to signal not only by regulating transcription, but in 

other ways as well.  

 
Experimental Procedures 
 
Molecular biology 
 

The Fra ICD (amino acids 1098-1375) was amplified by PCR from pUAST-Fra-

Myc (Garbe and Bashaw, 2007) and cloned as an EcoRI/NotI fragment into pUAST to 

generate pUAST-Fra ICD-Myc. Fra ICDs containing P motif deletions were amplified by 

PCR from full-length Fra constructs containing these deletions (Garbe et al., 2007) and 

Fra ICDs containing deletions of non-P motifs or containing point mutations were 

generated using serial overlap extension PCR, using pUAST-Fra ICD-Myc as a template. 

All Fra ICD constructs were cloned as EcoRI/NotI fragments into pUAST and start 

codons were added to all constructs. Myc-tagged Fra ICD was also cloned as an 

EcoRI/NotI fragment into a pUAST vector containing 10x UAS and an attB site for 

φC31-mediated targeted integration (p10UASTattB).  

For yeast nuclear localization assays, untagged Fra ICD fragments were amplified 

by PCR from pUAST-Fra ICD-Myc and cloned into pNIA-CEN (Marshall et al., 2007) 

as EcoRI/BamHI fragments. For yeast activation assays, untagged full-length Fra ICD, 

Fra ICD∆P3, and P3 were amplified by PCR from pUAST-Fra ICD-Myc and cloned as 

EcoRI/BamHI fragments into pEG202-NLS. Point mutant variants of the Fra ICD were 
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generated using serial overlap extension PCR using pEG202-NLS-Fra ICD as a template 

and cloned as EcoRI/BamHI fragments into pEG202-NLS.  

To generate the Fra nuclear localization reporter, a fusion between the C-terminus 

of Fra and a LexA DBD-Gal4 AD transcription factor was generated by serial overlap 

extension PCR using p10UAST-Fra-Myc and pNIA-CEN as templates. This fusion was 

cloned as a PshAI/NotI fragment into p10UAST-Fra-Myc. During this process, the C-

terminal Myc tag was removed from Fra. 

Full-length wild-type and mutant Fra constructs used for rescue experiments in 

Figures 2.7, 2.8, and 2.9 were cloned into a p10UASTattB. These constructs include 

identical heterologous UTR and signal sequences (from the wingless gene) and N-

terminal 3x HA tags. Untagged Fra and Fra∆P3 were amplified by PCR from p10UAST-

Fra-Myc without a signal sequence and cloned as SpeI/KpnI fragments into pUAST-HA-

Robo (Evans and Bashaw, 2010b), which had been cut with NheI and KpnI to remove 

Robo. HA-tagged Fra and Fra∆P3 were cut from the resulting plasmid and cloned as 

NotI/KpnI fragments into p10UASTattB to generate p10UAST-HA-Fra and p10UAST-

HA-Fra∆P3. The Fra C-terminus was amplified from pEG202-NLS-FraE1354A ICD and 

cloned as a PshAI/KpnI fragment into p10UAST-HA-Fra to generate p10UAST-HA-

FraE1354A. The VP16 activation domain was fused to the C-terminus of Fra∆P3 and 

FraE1354A by serial overlap extension PCR using p10UAST-HA-Fra∆P3, p10UAST-

HA-FraE1354A, and pTol2-LexA-VP16 (from Jonathan Raper) as templates. During this 

process, the VP16 activation domain was mutated to destroy a PshAI site. These fusions 

were then cloned as PshAI/KpnI fragments into p10UAST-HA-Fra.  
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All constructs were sequenced to ensure that mutations were not introduced 

during PCR amplification. 

 

Genetics 

The following mutant alleles were used in this study: fra3 (Kolodziej et al., 1996); 

psn12 (Lukinova et al., 1999); psn145 (Annette Parks, personal communication to 

FlyBase); aph1D35 (Hu and Fortini, 2003); egMZ360 (eg-Gal4; Dittrich et al., 1997); apGal4 

(ap-Gal4; Benveniste et al., 1998). 

The following published transgenic lines were used in this study: P{UAS-Fra-

Myc} 86Fb (O’Donnell et al., 2013); P{UAS-Fra-HA} #2 (Garbe et al., 2007); P{UAS-

Fra∆C-HA} #2 (Garbe et al., 2007); P{13XLexAop2-mCD8::GFP}attP2 (Bloomington 

Stock Center); P{UAS-Tau-Myc-GFP} (Callahan et al., 1998); P{Gal4-elav.L}3 (elav-

Gal4; Bloomington Stock Center). 

The following transgenic lines were generated: P{UAS-Fra ICD-Myc} 86Fb; 

P{UAS-Fra ICD-Myc} #26; {UAS-Fra nuclear localization reporter} 86Fb; P{UAS-HA-

Fra} 86Fb; P{UAS-HA-Fra∆P3} 86Fb; P{UAS-HA-Fra∆P3-VP16AD} 86Fb; P{UAS-

HA-FraE1354A} 86Fb; P{UAS-HA-FraE1354A-VP16AD} 86Fb. Transgenic flies were 

generated by BestGene Inc. (Chino Hills, CA), using φC31-directed targeted integration 

into the same landing site for all constructs (at cytological position 86Fb) to ensure 

comparable mRNA expression levels between lines. In addition, standard P-element 

transformation was used to generate UAS-Fra ICD-Myc lines and one of these, P{UAS-

Fra ICD-Myc} #26, was used for rescue experiments scored in Figure 2.2B.  
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All crosses were performed at 25ºC. Immunostained embryos were genotyped 

using a combination of balancer chromosomes with embryonically expressed markers 

and linked, epitope-tagged transgenes. 

 

Immunostaining of embryos 

Embryo fixation and staining were performed as described (Kidd et al., 1998a). 

The following primary antibodies were used: rabbit anti-Myc (Sigma, C3956, 1:500), 

rabbit anti-GFP (Life Technologies, A11122, 1:250), chick anti-βgal (Abcam, 9361, 

1:1000), mouse anti-βgal (DSHB, 40-1a, 1:50), mouse anti-nuclear lamin (DSHB, 

ADL84.12, 1:20), Alexa 647-conjugated goat anti-horseradish peroxidase (Jackson, 123-

605-021, 1:250). The following secondary antibodies were used: Cy3 goat anti-rabbit 

(Jackson, 115-165-003, 1:1000), Alexa-488 goat anti-mouse (Life Technologies, A11001, 

1:500), Cy3 goat anti-chick (Abcam, 97145, 1:500), HRP goat anti-rabbit (Cell Signaling, 

7074S, 1:500). For the nuclear localization reporter experiments in embryos, the GFP 

signal was enhanced using the Tyramide Signal Amplification kit (Perkin Elmer) 

according to manufacturer’s instructions.  

 

Fluorescent in situ hybridization  

Fluorescent in situ hybridization was performed as previously described 

(Labrador et al., 2005) and antisense, digoxigenin-labeled comm probes were generated 

as previously described (Yang et al., 2009).  
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Imaging and phenotypic analysis 

 Images were acquired using a spinning disk confocal system (Perkin Elmer) built 

on a Nikon Ti-U inverted microscope using a Nikon OFN25 60x objective with a 

Hamamatsu C10600-10B CCD camera and Yokogawa CSU-10 scanner head with 

Volocity imaging software. Images were processed using ImageJ. When scoring EW 

crossing, a segment was considered to have a crossing defect if one or both bundles of 

EW axons (one bundle per hemisegment, two bundles per segment) failed to reach the 

midline. When scoring ap crossing, a segment was considered to have an ectopic cross if 

it contained at least one continuous projection that extended all the way across the 

midline and reached the lateral bundle of ap axons on the contralateral side. comm 

expression was scored using Volocity imaging software. Embryos expressed UAS-Tau-

Myc-GFP and EW or ap neurons were identified by anti-Myc immunostaining. If the cell 

body of a neuron could be detected by the in situ signal, that neuron was scored as 

positive. Crossing and comm expression were scored in EW neurons at stage 14 and in ap 

neurons at early stage 17. For all analyses, segments A1-A7 were scored.  Midline 

crossing phenotypes and comm mRNA expression were scored blind to genotype 

whenever possible. 

 

Biochemistry 

To generate embryonic lysates, approximately 100 µl of dechorionated embryos 

were lysed in 0.5 ml of TBS-V (10 mM Tris (pH 8), 150 mM NaCl, 1 mM Na3VO4) 

supplemented with 1% Surfact-AMPS NP-40 (Thermo Scientific), complete protease 

inhibitor cocktail (Roche), and 1 mM PMSF by manual homogenization using a plastic 
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pestle. For the experiments in psn and aph-1 mutants, 20-24 hour staged collections of 

embryos were generated. After homogenization, embryos were gently rocked at 4ºC for 

10 minutes and centrifuged in a pre-chilled rotor for 10 minutes at 14,000 rpm. An 

aliquot of the total lysate was removed for analysis by Western blot. The remainder of the 

soluble phase was removed and incubated with 1-2 µg of rabbit anti-Myc antibody 

(Millipore) or rabbit anti-HA antibody (Covance) for 45 minutes with gentle rocking at 

4ºC. 50 µl of a 50% slurry of protein A and protein G agarose (Invitrogen) were added to 

the tubes and samples were incubated for an additional 30 minutes with gentle rocking at 

4ºC. Samples were washed three times in lysis buffer and then boiled for 10 minutes in 

50 µl of 2x Laemmli SDS Sample Buffer. Proteins were resolved by SDS-PAGE on 12% 

polyacrylamide gels and transferred to nitrocellulose for subsequent overnight incubation 

at 4ºC with mouse anti-Myc (DSHB, 9E10, 1:1000) or mouse anti-HA (Covance, 16B12, 

1:1000) in PBS supplemented with 5% dry milk and 0.1% Tween-20. Secondary 

antibodies (HRP goat anti-mouse, Caltag, 6920-100, 1:25,000) were applied for 1 hour at 

room temperature. Signals were detected using either ECL 2 or ECL Prime (Amersham) 

according to manufacturers instructions. Western blots were quantified using the gel 

analysis tool in ImageJ. 

 

Cell culture and immunostaining 

Drosophila S2R+ cells were maintained at 25ºC in Schneider’s medium 

containing 10% fetal calf serum. Cells were seeded on poly-L-lysine-coated coverslips 

and transfected with 0.5 µg of the appropriate UAS-containing plasmid and 0.5 µg of 

pRmHa-3-Gal4 (Klueg et al., 2002) using Effectene (Qiagen) according to 



 83 

manufacturer’s instructions. After 24 hours, Gal4 expression was induced with 1 mM 

CuSO4. 24 hours post-transfection, cells were treated with either 1 µM Leptomycin B 

(Cell Signaling) or the equivalent volume of vehicle (ethanol) for 6 hours, washed with 

PBS, and fixed with 4% paraformaldehyde/PBS for 15 minutes at room temperature. 

Fixed cells were permeabilized with 0.1% Triton X-100/PBS for 5 minutes, blocked with 

0.1% Triton X-100/PBS + 5% normal goat serum for 5 minutes, incubated with primary 

antibodies at room temperature for 1 hour and secondary antibodies at room temperature 

for 30 minutes. The following primary antibodies were used: rabbit anti-Myc (Sigma 

C3956, 1:500), mouse anti-nuclear lamin (DSHB, ADL84.12, 1:20). The following 

secondary antibodies were used: Cy3 goat anti-rabbit (Jackson 115-165-003, 1:1000), 

Alexa-488 goat anti-mouse (Life Technologies A11001). 

 

Yeast transformations 

The yeast strain used for both nuclear localization and activation reporter assays 

was Y860 [α his3-11, 15 leu2-3, 112 trp1-1 ade2-1 can1-100 ura3-1::URA3:lexAop-

ADE2] (a gift from Erfei Bi). Yeast cells were grown overnight at 30ºC in liquid YPD 

media until log phase (OD600 = 0.4-0.6). The PEG/lithium acetate method was used to 

transform yeast (Ito et al., 1983). Yeast were then plated onto solid SD media lacking 

histidine and grown at 30ºC for 2-3 days. 
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Figure 2.1. Fra is cleaved by γ-secretase. 
 
 

 
 
 



 86 

Figure 2.1. Fra is cleaved by γ-secretase. 
 
A) Protein extracts were made from embryos pan-neurally expressing either a full-length 

Fra receptor with a C-terminal 6x Myc tag (first lane) or a similarly tagged Fra ICD 

(second lane). Proteins were resolved by SDS-PAGE and Western blots were performed 

with anti-Myc antibody. We detected full-length receptor at approximately 200 kDa (FL) 

and several C-terminal fragments, including species at approximately 50 kDa, 35 kDa, 

and 25 kDa (ICD A, ICD B, and ICD C; indicated by asterisks).  

B) Protein extracts were made from embryos pan-neurally expressing either a full-length 

Fra receptor with a C-terminal 3x HA tag (first lane) or a Fra receptor missing its 

cytoplasmic domain (second lane) and HA-tagged proteins were immunoprecipitated 

from these extracts with anti-HA antibody (third and fourth lanes). Proteins were 

resolved by SDS-PAGE and Western blots were performed with anti-HA antibody. The 

3x HA tag is smaller than the 6x Myc tag and, accordingly, ICD A, ICD B, and ICD C 

are shifted to smaller sizes of approximately 45 kDa, 30 kDa, and 20 kDa in both total 

protein extracts and immunoprecipitates (first and third lanes, indicated by asterisks). We 

did not detect these species in extracts or immunoprecipitates from embryos expressing 

Fra∆C (second and fourth lanes). The position of the IgG heavy chain is indicated in the 

lanes that contain immunoprecipitates. 

C) Schematic of strategy used to express UAS-Fra-Myc with elav-Gal4 specifically in 

psn mutants. 

D) Schematic of strategy used to express UAS-Fra-HA with elav-Gal4 specifically in 

aph-1 mutants.  
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E) Protein extracts from embryos pan-neurally expressing Fra-Myc in psn12 mutants were 

resolved by SDS-PAGE and Western blots were performed with anti-Myc antibody. All 

three C-terminal fragments (indicated by asterisks) are reduced in abundance relative to 

full-length receptor in the total lysates (compare first and second lanes) and the two 

smaller fragments are reduced in abundance in immunoprecipitates (compare third and 

fourth lanes). ICD A is obscured in immunoprecipitates by the IgG heavy chain.  

F) Quantification of Fra ICD fragments in total lysates relative to full-length receptor in 

psn12/+ compared to psn12/psn12. Data were analyzed by Student’s t-test. ** indicates 

p<0.005. Error bars indicate standard deviation. Data are from six independent 

experiments. 

G) Protein extracts from embryos pan-neurally expressing Fra-HA in aph-1D35 mutants 

were made and HA-tagged proteins were immunoprecipitated with anti-HA antibody. 

Proteins were resolved by SDS-PAGE and Western blots were performed with anti-HA 

antibody. The two smaller fragments (indicated by asterisks) are reduced in abundance in 

immunoprecipitates. The largest fragment is obscured by the IgG heavy chain.  

H) Quantification of Fra ICD fragments relative to full-length receptor in aph-1D35/+ 

compared to aph-1D35/ aph-1D35. Data were analyzed by Student’s t-test. ** indicates 

p<0.005. Error bars indicate standard deviation. Data are from four independent 

experiments. 
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Figure 2.2. The Fra ICD is sufficient to fully rescue comm expression and partially 
rescue midline crossing defects in commissural neurons of fra mutants. 
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Figure 2.2. The Fra ICD is sufficient to fully rescue comm expression and partially 
rescue midline crossing defects in commissural neurons of fra mutants. 
 
A) Fluorescent in situ hybridization for comm mRNA (green) in stage 14 embryos. 

Anterior is up. The cell bodies and axons of EW neurons are labeled with eagle-Gal4 

driving expression of UAS-Tau-Myc-GFP. Anti-Myc immunostaining is shown in 

magenta. White circles indicate the positions of EW neuron cell bodies. Solid circles 

indicate EW neurons that express comm and dotted circles indicate EW neurons that do 

not express comm. Open arrowheads indicate segments in which EW axons fail to cross 

the midline. 

B) Quantification of EW axon crossing in stage 14 embryos. Data were analyzed by 

ANOVA, followed by Student’s t-test. *** indicates p<0.0001, compared to fra mutants. 

** indicates p<0.005, compared to fra mutants. Error bars indicate SEM. Number in 

parentheses indicates number of embryos scored. 

C) Quantification of comm expression in EW neurons in stage 14 embryos. Data were 

analyzed by ANOVA, followed by Student’s t-test. *** indicates p<0.0001, compared to 

fra mutants. * indicates p<0.01, compared to fra mutants. Error bars indicate SEM. 

Number in parentheses indicates number of embryos scored. 
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Figure 2.3. γ-secretase proteolysis of Fra is required for Fra’s ability to regulate 
comm expression.  
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Figure 2.3. γ-secretase proteolysis of Fra is required for Fra’s ability to regulate 
comm expression.  
 
A) Fluorescent in situ hybridization for comm mRNA (green) in stage 17 embryos. 

Anterior is up. The cell bodies and axons of ap neurons are labeled with apterous-Gal4 

driving expression of UAS-Tau-Myc-GFP. Anti-Myc immunostaining is shown in 

magenta. White circles indicate the positions of dorsal apterous neuron cell bodies. Solid 

circles indicate ap neurons that express comm and dotted circles indicate ap neurons that 

do not express comm. Arrowheads indicate segments in which ap axons ectopically cross 

the midline. 

B) Quantification of ap axon crossing in stage 17 embryos. Data were analyzed by 

ANOVA, followed by Student’s t-test. *** indicates p<0.0001, compared to wild type 

embryos. ** indicates p<0.005, compared to wild type embryos. Error bars indicate SEM. 

Number in parentheses indicates number of embryos scored. 

C) Quantification of comm expression in dorsal ap neurons in stage 17 embryos. Data 

were analyzed by ANOVA, followed by Student’s t-test. ** indicates p<0.005, compared 

to wild type embryos. * indicates p<0.02, compared to wild type embryos. ### indicates 

p<0.0001, compared to wild type embryos expressing two copies of Fra. ## indicates 

p<0.002, compared to wild type embryos expressing two copies of Fra. Error bars 

indicate SEM. Number in parentheses indicates number of embryos scored. 
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Figure 2.4. The Fra ICD shuttles between the cytoplasm and the nucleus.  
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Figure 2.4. The Fra ICD shuttles between the cytoplasm and the nucleus.  

A) S2R+ cells were transfected with the indicated Myc-tagged constructs and treated with 

Leptomycin B or vehicle, as indicated. Cells were immunostained with antibodies against 

Myc (magenta) and nuclear lamin (green). A single optical plane is shown.  

B) Stage 16 embryo in which apterous-Gal4 is driving expression of UAS-Fra ICD-Myc. 

Anterior is up. The embryo is stained with antibodies against Myc (magenta) and nuclear 

lamin (green). The regions inside the white boxes are enlarged to the sides of the main 

panel. Note that in the cell on the left, the Fra ICD is enriched in the nucleus, while in the 

cell on the right, the Fra ICD is largely excluded from the nucleus. A single optical plane 

is shown.  

C) Schematic of nuclear localization reporter assay.  

D) Stage 16 embryos stained with antibodies against GFP (green) and horseradish 

peroxidase (HRP; magenta). HRP immunostaining labels the axonal scaffold. Anterior is 

up. 
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Figure 2.5. Nuclear localization is redundantly encoded in the Fra ICD.  
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Figure 2.5. Nuclear localization is redundantly encoded in the Fra ICD.  
 
A) Schematic of yeast nuclear localization assay.  

B) Yeast were transformed with plasmids encoding fusions between the mutLexA DBD-

Gal4 AD transcriptional activator and the indicated regions of the Fra ICD. Numbers 

indicate the amino acids included in each fragment. Note that 1098-1120 and 1141-1268 

have strong activity and 1269-1301 (P2) has detectable, but weaker activity.  
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Figure 2.6. The Fra ICD encodes a transcriptional activation domain.  
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Figure 2.6. The Fra ICD encodes a transcriptional activation domain.  

A) Schematic of yeast activation assay.  

B) Yeast were transformed with plasmids encoding LexA DBD and the indicated forms 

of the Fra ICD. Note that P3 is necessary and sufficient for activation.  

C) Summary of an alanine mutagenesis scan to identify point mutants within P3 that are 

specifically deficient for transcriptional activation. Data in the export column indicate 

whether the mutant ICD was exported from the nucleus in S2R+ cells. Y indicates that 

the ICD did not accumulate in the nucleus in the absence of Leptomycin B. N indicates 

that the ICD accumulated in the nucleus in the absence of Leptomycin B. Data in the 

activation column indicate whether the mutant ICD functioned as transcriptional activator 

in the yeast assay. ++ indicates that the yeast appeared white; + indicates that the yeast 

appeared light pink; - indicates that the yeast appeared dark pink. n.t. indicates that the 

mutant was not tested. n.a indicates alanine residues within P3. The mutants enclosed in 

the red boxes appear functional for nuclear export, but non-functional for transcriptional 

activation.  

D) Quantification of ap axon crossing in stage 17 embryos. Data were analyzed by 

ANOVA, followed by Student’s t-test. *** indicates p<0.0001, compared to embryos 

expressing Fra. n.s. indicates p>0.05, compared to embryos expressing Fra. Error bars 

indicate SEM. Number in parentheses indicates number of embryos scored.  
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Figure 2.7. P3 is required for Fra’s ability to regulate comm expression.  
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Figure 2.7. P3 is required for Fra’s ability to regulate comm expression.  

Quantification of comm expression in EW neurons in stage 14 embryos. Data were 

analyzed by ANOVA, followed by Student’s t-test. *** indicates p<0.0001, compared to 

fra mutants. ** indicates p<0.005, compared to fra mutants. n.s. indicates p>0.05, 

compared to fra mutants. Error bars indicate SEM. Number in parentheses indicates 

number of embryos scored.  
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Figure 2.8. Fra’s transcriptional activation function is required for its ability to 
regulate midline crossing and comm expression.  
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Figure 2.8. Fra’s transcriptional activation function is required for its ability to 
regulate midline crossing and comm expression. 
 
A) Quantification of EW axon crossing in stage 14 embryos. Data were analyzed by 

ANOVA, followed by Student’s t-test. *** indicates p<0.0001, compared to fra mutants. 

n.s. indicates p>0.05, compared to fra mutants. Error bars indicate SEM. Number in 

parentheses indicates number of embryos scored.  

B) Quantification of comm expression in EW neurons in stage 14 embryos. Data were 

analyzed by ANOVA, followed by Student’s t-test. *** indicates p<0.0001, compared to 

fra mutants. ** indicates p<0.005, compared to fra mutants. n.s. indicates p>0.05, 

compared to fra mutants. Error bars indicate SEM. Number in parentheses indicates 

number of embryos scored.  
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Figure 2.9. FraE1354A antagonizes midline crossing in commissural neurons. 
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Figure 2.9. FraE1354A antagonizes midline crossing in commissural neurons. 

Quantification of EW axon crossing in stage 14 embryos. Data were analyzed by 

ANOVA, followed by Student’s t-test. *** indicates p<0.0001, compared to fra 

heterozygotes. * indicates p<0.05, compared to fra heterozygotes. Error bars indicate 

SEM. Number in parentheses indicates number of embryos scored.  
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Figure 2.10. A model for Fra-dependent comm expression. 
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Figure 2.10. A model for Fra-dependent comm expression. 

Full-length Fra is cleaved by γ-secretase, likely in response to an unknown ligand, which 

stimulates metalloprotease cleavage. The soluble ICD then translocates to the nucleus, 

where it functions as a transcriptional activator to induce comm expression, either directly 

or indirectly. The Fra ICD likely associates with DNA by interacting with one or more 

unknown DNA-binding proteins. P3 functions as a transcriptional activation domain.  
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Chapter 3 
 
Future directions 
  

My thesis research found that, in addition to its canonical role signaling locally in 

the growth cone to promote axon outgrowth and attraction in response to Netrins, the 

axon guidance receptor Frazzled (Fra)/Deleted in Colorectal Cancer (DCC) is cleaved to 

release its intracellular domain (ICD), which functions as a transcription factor in vivo to 

regulate the expression of the Slit-Robo antagonist, commissureless (comm) and promote 

midline crossing of commissural axons in the Drosophila embryo. Several questions 

about the mechanism through which Fra regulates transcription remain unanswered, 

including what genes act upstream of Fra in the comm-regulatory pathway and how the 

Fra ICD interacts with DNA. In addition, my thesis work raised several broader questions, 

including whether this mechanism is conserved in other organisms, what other genes Fra 

and its orthologs might regulate in commissural neurons and other cell types, and whether 

other axon guidance receptor ICDs have nuclear functions in vivo. In this chapter, I 

discuss experimental approaches to address these questions, with a focus on experiments 

that can be performed in the Drosophila embryo. 
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Genes upstream of Fra that control Fra’s ability to regulate transcription 

Pharmacological experiments suggest that metalloprotease cleavage precedes γ-

secretase cleavage of DCC (Galko and Tessier-Lavigne, 2000; Bai et al., 2011). It is not 

clear whether metalloprotease processing of DCC is Netrin-dependent, dependent on 

another ligand, or ligand-independent. As metalloprotease processing of many substrates 

is ligand-gated and Fra’s transcriptional regulation of comm is Netrin-independent (Yang 

et al., 2009), it seems likely that another ligand regulates proteolysis of Fra. In addition, 

the metalloprotease that cleaves Fra prior to γ-secretase proteolysis has not been 

identified. Thus, genes that act upstream of γ-secretase to regulate Fra-dependent comm 

expression remain unknown.  

One candidate ligand for Fra is CG31619, which is orthologous to MADD-4 in C. 

elegans. MADD-4 is a secreted protein that can bind to UNC-40/DCC and guides sensory 

neurons and muscle arms in an UNC-40-dependent manner (Seetharaman et al., 2011; 

Chan et al., 2014). CG31619 mutants should be analyzed to determine whether they have 

defects in comm expression and EW axon crossing and biochemical experiments should 

be performed to determine whether CG31619 can bind to Fra. If CG31619 is not a ligand 

for Fra or if it binds Fra, but is not required for its ability to regulate comm, perhaps the 

relevant Fra ligand(s) could be identified in a screen. Soluble, alkaline phosphatase-

tagged receptor ectodomains can be used to probe live-dissected embryos and detect 

ligands (Flanagan et al., 2000). This approach has been used in fly embryos over-

expressing secreted and cell surface molecules to identify ligands for orphan receptors, 

and a panel of fly lines in which secreted and cell surface molecules are under UAS 

control already exists (Fox and Zinn, 2005; Kurusu et al., 2008).  
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The metalloprotease that cleaves DCC has not been identified, but Neogenin is 

reportedly cleaved by the metalloprotease Tumor Necrosis Factor-α−converting enzyme 

(TACE/ADAM17; Okamura et al., 2011). Flies have an orthologous gene (tace), but 

neither mutant phenotypes nor expression data have been reported. Flies have fewer than 

ten genes with confirmed or predicted metalloprotease activity, so examining each (with 

preference given to those with strong expression in the embryonic CNS) should not be 

prohibitive. To test whether candidate metalloproteases cleave the Fra ectodomain, Fra 

with an extracellular epitope tag could be expressed in metalloprotease mutants and the 

abundance of Fra’s ectodomain in embryo lysates evaluated by Western blot, using 

approaches similar to those that we used to examine the generation of Fra ICD fragments 

in psn and aph-1 mutant embryos (see Results section of Chapter 2 and Figure 2.1C-H).  

For any candidate ligand or metalloprotease, mutants should be analyzed to 

determine whether they have defects in commissural axon guidance and, more 

importantly, comm expression. Analysis of midline crossing phenotypes may be 

complicated. For example, embryos with mutations in genes encoding additional Fra 

ligands might not have defects in midline crossing, as the Netrin-dependent outputs of 

Fra signaling will remain intact. Embryos lacking both fly Netrin genes (NetAB) and the 

ligand required for Fra proteolysis should have midline crossing defects comparable to 

those seen in fra mutants, unless Fra promotes midline crossing through yet another 

pathway. Metalloproteases have many targets, so analysis of midline crossing defects in 

metalloprotease mutants may be confounded by several different factors. For example, 

the ADAM metalloprotease Kuzbanian (Kuz) is required for Robo signaling, and kuz 

mutant embryos have a phenotype that reflects a loss of midline repulsion (Fambrough et 
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al., 1996; Schimmelpfeng et al., 2001; Coleman et al., 2010). This phenotype could mask 

a role for Kuz in promoting midline attraction. In addition, Kuz is maternally deposited 

(Fambrough et al., 1996; Rooke et al., 1996), so zygotic mutant embryos have residual 

Kuz protein. Other metalloproteases may also be maternally deposited, especially if they 

have substrates that play essential roles in the early embryo, and this maternal product 

could preclude observation of a midline crossing phenotype. Thus, analysis of comm 

expression will likely be much more informative.  

 

Fra-binding proteins, including DNA-binding proteins 

Fra does not have an obvious DNA-binding domain (DBD) and likely associates 

with chromatin through interactions with other proteins that have DNA-binding activity, 

as discussed in Chapter 2. The FraE1354A point mutant could be a useful reagent for 

identifying such proteins, as well as other proteins that interact with the Fra ICD. In a 

yeast two-hybrid screen, a bait protein is fused to a DBD, while a library of prey proteins 

is fused to an activation domain. The bait and prey are then co-expressed in yeast that 

have a reporter that will only be expressed if the bait and prey interact, bringing the DBD 

and AD together. Therefore, a yeast two-hybrid screen cannot be performed using bait 

that has an AD, because reporter expression will be driven even in the absence of prey. 

For this reason, it has not been possible to perform a yeast two-hybrid screen with the 

full-length Fra ICD. However, the FraE1345A ICD would be ideal for such a screen, as it 

is structurally intact, but lacks a functional AD (Figure 2.6C-D). This screen has the 

potential to identify nuclear Fra-binding proteins, including those that have DNA-binding 

activity.  In addition, this approach may identify proteins that bind to Fra and participate 



 118 

in canonical Netrin-Fra signaling. Co-activators that bind to P3 may not be identified in 

this screen, as the E1354A mutation prevents Fra from functioning as a transcriptional 

activator in a reporter assay (Figure 2.6C). For nuclear proteins identified in this screen, 

mutants should be analyzed for defects in commissural axon guidance and comm 

expression, as described for candidate ligands and metalloproteases.  

 

Conservation in vertebrates  

Vertebrates do not have an ortholog of comm and instead inhibit Slit-Robo 

repulsion in pre-crossing commissural axons through Robo3 (Sabatier et al., 2004). 

Nevertheless, it will be interesting to determine whether DCC ICD-dependent 

transcriptional activation is required for commissural axon guidance in the spinal cord, 

particularly in light of our observations suggesting that Fra may have multiple 

transcriptional targets in the Drosophila commissural neurons that are important 

regulators of midline crossing, as discussed in Chapter 2. DCC is required for the growth 

and guidance of spinal commissural neurons, as discussed extensively in Chapter 1, and 

axon guidance phenotypes in the embryonic spinal cord can be rescued in intact mouse 

embryos (Chen et al., 2008). The DCC ICD can function as a transcriptional activator in 

in vitro reporter assays (Taniguchi et al., 2003). For rescue experiments, a mouse DCC 

variant should be generated that is functionally analogous to FraE1354A; that is, it should 

have a specific deficit in DCC’s transcriptional activation function. The E1354 residue in 

Fra is conserved in DCC, so the corresponding point mutant should be tested for 

transcriptional activation in yeast and for nuclear export in mammalian cells in vitro. If 

this mutant does not behave as expected, an alanine mutagenesis scan can be performed 
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in order to generate a suitable reagent for in vivo rescue experiments. DCC that is 

specifically deficient for its transcriptional activation function should then be introduced 

into Dcc mutant embryos and spinal commissural axon guidance should be evaluated.  

 

Other transcriptional targets of Fra  

 The simplest way to identify genes that are regulated by Fra would be to extract 

RNA from wild-type and fra mutant embryos and analyze it in RNA-seq or cDNA 

microarray experiments. However, this approach would not distinguish between genes 

that are direct targets of Fra’s transcriptional activity and those that are regulated through 

indirect mechanisms. Reports that Netrin’s ability to elicit outgrowth in vitro depends on 

MAP kinase and calcineurin activity (Forcet et al., 2002; Graef et al., 2003) suggest that 

Fra may have the ability to indirectly regulate gene expression. The reagents I generated, 

specifically the UAS-FraE1354A and UAS-FraE1354A VP16AD transgenic lines, could 

be helpful in efforts to specifically identify genes that are regulated by Fra’s 

transcriptional activity, rather than by an indirect Fra-dependent mechanism.  

For example, RNA could be extracted from from embryos pan-neurally 

expressing UAS-Fra, UAS-FraE1354A, and UAS-FraE1354A VP16AD, as well as wild-

type controls, and analyzed in RNA-seq or cDNA microarray experiments. Including a 

UAS-GFP marker in these experiments would facilitate cell sorting and allow neuronal 

RNA to be analyzed. Direct transcriptional targets of Fra are likely to be up-regulated 

when FraE1354A VP16AD, but not FraE1354A, is expressed. In contrast, indirect targets 

of Fra – genes that are regulated by Fra through mechanisms that do not depend on Fra’s 

function as a transcriptional activator – are likely to be up-regulated when both 
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FraE1354A and FraE1354A VP16AD are expressed. Embryos expressing wild-type Fra 

would be a positive control, while wild-type embryos would be a negative control. A 

similar approach could be used in fra rescue experiments, but these would be more 

technically challenging, as mutant embryos would have to be sorted away from their 

siblings.  

 

ICDs of other axon guidance receptors as transcription factors  

The ICD of human Robo1 can enter the nucleus (Seki et al., 2010) and it is likely 

that the ICDs of other axon guidance receptors share this property, as discussed in 

Chapter 2. In addition, we have observed the ICDs of all three Drosophila Robo receptors 

in the nucleus in S2R+ cells (data not shown). The three Drosophila Robos play partially 

overlapping, but distinct, roles in axon guidance in the embryo. Robo and Robo2 signal 

midline repulsion (Seeger et al., 1993; Kidd et al., 1998; Rajagopalan et al., 2000a; 

Simpson et al., 2000b), Robo2 and Robo3 play important roles in specifying the 

mediolateral position of longitudinal axon tracts (Rajagopalan et al., 2000b, Simpson et 

al., 2000a), and Robo2 plays additional roles in promoting midline crossing (Simpson et 

al., 2000a, Spitzweck et al., 2010) and guiding motor axons (Santiago et al., 2014). 

Robo2 and Robo3 also regulate the differentiation of serotonergic neurons and, 

intriguingly, the expression of SerT mRNA is reportedly decreased in the serotonergic 

EW neurons in the embryo (Couch et al., 2004). In addition, Robo2 inhibits the 

expression of the transcription factor Prospero in intestinal stem cells to control cell fate, 

although it is not clear whether this regulation is at the mRNA or protein level (Biteau 

and Jasper, 2014). Thus, Robo receptors have been implicated in a number of different 



 121 

biological processes in the fly embryo and robo, robo2, and robo3 mutants have distinct 

and well-characterized phenotypes. Determining whether expression of any of the Robo 

ICDs can rescue these mutant phenotypes would be a good starting point for examining 

whether Robo ICDs can function as transcription factors in vivo.  
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