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ABSTRACT 

MULTIPLE ROLES OF RET SIGNALING IN THE DEVELOPMENT OF 

MECHANOSENSORY NEURONS 

Michael S. Fleming 

Wenqin Luo 

Somatosensation is critical for interaction with the surrounding environment.  

Somatosensory stimuli are detected by primary somatosensory neurons of the dorsal root 

ganglia and trigeminal ganglia, which detect distinct classes of stimuli, such as 

temperature, pain, and pressure.  In Chapters 2 and 3 of this thesis, we focus on rapidly 

adapting low-threshold mechanoreceptors (RALTMRs), which mediate the detection of 

light touch.  RALTMRs are molecularly defined by the early embryonic expression of the 

receptor tyrosine kinase Ret.  Ret is required for the development of central axonal 

projections of RALTMRs into the dorsal spinal cord.  RET responds to the glial cell line-

derived family of neurotrophic factors, which activate RET in combination with GPI-

linked GFRα co-receptors.  In vitro, RET can be activated by co-receptor expressed in the 

same cell (cis signaling) or by co-receptor expressed by neighboring cells (trans 

signaling), but previous studies suggest that trans RET signaling may not play a 

physiologically relevant role in vivo.  Here, we show that RET in mouse RALTMRs can 

be activated by both GFRα2 expressed in the same cell (cis signaling) and GFRα1 

expressed by neighboring cells (trans signaling), and that trans RET signaling is 

sufficient for the development of RALTMR central projections in vivo.  Peripherally, Ret 
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is required for the development of vibration sensitive Pacinian corpuscle RALTMR end 

organs.  We show that Ret mediates the neuronal expression of the ETS transcription 

factor Er81, which is also required for Pacinian corpuscle development, and that deficient 

axon/Schwann cell communication is the primary deficit in Pacinian corpuscle 

development in Er81 mutant mice.  Furthermore, we show that Neuregulin-1, an 

important mediator of axon/Schwann cell interactions, is required for Pacinian corpuscle 

development, and that Er81 regulates the expression of specific Neuregulin-1 isoforms.  

In total, we demonstrate that RET signaling drives the development of distinct 

developmental processes in both the central and peripheral axonal branches of 

RALTMRs.  In Chapter 4, we describe the expression of itch-related neuropeptides GRP 

and NMB and their receptors in somatosensory neurons and the dorsal spinal cord.   
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CHAPTER 1 

 

 

Introduction 

 

This chapter was written by Michael S. Fleming.  Portions of this chapter have been 

adapted from: 

Fleming, MS and Luo W (2013).  The anatomy, function, and development of 

mammalian Aß low-threshold mechanoreceptors. Frontiers in Biology. 8(4).  
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MAMALIAN SOMATOSENSATION 

Light touch sensation is critical for our social interaction and daily lives. It allows for the 

detection of diverse stimuli, like a breeze, a kiss, a hug, the texture of fabric, or a shape, 

and is required for complex tasks, such as using a tool or reading Braille.  These stimuli 

cause vibration, indentation or stretching of the skin, the movement of hair follicles, or 

some other physical change in the skin, which activate mechanosensory nerve fibers or 

the specialized mechanosensory end organs in the skin.  There are several different types 

of mammalian low-threshold mechanosensory neurons (mechanoreceptors), including 

Aβ, Aδ, and C (distinguished according to their transduction velocity), which mediate 

various form of light touch sensation.  In this introduction, I will focus on Aβ low-

threshold mechanoreceptors, which are the main type of primary sensory neurons that 

mediate discriminative touch and tactile perception in mammals.  Cell bodies of Aβ low-

threshold mechanoreceptors are located in the trigeminal (TGs) and dorsal root ganglia 

(DRGs).  Each neuron grows a single axon that bifurcates shortly after projecting from 

the cell body, with the peripheral axon innervating mechanosensory end organs and the 

central projection innervating the spinal cord and brain stem.   

 

The morphologies and structures of Aβ low-threshold mechanosensory end organs have 

been extensively examined since their first discovery in the 1800s.  Based on 

morphologies of these end organs,  Aβ low-threshold mechanoreceptors are classified 

into several different subtypes, including Meissner’s corpuscles, Pacinian corpuscles, 
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lanceolate endings, Merkel cells, and Ruffini corpuscles (Iggo and Andres, 1982; Rice 

and Albrecht, 2008).  Physiological properties of Aβ low-threshold mechanoreceptors 

started to be characterized around the middle of 20th century.  According to their rates of 

adaptation to sustained mechanical stimuli, Aβ low-threshold mechanoreceptors are 

classified as either rapidly adapting (RA) or slowly adapting (SA)  (Iggo, 1985; 

Mountcastle, 1957).   Interestingly, their end organ morphologies and physiological 

properties are very well correlated.  Meissner’s corpuscles, lanceolate endings, and 

Pacinian corpuscles are the RA mechanoreceptors (Iggo, 1985; Iggo and Ogawa, 1977), 

whereas Merkel cells and Ruffini corpuscles are the SA mechanoreceptors (Burgess, 

1973; Iggo and Muir, 1969; Pare et al., 2002) (Figure 1).   In the past two decades, 

advances in mouse genetic techniques have enabled the dissection of key molecules, 

mainly neurotrophic factors and transcription factors, involved in controlling the 

specification and development of different subtypes of mammalian Aβ low-threshold 

mechanoreceptors.  In my thesis work, I have focused on the development of the RA 

mechanoreceptors, and in particular, the Pacinian corpuscles. 

 

Recently, a specific molecular marker which exclusively marks RA mechanoreceptors 

has been identified.  The receptor tyrosine kinase RET is expressed in 60% of adult 

mouse DRG neurons.  The majority of RET+ neurons are small diameter neurons which 

begin to express Ret around E13.5 or later.  However, a subset of large diameter neurons 

begins to express RET around E10.5, but their function remained unknown (Molliver et 

al., 1997).  Recently, Luo, et al., used genetic tracing to show that the “early-RET+” 
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neurons are RA mechanoreceptors (Luo et al., 2009).  Ret also has an important role in 

the development of RA mechanoreceptors.  In Ret mutants, central projections of RA 

mechanoreceptors reach the dorsal spinal cord, but fail to extend interstitial branches to 

innervate layers III-V of the dorsal horn (Bourane et al., 2009; Honma et al., 2010; Luo et 

al., 2009).  In Chapter 2 of this thesis, I examine the RET signaling mechanisms which 

contribute to the growth of these central projections.  Ret also has a role in the peripheral 

development of RA mechanoreceptors.  In neural crest specific Ret mutants, Pacinian 

corpuscles do not form in the interosseous membrane surrounding the fibula, while 

Meissner’s corpuscles and lanceolate endings appear mostly normal (Luo et al., 2009).  In 

Chapter 3 of this thesis, I further examine the role of Ret in the development of Pacinian 

corpuscles. 

 

MEISSNER’S CORPUSCLES 

Anatomical location and morphology  

Meissner’s corpuscles are present in the glabrous (hairless) skin, including palms of the 

hand, soles of feet, and lips.  They are located within the dermal papillae, which are 

conical protrusions of the dermis into the epidermis, with their long axis perpendicular to 

the surface of the skin (Munger and Ide, 1988).  Meissner’s corpuscles were first 

described in the fingers and palms of human hands by Georg Meissner and Rudolph 

Wagner in 1852 (Cauna, 1956), but a high-resolution description of their morphology 

was not possible until the advent of electron microscopy in the mid-20th century (Cauna 
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and Ross, 1960; Pease and Pallie, 1959).  The oval shaped corpuscle structure is 

composed of disc-like lamellar stacks derived from Schwann cells, which is partially 

surrounded by a thin fibroblast capsule.  In most cases, the corpuscle is innervated by a 

myelinated Aβ sensory fiber, which loses its myelination after traveling through the 

bottom third of the corpuscle (Zelena, 1994).   The sensory axon takes a circuitous route 

within the corpuscle, weaving between stacks of lamellar cells.  In addition to Aβ 

innervation, some Meissner’s corpuscles are also innervated by C-fibers which have 

molecular profiles similar to nociceptors (Pare et al., 2001), but the functional relevance 

of this innervation is unclear. 

 

A combination of physiological recording and horseradish peroxidase tracing has been 

employed to reveal morphologies of the central projections of mammalian Aβ low-

threshold mechanoreceptors (Brown, 1981).  Shortly after entering the spinal cord, their 

central axon bifurcates and sends projections in the rostral and caudal directions in the 

superficial layer of the spinal cord.  Interstitial branches arise from these projections, and 

innervate deeper layers of the dorsal horn (Brown, 1981).  In cats, Meissner’s corpuscle 

afferents synapse mostly in the medial aspect of layers III-IV of the dorsal horn, while in 

rats they mostly innervate the medial aspect of layers III-V of the dorsal horn, with a 

small number of synapses made in the inner part of layer II (Brown, 1981; Semba et al., 

1985; Shortland and Woolf, 1993).   
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Physiological properties and function 

Meissner’s corpuscles are classified as type I RA (RAI) mechanoreceptors.  In single unit 

recordings from humans and monkeys, Meissner’s corpuscle innervating fibers display a 

burst of activity upon the onset and offset of a stimulus, but remain silent during the static 

phase of stimulation (Talbot et al., 1968).  They have an extremely low threshold for 

activation, responding to an indentation of the skin of less than 10μm (Iggo and Ogawa, 

1977).  In addition,  Meissner’s corpuscles have relatively small receptive fields and are 

most sensitive to low intensity stimuli of ~5-100Hz (Gardner and Palmer, 1990).  When 

stimulated at frequencies within their optimal range, Meissner’s corpuscle afferents 

produce action potentials in a nearly perfect one-to-one relationship with the stimulus and 

generate a “fluttering” feeling in human subjects (Talbot et al., 1968).  Meissner’s 

corpuscles may also function as velocity detectors to determine the rate of skin 

indentation (Willis and Coggeshall, 2004). 

 

At present, the precise mechanical transduction mechanism for Meissner’s corpuscles is 

unknown.  A recent study has identified the KCNQ4 potassium channel, which is 

expressed in Meissner’s corpuscle innervating Aβ low-threshold mechanoreceptors, as an 

important molecule to tune their sensitivity.  KCNQ4 itself is not mechanically gated, but 

is important for setting the resting potential of neurons.  Both mice and humans with 

KCNQ4 mutations display higher sensitivity to low frequency stimuli, which are 

mediated by Meissner’s corpuscles (Heidenreich et al., 2012). 
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Development 

Meissner’s corpuscle innervating axons reach the dermal papilla around birth.  Schwann 

cells associated with the axon begin to differentiate into the lamellar cells, which form 

the corpuscle structure around one week in rodents.  Innervation is required for the 

development of the corpuscle structure, as corpuscles do not form if the footpad is 

denervated at birth (Zelena et al., 1990).   

 

Meissner’s corpuscles depend on the neurotrophic receptor tyrosine kinase TrkB for their 

development. TrkB is expressed in a subset of RA mechanoreceptor neurons starting at 

early developmental stages (Luo et al., 2009).  In TrkB null mice, Meissner’s corpuscles 

were not found in the dermal papilla of 2-3 week old mice (Gonzalez-Martinez et al., 

2004).  Examination of mice lacking the high affinity ligands of TrkB, brain derived 

neurotrophic factor (BDNF) or neurotrophin-4 (NT4), revealed that BDNF, but not NT4, 

is required for Meissner’s corpuscle development (Gonzalez-Martinez et al., 2005).  

Since the number of DRG neurons is reduced by ~30% in TrkB and BDNF mutant mice 

in the second postnatal week, it is possible that BDNF-TrkB signaling supports the 

survival of Meissner’s corpuscle neurons and the loss of Meissner’s corpuscles is due to 

the death of innervating neurons (Perez-Pinera et al., 2008).  However, the mechanism of 

TrkB signaling in controlling Meissner’s corpuscle formation could be more complicated.  

Immunolocalization of TrkB in human digit skin shows that the receptor is expressed in 



8 
 

the lamellar cells of the corpuscle, but not on the innervating axon (Calavia et al., 2010) 

and the overexpression of NT4 or BDNF in the skin led to an increase in the size of 

Meissner’s corpuscles, but no change in the number of sensory neurons in the DRG 

(Krimm et al., 2006; LeMaster et al., 1999).  In addition, myelinated axons are present in 

the dermal papillae of neural crest specific TrkB mutants, even though no corpuscle 

structure is formed, and the central projections of  Aβ low-threshold mechanoreceptors 

do not seem to be affected (Luo et al., 2009).  These results suggests that at least some 

Meissner’s corpuscle innervating neurons do not die in TrkB mutants, and the lack of 

corpuscles may be due to a pro-survival independent function of TrkB signaling.  Future 

studies using tissue specific knockouts of TrkB and BDNF will be necessary to determine 

the spatial and temporal requirement of TrkB and its ligands in Meissner’s corpuscle 

formation. 

 

Meissner’s corpuscles also express another neurotrophic receptor tyrosine kinase, Ret, 

during early development (early RET+ RA mechanoreceptors) (Luo et al., 2009).  

Surprisingly, RET signaling is not essential for Meissner’s corpuscle formation, as 

corpuscles are present, although somewhat underdeveloped, in neural crest specific Ret 

mutants.  On the other hand, RET signaling is absolutely required for the central 

projections of all RA mechanoreceptors.  In Ret mutants, central projections of RA 

mechanoreceptors reach the dorsal spinal cord, but fail to extend interstitial branches to 

innervate layers III-V of the dorsal horn (Bourane et al., 2009; Honma et al., 2010; Luo et 

al., 2009).  



9 
 

 

In addition to extrinsic neurotrophic signaling, intrinsic transcriptional programs play 

important roles to specify the neural identity of somatosensory neurons.  One 

transcription factor, Shox2, is critical for the innervation and development of Meissner’s 

corpuscles.  Ablation of Shox2 in mice leads to a lack of TrkB expression in two thirds of 

the DRG neurons which normally express the receptor during embryonic development 

(Abdo et al., 2011; Scott et al., 2011).  As a result, Shox2 mutant mice lack Meissner’s 

corpuscles and show reduced innervation of the dermal papillae, while the heterozygous 

Shox2 adult mice display an increased threshold for light touch detection (Abdo et al., 

2011).  Deletion of Shox2 also caused reduced touch sensory axonal innervation to layers 

III/IV of the spinal cord (Scott et al., 2011).  Additionally, two Maf family transcription 

factors, MafA and c-Maf, are expressed in the RET+ RA mechanoreceptors.  RET and 

MafA reciprocally regulate the expression of each other, whereas c-Maf is upstream of 

Ret expression (Bourane et al., 2009; Hu et al., 2012; Wende et al., 2012).  In c-Maf 

mutant mice, the number of Meissner’s corpuscles is drastically reduced and the 

remaining corpuscles have a rudimentary structure, although the innervation of the 

dermal papillae isn’t affected (Wende et al., 2012).  A deficit in the formation of 

Meissner’s corpuscles was not described in MafA mutant mice since these mutants were 

not examined any later than postnatal day zero (P0) (Bourane et al., 2009).   

 

PACINIAN CORPUSCLES 
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Anatomical location and morphology  

The anatomical location of Pacinian corpuscles varies greatly between species.  In 

primates, Pacinian corpuscles are most prominently located in the subcutaneous fat pads 

of the fingers, palms, and soles (Zelena, 1994).  They are also found in joints, tendons, 

interosseous membrane, and around some muscles and internal organs, such as the 

pancreas (Bell et al., 1994).  Many early physiological and morphological studies of 

Pacinian corpuscles were performed on corpuscles isolated from the cat mesentery (Sato, 

1961).  In rodents, Pacinian corpuscles are not present in the skin but are enriched in the 

interosseous membrane around the fibula and ulna (Zelena, 1978).  The Herbst corpuscle, 

a structure similar to the Pacinian corpuscle, is found in beak and interosseous membrane 

of birds (Saxod, 1996; Zelena et al., 1997). 

 

Pacinian corpuscles were first described in the 18th century by Johannes Gottlieb 

Lehmann, and later rediscovered by Fillipo Pacini in 1841 (Bentivoglio and Pacini, 

1995).  They are oval shaped end organs and can reach sizes of up to 4 mm in length in 

adult human (Cauna and Mannan, 1958).   Each Pacinian corpuscle is innervated by a 

single myelinated Aβ somatosensory neuron, which loses its myelination and assumes a 

relatively straight trajectory through the center of the corpuscle upon entering the 

corpuscle’s inner core (Quilliam and Sato, 1955).  Ultrastructural studies of the corpuscle 

have revealed that the inner core is composed of two “hemilamellae” on either side of the 

axon, with two clefts separating them, throughout the length of the inner core.  Each 
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hemilamella of the mature corpuscle contains 40-80 layers of lamellar Schwann cells 

while the outer core is composed of ~30 layers of perinurial epithelial cells (Cauna and 

Mannan, 1958; Pease and Quilliam, 1957; Zelena, 1994).  This layered construction 

produces an onion-like appearance in cross sections of Pacinian corpuscles. 

 

Central projections of Pacinian afferents form synapses in two distinct regions: a larger 

dorsal region focused in layer III and outer layer IV with less dense innervation extending 

dorsally to inner layer II and ventrally to outer layer V, and a smaller ventral region 

concentrated in layer V but also sparsely innervating layers IV and VI (Brown, 1981; 

Brown et al., 1980; Semba et al., 1984).   

 

Physiological properties and function 

Pacinian corpuscles are classified as type II RA (RAII) mechanoreceptors, which, like 

Meissner’s corpuscles, respond to mechanical stimuli at the onset and offset of stimuli.  

However, the RAI and RAII mechanoreceptors can be distinguished in two ways: 1) 

RAII mechanoreceptors have larger, less defined receptive fields, suggesting a poor 

ability of Pacinian corpuscles to localize stimuli (Palmer and Gardner, 1990); and  2) 

RAII mechanoreceptors respond to a higher frequency of vibration, and are most 

sensitive to stimuli in the 200-300Hz range  (Burgess, 1973; Knibestol, 1973).   
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The precise mechanical transduction mechanism for Pacinian corpuscles is also 

unknown. The RA properties of Pacinian corpuscles are partly due to the corpuscle 

structure, which acts as a mechanical filter.  Very low velocity or static stimuli cause 

compression of the outer layers of the corpuscle, but this compression does not reach the 

inner core.  Instead, only the dynamic phase of compression results in deformation of the 

corpuscle to the inner core, evoking a response from the innervating axon (Hubbard, 

1958).  This model was supported by experiments in which removing the capsule of 

Pacinian corpuscles resulted in a prolonged generator potential upon a sustained 

mechanical stimulus.  However, despite the prolonged generator potential, the 

innervating Aβ axon still only fired a few action potentials at the onset of stimulation.  

This suggests that inherent properties of these Aβ axons prevents a steady outward 

current from producing repetitive impulses, which is another potential mechanism 

underlying the RA response (Loewenstein and Mendelson, 1965; Mendelson and 

Lowenstein, 1964).   

 

Pacinian corpuscles are exquisitely sensitive; in physiological preparations ambient 

vibrations in the building resulted in a response from the innervating axon (Hunt, 1961).  

These observations suggest that one potential function of Pacinian corpuscles, especially 

those in the interosseous membrane, may be to sense vibration transmitted through the 

skeletal system, either due to movement of the animal or due to external environmental 

vibrations, possibly generated by predators or prey.  In humans, Pacinian corpuscles in 

the hand are tuned to sense the texture of an object or its dimensions indirectly through 
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the use of tools (Brisben et al., 1999).  In addition, Pacinian corpuscles are important for 

detecting the fine texture of objects.  Experiments with biomimetic sensors have shown 

that the normal spacing of fingerprints causes the amplification of vibrations in the ideal 

detection range of Pacinian corpuscles when scanning across a finely textured surface 

(Scheibert et al., 2009).   

 

Development 

Most studies regarding the development of Pacinian corpuscles have been performed on 

the corpuscles in the interosseous membrane of rodents.  In rats and mice, an immature 

inner core and an outer capsule containing only a couple layers is present at birth (Zelena, 

1994).  The inner core becomes morphologically mature and more outer core layers are 

added in the first postnatal week.  Outer core layers continue to be added during the first 

few weeks of life, and the corpuscle grows in size over the first few months.  Innervation 

is required for the development of the corpuscle, as Pacinian corpuscles won’t form if the 

leg is neonatally denervated (Zelena et al., 1990).   

 

Pacinian corpuscle neurons arise from the early RET+ RA mechanoreceptors and are 

highly dependent on RET signaling for their development.  In mice mutant for Ret, its co-

receptor Gfrα2, or its ligand Neurturin, no Pacinian corpuscles are formed (Luo et al., 

2009).  The cause of the selective loss of Pacinian corpuscles, but not other subtypes of 

RA mechanoreceptors, in Ret mutant mice is currently unclear.   
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In addition, several transcription factors play critical roles in the development of Pacinian 

corpuscles.  The ETS transcription factor Er81 is expressed in the inner core Schwann 

cells of Pacinian corpuscles, and no Pacinian corpuscles are formed in Er81 null mice 

(Sedy et al., 2006).   In c-Maf mutant mice, both the number of Pacinian corpuscles and 

axons in the interosseous nerve, which innervate Pacinian corpuscles, were greatly 

reduced.  In addition, the remaining corpuscles display abnormal morphology (Hu et al., 

2012; Wende et al., 2012).  These results suggest that c-Maf is required in Pacinian 

corpuscle neurons for axonal growth/targeting or corpuscle formation.  Interestingly, 

human patients with c-MAF missense mutations showed a somatosensory deficit 

specifically related to Pacinian corpuscles.  These patients have a decreased sensitivity to 

high frequency vibration, which is detected by Pacinian corpuscles, while their detection 

of lower frequencies, which is mediated by Meissner’s corpuscles, is not affected (Wende 

et al., 2012). 

 

LANCEOLATE ENDINGS 

Anatomical location and morphology  

The innervation of hair follicles by low-threshold mechanosensory neurons is very 

complex.  Aβ, Aδ, and C low-threshold mechanoreceptors all innervate hair follicles and 

form a palisade structure surrounding the follicle (Li et al., 2011; Lou et al., 2013).  In 

addition, different types of hair are innervated by different combinations of sensory 
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fibers, and hair types vary by anatomical location and between species.  In keeping with 

the scope of this introduction, we will only discuss the Aβ low-threshold 

mechanoreceptors in the hairy skin and whisker pad, which are Aβ lanceolate endings 

and Merkel cells (see below).  Aβ lanceolate endings are associated with the awl and 

guard hairs of the hairy back skin and the whiskers, but not the zigzag hairs, which are 

the most numerous hair type in mouse hairy back skin (Li et al., 2011; Mosconi et al., 

1993).   

 

Hoggan and Hoggan originally described forked nerve endings surrounding hair follicles 

in 1893 (Hoggan and Hoggan, 1893).  The lanceolate endings form a palisade-like 

structure which encircles the hair follicle.  Individual endings have a flattened, oval 

shape, with the thin aspect directly abutting the hair follicle.  Each ending is composed of 

a single oblong axonal fiber enclosed by flattened Schwann cells on either side of the 

axon.  Axonal spikes protruding through the sheath where the two Schwann cell faces 

meet contact both the hair follicle and the surrounding connective tissue (Munger and 

Ide, 1988).  Sparse genetic labeling of hair follicle innervating axons shows that the 

lanceolate endings which make up each palisade structure are innervated by more than 

one sensory afferent, and that individual mechanoreceptive neurons can innervate 

lanceolate endings surrounding multiple hair follicles (Suzuki et al., 2012). 

 



16 
 

Centrally, Aβ hair follicle afferents form distinct “flame-shaped” collateral arbors, which 

were first described by Ramon y Cajal and later characterized by Scheibel and Scheibel 

in 1968 (Scheibel and Scheibel, 1968).  Upon entering the dorsal horn, the afferent fiber 

descends to layer IV or V, and then reverses direction and projects dorsally to  the outer 

layer IV and layer III, where the collateral undergoes extensive branching and forms 

synapses with spinal neurons (Brown, 1981; Woodbury et al., 2001). 

 

Physiological properties and function 

Like Meissner’s and Pacinian corpuscles, Aβ lanceolate endings also display RA 

properties.  In recordings from cat whisker hair, two populations of RA afferents were 

found.  The more numerous population responded only to high velocity stimuli, such as a 

flick of the hair or vibration from a tuning fork.  This population could follow frequencies 

up to 1000 Hz and was not affected by the direction of the stimulus.  A much smaller low 

velocity population of RA mechanoreceptors responded to stimuli from 5-200 Hz and 

exhibited some direction selectivity.  They responded to hair deformation in any 

direction, but had a much lower activation threshold in the preferred direction 

(Gottschaldt et al., 1973).  The RA hair follicle afferents are also extremely sensitive; in 

tests for the activation threshold using the skin nerve preparation, the activation threshold 

of more than half of the units recorded was below the level of resolution (0.07 mN) in 

mice (Woodbury et al., 2001).    
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Aβ lanceolate endings most likely function as velocity detectors for the deformation of 

hair.  The mechanical transduction mechanism is unclear, but ultrastructural studies 

suggest that deformation of the lanceolate ending may occur upon movement of the hair, 

due to the connections of the Schwann cell structure to the hair follicle and surrounding 

tissue.  This physical deformation may cause a response in the innervating axon 

(Takahashi-Iwanaga, 2000).   

 

Development 

Due to the complex innervation of hair follicles by different types of sensory neurons, it 

has been difficult to exclusively study the development of Aβ lanceolate endings.  Most 

studies described below depend on pan-neural or Schwann cell markers to identify 

lanceolate endings.  Therefore, the observed phenotypes in mutant mice may reflect 

deficits in neurons other than Aβ low-threshold mechanoreceptors. Recently, new mouse 

genetic tools have been developed to specifically label different classes of hair follicle 

innervating neurons (Li et al., 2011), which will help to identify molecular mechanisms 

that control development of different types of low-threshold mechanoreceptors in the 

future.   

 

The trigeminal nerve approaches the site of whisker hair follicles by embryonic day 12 

(E12) in mice and the lanceolate endings start to appear at E17 (Maklad et al., 2010).  In 

the back skin, the development of lanceolate endings is slightly delayed; nerve fibers 



18 
 

reach the area of hair follicles around E14-E16 and immature lanceolate endings appear 

around birth (Peters et al., 2002).  These anatomical studies correlate well with 

physiological recordings.  Using the ex vivo skin nerve preparation, RA responses from 

hair follicle innervating neurons could be recorded at P0, and backfilled neurons 

displayed “flame-like” central innervation morphology typical of hair follicle receptors 

by P2 (Woodbury et al., 2001). 

 

The role of neurotrophic signaling in controlling the development of Aβ hair follicle 

innervating neurons is less clear.  Like the other low threshold RA mechanoreceptors, Aβ 

hair follicle innervating neurons express Ret during early development.  In P14 neural 

crest specific Ret null mice, Luo et al. found that the morphology of lanceolate endings is 

disorganized, but the percentage of hair follicles that receive lanceolate ending 

innervation was not significantly different using a mixed pan-neuronal marker PGP9.5 

and large diameter axon marker NFH (Luo et al., 2009).  In P0 Ret null mice, Bourane et 

al. found that the total innervated area of NFH+ lanceolate endings around the hair follicle 

is significantly reduced (Bourane et al., 2009).  Although the conclusions from these two 

studies seem to be slightly different on the surface, which could well be explained by the 

different staining and quantification method, both studies in fact suggest that the normal 

morphology of Aβ lanceolate ending is dependent on Ret signaling.  
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Hair follicle innervation may also be dependent on TrkB signaling.  In TrkB mutants, the 

morphology of lanceolate endings is affected to a similar extent as seen in Ret mutants.  

In addition, there was a reduction in the number of hair follicles innervated by lanceolate 

endings in TrkB null mice (Perez-Pinera et al., 2008), but the number of endings was not 

significantly changed in neural crest specific TrkB mutant mice (Luo et al., 2009).  This 

discrepancy could be due to either the differences between TrkB null and neural crest 

conditional knockout mice or the technical difficulties of specifically identifying Aβ 

lanceolate endings and quantifying them.  On the other hand, overexpression of TrkB 

ligands BDNF and NT4 in the skin led to an increased density of hair follicle innervation 

(Krimm et al., 2006; LeMaster et al., 1999).  Lastly, as discussed above, the transcription 

factor Shox2 promotes the expression of TrkB in DRG neurons.  In Shox2 null mice, 

lanceolate endings are disorganized, a phenotype very similar to the TrkB mutant 

phenotype (Abdo et al., 2011). 

 

The proper formation of lanceolate endings may also depend on the activity of the 

innervating neurons.  Woo et al. recently found that lanceolate ending innervating 

neurons express the vesicular glutamate transporter VGLUT2, while the Schwann cells 

which surround the innervating axons express NMDA receptors.  Interestingly, ablating 

VGLUT2 from somatosensory neurons leads to a reduction in the frequency and 

organization of lanceolate forming Schwann cells at P0 (the latest stage the mice 

survived).  Moreover, pharmacologically blocking glutamatergic transmission by 

injecting an NMDA receptor antagonist in the skin led to a reduction in the number and 
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organization of lanceolate Schwann cell processes in adult wild-type mice.  Lastly, 

physiological tests of antagonist treated mice revealed a decrease in the sensitivity and 

conduction velocity of RA afferents innervating hair follicles (Woo et al., 2012).  

Collectively, these results suggest that communication between the innervating axon and 

the surrounding Schwann cell structure are crucial for the development and maintenance 

of lanceolate endings. 

 

MERKEL CELLS 

Anatomical location and morphology  

Merkel cells are located in the basal epidermis of both glabrous and hairy skin of 

mammals.  In glabrous skin, clusters of 4-40 Merkel cells are present in the epidermal 

pegs, which are protrusions of the epidermis into the dermis that surrounds the dermal 

papillae.  In primates and marsupials, smaller clusters of Merkel cells are located at the 

base of the epidermal ridges which are responsible for the fingerprint pattern of the hands 

and feet (Halata et al., 2003).  These clusters of Merkel cells in glabrous skin are often 

referred to as “touch spots” (Boulais and Misery, 2007).  In hairy skin, Merkel cells are 

present in “touch domes”, which can be discerned by a slight elevation in the skin in 

some species, and can contain up to 150 Merkel cells.  Touch domes may or may not be 

associated with a hair follicle (Zelena, 1994).  In rodents, Merkel cells are closely 

associated with guard hair follicles, located in the epidermis in “collars” surrounding the 
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hair follicle, and whiskers, located in “cuffs” present underneath the glassy membrane of 

the follicle (Halata and Munger, 1980b; Zelena, 1994). 

 

Merkel cells were first described as “touch cells” by Freidrich Sigmund Merkel in 1875 

(Merkel, 1875).  They are oval in shape and 10-15 μm in length along the long axis, 

which is the smallest among all mechanosensory endings discussed in this introduction.  

They can be differentiated from the surrounding epidermal cells by their large, 

multilobated nucleus which is oriented parallel to the dermis-epidermis junction.  On the 

basal side of the cell, numerous dense core vesicles measuring 70-180 nm in diameter are 

located close to the cell membrane (Halata et al., 2003; Iggo and Muir, 1969; Tachibana 

and Nawa, 2002; Winkelmann and Breathnach, 1973).  Most Merkel cells are associated 

with an innervating axon, forming a structure referred to as the Merkel cell-neurite 

complex.  A nerve plate, which is formed by a myelinated axon which loses its myelin 

sheath upon entering the epidermis, directly opposes the vesicle dense basal membrane of 

the Merkel cell.  This plate is separated from the Merkel cell by 15 nm, but in small 

regions they are separated by only 13 nm, and electron dense material is observed in both 

the Merkel cell and the nerve plate at these points (Halata et al., 2003; Iggo and Muir, 

1969).  A small number of Merkel cells do not make contact with an innervating axon.  

The function of these uninnervated Merkel cells is unknown, but it has been suggested 

they may have neuroendocrine or immune system functions (Boulais and Misery, 2007). 
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Central projections of Merkel cell innervating neurons bifurcate upon entering the spinal 

cord, and send collaterals into the dorsal horn as these branches travel anteriorly and 

posteriorly.  The morphology of the collaterals innervating the dorsal horn are distinct 

form the RA mechanoreceptors.  Individual collaterals dive into the dorsal horn 

perpendicular to the dorsal surface of the spinal cord.  After reaching layer IV or V, the 

collaterals make a C- or L-shaped turn and then travel medially.  During and after this 

turn, the collaterals gives off terminal arborizations in layers III-V (Brown, 1981). 

 

Physiological properties and function 

Merkel cell-neurite complexes are type I SA (SAI) mechanoreceptors.  Unlike the RA 

mechanoreceptors discussed above, SA mechanoreceptors remain active during the static 

phase of stimuli.  The innervating neuron is usually silent at rest, and responds to the 

onset of stimulation with a burst of activity, which is proportional to the velocity and 

displacement of the stimulus.  After the initial phasic burst of activity, a tonic firing phase 

occurs for the duration of the application of the stimulus.  The firing pattern during the 

tonic phase is irregular and can last for over 30 minutes (Iggo and Muir, 1969; Tapper, 

1965; Willis and Coggeshall, 2004).   

 

There has been a long-standing debate with regard to the exact role of Merkel cells in 

light touch sensation.  Many studies suggested that the Merkel cell is critical for 

transducing the mechanical stimulus into a chemical signal to activate the innervating 
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neurite, while other studies proposed that Merkel cells may play a modulatory role and 

the neurite is primarily responsible for transducing the mechanical stimulus.   

 

There is abundant biochemical evidence that Merkel cells produce neurotransmitters and 

the machinery required for synaptic release (Haeberle et al., 2004; Maksimovic et al., 

2013; Tachibana and Nawa, 2002).   Merkel cells also express voltage gated calcium 

channels, and calcium induced calcium release from internal stores occurs upon the entry 

of calcium into the cell, providing a potential mechanism for neurotransmitter release 

(Senok and Baumann, 1997; Yamashita et al., 1992).  In addition, blocking glutamatergic 

transmission reduced the SA response evoked by activation of Merkel cell-neurite 

complexes, suggesting that excitatory neurotransmission is required for transducing the 

mechanical stimulus (Fagan and Cahusac, 2001).  The most compelling evidence 

suggesting a mechanosensory function of Merkel cells comes from Atoh1/Math1 

conditional knockout mice, in which Merkel cells are not differentiated but the 

innervating fibers are still present in touch domes.  Strikingly, although the total number 

of Aβ fibers is not significant changed, SAI responses could not be detected in these 

animals using the ex vivo skin nerve preparation (Maricich et al., 2009).  These results 

suggest that Merkel cells are essential for mediating the SAI response.  However, it is 

unclear whether these remaining fibers completely lost their mechanosensitivity or 

display physiological properties similar to RA mechanoreceptors.  

 



24 
 

On the other hand, using both ultrastructural and electrophysiological evidence, 

Gottschaldt and Vahle-Hinz argued that the ability of Merkel cell innervating neurites to 

follow high frequency stimuli up to 1200 Hz with a one-to-one response for up to 500 ms 

is incompatible with chemical communication, as neurotransmitter could not be released 

and cleared from the synapse quickly enough to produce such a precise response.  In 

addition, the latency from application of stimulus to response in the innervating fiber was 

too fast for chemical transmission (Gottschaldt and Vahle-Hinz, 1981), further supporting 

their model that the innervating neurite acts as the mechanosensitive element.   

 

Diamond’s group also argued that Merkel cells are dispensable for mechanosensation.  

They found that touch domes were still mechanoresponsive after selective destruction of 

Merkel cells using quinacrine loading and ultraviolet (UV) light irradiation (Diamond et 

al., 1988).  However, Ikeda et al. found that SAI responses evoked by touch dome 

stimulation were lost using a different irradiation procedure to eliminate Merkel cells 

(Ikeda et al., 1994).  Further investigation revealed that quinacrine loading/UV irradiation 

is not selective and incomplete, leaving some Merkel cells relatively intact and damaging 

other nerve fibers in the skin (Senok et al., 1996).  These conflicting results and technical 

issues make these experiments difficult to interpret. 

 

Others have attempted to reconcile the conflicting findings regarding the role of the 

Merkel cell in mechanotransduction with a two-receptor-site model, in which both the 

innervating neurite and the Merkel cell are mechanosensitive.  According to this model, 

the early phasic activity is mediated by the neurite while the late tonic phase is due to 
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chemical communication between the Merkel cell and the neurite (Maksimovic et al., 

2013; Ogawa, 1996).  A key to resolving this debate is to develop new tools, by which 

Merkel cell innervating axons can be specifically identified for physiological recording 

while Merkel cells are acutely and selectively ablated.  

 

As a result of their small sizes, Merkel cell-neurite complexes have the smallest receptive 

fields among all mechanoreceptors and are best able to distinguish individual closely 

spaced objects.  Due to these characteristics, Merkel cells are proposed to be essential for 

detecting the fine details of touched objects, such as shape, texture, and curvature 

(Johnson, 2001; Johnson et al., 2000).  A recent study found that mice lacking Merkel 

cells were unable to detect certain textures with their feet (Maricich et al., 2012).  

 

Development 

In contrast to the RA mechanoreceptor end organs, Merkel cells appear in the skin prior 

to the arrival of innervating fibers (Saxod, 1996).   Immature Merkel cells can be 

observed in the epidermis of the rat around E16, when innervating axons have only 

reached the dermis.  Axons reach the epidermis and are found in close association with 

Merkel cells a day later (English et al., 1980).   
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Since Merkel cells share characteristics with both epidermal and neural cells, there has 

been argument concerning the embryological origins of Merkel cells in mammals (Lucarz 

and Brand, 2007).  In birds, chick-quail chimera experiments offer strong support to a 

neural crest origin of Merkel cells (Grim and Halata, 2000).  In addition, Merkel cells 

were labeled by LacZ when all neural crest derived cells were genetically labeled using 

Wnt1Cre and ROSA26R-β-Galactosidase reporter mice, suggesting that mouse Merkel 

cells arose from a neural crest origin (Szeder et al., 2003).  However, there is also genetic 

evidence to support an epidermal origin of Merkel cells.  The transcription factor 

Atoh1/Math1 is highly expressed and functionally required for the development of 

Merkel cells.  Surprisingly, Merkel cells still form when Atoh1 is conditionally ablated 

from neural crest cells.  In contrast, when Atoh1 is deleted from the basal layer of the 

epidermis using a Keratin14Cre line, Merkel cells do not form, suggesting an epidermal 

origin for Merkel cells in mammals (Morrison et al., 2009).  Nevertheless, this study 

could not exclude a cell non-autonomous effect for Atoh1 in the development of Merkel 

cells, as Atoh1 expression was also observed in some of the accessory cells surrounding 

Merkel cells. 

 

Inherent transcriptional programs in the innervating neuron are also required for 

development of Merkel cell-neurite complex.  Similar to Meissner’s corpuscles and 

lanceolate endings, Merkel cells are dependent on the transcription factor Shox2 for 

sensory innervation during development.  In Shox2 mutants, Merkel cells are present in 

both glabrous and hairy skin, but there is a dramatic decrease in the percentage of Merkel 
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cells innervated by large diameter sensory fibers (Abdo et al., 2011).  In addition, some 

mechanoreceptive DRG neurons co-express the Runt-related transcription factors Runx1 

and Runx3 (Yoshikawa et al., 2013), and the number of Merkel cell-neurite complex 

surrounding the whiskers is greatly reduced in Runx3 mutant mice (Senzaki et al., 2010).  

One plausible mechanism by which Runx3 controls Merkel cell-neurite complex 

development is to regulate TrkC expression (Kramer et al., 2006b; Levanon et al., 2002; 

Nakamura et al., 2008).  

 

In addition to transcriptional programs, Merkel cell-neurite complexes are highly 

dependent on several types of neurotrophic signaling for their development (Montano et 

al., 2010).  One population of Merkel cells depends on TrkA/NGF signaling.  The 

number of Merkel cells surrounding hair follicles and the number of innervating axons is 

reduced in TrkA mutants.  However, remaining Merkel cells are maintained into 

adulthood, suggesting a TrkA independent Merkel cell population.  Loss of the TrkA 

ligand NGF produces a similar, but less severe, phenotype (Fundin et al., 1997).   

 

TrkC/NT3 signaling has a significant and complicated effect on Merkel cell development.  

TrkC is expressed in both Merkel cells and Merkel cell innervating somatosensory 

neurons.  In mice lacking the kinase domain of TrkC, the number of Merkel cells is 

reduced at birth.  In addition, those that are present at birth are not maintained during the 

first two postnatal weeks, suggesting that all Merkel cells become dependent on TrkC 
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signaling postnatally (Cronk, Wilkinson et al. 2002).  Loss of NT3, the TrkC ligand, 

leads to a more severe deficit, with even fewer Merkel cells present at birth (Airaksinen 

et al., 1996).  The phenotype becomes most severe when all isoforms of TrkC are 

eliminated in TrkC complete null mice, in which no Merkel cells or innervating fibers are 

present at birth, suggesting additional kinase-independent roles of TrkC in Merkel cell 

development (Cronk et al., 2002; Fundin et al., 1997).   

 

TrkB signaling also has an effect on Merkel cell development.  In TrkB mutant mice, the 

number of Merkel cells surrounding hair follicles and in the glabrous skin is greatly 

reduced (Perez-Pinera et al., 2008).  When BDNF is overexpressed in the skin, the 

number of Merkel cells is increased in the glabrous but not hairy skin (LeMaster et al., 

1999).  Interestingly, the mechanical threshold of SAI mechanoreceptors increases eight 

fold in the BDNF heterozygous and null mice, although the number and morphology of 

Merkel cells was normal in touch domes of P14 BDNF null animals.  This deficit could 

be rescued by injecting recombinant BDNF into BDNF heterozygous mice (Carroll et al., 

1998).  

 

Lastly, the low affinity neurotrophin receptor p75 also plays a role in Merkel cell 

development.  p75 can bind NGF, BDNF, NT3, and NT4, and interact with the Trk 

receptors (Skaper, 2012).  In p75 mutant mice, Merkel cells develop normally during the 

first two postnatal weeks but then then slowly decrease in number over the following 

months until very few remain (Fundin et al., 1997; Kinkelin et al., 1999).  
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RUFFINI CORPUSCLES  

Anatomical location and morphology  

The Ruffini corpuscle is an elongated structure with tapered ends.  Morphologically, it is 

quite similar to the Golgi tendon organs which are innervated by proprioceptors (Halata 

and Munger, 1980a).  The corpuscle is usually encased in a capsule of 4-5 layers of 

perineural cells and contains an inner core of Schwann cells and collagen, which is 

innervated by a single large diameter myelinated axon that loses its myelination upon 

entry into the inner core.  The axon gives off numerous terminal branches within the 

inner core (Chambers et al., 1972; Willis and Coggeshall, 2004).  Collagen fibers 

associated with the inner core exit the poles of the Ruffini corpuscle and interact with 

collagen in the surrounding tissue, providing a potential mechanism for mechanically 

linking the inner core with the surrounding tissue (Halata, 1977). 

 

The central projections of SA type II (SAII) mechanoreceptors, which are presumed to 

innervate Ruffini corpuscles, are distinct form other mechanoreceptors.  Collaterals 

innervating the dorsal horn project to layer III, and then branch into at least two 

processes.  These processes travel deeper into the dorsal horn and branch extensively, 

forming terminal arborizations from layer III-VI (Brown, 1981).   
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The first extensive morphological characterization of Ruffini corpuscles was performed 

on hairy skin of the cat (Chambers et al., 1972).  However, the anatomical location and 

existence of Ruffini corpuscles between tissues and species is currently under debate.  In 

many cases, numerous units with SAII responses can be recorded in nerve fibers 

innervating a tissue, but the Ruffini corpuscles cannot be found in the tissue following 

careful histological examination.  For example, physiological recordings of nerves 

innervating the glabrous skin of raccoons and humans have shown a relatively high 

proportion of units exhibiting SAII responses (Johansson and Vallbo, 1979; Rasmusson 

and Turnbull, 1986).  However, when glabrous skin from monkeys and raccoons was 

examined, no Ruffini corpuscles were found (Pare et al., 2002; Rice and Rasmusson, 

2000).  In humans, a single Ruffini corpuscle was found in the skin of the index finger, 

which is much less than what would be expected based on the physiological recordings 

(Pare et al., 2003).  Notably, Pare, et al. observed innervation of blood vessels which 

looked morphologically similar to previous descriptions of Ruffini corpuscles.  The 

authors suggest that previous studies may have misidentified these structures as Ruffini 

corpuscles, which could explain the discrepancy in previous findings (Pare et al., 2002).  

In mouse hairy skin, SAII fibers are also identified by physiological recordings but no 

definite Ruffini corpuscle structure has been reported (Wellnitz et al., 2010).  

 

In many species, sensory endings which are morphologically similar to Ruffini 

corpuscles have been identified.  In monkeys and raccoons, unencapsulated Ruffini-like 

endings were found at the base of the fingernail/claw (Pare et al., 2002; Rice and 
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Rasmusson, 2000).  Ruffini corpuscles have also been found in association with hair 

follicles, where they are sometimes referred to as pilo-Ruffini complexes (Biemesderfer 

et al., 1978).  Additionally, unencapsulated periodontal Ruffini-like corpuscles have been 

identified surrounding the teeth of rodents (Byers, 1985).   

 

Physiology and function 

Although not well defined morphologically, the physiology of SAII Aβ low-threshold 

mechanoreceptors have been extensively characterized in both humans and model 

organisms (Johansson and Vallbo, 1979; Wellnitz et al., 2010).  Like the SAI response, 

the SAII responses is characterized by an early dynamic phase which is sensitive to both 

the velocity and displacement of the stimulus, followed by a static response phase that 

last throughout the application of stimulus.  However, SAII responses can be 

differentiated from SAI responses because they usually display some background firing 

activity when no stimulus is applied, they fire at a much more regular rate during the 

static phase, and their maximum frequency of the response is less than that of the SAI 

response (Chambers et al., 1972).   

 

SAII Aβ low-threshold mechanoreceptors are proposed to act primarily as stretch 

receptors.  In psychophysical recordings SAII units were less sensitive than SAI units to 

skin indentation, but were much more sensitive to stretching of the skin (Johnson et al., 

2000).  The stretch receptors in the skin may have two functions.  They may work in 
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combination with RA mechanoreceptors to sense movement of grasped objects.  In 

addition, they may work in concert with proprioceptors to sense the position of the 

fingers and hand, as skin stretch will vary based on grasp (Johnson, 2001). 

 

Development 

Due to the difficulty in clearly identifying Ruffini corpuscles by morphology, relatively 

little work has been done to study their development compared to the other 

mechanoreceptors discussed in this review.  Both periodontal Ruffini-like endings and 

those associated with whisker hair are dependent on TrkB neurotrophic signaling in mice.  

Periodontal Ruffini-like endings are absent in TrkB mutant mice, and mice lacking either 

BDNF or NT4 show Ruffini-like endings with immature morphology (Hoshino et al., 

2003; Maruyama et al., 2005; Matsuo et al., 2002).  The Ruffini-like endings of whisker 

hairs are also absent in TrkB mutants.  In addition, the number of whisker Ruffini-like 

endings is greatly reduced in BDNF mutants but is unaffected in NT4 mutants.  

Furthermore, the number of Ruffini-like endings associated with whiskers is increased in 

NT3 mutant mice (Fundin et al., 1997).  

 

RET STRUCTURE AND FUNCTION 

The receptor tyrosine kinase RET (REarranged during Transfection) was first discovered 

in 1985 after DNA rearrangement conferred the ability to transform NIH3T3 cells upon 
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transfection with DNA from a human lymphoma (Takahashi et al., 1985).  Since this 

time, research has revealed critical roles for RET in oncological and developmental 

diseases, including medullary thyroid carcinoma, multiple endocrine neoplasia, papillary 

thyroid carcinoma, and Hirschsprung disease (Amiel et al., 2008; Krampitz and Norton, 

2014; Romei et al., 2016).  Furthermore, RET signaling has critical roles in kidney 

development, spermatogenesis, and the development of enteric, sensory, autonomic, and 

motor neurons (Kramer et al., 2006a; Meng et al., 2000; Runeberg-Roos and Saarma, 

2007; Schuchardt et al., 1994).   

 

The RET protein contains four n-terminal cadherin-like domains.  There is a calcium 

binding domain between the second and third cadherin-like domain, and calcium binding 

is required for proper folding and activation of RET (Anders et al., 2001).  Following the 

cadherin-like domains is a cysteine-rich domain, followed by the transmembrane region.  

For many years, the extracellular domains required for association with the ligand/co-

receptor complex has been controversial, with nearly all extracellular domains implicated 

in complex binding (Amoresano et al., 2005; Kjaer and Ibanez, 2003).  Recent structural 

modeling work using low-angle X-ray scattering and electron microscopy data reconciles 

these results and suggests that RET associates with its co-receptors at four distinct sites 

distributed over the first three cadherin-like domains as well as the cysteine-rich domain 

(Goodman et al., 2014).  The transmembrane domain of RET likely contributes to the 

dimerization of RET molecules, which is essential for activation of RET following ligand 

binding (Kjaer et al., 2006).   
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The intracellular domain contains a short juxtamembrane region, followed by the kinase 

domain and a c-terminal tail.  Like other receptor tyrosine kinases, the intracellular 

domain of RET undergoes autophosphorylation of tyrosine residues following 

stimulation.  Of the 18 intracellular tyrosine residues, 14 can be phosphorylated in vitro 

(Ibanez, 2013; Kawamoto et al., 2004).  Phosphorylated tyrosine residues serve as 

docking sites for adapter proteins which activate downstream pathways including MAP 

kinase, PI3 kinase/AKT, Jun n-terminal kinase, and Phospholipase Cγ kinase pathways  

(Airaksinen et al., 1999; Borrello et al., 1996; Chiariello et al., 1998; van Weering and 

Bos, 1997; Worby et al., 1996).   

 

Following the kinase domain is a cytoplasmic tail, which produces a short isoform 

(RET9) and long isoform (RET51) due to differential splicing.  Both isoforms contain a 

critical tyrosine residue, Y1062, which is important for RET function in vivo (Durick et 

al., 1995).  RET51 also contains an additional tyrosine, Y1096, which may compensate 

for the loss of Y1062 in some contexts (Degl'Innocenti et al., 2004; Jain et al., 2006).  

Generation of mice expressing only a single isoform of RET has produced conflicting 

results.  In one study, mice expressing only a human/mouse chimera RET51 had deficient 

kidney development, while RET9 expressing mice had normal kidneys (de Graaff et al., 

2001).  In contrast, a more recent study of monoisoformic mice expressing human 

isoforms of RET9 or RET51 found no renal deficits in either mouse model (Jain et al., 
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2006).  Although RET9 and RET51 are identical up to their c-terminal tails, they are 

unable to associate with or activate each other upon stimulation with ligand (Tsui-

Pierchala et al., 2002). 

 

RET SIGNALING 

RET is the receptor tyrosine kinase for the glial cell line-derived neurotrophic factor 

(GDNF) family of neurotrophic factors, which includes GDNF, neurturin (NRTN), 

artetmin, and persephin.  RET is atypical among receptor tyrosine kinases in that it does 

not directly bind to its ligands.  Instead, the ligands bind to GPI-linked GDNF-family 

receptor α (GFRα) co-receptors.  The high affinity co-receptor/ligand pairs are 

GFRα1/GDNF (Jing et al., 1996; Treanor et al., 1996), GFRα2/NRTN (Baloh et al., 

1997; Buj-Bello et al., 1997; Klein et al., 1997), GFRα3/artemin (Baloh et al., 1998), and 

GFRα4/persephin (Yang et al., 2007), although there is some crosstalk between 

nonmatching ligands and co-receptors, particularly at high ligand concentrations.  The 

kinetics of ligand/co-receptor/RET binding remains poorly understood.  Originally, it was 

proposed that ligand binds to GFRα co-receptor, which may exist as a dimer or may 

dimerize upon ligand binding.  This ligand/co-receptor complex then binds to RET, 

leading to dimerization of RET and autophosphorylation of the RET intracellular domain 

(Jing et al., 1996).  However, binding of RET and co-receptor has been observed in the 

absence of ligand, suggesting that RET and GFRα may associate prior to ligand binding 

(Cik et al., 2000; Eketjall et al., 1999).   
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The GPI-linked GFRα co-receptors also affect the subcellular localization of RET 

signaling.  Like other GPI-linked proteins, GFRαs localize to lipid rafts.  Under basal 

conditions, RET is mostly excluded from lipid rafts.  However, upon stimulation with 

ligand, RET translocates to lipid rafts, where it becomes phosphorylated (Paratcha et al., 

2001; Tansey et al., 2000).  In cells expressing a version of GFRα1 containing a 

transmembrane domain, which is excluded from lipid rafts, stimulation with GDNF still 

led to phosphorylation of RET (Tansey et al., 2000).  However, the activation of 

downstream effectors, such as MAP and Akt kinases, was reduced in these cells relative 

to cells containing GPI-linked GFRα1.  The reduction in efficiency of RET signaling 

away from lipid rafts is likely due to the loss of colocalization with downstream effectors 

enriched in lipid rafts (Tansey et al., 2000).   Furthermore, translocation to lipid rafts may 

segregate RET from cellular degradation machinery, increasing the perdurance of RET 

activation (Pierchala et al., 2006).  Recently, a GFRα1-transmembrane domain knock-in 

mouse was generated and had kidney and enteric neuron phenotype which were similar to 

Gfra1 null mice, suggesting that localization to lipid rafts is required for GFRα1 function 

in vivo (Tsui et al., 2015). 

 

In addition to activation of RET by GFRα co-receptor expressed in the same cell (cis 

signaling), RET can also be activated by GFRα co-receptor expressed by other cells or 

soluble co-receptor present in the surrounding environment (trans signaling).  The studies 
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which initially identified GFRα1 and GFRα2 as the RET co-receptor which binds 

GDNF/NRTN demonstrated that treatment with GDNF/NRTN and soluble co-receptor 

can activate RET in cultured cells, demonstrating that trans activation is possible in vitro 

(Jing et al., 1996; Klein et al., 1997; Treanor et al., 1996).  In addition to expression in 

RET+ cells, GFRα co-receptors (mostly Gfrα1) are also expressed in cells which do not 

express RET, but are adjacent to or in the axonal target fields or RET+ cells (Enomoto et 

al., 2004; Trupp et al., 1997; Worley et al., 2000; Yu et al., 1998).  These expression 

patterns suggest that GFRαs may activate RET in trans in vivo, that GFRαs have RET-

independent functions, and/or that GFRαs in non-RET+ cells may act to concentrate and 

present GDNF family ligands to RET+ cells for activation in cis.   

 

Although numerous studies have demonstrated the ability for GFRas to activate RET in 

trans in vitro and in tissue explants (Ledda et al., 2002; Paratcha et al., 2001; Patel et al., 

2012; Tansey et al., 2000; Uesaka et al., 2013; Worley et al., 2000), whether trans 

signaling occurs in vivo has remained controversial.  The strongest argument against a 

physiological role for trans RET signaling in vivo was presented by Enomoto, et al. 

(Enomoto et al., 2004).  To determine whether RET-independent GFRα1 has a role in a 

variety of developmental processes, they generated a “cis-only” mouse model.  In this 

model, Gfrα1 expression was driven from the Ret locus in a Gfrα1 null background.  

Therefore, Gfra1 was expressed at a high level in all cells which express Ret, but in no 

other cells.  In this model, a variety of RET/GFRα1 dependent developmental processes, 

including kidney formation and enteric and motor neuron development, appeared normal 
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and the mice survived to adulthood.  Therefore, the authors concluded that trans RET 

activation is mostly irrelevant for normal in vivo development (Enomoto et al., 2004).  

However, in addition to a loss of trans expressed Gfra1, this model also produces a gain 

of function: Gfra1 is expressed at a high level in all RET+ cells, including those which do 

not normally express the co-receptor.  Therefore, any deficits due to the loss of trans 

RET signaling may be compensated for by the ectopic gain of cis GFRα1.  Due to these 

concerns, an in vivo role for trans RET signaling has not been definitively ruled out.  In 

Chapter 2 of my thesis, I show that both cis and trans activation of RET in RA 

mechanoreceptors contribute to the growth of axonal projections into the dorsal spinal 

cord. 

 

ER81 

ER81 (ETS-related 81, also known as ETV1) is a member of the PEA3 subfamily of the 

ETS (E26 transformation-specific) family of transcription factors (Monte et al., 1994; Oh 

et al., 2012).  ER81 is comprised of an n-terminal transactivation domain, a central 

domain which partially inhibits the activity of ER81, an ETS DNA binding domain, and a 

c-terminal domain which acts as a second, weaker transactivation domain (Janknecht, 

1996).  The n-terminal transactivation domain is positively regulated by direct interaction 

with the MAP kinase pathway components, whereas the c-terminal transactivation 

domain can be indirectly activated through MAP kinase activity (Janknecht, 1996).  

Additionally, acetylation via p300 increases the DNA binding affinity of ER81 (Goel and 
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Janknecht, 2003).  In contrast, phosphorylation of ER81 by protein kinase A negatively 

regulates the transactivation activity of ER81 (Wu and Janknecht, 2002).  Chromosomal 

rearrangements involving ER81 have been implicated in Ewing’s sarcoma and prostate 

cancer (Jeon et al., 1995; Tomlins et al., 2005).  Furthermore, high levels of ER81 

expression contribute to the development of gastrointestinal stromal tumors (Chi et al., 

2010).   

 

ER81 also plays a critical role in the development of motor circuits.  Early experiments in 

chick demonstrated that ER81 and PEA3, another ETS transcription factor, were 

specifically expressed in distinct motor pools and proprioceptive neurons.  Motor neurons 

and proprioceptive sensory neurons expressing ER81 innervated anterior limb muscles, 

whereas PEA3+ neurons innervated posterior limb muscles (Lin et al., 1998).  Loss of 

function data from mice demonstrated a functional role for ER81 in motor circuit 

development (Arber et al., 2000).  Er81 null mice display an uncoordinated motor 

phenotype within the first week of life and die around one month of age.  A normal 

complement of motor neurons and proprioceptive neurons develop in Er81 nulls.  

However, group Ia proprioceptive afferents, which usually extend a peripheral process 

which innervates muscle spindles and central process which innervates motor neurons, do 

not project to the ventral spinal cord to synapse on motor neurons in Er81 mutants.  

Physiological recordings revealed that the monosynaptic stretch reflex circuit, normally 

mediated by Ia afferents, was severely disrupted due to the lack of ventral spinal cord 

innervation.  In contrast to their central projections, the initial innervation of muscle 
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spindles by proprioceptors is normal in Er81 mutants.  In fact, excess muscle spindles are 

formed in distal limb muscles in Er81 mutants, although the morphology of these 

spindles is abnormal (Kucera et al., 2002).  Conditional ablation experiments support a 

neural specific requirement for Er81 in the development of proprioceptive central 

projections (Patel et al., 2003). 

 

Proprioceptive sensory neurons express TrkC, the receptor for the neurotrophin NT3.  

TrkC/NT3 signaling is required for the survival of proprioceptors, as well as 

proprioceptive projections to the ventral spinal cord (Klein et al., 1994; Tessarollo et al., 

1994).  In an apoptosis-deficient Bax null background, the loss of NT3 still lead to a 

deficit in the central projections of proprioceptors, despite the survival of proprioceptors 

(Patel et al., 2003).  Furthermore, in a series of loss of function and gain of function 

experiments, Patel et al. demonstrated that TrkC signaling, potentiated by NT3 expressed 

peripherally, is required for the expression of ER81 in proprioceptors.  In mouse dorsal 

root ganglia, ER81 is expressed in nearly all TrkC+ proprioceptors (Arber et al., 2000).  

However, approximately 30% of ER81+ neurons do not express TrkC, and their function 

currently remains unknown.   

 

Pacinian corpuscles are also absent in Er81 null mice (Sedy et al., 2006).  It was 

previously reported that the afferents which innervate Pacinian corpuscles are present a 

few days before birth.  However, these axons are not present at birth, and corpuscles do 
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not form.  Er81 is expressed in the Schwann cells which make up the inner core of the 

Pacinian corpuscle end organ, so it was proposed that a Schwann cell deficit led to the 

Pacinian corpuscle phenotype (Sedy et al., 2006).  However, whether Er81 also has a role 

in Pacinian corpuscle innervating neurons has not been investigated.  In Chapter 3 of this 

thesis, I show that Er81 is required in neurons for the development of Pacinian 

corpuscles. 

 

SCHWANN CELLS AND NEUREGULIN-1 

In the peripheral nervous system (PNS), motor and sensory neurons extend long axons to 

control movement and sense stimuli.  Associated with these neurons are Schwann cells, 

which are composed of two broad classes: myelinating and non-myelinating Schwann 

cells.  Myelinating Schwann cells produce the myelin sheath which insulates large 

diameter axons, while non-myelinating Schwann cells help to form specialized sensory 

and motor endings and bundle small diameter non-myelinated sensory neurons(Griffin 

and Thompson, 2008; Salzer, 2015).  Neurons and Schwann cells interact closely to build 

the PNS, maintain its normal function, and regenerate the PNS when necessary (Mirsky 

et al., 2008; Stassart et al., 2013).  Perturbations in neuron-Schwann cell interactions have 

significant effects on human health, manifesting in diseases such as Charcot-Marie-Tooth 

disease and other peripheral neuropathies (Scherer and Wrabetz, 2008).   

 

An important mediator of communication between neurons and Schwann cells is the 
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primarily neuronal EGF-like protein Neuregulin-1 (NRG1) and its ERBB family of 

receptors expressed on Schwann cells (Birchmeier and Nave, 2008).  The Nrg1 gene 

locus produces at least 15 distinct isoforms via different transcriptional initiation or 

alternative splicing(Falls, 2003).  The two most prevalent isoforms in the PNS are NRG1-

Ig (NRG1 type I/II), which contains an extracellular Ig-like domain, and NRG1-CRD 

(NRG1 type III), which contains an extracellular cysteine rich domain (Buonanno and 

Fischbach, 2001).  NRG1-CRD is crucial for axonal communication with myelinating 

Schwann cells.  The level of NRG1-CRD expressed by a neuron is positively correlated 

with the thickness of its axonal myelination, with the largest diameter sensory neurons 

normally expressing the highest levels of Nrg1-CRD (Michailov et al., 2004).  However, 

the upstream mechanisms which control the differential expression level of NRG1 in 

different types of neurons remain unknown.   

 

In contrast to myelinating Schwann cells, the molecular mechanisms used by neurons to 

communicate with non-myelinating Schwann cells are largely unknown.  Nrg1 is also 

required for the differentiation and formation of muscle spindles, which are composed of 

muscle fibers, non-myelinating Schwann cells, and innervating proprioceptive 

axons(Hippenmeyer et al., 2002).  In this case, isoforms other than NRG1-CRD, most 

likely NRG1-Ig, are required (Hippenmeyer et al., 2002).  The precise cellular target of 

NRG1 signaling (i.e. muscle fibers or Schwann cells) in muscle spindle development 

remains unclear. 

 

The juxtamembrane regions of both NRG1-CRD and NRG1-Ig can be cleaved by 
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proteases.  The protease β-secretase 1 (BACE1) has been demonstrated to cleave NRG1, 

and contributes to the promyelinating and pro-muscle spindle development roles of Nrg1-

CRD and Nrg1-Ig, respectively (Cheret et al., 2013; Hu et al., 2006; Willem et al., 2006).  

It has been proposed that cleavage of NRG1-Ig would release the EGF domain of NRG1 

from the membrane and allow it to signal at a distance from its source, while cleavage of 

NRG1-CRD c-terminal to the EGF domain would produce a membrane tethered EGF 

domain, due to the membrane association of the CRD.  However, recent work has 

demonstrated that ADAM family proteases can cleave NRG1-CRD between the CRD 

and EGF domains, allowing for the release of EGF domain following dual cleavage by 

both ADAM and BACE proteases (Fleck et al., 2013).   

 

Pacinian corpuscle innervating neurons express NRG1 and corpuscle Schwann cells 

express ERBB receptors (Gonzalez-Martinez et al., 2007; Kopp et al., 1997).  In addition, 

injection of NRG1-Ig into neonatally denervated limbs can rescue Pacinian corpuscles by 

preventing apoptosis of Schwann cells (Kopp et al., 1997).  However, the role of NRG1 

signaling in normal development and maintenance of Pacinian corpuscles has not been 

determined.   

 

BOMBESIN-RELATED PEPTIDES AND ITCH 

Itch, which is defined as producing a desire to scratch, represents significant clinical and 

quality-of-life issues.  Itch perception is mediated by small diameter dorsal root ganglion 

and trigeminal ganglion neurons, which relay itch information to downstream neurons in 

the dorsal spinal cord or brainstem (Ikoma et al., 2011).  For many years, the identity of 
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itch sensing neurons remained controversial.  Some investigators supported an “intensity” 

model of itch, which suggested that itch and pain are detected by the same population of 

DRG neurons, with the intensity of the stimulus/firing rate output of the somatosensory 

neuron determining whether itch or pain is perceived (Patel and Dong, 2010).  However, 

in recent years use of mouse genetic models to genetically label and manipulate 

molecularly defined classes of neurons has supported a “labeled-line” model, which 

suggests that distinct populations of somatosensory neurons specifically mediate itch 

transmission (Han et al., 2013; Liu et al., 2009).   

 

Although populations of itch-specific neurons have been defined, the cellular 

mechanisms of itch sensation transmission remain controversial.  Although itch-sensing 

neurons can release glutamate and blocking glutamatergic transmission in the spinal cord 

silences input from itch-sensing neurons, genetic ablation of glutamatergic transmission 

in itch-sensing neurons in mice does not eliminate itch (Koga et al., 2011; Lagerstrom et 

al., 2010; Liu et al., 2010).  Therefore, other mechanisms in addition to glutamatergic 

transmission likely mediate itch sensation.  The bombesin-related peptide gastrin related 

peptide (GRP) has been proposed as a potential mediator of itch transmission from 

somatosensory neurons to the dorsal spinal cord.  GRP was found to be expressed in 

small diameter DRG neurons, and its receptor, Grpr, is expressed in superficial layers of 

the dorsal spinal cord.  Intrathecal injection of GRP causes scratching behavior, and 

knocking out Grpr or ablating GRPR+ cells in the dorsal spinal cord produced loss of itch 

behavior phenotypes (Sun and Chen, 2007; Sun et al., 2009).   
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GRP and neuromedin B (NMB) are the only members of the mammalian bombesin-like 

peptide family, identified based on their similarity to the bombesin peptide, originally 

isolated from the frog Bombina bombina (Jensen et al., 2008).  GRP and NMB bind with 

high affinity to their G-protein coupled receptors, GRPR and NMBR, although GRP and 

NMB can bind to their non-matching receptor at high concentrations (Battey et al., 1991; 

Wada et al., 1991).  Although GRP was detected in DRG neurons by immunostaining 

(Sun and Chen, 2007), other studies have failed to detect Grp transcript or protein in 

DRG neurons (Fleming et al., 2012; Mishra and Hoon, 2013; Solorzano et al., 2015).  

Therefore, GRP may play a role in itch transmission in local dorsal spinal cord circuits 

but may not act as a transmitter from primary sensory neurons (Gutierrez-Mecinas et al., 

2014).  In contrast to GRP, Nmb is highly expressed in somatosensory neurons (Allen 

Institute for Brain Science, 2016).  Furthermore, intrathecal and 

intracerebroventricular injection of NMB produces a scratching response, demonstrating 

a potential role for NMB in the transmission of itch sensation (Su and Ko, 2011; 

Sukhtankar and Ko, 2013).  In Chapter 4 of this thesis, we provide further evidence that 

GRP is expressed in the dorsal spinal cord, but is likely not expressed in DRG neurons.  

Furthermore, Nmb is highly expressed in DRG neurons which transmit itch and pain 

information. 
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Figure 1. Illustration to demonstrate the morphologies and physiological properties 
of mammalian Aβ low-threshold mechanoreceptors.  In glabrous skin (left side of the 
illustration), Meissner’s corpuscles are located in the dermal papillae of the dermis, 
Merkel cells are located in the basal epidermis, Ruffini corpuscles are located in the 
dermis, and Pacinian corpuscles are located in the dermis, deeper than the other 
mechanosensory end organs.  In hairy skin (right side of the illustration), hair follicles are 
surrounded by lanceolate endings and Merkel cells.  The bottom panel shows the neural 
activity of different types of Aβ low-threshold mechanoreceptors in response to a 
sustained stimulus.  Meissner’s corpuscle, Pacinian corpuscle and lanceolate ending 
mechanoreceptors display rapidly adapting mechanosensitive physiological properties, 
while Merkel cell and Ruffini corpuscle mechanoreceptors display slowly adapting 
mechanosensitive properties, which fire action potentials (APs) throughout the duration 
of the stimulus.   
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CHAPTER 2 

 

 

Cis and trans RET signaling control the survival and central projection growth of 

rapidly adapting mechanoreceptors 

This chapter is adapted from: 

Fleming, M.S., Vysochan, A., Paixao, S., Niu, J., Klein, R., Savitt, J.M., and Luo, W. 

(2015). Cis and trans RET signaling control the survival and central projection growth of 

rapidly adapting mechanoreceptors. eLife 4, e06828. 
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ABSTRACT 

RET can be activated in cis or trans by its co-receptors and ligands in vitro, but the 

physiological roles of trans signaling are unclear.  Rapidly adapting (RA) 

mechanoreceptors in dorsal root ganglia (DRGs) express Ret and the co-receptor Gfra2 

and depend on Ret for survival and central projection growth.  Here, we show that Ret 

and Gfra2 null mice display comparable early central projection deficits, but Gfra2 null 

RA mechanoreceptors recover later.  Loss of Gfra1, the co-receptor implicated in 

activating RET in trans, causes no significant central projection or cell survival deficit, 

but Gfra1;Gfra2 double nulls phenocopy Ret nulls.  Finally, we demonstrate that GFRa1 

produced by neighboring DRG neurons activates RET in RA mechanoreceptors.  Taken 

together, our results suggest that trans and cis RET signaling could function in the same 

developmental process and that the availability of both forms of activation likely 

enhances but not diversifies outcomes of RET signaling.  
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INTRODUCTION 

The neurotrophic receptor tyrosine kinase RET plays critical roles in many biological 

processes, including kidney genesis, spermatogenesis, and development of enteric, 

sensory, autonomic, and motor neurons (Ibanez, 2013; Runeberg-Roos and Saarma, 

2007).  Loss of RET signaling leads to Hirschprung’s disease, while RET gain of 

function has been implicated in various human carcinomas (Runeberg-Roos and Saarma, 

2007; Santoro and Carlomagno, 2013).  In addition, activation of the RET signaling 

pathway has potential applications in the treatment of Parkinson’s disease and promotion 

of spinal cord regeneration following injury (Bespalov and Saarma, 2007; Deng et al., 

2013).  Therefore, it is critical to thoroughly understand RET signaling mechanisms.  

 

RET is the common signaling receptor for the glial cell line-derived neurotrophic factor 

(GDNF) family of ligands (GFLs), which includes GDNF, neurturin (NRTN), artemin, 

and persephin.  For RET activation and signaling, GFLs first bind to a GPI-linked GDNF 

family receptor alpha (GFRa), which then associates with RET to form an active 

signaling complex (Airaksinen and Saarma, 2002).  In vertebrates, the GFRas and their 

high-affinity ligand pairs are GFRa1 and GDNF (Jing et al., 1996; Treanor et al., 1996), 

GFRa2 and NRTN (Baloh et al., 1997; Buj-Bello et al., 1997; Klein et al., 1997), GFRa3 

and artemin (Baloh et al., 1998), and GFRa4 and persephin (Yang et al., 2007).     
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RET can be activated by GFRas expressed in the same cell (cis signaling) or by GFRas 

(mainly GFRa1) produced from other sources (trans signaling) in vitro (Ledda et al., 

2002; Paratcha et al., 2001).  The existence of both cis and trans activation has been 

proposed to diversify RET signaling by either recruiting different downstream effectors 

or changing the kinetics or efficacy of kinase activation (Paratcha et al., 2001; Tansey et 

al., 2000).  Consistent with the trans signaling model, Gfra1 is expressed in the target 

fields of many RET+ neurons during development and can promote axon growth upon 

GDNF treatment in culture (Paratcha et al., 2001; Trupp et al., 1997; Yu et al., 1998).  

However, the “cis-only” mouse model, in which Gfra1 is expressed under the control of 

the Ret promoter in a Gfra1 null background, produced no overt phenotypes in many Ret-

dependent developmental processes, suggesting that trans signaling may not play a major 

physiological role (Enomoto et al., 2004).  Recently, trans RET signaling has been 

implicated in the development of inhibitory cortical interneurons, nigral dopaminergic 

neurons, and enteric lymphoids, and in perineural invasion by cancer cells (Canty et al., 

2009; He et al., 2014; Kholodilov et al., 2011; Patel et al., 2012).  Nevertheless, the 

physiological functions of trans RET signaling and whether cis and trans signaling lead 

to the same or different biological outcomes in vivo remain largely unresolved.    

 

Aβ Mechanoreceptors are large-diameter somatosensory neurons mediating 

discriminative touch, which innervate layers III-V of the spinal cord (SC).  They can be 

broadly divided into rapidly-adapting (RA) and slowly-adapting (SA) mechanoreceptors 

based on their adaptation properties to sustained mechanical stimuli (Fleming and Luo, 
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2013).  Previously, we and other labs identified that a small population of mouse DRG 

neurons, the early RET+ DRG neurons, develop into RA mechanoreceptors, and that Ret 

is required cell autonomously for the growth of their 3rd order central projections 

innervating the dorsal SC (dSC) (Bourane et al., 2009; Honma et al., 2010; Luo et al., 

2009). 

 

RET in RA mechanoreceptors encounters environments in which both cis and trans 

activation are possible, providing a good model system to study the physiological 

functions of trans RET signaling.  RA mechanoreceptors express Ret and Gfra2 (Bourane 

et al., 2009; Honma et al., 2010; Luo et al., 2009), whereas Gfra1 is highly expressed in 

their target field (Treanor et al., 1996; Yu et al., 1998) and by neighboring DRG neurons 

during development (Honma et al., 2010; Luo et al., 2009).  Here we found that the 

central projection deficit of RA mechanoreceptors is negligible in postnatal Gfra2 and 

Nrtn mutant mice, which is in great contrast to the severely affected Ret mutant mice.  By 

genetically tracing RA mechanoreceptors in different mutant mouse lines during 

development, we showed that the initial growth of the 3rd order central projections of RA 

mechanoreceptors depends on the cis activation of RET via GFRa2 and NRTN.  

However, central projections of Gfra2 null RA mechanoreceptors gradually recover 

during development.  Gfra1 null mice show no obvious central projection deficit by 

itself, but Gfra1;Gfra2 double null mice have similar cell death and central projection 

deficits to those of Ret null mice.  Moreover, we showed that Gfra1 is non-detectable in 

most RA mechanoreceptors, thus RET in RA mechanoreceptors is most likely activated 
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by GFRa1 in trans.  Finally, we determined that RET in Gfra2 null RA mechanoreceptors 

responds to GDNF in DRG explant culture, and this responsiveness is mediated by 

GFRa1 from neighboring DRG neurons (trans activation).  Taken together, our results 

indicate that combinatorial cis and trans RET signaling promote survival and central 

projection growth of RA mechanoreceptors in vivo.   

 

RESULTS 

Expression of Ret, Gfras, and GFLs in the developing mouse spinal cord and DRGs 

Since RET can be activated by GFLs/GFRas either in cis or in trans (mainly by 

GDNF/GFRa1) in vitro, we asked if the expression patterns of Gfra1, Gfra2, Gdnf, and 

Nrtn in the developing SC and DRGs would provide insight into RET signaling in RA 

mechanoreceptors in vivo.  We performed in situ hybridization for Ret, Gfra1, Gfra2, 

Gdnf, and Nrtn on embryonic day 13.5 (E13.5) and E15.5 wild-type DRG and SC 

sections.   Double in situ hybridizations that characterize the expression of Gfra1 and 

Gfra2 in different populations of DRG neurons have been previously conducted 

(summarized in Figure S1K (Luo et al., 2009)).  

 

Similar to previous characterization (Luo et al., 2009; Luo et al., 2007; Molliver et al., 

1997), Ret is expressed in motor neurons and a mix of small and large-diameter DRG 

neurons at E13.5 and E15.5 (Figure S1A-B).  Most large diameter RET+ DRG neurons at 
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these stages are the early RET+ DRG neurons, which develop into RA mechanoreceptors 

(Bourane et al., 2009; Luo et al., 2009).  Gfra1 is highly expressed in some DRG neurons 

and motor neurons as well, but these GFRa1+ DRG neurons come from NTRK1+ 

precursors and are not early RET+ RA mechanoreceptors (Honma et al., 2010; Luo et al., 

2009; Yu et al., 1998).  In addition, Gfra1 is highly expressed in the dorsal root entry 

zone and the dSC, which are the target fields of the central projections of RA 

mechanoreceptors (Figure S1C-D).  Gfra2 is expressed in a small number of large-

diameter DRG neurons, which were previously shown to be RA mechanoreceptors 

(Bourane et al., 2009; Luo et al., 2009), and some SC cells and motor neurons at these 

stages (Figure S1E-F and (Oppenheim et al., 2000)). 

 

Nrtn is diffusely expressed at a low level in the SC and DRGs at both E13.5 and E15.5; 

Gdnf transcript is barely detected at E13.5 but is clearly expressed in DRG and motor 

neurons at E15.5 (Figure S1G-J).  Thus, based on the expression patterns of RET 

signaling components in the developing SC and DRGs, RET in the central projections 

and cell bodies of developing RA mechanoreceptors could potentially be activated in cis 

by NRTN/ GFRa2 or in trans by GDNF/ GFRa1, which may come from neighboring 

DRG neurons, dorsal root entry zone cells, or dSC cells.   

 

Central projection deficit of RA mechanoreceptors is negligible in postnatal Gfra2 

and Nrtn null mice. 
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RA mechanoreceptors depend on RET for the growth of their 3rd order central projections 

innervating layers III-V of SC.  In postnatal Ret mutant mice, VGLUT1+ puncta, which 

label pre-synaptic terminals of mechanoreceptors and proprioceptors (Hughes et al., 

2004; Paixao et al., 2013), are greatly reduced in layers III-V, indicating deficits in the 3rd 

order central projections of RA mechanoreceptors (Luo et al., 2009).  Since RA 

mechanoreceptors express a high level of Gfra2 but not any other Gfras (Luo et al., 

2009), it is likely that RET in RA mechanoreceptors is activated by NRTN/ GFRa2 in cis.  

Indeed, we previously found that Pacinian corpuscles, a subtype of RA mechanosensory 

end organs in the periphery, are not formed in Ret, Gfra2, or Nrtn mutant mice, 

supporting that NRTN/GFRa2-RET cis signaling occurs in RA mechanoreceptors (Luo et 

al., 2009).  Here we asked if NRTN-GFRa2/RET cis signaling is required for the growth 

of RA mechanosensory central projections as well.  We performed immunostaining of 

VGLUT1 with postnatal day 7 (P7) Gfra2GFP/GFP null and Nrtn-/- null SC sections.  No 

significant decrease of VGLUT1+ puncta in layers III-V of SC is observed in Gfra2 and 

Nrtn null mice (Figure 1A-C, Table1 (P=0.96), and data not shown).  This result suggests 

that unlike RET signaling in the peripheral branches of RA mechanoreceptors, cis 

activation of RET by GFRa2 and NRTN may be dispensable for the normal development 

of central projections of RA mechanoreceptors.     

 

To determine whether RA mechanoreceptors survive without Gfra2, we quantified the 

number of GFP+;NF200+ neurons per DRG section in P7 Gfra2GFP/+ controls and 

Gfra2GFP/GFP nulls. GFP is expressed from the Gfra2 locus and most of GFP+;NF200+ 
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neurons indicate RA mechanoreceptors in Gfra2GFP mice.  In agreement with our 

previous findings at P0 (Luo et al., 2009), we found a slight but non-significant decrease 

in RA mechanoreceptor number between controls and mutants (Figure 1D, Table 1, 

(P=0.34)).  Therefore, cis RET signaling via GFRa2 does not seem to be critical for the 

early postnatal survival of RA mechanoreceptors. 

 

Central projection deficit of Ret null mice at E13.5 

To understand the mechanism of RET signaling that controls growth of RA 

mechanosensory central projections, we genetically traced RA mechanoreceptors in Ret, 

Gfra1, Gfra2, and Nrtn mutant mice at different developmental stages.  We first used Ret 

mutant mice, which serve as a positive control for the central projection deficit, to 

determine a robust method for visualizing RA mechanosensory interstitial branches at 

E13.5.  We compared two methods that have been previously used.  One is 

immunostaining of neurofilament-200 (NF200), which is expressed by large diameter 

DRG neurons, including RA mechanoreceptors, SA mechanoreceptors, and 

proprioceptors (Bourane et al., 2009).  The other is to use a knockin/null allele of Ret 

(Honma et al., 2010), RetCFP (Uesaka et al., 2008), in which cyan fluorescent protein 

(CFP, a variant of green fluorescent protein (GFP)) is expressed from the Ret locus.  

Although Ret is expressed in both RA mechanoreceptors and some other DRG neurons at 

E13.5 (Luo et al., 2009), central projections of non-RA mechanoreceptor RET+ neurons, 

most of which develop into nociceptors, do not innervate the dSC until E15.5 or later 
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(Ozaki and Snider, 1997).  In addition, the expression of Ret in dSC neurons is not 

obvious until E15.5 (Figure S1B).  Thus, the RetCFP allele may allow us to specifically 

visualize central projections of RA mechanoreceptors at E13.5.    

 

To compare these two methods, we performed anti-NF200 and anti-GFP immunostaining 

on SC sections of E13.5 RetCFP/+ control and RetCFP/CFP null embryos.  We observed a 

decrease in the density of NF200+ fibers in the dorsal horn (Figure S2B, E).  This 

decrease of NF200+ central projections, however, is not dramatic.  This is because the 

NF200 antibody also recognizes central projections of SA mechanoreceptors and 

proprioceptors, which develop in a manner temporally comparable to RA 

mechanoreceptors.  In contrast, CFP+ fibers innervating the dSC display a dramatic 

reduction in Ret null mice (Figure S2C, F).  Ret null CFP+ fibers reach the dorsal surface 

of the SC but rarely grow interstitial branches innervating layers III-V.  We quantified the 

number of CFP+ pixels in the dorsal horn (displayed as percentage of CFP+ pixels 

normalized to the control) as a proxy for the extent of axon growth and found a 

significant decrease in CFP+ fibers in Ret mutant dorsal horn (Figure S2H and Table 2, 

(P<.001)).  This result suggests that the RetCFP allele is a valid tool for visualizing central 

projection deficits of RA mechanoreceptors at E13.5.  

 

Since Ret signaling can positively regulate the expression of its own signaling 

components or control neuronal survival (Baudet et al., 2008; Golden et al., 2010; Luo et 
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al., 2007), it is conceivable that the lack of dSC CFP+ fibers could be due to a 

downregulation of CFP expressed in Ret null RA mechanoreceptors or death of RA 

mechanoreceptors.  To exclude these possibilities, we quantified the number of CFP+ 

neurons in DRGs.  We found that the number of CFP+ neurons per DRG section was not 

statistically different between Ret heterozygotes and null mice (Figure S2I and Table 2).  

In addition, the intensity of GFP+ fibers at the dorsal surface of the SC is comparable 

between Ret mutant and control mice.  Therefore, the loss of CFP+ fibers in the dorsal 

horn of E13.5 Ret mutants must mainly be due to a deficit in growth of interstitial central 

axons, but not due to the down-regulation of CFP expression or the death of RA 

mechanoreceptors. 

 

Central projections of RA mechanoreceptors are normal in E13.5 Gfra1 null mice 

The finding that dSC VGLUT1 staining is largely normal in postnatal Gfra2 and Nrtn 

null mice suggests that cis RET signaling may be dispensable for RA mechanosensory 

central projections.  To determine if the development of RA mechanosensory central 

projections depends on the trans activation of RET via GFRa1 and GDNF, we generated 

Gfra1 null (Gfra1-) mice (Figure S3A-B and Materials and Methods).  In situ 

hybridization of Gfra1 control and null DRG sections showed that Gfra1 transcripts are 

not produced in mice homozygous for this mutant allele (Figure S3C-D).  In addition, 

kidneys are not formed in these Gfra1 null mice (data not shown), a phenotype consistent 
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with previously reported Gfra1 null mice (Cacalano et al., 1998; Enomoto et al., 1998).  

Thus, the Gfra1- allele we generated is a null allele. 

 

If trans activation of RET via GFRa1 is required for the growth of interstitial central 

projections of RA mechanoreceptors, we expect to see a decrease of central projections of 

RA mechanoreceptors in the dSC of Gfra1 null mice.  To test this idea, we generated 

E13.5 Gfra1+/-;RetCFP/+ control and Gfra1-/-;RetCFP/+ mutant embryos to examine RA 

mechanosensory central projections at this stage (Figures 1E-F).  We found that 

innervation of dSC by CFP+ fibers was not reduced upon Gfra1 ablation (Figure 1G, 

Table 2).  Additionally, the lack of Gfra1 function did not lead to a decrease of CFP+ 

DRG neurons (Figure 1H, Table2).  Together, our results suggest that trans activation of 

RET via GFRa1 is not required for the survival or central projection growth of RA 

mechanosensory neurons at E13.5. 

 

Gfra2 and Nrtn mutant mice phenocopy central projection deficits of Ret mutant 

mice at E13.5 

Since no deficit was observed in the central projections of RA mechanoreceptors in E13.5 

Gfra1 mutants, we next asked whether cis RET signaling is required for the initial growth 

of RA mechanosensory 3rd order central projections.  We crossed the RetCFP allele into 

Gfra2 and Nrtn null mice and examined central projections of RA mechanoreceptors at 

E13.5 (Figures 2A-D).  In contrast to what we observed at P7, at this early development 
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stage CFP+ central projections of RA mechanoreceptors are greatly reduced in both Gfra2 

and Nrtn null SC sections (Figure 2E-F, Table 2, Gfra2 mutant has 9.50±1.44% of 

control staining at thoracic levels (P<0.001)).  In addition, similar to the E13.5 Ret 

mutant mice, the number of CFP+ DRG neurons in Gfra2 and Nrtn null mice is 

comparable to that of control mice (Figures 2G-H, Table 2), suggesting that the loss of 

CFP+ fibers in the dSC of these mutant mice is due to a deficit in the interstitial central 

projection growth of RA mechanoreceptors.  Thus, at E13.5, Gfra2 and Nrtn null mice 

phenocopy the central projection deficit of Ret mutant mice, which suggests that RET is 

activated by NRTN/GFRa2 in cis for the initial growth of RA mechanosensory central 

projections. 

 

Interstitial central projections of Gfra2 null RA mechanoreceptors begin to recover 

from E15.5 

If Ret, Gfra2, and Nrtn null mice phenocopy each other at E13.5, why do their postnatal 

VGLUT1 staining patterns look so different (Figure 1 and (Luo et al., 2009))?  One 

possibility is that since Ret has a much broader expression pattern than Gfra2 in the dSC 

and DRGs, the dramatic loss of VGLUT1 staining in layers III-V of SC may be caused 

by the loss of RET signaling both in RA mechanoreceptors and other RET+ cells.  For 

Gfra2 and Nrtn mutant mice, though central projection deficits of RA mechanoreceptors 

may persist postnatally, VGLUT1+ puncta from SA mechanoreceptors could mask the 

phenotype.  Alternatively, RA mechanosensory central projections in Gfra2 and Nrtn 
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mutant mice could recover at later developmental stages due to the function of other RET 

signaling mechanisms.  

 

To differentiate these possibilities, we examined central projections of RA 

mechanoreceptors in Gfra2 null mice through development.  We focused on Gfra2 

instead of Nrtn mutant mice because: 1) the cell autonomous requirement of a co-receptor 

is the key to differentiate cis versus trans RET signaling; and 2) Gfra2 and Nrtn null mice 

display very similar phenotypes of RA mechanoreceptors.  Since Ret begins to be 

expressed in additional populations of DRG neurons (Luo et al., 2007; Molliver et al., 

1997) and dSC cells (Figure S1B) from E15.5, we cannot use the RetCFP allele to 

visualize the central projections of RA mechanoreceptors at late developmental stages.  

To overcome this problem, we used a tandem allele (See Materials and Methods and 

Figure S4) of an inducible Cre allele of Ret (RetCreERT) and Rosa26 conditional red 

fluorescent protein (RosaTdt).  We combined these alleles with early (E11.5 and E12.5) 4-

hydroxy tamoxifen (4-HT) treatment to specifically trace RA mechanoreceptors, as 

previously established (Luo et al., 2009).   

 

We generated Gfra2GFP/+; RetCreERT; RosaTdt control and Gfra2GFP/GFP; RetCreERT; RosaTdt 

mutant mice and examined their SC and DRG sections at E15.5.  Tdt+ fibers innervate 

layers III-V of the SC, which is consistent with specific genetic tracing of RA 

mechanoreceptors (Luo et al., 2009).  In addition, the majority of Tdt+ DRG neurons are 
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RET+, GFRa2+ (reported by the expression of GFP), but NTRK1- at E15.5 (Figures 3A-

J), further supporting the specific labeling of RA mechanoreceptors.  We found that 

central projections of Gfra2 null RA mechanoreceptors are also decreased at E15.5 

(Figures 3K-P, Table 3, Gfra2 mutant has 55.13±2.82% of control staining at the thoracic 

level (P<0.001)).  Since the number of labeled DRG neurons is not significantly reduced 

in the mutant mice (Gfra2 mutants have 79.52±8.39% of control cell number (P=0.06)), 

the central projection phenotype mostly reflects a growth deficit at this developmental 

stage.  Noticeably, the relative reduction of innervation in Gfra2 null mice at E15.5 is less 

severe compared to that of E13.5 mutants (Figure 2), suggesting that central projections 

of Gfra2 null RA mechanoreceptors may start to recover at this stage. 

 

Ret and Gfra2 null mice display different central projection and cell survival deficits 

at E18.5 

To determine if RA mechanoreceptors require Ret but not Gfra2 for their central 

projection growth at later developmental stages, we generated E18.5 RetCreERT/+;RosaTdt 

control and RetCreERT/CreERT;RosaTdt mutant embryos (RetCreERT is a null allele of Ret).  

Consistent with previous results (Bourane et al., 2009; Honma et al., 2010; Luo et al., 

2009), we found that RA mechanosensory central projections are greatly reduced in the 

Ret mutant mice (Figures 4A, C, I, Table 4, Ret mutant has 35.86±4.97% of control 

staining at thoracic levels (P<0.001)).  In addition, we counted the number of Tdt+ 

neurons in L4/L5 DRGs and found that the number of Tdt+ RA mechanoreceptors is 
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dramatically reduced as well (Figures 4B, D, J, Ret mutant has 52.52±7.76% of control 

cell number (P<0.001)).  Taken together, these results suggest that Ret is absolutely 

required for both survival and central projection growth of RA mechanoreceptors at 

E18.5.    

 

In contrast, central projections of Tdt+ Gfra2 null RA mechanoreceptors are only slightly 

reduced at E18.5 (Figures 4 E, G, I, Table 4, Gfra2 mutant has 86.34±4.48% of control 

staining at thoracic levels (P=0.01)).  At P7, almost no difference is observed (data not 

shown).  Similarly, the number of Tdt+ RA mechanoreceptors is only slightly reduced in 

Gfra2 null mice (Figures 4 F, H, J Gfra2 mutant has 84.01±5.16% of control cell number 

(P=0.04)), indicating that extensive cell death of RA mechanoreceptors resulting from an 

absence of RET signaling does not occur in Gfra2 null mice.  The discrepancy between 

E18.5 Ret and Gfra2 mutant phenotypes suggests that RET signaling still occurs in 

neonatal Gfra2 null RA mechanoreceptors.  To demonstrate this, we quantified the 

expression of phospho-S6 ribosomal protein, which is downstream of RET/PI3K/mTOR 

signaling (Plaza-Menacho et al., 2010), in RA mechanoreceptors.  We found that the 

proportion of GFP+ RA mechanoreceptors which express phospho-S6 in P0 Gfra2GFP/+ 

control and Gfra2GFP/GFP mutant DRGs was similar (Figure S5, (P=0.51)).  This result is 

consistent with the idea that RET activation occurs in neonatal RA mechanoreceptors 

without Gfra2. 
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Collectively, our results suggest that Gfra2 null RA mechanoreceptors display a central 

projection deficit at E13.5 but recover during later development, which explains the 

almost normal VGLUT1 staining in layers III-V of SC at P7.  In addition, our data 

indicate that from E15.5, an additional GFRa2 independent but RET dependent 

mechanism begins to play a role in promoting the survival and central projection growth 

of RA mechanoreceptors.   

 

RET in RA mechanoreceptors is activated via both GFRa1 and GFRa2  

To determine if this GFRa2 independent but RET dependent mechanism requires GFRa1, 

we examined genetically labeled Gfra1+/-;RetCreERT/+;RosaTdt control and Gfra1-/-

;RetCreERT/+;RosaTdt mutant SC and DRGs at E18.5.  Similar to E13.5, neither RA 

mechanosensory central projections nor their number is significantly decreased in Gfra1 

null mice (Figures 5A-D, I-J, Table 4), suggesting that simply disrupting trans activation 

of RET via GFRa1 is not sufficient to block Ret signaling in RA mechanoreceptors.   

 

The lack of Ret-mutant-like survival and central projection phenotypes of RA 

mechanoreceptors in both Gfra1 and Gfra2 single null mice made us wonder if cis and 

trans RET signaling function in the same developmental process and thus loss of one co-

receptor can be compensated for by the other.  To test this idea, we generated 

Gfra1;Gfra2 double knockout mice, in which RA mechanoreceptors were specifically 

labeled with Tdt using the RetCreERT;RosaTdt tandem allele.  We examined control and 
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double null SC sections and DRGs at E18.5.  We found that Tdt+ RA mechanosensory 

central projections are greatly reduced in the dSC (Figures 5E, G, I, Table 4, Gfra1;Gfra2 

double mutant has 27.25±2.09% of control staining at thoracic levels (P<0.001)).  In 

addition, fewer Tdt+ RA mechanoreceptors remain in the double knockout DRGs 

(Figures 5F, H, J, Gfra1;Gfra2 double mutant has 38.17±2.65% of control cell number 

(P<0.001)), indicating that a significant number of RA mechanoreceptors die in the 

absence of Gfra1 and Gfra2.  Strikingly, the extent of reduction in both cell number and 

central projections of RA mechanoreceptors is comparable between the Ret null and 

Gfra1:Gfra2 double null mice.  Thus, our in vivo analyses strongly suggest that RET in 

RA mechanoreceptors is activated via both GFRa1 and GFRa2.   

 

Gfra1 is not upregulated in Gfra2 null RA mechanoreceptors 

Is RET in RA mechanoreceptors activated by GFRa1 in cis or trans?  Although Gfra1 is 

not widely expressed in RA mechanoreceptors in wild type mice, could it be upregulated 

to compensate for the loss of Gfra2 in the Gfra2 null mice?  To address these questions, 

we conducted double fluorescent in situ hybridization of Gfra1 and GFP with E14.5 

Gfra2GFP/+ control and Gfra2GFP/GFP null DRG sections.  We found that a comparable low 

number of GFP+ neurons expressed Gfra1 transcript in both mutants and controls 

(Figures 6A-C (P=0.52)), suggesting that Gfra1 is not upregulated in Gfra2 null RA 

mechanoreceptors.  In addition, we performed in situ hybridization of Gfra1 with P0 

Gfra2GFP/+;Ntrk1+/- control, Gfra2GFP/+;Ntrk1-/- null, and Gfra2GFP/GFP;Ntkr1-/- double 
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null DRG sections.  We previously showed (Luo et al., 2009) that Gfra1 is expressed in 

NTRK1+ DRG neurons and that the expression of Gfra1 is completely lost in Ntrk1 null 

mice.  Here we found that while Gfra1 expression was observed in Gfra2GFP/+;Ntrk1+/-  

control DRGs, no Gfra1 expression was observed in either Gfra2GFP/+;Ntkr1-/- null or 

Gfra2GFP/GFP;Ntkr1-/-  double null DRGs (Figures 6D-F).  This result indicates that the 

expression of Gfra1 in Gfra2 null DRG neurons still fully depends on NTRK1 signaling 

and thus it must be expressed in the non-RA mechanoreceptors.  Moreover, we 

performed quantitative RT-PCR (QPCR) for Gfra1 transcripts in DRGs from E13.5, 

E15.5, and E18.5 Gfra2GFP/+ control and Gfra2GFP/GFP mutant embryos.  We found no 

significant difference in the expression of Gfra1 between control and mutant DRGs at 

any stage (Figures S6, Table 5), suggesting that Gfra1 is not transcriptionally upregulated 

in DRG neurons upon Gfra2 ablation. 

 

 

GFRa1 produced by neighboring DRG neurons activates RET in RA 

mechanoreceptors in trans 

Although Gfra1 transcript in most RA mechanoreceptors is below the detection level of 

in situ hybridization, it remains possible that an undetectable amount of GFRa1 could 

function in cis to promote RET signaling in RA mechanoreceptors.  To exclude this 

possibility and to demonstrate that RET in RA mechanoreceptors is indeed activated by 

GFRa1 in trans, we used DRG explants from E14.5 embryos of different mutant 
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backgrounds and treated these explants with NRTN, GDNF, GFRa1 plus GDNF , or 

GFRa1 alone.  

 

In E14.5 explants harboring the RetCFP allele, the cell bodies and axons of RET+ neurons, 

some of which are RA mechanoreceptors, can be identified by anti-GFP immunostaining.  

We found that CFP+ neurons in RetCFP/+ control DRG explants grow long axons upon 

NRTN, GDNF, or GFRa1 plus GDNF, but not GFRa1 alone treatment (Figure S7A-D, I, 

Table 6).  In addition, the number of CFP+ DRG neurons is reduced in GFRa1 alone 

culture (Figure S7J, Table 7), suggesting that either cell death or down-regulation of Ret, 

and thus CFP expression, occur in the absence of RET signaling.  Similarly, CFP+ 

neurons in RetCFP/CFP null DRG explants lost their responsiveness to GFLs completely 

(Figure S7E-H, I-J, Table 7), suggesting that this assay reflects RET dependent signaling.   

 

Next, we examined DRG explants harboring the Gfra2GFP allele, which drives a much 

lower level of GFP expression than RetCFP.  Although some small diameter DRG neurons 

also express Gfra2 around P0 or later (Luo et al., 2007), in this Gfra2GFP mouse line GFP 

is mainly detected in the large diameter RA mechanoreceptors (Luo et al., 2009), which 

express a much higher level of Gfra2.  Therefore, anti-GFP staining of E14.5 Gfra2GFP 

DRG explants should specifically show RA mechanoreceptors.  Since GFP+ axons of 

these explants could not be reliably imaged and quantified due to the low level of GFP 

expression, we approximated the extent of RET signaling in Gfra2GFP DRG explants by 
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quantifying the number of discernable GFP+ cell bodies.  We found that Gfra2GFP/+ 

control DRG neurons show robust responses upon GFL application (Figure 7A-D, Q, 

Table 7).  Interestingly, Gfra2GFP/GFP null DRG neurons lost their responsiveness to 

NRTN, but retain GFP expression in the presence of either GDNF or GFRa1 plus GDNF 

(Figure 7 E-H, Q, Table 7).  These results suggest that a GFRa2 independent but RET 

dependent mechanism can mediate GDNF responsiveness of RA mechanoreceptors.   

 

How can Gfra2 null RA mechanoreceptors retain their responsiveness to GDNF?  It 

could be due to: 1) a very low level of GFRa1 is expressed in RA mechanoreceptors, 

which activates RET in cis in the presence of GDNF; or 2) GFRa1 expressed by 

neighboring DRG neurons binds GDNF and activates RET in RA mechanoreceptors in 

trans.  To differentiate between these possibilities, we cultured E14.5 

Gfra2GFP/GFP;Ntrk1-/- double mutant DRGs.  Since the expression of Gfra1 in non-RA 

mechanoreceptor DRG neurons fully depends on NTRK1 signaling, as shown previously 

(Luo et al., 2009) and above (Figures 6 D-F), GFRa1 should be depleted from non-RA 

mechanoreceptors in Gfra2GFP/GFP;Ntrk1-/- double mutant DRGs.  Therefore, if GFRa1 is 

expressed at a low level in RA mechanoreceptors and activates RET in cis, the double 

null explants should retain their responsiveness to GDNF.  On the other hand, if GFRa1 

expressed by neighboring neurons activates RET in RA mechanoreceptors in trans, the 

GDNF responsiveness would be lost in the Gfra2;Ntrk1 double nulls.  Here we found that 

Gfra2GFP/+;Ntrk1-/- control explants were responsive to NRTN, GDNF, and GDNF plus 

GFRa1, but not GFRa1 alone (Figures 7 I-L, R, Table 7).  In contrast, 
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Gfra2GFP/GFP;Ntrk1-/- double null explants only respond to GDNF plus GFRa1, but not to 

NRTN, GDNF, or GFRa1 (Figures 7 M-P, R, Table 7).  The loss of responsiveness of RA 

mechanoreceptors to GDNF in Gfra2;Ntrk1 double null DRG explants strongly suggests 

that Gfra1 is not expressed at a functional level in RA mechanoreceptors and that RET in 

Gfra2 null RA mechanoreceptors is activated by exogenous GFRa1 from the neighboring 

DRG neurons in trans. 

 

GFRa1 and GFRa2 are normally shed by DRG neurons 

Trans activation of RET could occur by direct contact between membranes of cells which 

express either RET or GFRa1, or by soluble GFRa1 which is shed from the cell surface.  

To determine whether GFRa1 is released by DRG neurons, we cultured dissociated 

DRGs from E18.5-P1 wild-type, Gfra2-/-, and Gfra1-/- mice.   We collected cell lysates 

and concentrated media from days 3-6 in vitro and then performed Western blot analysis.   

 

Immunoblotting with anti-GFRa1 revealed a doublet at ~55-65 kDa in wild-type and 

Gfra2-/- cell lysates, which was absent in the Gfra1-/- samples (Figure 7S, lanes 1-3), 

confirming the specificity of the anti-GFRa1 antibody.  A positive band of ~55kDa was 

present in concentrated supernatants of wild-type and Gfra2-/- but not Gfra1-/- cultures 

(Figure 7S, lanes 4-6), suggesting that soluble GFRa1 is shed from neonatal DRG cells.  

Together with reports of GFRa1 being shed by Sciatic nerve Schwann cells, immortalized 

neuronal progenitors (Paratcha et al., 2001), and adult DRG explants (He et al., 2014), 
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our findings indicate that GFRa1 can be released by many cell types during both 

developmental and adult stages.  Therefore, it is possible that RET in RA 

mechanoreceptors is activated in trans by both soluble GFRa1 and GFRa1 tethered to the 

membranes of neighboring cells.   

 

In addition, although there is no significant increase of Gfra1 transcripts in Gfra2 null 

DRGs by in situ or QPCR (Figures 6 and S6), it remains possible that post-transcriptional 

regulation may occur to alter the translation, perdurance, or release of GFRa1.  To test 

this possibility, we quantified the amount of GFRa1 in cell lysates and supernatants of 

wild-type and Gfra2-/- cultures by densitometry.  We found that the amount of GFRa1 

expressed in the cell or shed into the media was not significantly different between wild-

type and Gfra2 null cultures (Figure 7U-V, Table 8).  Therefore, Gfra2 null DRGs do not 

produce or release more GFRa1 protein to compensate for the loss of Gfra2.  

 

We also investigated whether GFRa2 is normally shed by DRGs.  The specificity of the 

anti-GFRa2 antibody was confirmed by the absence of a ~75 kDa band from Gfra2 null 

cell lysates, which was present in both wild type and Gfra1 null cultures (Figure 7T, 

lanes 1-3).  Furthermore, secreted GFRa2 band was also present in the supernatants of 

wild-type and Gfra1 DRG cultures, but not in Gfra2 null cultures.  Therefore, both 

GFRa1 and GFRa2 are normally released by DRGs during early postnatal development.   

 



70 
 

Dynamic expression of Gdnf during development 

As described above, the central projections of Gfra2 null RA mechanoreceptors display a 

severe, Ret-like deficit at E13.5, but begin to recover from E15.5, which is due to 

compensation by trans signaling via GDNF/GFRa1.  Why is trans RET signaling able to 

compensate for the loss of cis signaling during late embryonic development, but not at 

E13.5?  One possible reason for the delay is the availability of trans signaling 

components.  Our in situ hybridization data suggest that Gfra1 is expressed at high levels 

at both E13.5 and E15.5, but the expression of Gdnf is greatly increased in DRGs from 

E13.5 to E15.5 (Figure S1).  To provide additional evidence for the dynamic expression 

of Gdnf during development, we examined DRG and SC sections of E13.5 and E15.5 

GdnfLacZ/+ (Moore et al., 1996) embryos using X-Gal staining.  We found that the 

expression of LacZ increased significantly in DRGs from E13.5 to E15.5 (Figure 8 A-E 

(P<0.001), Figure S8).  In addition, X-Gal staining was found in the E15.5 dorsal root, 

the pathway through which DRG central projections travel to reach the dSC (Figure 8 A-

D, black arrows).  Thus, the expression of Gdnf seems to significantly increase in both 

the DRG and dorsal root from E13.5 to E15.5, providing a possible explanation for why 

the trans compensation occurs from E15.5. 

 

DISCUSSION 

In summary, we used RA mechanoreceptors as a model system to study the physiological 

functions of trans RET signaling and whether cis and trans activation of RET lead to the 
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same or diversified biological outcomes in vivo.  RA mechanoreceptors express Ret and 

Gfra2 and depend on Ret for their survival and the growth of central axonal projections 

into SC, whereas Gfra1 is highly expressed in the target field and neighboring DRG 

neurons.  We found that the RA mechanosensory central projection deficit is negligible in 

postnatal Gfra2 and Nrtn mutant mice.  We examined central projections of genetically 

traced RA mechanoreceptors in Ret, Gfra2, Nrtn, Gfra1, and Gfra1;Gfra2 double null 

mice and showed that only Gfra1;Gfra2 double null mice display similar cell death and 

central projection deficits to those of neonatal Ret mutant mice, indicating that RET in 

RA mechanoreceptors can be activated by both GFRa1 and GFRa2.  Since Gfra1 is 

undetectable in control and Gfra2 null RA mechanoreceptors, it most likely activates 

RET in RA mechanoreceptors in trans.  Finally, using DRG explant cultures, we 

determined that Gfra2 null RA mechanoreceptors respond to GDNF by utilizing GFRa1 

produced by neighboring neurons, strongly suggesting that RET in RA mechanoreceptors 

is activated by GFRa1 in trans.  Taken together, our results provide clear evidence that 

cis and trans RET signaling can function in the same development processes in vivo (Fig. 

8F) and that the existence of both cis and trans activation is likely to enhance but not 

diversify outcomes of RET signaling. 

 

Trans activation of RET in vivo 

Previous expression analyses revealed that Gfra1 is expressed more broadly than Ret, and 

cells which express Gfra1 usually lie adjacent to Ret-expressing cells (Trupp et al., 1997; 
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Yu et al., 1998).  This expression pattern suggests that GFRa1 may have RET 

independent functions or that GFRa1 may interact with RET expressed on the surfaces of 

other cells in trans.  Indeed, evidence for both ideas has been demonstrated.  GFRa1 and 

GDNF interact with NCAM in neurons and Schwann cells to promote neurite outgrowth 

and Schwann cell migration (Nielsen et al., 2009; Paratcha et al., 2003).  Additionally, 

GFRa1 and GDNF are required for the proper migration of cortical GABAergic 

interneurons and can act as ligand dependent adhesion molecules for synapse formation, 

independent of RET and NCAM (Ledda et al., 2007; Pozas and Ibanez, 2005). Recently, 

it was also shown that GFLs have additional roles in cortical development via 

interactions with Syndecan-3, likely independent of RET, GFRas, and NCAM (Bespalov 

et al., 2011).  On the other hand, RET can be activated by GFRa1 and GDNF in trans 

using both heterologous cells and tissue explants (He et al., 2014; Ledda et al., 2002; 

Paratcha et al., 2001; Patel et al., 2012).  Trans RET signaling may affect many cellular 

processes, including directional axonal outgrowth and promotion of axon regeneration 

(Airaksinen and Saarma, 2002; Ledda et al., 2002; Paratcha et al., 2001).   

 

Evidence for physiologically relevant in vivo function of trans RET signaling, however, 

has remained less conclusive.  Enomoto and colleagues generated a “cis-only” mouse 

model in which Gfra1 is expressed in all RET-expressing cells, but not in cells that do 

not express RET (Enomoto et al., 2004).  Using this model, they found that the major 

RET dependent developmental processes were completely normal, suggesting that trans 

signaling is likely to be irrelevant for most RET-dependent processes.  Results from this 
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model, however, may not necessarily preclude a physiological role for trans signaling.  

Not only does this model present a loss of trans signaling, but it also presents a gain of 

function: Gfra1 is expressed at a high level in RET+ cells which may not normally 

express this co-receptor.  If cis and trans RET activation lead to similar physiological 

outcomes, any deficits due to the loss of trans signaling may be masked by a gain of cis 

signaling.  Indeed, the gain-of-function of GFRa1 was recently demonstrated in enteric 

hematopoietic cells derived from cis-only mice (Patel et al., 2012).  Thus, whether trans 

RET signaling has any physiological function in development has remained an open 

question. 

 

We aimed to address this question by analyzing the survival and growth of RA 

mechanosensory central projections using loss-of-function mouse lines.  Here, we found 

that loss of cis signaling, via ablation of either Gfra2 or Nrtn, produces a central 

projection deficit during early embryonic development (Figure 2).  Our findings are 

consistent with previous observations using a different Ret knock-in line and NRTN 

ectopic expression (Honma et al., 2010), but differ from the findings using anti-GFRa2 

staining to visualize RA mechanosensory central projections at E13.5 (Bourane et al., 

2009).  This is likely due to different subcellular localization of CFP and GFRa2, as well 

as the expression of GFRa2 by some dSC cells (Figure S1 E, F), which may mask the RA 

mechanoreceptor phenotype.  Interestingly, this phenotype recovers during late 

embryonic development and the central projections of Gfra2 null mice seem nearly 

normal postnatally (Figures 1, 4).  Thus, our results suggest that cis RET signaling is 
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required for the initial growth of RA mechanosensory central projections, but an 

additional cis signaling independent process takes place during later development.  

Indeed, the loss of both cis and trans signaling in Gfra1;Gfra2 double mutants 

recapitulates the Ret phenotype (Figure 5, 6).  Furthermore, using DRG explant and 

dissociated culture, we demonstrated that soluble GFRa1 is normally released by DRGs 

and that GFRa1 produced by NTRK1+ DRG neurons present a potential source to 

activate RET in RA mechanoreceptors in trans to promote their survival (Figure 7). 

Taken together, our results suggest that trans RET signaling contributes to the 

development of RA mechanoreceptors in vivo.  

 

Nevertheless, the exact subcellular locus of trans RET activation in RA 

mechanoreceptors remains speculative.  The expression pattern of Gfra1 suggests that 

trans RET activation is possible in the axons of RA mechanoreceptors along their path to 

dSC, and/or at the cell body within the DRG.  Although individual DRG cell bodies are 

surrounded by satellite glial cells, large macromolecules and proteins are able to invade 

the space between the neuron and satellite cell (Hanani, 2005), suggesting trans RET 

activation by soluble GFRa1 could occur within DRGs.  

 

RET signaling and the survival or RA mechanoreceptors 

Signaling of neurotrophic RTKs, such as NTRK1, NTRK2, and NTRK3, are critical for 

the specification and survival of numerous classes of neurons (Ernsberger, 2009).  RET 
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signaling also plays important roles in survival, differentiation, and specification of 

distinct neuronal classes (Enomoto, 2005).  For example, RET signaling components are 

absolutely required for the survival of enteric neurons (Taraviras et al., 1999), but their 

roles in DRG neuron survival are more complicated to dissect.  Previously, it was 

reported that the number of total DRG neurons is not significantly reduced in neonatal 

and early postnatal Ret mutants (Luo et al., 2007).  At that time, specific molecular 

markers or genetic approaches for labeling RA mechanoreceptors had not been identified, 

so it was impossible to specifically assay the role of RET signaling in the survival of this 

neuronal population.  Given that RA mechanoreceptors represent a very small proportion 

of the total DRG neurons (Luo et al., 2007; Molliver et al., 1997), a partial loss of this 

population may not lead to a significant change in cell counts of total DRG neurons.     

 

In another paper (Luo et al., 2009), it was proposed that RA mechanoreceptors depend on 

NRTN-GFRa2/Ret signaling for their development.  This was based on the findings that 

GFRa2 is the only co-receptor expressed in RA mechanoreceptors and that Ret, Gfra2, 

and Nrtn null mice display the same no-Pacinian-corpuscle phenotype.  Since RET 

cannot be used as a molecular marker to quantify the number of RA mechanoreceptors in 

Ret null mice, the number of P0 RET+/NTRK1- and Gfra2GFP DRG neurons, most of 

which indicate the RA mechanoreceptors, was quantified in Nrtn and Gfra2 nulls.  No 

significant change in cell number between mutants and controls was found, suggesting 

that Gfra2 and Nrtn are not required for survival of neonatal RA mechanoreceptors.  

These results are interesting in light of the current findings.  Here, we show that when cis 
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signaling via NRTN/GFRa2 is perturbed (as was tested in (Luo et al., 2009)), trans 

signaling via GDNF/GFRa1 can activate RET in RA mechanoreceptors to promote their 

survival and central projection growth.  When the number of genetically labeled RA 

mechanoreceptors was quantified in different mutant backgrounds, we found only 

marginal changes in Gfra2 nulls but drastic decreases in Ret mutants at E18.5 (Fig. 4).  

The slight difference between the current and previous findings regarding the loss of RA 

mechanoreceptors in Gfra2 nulls at P0 (Luo et al., 2009) is likely due to different 

methods in identifying and quantifying RA mechanoreceptors.  In short, the current study 

clarifies that RET signaling is required for RA mechanoreceptor survival but simple 

disruption of cis RET signaling components may not reveal this deficit.   

 

Co-existence of cis and trans RET signaling 

What is the purpose for RET to be activated both in cis and in trans?  Do cis and trans 

signaling activate different cellular responses and influence distinct developmental 

processes, or do cis and trans signaling exert the same physiological effect?   Here we 

found that, in RA mechanoreceptors, cis and trans signaling seem to produce similar 

biological outputs in vivo.  Our results demonstrate that that cis and trans signaling can 

compensate for the loss of each other to promote both the central projection growth and 

survival of RA mechanoreceptors (Fig. 8F).  This compensatory ability suggests that the 

existence of both cis and trans activation is likely to enhance but not diversify outcomes 

of RET signaling. Consistent with this notion, a recent study found that peripheral nerves 
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secrete both GDNF and GFRa1, which attracts perineural invasion of heterogeneous 

cancer cells, some of which expresses Ret and Gfras, while some express only Ret (He et 

al., 2014).   

 

In an attempt to show that GFRa1 is normally released from wild-type DRG cells for 

trans RET signaling, we found the same for GFRa2 (Figure 7).  Given that soluble 

GFRa2 could also activate RET in trans with NRTN (Worley et al., 2000), our finding 

raises many interesting questions, such as whether all GFRas are secreted and whether 

“cis” and “trans” RET signaling normally co-exist even when RET and GFRas are 

expressed in the same cells.  It seems plausible that even for GFRas co-expressed with 

RET (usually defined as “cis” signaling), such as GFRa2 in RA mechanoreceptors, it 

could be secreted and then upon NRTN binding activates RET in the cell from which it 

was released (“trans” activation).   

 

Although cis and trans activation of RET lead to a similar biological outcome in the 

growth and survival of RA mechanoreceptors, it worth noting that substantial differences 

likely exist between the signaling processes of cis and trans RET activation.  Cis RET 

activation might be more efficient, given that GFRas and RET are located in the same 

membrane.  In addition, cis and trans signaling could differ in the kinetics of recruitment 

of RET to lipid rafts upon GFLs stimulation, interactions with downstream associated 

proteins, and the longevity of activated RET and downstream effectors (Paratcha et al., 
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2001; Tansey et al., 2000).  Additionally, it remains possible that although the gross 

structure of the RA mechanosensory central projections seems mostly normal in mice 

lacking either cis or trans signaling, more precise aspects of circuit formation, such as 

specific synapse formation, which are beyond the resolution of current analysis, may 

differentially depend on cis or trans signaling.  Finally, it will be interesting to see 

whether cis and trans signaling can produce similar biological outcomes in other systems, 

as we have shown here for RA mechanoreceptors.  Future experiments to carefully 

dissect cis and trans RET signaling in other types of cells and tissues will address these 

issues. 

MATERIALS AND METHODS 

Mouse strains.  Mice except GDNFlacZ line were raised in a barrier facility in Hill 

Pavilion, the University of Pennsylvania.  All procedures were conducted according to 

animal protocols approved by Institutional Animal Care and Use Committee (IACUC) of 

the University of Pennsylvania and National Institutes of Health guidelines.  GDNFlacZ 

mice were raised in accordance with the European Community Council Directive of 

November 24, 1986 (86/609/EEC), and approved by the ethics. Most mice used in this 

paper were described previously: RetCreERT, RetCFP, Nrtn+/- (purchased from the Jackson 

lab), Gfra2GFP (re-derived using sperm provided by Dr. Jeffery Milbrandt at the 

Washington University), Rosa26Tdt, and GdnfLacZ mice (Heuckeroth et al., 1999; Luo et 

al., 2009; Madisen et al., 2010; McDonagh et al., 2007; Moore et al., 1996; Uesaka et al., 

2008).  The Ntrk1- allele was generated by crossing the floxed TrkAF592A allele (Chen et 

al., 2005) to germline Cre mice.  The generation of Gfra1 conditional and null mice and 



79 
 

the RetCreERT;RosaTdt tandem allele are described below.  All mice except GdnfLacZ were 

maintained on a mixed C57BL/6J and CD1 background.  GdnfLacZ mice were maintained 

on a C57BL/6N background.  Except for Gfra1;Gfra2 double null animals (n=2), at least 

three animals per genotype were examined.  N-values for explants are listed in Tables 7 

and 8.   

 

Generation of Gfra1 conditional and null alleles.  We generated Gfra1 conditional 

knockout mice, in which loxP sites flank exon 6 of Gfra1, by homologous recombination.  

Mice harboring the floxed allele were crossed to germ line Cre mice, resulting in a Gfra1 

allele lacking exon 6.  The loss of Gfra1 transcript in Gfra1-/- mice was confirmed by in-

situ hybridization of mutant and control DRGs (See Figure S3). 

 

Generation of RetCreERT;RosaTdt tandem allele.  Since Ret and Rosa26 loci are located 

only ~5 megabases apart on mouse Chromosome 6, we generated a tandem configuration 

of RetCreERT and RosaTdt alleles, which are linked during meiosis and became a great 

genetic advantage for our experiments (Figure S4). We used this tandem RetCreERT;RosaTdt 

allele to specifically label RA mechanoreceptors in different mutant mouse lines 

described in the text. 
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Genetic labeling of RA mechanoreceptors.  We set up timed pregnancy mating for 

mice in the evening and checked mice for vaginal plugs the following morning.  The time 

when a female mouse was found to have a plug was counted as embryonic day 0.5 

(E0.5).  We treated embryos harboring the RetCreERT;RosaTdt reporter allele with 4-

hydroxy-tamoxifen (4-HT, 2mg and 1mg at E11.5, and E12.5, respectively) by oral 

gavage to pregnant female mice to specifically label RA mechanoreceptor population.  

 

Tissue preparation and histology.  Spinal columns of embryos and neonatal mice at the 

desired developmental stages were dissected out and directly immersed in PBS/ 4% 

paraformaldehyde (PFA) for 2 to 4 hours at 4°C.  Postnatal mice were sacrificed with 

CO2, transcardially perfused with 4% PFA, and spinal columns were dissected out and 

post-fixed with 4% PFA for 2 hours at 4oC.  They were then cryo-protected in 1XPBS, 

30% sucrose overnight. 20µm frozen sections of spinal cord and DRGs were cut using a 

Leica CM1950 cryostat. Immunostaining of spinal cords and DRG sections were 

performed as described previously (Niu et al., 2013). Antibodies used are as follows: 

rabbit anti-GFP (1:2000, Invitrogen, A-11122), chicken anti-GFP (1:1000, Aves, GFP-

1020), chicken anti-NF200 (1:500, Aves, NF-H), rabbit anti-NF200 (1:1000, Sigma, 

N4142), rabbit anti-cRet (1:50, IBL, 18121), rabbit anti-NTRK1 (1:1000, 

Fisher/Millipore, 06-574), guinea pig anti-VGLUT1 (1:1000, Millipore, AB5905), rabbit 

anti-phospho-S6 (1:200, Cell Signaling, 2215s) and Alexa Fluorescent conjugated Goat 

or Donkey secondary antibodies (1:500, Invitrogen or Jackson ImmunoResearch).  
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LacZ color reaction.  Embryos of the desired age were eviscerated and fixed in 1% 

PFA, 2mM MgCl2, 5mM EGTA, 0.02% NP40 and 0.2% glutaraldehyde in phosphate 

buffer (pH 7.4) for 1.5 to 2 hours at 4°C. Vibratome sections were incubated for 30 min 

in washing solution (2mM MgCl2, 0.02% NP-40 in phosphate buffer pH 7.4).LacZ 

reaction was developed with X-gal (1mg/ml) at 37°C. 

 

In situ hybridization.  DIG- or FITC-labeled riboprobes were synthesized using a DIG 

or FITC RNA labeling kit (Roche, 11175025910).  Template for GFP was amplified by 

PCR and subcloned into vector pGEM-T Easy (Promega, A1360).  Antisense RNA 

probes for Ret, Gfra1, Gfra2, Gdnf, and Nrtn were generated as previously described 

(Luo et al., 2009).  The detailed procedures of in situ hybridization and double 

fluorescent in situ hybridization were performed as described previously (Fleming et al., 

2012). 

 

Quantitative RT-PCR.  DRGs from E13.5, E15.5, and E18.5 Gfra2GFP/+ and 

Gfra2GFP/GFP embryos were dissected and rapidly frozen on dry ice.  RNA was extracted 

with the GeneJet RNA Purification Kit (Fermentas, K0731) and cDNAs were generated 

using Super-Script III First-Strand Synthesis System (Invitrogen, 18080-51). 500ng of 

total RNA was used for each RT reaction in a total volume of 25μL.  QPCR reactions 

were performed in triplicate for three samples of each age and genotype.  QPCR reactions 
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contained SYBR Green PCR master mix (Life Technologies, 4309155), 0.5 μM of each 

primer, and 3μL (for Gfra1) or 1μL (for Gapdh) of cDNA template per 15μL reaction.  

Reactions were run and analyzed on a StepOnePlus Real-Time PCR System (Applied 

Biosystems).  Primers used were Gapdh (5’-CCACCAACTGCTTAGCCCCC-3’ and 5’-

GCAGTGATGGCATGGACTGTGG-3’) and Gfra1 (5’-

TGTCTTTCTGATAATGATTACGGA-3’ and 5’-

CTACGATGTTTCTGCCAATGATA-3’).  P-values between samples were calculated 

from ΔCT values with the Student’s t-test, and relative concentrations were calculated by 

the 2-ΔΔCT method (Livak and Schmittgen, 2001). 

 

DRG explant culture and immunostaining.  E14.5 embryos were removed from the 

dam and placed in F-12 media (Invitrogen, 11765-047) on ice.  Spinal cords with 

attached DRGs were dissected from the spinal column, and individual DRGs were 

removed and placed in fresh F-12 on ice.  Using a dissecting needle, DRGs were cleaned 

and bisected, and then placed in fresh F-12.  Explants were grown on Superfrost Plus 

slides (Fisher, 22-034-979) coated with poly-L-lysine (Sigma, P1274, 0.1 mg/mL in 

ddH2O overnight at 4°C) and laminin (BD, 354232, 20 μg/mL in HBSS (Invitrogen, 

14170122) at 37°C for one to three hours).  Immediately before placing explants on the 

slide, slides were washed with HBSS and DRG culture medium (Neurobasal medium 

(Invitrogen, 21103-049), 1X B27 (Invitrogen, 17504-044), 100 U/mL 

penicillin/streptomycin (Invitrogen, 15140-122), 2mM L-glutamine (Invitrogen, 25030-

081), and 35mM glucose).  DRG culture media supplemented with the appropriate 
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recombinant proteins (50 ng/mL Nrtn (R&D, 477-MN-025), 100 ng/mL GDNF (R&D, 

512-GF-010), 300ng/mL GFRa1 (R&D, 560-GF-100), or 100 ng/mL GDNF and 300 

ng/mL GFRa1) was added to the culture dish.  Four to six DRG explants were placed on 

each slide and the culture dishes were carefully moved to a 37°C incubator and left 

undisturbed overnight.   Following 16-24 hours of incubation, cultures were rinsed with 

PBS and fixed in 4% PFA in PBS for 30 minutes at room temperature.  

Immunofluorescence was then performed directly in the culture dish using antibody 

dilutions described above.  Following secondary antibody, explant slides were mounted 

on microscope slides using Superglue, and coverslipped with Fluoromount-G (Southern 

Biotech, 0100-01) and 22x22mm coverglass. 

 

Dissociated DRG cultures and biochemistry.  DRGs from E18.5-P1 mice were 

collected into HBSS on ice.  DRGs were first digested in 0.5mg/mL collagenase 

(Worthington, LS4186) plus 100 U/mL penicillin/streptomycin, 10mM HEPES, and 1X 

MEM vitamins (Sigma, M6895) in MEM (Invitrogen, 11095072) at 37°C for thirty 

minutes, followed by a second digestion with 0.05% trypsin (Invitrogen, 25200056) plus 

100 U/mL penicillin/streptomycin, 10mM HEPES, and 1X MEM vitamins in MEM at 

37°C for thirty minutes.  Digestion was stopped by adding 5% FBS and 10mM HEPES in 

HBSS.  Cells were then triturated with a fire polished Pasteur pipette to a homogenous 

solution.  The cells were then pelleted at 500xg for 5 minutes and resuspended in DRG 

culture media, as described above, supplemented with 50 ng/mL NRTN, 100 ng/mL 

GDNF, and 50ng/mL NGF (R&D, 556-NG-100).  Cells were plated in 6-well collagen 
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coated plates (Millipore, PICL06P05) and cultured at 37°C and 5% CO2.  After 2 days, 

media was removed and cells were rinsed with warmed Neurobasal media.  2mL of fresh 

DRG culture media supplemented with NRTN, GDNF, and NGF (but without B27) was 

added to each well.  After 2 days, media was removed and saved at 4°C with added 

protease inhibitors (Sigma, P8340).  Fresh media supplemented with growth factors but 

without B27 was then added to each well.  After an additional 2 days, media was 

removed and pooled with previously collected media, and additional protease inhibitor 

was added.  The cells were rinsed twice with PBS, and then lysed directly in the well by 

the addition of 70μL 2X sample buffer (0.125M Tris pH 6.8, 20% glycerol, 4% SDS, 

0.16% bromophenol blue, 10% 2-mercaptoethanol) and scraping, followed by heating at 

95°C for five minutes.  All cell lysates were then brought to a total volume of 140μL with 

1X PBS.  Supernatants were centrifuged at 14,000xg for 15 minutes to clear cellular 

debris, and then were concentrated to ~30μL with Amicon 30kDa filters (Millipore, 

UFC503024), then mixed with an equal volume of 2X sample buffer and heated at 95°C 

for five minutes.  

 

Duplicate 4-15% gradient mini-Protean TGX gels (Biorad, 456-1084) were used to run 

samples.  40μL of cell lysate of each genotype or one third of the total volume of 

concentrated supernatant of each genotype was used.  Both gels were then transferred to 

nitrocellulose membrane and blocked in 3% BSA in TBS plus 0.1% Tween-20 (TBST) 

for one hour at room temperature.  Membranes were then incubated overnight with either 

goat anti-GFRa1 (0.2μg/mL, R&D, AF560) or goat anti-GFRa2 (0.2μg/mL, R&D, 
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AF613) in blocking solution overnight at 4°C.  Following washes with TBST, 

membranes were incubated with donkey anti-goat-AP (1:5000, Santa Cruz 

Biotechnology, SC-2022) in blocking solution for one hour at room temperature.  After 

washes, AP was detected with CDP-Star (Applied Biosystems, T2218) and membranes 

were imaged with a Chemi-Doc system (BioRad).   

 

Following imaging, membranes were stripped with 2x 10 minutes stripping buffer (0.2M 

glycine, 0.1% SDS, 1% Tween-20, pH 2.2), followed by 2x 10 minutes wash with PBS 

and 2x 5 minutes wash with TBST.  Membrane was then probed with rabbit anti-β-actin 

(1:400, Santa Cruz Biotechnology, sc-130656) and goat anti-rabbit-AP (1:5000, Applied 

Biosystems, T2191) following the above procedure, except that all blocking and antibody 

incubations were performed in 5% milk in TBST.   

 

Western blot densitometry was performed with ImageJ.  Three cultures per genotype 

were analyzed.  Densitometry measurements for each antibody were performed on three 

blots running independent culture samples.  Relative quantifications were performed 

using β-actin in the cell lysates as a measure of total protein per lane, and optical density 

values for GFRa1 were scaled accordingly.  Because an equal proportion of total lysates 

was run in each lane, total β-actin per cell lysate lane was used as a proxy for cell 

number, and was therefore used to normalize protein levels in the supernatant lanes 

(equal proportion of total supernatant volume were run in each lane).  Cell lysate and 



86 
 

supernatant samples were scaled to wild-type quantifications of respective sample type 

and reported in arbitrary units.  Student’s t-test was used to measure significance of 

differences between genotypes. 

 

Image acquisition. Fluorescent images of SC/DRG sections were acquired on a Leica 

SP5II confocal microscope. DRG explant cultures were imaged on Leica DM5000B 

microscope.  Bright field images were taken using Leica DM5000B microscope.  

 

Quantification and Statistics.  For histological analysis, at least six sections per 

specified spinal/DRG level per animal were analyzed.  For quantification of genetically 

labeled neuron number in E18.5 embryos, whole-mount L4/L5 DRGs were imaged and 

total Tdt+ cell number was counted in each DRG.  Except for Gfra1;Gfra2 double null 

animals (n=2), at least three animals per genotype were examined.  N-values for explants 

are listed in tables S6 and S7.  Pixel counts for central projections were generated by 

counting the number of pixels at each intensity level (0-256) in an outlined 

immunoreactive area in ImageJ.  Background staining was subtracted by counting pixel 

number of each intensity level in a non-immunoreactive region of the tissue.  The 

minimal intensity level at which two consecutive levels displayed a pixel count of zero 

was taken as the threshold cut of background fluorescence.  Pixel counts of real staining 

were then calculated by summing the pixel counts for all intensity levels above the 

defined background level.  Column graphs were generated in GraphPad Prism 5. All error 
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bars are ± standard error of the mean (SEM), unless otherwise specified.  All statistical 

analyses were performed using SAS version 9.3 (SAS Inc., Cary, NC).  Due to 

differences in labeling efficiency across litters in 4-HT treated mice, quantification for 

spinal cord section staining and whole mount DRGs were performed by normalizing to 

controls within the same litter.  For all explant quantifications, GFP+ neuron number per 

10,000μm2 was calculated for each explant.  For RetCFP explants, a circle with a radius 

200μm larger than the explant was drawn around the explant in ImageJ, and the number 

of CFP+ axons which crossed the circle was counted.  
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Figure 1: P7 Gfra2 mutant mice show normal dSC VGLUT1 staining and Gfra1 null 
mice display normal RA mechanoreceptor central projections at E13.5:  (A-B) Anti-
VGLUT1 immunostaining of P7 SC sections from Gfra2GFP/+ control (A) and 
Gfra2GFP/GFP null (B) mice.  VGLUT1 staining labels presynaptic terminals of 
mechanosensory neurons, which are found in layers III-V of the dSC (outlined in white).  
Note that GFP driven from the Gfra2 locus cannot be visualized directly.  Therefore, 
positive signal indicates presynaptic VGLUT1+ puncta and not GFRa2+ primary afferent 
axons.  (C) Quantification of VGLUT1+ puncta in dSC, which is displayed as a 
percentage of VGLUT1+ pixels compared to the control pixel count.  The similar density 
of VGLUT1+ puncta between mutant and control tissue suggests that cis RET signaling 
via GFRa2 is dispensable for the growth of RA mechanosensory central projections at P7.  
(D) Quantification of GFP+;NF200+ neurons, which indicate RA mechanoreceptors, per 
DRG section.  The non-significant decrease in RA mechanoreceptor number per section 
in Gfra2 nulls suggests that most RA mechanoreceptors are not dependent on cis RET 
signaling for survival. (E-F) Anti-GFP immunostaining of RA mechanoreceptor central 
projections in E13.5 Gfra1+/-;RetCFP/+  control (E) and Gfra1-/-;RetCFP/+ mutant (F) SC 
sections.  The increased CFP signal in Gfra1 null dSC is likely due to the precocious 
expression of Ret in some dSC neurons of Gfra1 mutants. (G) Quantification of CFP+ 
pixel number in dSC.  The lack of a reduction in CFP+ axons in Gfra1 mutant dSC 
indicates that trans signaling via GFRa1 is not required for the initial growth of RA 
mechanosensory 3rd order central projections. (H) Quantification of number of CFP+ 

neurons per DRG section indicates no loss of RA mechanoreceptors in Gfra1 mutants at 
E13.5.  C: cervical level, T: thoracic level, L: lumbar level.  Scale bars= 50μm.  Error 
bars represent SEM.  n.s.=P>0.05, *=P<0.05.  Source data are provided in Tables 1 and 2. 
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Figure 2: Gfra2 and Nrtn null mice show reduced RA mechanoreceptor central 
projections at E13.5: (A-D) Anti-GFP immunostaining to visualize RA mechanosensory 
central projections in E13.5 dSC sections of Gfra2GFP/+;RetCFP/+ control (A), 
Gfra2GFP/GFP;RetCFP/+ mutant (B), Nrtn+/-;RetCFP/+ control (C), and Nrtn-/-;RetCFP/+ 
mutant (D) mice.  (E-F) Quantification of CFP+ pixel number in dSC of Gfra2 (E) and 
Nrtn (F) mice.  The dramatic reduction in CFP+ axons in Gfra2 and Nrtn nulls at E13.5 
suggests that cis activation of RET is required for the initial growth of RA 
mechanosensory 3rd order central projections.  (G-H) Quantification of number of CFP+ 

neurons per DRG section in Gfra2 (G) and Nrtn (H) mice.  Similar number of CFP+ 
DRG neurons between control and mutant mice indicates that cell death of RA 
mechanoreceptors or downregulation of RetCFP allele do not occur at E13.5 when cis RET 
signaling is ablated.  Scale bar=50μm.  Error bars represent SEM.  n.s.=P>0.05, 
**=P<0.01 ***=P<0.001.  Source data are provided in Figure 1-source data 2. 
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Figure 3: Central projection growth deficit of Gfra2 null RA mechanoreceptors at 
E15.5: (A-I) E15.5 Gfra2GFP/+;RetCreERT/+;RosaTdt DRG sections stained with anti-RET 
(A-C), anti-NTRK1 (D-F), and anti-GFP (G-I).  (J) Quantification of percentage of Tdt+ 
DRG neurons which co-express RET (96.16±0.28%), NTRK1 (6.56±0.18%), and GFP 
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driven from the Gfra2 locus (86.48±0.55%).  The expression profile of Tdt+ neurons 
confirms that this genetic labeling strategy specifically labels RA mechanoreceptors. (K-
L) Visualization of Tdt+ RA mechanosensory central projections in dSC of E15.5 
Gfra2GFP/+; RetCreERT/+; RosaTdt control (K) and Gfra2GFP/GFP; RetCreERT/+; RosaTdt mutant 
(L) SC sections.  (M) Quantification of Tdt+ pixels in dSC, which is displayed as a 
percentage normalized to dSC Tdt+ pixels of the within litter controls.  Gfra2 mutant mice 
have 55.13±2.82% of control staining (P<0.001).  Note that although Gfra2 null RA 
mechanoreceptors still have a central projection deficit at E15.5, the reduction at this 
stage is less severe than the deficit observed at E13.5.  (N) Quantification of number of 
Tdt+ neurons per DRG section, which is displayed as a percentage normalized to Tdt+ 

neurons of the within litter controls.  Gfra2 mutant mice have 79.52±8.39% of control 
cell number (P=0.06), which suggests that the survival of RA mechanoreceptors is not 
dependent on cis signaling at this stage.  Scale bars= 100μm (A-I), 50μm (K-L).  Error 
bars represent SEM.  n.s.=P>0.05, ***=P<0.001.  Source data are provided in Table 3. 
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Figure 4: Ret and Gfra2 null mice display different central projection and cell 
survival deficits at E18.5: (A-H) SC sections and whole mount L4/L5 DRGs of Tdt 
labeled RA mechanoreceptor from E18.5 RetCreERT/+;RosaTdt control (A-B), 
RetCreERT/CreERT;RosaTdt mutant (C-D), Gfra2GFP/+;RetCreERT/+;RosaTdt control (E-F), and 
Gfra2GFP/GFP;RetCreERT/+;RosaTdt mutant (G-H) embryos.  (I) Quantification of Tdt+ pixels 
in dSC, which is displayed as a percentage normalized to dSC Tdt+ pixels of the within 
litter controls.  (J) Quantification of the number of Tdt+ DRG neurons per whole-mount 
L4/L5 DRG, which is displayed as a percentage normalized to Tdt+ neurons of the within 
litter controls.  Ret mutants have significant decreases in RA mechanosensory axons 
innervating the dSC and in the number of Tdt+ RA mechanoreceptors, suggesting that Ret 
mutants have deficits in both the growth of 3rd order central projections and the survival 
of RA mechanoreceptors at E18.5.  In contrast, Gfra2 nulls have only minor deficits in 
RA mechanosensory central projection growth and the survival or RA mechanoreceptors, 
suggesting that an additional GFRa2 independent but RET dependent mechanism 
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functions in these processes.  Scale bar=50μm.  Error bars represent SEM.  *.=P<0.05, 
***=P<0.001.  Source data are provided in Table 4. 
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Figure 5: Gfra1;Gfra2 double null mice phenocopy Ret mutants at E18.5: (A-H) SC 
sections and whole mount L4/L5 DRGs of Tdt labeled RA mechanoreceptors from E18.5 
Gfra1+/-;RetCreERT/+;RosaTdt  control (A-B), Gfra1-/-;RetCreERT/+;RosaTdt mutant  (C-D), 
Gfra1+/-; Gfra2GFP/+;RetCreERT/+;RosaTdt control (E-F) and Gfra1-/-; 
Gfra2GFP/GFP;RetCreERT/+;RosaTdt double null (G-H) embryos.  (I) Quantification of Tdt+ 

pixels in dSC, which is displayed as a percentage normalized to dSC Tdt+ pixels of the 
within litter controls.  (J) Quantification of number of Tdt+ DRG neurons per DRG, 
which is displayed as a percentage normalized to Tdt+ neurons of the within litter 
controls.  Gfra1 mutants have no significant deficits in RA mechanosensory 3rd order 
projections or cell survival at E18.5, indicating that ablating trans signaling alone is not 
sufficient to disrupt the development of RA mechanoreceptors.  However, loss of both cis 
and trans signaling in Gfra1;Gfra2 double nulls leads to a significant loss of RA 
mechanosensory 3rd order projection growth and cell number, suggesting that both cis 
and trans RET signaling contribute to the development of RA mechanoreceptors.  Scale 
bars=50μm.  Error bars represent SEM.  n.s..=P>0.05, ***=P<0.001.  Source data are 
provided in Table 4. 
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 Figure 6: Gfra1 is not upregulated in Gfra2 null RA mechanoreceptors: (A-B) 
Double fluorescent in situ hybridization against GFP and Gfra1 on E14.5 Gfra2GFP/+ 

control (A) and Gfra2GFP/GFP null (B) DRG sections.  (C) Quantification of percentage of 
GFP+ neurons which co-express Gfra1.  12.81±3.92% of control GFP+  neurons express 
Gfra1, and 16.17±3.31% of Gfra2 null GFP+  neurons express Gfra1 (P=0.52).  The 
comparable low number of DRG neurons co-expressing GFP and Gfra1 in control and 
Gfra2 nulls suggests that Gfra1 normally is not expressed in most RA mechanoreceptors 
and that no upregulation of Gfra1 occurs in Gfra2 null RA mechanoreceptors.  (D-F) In 
situ hybridization against Gfra1 in P0 Gfra2GFP/+;Ntrk1+/- control (D), Gfra2GFP/+;Ntrk1-/- 
null (E), and Gfra2GFP/GFP;Ntrk1-/- double null (F) DRG and spinal cord sections.  Black 
border outlines DRG.  In control DRG sections, Gfra1 is expressed in some DRG 
neurons.  In Gfra2GFP/+;Ntrk1-/- null DRG sections, Gfra1 transcript is not detected 
because the DRG neurons which normally express detectable levels of Gfra1 don’t 
survive in the absence of Ntrk1.  In Gfra2;Ntrk1 double null mice, no Gfra1 expression is 
detected in DRG neurons as well, which further supports that upregulation of Gfra1 
doesn’t occur in Gfra2 null RA mechanoreceptors.  Scale bars=50μm.  Error bars 
represent SEM.  n.s.=P>0.05 
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Figure 7: RA mechanoreceptors utilize GFRa1 produced by neighboring neurons to 
respond to GDNF: (A-P) DRG explants from Gfra2GFP/+ control (A-D), Gfra2GFP/GFP 
null (E-H), Gfra2GFP/+;Ntrk1-/- null (I-L), and Gfra2GFP/GFP;Ntrk1-/- double null (M-P) 
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embryos grown for one day in vitro and stained with anti-GFP antibody.  Explants were 
treated with NRTN (50ng/ml), GDNF (100ng/ml), GDNF (100ng/ml) plus GFRa1 
(300ng/ml), or GFRa1 (300ng/ml), respectively.  Schematic next to each genotype 
depicts the presence of RET and GFRas in each condition, and green color indicates cells 
detected by anti-GFP staining.  (Q) Quantification of number of GFP+ neurons per 
10,000μm2 of explant in Gfra2GFP/+ control and Gfra2GFP/GFP null explants.  GFP driven 
from the Gfra2 locus indicates RET signaling activity.  Gfra2 control explants display 
many GFP+ neurons upon NRTN, GDNF, and GDNF plus GFRa1 treatment, but do not 
respond to GFRa1 alone.  Gfra2 null explants lose their responsiveness to NRTN, but 
remain responsive to GDNF and GDNF plus GFRa1.  (R) Quantification of number of 
GFP+ neurons per 10,000μm2 of explant in Gfra2GFP/+;Ntrk1-/- null and 
Gfra2GFP/GFP;Ntrk1-/- double null explants.  In a Ntrk1 null background, expression of 
Gfra1 is lost in non-RA-mechanoreceptor DRG neurons.  Gfra2GFP/+;Ntrk1-/- null 
explants respond to NRTN, GDNF, and GDNF plus GFRa1.  In this case, it is likely that 
GDNF activates RET signaling by interacting with GFRa2 (Jing et al., 1997; Rossi et al., 
1999; Sanicola et al., 1997).   In contrast, Gfra2;Ntrk1 double null DRG explants show 
GFP expression upon treatment with a combination of GDNF and GFRa1, but completely 
lose their responsiveness to GDNF.  These results indicate that Gfra2 null RA 
mechanoreceptors do not express GFRa1 at a functional level and they depend on GFRa1 
produced by neighboring NTRK1+ neurons to respond to GDNF.  See Figure 7-source 
data 2 for quantification.  (S-V) Western blot analysis of cell lysates and concentrated 
supernatants from cultured dissociated DRG neurons of E18.5-P1 wild-type, Gfra2 null, 
and Gfra1 null mice.  (S) The specificity of the anti-GFRa1 antibody was confirmed by 
the loss of a doublet at the predicted size of GFRa1 in Gfra1 null cell lysates.  GFRa1 
was also detected in the supernatants of wild-type and Gfra2 null cultures, but not Gfra1 
null cultures, indicating that GFRa1 is shed from the membrane of DRGs of both wild-
type and Gfra2 mutants.   Note that the size of cleaved GFRa1 is slightly smaller than 
that tethered to cells, which is consistent with previous publication (Paratcha et al., 2001).  
Following detection of GFRa1, membranes were stripped and probed for β-actin, which 
served as a loading control and confirmation that the supernatant fraction was not 
contaminated with cells or cellular debris (lower panel).  (T) The specificity of the anti-
GFRa2 antibody was confirmed by the loss of a band ~75 kDa in Gfra2 null cell lysates.  
The larger than predicted size of GFRa2 may be due to post-translational modifications.  
Two GFRa2 specific bands were also detected in the supernatants of wild-type and Gfra1 
null cultures, but not Gfra2 null cultures, indicating that GFRa2 is also shed from DRG 
cell membranes.  The size of cleaved GFRa2 is also smaller than that which is tethered to 
cells. (U-V) Densimetric quantification of anti-GFRa1 blots shows no significant change 
in the level of GFRa1 produced by cells (U) or released into the media (V), which 
suggests there is no compensation for the loss of GFRa2 through changes in the 
expression or release of GFRa1.  See Figure 7-source data 3 for quantification.  Error 
bars represent SEM.  Scale bars=50μm.  n.s.=P>0.05,  ***=P<0.001.  Source data are 
provided in Tables 7 and 8. 
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Figure 8: Dynamic expression of GDNF during development: (A-D) X-Gal staining 
of E13.5 (A, C) and E15.5 (B, D) Gdnf LacZ/+ DRG and spinal cord sections (Also see 
Figure 8-figure supplement 1).  Arrows indicate dorsal roots, which express Gdnf at 
E15.5, but not E13.5.  (E) Quantification of LacZ+ cells per DRG section, normalized to 
DRG area, reveals a significant increase in the number of cells expressing Gdnf from 
E13.5 to E15.5.  E13.5 embryos have 4.41±0.82 LacZ+ cells/unit area of DRG, E15.5 
embryos have 17.73±0.70 LacZ+ cells/unit area of DRG (P<0.001).  Error bars represent 
SEM.  Scale bars=200μm (A-B), 100μm (C-D). ***=P<0.001   (F) Model of cis and 
trans signaling at cell bodies and central branches of RA mechanoreceptors.  GFRa2 is 
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co-expressed with RET in RA mechanoreceptors and can activate RET in cis. GFRa2 can 
also be shed from the membrane and may activate RET in its soluble form.  GFRa1 is 
expressed in neighboring DRG neurons, dorsal root entry zone cells, and dorsal SC cells.  
GFRa1 present at the membrane of these cells may directly contact the cell bodies or 
processes of RA mechanoreceptors to activate RET in trans.  In addition, soluble GFRa1 
released from these cells may also activate RET in RA mechanoreceptor in trans. 
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Figure S1: Expression of Ret, Gfras, and Gfls in developing spinal cord and DRG: 
(A-J) In situ hybridization of mouse spinal cord and DRG at E13.5 and E15.5 for Ret (A-
B), Gfra1 (C-D), Gfra2 (E-F), Gdnf (G-H), and Nrtn (I-J). Ret is expressed in DRG 
neurons and motor neurons at E13.5 and E15.5.  Ret is also expressed in dSC from E15.5.  
Gfra1 is expressed in DRG neurons, motor neurons, dorsal root entry zone, and dSC at 
both stages.  Note that expression of Gfra1 in the dorsal root entry zone and dSC is 
largely Ret independent.   Gfra2 is expressed in large diameter DRG neurons and in 
motor neurons.  Nrtn and Gdnf are barely detected in DRG and SC at E13.5 and display 
increased expression in DRGs at E15.5. (K) Schematic of temporal expression of Ret and 
Gfra co-receptors in DRG neurons, which is adapted from previous studies (Luo et al., 
2009; Luo et al., 2007; Molliver et al., 1997).  RA mechanoreceptors (red cells) are early 
RET+ DRG neurons, which begin to express Ret and Gfra2 from E10.5 or earlier.  All 
other RET+ DRG neurons develop from NTRK1+ precursors and depend on NTRK1 
signaling for their expression of Ret and Gfras.  Intermediate RET+ neurons (blue cells) 
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express Ret and Gfra1 from E13.5.  The late RET+ non-peptidergic nociceptors express 
Ret from E15.5, and begin to express a low level of Gfra2 around P0.  Scale bar= 100μm. 
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Figure S2: Ret is required for the growth of RA mechanosensory 3rd order central 
projections at E13.5:  (A) Schematic of development of RA mechanosensory central 
projections.  RA mechanoreceptors grow central and peripheral axons soon after 
neurogenesis, generating 1st order branches (red color).  Upon reaching the dSC, the 
central axons bifurcate and send 2nd order longitudinal branches rostrally and caudally 
(blue color).  Around E13.5, 3rd order interstitial projections (green color) from the 
longitudinal branches innervate layers III-V of the dSC and develop complex branching 
patterns.  Synaptic connections between mechanoreceptors and dSC neurons (light blue 
dots) develop from E18.5.  (B-G) Anti-NF200 and anti-GFP immunostaining of E13.5 
RetCFP/+ (B-D) and RetCFP/CFP (E-G) spinal cord.  The dSC innervations of RA 
mechanosensory fibers are outlined by white dotted line.  (H) Quantification of CFP+ 
pixel number in the dSC, which is displayed as a percentage of pixel number relative to 
control.  There is a significant decrease in CFP+ axons innervating the SC in Ret mutants, 
suggesting that the initial growth of RA mechanosensory 3rd order projections depends on 
RET signaling.  (I) Quantification of the number of CFP+ neurons per DRG section.  
There is no significant change in the number of CFP+ neurons per DRG section, 
suggesting that there is no cell death or downregualtion of CFP expression in E13.5 Ret 
null RA mechanoreceptors.  Scale bar=50μm.  C=Cervical, T=Thoracic, L=Lumbar.  
Error bars represent SEM.  n.s.=P>0.05, ***=P<0.001.  Source data are provided in 
Table 2. 
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Figure S3: Generation of Gfra1 conditional and null alleles: (A) Schematic of 
generation of Gfra1 conditional and null alleles.  See supplemental experimental 
procedures for additional details.  (B) Predicted peptide sequence of the truncated GFRa1 
protein after the excision of exon 6.  Black letters represent amino acids which share 
identity with wild-type protein sequence.  The loss of exon 6 causes a frame shift, leading 
to the inclusion of amino acids which do not match the wild-type sequence (blue letters).  
The frame shift also introduces a premature stop codon following amino acid 179.  (C-D) 
In situ hybridization of Gfra1 in P0 Gfra1+/+ control (C) and Gfra1-/- null (D) DRG 
sections shows a complete loss of Gfra1 transcript in Gfra1 null tissue. 
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Figure S4: Generation of tandem RetCreERT;RosaTdt allele: The Ret and Rosa loci are 
located ~5 megabases apart on mouse Chromosome 6.  RetCreERT/+ mice were crossed to 
RosaTdt/Tdt mice to generate RetCreERT/+;RosaTdt/+ mice, which were crossed back to 
RosaTdt/Tdt mice.  Occasionally, an interchromosomal recombination event occurred 
between the Ret and Rosa loci, which caused RetCreERT and RosaTdt to be located on the 
same chromosome.  Recombinants were identified by genotyping for the RetCreERT allele 
and the homozygous presence of the RosaTdt allele.  The chromosome containing both 
RetCreERT and RosaTdt alleles is called the tandem RetCreERT;RosaTdt allele and maintained 
by mating with RosaTdt/Tdt mice.  
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Figure S5: Gfra2 null RA mechanoreceptors retain phospho-S6 expression: (A-B) 
Anti-GFP (green) and anti-phospho-S6 (red) staining of P0 Gfra2GFP/+ control (A) and 
Gfra2GFP/GFP null (B) DRG sections.  (C) Quantification of percentage of GFP+ neurons 
which express phospho-S6 shows no significant change in proportion of phospho-S6+ RA 
mechanoreceptors (92.53±1.55% of Gfra2GFP/+ GFP+ DRG neurons express phospho-S6, 
93.66±0.14% of Gfra2GFPGFP+ GFP+ DRG neurons express phospho-S6, P=0.51).  
Therefore, active RTK signaling seems to still occur in Gfra2 null RA mechanoreceptors. 
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Figure S6: Quantitative RT-PCR of Gfra1 in Gfra2 null DRGs: QPCR for Gfra1 from 
cDNAs generated from E13.5, E15.5, and E18.5 Gfra2GFP/+ control and Gfra2GFP/GFP null 
DRGs.  (A) ΔCT values (cycles to reach threshold for Gfra1 minus cycles to reach 
threshold for Gapdh, a housekeeping gene) are not significantly different between control 
and mutant DRGs at E13.5, E15.5, or E18.5, suggesting that transcription of Gfra1 is not 
changed in Gfra2 mutants.  Error bars represent standard deviation, n.s.=P>0.05.  (B-D) 
Relative quantification of Gfra1 expression levels at E13.5 (B), E15.5 (C), and E18.5 (D) 
calculated by 2-ΔΔCT.  Error bars represent range of expression based on 2-ΔΔCT calculated 
± the standard deviation of CT.  Source data are provided in Table 5. 
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Figure S7: RetCFP null DRG explants lose responsiveness to GFLs: (A-H) DRG 
explants from E14.5 RetCFP/+ control (A-D) and RetCFP/CFP null (E-H) embryos grown for 
one day in vitro and stained with anti-GFP antibody.  Explants were treated with NRTN 
(50ng/ml), GDNF (100ng/ml), GDNF (100ng/ml) plus GFRa1 (300ng/ml), or GFRa1 
(300ng/ml), respectively.  Schematic next to each genotype depicts the presence of RET 
and GFRas in each condition, and green color indicates cells detected by anti-GFP 
staining.  (I) Quantification of number of axonal intersections at a 200μm distance from 
the edge each explant for Ret control and null explants.  CFP+ neurons in control explants 
grow numerous axons upon treatment with NRTN, GDNF, or GDNF plus GFRa1, but not 
in response to GFRa1 alone.  Ret null explants do not grow axons upon treatment with 
GFLs.  (J) Quantification of number of CFP+ neurons per 10,000μm2 of explant in Ret 

control and null explants.  Since RET signaling positively regulates Ret expression, CFP 
driven from the Ret locus serves as a readout of RET signaling activity as well.  Ret 

control explants have many CFP+ neurons upon NRTN, GDNF, and GDNF plus GFRa1 
treatment, but Ret null explants do not respond to treatment with GFLs.  Scale= 50µm.  
Source data are provided in Tables 6 and 7. 
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Figure S8: Gdnf LacZ expression in DRGs at E13.5 and E15.5.  DRG sections with 
large, strongly LacZ+ neurons were observed at both E13.5 (A) and E15.5 (B).  Note that 
there are many more LacZ+ DRG neurons at E15.5.  Sections with such cells were 
observed in all embryos and were usually found in distal anterior and distal posterior 
segments.  Sections with smaller reactive cells, as shown in Figure 6, were observed 
more frequently.  Scale= 100μm 
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Table 1: VGLUT1 dorsal spinal cord staining and RA mechanoreceptor number in 
P7 Gfrα2 mutants 

 

 

 

 

#Thoracic SC only 

 

Control 
genotype 

GFP+;NF200+ neurons/ 
DRG section 

Mutant 
genotype 

GFP+;NF200+ neurons/ 
DRG section 

P-value 

Gfrα2GFP/+ 7.13±0.48 Gfrα2GFP/GFP 6.50±0.41 0.34 

#L4/L5 DRGs only 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control 
genotype 

VGluT1+ pixels  

(% of control) 

Mutant 
genotype 

VGluT1+ pixels  

(% of control) 

P-value 

Gfrα2GFP/+ 100±9.12 Gfrα2GFP/GFP 96.31±8.97 0.96 
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Table 2: RA mechanoreceptor central projections and cell number in E13.5 Ret, 
Gfrα1, Gfrα2, and Nrtn mutants 

SC Level Control 
genotype 

GFP+ pixels 
(% of control) 

Mutant genotype GFP+ pixels 
(% of control) 

P-value 

Cervical RetCFP/+ 100±13.61 RetCFP/CFP 28.12±12.25 <0.0001 
Thoracic RetCFP/+ 100±9.18 RetCFP/CFP 42.88±8.93 0.0001 
Lumbar RetCFP/+ 100±8.96 RetCFP/CFP 37.78±6.84 <0.0001 
Cervical Gfrα1+/-; RetCFP/+ 100±6.85 Gfrα1-/-;RetCFP/+ * 143.33±15.92 0.02 
Thoracic Gfrα1+/-; RetCFP/+ 100±9.68 Gfrα1-/-;RetCFP/+ * 134.65±14.14 0.05 
Lumbar Gfrα1+/-; RetCFP/+ 100±9.76 Gfrα1-/-;RetCFP/+ * 128.01±11.31 0.07 
Cervical Gfrα2+/-;RetCFP/+ 100±13.42 Gfrα2-/-;RetCFP/+ 12.78±1.86 <0.0001 
Thoracic Gfrα2+/-;RetCFP/+ 100±16.95 Gfrα2-/-;RetCFP/+ 9.50±1.44 <0.0001 
Lumbar Gfrα2+/-;RetCFP/+ 100±14.52 Gfrα2-/-;RetCFP/+ 5.57±0.77 <0.0001 
Cervical Nrtn+/-;RetCFP/+ 100±13.43 Nrtn-/-;RetCFP/+ 47.95±8.23 0.0002 
Thoracic Nrtn+/-;RetCFP/+ 100±13.64 Nrtn-/-;RetCFP/+ 26.47±3.84 <0.0001 
Lumbar Nrtn+/-;RetCFP/+ 100±14.12 Nrtn-/-;RetCFP/+ 43.47±6.49 0.002 

*The slight increase of CFP+ signal in Gfrα1 mutant mice could be due to the precocious 
appearance of Ret+ dSC cells, which are also stained by anti-GFP antibody.  

 

DRG 
Level 

Control 
genotype 

GFP+ neurons per 
DRG section 

Mutant 
genotype 

GFP+ neurons per 
DRG section 

P-value 

Cervical RetCFP/+ 25.81±1.74 RetCFP/CFP 23.44±2.03 0.38 
Thoracic RetCFP/+ 19.94±1.42 RetCFP/CFP 18.88±1.50 0.61 
Lumbar RetCFP/+ 21.81±1.29 RetCFP/CFP 17.16±2.01 0.06 
Cervical Gfrα1+/-;RetCFP/+ 24.89±1.82 Gfrα1-/-;RetCFP/+ 23.38±3.51 0.39 
Thoracic Gfrα1+/-;RetCFP/+ 19.43±2.02 Gfrα1-/-;RetCFP/+ 19.00±1.56 0.87 
Lumbar Gfrα1+/-;RetCFP/+ 20.27±1.24 Gfrα1-/-;RetCFP/+ 23.17±1.20 0.11 
Cervical Gfrα2+/-;RetCFP/+ 40.38±2.97 Gfrα2-/-;RetCFP/+ 36.57±3.53 0.41 
Thoracic Gfrα2+/-;RetCFP/+ 30.94±1.21 Gfrα2-/-;RetCFP/+ 27.67±1.69 0.13 
Lumbar Gfrα2+/-;RetCFP/+ 28.29±1.39 Gfrα2-/-;RetCFP/+ 24.59±1.53 0.09 
Cervical Nrtn+/-;RetCFP/+ 42.93±3.00 Nrtn-/-;RetCFP/+ 44.50±3.22 0.72 
Thoracic Nrtn+/-;RetCFP/+ 30.38±1.14 Nrtn-/-;RetCFP/+ 28.56±1.75 0.39 
Lumbar Nrtn+/-;RetCFP/+ 27.31±1.29 Nrtn-/-;RetCFP/+ 25.00±1.45 0.24 
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Table 3: RA mechanoreceptor central projections and cell number in E15.5 Gfrα2 
mutants 

Control genotype Tdt+ dSC 
pixels (% of 
control) 

Mutant genotype Tdt+ dSC pixels (% 
of control) 

P-value 

Gfrα2GFP/+; 
RetCreERT/+;RosaTdt   

100±8.80 Gfrα2GFP/GFP; 
RetCreERT/+;RosaTdt  

55.13±2.82 <0.0001 

# Thoracic spinal cord only 

  

Control genotype Tdt+  neurons per 
DRG section (% 
of control) 

Mutant genotype Tdt+  neurons per 
DRG section (% 
of control) 

P-value 

Gfrα2GFP/+; 
RetCreERT/+;RosaTdt   

100±6.32 Gfrα2GFP/GFP; 
RetCreERT/+;RosaTdt  

79.52±8.39 0.06 

#L4/L5 DRGs only 
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Table 4: RA mechanoreceptor central projections and cell number in E18.5 Ret, 
Gfrα2, Gfrα1, and Gfrα1;Gfrα2 mutants 

Control genotype Tdt+ dSC pixels 
(% of control) 

Mutant genotype Tdt+ dSC 
pixels (% of 
control) 

P-value 

RetCreERT/+; 
RosaTdt 

100±9.82 RetCreERT/CreERT; 
RosaTdt 

35.86±4.97 <0.0001 

Gfrα2GFP/+; 
RetCreERT/+;RosaTdt   

100±2.53 Gfrα2GFP/GFP; 
RetCreERT/+;RosaTdt  

86.34±4.48 0.01 

Gfrα1+/-; 
RetCreERT/+;RosaTdt   

100±2.14 Gfrα1-/-; 
RetCreERT/+;RosaTdt   

80.94±10.32 0.09 

Gfrα1+/-; Gfrα2GFP/+; 
RetCreERT/+;RosaTdt   

100±4.49 Gfrα1-/-; Gfrα2GFP/GFP; 
RetCreERT/+;RosaTdt  

27.25±2.09 <0.0001 

# Thoracic spinal cord only 

  

Control genotype Tdt+  neurons 
per DRG (% of 
control) 

Mutant genotype Tdt+  neurons 
per DRG (% 
of control) 

P-value 

RetCreERT/+;RosaTdt 100±8.71 RetCreERT/CreERT;RosaTdt 52.52±7.76 0.0007 
Gfrα2GFP/+; 
RetCreERT/+;RosaTdt   

100±5.10 Gfrα2GFP/GFP; 
RetCreERT/+;RosaTdt  

84.01±5.16 0.04 

Gfrα1+/-; 
RetCreERT/+;RosaTdt   

100±6.72 Gfrα1-/-; 
RetCreERT/+;RosaTdt   

82.30±12.91 0.19 

Gfrα1+/-; Gfrα2GFP/+; 
RetCreERT/+;RosaTdt   

100±8.61 Gfrα1-/-; Gfrα2GFP/GFP; 
RetCreERT/+;RosaTdt 

38.17±2.65 0.0002 

#L4/L5 DRGs only 
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Table 5: QPCR of Gfrα1 in embryonic Gfrα2 null DRGs 

 

Population 1 Population 2 P-value 

E13.5 Gfrα2+/- E13.5 Gfrα2-/- 0.675 

E15.5 Gfrα2+/- E15.5 Gfrα2-/- 0.698 

E18.5 Gfrα2+/- E18.5 Gfrα2-/- 0.288 

 

 

 

 

 

 

 

 

 

 

 

Age Genotype ΔCT (Gfrα1-
Gapdh) 

ΔCT 
S.D. 

Relative expression normalized 
to E13.5 Gfrα2-/- (2-ΔΔCT) 

E13.5 Gfrα2+/- 6.3449 0.2873 0.819-1.220 

E13.5 Gfrα2-/- 6.4359 0.1977 0.819-1.077 

E15.5 Gfrα2+/- 6.9424 0.2094 0.572-0.764 

E15.5 Gfrα2-/- 6.8770 0.1723 0.614-0.779 

E18.5 Gfrα2+/- 6.0577 0.1759 1.080-1.379 

E18.5 Gfrα2-/- 6.2467 0.1935 0.939-1.228 
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Table 6: Quantification of axonal growth in Ret mutant DRG explants 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment Control 
genotype 

Axon intersections at 
200μm 

Mutant 
genotype 

Axon intersections 
at 200μm 

p-value  

NRTN RetCFP/+ 147.833±10.579 (n=6) RetCFP/CFP 0 (n=8) <0.0001 
GDNF RetCFP/+ 152.500±21.165 (n=8) RetCFP/CFP 0.875±0.543 (n=8) <0.0001 
GDNF+ 
GFRα1 

RetCFP/+ 165.375±18.029 (n=8) RetCFP/CFP 0.375±0.246 (n=8) <0.0001 

GFRα1 RetCFP/+ 7.428±1.104 (n=7) RetCFP/CFP 1.875±0.695 (n=8) 0.0002 
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Table 7: GFP+ neuron number in Gfrα2 null and Gfrα2;TrkA double null explants 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment Control 
genotype 

GFP+ neurons/ 
10,000μm2 

Mutant 
genotype 

GFP+ neurons/ 
10,000μm2 

p-value  

NRTN RetCFP/+ 4.825±0.545 (n=6) RetCFP/CFP 0.052±0.036 (n=8) <0.0001 
GDNF RetCFP/+ 4.917±0.619 (n=8) RetCFP/CFP 0.045±0.022 (n=8) <0.0001 
GDNF + 
GFRα1 

RetCFP/+ 4.776±0.539 (n=8) RetCFP/CFP 0.062±0.041 (n=8) <0.0001 

GFRα1 RetCFP/+ 0.278±0.077 (n=7) RetCFP/CFP 0.075±0.038 (n=8) 0.0245 
NRTN Gfrα2GFP/+ 2.394±0.344 (n=8) Gfrα2GFP/GFP 0.464±0.176 (n=7) <0.0001 
GDNF Gfrα2GFP/+ 3.061±0.401 (n=8) Gfrα2GFP/GFP 2.968±0.554 (n=7) 0.7513 
GDNF + 
GFRα1 

Gfrα2GFP/+ 3.982±0.559 (n=7) Gfrα2GFP/GFP 2.941±0.461 (n=6) 0.1099 

GFRα1 Gfrα2GFP/+ 0.201±0.103 (n=6) Gfrα2GFP/GFP 0.122±0.052 (n=6) 0.3635 
NRTN Gfrα2GFP/+

; TrkA-/- 
1.247±0.237 (n=12) Gfrα2GFP/GFP 

; TrkA-/- 
0 (n=6) <0.0001 

GDNF Gfrα2GFP/+

; TrkA-/- 
1.113±0.268 (n=10) Gfrα2GFP/GFP 

; TrkA-/- 
0.033±0.031 (n=10) <0.0001 

GDNF + 
GFRα1 

Gfrα2GFP/+

; TrkA-/- 
3.381±0.522 (n=11) Gfrα2GFP/GFP 

; TrkA-/- 
0.389±0.144 (n=8) <0.0001 

GFRα1 Gfrα2GFP/+

; TrkA-/- 
0.020±0.019 (n=9) Gfrα2GFP/GFP 

; TrkA-/- 
0 (n=6) <0.0001 

Genotype Treatment GFP+ 
neurons/10,000μm2 

Treatment GFP+ 
neurons/10,000μm2 

p-value 

Gfrα2GFP/GFP ; 
TrkA-/- 

GDNF + 
GFRα1 

0.389±0.144 (n=10) GDNF 0.033±0.031 (n=8) 0.0011 
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Table 8: Densimetric measurements of GFRα1 in DRG cell extracts and 
supernatants 

 

 

Supernatants   
Genotype Band density (A.U.) P-value (relative to wild 

type) 
Wild type 1±0.162 N/A 
Gfrα2-/- 0.873±0.116 0.556 
Gfrα1-/- 0.005±0.003 0.004 

A.U.=arbitrary units 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell lysates   
Genotype Band density (A.U.) P-value (relative to wild 

type) 
Wild type 1±0.131 N/A 
Gfrα2-/- 0.798±0.192 0.434 
Gfrα1-/- 0.024±0.007 0.002 
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CHAPTER 3 

 

 

A RET-ER81-Neuregulin1 signaling pathway drives the development of Pacinian 

corpuscles 

 

Michael S. Fleming wrote this chapter and performed all experiments.  
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ABSTRACT 

Rapidly adapting mechanoreceptors are somatosensory neurons responsible for the 

detection of light touch.  All rapidly adapting mechanoreceptors are molecularly defined 

by the early embryonic expression of the receptor tyrosine kinase RET.  However, in Ret 

mutants, only one type of rapidly adapting mechanoreceptor end organ, the Pacinian 

corpuscle, does not form.  Pacinian corpuscles are also not formed in mice lacking the 

ETS transcription factor Er81.  Pacinian corpuscles are composed of non-myelinating 

Schwann cells and are innervated by myelinated axons.  A key mediator of axon-

Schwann cell interactions is Neuregulin-1 (NRG1).  The NRG1-CRD isoform is 

important for axonal communication with myelinating Schwann cells.  In contrast, the 

NRG1-Ig isoform is required for the development of another somatosensory end organ, 

muscle spindles.  Here, we show that Ret is required for the maintenance 

of Er81 expression in Pacinian corpuscle innervating neurons, and that 

neural Er81 expression is required for corpuscle formation.  Furthermore, we find that the 

primary deficit in Pacinian corpuscle formation in Er81 mutants is deficient axon-

Schwann cell interactions, and that the expression of Nrg1-Ig is decreased in 

somatosensory neurons in Er81 null mice.  Finally, mechanosensory neuron 

specific Nrg1 mutants lack Pacinian corpuscles, suggesting a RET-ER81-Nrg1 signaling 

pathway drives Pacinian corpuscle development.   
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INTRODUCTION 

The mammalian somatosensory system is exquisitely tuned to detect and differentiate 

between diverse stimuli, such as pain, temperature, itch, and light touch.  The primary 

somatosensory neurons which detect these stimuli have unique morphological and 

molecular properties and distinct developmental histories.  Over the past few decades, 

great progress has been made in describing the intrinsic and extrinsic signaling pathways 

important for defining and driving the development of broad classes of somatosensory 

neurons, such as peptidergic and nonpeptidergic nociceptors, proprioceptors, and 

mechanoreceptors (Lallemend and Ernfors, 2012; Marmigere and Carroll, 2014).  

However, the molecular and cellular mechanisms which further differentiate these broad 

classes of neurons remain unclear. 

 

The rapidly adapting (RA) low-threshold mechanoreceptors are one such broad class of 

somatosensory neurons.  RA mechanoreceptors respond to light touch.  RA 

mechanoreceptors have a unique molecular profile and developmental history.  They are 

large diameter dorsal root ganglion (DRG) neurons which begin to express Ret and the 

RET co-receptor GFRα2 around E10.5, which is many days earlier than any other class 

of DRG neurons begin to express Ret (Bourane et al., 2009; Honma et al., 2010; Luo et 

al., 2009).  RA mechanoreceptors can be further differentiated into three distinct classes 

based on the morphology and anatomical location of their end organs and the class of 

stimuli they are tuned to detect (Fleming and Luo, 2013).  Lanceolate ending RA 
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mechanoreceptors innervate hair follicles and respond to deflection of the hair.  

Meissner’s corpuscles are located in upper layers of the dermis and respond to low-

frequency vibration.  Pacinian corpuscles are present in deeper tissue, and respond to 

high frequency vibration.  Despite these large functional and morphological differences 

between these classes of RA mechanoreceptors, how they are differentiated at the 

molecular level remains unknown. 

 

Pacinian corpuscles are mechanosensory end organs which are present in the interosseous 

membrane surrounding the fibula and ulna in mice (Zelena, 1978).  They are innervated 

by a single myelinated RA mechanosensory axon.  Upon entering the corpuscle, the axon 

loses its contact with myelinating Schwann cells, and directly contacts the non-

myelinating Schwann cells which comprise the inner core of the corpuscle (Pease and 

Quilliam, 1957).  The inner core is surrounded by many layers of perineural epithelial 

cells (Zelena, 1994).  In neural crest specific Ret mutant mice, Pacinian corpuscles do not 

form whereas Meissner’s corpuscles and lanceolate endings are still present (Luo et al., 

2009).   Pacinian corpuscles are also absent in mice lacking the ETS transcription factor 

Er81 (Sedy et al., 2006).  In the peripheral nervous system, Er81 is best known for its 

role in controlling the central and peripheral projections of proprioceptors, where it acts 

downstream of TrkC/NT3 neurotrophic signaling (Arber et al., 2000; Patel et al., 2003).  

Since Er81 is expressed in corpuscle-forming Schwann cells, the loss-of-Pacinian 

corpuscle phenotype was previously attributed to the loss of Er81 function in Schwann 

cells (Sedy et al., 2006).  However, ~30% of Er81+ DRG neurons are not proprioceptors 
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at E13.5 (Arber et al., 2000), raising the possibility that Er81 may be expressed and 

function in Pacinian corpuscle neurons.   

 

Here, we show that Er81 is required in neurons for the development of Pacinian 

corpuscles.  Furthermore, the maintenance of Er81 expression in RA mechanoreceptors 

depends on RET signaling.  Through morphological characterization of developing 

Pacinian corpuscles, we find that Er81 mediates communication between axons and 

nonmyelinating Schwann cells of Pacinian corpuscles, likely via the regulation of 

Neuregulin1-Ig, but not interaction with myelinating Schwann cells. 

 

RESULTS 

Er81 is required for the development of Pacinian corpuscles, but not Meissner’s 

corpuscles 

Pacinian corpuscles and their innervating axons are absent in Er81 mutant mice around 

birth (Sedy et al., 2006).  The lack of Pacinian corpuscles in Er81 mutants was previously 

attributed to a Schwann cell deficit, due to the expression of Er81 in the inner core 

nonmyelinating Schwann cells of Pacinian corpuscles.  Meissner’s corpuscles are another 

RA mechanoreceptor end organ composed of nonmyelinating Schwann cells (Fleming 

and Luo, 2013; Zelena, 1994), however it is unclear whether they require Er81 for their 

development.  Using an Er81LacZ reporter allele (Arber et al., 2000), we confirmed that 

Er81 is expressed in Pacinian corpuscle inner core Schwann cells (Figure 1A)(Sedy et al., 
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2006).  Sections of mouse glabrous skin revealed that Er81 is also expressed in the 

nonmyelinating Schwann cells of the lamella comprising the Meissner’s corpuscle inner 

core (Figure 1B). 

 

Due to the expression of Er81 in Meissner’s corpuscle Schwann cells, we asked whether 

Er81 is required for Meissner corpuscle development.  We examined glabrous skin 

sections from postnatal day 21 (P21) control and Er81 null mice and found S100+ 

corpuscles were present in the mutant dermal papillae (Figure 1C-D).  Therefore, like 

Ret, Er81 is required for the development of Pacinian corpuscles but not Meissner’s 

corpuscles.  Due to the lack of a Meissner’s corpuscle phenotype despite the expression 

of Er81 in the corpuscle Schwann cells, it’s possible that Er81 may act in tissue other 

than Schwann cells to promote Pacinian corpuscle end organ formation. 

 

Er81 is expressed in Pacinian corpuscle innervating neurons 

Although the function of ER81 in proprioceptive DRG neurons has been established, 

approximately 30% of ER81+ DRG neurons are not proprioceptors and have an unknown 

identity.  We hypothesized that a portion of these Er81+ non-proprioceptors may be 

Pacinian corpuscle innervating neurons.  We first asked whether ER81 is expressed in 

limb innervating RA mechanoreceptors.  We quantified the proportion of RA 

mechanoreceptors which are immunopositve for ER81 in RetCFP/+;TrkA-/- DRG sections.  

In this genetic background, all Ret+ neurons can be identified with anti-GFP 
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immunostaining.  Additionally, because all Ret+ DRG neurons besides RA 

mechanoreceptors depend on NGF/TrkA signaling for their survival and expression of 

Ret, all CFP+ neurons in these sections should be RA mechanoreceptors (Luo et al., 2009; 

Luo et al., 2007).  We found that ~40% of RA mechanoreceptors in hindlimb innervating 

DRGs (L4 and L5) express ER81, while only ~10% of RA mechanoreceptors in 

surrounding DRGs (L3 and L6) express ER81 (Figure 2A-E).  Therefore, we conclude 

that ER81 is expressed in hindlimb innervating RA mechanoreceptors. 

 

To directly visualize the axons of Er81+ neurons, we crossed a tamoxifen inducible Cre 

recombinase driven from the Er81 locus to a TauGFP conditional reporter allele, and 

treated pregnant dams with tamoxifen at E15.5 and E16.5 to permanently label a subset 

of Er81+ neurons with GFP.  At P15, tamoxifen treated mice displayed GFP expression 

in a subset of ER81+ DRG neurons (Figure 2F).  GFP+ axons innervated layers III-V of 

the dorsal spinal cord, the dorsal spinal cord target zone of mechanosensory neurons 

(Figure 2G).  Additionally, whole mount staining of the interosseous membrane showed 

that a subset of Pacinian corpuscles are innervated by GFP+ axons (Figure 2H).  The lack 

of GFP+ axons innervating all Pacinian corpuscles is likely due to the recombination 

efficiency of the inducible Cre.  Therefore, we conclude that Er81 is expressed in 

Pacinian corpuscle innervating DRG neurons.   
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Er81 is required in neurons, but not Schwann cells, for Pacinian corpuscle 

development 

To determine where Er81 is required for Pacinian corpuscle development, we combined 

an Er81 conditional allele with tissue specific Cre lines.  We generated conditional 

mutants with NestinCre which drives recombination in Pacinian corpuscle innervating 

neurons but not corpuscle Schwann cells (Figure 3A).  Anti-ER81 immunostaining was 

absent from DRG sections of NestinCre;Er81f/- mice, demonstrating efficient 

recombination of the Er81 allele in DRG neurons (Figure 3B-C).  Serial sections of the 

hindlimbs revealed a complete absence of Pacinian corpuscles around the fibula (Figure 

3D-E).  Therefore, we conclude that Er81 is required in neurons for Pacinian corpuscle 

development. 

 

As Er81 is also expressed in the Schwann cells which comprise the Pacinian corpuscle 

end organ, we next asked if Er81 is required in Schwann cells for Pacinian corpuscle 

development.  We employed a Dessert HedgehogCre (DhhCre) transgenic line, which 

drives recombination in Pacinian corpuscle Schwann cells but not their innervating 

neurons, to ablate Er81 (Figure 4A).  DhhCre;Er81f/- mice had significantly fewer and 

smaller Pacinian corpuscles (Figure 4B-E).  However, the phenotype in the Schwann cell 

specific mutants is much less severe than the neural specific mutant phenotype.  

Therefore, we conclude that Er81 in Schwann cells contributes to, but is not absolutely 

required for, Pacinian corpuscle development. 
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Although innervation is required for the initial formation of Pacinian corpuscles (Zelena, 

1980), denervated Pacinian corpuscles in the adult survive until they are reinnervated (in 

the case of nerve crush/injury) or for up to one year without re-innervation (in the case of 

nerve transection) (Zelena, 1982, 1984).  We asked whether Er81 in the corpuscle 

Schwann cells has a role in maintaining the Pacinian corpuscle following the loss of 

innervation.  We performed unilateral tibial nerve transection on 2-4 month old 

DhhCre;Er81f/- conditional mutants and Er81f/- control mice, and examined Pacinian 

corpuscles two weeks after surgery.  We confirmed denervation by the loss of NFH+ 

fibers in Pacinian corpuscles (Figure 5A-B).  We found that there was no decrease in the 

number of corpuscles per leg in the transected leg compared to the contralateral non-

operated leg, in either the controls or conditional mutants (Figure 5C).  Therefore, we 

conclude that Er81 is not necessary for the survival of Pacinian corpuscle Schwann cells 

following denervation. Additionally, the deficit in Pacinian corpuscle number observed at 

P7 (Figure 4E) in the conditional mutant relative to the control is no longer present in 

adults, suggesting development of Pacinian corpuscles may simply be delayed in 

DhhCre;Er81f/- mice. 

 

The loss of Pacinian corpuscles in Ret mutants is not caused by cell death 

The common Pacinian corpuscle phenotype between Ret and Er81 mutants suggests they 

may act in a common molecular pathway to promote corpuscle formation.  In 
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proprioceptors, Er81 expression is downstream of TrkC/NT3 neurotrophic signaling 

(Patel et al., 2003).  We aimed to test the hypothesis that an analogous RET/neurturin 

signaling pathway may control the expression of Er81 in Pacinian corpuscle innervating 

RA mechanoreceptors.   

 

One potential confound when examining the effects of neurotrophin signaling is the death 

of neurons which lack neurotrophic support.  Due to this well characterized role of 

neurotrophins (Snider and Silos-Santiago, 1996), it’s possible that Pacinian corpuscles 

may not form in Ret mutants because the innervating neurons do not survive due to a lack 

of RET signaling.  To eliminate this possibility, we examined Ret mutants and controls in 

a Bax null background.  Bax is a component of the apoptotic pathway.  Elimination of 

Bax allows for the investigation of cell-survival independent effects of loss of 

neurotrophin or neurotrophic receptor function (Patel et al., 2000).  We examined 

Ret;Bax double mutants at P0, the latest they survive due to kidney agenesis.  Because 

S100 is not yet expressed in immature Schwann cells at P0, we examined rudimentary 

Pacinian corpuscle formation by hematoxylin and eosin (H&E) staining of serial leg 

sections.  We found rudimentary corpuscles present around the fibula of RetCFP/+;Bax-/- 

single mutants, but no rudimentary corpuscles in the RetCFP/CFP;Bax-/- double mutants 

(Figure 6A-B).  Additionally, we performed immunostaining against CFP driven from the 

Ret locus to examine the axons of the interosseous nerve which innervate Pacinian 

corpuscles.  These axons were present in the RetCFP/+;Bax-/- single mutants, but absent in 

the RetCFP/CFP;Bax-/- double mutants (Figure 6C-D).  Therefore, we conclude that the lack 
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of Pacinian corpuscles in Ret mutants is independent of RET’s pro-survival function, and 

that the innervating axons of Pacinian corpuscles never reach their target in Ret mutants, 

likely due to axon guidance or growth deficits. 

 

Er81 expression is downstream of Ret in Pacinian corpuscle innervating neurons 

The number of Pacinian corpuscles formed per leg is highly conserved between mice.  If 

Ret and Er81 act in a common genetic pathway, reducing the dosage of both genes may 

augment the effect on corpuscle formation.  We examined the number of Pacinian 

corpuscles per leg in wild type, Ret+/-, Er81+/-; and Ret+/-;Er81+/- mice.  We found that 

Ret and Er81 single heterozygotes did not have a significant decrease in the number of 

Pacinian corpuscles relative to wild-type mice.  In contrast, Ret;Er81 double 

heterozygotes had significantly fewer Pacinian corpuscles per leg than all other 

genotypes, and the deficit in Pacinian corpuscles was greater than the additive deficit 

exhibited by Ret and Er81 single mutants (Figure 7).  Therefore, Ret and Er81 may act in 

common or parallel pathways for Pacinian corpuscles development. 

 

To test the hypothesis that Ret regulates the expression of Er81, we performed double 

fluorescent in-situ hybridization against CFP (driven from the Ret locus) and Er81 in 

L4/L5 DRG sections.  At E13.5, shortly after Er81 begins to be expressed in DRG 

neurons (Arber et al., 2000), we did not observe a change in the proportion of CFP+ 

neurons which express Er81 in RetCFP/CFP mutants compared to RetCFP/+ controls (Figure 
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8A-C).  Therefore, Ret is not required for the initiation of Er81 expression in RA 

mechanoreceptors.  Because cell death due to lack of neurotrophic support begins during 

late embryonic development, we used a Bax null background to compare the expression 

of Er81 in RA mechanoreceptors in Ret heterozygotes and mutants.  At P0, we found a 

significant decrease in the proportion of large diameter CFP+ neurons expressing Er81 in 

RetCFP/CFP;Bax-/- mutants compared to RetCFP/+;Bax-/- controls (Figure 8D-F).  Therefore, 

RET signaling is required for the maintenance, but not initiation, of Er81 expression in 

limb level RA mechanoreceptors.   

 

Conversely, it is possible that Er81 regulates the expression of Ret.  To examine this 

possibility, we performed Ret/TrkA double fluorescent in situ hybridization combined 

with anti-neurofilament heavy-chain (NFH) immunostaining.  We then quantified the 

number of Ret+/TrkA-/NFH+ RA mechanoreceptors per L4/L5 DRG section in Bax null 

and Er81/Bax double mice from P3-P5 (Figure 8G).  If Er81 positively regulated the 

expression of Ret we would predict a decrease in the number of Ret+ RA 

mechanoreceptors in Er81 mutants.  However, we found that the number of Ret+ RA 

mechanoreceptors was not significantly different from Bax single null controls in the 

double mutants, suggesting that Er81 does not regulate the expression of Ret in RA 

mechanoreceptors. 
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The Er81 Pacinian corpuscle phenotype arises from deficient axon-Schwann cell 

interactions 

Why do Pacinian corpuscles fail to form in Er81 mutants?  We hypothesized that there 

could be three potential causes for the lack of Pacinian corpuscles in mutant mice.  First, 

it’s possible that Pacinian corpuscle innervating neurons or corpuscle Schwann cells 

depend on Er81 for their survival.  Alternatively, it’s possible that Pacinian corpuscle 

innervating neurons never reach their target in Er81 mutants.  Finally, if innervating 

neurons reach the proper target and Schwann cell precursors are present, then a 

breakdown in communication between the axon and the Schwann cells could prevent 

corpuscles from forming.  We addressed each of these possibilities in a series of 

experiments. 

 

Loss of DRG neurons during the early postnatal period in Er81 mutants has previously 

been reported (de Nooij et al., 2013; Kucera et al., 2002).  To determine if Er81 acts 

solely to promote the survival of neurons or Schwann cells, we examined Er81 mutant 

and control legs in a Bax null background.  We performed immunostaining for S100, 

which marks Schwann cells, and NFH, which marks large diameter axons, at P3, shortly 

after Pacinian corpuscles can be clearly identified by anti-S100 staining (Figure 9A-B).  

We found that although S100+ Pacinian corpuscles were present in the double mutants, 

they were more than halved in number and size (Figure 9C-D).  Additionally, the 

expression level of S100, which is a marker of Schwann cell maturation, was just above 
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the threshold of detection in the double mutants, but strongly expressed in the Er81+/-

;Bax-/- control corpuscles.  Therefore, we conclude that the primary deficit in Er81 

mutants is not the failure of neurons or Schwann cells to survive.  Furthermore, all 

present corpuscles were innervated by a single NFH+ axon in controls and double 

mutants, suggesting that targeting and growth of Pacinian corpuscle axons is not affected 

by the loss of Er81.    

 

To determine whether axonal growth and pathfinding is affected in Er81 single mutants, 

we also performed anti-NFH staining on P2 control and mutant serial leg sections.  We 

found that NFH+ fibers are present in the interosseous membrane near the fibula, just 

distal to the appearance of Pacinian corpuscles (Figure 10A-B).  Therefore, Pacinian 

corpuscle innervating neurons survive and their axons reach their target in Er81 mutants, 

even when cell death is not prevented by the ablation of Bax. 

 

If innervating axons reach their target in Er81 mutants, do they begin the process of 

generating Pacinian corpuscles?  We performed H&E and anti-S100/anti-NFH staining 

on P2 leg serial sections.  In Er81+/- controls, we observed well-formed rudimentary 

corpuscles by H&E staining, as well as strongly S100+ Schwann cells surrounding 

innervating fibers around the fibula.  In contrast, Er81 mutants had hypotrophic 

rudimentary Schwann cells by H&E staining, and Pacinian corpuscle-like anti-S100 

staining was not present around axonal fibers innervating the fibula (Figure 10C-F).  
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Therefore, we conclude that in Er81 mutants Pacinian corpuscle innervating axons reach 

their target and are in contact with immature Schwann cells.  However, the Schwann cells 

do not properly differentiate and form Pacinian corpuscles, likely due to a breakdown in 

communication between the innervating axon and the Schwann cells. 

 

Interactions with myelinating Schwann cells appear normal in Er81 mutants 

The inner core of the Pacinian corpuscles are composed of nonmyelinating Schwann cells 

(Griffin and Thompson, 2008; Monk et al., 2015), which do not form properly in Er81 

mutants.  Is the development of the most prevalent Schwann cell type in the PNS, 

myelinating Schwann cells, also affected by the loss of Er81?  We performed 

transmission electron microscopy on the L5 dorsal roots of Er81+/- controls and Er81-/- 

mutants and calculated the g-ratio of individual axonal fibers (Figure 11).  At P21, which 

is near the maximum lifespan of most Er81 mutants, there was no significant difference 

in the g-ratio between controls and mutants, and there were no obvious defects in the 

morphology of the myelin sheath.  Therefore, Er81 is not required for proper 

myelination, or for communication between axons and myelinating Schwann cells. 

 

Nrg1 is required in neurons for Pacinian corpuscle formation 

One major effector of axon-Schwann cell communication in the PNS is Neuregulin-1 

(NRG1).  NRG1 contains an EGF-like domain which acts through ErbB receptors, which 
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are expressed on Schwann cells, muscle fibers, and other targets of NRG1 signaling 

(Birchmeier and Nave, 2008).  Nrg1 is a complex gene with more than 15 isoforms 

produced through differential splicing and the use of different transcriptional start sites 

(Falls, 2003).  In the PNS, isoforms of Nrg1 containing a cysteine rich domain (Nrg1-

CRD) are crucial for axonal interactions with myelinating Schwann cells (Michailov et 

al., 2004).  The level of Nrg1-CRD expressed by a neuron is directly correlated with its 

myelination thickness.  In contrast, the expression level of Nrg1 isoforms with Ig-like 

domains (Nrg1-Ig) has no effect on myelination thickness.  Instead, Nrg1-Ig is likely 

required in neurons for the formation of proprioceptive muscle spindles (Hippenmeyer et 

al., 2002).  Interestingly, muscle spindles also depend on Er81 for their development 

(Arber et al., 2000; Kucera et al., 2002). 

 

Pacinian corpuscle innervating neurons express NRG1 and corpuscle Schwann cells 

express ERBB (Gonzalez-Martinez et al., 2007; Kopp et al., 1997).  However, it is 

unclear whether NRG1 signaling contributes to Pacinian corpuscle development.  To 

determine if neuronal Nrg1 expression is required for Pacinian corpuscle formation, we 

ablated Nrg1 from rapidly adapting mechanoreceptors by combining a floxed allele of 

Nrg1 with a tamoxifen inducible RetCreERT2 line.  At P3, Pacinian corpuscles and 

innervating axons were present in the RetCreERT2;Nrg1+/- controls.  In RetCreERT2;Nrgf/-

conditional mutants, S100+ Pacinian corpuscles were completely absent.  NFH+ 

innervating axons persisted, suggesting Pacinian corpuscle axons reach their target and 

survive until at least P3 when they lack Nrg1 expression (Figure 12).  Therefore, Nrg1 is 
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required in Pacinian corpuscle innervating neurons for the development of Pacinian 

corpuscles. 

 

To confirm the neural requirement for Nrg1 in Pacinian corpuscle formation, we also 

ablated Nrg1 from mechanosensory neurons with a SplitCre transgenic line.  SplitCre drives 

recombination in RA mechanoreceptors (Rutlin et al., 2014).  At P7 and P21, 

SplitCre;Nrg1f/- conditional mutants have approximately half the number of Pacinian 

corpuscles of SplitCre;Nrg1f/+ controls (Figure 12A-B).  The incomplete phenotype 

observed in SplitCre conditional mutants may be due to incomplete ablation of Nrg1 in 

mechanosensory neurons due to transient or low-level expression of recombinase, or due 

to late ablation of Nrg1 in some neurons after a critical period.  Examination of paw skin 

at P21 revealed no obvious defects in the development of Meissner’s corpuscles, 

suggesting that Meissner’s corpuscles may not depend on neuronal Nrg1 for their 

development (Figure 12C-D). 

 

Nrg1-Ig expression is reduced in Er81 null DRG neurons 

As ER81 is a transcription factor, it is unlikely that it acts directly in the communication 

between axons and nonmyelinating Schwann cells.  Due to the similar Pacinian corpuscle 

phenotypes in Er81 nulls and Nrg1 conditional mutants, we asked whether Er81 may 

regulate the expression of Nrg1.  We performed isoform specific in situ hybridization for 

Nrg1-Ig and Nrg1-CRD transcripts.  We found that the expression of Nrg1-Ig, but not 
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Nrg1-CRD, transcript was reduced in Er81 null L4/L5 DRGs (Figure 14).  Therefore, we 

conclude that Er81 specifically regulates Nrg1-Ig expression.  This finding is in 

agreement with the g-ratio data, which showed no deficits in myelination in Er81 

mutants.  Due to the tight correlation between myelination and Nrg1-CRD expression 

(Michailov et al., 2004), it seems unlikely that Nrg1-CRD expression would be reduced 

in Er81 mutants due to the lack of a myelination deficit.   

 

Bace1 contributes to Pacinian corpuscle development 

The juxtamembrane regions of both Nrg1-CRD and Nrg1-Ig can be cleaved by proteases 

(Fleck et al., 2013; Nave and Salzer, 2006).  These cleavage events may potentiate the 

ability of the EGF domain of NRG1 to interact with ERBB.  The protease β-secretase 1 

(Bace1) cleaves NRG1, and contributes to the promyelinating and pro-muscle spindle 

development roles of Nrg1-CRD and Nrg1-Ig, respectively (Cheret et al., 2013; Hu et al., 

2006; Willem et al., 2006).  We examined the legs of Bace1 nulls and littermate controls 

and found a slight but significant decrease in the number of Pacinian corpuscles per leg 

(Figure 15).  A decrease, rather than a total absence of corpuscles, is in line with partial 

reductions in myelination and muscle spindle formation observed in Bace1 mutants 

(Cheret et al., 2013; Hu et al., 2006; Willem et al., 2006).  This partial phenotype is likely 

due to redundancy in proteases which are capable of processing Nrg1 in vivo or activity 

of uncleaved NRG1. 
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Nrg1 in Schwann cells is not required for Pacinian corpuscle maintenance following 

injury 

Although Nrg1 is not normally expressed at detectable levels in Schwann cells, it has 

recently been reported that myelinating Schwann cells begin to express Nrg1 following 

nerve injury, and that autocrine NRG1 signaling allows for the dedifferentiation and 

survival of Schwann cells after the loss of innervation (Stassart et al., 2013).  This allows 

for the survival of the Schwann cells until re-innervation can occur and the Schwann cell 

can again receive trophic support from the innervating axon.  We wanted to address 

whether a similar mechanism exists in Pacinian corpuscle nonmyelinating Schwann cells.  

We generated Schwann cell specific DhhCre;Nrg1f/f mutants, and performed unilateral 

tibial nerve transection.  We confirmed denervation by a lack of NFH+ innervating fibers, 

and found that there was no decrease in the number of corpuscles per leg in the 

denervated leg relative to the contralateral leg three months after surgery (Figure 16).  

This suggests that the cellular mechanisms for survival following nerve injury differs 

between myelinating and nonmyelinating Schwann cells. 

 

DISCUSSION 

The specification of somatosensory neurons is a complicated, multi-factorial process 

which is incompletely understood.  For many classes of somatosensory neurons, a 

combination of extrinsic signaling via neurotrophic factors integrates with and alters the 

intrinsic transcriptional programs of somatosensory neurons, driving the transcription of 
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genes which produce distinct morphological and physiological properties.  Here, we have 

described such a signaling pathway in the development of Pacinian corpuscles, which 

mediate the detection of high-frequency vibration. 

 

Previous studies have shown that the receptor tyrosine kinase RET and the ETS 

transcription factor ER81 both are essential for the development of Pacinian corpuscles 

(Luo et al., 2009; Sedy et al., 2006).  Here, we have shown that Er81 is required in 

Pacinian corpuscle innervating neurons, and its expression is partly mediated by Ret.  

Furthermore, we found that Nrg1, a major mediator of axon-Schwann cell 

communication, is also required for Pacinian corpuscle formation, and that the expression 

of specific Nrg1 isoforms are partly mediated by Er81.   

 

The findings in these studies raise interesting parallels with proprioceptors, another class 

of somatosensory neurons (Figure 17).  Er81 is required in proprioceptors to establish 

appropriate connections with motor neuron targets in the spinal cord (Arber et al., 2000).  

Similar to the observed Er81 null Pacinian corpuscle phenotype, the initial proprioceptive 

projections to the periphery are normal in Er81 mutants, but the morphology and 

specification of proprioceptive end organs goes awry in the early postnatal period (Arber 

et al., 2000; Kucera et al., 2002).  Future studies with enhanced genetic tools to 

specifically trace the central projections of Pacinian corpuscle innervating neurons may 
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reveal a similar deficit in the central projections of Pacinian corpuscle innervating 

neurons in Er81 mutants. 

 

Another interesting parallel between proprioceptive and Pacinian corpuscle innervating 

neurons is in their reliance on neurotrophic signaling to support expression of Er81.  

Proprioceptors are highly dependent on TrkC/NT3 signaling for their survival and 

development (Klein et al., 1994; Tessarollo et al., 1994).  TrkC/NT3 signaling is 

necessary and sufficient to drive ER81 expression in proprioceptors (Patel et al., 2003).  

Pacinian corpuscle innervating neurons express the neurotrophin receptor RET, and Ret is 

required for the formation of Pacinian corpuscles.  In Ret mutants, we found that the 

expression of Er81 is reduced in Pacinian corpuscles innervating neurons.  Therefore, 

these two distinct classes of neuron utilize distinct signaling pathways to converge on a 

similar cellular output.  Notably, the Er81 null proprioceptive and Pacinian corpuscle 

phenotypes are less severe than the NT3-/-;Bax-/- and Ret-/-;Bax-/- phenotypes (Patel et al., 

2003), suggesting both cell types employ additional mediators other than Er81 

downstream of neurotrophic signaling. 

 

Lastly, both proprioceptors and Pacinian corpuscles have similar reliance on Nrg1 for the 

development of their respective end organs.  In neural specific Nrg1 mutants, early stages 

of muscle spindle induction do not occur (Hippenmeyer et al., 2002).  Through a lack of a 

phenotype in Nrg1-CRD isoform specific mutants and the enriched expression of Nrg1-Ig 
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in proprioceptive neurons, Hippenmeyer, et al., inferred that Nrg1-Ig is specifically 

required for muscle spindle development.  Here, we have shown that Pacinian corpuscles 

do not form when Nrg1 is ablated from Ret-expressing DRG neurons.  Due to the death 

of isoform specific Nrg1 mutants at stages before obvious Pacinian corpuscles develop, 

we are unable to directly examine the roles of distinct isoforms in Pacinian corpuscle 

development.  However, examination of Er81 mutants suggests that Nrg1-Ig, but not 

Nrg1-CRD, is expressed downstream of Er81 in DRG neurons.  Therefore, it is possible 

that Er81 specifically controls the expression of Nrg1-Ig in both proprioceptors and 

Pacinian corpuscle innervating neurons to effect proper end organ development.  In sum, 

the data presented here and in previous studies supports a neurotrophin receptor-ER81-

Nrg1-Ig signaling pathway which drives the development of both Pacinian corpuscles 

and proprioceptors.   
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Mouse strains.  All mice except for surgical animals were raised in a barrier facility in 

Hill Pavilion at the University of Pennsylvania.  Surgical animals were raised in a 

conventional facility in John Morgan Building at the University of Pennsylvania.  All 

procedures were conducted according to animal protocols approved by the Institutional 

Animal Care and Use Committee of the University of Pennsylvania and National 

Institutes of Health guidelines.  Previously described mouse lines include Er81LacZ (Arber 

et al., 2000), TrkA- (Fleming et al., 2015), RetCFP (Uesaka et al., 2008), Er81CreERT2 

(Taniguchi et al., 2011), Tauf(GFP) (Hippenmeyer et al., 2005), NestinCre (Tronche et al., 

1999), Er81f (Patel et al., 2003), RosatdTomato (Madisen et al., 2010), DhhCre (Jaegle et al., 

2003), Bax- (Knudson et al., 1995), RetCreERT2 (Luo et al., 2009), Nrg1f (Zhang et al., 

2011), and Bace1- (Savonenko et al., 2008).  The Nrg1- allele was generated by crossing 

Nrg1f to a germline Cre female.   

 

Tissue preparation, histology, and in situ hybridization.  For immunostaining of 

spinal columns and DRGs, mice were anesthetized with 100mg/kg ketamine, 16mg/kg 

xylazine, and 1mg/kg acerpromazine by IP injection.  Mice were then transcardially 

perfused with PBS, followed by perfusion with 4% PFA in PBS.  Spinal columns were 

then dissected and post-fixed in 4% PFA in PBS for 2-4 hours at 4°C, followed by 

overnight cryoprotection in 30% sucrose in PBS at 4°C.  In mice processed only for leg 

and skin tissue for cryosectioning, mice were sacrificed with CO2 followed by cervical 

dislocation/decapitation.  Paw skin was fixed overnight in 4% PFA in PBS at 4°C, 

followed by cryopreservation.  Legs were fixed 2-4 hours in 4% PFA in PBS at 4°C, and 
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then decalcified overnight (Luo et al., 2009), followed by cryopreservation.  Preserved 

tissue was then embedded in NEG-50, and sectioned at 20µm (spinal columns/DRGs), 

30-40µm (leg/skin tissue for immunostaining), or 10-15µm (leg tissue for H&E staining).  

For spinal columns, care was taken in embedding and sectioning process to ensure 

collection of specific lumbar DRG levels.  Serial leg sections from ankle to knee were 

collected to ensure collection of all Pacinian corpuscles.  Cryosection immunostaining 

was performed as previously reported (Fleming et al., 2015).  Whole mount interosseous 

membranes were dissected from hindlimbs following above perfusion procedure, and 

then postfixed for 2-4 hours as above.  Following fixation, whole mount membranes were 

permeablized 3X10 minutes with PBS with 1% TritonX-100 and 1% Tween-20.  

Antibody incubation was performed overnight at room temperature with rocking in PBS 

plus 5% lamb serum, 1% TritonX-100, and 1% Tween-20.  The following day, sections 

were washed 3X1 hour with PBS plus 1% Tween-20.  Secondary antibody incubation 

was performed overnight at room temperature with rocking in PBS plus 5% lamb serum 

and 1% Tween-20.  Sections were then washed 3X1 hour in PBS plus 1% Tween-20, and 

then cleared in 50% glycerol in PBS for 30minutes, followed by 75% glycerol in PBS for 

30 minutes, and then mounted and imaged in 75% glycerol in PBS.  Antibodies used 

were chicken anti-LacZ (1:500, Aves, BGL-1040), chicken anti-GFP (1:500, Aves, GFP-

1020), chicken anti-NFH (1:500, Aves, NF-H), guinea pig anti-VGLUT1 (1:1000, 

Millipore, AB5905), Rabbit anti-S100 (1:400, Dako, Z031129-2), rabbit anti-ER81 

(Arber et al., 2000) (1:1000, gift from Silvia Arber), and Alexa Fluorescent conjugated 

goat or donkey raised secondary antibodies (1:500, Invitrogen or Jackson 

ImmunoResearch).  H&E staining was performed as previously described (Luo et al., 
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2009).  In situ hybridization was performed as previously described (Fleming et al., 

2015). 

 

Image acquisition.  Fluorescent images were collected on a Leica SP5II confocal 

microscope and a Leica DM5000B microscope.  Bright field images were collected with 

a Leica DM5000B microscope.  Electron micrographs were collected on a Jeol-1010 

transmission electron microscope. 

 

Animal surgery.  Two-four month old mice were anesthetized with the inhalation of 

~3% isoflurane in the induction chamber and then maintained on 1-2% isoflurane through 

a nose cone throughout the procedure.  Before making the surgical incision, a very small 

volume (no more than 2 mg/kg) of bupivacaine (0.25%) will be injected with a 25 gauge 

needle at equidistant places approximately 0.5-1cm apart, in an ellipse around the 

incision site.  Following incision, the overlying muscle will be dissected and the right 

tibial nerve was doubly ligated with 5-O silk threads, and transected between the ligations 

with iridectomy scissors.  The proximal and distal ends will be separated by a gap and 

attached to an adjacent muscle with a suture.  The skin was then sutured with 5-O silk 

threads.  Following surgery, mouse is given subcutaneous (S.C.) injection of ~1ml of 

lactated Ringer’s solution to prevent dehydration and are kept on a heating pad until fully 

recovered from anesthesia.  Meloxicam was given (2mg/kg S.C.) at the time of anesthesia 
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induction and every 12 hours for two days post-surgery.  Mice were then processed for 

collection of leg tissue 2 weeks-3 months following surgery as above. 

 

Tamoxifen treatment.  Timed pregnancies were set up in the evening and female mice 

were checked for vaginal plug the following morning.  The time that vaginal plug was 

observed was considered embryonic day 0.5 (E0.5).  Pregnant dams carrying the 

Er81CreERT2 embryos were treated with 10mg of tamoxifen dissolved in sunflower oil by 

oral gavage at E14.5 and E15.5.  Pregnant dams carrying the RetCreERT2 embryos were 

treated with 5mg of tamoxifen, 5µg ß-estradiol, and 2.5mg progesterone by oral gavage 

at E13.5 and E14.5.   

 

Quantification and statistics.  For histological analysis of DRG neurons, at least 6 

sections per animal were quantified.  Image names were randomized after collection to 

blind experimenter to genotype of images.  Pacinian corpuscle counts were performed by 

manually scanning slides of serial cryosections.  Pacinian corpuscles which appeared at 

similar locations in consecutive sections were not double counted.  Pacinian corpuscle 

size measurements were obtained by imaging every 5th serial section, to avoid double 

counting individual corpuscles which span multiple sections.  The area of individual 

corpuscle cross sections were then measured by manually tracing the S100+ corpuscles in 

ImageJ.  G-ratios were calculated by manually measuring the area of individual fibers 

and their axons in ImageJ, and then calculating the diameter of fibers based on assuming 
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the measured areas corresponded to a circle.  Statistical analysis was performed with 

GraphPad Prism software.    
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Figure 1: Er81 is not required for the development of Meissner’s corpuscles: (A) 
Nuclear LacZ driven from the Er81 locus labels the nuclei of Er81+ cells.  Anti-LacZ 
(green) immunostaining combined with ant-S100 (red) staining reveals Er81 expression 
in the inner core Schwann cells of Pacinian corpuscles in whole-mount staining of the 
interosseous membrane at P7.  (B)  Anti-LacZ and anti-S100 immunostaining of hindpaw 
glabrous skin sections from P21 Er81LacZ/+ mice reveals expression of Er81 in the 
Schwann cells of Meissner’s corpuscle end organs.  (C-D) Anti-S100 and anti-NFH 
staining of glabrous skin sections from P21 Er81LacZ/+ control and Er81LacZ/LacZ null mice 
reveals no obvious deficit in the formation or innervation of Meissner’s corpuscles in 
Er81 nulls relative to controls.  n=3 animals per genotype.  Scale=20μm (A, C,D), 5μm 
(B).   
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Figure 2: ER81 is expressed in Pacinian corpuscle innervating neurons: (A-E) In 
RetCFP/+;TrkA-/- mice, CFP driven from the Ret locus marks Ret expressing cells.  
Additionally, all Ret+ DRG neurons except RA mechanoreceptors do not survive due to 
the lack of TrkA mediated neurotrophic support.  Therefore, all CFP+ DRG neurons in 
this genetic background are RA mechanoreceptors.  Anti-CFP (green) and anti-ER81 
(red) immunostaining of limb-innervating (L4 and L5) and neighboring (L3 and L6) 
DRG sections at P0 reveals a high degree of ER81 expression in limb-innervating RA 
mechanoreceptors relative to non-limb innervating RA mechanoreceptors (5.71±2.43% of 
L3, 30.57±4.19% of L4, 42.30±2.37% of L5, and 12.08±2.98% of L6 RA 
mechanoreceptors express ER81).  (F) Er81ERT2/+;Tauf(GFP)/+ mice were treated with 
tamoxifen at E14.5 and E15.5, permanently labeling a subset of Er81+ cells with GFP, 
and analyzed at P15.  Anti-GFP (green) and anti-ER81 (red) immunostaining of DRG 
sections revealed that a subset of ER81+ neurons express GFP.  (G) Dorsal spinal cord 
immunostaining with anti-VGlut1 (red), which labels presynaptic terminals of 
mechanosensory neurons, reveals that GFP+ neurons innervate mechanosensory specific 
layers III-V of the dorsal spinal cord.  (H) Whole mount anti-S100 (red) and anti-GFP 
staining of interosseous membrane shows Pacinian corpuscles innervated by GFP+ fibers.  
n=3 animals per genotype.  Scale=50μm.  Error bars represent SEM. 
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Figure 3: Er81 is required in neurons for Pacinian corpuscle development:  (A) 
NestinCre crossed to a ROSA-tdTomato (red) reporter allele exhibits recombination in 
innervating fibers of Pacinian corpuscles, but not in the S100+ (green) Schwann cells of 
the Pacinian corpuscle end organ.  (B-C) Anti-ER81 immunostaining of DRG sections 
from P7 NestinCre;Er81f/+ control (B) and NestinCre;Er81f/- conditional mutant (C) shows 
ablation of ER81 expression in neurons in the mutant mice.  (D-E) Anti-S100 staining of 
hindlimb sections from P7 control (D) and conditional mutant (E) mice shows a lack of 
S100+ Pacinian corpuscles surrounding the fibula in conditional mutant mice.  n=3 
animals per genotype.  Scale=20μm (A), 50μm (B-E). 
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Figure 4: Er81 in Schwann cells contributes to, but is not required for, Pacinian 
corpuscle development:  (A) DhhCre crossed to a ROSA-tdTomato (red) reporter allele 
produces reporter activity in S100+ (green) Schwann cells of the Pacinian corpuscle inner 
core, but not in the NFH+ (blue) innervating fiber.  (B-C) Pacinian corpuscles are present 
around the fibula in DhhCre;Er81f/+control (B) and DhhCre;Er81f/- conditional mutant (C) 
mice at P7.  (D) Quantification of serial leg sections revealed a significant decrease in the 
number of Pacinian corpuscles per leg in Schwann cell specific Er81 mutants compared 
to controls (33.33±3.756 PC per leg in DhhCre;Er81f/+controls, 15.00±0.58 PC per leg in 
DhhCre;Er81f/- conditional mutants, p=0.009).  (E) The average size of Pacinian 
corpuscles, measured by cross-sectional area, is significantly reduced in Schwann cell 
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specific Er81 mutants (410.1±65.3μm2 in DhhCre;Er81f/+controls, 187.9±30.9μm2 in 
DhhCre;Er81f/- conditional mutants, p=0.037).  n=3 animals, 6 legs per genotype.  
Scale=20μm.  *=p<0.05, **=p<0.01.   Error bars represent SEM. 
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Figure 5:  Er81 in Schwann cells is not required for maintenance of Pacinian 
corpuscle following denervation:  2-4 month old Er81f/- control and DhhCre;Er81f/-

conditional mutants underwent unilateral tibial nerve transection and recovered for 2 
weeks prior to tissue processing.  (A-B) Denervation was confirmed by the loss of NFH+ 
(green) axons innervating S100+ (red) Pacinian corpuscles in the denervated limb (B), in 
contrast to NFH+ innervation in the non-surgical limb (A).  (C) Quantification of S100+ 
Pacinian corpuscles in serial hindlimb sections in Er81f/- controls (34.33±2.96 corpuscles 
per non-surgical limb, 32.67±3.84 corpuscles per denervated limb, p=0.75) and 
DhhCre;Er81f/-conditional mutants (27.00±5.57 corpuscles per non-surgical limb, 
29.33±3.53 corpuscles per denervated limb, p=0.74) shows that loss of Schwann cell 
Er81 does not cause a deficit in the maintenance of Pacinian corpuscles following 
denervating injury.  n= 3 legs per condition.  n.s.=p≥0.05.  Error bars represent SEM.  
Scale=50μm.   
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Figure 6:  The Ret null Pacinian corpuscle phenotype is independent of cell death:  
(A-B) Hematoxylin and eosin (H&E) stained sections of P0 RetCFP/+;Bax-/- control (A) 
and RetCFP/CFP;Bax-/- double mutant (B) hindlimbs.  Arrow indicates rudimentary 
Pacinian corpuscles, which are present in the RetCFP/+;Bax-/-   control but not 
RetCFP/CFP;Bax-/- double mutant hindlimbs.  (C-D) Anti-CFP staining of P0 RetCFP/+;Bax-/- 
and RetCFP/CFP;Bax-/- hindlimbs, which labels the axons of RA mechanoreceptors.  Arrow 
indicates axons of interosseous nerve, which are absent in double mutant.  T=tibia, 
F=fibula, n=3 animals per genotype.  Scale= 50µm. 
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Figure 7:  The number of Pacinian corpuscles per limb is significantly reduced in 
Ret;Er81 double heterozygotes: The number of S100+ Pacinian corpuscles per limb was 
quantified in serial sections of P14-P21 wild type (38.50±2.36 Pacinian corpuscles per 
limb), RetCFP/+ (31.50±2.23 Pacinian corpuscles per limb), Er81+/- (35.17±2.40 Pacinian 
corpuscles per limb), and RetCFP/+;Er81+/- (22.33±0.71 Pacinian corpuscles per limb) 
hindlimbs.  The number of Pacinian corpuscles in RetCFP/+;Er81+/- double heterozygotes 
is significantly less than in all other genotypes.  n=6 limbs per genotype  **=p<0.01, 
***=p<0.001.   Error bars represent SEM. 
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Figure 8:  Ret is required for the maintenance, but not initiation, of Er81 expression 
in RA mechanoreceptors: (A-C) Double fluorescent in situ hybridization against CFP 
(red) driven from the Ret locus and Er81 (green) in L4/L5 DRGs of RetCFP/+ and 
RetCFP/CFP embryos at E13.5.  The percentage of CFP+ neurons expressing Er81 is 
similar between controls and mutants (40.55±3.74% in RetCFP/+ DRGs, 44.19±2.65% in 
RetCFP/CFP DRGs, p=0.47, n=3)  . (D-F)  CFP/Er81 double fluorescent in situ 
hybridization of P0 Ret mutants and controls in an apoptosis deficient background shows 
a significant decrease in the percentage of RA mechanoreceptors which express Er81 in 
Ret mutants (58.69±0.26% in RetCFP/+;Bax-/- DRGs, 38.24±3.40% in RetCFP/CFP; Bax-/-  
DRGs, p=0.004, n=3). (G) The number of Ret+;TrkA-;NFH+ rapidly adapting 
mechanoreceptors per L4/L5 DRG section was similar between Er81 mutants and 
controls in an apoptosis deficient background at P3-P5, suggesting Er81 does not mediate 
the expression of Ret in RA mechanoreceptors (14.12±0.82 RA mechanoreceptors per 
section in Er81+/-;Bax-/- controls, 13.06±1.06 RA mechanoreceptors per section in  
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Er81-/-;Bax-/- double mutants, p=0.47, n=3).  n=3 animals per condition, ≥8 sections per 
animal.  **=p<0.01, n.s.=p≥0.05.  Error bars represent SEM.  Scale=50μm.  
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Figure 9: The Er81 Pacinian corpuscle phenotype is independent of cell death:  (A-
B)Anti-S100 (red) and anti-NFH (green) staining of P3 Er81+/-;Bax-/- control(A) and 
Er81-/-;Bax-‘- double mutant(B) hindlimb sections.  Arrows indicate Pacinian corpuscles.   
Note the lower expression level of S100 in double mutant Pacinian corpuscles relative to 
controls.  (C) Quantification of S100+ Pacinian corpuscles in serial leg sections reveals a 
significant decrease in the number of corpuscles formed in double mutants relative to 
controls (42.33±1.20 PC per leg in Er81+/-;Bax-/- controls, 19.33±4.18 PC per leg in 
Er81+/-;Bax-/- double mutants, p=0.006).  (D) Quantification of average cross-sectional 
area of Pacinian corpuscles reveals a significant decrease in the size of the remaining PCs 
in double mutants (427.3±14.7μm2 in Er81+/-;Bax-/- controls, 185.3±6.7μm2 in Er81+/-

;Bax-/- double mutants, p=0.0001).  n=3 animals, 6 legs per genotype. ***=p<0.001.  
Error bars represent SEM.  Scale= 20μm. 
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Figure 10:  The primary deficit in Pacinian corpuscle formation in Er81 mutants is 
deficient axon/Schwann cell communication: (A-B) Anti-NFH staining of P2 
interosseous nerve shows intact innervation of fibula/interosseous membrane in both 
Er81+/- control (A) and Er81-/- mutant (B) mice.  (C-D) H&E staining of P2 hindlimbs 
shows early Pacinian corpuscles forming in the Er81+/- control (C). Schwann cells form 
much smaller, rudimentary Pacinian corpuscles in the Er81-/- mutant (D).  (E-F)  Anti-
S100 (red) and anti-NFH (green) staining shows that mature Schwann cells are present in 
corpuscles by P2 in the control (E) but are absent in the mutant (F).  n=3 animals per 
genotype.  Scale= 20μm. 
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Figure 11:  Interactions with myelinating Schwann cells are intact in Er81 mutant 
sensory neurons:  (A-B) Transmission electron micrographs of L5 dorsal roots from P21 
Er81+/- control and Er81-/- mutants reveal no defect in the morphology of the myelin 
sheath surrounding large-diameter sensory neurons in mutant mice.  (C) The g-ratios of 
myelinated axonal fibers are similar between Er81 mutants and controls (0.720±0.007 in 
Er81+/- controls, 0.7132±0.006 in Er81-/- mutants, p=0.50).  n=3 animals per genotype, 
>100 fibers per animal.  Error bars represent SEM.   Scale=2μm.   

 

 

 

 

 



157 
 

 

Figure 12: Nrg1 is required in neurons for Pacinian corpuscle formation: 
RetCreERT2/+;Nrg1f/+ controls and RetCreERT2/+;Nrg1f/- mutants were treated with tamoxifen 
at E13.5 and E14.5 to drive recombination in Ret+ cells, including Pacinian corpuscle 
innervating neurons.  (A-B) Anti-S100 (red) and anti-NFH (green) staining of P5 
hindlimb sections showed a lack of S100+ Pacinian corpuscles in the Nrg1 conditional 
mutant mice.  (C-D) Staining of hindlimb sections proximal to the appearance of 
Pacinian corpuscles around the fibula showed axons of the interosseous nerve, which 
innervate Pacinian corpuscles, in both mutant and control mice.  n=2 animals, 4 legs per 
genotype.  Scale=20μm. 
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Figure 13: Neuronal Nrg1 is not required for Meissner’s corpuscle development: (A-
B) SplitCre , which drives recombination in rapidly adapting mechanoreceptors, produced 
a partial, but significant, decrease in the number of Pacinian corpuscles per leg when 
combined with a conditional Nrg1 allele at both P7 and P21 (SplitCre;Nrg1f/+ controls 
have 28.13±1.98 corpuscles per leg at P7, SplitCre;Nrg1f/- mutants have 14.50±1.92 
corpuscles per leg at P7, p=0.002; SplitCre;Nrg1f/+ controls have 30.83±1.01 corpuscles 
per leg at P21, SplitCre;Nrg1f/- mutants have 18.67±3.18 corpuscles per leg at P21, 
p=0.02).  (C-D) Glabrous skin sections from P21 SplitCre;Nrg1f/+ controls (C) and 
SplitCre;Nrg1f/- mutants (D) showed no obvious change in the appearance or number of 
Meissner’s corpuscles in mutants relative to controls.  n=3 animals, 6 legs/glabrous skin 
samples per genotype.  *=p<0.05, **=p<0.01.  Error bars represent SEM.  Scale=20μm. 
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Figure 14: Nrg1-Ig, but not Nrg1-CRD, expression is reduced in Er81 null DRG 
neurons: (A-C) Isoform specific in situ hybridization against Nrg1-Ig showed a 
significant decrease in the number of cells expressing Nrg1-Ig transcript in L4/L5 DRGs 
from P3-P5 Er81 mutants in an apoptosis deficient background relative to controls 
(6.36±0.65 Nrg1-Ig+ cells per 100,000μm2 in Er81+/-;Bax-/- controls, 4.09±0.48 Nrg1-Ig+ 
cells per 100,000μm2 in Er81+/-;Bax-/- controls, p=0.04).  (D-F) Isoform specific in situ 
hybridization against Nrg1-CRD showed no difference in the number of DRG neurons 
expressing a high level of Nrg1-CRD transcript between controls and mutants (9.94±1.76 
Nrg1-CRD+ cells per 100,000μm2 in Er81+/-;Bax-/- controls, 10.47±0.77 Nrg1-CRD+ cells 
per 100,000μm2 in Er81+/-;Bax-/- controls, p=0.79).  n=3 animals per genotype, ≥8 
sections per animal.  *=p<0.05, n.s.=p≥0.05.  Error bars represent SEM.  Scale=100μm.   
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Figure 15:  Bace1 contributes to the development of Pacinian corpuscles:  3-4 week 
old Bace1 null mice have significantly fewer S100+ Pacinian corpuscles per leg 
quantified from serial sections of hindlimbs relative to wild-type littermate controls 
(Bace1+/+ mice have 38±1.31 Pacinian corpuscles per leg, Bace1-/- mice have 29±1.10 
Pacinian corpuscles per leg, p=0.006).  n=3 animals, 6 legs per genotype. Error bars 
represent SEM. 
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Figure 16: Schwann cell derived Nrg1 is not required for maintenance of Pacinian 
corpuscle following denervation:  Two-four month old DhhCre;Nrg1f/+ control and 
DhhCre;Nrg1f/f conditional mutants underwent unilateral tibial nerve transection and 
recovered for three months prior to tissue processing.   Quantification of S100+ Pacinian 
corpuscles in serial hindlimb sections in DhhCre;Nrg1f/f  controls (38.33±1.86 corpuscles 
per non-surgical limb, 40.33±2.73 corpuscles per denervated limb, p=0.58) and 
DhhCre;Nrg1f/f conditional mutants (36.33±0.88 corpuscles per non-surgical limb, 
38.67±0.67 corpuscles per denervated limb, p=0.10) shows that loss of Schwann cell 
Nrg1 does not cause a deficit in the maintenance of Pacinian corpuscles following 
denervating injury. n=3 legs per condition.  n.s.=p≥0.05.  Error bars represent SEM. 
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Figure 17:  The roles of neurotrophic signaling, ER81, and Neuregulin1 in muscle 
spindle and Pacinian corpuscle development: In muscle spindle innervating DRG 
neurons, the expression of ER81 lies downstream of TrkC/NT3 neurotrophic signaling 
(Patel, et al., 2003).  In Pacinian corpuscle innervating neurons, the expression of ER81 
lies downstream of RET/GFRα2/NRTN signaling.  In both cell types, ER81 regulates the 
expression of Nrg1-Ig.  In proprioceptors, proprioceptive neuron derived Nrg1 (likely 
Nrg1-Ig) contributes to the development of muscle spindle end organs (Hippenmeyer, et 
al., 2002).  In Pacinian corpuscle innervating neurons, Nrg1 (likely Nrg1-Ig) contributes 
to the development of Pacinian corpuscle end organs.  In both cell types, Nrg1-CRD is 
critical for interactions with myelinating Schwann cells (Michailov, et al., 2004), but the 
upstream transcriptional regulators remain unknown. 
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CHAPTER 4 

 

 

The majority of dorsal spinal cord gastrin releasing peptide is synthesized locally 

whereas neuromedin B is highly expressed in pain- and itch-sensing somatosensory 

neurons 

This chapter is adapted from: 

Fleming, M.S., Ramos, D., Han, S.B., Zhao, J., Son, Y.J., and Luo, W. (2012). The 

majority of dorsal spinal cord gastrin releasing peptide is synthesized locally whereas 

neuromedin B is highly expressed in pain- and itch-sensing somatosensory neurons. Mol 

Pain 8, 52. 
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ABSTRACT 

Itch is one of the major somatosensory modalities.  Some recent findings have proposed 

that gastrin releasing peptide (Grp) is expressed in a subset of dorsal root ganglion (DRG) 

neurons and functions as a selective neurotransmitter for transferring itch information to 

spinal cord interneurons.  However, expression data from public databases and earlier 

literatures indicate that Grp mRNA is only detected in dorsal spinal cord (dSC) whereas 

its family member neuromedin B (Nmb) is highly expressed in DRG neurons.   These 

contradictory results argue that a thorough characterization of the expression of Grp and 

Nmb is warranted.  We found that Grp mRNA is highly expressed in dSC but is barely 

detectable in DRGs of juvenile and adult mice.  Anti-bombesin serum specifically 

recognizes Grp but not Nmb.  Grp is present in a small number of small-diameter DRG 

neurons and in abundance in layers I and II of the spinal cord.  The reduction of dSC Grp 

after dorsal root rhizotomy is significantly different from those of DRG derived markers 

but similar to that of a spinal cord neuronal marker.  Double fluorescent in situ of Nmb 

and other molecular markers indicate that Nmb is highly and selectively expressed in 

nociceptive and itch-sensitive DRG neurons.  Therefore, the majority of dSC Grp is 

synthesized locally in dorsal spinal cord neurons.  On the other hand, Nmb is highly 

expressed in pain- and itch-sensing DRG neurons.  Our findings provide direct anatomic 

evidence that Grp could function locally in the dorsal spinal cord in addition to its roles in 

DRG neurons and that Nmb has potential roles in nociceptive and itch-sensitive neurons.   

These results will improve our understanding about roles of Grp and Nmb in mediating 

itch sensation.   
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INTRODUCTION 

Itch is one of the major somatosensory modalities.  Pruritogenic stimuli are detected by 

somatosensory neurons in the dorsal root ganglia (DRG) and trigeminal ganglia, which 

transmit itch information to the central nervous system (CNS) by synapsing with dorsal 

spinal cord (dSC) or medulla interneurons (Ikoma et al., 2011).  At present, neuronal 

mechanisms mediating itch sensation are under intensive investigation in order to identify 

novel targets for itch therapeutics.  Some recent studies have proposed that Grp 

selectively mediates the transmission of itch information from the DRG to the dSC (Sun 

and Chen, 2007; Sun et al., 2009).   

 

Grp belongs to the mammalian bombesin-like peptide family, which contains two known 

members: Grp and Nmb.  Grp and Nmb share 80% and 70% identity with bombesin, 

respectively (Matusiak et al., 2005), and selectively bind with high affinity to their 

respective G-protein coupled receptors, gastrin releasing peptide receptor (Grpr) and 

neuromedin B receptor (Nmbr) (Jensen et al., 2008).  Grp, Nmb and their receptors are 

broadly expressed in mammals and their functions have been implied in metabolic 

regulation, stress response, and cancer pathogenesis (Majumdar and Weber, 2011; 

Moody and Merali, 2004; Patel et al., 2006; Wada et al., 1990; Wada et al., 1992).  

Interestingly, both Grp and Nmb have also been found to induce itching behaviors (Su 

and Ko, 2011; Sun and Chen, 2007; Sun et al., 2009). 
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The hypothesis that Grp functions as a selective neurotransmitter for itch sensation is 

supported by the complementary expression pattern of Grp and Grpr in adult mice, as 

Grp is detected in a subset of small diameter DRG neurons and their nerve terminals 

innervating the dSC, where Grpr is expressed.  In addition, co-injection of a Grpr 

antagonist with Grp negated the pruritogenic effect of Grp.  Furthermore, Grpr null mice 

or mice with ablated bombesin-binding dSC neurons exhibited a specific reduced 

response to pruritogenic compounds (Sun and Chen, 2007; Sun et al., 2009). 

 

Despite strong evidence in support of the function of Grpr in mediating itch sensation, 

some concerns exist about the expression pattern of Grp in DRG and dSC neurons.   First, 

in situ hybridization data from the Allen Spinal Cord Atlas shows that Grp is highly 

expressed in postnatal day 4 (P4) mouse dSC  but it is barely detected in DRG neurons 

(Allen Spinal Cord Atlas, 2016).  In addition, the antibody used by previous studies to 

detect Grp was a rabbit polyclonal antibody generated against the bombesin peptide 

(Lagerstrom et al., 2010; Liu et al., 2010; Ross et al., 2010; Sun and Chen, 2007; Sun et 

al., 2009).  Given the very high similarity between mouse Grp and Nmb peptide 

sequences, it is conceivable that this antibody may recognize both peptides.  Indeed, Nmb 

is highly expressed in DRG neurons (Allen Spinal Cord Atlas, 2016).  Lastly, recent 

physiological, pharmacological, and genetic studies have demonstrated that glutamate 

functions as a neurotransmitter of itch-sensing neurons to activate dSC neurons, including 

Grp-responsive dSC neurons (Koga et al., 2011; Lagerstrom et al., 2010; Liu et al., 2010; 
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Ross et al., 2010).  Thus, it is necessary to thoroughly re-examine the expression of Grp 

and Nmb in DRG and dSC to resolve some current controversies.   

 

In this study, we used a combination of approaches, including in situ hybridization, 

reverse transcriptase PCR (RT-PCR), real time PCR, immunohistochemistry, and dorsal 

root rhizotomy to investigate the expression of Grp and Nmb in DRG and dSC neurons.  

We found that Nmb is highly expressed in DRG neurons and the majority of dSC Grp is 

synthesized locally in spinal cord neurons.  In addition, we found that Nmb is specifically 

expressed in a subpopulation of nociceptive and itch sensitive DRG neurons.  Our results 

suggest that Grp has additional local function in the dSC and Nmb may have potential 

functions in itch- and pain-sensing DRG neurons. 

 

RESULTS 

Expression of Grp mRNA in juvenile and adult mouse  

As mentioned above, Grp mRNA is found to be highly expressed in P4 mouse dSC but it 

is barely detectable in DRG neurons using in situ hybridization.  On the other hand, Grp 

has been shown to be specifically expressed in a small population of adult itch-sensing 

mouse DRG neurons using immunohistochemistry, and dSC Grp is suggested to be 

transported from DRG neurons (Sun and Chen, 2007).  At least two possibilities can 

explain these inconsistent results: one is that they reflect the normal dynamic expression 
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pattern of Grp from early postnatal days to adulthood, and the other is that Grp is 

expressed at a low level in DRG neurons and these results reflect the sensitivity or 

detection threshold of different techniques.    

 

To address these two different possibilities, we first characterized the expression pattern 

of Grp mRNA in juvenile and adult mice using in situ hybridization, RT-PCR, and real 

time PCR.  In addition, we investigated the expression pattern of Grpr, the receptor for 

Grp, and the other mammalian bombesin-related peptide, Nmb, and its receptor, Nmbr.   

We performed in situ hybridization for Grp, Grpr, Nmb, and Nmbr on juvenile (P14-P21) 

wild-type DRG and dSC tissue (n=3 mice).  In agreement with the Allen Spinal Cord 

Atlas P4 expression data, we found that Grp and Grpr mRNA could be detected in 

superficial layers of juvenile mouse dSC, but not in DRG neurons (Figure 1A-1D).  In 

contrast, Nmb is highly expressed in ~50% of DRG neurons, but not in dSC (Figure 1E-

1F).   We could not detect the expression of Nmbr in either DRG or dSC at this age, even 

with very high concentration of antisense probe (Figure 1G-1H).  This result is different 

from the Allen Spinal Cord Atlas P4 data, which shows some expression of Nmbr in 

superficial layers of the dSC.  This difference could be due to the dynamic expression of 

Nmbr as mice mature. 

 

To examine the expression pattern of these transcripts by a more sensitive approach, we 

performed RT-PCR on RNA acutely isolated from either DRGs or dSC of adult wild-type 
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mice (n=4 mice).  In agreement with our in situ hybridization data from juvenile mice, we 

found that Grp and Grpr could be readily amplified from adult dSC cDNA whereas Nmb 

was robustly amplified from adult DRG cDNA (Figure 1I).   Notably, a faint Grp band 

was detected in DRG samples in four out of seven trials.  This band was consistently 

much fainter than the Grp product amplified from dSC.  As an amplification control, a 

ubiquitously expressed gene, Gapdh, was detected at similar levels in DRG and dSC.  

The fact that Grp cDNA cannot be consistently amplified from freshly isolated adult 

DRG transcripts indicates that Grp is present in DRG neurons at a very low level.  This 

notion is also supported by evidence that Grp could not be amplified from a 

commercially prepared adult DRG cDNA library using PCR, although Nmb was readily 

amplified from the same library (data not shown).  To further quantify the relative 

abundance of Grp mRNA in dSC and DRG, we performed real time PCR with dSC and 

DRG cDNA.  We found that Grp transcript was present at a much higher concentration in 

dSC relative to DRG (range=63-1155 fold difference, n=3 mice, 4 trials per sample) 

(Figure 1J).  In addition, we noted that faint Nmb and Nmbr bands were amplified from 

dSC cDNA (Figure 1I).  These slightly different results obtained using in situ 

hybridization and RT-PCR can be explained by the fact that in situ hybridization is 

usually less sensitive compared to reverse transcriptase-and real time PCR.  Taken 

together, our results reveal that Grp and Grpr mRNA are highly expressed in dSC in both 

juvenile and adult mice whereas Nmb mRNA is highly expressed in DRG neurons.  

Additionally, Grp mRNA is expressed in juvenile and adult mouse DRG neurons at a 

very low level, which is near the detection threshold of RT-PCR but below that of in-situ 

hybridization.  
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Characterization of the specificity of anti-bombesin antiserum  

The bombesin family of peptides contains two known family members in mouse: Grp and 

Nmb.  These peptides share 80% and 70% identity, respectively, with the originally 

characterized member of this family, Bombina bombina bombesin (Figure 2A).  Previous 

studies (Lagerstrom et al., 2010; Liu et al., 2010; Ross et al., 2010; Sun and Chen, 2007; 

Sun et al., 2009) have used a rabbit polyclonal anti-bombesin serum (Immunostar, 20073) 

to detect the presence of Grp.  However, it has not been formally determined whether this 

anti-bombesin serum selectively recognizes Grp.  It is conceivable that this polyclonal 

antibody detects both Grp and Nmb, given the high similarity among bombesin, Grp, and 

Nmb.  To address this issue, we first characterized the specificity of this polyclonal 

antibody in vitro.  In HEK293T cells, we expressed EGFP or EGFP with C terminal 

fusion of bombesin, Grp, or Nmb.   We found that cells expressing EGFP-bombesin and 

EGFP-Grp were stained by the anti-bombesin antiserum, whereas cells expressing EGFP-

Nmb or EGFP alone were not recognized by the antiserum (Figure 2B-2M).  These 

findings indicate that the polyclonal antibody used in this and previous studies selectively 

recognizes Grp but not Nmb, which is quite surprising given the high level of identity 

between these peptides and the immunizing antigen. 

 

Characterizing the expression of Grp in DRG neurons and dSC using 

immunostaining 
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After establishing that the anti-bombesin antiserum selectively recognizes Grp in vitro, 

we next examined the staining pattern of the antiserum in vivo.  In wild-type P14-P21 

mice, we observed that a small number of small-diameter DRG neurons are 

immunopositive for the anti-bombesin serum (1.79±0.04% of lumbar DRG neurons, n=3 

mice) (Figure 3A-3J).  Consistent with previously published results, these Grp+ neurons 

are a subpopulation of peptidergic nociceptors, as they are also Cgrp+ (marker of 

peptidergic nociceptive DRG neurons), but Pap-, IB4- (markers of nonpeptidergic 

nociceptors), and VGlut1- (marker for mechanoreceptors and proprioceptors).  This small 

number of immunopositive neurons is consistent with our finding that Grp mRNA is 

expressed at a very low level in juvenile mouse DRG neurons.   

 

In contrast to DRG neurons, we readily detected the abundant presence of Grp in 

superficial layers of the dorsal spinal cord.   Notably, the immunostaining signal of Grp 

in dSC is much stronger than that of DRG neurons.   We found that Grp is mainly present 

in layer I and the outer layer of layer II (IIo) of the spinal cord, as the intense Grp signal 

overlaps with layers innervated by Cgrp, a marker of peptidergic nociceptive DRG 

afferents terminating in laminae I-IIo of the dorsal horn (Figure 3K-3L) .  Some less 

intense Grp signal also overlaps with markers of nonpeptidergic nociceptors, such as Pap 

and IB4, which terminate in lamina IIi of the dorsal horn, and Pkcγ, which is expressed in 

spinal cord neurons located in lamina IIi and IIIo  (Figures 3O-3R and 4A-4C) (Molliver 

et al., 1997; Polgar et al., 1999; Taylor-Blake and Zylka, 2010).  However, Grp 

immunostaining signal does not overlap with VGlut1+ puncta, which are formed by Aβ 
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mechanoreceptors innervating layers III-V (Figure 3S-3T) (Hughes et al., 2004).   High 

magnification images of dSC Grp staining show that discrete Grp+ puncta are present 

around NeuN+ dSC nuclei, indicating that Grp is expressed in dSC neurons (Figure 3U).   

Taken together, our results reveal that Grp is present at a high level in spinal cord 

superficial layer neurons. 

 

To further confirm the specificity of immunoreactivity in dSC and DRG, we preabsorbed 

anti-bombesin antiserum with either bombesin or Grp peptide, and used the supernatant 

to stain wild type mouse DRGs and spinal cord (n= 3).  We found a loss of Grp 

immunostaining in both dSC and DRG after preabsorbing the antiserum, suggesting that 

the immunoreactivity we detected in these regions was not due to nonspecific antibodies 

in the antiserum (Figure 3C-3D and 3M-3N).  Unfortunately, the Grp null mouse, which 

would definitively address the in vivo specificity of this anti-bombesin serum, is not 

currently available to us. 

 

Source of dSC Grp 

Even though Grp is present at a high level in layers I and II of the spinal cord, its source 

is still unclear.  It could be synthesized locally in dorsal spinal cord neurons, as suggested 

by the Grp mRNA expression pattern observed in the Allen Spinal Cord Atlas and our 

own results, or it could be synthesized in and transported from DRG neurons, as 

previously proposed (Sun and Chen, 2007).   Interestingly, Grp is barely detected in 
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dorsal root axons with this anti-bombesin serum (Figure 3V-3X).  In contrast, we found 

that Cgrp, Pap, and IB4, which are known markers carried by nociceptive afferents, 

intensely stain dorsal root axons (Figure 3U-3W and data not shown).  These findings 

suggest that the amount of GRP transported from DRG neurons to dSC, if any, is below 

the detection threshold of our method.  So far, our data support that most dSC Grp is 

synthesized in dSC neurons because: 1) abundant Grp transcript is detected in dSC using 

in-situ hybridization and RT-PCR; 2) consistent with the mRNA distribution, a high level 

of Grp is detected in dSC by immunostaining; 3) a very low level of Grp transcript is 

detected in DRG neurons; 4) a small number of Grp+ neurons are present in DRGs; and 

5) Grp is barely detected in dorsal root axons.   

 

To further determine the source of dSC Grp, we performed immunostaining on spinal 

cord following a unilateral dorsal rhizotomy of L4/L5/L6 dorsal roots of adult mice 

(n=3).  If the primary source of dSC Grp is due to its synthesis in and release from 

somatosensory afferents, we predict that immunostaining signal for dSC Grp would be 

greatly decreased following the dorsal rhizotomy.  However, if the primary source of dSC 

Grp is spinal cord neurons, the change in immunostaining signal for dSC Grp following 

dorsal root rhizotomy should not be as dramatic.  We sacrificed the animals two weeks 

after rhizotomy to ensure that robust degeneration of dorsal root axons had occurred.  

Spinal cord sections were immunostained with anti-bombesin serum and other antibodies 

marking DRG sensory axons or spinal cord neurons.   The change in 

immunofluorescence intensity on the transected side was normalized to that of the control 
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side (See methods for details).  We found that following L4/L5/L6 dorsal root 

transection, the intensity of bombesin immunoreactivity is decreased (58.52±8.00% 

fluorescent intensity, transected/control).   Importantly, this decrease is not significantly 

different from the change of immunoreactivity of Pkcγ (65.91±12.78% fluorescent 

intensity transected/control), a protein known to be highly expressed in dorsal spinal cord 

neurons (P=0.44).  The modest reduction of dSC Pkcγ and Grp could be due to the loss of 

DRG neuron derived Pkcγ and Grp and the denervation response of dSC neurons (Tessler 

et al., 1984; Wang et al., 1991).  On the other hand, the immunofluorescence intensity of 

dSC Pap (24.95±5.58% fluorescent intensity transected/control) and Cgrp (18.25±7.84% 

fluorescent intensity transected/control), markers primarily transported from 

nonpeptidergic and peptidergic nociceptors, were dramatically reduced (Figure 4A-4S).   

Remarkably, the signal reduction of Grp and Pkcγ are significantly different from that of 

Cgrp and Pap (P < 0.01).  Taking all findings together, we conclude that the majority of 

dSC Grp is synthesized locally.   

 

Nmb is mainly expressed in small-diameter DRG neurons 

Though Grp is only expressed in a few DRG neurons, the other mammalian bombesin-

like peptide, Nmb, is highly expressed (Figure 1F).  This specific expression pattern 

suggests that Nmb may play a role in somatosensation.  Indeed, administration of Nmb 

has been shown to induce scratching behavior, which can be blocked by administration of 

an Nmbr antagonist (Su and Ko, 2011).  To further determine a role for Nmb in the itch 



175 
 

pathway or other somatosensory modalities, it is important to characterize which 

subpopulation of DRG neurons expresses Nmb.  Since there is no commercially available 

antibody that can reliably and specifically detect Nmb (assay with EGFP-Nmb fusion 

protein in HEK293 cells, data not shown), we performed double fluorescent in situ 

hybridization (FISH) and FISH combined with immunohistochemistry to establish the 

molecular profile of Nmb+ DRG neurons in P21 mice. 

 

We first examined whether Nmb is expressed in large- or small-diameter DRG neurons.  

DRG neurons with different soma sizes have different developmental origins, molecular 

profiles, physiological properties, and functional modalities.  Small-diameter, 

unmyelinated or thinly-myelinated DRG neurons, which express the intermediate 

filament peripherin, are mostly nociceptors.  On the other hand, medium- to large-

diameter, highly-myelinated DRG neurons, which express the intermediate filament 

neurofilament heavy chain (Nfh), are mostly mechanoreceptors and proprioceptors.  To 

characterize the size distribution of Nmb+ neurons, we performed FISH for Nmb and 

combined it with immunostaining for either peripherin or Nfh.  We found that most 

Nmb+ neurons are small-diameter DRG neurons as they are also peripherin+ 

(76.89±6.62% Nmb+ neurons express peripherin; 51.53±4.59% peripherin+ neurons 

express Nmb; Figure 5A-5D).  In addition, about a quarter of Nmb+ neurons are large-

diameter and Nfh+ (28.53±3.23% Nmb+ neurons express Nfh; 28.73±7.42% Nfh+ neurons 

express Nmb; Figure 5E-5H).  Furthermore, we measured the size of Nmb+ DRG neurons 

and plotted their size distribution with regard to those of peripherin+ and Nfh+ neurons.  
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Our data illustrates a skewed distribution in the size of Nmb+ neurons, with a majority of 

neurons showing a size distribution similar to peripherin+ neurons and a small proportion 

having larger areas comparable to Nfh+ neurons (Figure 5I).  These results suggest that 

Nmb is expressed in both small and large diameter DRG neurons, but most Nmb+ neurons 

have small-diameter somata. 

 

Nmb is expressed in both peptidergic and non-peptidergic nociceptors 

As mentioned above, most small diameter DRG neurons are nociceptors.  To address 

whether Nmb is expressed in pain- and itch-sensing DRG neurons, we first examined 

Nmb expression in two broadly defined classes of pain-sensitive neurons: peptidergic and 

nonpeptidergic nociceptors.  During embryonic development, all nociceptors express 

TrkA, the neurotrophic receptor tyrosine kinase for nerve growth factor (NGF).  In the 

first two postnatal weeks, however, DRG neurons that differentiate into nonpeptidergic 

nociceptors extinguish their expression of TrkA and express another receptor tyrosine 

kinase, Ret, while peptidergic nociceptors retain their expression of TrkA into adulthood 

(Luo et al., 2007; Molliver et al., 1997).  We performed double FISH for Nmb and Ret or 

TrkA to determine which classes of nociceptors express Nmb.  Almost all TrkA+ neurons 

(41.99±2.01% of Nmb+ neurons express TrkA; 94.59±1.14% of TrkA+ neurons express 

Nmb) and majority of Ret+ neurons (72.14±2.54% of Nmb+ neurons express Ret; 

75.04±1.58% of Ret+ neurons express Nmb) express Nmb (Figure 6A-H).  The Ret+ DRG 

neurons are comprised of both small-diameter nonpeptidergic nociceptors and larger-
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diameter rapidly adapting (RA) mechanoreceptors (Luo et al., 2009).  Interestingly, all 

large-diameter Ret+ RA mechanoreceptors are Nmb- (arrow, Figure 6B-6C), and the 

proportion of Ret+ neurons that co-express Nmb is very similar to the proportion of Ret+ 

DRG neurons that are nociceptors (Bennett et al., 1998; Molliver et al., 1997).  

Additionally, we found that almost all Nmb+ neurons express either Ret or TrkA 

(98.78±0.12% of total NMB+ neurons) when we combine double FISH for Nmb and Ret 

with immunohistochemistry for TrkA (Figure 6I-6M).   We also note that Nmb+/TrkA+ 

neurons are larger than Nmb+/Ret+ neurons.  In short, these results indicate that Nmb is 

specifically expressed in both peptidergic and non-peptidergic nociceptors.  

 

To further confirm the expression of Nmb in nonpeptidergic nociceptors we combined 

Nmb FISH with immunostaining for Pap or binding of isolectin-B4, markers that 

exclusively label nonpeptidergic nociceptors.  Nmb was expressed in nearly all DRG 

neurons that bind IB4 (49.20±2.98% of Nmb+ neurons bind IB4; 98.47±0.25% of IB4-

binding neurons express Nmb) or that are Pap+ (72.61±2.79% of Nmb+ neurons express 

Pap; 97.28±0.23% of Pap+ neurons express Nmb) (Figure 6N-6U).  Additionally, we 

examined the expression of Nmb in neurons that express the G-protein coupled receptor 

MrgprD, which comprise a large subset of nonpeptidergic nociceptors which mediate the 

sensation of mechanical pain (Cavanaugh et al., 2009).  Nmb was expressed in all DRG 

neurons which express MrgprD (49.89±1.24% of Nmb+ neurons express MrgprD; 

100±0% of MrgprD+ neurons express Nmb) (Figure 6V-6Y).  Taken together, our data 

indicate that Nmb is expressed in nearly all peptidergic and nonpeptidergic nociceptors. 
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Nmb is expressed in itch-sensing neurons 

Itch-sensing neurons have been suggested to be a subpopulation of nociceptors.  We next 

asked whether Nmb is present in potential itch-sensing DRG neurons.  The transient 

receptor potential channel TrpV1 was originally characterized as the channel mediating 

the burning sensation associated with capsaicin administration (Caterina et al., 1997).  

Additionally, TrpV1+ neurons have been shown to play important roles in the detection of 

noxious heat and mediation of itch sensation in response to histaminergic stimuli 

(Imamachi et al., 2009; Shim et al., 2007).  Double FISH revealed that Nmb is expressed 

in approximately half of TrpV1+ DRG neurons (20.94±0.56% of Nmb+ neurons express 

TrpV1; 53.72±3.66% of TrpV1+ neurons express Nmb) (Figure 7A-D).   

 

To further investigate the expression of Nmb in itch-sensing DRG neurons, we performed 

double FISH for Nmb and MrgprA3.  MrgprA3 is a G-protein coupled receptor which is 

expressed in a subset of small diameter DRG neurons and is activated by chloroquine, a 

non-histaminergic pruritogen (Liu et al., 2009).  Remarkably, we found that almost all 

MrgprA3+ DRG neurons co-express Nmb, even though MrgprA3 is expressed in only a 

small proportion of Nmb+ neurons(15.10±0.93% Nmb+ neurons express MrgprA3; 

99.19±0.81% MrgprA3+ neurons express Nmb) (Figure 7E-H).  In summary, our results 

suggest that Nmb is expressed in populations of DRG neurons that mediate itch sensation. 
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Nmb is not expressed in cold-sensing and low-threshold mechanosensory neurons 

Subsets of small-diameter DRG neurons have been shown to respond optimally to 

various stimuli, including pruritogens, noxious thermal, mechanical, or chemical stimuli, 

innocuous temperature, or light touch.  To test if the expression of Nmb is specific to 

pain- and itch-sensing neurons, we also performed double FISH for Nmb and molecular 

markers that identify temperature- or light touch-sensing neurons.   One such marker is 

the transient receptor potential channel, TrpM8.  TrpM8 has been shown to be important 

for the detection of environmental, but not noxious, cold (temperatures ~15°-26°C), and 

to be activated by chemicals which induce a cooling sensation, such as methanol and 

icilin (Dhaka et al., 2007).   Interestingly, expression of Nmb is almost completely non-

overlapping with that of TrpM8 (0.08±0.08% Nmb+ neurons express TrpM8; 0.61±0.61% 

of TrpM8+ neurons express Nmb) (Figure 8A-D).  

 

To further test our hypothesis that Nmb is specifically expressed in pain- and itch- 

sensing neurons, we compared the expression of Nmb to markers of low-threshold 

mechanosensitive neurons, which mediate the sensation of light touch, texture, form, 

vibration, and body position.  Low-threshold mechanosensory neurons contain several 

different groups of DRG neurons, each of which have distinct molecular and 

developmental profiles.   We examined the expression of Nmb with regard to three 

classes of low-threshold mechanosensitive neurons: Aδ low-threshold mechanoreceptors 

(Aδ LTMRs), c-fiber low-threshold mechanoreceptors (C-LTMRs), and proprioceptors. 
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Aδ LTMRs, which are also known as D-hair, express the neurotrophic tyrosine kinase 

receptor TrkB postnatally (Li et al., 2011).  We found that the expression of TrkB and 

Nmb mRNA is completely non-overlapping in juvenile mouse DRG neurons (0±0% 

Nmb+ neurons express TrkB; 0±0% TrkB+ neurons express Nmb) (Figure 8E-8H).  We 

also examined the overlap between Nmb and tyrosine hydroxylase (Th), a marker that is 

expressed postnatally in intermediately adapting, small-diameter C fiber LTMRs (Li et 

al., 2011).  Even though most Nmb+ neurons have small-diameter somata, we found 

minimal overlap between Nmb and Th expression (0.37±0.26% Nmb+ neurons express 

Th; 1.64±1.09% Th+ neurons express Nmb) (Figure 8I-8L).  Moreover, we have shown in 

the previous section that Nmb is not expressed in large-diameter Ret+ neurons, which are 

Aβ RA mechanoreceptors (Figure 6C).  Taken together, our results strongly suggest that 

Nmb is not expressed in LTMRs, which is consistent with our hypothesis that Nmb is 

expressed exclusively in pain- and itch- sensing neurons. 

 

We next examined the expression of Nmb in neurons which express the neurotrophic 

receptor tyrosine kinase TrkC, which is commonly used as a marker of proprioceptive 

and Aβ slowly adapting mechanosensitive DRG neurons.  We found that a very small 

percentage of Nmb+ neurons co-express TrkC (4.81±0.93% Nmb+ neurons express TrkC; 

22.86±1.16% TrkC+ neurons express Nmb) (Figure 8M-8P).  Attempts to further clarify 

whether Nmb is expressed in proprioceptors were unsuccessful, as another classical 
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immunohistochemical marker of proprioceptors, parvalbumin, did not work in 

combination with our in-situ hybridization protocol.  At present, we are uncertain about 

the functional identity of these Nmb+/TrkC+ neurons.  Nevertheless, our hypothesis that 

Nmb is specifically expressed in pain- and itch- sensing neurons should still be true, as 

Nmb+/TrkC+ neurons are only a very small percentage of total Nmb+ neurons (less than 

5%).  

 

DISCUSSION 

In this paper, we have presented evidence demonstrating that Grp, which has been 

proposed to act as a selective neurotransmitter of itching sensation from the DRG to the 

dSC, is also highly expressed in dSC neurons.  In addition, we have found that Nmb, a 

homologue of Grp, is highly and selectively expressed in pain- and itch-sensing DRG 

neurons.  Our anatomical characterization suggests that Grp can function intraspinally in 

dSC neurons in addition to its potential roles in DRG neurons and Nmb could play roles 

in pain- and itch-sensing neurons.  

 

Grp is highly expressed in dSC neurons 

By employing multiple methods to detect Grp mRNA and protein, we found that Grp is 

robustly expressed in dSC neurons.  Even though a previous publication suggests that no 

Grp mRNA is detected in adult mouse spinal cord by in situ hybridization (Sun and 
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Chen, 2007), we detected abundant Grp mRNA in both juvenile and adult mouse dorsal 

spinal cord using in situ hybridization, RT-PCR, and real time PCR.  We cannot make a 

comparison or suggest possible explanations for these different results because the in situ 

hybridization data of Grp in the previous publication is not shown.  Nevertheless, our 

results are in line with the P4 in situ hybridization data of the Allen Mouse Spinal Cord 

Atlas, suggesting that the expression pattern of Grp in DRG and SC neurons is fairly 

stable from early postnatal days to adulthood (Allen Spinal Cord Atlas, 2016).  Our 

results are also consistent with the P7 and adult Grp expression pattern provided by the 

St. Jude Brain Gene Expression Map (BGEM) using a radioactive in situ hybridization 

method (Magdaleno et al., 2006).  Furthermore, Grp mRNA was shown to be highly 

expressed in dSC in adult rat (Wada et al., 1990).   Taken together, our results and 

information from public databases strongly support the conclusion that Grp mRNA is 

highly expressed in postnatal dSC neurons.     

 

In agreement with the low level of Grp mRNA found in DRG neurons (Figure 1B and 

(Allen Spinal Cord Atlas, 2016;Wada et al., 1990)), we only detected a small number of 

Grp+ DRG neurons using immunostaining (Figure 3A-3G).  The Grp+ neurons we 

detected are much less than that found in a previous publication (8.6% of lumbar DRG 

neurons (Sun and Chen, 2007)).  This difference could be due to different fixation 

conditions.  Though we detected a robust level of Grp peptide in dSC neurons using 

immunostaining (Figure 3K, O, Q, S) , we barely detect  any Grp in dorsal root nerve 

(Figure 3V), the only pathway between DRG neurons and dSC, indicating that the 
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amount of Grp synthesized and transported from DRG to dSC is minimal and below the 

detection level of our methods. 

 

To further confirm the source of dSC Grp, we also conducted the dorsal root rhizotomy.  

Since proteins or peptides derived from DRG neurons need to be transported through the 

dorsal root, their presence in the spinal cord should dramatically decrease following 

central root rhizotomy.  On the other hand, reduction of proteins or peptides that are 

primarily synthesized in dSC neurons should not be as dramatic.  Indeed, we found ~80% 

decrease of markers originating from DRG neurons, such as Cgrp and Pap, and only 

found ~ 35% decrease of a spinal neuron marker, Pkcγ.  Importantly, the change of dSC 

Grp is significantly different from DRG neuron derived markers but similar to that of 

Pkcγ (Figure 4S), suggesting that the majority of Grp is synthesized locally in dSC 

neurons.  This result is consistent with the expression pattern of Grp mRNA.  Taking all 

data into consideration, our results strongly argue that a majority of dSC Grp is 

synthesized locally in spinal cord neurons.    

 

Nmb is specifically expressed in pain- and itch-sensing DRG neurons 

In contrast to Grp, we found that the other known mammalian bombesin peptide, Nmb, is 

highly expressed in DRG neurons.  By co-staining with molecular markers for different 

modalities of somatosensory neurons, we found that Nmb is selectively expressed in pain- 

and itch-sensing neurons.  This specific expression pattern suggests that Nmb may play a 



184 
 

role in these neurons.  In addition to its potential role as a neurotransmitter in pain- and 

itch-sensing neurons, as discussed below, another interesting possibility is that DRG 

neuron derived Nmb may be released by peripheral axons and functions peripherally.  In 

fact, we detected some expression of Nmbr in mouse glabrous skin by in situ 

hybridization (data not shown).  Moreover, Nmbr mRNA levels were found to be 

increased following mechanical wounding and bombesin can promote keratinocyte 

mitosis and migration in vitro (Baroni et al., 2008).   These observations and our 

anatomical characterization raise the intriguing possibility that Nmb could be released 

from free nerve terminals upon injury to promote skin regeneration and wound healing. 

 

Neurotransmitter for itch-sensing somatosensory neurons 

Which chemical do itch-sensing somatosensory neurons use as the pruritogenic 

neurotransmitter?   This is an important question as a pruritogenic specific 

neurotransmitter would be a potential target for treating patients with pruritic disease.  

Some recent studies have proposed glutamate and Grp as two candidate neurotransmitters 

for itch-sensing somatosensory neurons (Koga et al., 2011; Lagerstrom et al., 2010; Liu 

et al., 2010; Sun and Chen, 2007).   One anatomical requirement for a chemical to 

function as the pruritogenic neurotransmitter is that it is synthesized in DRG neurons, 

transported to dSC, and activates its receptor, which is expressed in postsynaptic neurons.  

We found that Grp mRNA is expressed at a low level in DRG neurons and a small 

amount of Grp is transported from DRG neurons to dSC.  Interestingly, we found that a 
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high level of Grp is synthesized in dSC neurons, which may also contribute to normal 

itch perception by modulating the spinal cord local circuits.  Future molecular and 

behavior analysis with Grp null or DRG vs. dSC specific Grp knockout mice will help to 

address the expression and function of DRG neuron and dSC neuron derived Grp.    

 

On the other hand, Nmb, the other mammalian bombesin-related peptide, could be an 

interesting candidate neurotransmitter to modulate pain and itch sensation, given its high 

and selective expression in DRG neurons.  Though we did not detect significant amount 

of Nmbr mRNA in dSC using in situ hybridization at P21, intrathecal injection of Nmb 

induces itching behavior (Su and Ko, 2011).  This response may be conducted through 

Nmbr, which could be expressed in dSC at a low level.  Alternatively, Nmb could be 

acting though Grpr, which Nmb can bind to with a low affinity (Jensen et al., 2008). 

Thus, a good antibody against Nmbr or behavior analysis with Nmb and Nmbr knockout 

mice in the future will help to address the localization of Nmbr and physiological roles of 

DRG neuron derived Nmb.   

 

Conclusions 

We have found that Grp transcript is highly expressed in dSC neurons and the majority 

dSC Grp is synthesized locally.  On the other hand, Grp transcript is expressed at a low 

level in DRG neurons, and that the contribution of DRG neuron-derived Grp to the total 

amount of Grp observed in the dSC is relatively small.  In addition, we have shown that 
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Nmb, the other mammalian bombesin-related peptide, is highly expressed in pain- and 

itch-sensing DRG neurons.  Taken together, our results suggest that intraspinally 

synthesized Grp may have a local function in addition to potential functions of DRG 

neuron-derived Grp and that Nmb may play a role in itch- or pain-sensing neurons.  This 

anatomical characterization of Grp and Nmb will improve our understanding about roles 

of Grp and Nmb in mediating itch sensation.   

 

MATERIALS AND METHODS 

Animals. Mice were raised in a barrier facility in the Hill Pavilion, University of 

Pennsylvania.  All animal procedures were conducted according to animal protocols 

approved by the Institutional Animal Care and Use Committee (IACUC) of the 

University of Pennsylvania.  For in-situ hybridization and antibody characterization 

studies, six P14-P21 wild type mice of both sexes with a mixed CD1/C57Bl/6J 

background were used.  For RT-PCR experiments, four 4-6 month wild type mice of both 

sexes with a mixed CD1/C57Bl/6J background were used.   For dorsal rhizotomy 

experiments, we used 2 month old C57Bl/6J mice of either sex and the survival surgery 

was conducted in Shriners Hospitals Pediatric Research Center, Temple University. All 

surgical and postoperative procedures were performed in accordance with Temple’s 

Institutional Animal Care and Use Committee and National Institutes of Health 

guidelines. 
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In situ hybridization. DIG-labeled riboprobes were synthesized using a DIG RNA 

labeling kit (Roche, 11175025910).  Template for Nmb probe was amplified from a 

mouse DRG cDNA library (BD, Ref#630022) and subcloned into vector pGEM-T Easy 

(Promega, A1360).  Mouse IMAGE clones for Grp (GenBank: BC024515), Grpr 

(GenBank: BC113145), and Nmbr (GenBank: BC119237) were purchased from Open 

Biosystems, and PCR products were subcloned into pGEM-T Easy.  Primers used to 

amplify cDNA were: Nmb (5’-GGCAAGCAGGGAGCTCTT-3’ and 5’-

CTGGTGACCCAACCAGAA-3’), Grp (5’-CACGGTCCTGGCTAAGATGTAT-3’ and 

5’-CCAGTAGAGTTGACGTTTGCAGA-3’), Nmbr (5’-

AGGTCTCTCTCCAACCTCTCCT-3’ and 5’-ACCAGAACAATCTTAGCCAGGCG-

3’), and Grpr (5’-ATGGCTCCAAATAATTGTTCCCA-3’ and 5’-

TTTAGTCTAGACATACCCCTCAT-3’).  FITC-labeled probes for c-Ret, TrkB, TrkC, 

TrpV1, MrgprA3, MrgprD, and TrpM8 were generated as previously described (Dong et 

al., 2001; Luo et al., 2007). 

 

Intact lumbar spinal column was dissected from euthanized wild-type P14-P21 mice and 

rapidly frozen in OCT on a dry-ice/ethanol bath.  20µm cryosections were collected on 

Superfrost Plus slides (Fisher, 22-034-979) and allowed to dry for at least 2 hours at room 

temperature before in-situ hybridization.  All steps prior to hybridization were carried out 

under RNase free conditions.  Cryosections were immersion-fixed in freshly made 4% 

PFA in PBS for 20 minutes at room temperature.  Slides were then washed in fresh-

DEPC PBS (1:1000 DEPC in PBS immediately before use), followed by wash in DEPC-
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pretreated PBS (1:1000 DEPC in PBS overnight (O/N), followed by autoclaving).  An 

antigen retrieval step, often used for immunohistochemistry, was found to increase the 

signal of many probes.  Citric acid buffer (10mM citric acid, 0.05% Tween-20, pH6.0) 

was boiled in a microwave, and DEPC (1:1000) was added to freshly boiled solution.  

Slides were immersed in solution in a 95°C waterbath for 20 minutes, and then allowed 

to cool at room temperature for 30 minutes.  Sections were then washed in DEPC 

pretreated PBS (1X 5 minutes),  incubated in Proteinase K (25µg/mL in DEPC-pretreated 

H2O) for five minutes, followed by washes in fresh-DEPC PBS (1X 5 minutes) and 

DEPC pre-treated PBS (1X 5 minutes).  Sections were then acetylated at room 

temperature for ten minutes in freshly made acetylation solution (0.1M triethanolamine, 

0.25% acetic anhydride in DEPC pre-treated H2O).  Slides were then prehybridized in 

hybridization buffer (50% formamide, 5XSSC, 0.3mg/mL yeast tRNA, 100µg/mL 

heparin, 1X Denhardt’s, 0.1% Tween-20, 0.1% CHAPS, 5mM EDTA in RNase free 

H2O) at 62°C in a humidified chamber for 30 minutes.  Following prehybridization, 

excess hybridization buffer was removed from slides and 1-2ng/µl of DIG and/or FITC 

labeled riboprobe diluted in hybridization buffer was placed on the slide.  Slides were 

incubated O/N under Parafilm coverslips at 62°C.  Slides were then washed in 0.2X SSC 

at 68°C (1X 15 minutes, 2X 30 minutes).   

 

For colorimetric reaction, slides were blocked in PBT (PBS, 0.1% TritonX-100) and 20% 

lamb serum at room temperature for one hour.  Sections were then incubated with AP-

conjugated anti-DIG antibody (1:1000; Roche, 11093274910) in blocking buffer O/N at 
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4°C.  Slides were washed in PBT (3X 10 minutes) and incubated O/N in darkness in 

alkaline phosphatase buffer (100mM Tris pH9.5, 50mM MgCl2, 100mM NaCl, 0.1% 

Tween-20, 5mM levamisole, 0.34mg/mL 4-Nitro blue tetrazolium (NBT)(Roche, 

11383213001), 0.17mg/mL 5-bromo-4-chloro-3-indolyl-phosphate(BCIP)(Roche, 

1138221001)).  Following color reaction, slides were rinsed repeatedly in PBS and then 

fixed for 20 minutes in 4% PFA in PBS at room temperature.  Slides were then 

repeatedly rinsed in ddH2O, dried at 37°C for 1 hour, dehydrated in xylenes (3X 2 

minutes), and coverslipped with Permount (Fisher, SP15). 

 

For double fluorescent in-situ hybridization (FISH), slides were blocked for one hour at 

room temperature with 0.5% Blocking Reagent (Roche, 11096176001) in PBS.  Sections 

were incubated in anti-FITC-POD (1:100 in .5% Blocking Reagent; Roche, 

11426346910) O/N at 4°C.  Slides were then washed in PBT (3X10 minutes) and 

incubated in 0.1% BSA in PBS for 15 minutes.  FITC riboprobes were then developed 

using the TSA Plus system (Perkin Elmer, NEL741001KT), by diluting fluorescein 

tyramide into 1X amplification buffer (1:100) and incubating slides in working solution 

for 10-15 minutes, followed by washes in PBS (3X 10 minutes).  Slides were then 

blocked in PBT containing 20% lamb serum for 1 hour at room temperature, and 

incubated O/N at 4°C with AP-conjugated anti-DIG antibody (1:500 in PBT +20% lamb 

serum).  Slides were washed in TNT (100mM Tris-HCl, 150mM NaCl, 0.05% Tween-20, 

pH7.5) (3X 10 minutes), then in detection buffer (100mM Tris-HCl, 100mM NaCl, 

10mM MgCl2, pH8.0) (2X 10 minutes).  DIG-labeled riboprobes were then developed 
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using HNPP/Fast Red TR system (Roche, 11758888001).  Sections were incubated in 

detection solution (10µL HNPP stock solution, 10µL of 25mg/mL FastRed per 1mL of 

detection buffer, filtered through 0.2µM nylon filter) (3x30 minutes), with TNT rinses 

between incubations.  Slides were then rinsed in PBS and mounted with Flourmount 

(Southern Biotech, 0100-01). 

 

For FISH combined with immunofluorescence, normal hybridization procedure was 

followed, using DIG-labeled probe.  After 0.2X SSC washes, sections were blocked for 

one hour in PBT containing 20% lamb serum.  Sections were then incubated with AP-

conjugated anti-DIG (1:500) and primary antibody at the appropriate dilution (described 

below) at 4°C O/N in 20% lamb serum blocking solution.  Slides were washed in PBT 

(3X 10 minutes), then incubated in species appropriate Alexa 488 conjugated secondary 

antibody (1:500 in 5% lamb serum in PBT) for one hour at RT.  HNPP/FastRed detection 

was then performed as described above, beginning with initial TNT washes. 

 

Immunohistochemistry. For characterization of anti-bombesin antibody, P14-P21 mice 

were deeply anesthetized with CO2 and perfused with 4% PFA in PBS.  Intact lumbar 

spinal columns were dissected and post-fixed for 2-4 hours in 4% PFA in PBS at 4°C, 

cryoprotected in 30% sucrose in PBS O/N at 4°C, and embedded in OCT.  20µm 

cryosections of lumbar spinal cord and DRG were collected on Superfrost Plus slides, 

and allowed to dry at room temperature for at least two hours.  For dorsal rhizotomy 

samples, 30µm free floating cryosections were collected in PBT and processed for 
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immunohistochemistry in solution.  Sections were washed in PBT (3X 10 minutes), and 

then blocked in PBS containing 5% lamb serum and 0.3% TritonX-100 for 1 hour at 

room temperature.  Primary antibodies were diluted in the same buffer, and incubated 

O/N at 4°C, then washed in PBT (3X 10 minutes).  Secondary antibodies were incubated 

in blocking buffer at 1:1000 dilution for one hour at room temperature.  Slides were then 

washed in PBT (3X 10 minutes) and mounted with Flourmount.  Primary antibodies used 

include rabbit anti-bombesin (1:1000; ImmunoStar, 20073), chicken anti-Gfp (1:2000; 

Aves, GFP-1020), guinea pig anti-Cgrp (1:250; Bachem, T-5053), mouse anti-Pkcγ 

(1:50, Invitrogen, 13-3800), chicken anti-Pap (1:1000; Aves, PAP), rabbit anti-peripherin 

(1:1000; Millipore, AB1530), rabbit anti-Nfh (1:2000; Sigma, N4142), rabbit anti-TrkA 

(1:1000; Millipore, 06-574), rabbit anti-tyrosine hydroxylase (1:100; Millipore, AB152), 

mouse anti-NeuN (1:1000, Millipore, MAB377), and Alexa 488 conjugated IB4 (1:200; 

Invitrogen, I21411).   Secondary antibodies used were Alexa 488, Alexa 594, or Alexa 

647 conjugated goat anti-rabbit antibody, Alexa 488 conjugated goat anti-mouse 

antibody, Alexa 488 conjugated goat anti-chicken antibody, and Alexa 488 conjugated 

goat anti-guinea pig antibody.  All secondary antibodies were purchased from Invitrogen.   

 

Peptide Preabsorption. Anti-bombesin and anti-Cgrp antibodies at the concentrations 

described above were added to PBS containing 5% lamb serum, 0.3% TritonX-100, and 

bombesin peptide (50µg/mL; American Peptide Company, 16-7-10A) or GRP peptide 

(50µg/mL; American Peptide Company, 62-3-10) and incubated O/N at 4°C with gentle 



192 
 

agitation.  Solutions were centrifuged at high speed (~16,000 x g) for ten minutes, and 

supernatant was used for immunohistochemistry, as described above. 

 

Reverse transcriptase PCR. 4-6 month old wild type mice were deeply anesthetized 

with CO2, transcardially perfused with sterile, RNAse free, ice-cold PBS, then 

decapitated.  Lumbar and thoracic DRGs and dorsal spinal cord were dissected under 

RNase free conditions and rapidly frozen on dry ice.  RNA was isolated using the 

GeneJet RNA Purification Kit (Fermentas, K0731), and cDNA was synthesized with 

oligo-dt primers using the SuperScript First-Strand Synthesis system (Invitrogen, 

11904018).  PCR was performed on cDNA synthesized from DRG or dorsal spinal cord 

cDNA with primers for Nmb (5’- CCGAGGGACCAGAGACTACA-3’ and 5’-

ACTTCACCAGGGAAGCAAGA), Grp (5’-CACGGTCCTGGCTAAGATGTAT-3’  

and 5’-CCAGTAGAGTTGACGTTTGCAGA-3’), Nmbr (5’-

AGGTCTCTCTCCAACCTCTCCT-3’ and 5’-ACCAGAACAATCTTAGCCAGGCG-

3’), Grpr (5’-ATGGCTCCAAATAATTGTTCCCA-3’ and 5’-

TTTAGTCTAGACATACCCCTCAT-3’), and Gapdh (5’-

GGTGAAGGTCGGTGTGAACG-3’ and 5’-CTCGCTCCTGGAAGATGGTG-3’).   

  

Real time PCR. Grp mRNA from DRG or dSC were measured by quantitative real-time 

PCR under the ABI 7500 Fast Real-Time PCR system (Applied Biosystems, Foster City, 

CA), with Gapdh as an internal reference gene.  The reaction mixture contained 250 nM 
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of each primer, 1×SYBR Green PCR Master Mix (ABI), and 1µl of cDNA. Relative 

concentration of Grp present in each cDNA sample was calculated by the comparative 

C(T) method (Schmittgen and Livak, 2008).  Real time PCR was performed on cDNA 

isolated from three adult wild type mice, and was repeated four times per sample.  

Primers used were Grp primers listed above, and Gapdh (5’-

TCGGTGTGAACGGATTTGGC-3’and 5’- TCCCATTCTCGGCTTGACT-3’). 

 

Plasmid construction. Plasmids were constructed to express bombesin, Grp, or Nmb 

fused to the C terminus of EGFP.  The coding regions of the peptides were constructed 

by annealing oligonucleotides coding for the open reading frame of each peptide with 

EcoRI (5’) and SalI (3’) sticky ends.  Primers used for this procedure were: bombesin (5-

AATTCCAGCAGAGGCTGGGGAATCAGTGGGCAGTGGGTCACTTGATGTGAG-

3’ and 5’-

TCGACTCACATCAAGTGACCCACTGCCCACTGATTCCCCAGCCTCTGCTGG-3’) 

Grp (5’-

AATTCATGTATCCGCGCGGCAGTCACTGGGCTGTGGGACACTTAATGTGAG-3’ 

and 5’-

TCGACTCACATTAAGTGTCCCACAGCCCAGTGACTGCCGCGCGGATACATG-

3’) and Nmb (5’AATTCGGCAACCTCTGGGCGACCGGTCACTTCATGTGAG-3’ and 

5’-TCGACTCACATGAAGTGACCGGTCGCCCAGAGGTTGCCG-3’).  

Oligonucleotides were phosphorylated with T4 polynucleotide kinase (PNK) (NEB, 

M0201) for 20 minutes at 37°C, and then PNK was heat inactivated at 65°C for 20 
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minutes.  Phosphorylated oligonucleotides were annealed by heating to 95°C for five 

minutes, then allowing them to cool to room temperature.  Annealed oligonucleotides 

were then ligated into pPMS93 (a gift from Dr. Jeremy Nathans lab at Johns Hopkins 

University, CMV promoter to drive the expression of EGFP C-terminal fusion protein) 

pre-digested with EcoRI and SalI.  Ligated plasmids were transformed into DH5-α, and 

grown overnight at 37°C on agarose plates supplemented with 100µg/mL carbenicillin.  

Individual colonies were then selected and grown overnight in 2XYT containing 

100µg/mL carbenicillin, and then mini-prepped (Fermentas, K0503).  Correct insertions 

were confirmed by DNA sequencing. 

 

Cell culture and immunocytochemistry. QBI HEK293 cells were grown on 12mm 

circle coverslips in HEK293 growth media (10% FBS (Invitrogen, 10082147), 1% 

Penicillin/Streptomycin (Invitrogen, 15140122) in DMEM (Invitrogen, 11965084)) in 6-

well tissue culture plates. Coverslips were coated with 100µg/mL poly-D-lysine solution 

to help cell adhesion. Individual cultures were transfected with 1µg/mL of pRK5-EGFP, 

pPMS-bombesin, pPMS-Grp, or pPMS-Nmb EGFP fusion plasmid with Lipofectamine 

LTX (Invitrogen, 15338100). Eighteen to twenty four hours after transfection, coverslips 

were then rinsed gently with PBS and fixed in 4% PFA in PBS for 1.5 hours at room 

temperature. Coverslips were then processed for immunohistochemistry as described 

above.  
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Dorsal root rhizotomy and postoperative procedures. The surgical procedure was 

standard (Di Maio et al., 2011). Mice were anesthetized with an intraperitoneal injection 

of xylazine (8 mg/kg) and ketamine (120 mg/kg). Supplements were given during the 

procedure as necessary. A 2- to 3-cm-long incision was made in the skin of the back; the 

spinal musculature was reflected; and the L5 spinal cord segments were exposed by 

hemi-laminectomies. The cavity made by the laminectomies was perfused with warm 

sterile Ringer's solution. A small incision was made in the dura overlying the L3-L5 

dorsal roots; a fine spring scissor (501778, World Precision Instruments) was introduced 

subdurally and L4, L5, and L6 dorsal roots were cut. The laminectomy site was covered 

with a piece of thin synthetic matrix membrane (Biobrane, Bertek Pharmaceuticals), 

which was then stabilized with a layer of thicker artificial dura (Gore Preclude MVP 

Dura Substitute, W.L. Gore and Associates). Animals are given subcutaneous injections 

of lactated Ringer's solution to prevent dehydration and are kept on a heating pad until 

fully recovered from anesthesia. Buprenex is given as post-operative analgesia 

(0.05mg/kg S.C. every 12 hours for 2 days). On the 15th day after dorsal rhizotomy, mice 

were perfused transcardially with 0.9% heparinized saline solution followed by 4% 

paraformaldehyde in PBS. 

 

Imaging.  All images were acquired on a Leica DM5000B or Leica TCS SP5 II and 

processed using Adobe Photoshop CCS version 12.0. 
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Quantification and Statistics.  For dorsal rhizotomy experiments, adjacent sections of 

the spinal cord lumbar enlargement were used for different marker staining.  Images of 

each dorsal horn of individual sections were acquired using identical exposure conditions. 

Using ImageJ, the bombesin reactive and Cgrp, Pkcγ, or Pap (costain) reactive regions of 

dorsal spinal cord were outlined.  Pixel counts for each fluorescence intensity value (0-

255) within the outlined region were generated by ImageJ.  In addition, background pixel 

intensity values were generated from a non-reactive area of the dorsal spinal cord for 

each image.  Background pixel counts were clustered around low intensity values and 

showed a normal distribution, and the threshold for background fluorescence cutoff was 

established as the first highest intensity value that had a pixel count of zero.  To calculate 

total fluorescence intensity, the pixel count for each intensity above background level 

was multiplied by its intensity, and the results of these calculations were summed.  In 

cases where the immunostaining signal was greatly reduced on transected side, the stain 

area was approximated based on the control side.  The difference between the control and 

transected side was calculated as percentage change in fluorescent intensity ([fluorescent 

intensity transected/fluorescent intensity control]*100).  This value was calculated for 

three sections per marker per animal. The average and SEM for each marker across all 

sections was calculated, and P-values were calculated using a two-tailed student’s t-test.  

 

Cell size calculations.  ImageJ software was used to calculate size of DRG neurons. All 

images were taken at 20x magnification. To avoid bias in counting, the first 25 positive 

cells in each image from left to right were counted. In total, 225 cells per marker were 
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counted (n=3 animals, 9 DRG per animal). Using ImageJ, cells were outlined using the 

lasso tool and the area was obtained.  For graphical representation, cells were divided into 

100um2 bins.  

 

Expression profile quantification.  Expression profile of Nmb+ DRG neurons was 

evaluated by counting the number of cells that were positive for Nmb, co-staining 

markers, or both in 3 wild-type P14-P21 animals (6-8 lumbar DRG sections per animal).  

Total number of positive cells in each category was calculated for each animal, and the 

percentages of double positive neurons with regard to total Nmb+ neurons  (Nmb+; 

costain+ /total Nmb+) or to total co-staining-marker-positive neurons (Nmb+; costain+  

positive/total costain+) were calculated.  The average and SEM of these percentages 

between animals were then calculated.   

 

 

 

 

 

 

 



198 
 

Figure 1: Expression of Grp, Grpr, Nmb, and Nmbr mRNA in dSC and DRG 
neurons.  (A-H) in situ hybridization with P21 wild type mouse dSC and DRG for Grp 
(A-B), Grpr (C-D), Nmb (E-F), and Nmbr (G-H).  dSC and DRGs are outlined with 
black dots.  Scale bars=50 µm.  (I) RT-PCR performed on RNA acutely isolated from 
wild type adult mouse dSC and DRG.  cDNA was amplified with primers specific for 
Nmb, Grp, Nmbr, and Grpr.  Lower bands are cDNA amplified with primers specific for 
Gapdh, which served as a loading control.  (J) Graphical representation of real time RT-
PCR for Grp performed on dSC and DRG RNA isolated from adult mice (n=3 animals, 4 
replicates per animal).  Quantification represents fold difference between dSC Grp 
relative to that of DRG.  Relative abundance of cDNA was calculated in comparison to 
Gapdh housekeeping gene by the 2^(-ΔΔCт) method (see details in method). 
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Figure 2: In vitro characterization of anti-bombesin antiserum specificity.  (A) 
Alignment of Bombina bombina bombesin, Mus musculus Grp, and Mus musculus Nmb 
peptide sequences.  Black bar underneath the bombesin peptide sequence indicates the 
immunizing peptide used for developing the rabbit anti-bombesin antiserum.  Grp and 
Nmb residues that share identity with the immunizing peptide are highlighted in red.  (B-
M) HEK293 cells were transfected with EGFP-bombesin (B-D), EGFP-Grp (E-G), 
EGFP-Nmb (H-J), or EGFP alone (K-M) and immunostained with anti-bombesin 
antiserum (red) and anti-GFP antibody (green).  Scale bar= 25µm.  
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Figure 3: Characterizing the localization of Grp in DRG, spinal cord, and dorsal 
root using anti-bombesin antiserum.  (A-B) DRGs immunostained with antibodies 
against bombesin (red) and Cgrp (green).  Arrow indicates a bombesin+;Cgrp+ neuron.  
(C-D)  DRG neurons in adjacent sections are immunostained with anti-bombesin 
antiserum preabsorbed with purified Grp (red) and anti-Cgrp antibody (green).  
Preabsorption results in a complete loss of anti-bombesin immunoreactivity.  (E-F) DRG 
neurons immunostained with antibodies against bombesin (red) and Pap (green).  (G-H) 
DRG neurons immunostained with anti-bombesin anti-serum (red) and fluorescently-
conjugated IB4 (green).   (I-J) DRG neurons immunostained with antibodies against 
bombesin (red) and VGlut1 (green).  Arrows in (E-J) indicate bombesin+ neurons that are 
not immunopositive for the costaining marker.  (K-L) dSC section immunostained with 
antibodies against bombesin (red) and Cgrp (green).   The dSC layers positive for 
bombesin are outlined with white dots and higher magnification of the staining is shown 
in the inset.  (M-N) dSC section immunostained with anti-bombesin antiserum 
preabsorbed with purified Grp (red) and anti-Cgrp antibody (green), showing a complete 
loss of anti-bombesin immunoreactivity.  (O-P) dSC section immunostained with 
antibodies against bombesin (red) and Pap (green).  (Q-R) dSC section immunostained 
with anti-bombesin serum (red) and fluorescently-conjugated IB4 (green).  (S-T) dSC 
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section immunostained with antibodies against bombesin (red) and VGlut1 (green).  (U) 
A high magnification confocal image of adult dSC immunostained with anti-bombesin 
(red) and anti-NeuN (green).  (V-X) A higher magnification of wild type adult dorsal root 
immunostained with antibodies against bombesin (red) and Cgrp (green) reveals the 
presence of Cgrp, but not Grp, in axons projecting from the DRG to dSC.  Dorsal root is 
outlined by dotted line.  Arrow indicates the dSC anti-bombesin immunoreactivity.  Scale 
bars= 50µm (A-J), 100µm (K-T), 5µm (U), 30µm (V-X). 
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Figure 4: Dorsal root rhizotomy causes a dramatic loss of Pap and Cgrp but 
significantly smaller changes of bombesin and Pkcγ in dSC.  L4, L5, and L6 central 
roots of two month old wild type mice were transected, and mice were examined two 
weeks following surgery.  Sections of the lumbar enlargement were immunostained to 
examine the loss of proteins and peptides caused by dorsal root axonal degeneration and 
the contralateral side of the same spinal cord section was used as the control.  (A-F) 
Sections were immunostained with antibodies against bombesin (red) and Pkcγ (green), a 
protein highly synthesized in dSC neurons (control side (A-C) and transected side (D-F)).  
Comparable and modest loss of both bombesin and Pkcγ immunoreactivity are found 
after the dorsal root rhizotomy.  Enhanced green fluorescence and abnormal morphology 
of the transected dorsal root were also noted, which may be caused by axonal 
inflammation after injury.  (G-L) Sections immunostained with antibodies against 
bombesin (red) and Pap (green).  As noted, dSC Pap is dramatically decreased after the 
dorsal root rhizotomy.  (M-R) Sections immunostained with antibodies against bombesin 
(red) and Cgrp (green), another marker derived from DRG neurons.  Similar to Pap, dSC 
Cgrp is also greatly reduced following the dorsal root rhizotomy.  Scale bar= 100µm.  (S) 
Quantification and statistical analysis of dynamic changes of dSC Grp, Pkcγ, Pap, and 
Cgrp following the dorsal root rhizotomy.  The loss of dSC Grp after dorsal root 
rhizotomy is significantly different from those of Pap and Cgrp (P < 0.01), and the same 
is true for dSC Pkcγ.   In contrast, no significant differences are found between Grp and  
Pkcγ (P=0.44) or Pap and Cgrp (P=0.25).    
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Figure 5: Nmb is expressed in small and large diameter DRG neurons.  (A-D) FISH 
for Nmb (red) and immunostaining for peripherin (green), an intermediate filament that is 
present in small diameter DRG neurons.  Histogram shows the percentage of Nmb+ 
neurons that express peripherin (red bar) and the percentage of Peripherin+ neurons that 
express Nmb (green bar).   Mean ± SEM.  (E-H) FISH for Nmb (red) and 
immunostaining for NF200 (green), a marker of large diameter myelinated neurons, and 
quantification of overlapping expression.  Scale bar= 50µm   (I)  Distribution of soma 
sizes of Nmb+, Peripherin+, and NF200+ DRG neurons, in 100µm2 bins.   
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Figure 6: Nmb is expressed in peptidergic and nonpeptidergic nociceptors.  (A-D) 
FISH for Nmb (red) and Ret (green), a marker for small diameter nonpeptidergic 
nociceptors and RA mechanoreceptors.  Arrow indicates a large diameter, Ret+ neuron, 
all of which are Nmb-.  (E-H) FISH for Nmb (red) and TrkA (green), a marker for 
peptidergic nociceptors.  (I-M) FISH for Nmb (red) and Ret (green), combined with 
immunostaining for TrkA (blue).  Quantification shows the percentages of Nmb+ neurons 
which also express Ret or TrkA (green), or which express neither marker (red).  (N-Q) 
FISH for Nmb (red) and binding of IB4 (green).  (R-U) FISH for Nmb (red) combined 
with immunostaining for Pap (green).  (V-Y) FISH for Nmb (red) and MrgprD (green).  
Scale bar= 50µm 



205 
 

 

Figure 7: Nmb is expressed in itch-sensitive DRG neurons.  (A-D) FISH for Nmb (red) 
and TrpV1 (green), a marker of neurons responding to noxious and histaminergic itch 
stimuli.  (E-H) FISH for Nmb (red) and MrgprA3 (green), a marker of neurons 
responding to nonhistaminergic itch.  Scale bar= 50µm 
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Figure 8: Nmb is not expressed in DRG neurons responding to innocuous thermal or 
mechanical stimuli.  (A-D) FISH for Nmb (red) and TrpM8 (green), a marker of neurons 
responding to innocuous cold stimuli.  (E-H) FISH for Nmb (red) and TrkB (green), a 
marker of Aδ LTMRs.  (I-L) FISH for Nmb (red) and TH (green), a marker of a 
population of intermediately adapting C fiber LTMRs.  (M-P) FISH for Nmb (red) and 
TrkC (green), a marker of slowly adapting mechanoreceptors and proprioceptors.  Scale 
bar= 50µm 
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CHAPTER 5 

 

 

Conclusions and Future Directions 
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THE DISTINCTION BETWEEN CIS AND TRANS RET SIGNLAING 

In Chapter 2, we demonstrated that either cis or trans RET signaling is sufficient for RA 

mechanoreceptors to grow to their termination zone in the dorsal spinal cord.  Previous 

studies have suggested that cis and trans RET signaling may lead to activation of distinct 

downstream processes (Paratcha et al., 2001; Tansey et al., 2000).  Additionally, a “cis-

only” mouse model, in which Gfra1 is expressed in all Ret+ cells in an otherwise Gfra1 

null background showed no developmental deficits in many RET-dependent 

developmental processes (Enomoto et al., 2004).  However, in the particular 

developmental process examined here, both cis and trans signaling produce the same 

cellular output, suggesting they may be functionally interchangeable in vivo.  It is 

currently unclear whether trans signaling alone this will be sufficient for other RET-

dependent developmental processes. 

 

One observation in our studies which suggests cis and trans activation may be 

interchangeable relates to the constitutive release of GFRα co-receptors.  Conditioned 

media from cultured DRG neurons contained high levels of both GFRα1 and GFRα2.  

Another recent study has shown that GFRα1 can be released from neuronal membranes 

not only via cleavage of the GPI-tether by phospholipases, but also by matrix 

metalloproteinases (Tsui et al., 2015).   Therefore, it is possible that under basal 

conditions, GFRα co-receptors are rapidly processed and released from the membrane.  If 
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so, “cis” expressed GFRα may commonly be shed by the cell and interact with RET in a 

manner similar to GFRα expressed in trans from a neighboring cell.   

 

The generation of a “trans-only” mouse model could further clarify whether cis and trans 

RET signaling are interchangeable for development in vivo.  The GFRα1 pro-protein 

contains an n-terminal ER targeting sequence for entrance into the secretory pathway and 

a c-terminal GPI signal sequence which interacts with the GPI-transamidase complex 

(Eisenhaber et al., 1999).  This c-terminal domain is then cleaved from the protein and 

the GPI anchor is covalently linked to the c-terminal amino acid (S436 in GFRα1).  If the 

GPI signal sequence is removed from the pro-protein, GFRα1 will not become GPI-

anchored and will be constitutively secreted.  GFRα1Δ437 lacks a GPI signal sequence 

and cannot interact with the transamidase complex, and has been shown to be 

biologically active in trans in vitro (Worley et al., 2000).  Additionally, I have performed 

preliminary biochemical and immunostaining experiments to demonstrate that 

GFRα1Δ437 is constitutively secreted and not retained at the cell surface when expressed 

in HEK 293 cells (data not shown).  These preliminary data and previous studies suggest 

a knock-in mouse expressing GFRα1Δ437 from the Gfra1 locus could be a valuable 

genetic model.  If RET-dependent developmental processes, such as kidney and enteric 

neuron development, are normal in the homozygous “trans-only” mouse, these data 

would strongly suggest cis and trans RET signaling produce similar biological outputs 

across many cell types in vivo.  In contrast, a negative result would suggest cis and trans 
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RET signaling produce different outputs in some cell types, or that constitutive secretion 

lowers the local concentration of GFRα1and diminishes the efficiency of RET signaling. 

 

Trans RET activation as a therapeutic approach 

Hirschsprung disease is characterized by a lack of enteric neurons in the distal bowel, 

resulting in bowel motility problems in children affected by the disease.  RET mutations  

contribute to ~50% of familial cases of Hirschsprung disease (Parisi and Kapur, 2000).  

These patients have only a partial loss of RET function, often due to heterozygous 

hypomorphic mutations, so a low level of RET signaling occurs in enteric neural crest-

derived cells (ENCCs) (Pan and Li, 2012).  Therefore, one plausible treatment strategy is 

to increase RET signaling in these precursor cells to increase their proliferation and 

migration.  This may lead to the colonization of the distal bowel and prevent more 

invasive treatments, such as surgical resection of the distal bowel.   

 

One potential treatment which could increase RET signaling is treatment with soluble 

GFRα1/GDNF.  Previous studies have shown that treatment of wild-type ENCCs with a 

combination of GFRα1 and GDNF increased the number of enteric neurons differentiated 

in vitro (Worley et al., 2000).  Additionally, treatment of Gfra1 conditional mutant gut 

explants with soluble GFRα1 improved the differentiation and migration of enteric 

neuron precursors (Uesaka et al., 2013).  However, it is unclear if such treatment would 

be effective in Ret hypomorphs, as any residual RET in ENCCs may already be 
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maximally activated.  The effectiveness of this treatment approach can be tested using 

ENCCs from Ret9/- mice, which combines a Ret null and hypomorphic allele to 

recapitulate the distal bowel aganglionosis observed in Hirschsprung disease patients 

(Uesaka et al., 2008).  In vitro treatment of ENCCs derived from these embryos with a 

combination of GFRα1 and GDNF may increase their proliferative or differentiation 

capacities.  Additionally, treatment of hypomorphic embryos with viral vectors 

expressing trans signaling components or via transgenic expression of Gfra1 from the 

surrounding tissue will further clarify the feasibility of this approach.   

 

THE ROLE OF PACINAIN CORPUSCLES ACROSS SPECIES 

In rodents, Pacinian corpuscles are primarily studied in the interosseous membrane 

surrounding the limb bones (Zelena, 1978).  However, the anatomical location of 

Pacinian corpuscles varies widely between mammalian species (Bell et al., 1994).  Unlike 

rodents, primates and some other mammalian species have Pacinian corpuscles in the 

glabrous skin (Zelena, 1994).  Pacinian corpuscles in the human hand assist in the 

differentiation of fine textures (Srinivasan et al., 1990).  In addition, it has been proposed 

that Pacinian corpuscles are important for tool usage (Brisben et al., 1999).  Vibrations 

transferred through a tool can be sensed by Pacinian corpuscles may assist in interpreting 

the shape of an object which is not directly touched by the hand.  The evolutionary 

changes that produced Pacinian corpuscles in the glabrous skin remain unclear. 
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In Chapter 3 of this thesis, we showed that expression of Er81 and Nrg1 by rapidly 

adapting mechanoreceptors is critical for the development of Pacinian corpuscles in the 

interosseous membrane of the mouse.  One intriguing possibility is that the expression of 

Er81 and/or high levels of Nrg1 in RA mechanoreceptors may be sufficient to produce 

large Pacinian corpuscle end organs.  The expansion of the population of RA 

mechanoreceptors expressing these genes to include those which project to the glabrous 

skin may be one factor contributing to the dermal localization of Pacinian corpuscles in 

higher mammals.  To test this hypothesis, mouse models which transgenically 

overexpress Er81 or Nrg1 in RA mechanoreceptors should be generated.  Examination of 

the paw skin of these animals may reveal Pacinian corpuscle-like structures, which are 

larger and located in deeper skin tissue than Meissner’s corpuscles.   

 

The role of interosseous Pacinian corpuscles in somatosensation remains unclear.  It has 

been proposed that interosseous Pacinian corpuscles may sense vibrations transferred 

through the ground, which may be important for sensing approaching predators 

(Mcintyre, 1980).  Additionally, Pacinian corpuscles have been implicated in detecting 

joint position in human subjects.  In both the hand and foot, application of high frequency 

vibration to the skin inhibited the ability of human subjects to estimate the angle of 

nearby joints, including in the fingers and ankle, likely due to a masking of important 

information mediated by Pacinian corpuscles by “noisy” stimulation (Mildren and Bent, 

2016; Weerakkody et al., 2007; Weerakkody et al., 2009).  Although it was proposed that 

cutaneous Pacinian corpuscles mediate this ability due to the location of the stimulation, 
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it’s possible that interosseous Pacinian corpuscles were also disrupted by this stimulus 

and that they may also contribute to the detection of joint angle.   

 

To investigate the role of interosseous Pacinian corpuscles, a mouse model which 

selectively eliminates Er81 from RA mechanoreceptors should be generated.  Currently 

available Cre lines, such as RetCreERT2, NestinCre, and Wnt1Cre, cannot be used for this 

purpose as they will also eliminate Er81 from motor neurons, proprioceptors, and/or 

Schwann cells, producing confounding motor deficits.  SplitCre, which is exclusively 

expressed in mechanosensory neurons (Rutlin et al., 2014), may work for this purpose, 

but its efficiency in ablating Er81 from RA mechanoreceptors needs to be tested.  If 

mechanosensory neurons specific Er81 mutants can be generated, I predict they will lack 

Pacinian corpuscles but have intact proprioceptive/motor circuits.  Behavioral tests of 

such animals, including detection of vibration applied directly to the paw, detection of 

vibration applied to the ground, and motor tests, such as rotarod, horizontal ladder, and 

gait analysis, may provide further insight into the role of interosseous Pacinian 

corpuscles. 
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