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ABSTRACT 
 

CREATION AND CONTROL OF QUANTUM STATES IN LAYERED MATERIALS 

Nathan C. Frey 

Vivek B. Shenoy 

The creation, control, and communication of information is the foundation of our digital 

economy. But as our demands for information processing continually increase, 

fundamental limitations in the current generation of electronics threaten to bottleneck 

progress towards increased computational power. A new paradigm of information 

processing based on coherent quantum states will sidestep these limitations entirely and 

have far-reaching impacts in fields ranging from energy consumption to computational 

modeling of new functional materials. The primary goal of this thesis is to use physics-

informed rational design to develop platforms for the creation and control of quantum states 

in layered materials. This challenge is addressed by 1) accelerating the synthesis of new 

functional materials with machine learning; 2) designing quantum materials with 

multiscale modeling and simple phenomenological models; and 3) engineering layered 

materials for ultra-compact solid-state devices that will enable efficient information 

processing and storage. A new type of semi-supervised machine learning was developed 

to predict newly synthesizable layered transition metal carbides and nitrides. A crystal field 

model was applied and an electro-mechanical model parameterized by first-principles 

calculations was developed to investigate the origins and control of magnetism in layered 

transition metal carbides and nitrides. The insights from these investigations, combined 

with high-throughput simulations and machine learning, were deployed at scale on a 

database of over 100,000 inorganic crystal structures to identify multi-order quantum 

materials with coexisting magnetic and topological orders. An analytic model, tight-

binding, and continuum approaches were used to predict intrinsic confinement of Dirac 

fermions in lateral heterostructures of transition metal dichalcogenides and engineer device 

architectures for optimal confinement. Deep transfer learning and machine learning models 
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were used to map monolayer materials and their point defect structures directly to key 

properties relevant for controllable two-level systems. We explained trends in defect 

formation energy within a minimal physical picture of defect formation and identified point 

defects that are of interest for quantum and neuromorphic information processing. We 

anticipate that the models, methods, and findings presented in this thesis will contribute to 

a greater understanding of engineerable quantum states in layered materials. 
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Chapter 1                       

Introduction  

1.1 Information processing and storage 
A bright vision of the future might include any number of technological revolutions 

enabled by novel nanomaterials. Arguably one of the most important potential revolutions 

is waiting in the field of information. The creation, control, storage, and communication of 

information is the foundation of our digital economy. We look to algorithms to curate and 

process information, and increasingly, to provide actionable insight and solutions to 

problems both scientific and societal. But as our demands for information processing 

continually increase, fundamental limitations in the current generation of electronics 

threaten to bottleneck progress towards increased computational power. A new paradigm 

of information processing based on coherent quantum states will sidestep these limitations 

entirely [1,2] and have far-reaching impacts in fields ranging from energy to medicine and 

beyond. 

 

 
Figure 1.1 Library of 2D materials. Reproduced with permission from [3]. 
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1.2 Quantum states in layered materials 
Candidates for quantum information processing platforms include trapped ions [4], 

topological systems [5], and ultracoherent spintronics [6]. The persistent issue with these 

approaches is the requirement of extreme temperature and pressure conditions to prevent 

decoherence, which precludes inclusion of these technologies in practical devices. Two-

dimensional (2D) materials are a broad platform [7] (Figure 1.1) that host magnetic [8,9] 

and topological states [10], as well as quantum point defects (QPDs) with spin states that 

act as qubits [11]. Importantly, the interactions between layers can be engineered via van 

der Waals (vdW) stacking to control quantum states and produce entirely new phenomena. 

The library of available 2D materials is always expanding, but it remains a pressing 

problem to design and characterize new systems with desirable properties and guide 

experimental synthesis. One promising 2D materials family for exploring quantum 

phenomena is the collection of transition metal carbides, nitrides, and carbonitrides known 

as MXenes. MXenes are layered materials with the general formula Mn+1XnTx (M = early 

transition metal, X = C/N, T = O, OH, F, and n = 1-4). Transition metal dichalcogenides, 

with the formula MX2, and transition metal oxides are also promising model systems for 

investigating novel quantum states. The chemical and structural diversity of layered 

transition metal compounds, along with robustness to moisture and air, are major 

advantages over other platforms that allow for tuning electronic, topological, and magnetic 

properties. 

 

Figure 1.2 Examples of quantum systems. Reprinted with permission from [12]. 
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1.3 Multiscale modeling of layered materials 
Fundamentally, we want to understand the physics governing the properties of layered 

materials, at whatever length and time scales the properties of interest are relevant. To 

accomplish this, we adopt a multiscale modeling approach that bridges length scales from 

the fully atomistic to device-scale (Figure 1.2). In this way, we capture the relevant 

phenomena in quantum materials and apply the appropriate tool as needed to solve 

problems of interest. Model Hamiltonians, first-principles density functional theory, tight 

binding models, ab initio molecular dynamics, finite element methods, phenomenological 

models, and state-of-the-art machine learning are all used in this thesis to explore the rich 

diversity of phenomena exhibited by layered materials. In each chapter, we give an 

overview of the methods that are used and developed to model the systems of interest. 

 

Figure 1.3 Multiscale modeling domains of applicability along time and length axes. 

 

1.4 The goals of this thesis 
The primary goal of this thesis is to use physics-informed rational design to develop 

platforms for the creation and control of quantum states in materials systems that exhibit 
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2D or quasi-2D phases. In this thesis, computational techniques that bridge length scales, 

from the atomistic to device-scale, are used to capture the relevant phenomena in quantum 

materials. We outline a holistic approach to theoretical materials discovery, synthesis, 

property prediction, and design, with the ultimate goal of achieving controllable quantum 

states in layered materials. This thesis is divided into three major sections: 

 

Figure 1.4 Schematic of the design goals of this thesis. Four principal mechanisms are 

investigated for applications from information storage to sensing and computing, spanning 

mono- and multi-layer materials systems. 

 

1.4.1 Accelerating materials synthesis with positive and unlabeled 

machine learning 

In Chapter 2, density functional theory is introduced in a high-throughput context. 

Machine learning as it applies to materials science, chemistry, and physics is introduced. 

A new type of semi-supervised positive and unlabeled machine learning is developed and 

applied to predict which new bulk MAX and 2D MXene phases are most likely to be 

synthesizable. Hybrid functionals and cluster expansion are used to calculate experimental 
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observables in MXene systems and draw direct comparison with experimental 

characterization of electronic structure.     

 

1.4.2 Rational design of 2D magnetic materials and high-throughput 

discovery of composite quantum materials 

In Chapters 3 and 4, various models are introduced to understand the physics of magnetic 

phenomena in low dimensions arising from strong electron correlations. Namely, the 

crystal field theory of orbital energy degeneracy breaking, the Hubbard model and 

relativistic spin-orbit coupling within the DFT + U formalism, and the anisotropic 

Heisenberg model simulated with classical Monte Carlo. These models are used to develop 

a program for the rational design of 2D magnetic materials. A model for electro-mechanical 

control of 2D magnetism is developed. The effects of chemical, structural, and external 

degrees of freedom on magnetism in MXenes is explored and explained. These insights are 

then deployed at scale, with the development of automated computational workflows, to 

enable high-throughput screening for magnetic and topological order in inorganic 

compounds found in the Materials Project database. This screening yields many stable 

composite quantum material candidates, including layered antiferromagnetic topological 

insulators, axion insulators, and ferromagnetic topological semimetals.  

 

1.4.3 Engineering quantum confinement and point defects 

In Chapter 5, a multiscale modeling approach for probing localized quantum states in 

layered materials is discussed. Atomistic simulations are used to obtain material parameters 

and to compute formation energies and band structures for both pristine 2D materials and 

point defect systems. A heterostructure device architecture hosting massive Dirac fermion 

is introduced. The physics of quantum confinement and the existence of fermionic bound 

states is understood through a simple two-band 𝒌 ⋅ 𝒑 model, which is then solved for toy 

systems with a generalized tight binding model, and for realistic device geometries with 

the finite element method. Optimal material and device geometry combinations are 

proposed. Deep transfer learning and machine learning are used to predict experimentally 
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relevant parameters for point defects in 2D materials, which can be engineered to achieve 

controllable systems for quantum and neuromorphic computing. New, optimized point 

defect structures are proposed, and trends in defect formation are explained for atomically 

thin resistive switching materials. 
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Chapter 2                       

Accelerating materials synthesis 

with positive and unlabeled machine 

learning 
Reprinted (adapted) with permission from  

N. C. Frey, J. Wang, G. I. Vega Bellido, B. Anasori, Y. Gogotsi, and V. B. Shenoy, ACS 

Nano 13, 3031 (2019), 

T. Schultz*, N. C. Frey*, K. Hantanasirisakul*, S. Park, S. J. May, V. B. Shenoy, Y. 

Gogotsi, and N. Koch, Chem. Mater. (2019), 

G. Deysher, C. E. Shuck, K. Hantanasirisakul, N. C. Frey, A. C. Foucher, K. Maleski, A. 

Sarycheva, V. B. Shenoy, E. A. Stach, B. Anasori, and Y. Gogotsi, ACS Nano (2019),  

and 

Y. Yang, K. Hantanasirisakul, N. C. Frey, B. Anasori, R. J. Green, P. C. Rogge, I. Waluyo, 

A. Hunt, P. Shafer, E. Arenholz, V. B. Shenoy, Y. Gogotsi, and S. J. May, 2D Mater. 7, 

025015 (2020). 

* Denotes equal contribution. 

 

 

 

 

 



8 

 

2.1 Introduction 
In this chapter we discuss what is in many ways the zeroth order aim of theoretical materials 

science. Before we can move on to developing understanding of quantum states and 

exploiting that understanding for rational design of materials, we would like to address the 

problem of synthesizing and characterizing materials in the laboratory. While theory and 

computation oftentimes yield impressive predictions, the predictions and guidance offered 

by theory cannot be realized without experiment. Here, we adapt the method of positive 

and unlabeled (PU) machine learning (ML) to quantify the synthesizability of novel MAX 

and MXene phases based on descriptors derived from structure, stoichiometry, and first-

principles calculations. We will review density functional theory (DFT) and take a more 

extensive look at how ML can be applied in materials science. Briefly, we discuss efforts 

to couple theory and experiment to characterize and discover new materials systems. 

 

2.2 Methods 

2.2.1 Density functional theory 

There are something like Avogadro’s number of DFT explainers and texts available 

(maybe not quite, but approaching that number). Here, we give a hopefully succinct review 

of the fundamentals of DFT and summarize when it is useful and when it is not. Later (in 

Chapter 4), DFT is used to study many more materials in a high-throughput context and 

further explanation will be given. 

 DFT is concerned with the problem of solving the many-body problem for electrons 

in solids and molecules. Typically, this problem is formulated with a time-independent 

Schrödinger equation in the Born-Oppenheimer approximation, giving an eigenvalue 

equation for 𝑁 electrons of the form 

 

𝐻Ψ = 𝐸Ψ, (2.1) 
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where 𝐸  is the total energy, Ψ  is the electron wavefunction depending on spatial 

coordinates 𝑟 … 𝑟  and spin degrees of freedom 𝑠 … 𝑠 . The Hamiltonian (𝐻) is given by 

 

𝐻 = 𝑇 + 𝑉 + 𝑉 + 𝑉 , (2.2) 

 

𝑇 =  −
ℏ

2𝑚
∇ , (2.3) 

 

𝑉 = −
𝑒

4𝜋𝜖

𝑍

𝑹𝒋 − 𝒓𝒊

, (2.4) 

 

𝑉 =
𝑒

8𝜋𝜖
 

𝑍 𝑍

𝑹𝒊 − 𝑹𝒋

,   (2.5) 

 

𝑉 =
𝑒

8𝜋𝜖

1

𝒓𝒊 − 𝒓𝒋

, (2.6) 

 

where 𝑇  is the electron kinetic energy, and 𝑉 , 𝑉 , and 𝑉  are the nuclei-electron, 

nuclei-nuclei, and electron-electron interactions, respectively. 𝑹𝒊  and 𝒓𝒊  are the spatial 

coordinates of the i-th nucleus and electron, and the constants are defined as is typical. The 

boundary conditions for Eq. 2.1 are periodic for solids and in 0D systems the wavefunction 

decays to zero. There is a normalization condition ⟨Ψ|Ψ⟩ = 1, and Ψ is antisymmetric 

under interchanges of electron coordinates. 𝐸 can be obtained as the expectation value of 

the Hamiltonian, 

 

𝐸[Ψ] =
⟨Ψ|𝐻|Ψ⟩

⟨Ψ|Ψ⟩
.  (2.7) 
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There is no known analytical solution to obtain the ground state wavefunction Ψ  that 

minimizes Eq. 2.7. There are many approximate solutions to the problem, and DFT is one 

such method.  

 DFT is rooted in two theorems due to Hohenberg and Kohn [13] that can be stated 

simply as 1) the ground state potential 𝑣 (𝒓) is determined uniquely by the ground state 

electron density 𝜌(𝒓) ; and 2) 𝜌(𝒓)  can be determined from the ground state energy 

functional 𝐸[𝜌(𝑟)] by application of the variational principle. These theorems transform 

the intractable many-body problem into a tractable problem of specifying an energy 

functional.  

 Kohn and Sham proposed using non-interacting orbitals that make the evaluation 

of the kinetic energy term trivial, portioning the many-body interactions into a separate 

term [14]. They wrote the energy functional as 

 

𝐸[𝜌] = 𝑇[𝜌] + 𝑉[𝜌] + 𝐸 [𝜌] (2.8) 

 

with 𝑇[𝜌] as the kinetic energy, 𝑉[𝜌] as the classical Coulomb repulsion, and 𝐸 [𝜌] the 

“exchange-correlation” energy. This defines a new Kohn-Sham effective potential 

 

𝑣 (𝒓) = 𝑣 (𝒓) +
𝛿𝑉[𝜌]

𝛿𝜌
+

𝛿𝐸 [𝜌]

𝛿𝜌
.  (2.9) 

 

In terms of this effective potential, the Kohn-Sham equations can be written with an 

effective single particle Hamiltonian as 

 

ℎ Ψ = −
1

2
∇ + 𝑣 Ψ = 𝜀 Ψ.  (2.10) 

 

So we see that the many-body problem has been cast to a single particle problem in a mean 

field, 𝑣 . All the difficulty has been hidden in the form of 𝐸 [𝜌], and there are many 
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flavors of DFT that differ in how they approximate the exchange-correlation. Here, we will 

restrict the discussion to three general classes of functional that are used in this thesis. 

 The first is the generalized gradient approximation (GGA) [15] which includes 

terms from the local density approximation (LDA) [14], namely, the exact exchange 

energy density of a uniform electron gas and an approximate correlation energy density fit 

from quantum Monte Carlo (QMC) calculations. As might be expected from the name, 

GGA also includes terms involving the gradient of the electron density. Particular 

implementations of GGA including Perdew-Burke-Ernzerhof (PBE) [15] and PBEsol [16] 

are used in this thesis as the workhorse methods for calculating ground state energies, 

forces, and equilibrium structures of solid-state materials. 

 The next level of approximation is the hybrid functional. Hybrid functionals 

incorporate a tunable portion of exact exchange from Hartree-Fock (HF) theory and either 

ab-initio or empirical exchange-correlation. This has been shown to give improved 

accuracy for many properties, most notably electronic properties like band gaps in 

semiconductors. In this thesis we use the Heyd-Scuseria-Ernzerhof (HSE) 

functional [17,18] primarily for computing band structures. HSE uses a screened Coulomb 

potential where two parameters, 𝑎 and 𝜔, control the amount of mixing between HF and 

PBE exchange and the cutoff for the short-range interaction, respectively. HSE06 uses 

values of 𝑎 = 1/4  and 𝜔 = 1/5 that are empirically found to give reasonable results for 

most systems.  

 Finally, we make use of so-called meta-GGAs. Naturally following from the GGA, 

meta-GGAs make use of the Laplacian of the orbitals, or the kinetic energy density. We 

use the Strongly Constrained and Appropriately Normed (SCAN) [19] functional, which 

further improves accuracy of electronic property prediction through its semilocal 

approximation to the exchange-correlation energy. SCAN strikes a balance between 

computational efficiency (being less expensive than hybrid methods) and outperforming 

older methods in some domains (structure and energetics) [20,21]. Still, SCAN fails to 

capture much of the interesting physics of strongly correlated electrons [22]. 
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 DFT is our method of choice for calculating fundamental materials properties in an 

ab initio way, but often as inputs to other models or methods, because DFT is an extremely 

limited method. Depending on computational resources and implementation details, DFT 

can handle systems of hundreds or thousands of electrons. This brief exploration of the 

“ladder of chemical accuracy” with regards to exchange-correlation approximation 

methods illustrates the complexity of multiscale modeling – we have not even left the 

domain of small length scale quantum mechanical calculations! And extensions to these 

methods will be required to handle electron correlations, relativistic effects, and other 

complications. These extensions will be introduced as needed throughout this thesis.  

 

2.2.2 Positive and unlabeled machine learning 

In this section we discuss our adaptation of a machine learning (ML) method called positive 

and unlabeled (PU) learning [23–26]. Most ML approaches are either “supervised” or 

“unsupervised” methods; that is, an ML model is trained on data that is completely labeled 

and perfectly characterized (supervised) or on data that has no labels, where the model 

must “discover” the labels (unsupervised). In reality, most problems are somewhere in-

between, in the sense that we (humans) have only partial or incomplete knowledge of how 

to label or classify the data, so some of the inputs are unlabeled. In this situation, semi-

supervised methods like PU learning are used. This is particularly relevant for the problem 

of materials synthesis, where synthesized samples can be thought of as “positive” (labeled) 

and materials that have not yet been synthesized are “unlabeled.” 

 Our method is a variant of the transductive bagging support vector machine 

(SVM) [24]. SVMs are a fundamental type of ML classifier that look at data represented 

as points in a high-dimensional feature space and find a hyperplane that maximally 

separates categories of data. Bagging (also called bootstrapping) is a technique for creating 

ensembles of base classifiers to improve stability and accuracy while reducing overfitting. 

Transductive means that the model will attempt to correctly label the unlabeled data. 
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 Bagging can be applied to other classifiers, so we switch from SVMs to decision 

trees [27,28], which are more widely used in modern ML because of their power and 

flexibility. The entire PU learning scheme is shown schematically in Figure 2.1. For some 

set of data, we denote 𝑷 the set of positive (labeled) samples and 𝑼 the set of unlabeled 

samples. 𝐾  is the number of positive samples and 𝑇  is the number of bootstraps (the 

bagging size). In each one of 𝑇 iterations, a decision tree classifier is constructed and a 

random subsample of 𝑼 , denoted 𝑼𝒔 , is treated as negative samples. The classifier is 

trained on 𝑷 and 𝑼𝒔 then predicts the likelihood that each remaining sample in 𝑼\𝑼𝒔 is 

positive or negative. The size of 𝑼𝒔  is chosen to be the same as 𝐾 to ensure balanced 

training. After 𝑇 iterations are complete, the final score 𝑥 of an unlabeled sample is given 

by averaging over all the scores predicted by decision trees that did not see that sample 

during training. If the score 𝑥 > 0.5, then the sample is labeled positive; else it is labeled 

negative. This threshold is arbitrary and more granular detail can be seen by examining 

individual scores or distributions of scores. 
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Figure 2.1 Positive and unlabeled learning workflow. Reprinted with permission 

from [29]. 

 

In practice, this procedure is repeated with k-fold cross-validation, so that the 

dataset is split k times and the training occurs only on k-1 splits so that the predictive 

performance can be tested on the remaining split. This is repeated for every possible 

training/testing split of the k folds. Moreover, the entire process detailed thus far is repeated 

up to 1,000 times. Increasing the bagging size and number of folds only incidentally 

increases the training time, but the model stability must be tested over many iterations, 

which substantially increases the runtime of the training. 
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The PU learning method has been implemented in the Python package Positive and 

Unlabeled Materials Machine Learning (pumml) and is available on github: 

https://github.com/ncfrey/pumml. 

We also implement a different PU learning approach and repeat the analysis using 

the robust ensemble SVM (RESVM) method [25]. RESVM uses class weighted SVMs 

with empirically tuned misclassification penalties for positive and unlabeled samples, 𝐶  

and 𝐶 , where 𝐶 > 𝐶 . During training, random samples of size 𝑛  and 𝑛  are drawn 

from 𝑷  and 𝑼 , respectively, and 𝐶  is determined using a model hyperparameter, 𝑤  

according to 

 

𝐶 =
𝐶 𝑤 𝑛

𝑛
.  (2.11) 

 

Another hyperparameter, 𝛾, controls the radial basis functions during the optimization. The 

hyperparameters are tuned using a grid search, starting from the suggested values in 

Ref. [25]. Similar to the approach outlined above, RESVM builds an ensemble of models, 

with individual models predicting scores for samples they have not been trained on. This 

ensemble approach reduces the bias of individual models and prevents overfitting. The 

final score for an unlabeled sample 𝑥  is obtained by aggregating the scores from the 

ensemble and using majority voting. The fraction of positive votes is given by 

 

𝑣(𝑥) =
1

2
+

1

𝑛
𝑠𝑔𝑛 𝜓 (𝑥) ,  (2.12) 

 

where 𝑛 is the number of SVM models and 𝜓  is the decision function of i-th model. As 

above, 𝑣 > 0.5 is assigned a positive label, while 𝑣 < 0.5 is assigned negative. 
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2.2.3 k-means clustering 

k-means clustering [30] is a standard “unsupervised” machine learning method, where 

samples are not labelled in any way, and the algorithm’s goal is to identify clusters of 

similar samples. It is a simple but powerful technique to quickly group data, especially 

when labelling is impractical or impossible. Samples are described by vectors of features, 

and the algorithm partitions the samples into k clusters based on the distance between each 

sample and the mean of the cluster. This is stated mathematically as 

𝑎𝑟𝑔𝑚𝑖𝑛 |𝒙 − 𝝁 | = 𝑎𝑟𝑔𝑚𝑖𝑛 |𝑆 | 𝑉𝑎𝑟 𝑆  (2.13) 

where 𝒙 is the set of feature vectors, 𝑆  is the i-th set of samples, and 𝝁  is the mean of 

samples in 𝑆 . This minimizes the variance within each cluster, or equivalently minimizes 

the pairwise deviations between points within each cluster. 

 The basic implementation of naive k-means randomly chooses k observations and 

uses their means to initialize k clusters. Then, the samples are iterated through, assigning 

each one to the cluster its mean is closest to, and then updating the cluster mean (centroid) 

values. The procedure is repeated until the sample assignments do not change, but this is 

not guaranteed to find optimal clusters. In practice, there are more sophisticated 

initialization schemes that accelerate convergence, and testing must be done to identify the 

true number of clusters that best describes the data set, if this is not known a priori.  

 

2.2.4 Cluster expansion 

To compute thermodynamic properties for alloys and disordered solid solutions, we 

combine first-principles DFT calculations with an ML-like representation of alloy 

energetics called cluster expansion [31]. Cluster expansion enables the prediction of the 

energy for any configuration, based on calculated energies of a small number of known 

configurations (< 50). In the simple case of a binary alloy defined by a parent lattice, each 

site in the lattice has an occupation variable 𝜎 , where 𝑖 𝜖 {1, −1} and depends on the type 
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of atom occupying the site. This spin-like representation allows any alloy configuration to 

be represented by a vector of spins, 𝜎. The cluster expansion is a parameterization of the 

energy per atom of the alloy as a polynomial in 𝜎 : 

𝐸(𝜎) = 𝑚 𝐽 〈 𝜎 〉 (2.14) 

where 𝛼  is a set of sites i (a cluster), 𝐽  are the effective cluster interaction (ECI) 

coefficients, and 𝑚  are the multiplicities. The sum is over all clusters that are not 

symmetrically equivalent under an operation of the space group of the parent lattice, and 

the average is taken over all clusters 𝛼′  that are symmetrically equivalent to 𝛼 . The 

multiplicity is the number of clusters equivalent to 𝛼 divided by the number of lattice sites. 

 The cluster expansion converges rapidly, such that usually sufficient accuracy can 

be achieved only by including short-range pair and small triplet interactions. 𝐽  values are 

obtained by fitting to a small number of configurations. We use the cluster expansion 

construction as implemented in the MIT Ab initio Phase Stability (MAPS) code [32] 

included in the Alloy Theoretic Automated Tookit (ATAT) package [33]. 

  

2.3 Results 

2.3.1 Dataset preparation 

With the PU learning model introduced above, the challenge is two-fold: 1) identify trends 

in synthesized materials and predict new synthesizable materials; and 2) validate these 

predictions. First, although the mathematical details of the model are presented above, we 

will discuss the particulars of applying the method to a particular materials problem. 

Setting up the problem involves identifying a suitable family of materials that has enough 

chemical diversity to provide ample not-yet-synthesized unlabeled samples and an 

adequate number of synthesized examples for training.  

The family of 2D transition metal carbide and nitride MXenes and their parent bulk 

MAX phases are ideal for this purpose. MXenes have the general formula Mn+1XnTx (n = 
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1-4) and MAX phases are layers of MXene interleaved with A-group elements. With the 

large variety of chemical compositions, solid solutions, number of layers, and variable 

surface chemistry, MXenes provide a huge chemical search space for ML models. More 

than 20 theoretically predicted MXenes have been successfully synthesized [34]. The space 

of accessible solid solutions is so vast that for this initial work we restrict the search to the 

66 single M atom MXenes and their 792 MAX phase precursors. At the time this work was 

completed, 63 MAX phases and 10 single M MXenes had been reliably synthesized. 

Having defined the search space and ML problem, the next task is to acquire a 

dataset. In order to make a predictive model, we need to provide descriptors that are linked 

in a non-trivial way to synthesizability. If the connection was trivial, we could exploit it 

simply guess which materials should be synthesized next. Of course, there is no such trivial 

predictor, which motivates the use of machine learning. Still, we can use our physical and 

chemical intuition and understanding of MAX and MXene synthesis to suggest useful 

descriptors that should be collected. MXenes are synthesized via chemical etching of MAX 

phase, which exploits the reactivity of the metallic M-A bonds compared to the more inert 

M-X bonds [35]. Acidic solutions are used to selectively etch the A layer, which is almost 

always aluminum. Empirically, it has been observed that MAX phases with larger n and 

heavier M atoms require longer etching times and stronger solutions, which may be related 

to the number of valence electrons [36]. Based on these observations, we might expect 

certain descriptors to be of particular importance: features related to bond strengths like 

interlayer distances, bond lengths, and charge distributions; atomic masses and number of 

layers; and of course, thermodynamic data related to enthalpies of formation. To 

characterize each material, we collect exhaustive information on its structural and chemical 

properties from elemental data, as well as DFT-derived properties. DFT calculations for 

each material were used to obtain interlayer distances, bond lengths, formation energies, 

and charge densities. Over 80 features were collected to describe each material. 

To evaluate the internal model performance, the true positive rate (TPR) is defined 

as the percentage of correctly classified samples according to the metric 
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𝑇𝑃𝑅 =
1

𝑅

1

𝐾
𝑇𝑃𝑅 , ,   (2.13) 

 

where 𝑅 is the number of total model training repetitions and 𝐾 is the number of splits. The 

TPR is computed first from the predictions of out-of-fold validation samples, then averaged 

over all k folds, and finally averaged over all the model training cycles. The model training 

is repeated for both MAX and MXene, varying the number of repetitions, bagging size, 

and number of splits systematically while holding the other two at a sufficiently large value. 

Once the models have been internally tested as much possible and “converged” with 

respect to these three hyperparameter values, we examine the maximum TPRs and begin 

model interpretation. 
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Figure 2.2 Model feature importance graphs for (a) MAX and (b) MXene models. 

Reprinted with permission from [29]. 

2.3.2 Model evaluation 

 The graphs in Figure 2.2 show the top 50 most important features for the MAX and 

MXene models. The feature importance reveals how useful each feature is in determining 

the synthesizability of samples. For the MAX phases, the five most important features are 

the formation energy, number of layers, M atom Bader charge, system mass, and cohesive 

energy. The X atom Bader charge, M atom ionization potentials, and c lattice constant are 

also among the 10 most important features. These features encode information about 

thermodynamic stability and strength of the M-X bond, which is in line with our chemical 

intuition. Feature importance for the MXene model is also consistent with empirical 
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observations. The most important features include M−X bond length, cohesive and 

formation energies, per-atom mass, and the Bader charges for the M and X atoms. Again, 

strength of the M−X bond and the overall thermodynamic stability are of paramount 

importance. Interestingly, the simple metric of number of M atom valence electrons is not 

important, although this feature is generally highly correlated with the M atom Bader 

charge; previous experiments have suggested this feature is strongly tied to synthesis 

success [37]. 

 The trained models predict that 111 of the 729 unlabeled MAX phases are 

synthesizable. This reduces the chemical search space for MAX synthesis to 17% of its 

original size, significantly narrowing the search for new viable materials, while still 

providing many candidates and plenty of chemical variety to explore. We find ten of the 

11 possible M species are represented – no compounds containing W were predicted 

positive, but W may be stabilized in solid solutions. All 12 possible A species and all three 

n = 1, 2, 3 layer thicknesses are also accounted for. Nitrides account for 29 predicted 

positives, including Mn2AlN, although no Mn-based MAX phases have been successfully 

synthesized as of yet. We emphasize the nitride and Mn-based compounds due to the 

possibility that they might be precursors for MXenes with superior magnetic properties, 

for which no parent phases are currently available. 

 To evaluate the model’s predictive power, beyond the internal hyperparameter 

tuning and cross-validation, we consider three physics-informed stability tests: 1) 

thermodynamic, 2) dynamical, and 3) binary-phase. 87% of predicted positives are “viable 

crystals,” satisfying the thermodynamic criterion of negative heat of formation (compared 

to most stable unary phases of constituent elements) and the Cauchy-Born elastic stability 

criteria [38]. We further tested the phase stability of predicted positive M2AX compounds 

against their competing binary phases using the MaterialsWeb [39] database. 89% of the 

predicted positives are stable or metastable by this criterion. These physical tests of crystal 

stability give confidence that the model predictions are based on relevant physical and 

chemical data and are therefore able to capture the underlying factors that determine 

synthesizability. 
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2.3.3 Synthesizability predictions 

Of the 56 unlabeled MXenes, 18 are predicted positive by the model and these 

compounds are listed in Table 2.1. Fourteen of the 18 have formation energies below 200 

meV/atom, so they are considered stable by the general threshold for 2D material 

stability [40]. The four unstable systems (W4C3, Ta2C, W3C2, and Mo4C3) may be 

stabilized by surface functionalization or as solid solutions; W and Mo in particular are 

known to be stabilized with alloying of other elements [41]. As a further check, we find 

that 16 of the compounds have medium or high elastic stability reported in the 

Computational 2D Materials Database (C2DB) [42]. 

 

Table 2.1 Predicted synthesizable single-M MXenes. 

Hf4C3 Sc2C Zr4C3 

Ta4N3 Ta3C2 Sc4C3 

Sc3C2 Ti4C3 Mo4C3 

Nb3C2 W3C2 Ti2N 

Ta2C W4C3 Hf4N3 

Zr2C Hf2C Nb2N 

 

  The model predicts many synthesizable systems that do not have close analogs in 

the set of already available materials, including Ta, Hf, and Nb nitrides, as well as Sc- and 

W-based MXenes. To access these compounds (for which no MAX precursors exist), 

ongoing research is being done on nanolaminated ternary phases like (W, Ti)4C4-x [43] and 

other alloys.  

The scaled errors of machine learning model predictions decrease with increasing 

sample size. Data sets for machine learning in materials science typically use between 100 

and 104 training samples [44]. Additionally, traditional k-fold cross-validation is overly 

optimistic when evaluating materials discovery machine learning models, because 

materials data sets are often skewed and the goal is to detect materials with anomalous 

characteristics or performance [45]. With these points in mind, it is particularly important 
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and necessary in this study to compare the model predictions to external measures of 

validation like experiments, especially because of the small number of available samples 

in this study.  

With this in mind, next we test our model predictions against experimental 

observations by comparing the MXenes that are predicted to be difficult to synthesize to 

compounds for which we have unsuccessfully attempted synthesis. The lack of available 

MAX phase precursor is responsible for the lack of success in synthesizing many MXenes. 

For example, there are no reported MAX phase precursors for Hf3N2, Cr3C2, Cr3N2, or 

Mo3N2. Even when MAX phases do exist, the attempted wet-chemical etching in 

hydrofluoric acid (HF)- containing aqueous solutions is not always successful. Although 

the Cr2AlC MAX phase has been available for many years [46], all attempts to make Cr2C 

via HF etching have been unsuccessful. To our knowledge, no selective etching of Al is 

observed for any concentration of HF; instead, the MAX phase powder is dissolved [47]. 

This suggests that Cr2C is unlikely to be synthesized by the HF route. Similarly, Ti4N3 

dissolved in HF, but it was synthesized via molten salt etching [48]. However, molten salt 

etching has not been successful for Cr2C (not published). These experimental findings 

agree with our predictions that materials with low synthesizability scores are difficult to 

synthesize. Indeed, Cr2C has a low synthesizability score of 0.25. Generally, many nitride 

MXenes have low scores, which also agrees with experimental observations that these 

compounds tend to dissolve in solution or simply do not have available precursors. 
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Figure 2.3 Violin plots of synthesis probabilities as a function of atomic species. Nitrides 

are shown in blue, carbides are shown in green. MAX phase synthesizability versus (a) M 

atom and (b) A atom. (c) MXene synthesizability versus M atom. Reprinted with 

permission from [29]. 

 

 We can examine the model predictions across constituent atomic species to identify 

broad trends in synthesizability. Figure 2.3 shows violin plots of the synthesis probability 

distributions. Distributions for carbides (green) are always equal to or higher than for 

nitrides (blue), which is expected because less than 15% of successfully synthesized MAX 

phases are nitrides. The lack of synthesized nitrides certainly biases the models towards 

carbides, but it also underscores the importance of identifying synthesizable nitrides to 

unlock new areas of chemical space. Most of the violin plots show a larger distribution at 

lower synthesizability, and smaller distributions at higher values. This also agrees with 
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intuition from empirical results, which suggest that most of the not-yet synthesized 

compounds are more difficult to synthesize. 

 There is an apparent trend of decreasing synthesizability in the MAX phases with 

increasing M atom group number, such that group 4 Ti-, Zr-, and Hf-based compounds 

have much higher synthesizability than group 6 Mo- and W-based compounds. The A atom 

dependence is less clear, with scores spreading out over large ranges. It is clear that 

MXenes with V, Mn, and Cr have the lowest synthesizability, although this may be an 

artifact because compounds with strongly correlated 3d block electrons are likely to be 

magnetic, which was not accounted for in the calculations. We also find that synthesizable 

MAX phases have Bader charges that are ~2 e- less on the M atom than those that are 

predicted negative. This agrees with experimental observations that heavier M atoms with 

more valence electrons require stronger etching conditions and are more difficult to 

synthesize. 

 To overcome the relative scarcity of available data, we take advantage of the fact 

that these systems come as (MAX, MXene) pairs that can be treated as individual 

(precursor, 2D material) samples. By considering the 111 predicted positive MAX phases, 

we generate 111 (MAX, MXene) pairs and try to identify the most promising synthesis 

pathways, where novel MAX and MXenes may be synthesized together. A simple 

descriptor that characterizes chemical etching is the static exfoliation energy [49], which 

is defined as 

𝐸 =
𝐸 − 2𝐸 − 2𝜇

4𝑆
 (2.14) 

where 𝐸  is the total energy of the MAX phase, 𝐸  is the energy of a MXene unit cell, 

𝜇  is the chemical potential of the A atom referenced to its most stable unary phase, and 

𝑆 =
√  is the surface area, with a the MAX phase in-plane lattice constant. For simplicity, 

we neglect surface terminations, which are known to affect MXene formation and etching 

energies [40]. The etching energy is used along with the MAX and MXene predicted 

synthesizability scores as inputs to k-means clustering in order to group (MAX, MXene) 

pairs and identify clusters of highly synthesizable, novel precursors and 2D materials. 
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Figure 2.4 k-means clustering of (MAX, MXene) pairs. Predicted positive samples are 

shown in light green, predicted negative samples are orange, and the top 20 predicted 

positive samples are in dark green. Three representative samples are highlighted. Reprinted 

with permission from [29]. 

 

 In Figure 2.4 we plot the clusters with the etching energy on the z-axis to aid the 

visualization. With clustering, we identify 20 pairs of not-yet-synthesized MAX phase and 

corresponding MXene that can both be synthesized with high probability. At the time this 

work was published, only A = Al MAX phases had been successfully etched into MXenes, 

but in line with our predictions, MAX phases with Ga and Si A layers have been 

successfully etched [50]. This provides further guidance to experiment, suggesting that of 

the 111 predicted positive MAX candidates, these 20 have the best possibility of also being 

chemically etched into new MXenes. 

 

2.3.4 Characterizing electronic properties 
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 Next, we will briefly discuss efforts to synthesize new MAX and MXene materials, 

as well as characterize their electronic structure, with the goal of understanding 

fundamental material properties that enable rational design strategies discussed in the next 

chapter. Recent success in synthesis has yielded the first n = 4 MAX phase, Mo4VAlC4 and 

2D Mo4VC4 with five atomic layers of transition metal [41]. This material is a disordered 

solid solution that possibly crystallizes in a structure never before seen in MAX phases. 

This unlocks the possibility for new M’4M’’AlC4 phases with different transition metals. 

 

Figure 2.5 Calculated formation energies for M’4M’’AlC4 phases. (a) Comparison between 

ordered and disordered Mo4VAlC4 structures. (b) Ordered M’4M’’AlC4 formation 

energies. Reprinted with permission from [41].  

 DFT calculations were used to determine the stabilities of O-, F-, and OH- 

terminated Mo4VC4, 18 quasirandom solid-solution configurations of Mo4VAlC4, as well 

as an ordered configuration with one layer of V sandwiched between four layers of Mo 

(two layers of Mo on each side). Each of these phases were predicted to be stable, with Oh-

termination the most favorable for the MXene, in agreement with experimental results. For 

Mo4VAlC4, there are solid-solution configurations that are more stable than the ordered 

configuration, suggesting that Mo4VAlC4 is a solid-solution. The most stable solid-solution 

configuration that we calculated had a and c lattice parameters of 3.04 and 28.52 Å, 

respectively. This agrees well with our experimental results obtained with X-ray diffraction 
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(a = 2.99 and c = 28.22 Å). DFT calculations were also performed to determine the 

thermodynamic stability of other M5AlC4 MAX phases. The formation energies of ordered 

compositions were calculated where M’ and M’’ were Hf, Zr, Ti, Ta, Nb, V, Sc, Mo, and 

W. A summary of the predicted stability of these phases is shown in Figure 2.5(b). It is 

expected for many of the compositions that there may be at least one solid-solution 

structure that is more stable than the compositionally equivalent ordered structure. We 

present calculations for ordered MAX structures as a simple exploration of stability trends.  

 Interestingly, other phases containing Hf, Zr, and Ta, are predicted to be more stable 

than the synthesized Mo4VAlC4. The effect that the M’ element has on the stability was 

determined to be much greater than that of M’’. W- and Mo-containing compositions are 

the least stable and are the only two M’ elements that produce some unstable compositions. 

For both Mo- and W-based MAX phases specifically, it is known that Mo and W avoid 

stacking with C in a face-centered cubic structure (FCC) [51], so alloying with another 

element that occupies some of the FCC sites relieves stress in the crystal. These 

calculations also show that most of the M elements can achieve higher stability when they 

are combined with another M element. The only exception to this is Hf which is most stable 

when M’ = M’’. Higher stability occurs when Hf, Zr, Ti, and Ta are the M’ or M’’ element. 

This agrees with other studies where these elements were predicted to stabilize MAX 

phases [52], and the lower formation energies were correlated with the difference in ionic 

radius between the M atoms [39]. 

To thoroughly explore the configuration space of the Mo4VAlC4 system, we 

performed cluster expansion calculations around the concentration xMo = 0.8. The 

converged ground-state solid-solution structure has an energy 15.8 meV/atom lower than 

the ordered symmetric phase. The low energy structures generated during the cluster 

expansion calculations show that V avoids the middle layer in solid-solution. In this 

composition range, V prefers to occupy layers 2 and 4 in order to maximize the number of 

favorable Mo−V bonds and stabilize the crystal structure. Based on the crystal structure 

observed with transmission electron microscopy (TEM), we considered a nontypical MAX 

phase structure: Mo4VAlC4 with P6̅m2 symmetry, rather than the traditional P63/mmc 
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space group [53], because this space group exhibits a herringbone-type structure like that 

observed with TEM. Mo4VAlC4 with P6̅m2 symmetry also prefers a disordered solid- 

solution, with a solid-solution ground-state energy that is 67.8 meV/atom lower than the 

ordered, symmetric phase. The low energy structures exhibit the same Mo-rich middle 

layers. Interestingly, the ground state in the P6̅m2 geometry is 31.8 meV/atom lower in 

energy than the ground state in the P63/mmc geometry. This indicates that further study, 

both experimentally and theoretically, is required to confirm the structure of Mo4VAlC4 

and other theoretically predicted quaternary M5AlC4 phases. However, the disordered 

structure and Mo-rich inner layer are independent of the space group. 

The disordered structure and surface chemistry of MXenes makes it something of 

a challenge to correlate experimental observations with theoretical predictions. However, 

by systematically investigating four Ti-based MXenes, Ti2CTx, Ti3C2Tx, Cr2TiC2Tx, and 

Mo2TiC2Tx, we are able to map out their most fundamental electronic structures and 

identify robust properties and resolve contributions of individual species to electronic 

properties. 

  

Figure 2.6 Densities of states and band structures of Ti-based MXenes. Ti unoccupied d-

orbital PDOS for (a) surface Ti2AlC / Ti2CTx, (b) surface and sub-surface Ti3AlC2 / 

Ti3C2Tx, and (c) sub-surface Cr2TiAlC2 / Cr2TiC2Tx. Reprinted with permission from [54]. 

(d) Band structure for Ti3C2O2 (O occupying bridge site) and Ti3C2F2 (F occupying A site). 

Reprinted with permission from [55]. 
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 In Figure 2.6(a-c), we present the Ti d-orbital-derived partial density of states 

(PDOS) above the Fermi level (EF) (the region of electronic structure probed by X-ray 

Absorption Spectroscopy (XAS))for three types of MAX phases (Ti2AlC, Ti3AlC2, and 

Cr2TiAlC2) and the corresponding O- and F-terminated MXenes. The PDOS of surface 

layer Ti atoms in MXenes is systematically shifted to lower energies compared to the MAX 

phase, which is qualitatively reproduced in XAS measurements. New peaks also emerge 

depending on the surface termination, while these effects are not seen for sub-surface Ti 

atoms.  

Similarly, to probe the occupied states in MXenes, we performed exhaustive hybrid 

functional calculations of band structures of Ti3C2Tx with O, F, and OH terminations in 

four different high symmetry sites on the MXene surface: bridge, top, FCC (A), and 

hexagonal close packed (HCP-B) for a total of 12 band structures. By closely comparing 

the calculated band structures and comparing them to angle-resolved photoemission 

spectroscopy (ARPES) measurements, we identified signatures in the calculated band 

structures that reveal the surface chemistry and structure of MXene. Low-lying bands from 

F at FCC sites and dispersive features due to O at bridge sites (Figure 2.6(d)) were found 

in the ARPES measurements and used to determine the electronic structure-property 

relationship. By closely comparing first principles electronic structure calculations with 

XAS and ARPES measurements, we have mapped out the full band structure of Ti-based 

MXenes. Based on these results, we propose that sub-surface M atoms are robust to the 

disordered MXene surface chemistry and n > 1 MXenes can be engineered with sub-surface 

layers to display surface invariant electronic and magnetic properties. 

 

2.4 Conclusions 
We adapted positive and unlabeled machine learning to predict the synthetic accessibility 

(synthesizability) of novel bulk and 2D materials. We applied the method to the model 

materials system of 2D transition metal carbides and nitrides (MXene) and their bulk phase 
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precursors (MAX). The large dimensionality, chemical variety, and numerous successfully 

synthesized materials in this family makes these systems ideal for a machine learning 

study. Elemental data and density functional theory calculations were used to featurize 

each material and extensive testing was performed to optimize model hyperparameters and 

avoid overfitting. Our implementation of transductive bagging with decision tree base 

classifiers provides easily interpretable synthesizability scores between 0 and 1, and 

analyzing the results revealed that the trained models used features related to 

thermodynamics, bond strength, and charge distribution to make predictions, consistent 

with our physical and chemical intuition, as well as empirical observations. The model 

predicted 111 new MAX phases and 18 new single M MXenes to be synthesizable. We 

also identified the 20 most promising MAX phases that can also be chemically etched into 

new MXenes with high probability. We discussed the synthesis, structure, and stability of 

disordered Mo4VAlC4 MAX and Mo4VC4 MXene, the first MXene with five atomic layers 

of transition metal, and our predictions that many other M’4M’’AlC4 solid solution phases 

are synthetically accessible. With the aim of bringing new functionality to 2D materials, 

we presented detailed studies of electronic structure in Ti-based MXenes and direct 

comparison to experimental band structure and x-ray absorption measurements. This work 

further bridges the gap between theoretical materials design and experimental realization 

of novel 2D materials. 
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Chapter 3                              

Rational design of 2D magnetic 

materials 
Reprinted (adapted) with permission from 

H. Kumar, N. C. Frey, L. Dong, B. Anasori, Y. Gogotsi, and V. B. Shenoy, ACS Nano 11, 

7648 (2017), 

N. C. Frey, H. Kumar, B. Anasori, Y. Gogotsi, and V. B. Shenoy, ACS Nano 12, 6319 

(2018), and 

N. C. Frey, A. Bandyopadhyay, H. Kumar, B. Anasori, Y. Gogotsi, and V. B. Shenoy, 

ACS Nano 13, 2831 (2019). 
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3.1 Introduction 
Magnetism in the monolayer limit has become a vibrant playground for exploring 

condensed matter physics phenomena, following the experimental realization of long-

range magnetic order in monolayer chromium triiodide [56], atomic layers of 

Cr2Ge2Te6 [8], and VSe2 on van der Waals substrates [57]. In this chapter we introduce 

models to describe magnetic behavior in 2D and exploit this understanding to rationally 

design 2D magnetic materials with tunable, externally addressable spin states. We explore 

magnetic ordering in transition metal nitride MXenes and show how the chemical degrees 

of freedom in these systems allow for tunable magnetic anisotropy and spin symmetries. A 

strategy for reversibly switching 2D magnetic order with applied electric fields is proposed 

and rationalized with a simple macroscopic strain-response model.  

 

3.2 Methods 

3.2.1 Crystal field theory 

Group theory is a powerful formalism used in condensed matter physics to describe 

physical systems based purely on symmetry considerations. For magnetic materials with 

strongly correlated electrons in localized d and f orbitals, group theory governs how the 

degeneracies of these orbitals split due to the presence of the external potential in a crystal 

lattice. The resulting crystal field, determined by the coordination environment of an atom 

in a crystal, gives states and degeneracies that are labeled by the irreducible representations 

of the symmetry group of Schrödinger’s equation. The exact energy splittings due to a 

crystal field must be calculated (usually by a first-principles method), but the energy level 

degeneracies are specified exactly by the point group symmetry of the atom in the crystal 

field [58]. Physically, we interpret the degeneracy breaking as a consequence of orbital 

overlap between d orbitals and the resulting repulsion, which raises the energy of orbitals 

closer to neighboring ligand atoms. 
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 Most commonly, metal ions are coordinated in an octahedral environment, 

surrounded by six ligand atoms that form an octahedron. The Oh point group symmetry 

breaks the d-orbital degeneracy into low-lying dxy, dxz, and dyz orbitals labeled t2g and higher 

energy dz
2 and dx

2
- y

2 orbitals labeled eg. Depending on the competition between the crystal 

field energy splitting, Δ , and the Coulomb repulsion, the system will settle into either a 

high- or low-spin configuration. If Δ  is large, electrons will pair in the low-lying orbitals 

and there will be a reduced net magnetic moment (low-spin configuration). Likewise, if the 

energy cost of Δ  is small compared to the cost of doubly occupying an orbital, a high-

spin complex is formed. This simple picture gives an intuitive understanding of electronic 

structure in magnetic materials, although the details of the energetics that precisely 

determine magnetic behavior are materials-specific. 

   

3.2.2 Hubbard model and spin-orbit coupling 

Magnetism arises from correlations between electrons in materials, and so the single-

particle picture of Kohn-Sham DFT breaks down when dealing with magnetic materials. 

The simplest description of interacting fermions in a lattice is the Hubbard model: 

𝐻 = −𝑡 𝑐 ,
∗ 𝑐 , + 𝑐 ,

∗ 𝑐 ,

,

+ 𝑈 𝑛 ↓𝑛 ↑   (3.1) 

where 𝑡 is the hopping parameter, 𝑐 ,
∗  and 𝑐 ,  are the creation and annihilation operators 

for the i-th site and spin 𝜎, 𝑈 is the on-site interaction, and 𝑛 = 𝑐 ,
∗ 𝑐 , . The first term is 

a kinetic energy term that accounts for electron hopping between lattice sites, while the 

second is a potential term that represents Coulomb repulsion. The Hubbard model is an 

extension of the tight-binding model (discussed in detail in section 5.2.1 of this thesis) and 

so the same approximations and limitations are relevant. Importantly, the on-site term 

introduces repulsive Coulomb interactions between particles of opposite spin on lattice 

sites. Taking limits, if 𝑈/𝑡 ≫ 1, the model describes isolated magnetic moments, while if 

𝑈 → 0, we recover the tight-binding model. 
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 The Hubbard model is incorporated in DFT following Dudarev’s approach [59] in 

which an effective 𝑈 = 𝑈 − 𝐽 parameter is introduced to account for on-site Coulombic 

(𝑈) and on-site exchange (𝐽) interactions. The DFT+U method modifies the DFT total 

energy with the term 

𝑈

2
𝑇𝑟(𝜌 − 𝜌 𝜌 ) (3.2) 

where 𝜌  is the atomic orbital occupation matrix. This is a sort of penalty term that 

enforces on-site occupation. Practically, 𝑈  is a tunable, materials- and orbital-specific 

parameter that localizes d- and f-orbital electrons with increasing magnitude. 

 The essential ingredient for describing magnetism in 2D materials is spin-orbit 

coupling (SOC). SOC is a relativistic interaction between electron spin and the electrostatic 

field of the nucleus. In the frame of the electron, there is an effective magnetic field, 𝑩, 

that gives rise to an energy splitting given by 

Δ𝐻 = −𝝁 ⋅ 𝑩  (3.3) 

 where 𝝁 = −𝑔 𝜇 𝑺/ℏ is the spin magnetic moment of the electron with 𝑔 , 𝜇 , and ℏ the 

g-factor, the Bohr magneton, and Planck’s constant, respectively. The 𝑩  field can be 

expressed in terms of a central potential 𝑈(𝑟) , such that 𝑩 ~
( )

𝑳, where 𝑳  is the 

angular momentum of the electron. The total spin-orbit energy shift is reduced by half due 

to Thomas precession, but the important result is that Δ𝐻 ~
( )

𝑳 ⋅ 𝑺. This splitting, 

although usually on the order of meV in most crystals, results in important symmetry 

breaking in orbital energy levels. For example, materials with both SOC and broken 

inversion symmetry 𝒫 experience a momentum-dependent Rashba or Dresselhaus splitting 

of the spin bands (which can be naively understood as electron spins interacting with an 

effective field resulting from inversion symmetry breaking). 

 In magnetic crystals, the orbital motion of electrons couples to the crystal field and 

gives rise to SOC-induced anisotropy. This results in preferential directions (so-called 

“easy axes” or “easy planes”) for magnetic moments to orient along. In two dimensions, 

this anisotropy enables spontaneous magnetization to occur, lifting the restrictions imposed 
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by the well-known Mermin-Wagner theorem [60], which states that continuous 

symmetries cannot be spontaneously broken at finite temperatures in dimension 𝑑 ≤ 2 in 

the presence of short-range interactions. In such systems, long-wavelength fluctuations 

destroy long-range ordering. In spin systems, these fluctuations are gapless Goldstone 

modes called magnons (spin waves) – collective excitations of the spin lattice. However, 

SOC introduces a spin wave gap in 2D systems that allows for long-range magnetic order.  

 

3.2.3 Heisenberg model and Monte Carlo 

The usual model for systems of localized spins is the Heisenberg Hamiltonian [61]: 

𝐻 = −
1

2
𝑆 𝐽 𝑆 − 𝛾 (𝑆 ) −

1

2
𝐵 𝑆 𝑆   (3.4) 

where 𝐽  is a second rank tensor that parameterizes the exchange coupling between sites 

𝑖 and 𝑗, 𝑺  is the spin operator on site 𝑖, 𝛾  is the single-ion anisotropy parameter, and 𝐵  

is an anisotropic exchange coupling. 𝐽  is a 3 x 3 tensor with diagonal terms giving the 

isotropic exchange coupling between sites, an anti-symmetric part giving the 

Dzyaloshinkii–Moriya interaction (DMI), and symmetric off-diagonal Kitaev interactions. 

For simplicity, Eq. 3.4 assumes that anisotropic exchange occurs between spins oriented in 

the z-direction and isotropic in-plane interactions. Because the DMI and Kitaev interactions 

are usually dominated by the exchange and anisotropy terms, they are typically neglected 

in determining macroscopic quantities like Curie ( 𝑇 ) and Néel ( 𝑇  )  transition 

temperatures, such that the exchange tensor reduces to a scalar coupling 𝐽 . Similarly, in 

the classical Heisenberg model the spin operator is approximated as a classical vector spin. 

The parameters in Eq. 3.4 are then obtained by mapping the model to different magnetic 

orderings and calculating their energies via first-principles methods. 

 To determine the critical temperature of the phase transition to a paramagnetic state, 

Monte Carlo simulations are performed. A lattice with periodic boundary conditions is 

initialized in some spin configuration. At each temperature 𝑇, spins are randomly flipped 
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with probability 𝑃 ~ exp (− ), where Δ𝐸 is the difference in energy after the move, 

according to the Heisenberg Hamiltonian. Many Monte Carlo moves are performed at each 

temperature to equilibrate the system, then more moves are performed to sample the 

ensemble properties of the system at that temperature. 

 For certain classes of systems, expressions exist for the transition temperature that 

are fit from Monte Carlo results and (in the case of 2D ferromagnets) renormalized spin 

wave theory [62]. Starting from the mean field expression 𝑇 = 𝑆 𝐽𝑇 /𝑘 , where 

𝑇  is the Curie temperature of the corresponding 2D Ising system (1.52, 2.27, and 3.64 

for the honeycomb, square, and triangular lattices, respectively), the expression is modified 

by a fitted function that depends on the spin wave gap Δ = 𝐴(2𝑆 − 1) + 𝐵𝑆𝑁. 𝑁 is the 

number of nearest neighbors and Δ can be interpreted as the minimum energy required to 

excite a magnon. A finite spin wave gap (finite magnetic anisotropy) is then a requirement 

to obtain out-of-plane magnetization in 2D. Note that in the factor (2𝑆 − 1), the −1 is a 

quantum correction in the renormalized spin wave theory which guarantees that anisotropic 

exchange is required to gap the spin wave spectrum for 𝑆 = 1/2.   

 

3.2.4 Strain-response model for 2D magnets under applied electric field 

In Ref. [63] we developed a simple macroscopic model to describe how quasi-2D magnetic 

materials respond under an applied electric field, 𝑬. Consider a monolayer with some finite 

out-of-plane extent and broken inversion symmetry, such that there exists a dipole moment, 

𝒑. Under small applied fields (< 1 V/nm), as the field strength increases from zero, strain 

is induced, and the out-of-plane bonds will stretch or compress. There is a dipole potential 

energy 𝛽𝒑 ⋅ 𝑬  and a corresponding induced strain energy 𝜇𝜀 , where 𝛽  and 𝜇  are 

constants and 𝜀 is the strain. In the regime of small fields, the dipole moment increases 

linearly with strain and the dipole potential energy can be expressed as 𝒑 ⋅ 𝑬 =

(𝑝 + 𝜒𝜀)𝐸 , where 𝑝  is the magnitude of the zero-field dipole moment and 𝜒  is a 
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constant. Equating the two energies and ignoring trivial constants gives the simple 

expression 

𝜀 =
2𝜒𝛽

𝜇
𝐸  (3.5) 

So it is clear that under small applied fields, there is a linear relationship between the field 

magnitude and the induced strain in 𝒫 -broken monolayers. This relationship can be 

exploited to control the structural degrees of freedom in these monolayers and tune the 

exchange and superexchange interactions that govern magnetic behavior, as will be seen 

in the discussion below. 

 

3.3 Results 

3.3.1 Simple model for magnetism 

Briefly, we will discuss the application of crystal field theory to predict and rationalize 

magnetic behavior in 2D transition metal nitride MXenes. The goals are to present a general 

picture of the physics of magnetism in MXenes and to use that understanding to identify 

and engineer MXenes with intrinsic, tunable, and robust ferromagnetic (FM) and 

antiferromagnetic (AFM) ground states. Although magnetism has been predicted in many 

MXene systems [64], we focus on nitride MXenes of the form M2NTx (M = Ti, V, Cr, Mn; 

T = F, OH, O) in particular because the extra electron compared to the carbides leads to 

favorable magnetic properties. By considering Ti, V, Cr, and Mn, we cover the full range 

of accessible electronic configurations.  
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Figure 3.1 Top view of an octahedrally coordinated transition metal atom in a MXene 

(left) and electron configuration of Cr2NF2 (right). Dashed arrow indicates electron may be 

localized on top or bottom Cr atom. Reproduced with permission from [65]. 

 

 The nonbonding d-orbitals involved in localized magnetic moments lie between the 

bonding and anti-bonding M-X and M-T bonds. For simplicity, we assume that all atoms 

are in their nominal oxidation states (C4−, N3−, O2−, F−, and OH−), such that bonding states 

are filled and anti-bonding states are unfilled. M atom d-orbitals are split into t2g and eg 

manifolds by the octahedral crystal field from neighboring N and T atoms. Figure 3.1 

shows the octahedral coordination and the resulting electron configuration in one example 

MXene, Cr2NF2. The two Cr atoms are left in Cr3+ and Cr2+ oxidation states, such that in a 

high-spin configuration there is a net magnetic moment of 7 𝜇 /formula unit. Different 

electron configurations can be achieved by modulating the M and T atoms, with the largest 

net moment (9 𝜇 /formula unit) due to Mn2NF2. DFT calculations confirm that this simple 

crystal field model and electron counting approach yields accurate predictions of the 

magnetic moment in FM systems. We identify five MXenes with robust FM ground states: 

Mn2NF2, Mn2NO2, Mn2N(OH)2, Ti2NO2, and Cr2NO2. Interestingly, due to the minority 

spins being tightly bound in the Mn2NTx systems, each of these exhibits strong FM half-

metallicity with wide minority spin gaps (up to 3 eV).  

The other considered MXenes exhibit either intralayer or interlayer AFM ordering, 

due to stronger contributions from AFM superexchange interactions. In the MXenes, 

double exchange mechanisms mediated along 90° M-T-M bonds promote delocalized FM 

moments to lower the kinetic energy, while virtual excitations of anti-parallel spins coupled 

across M-N-M bonds promote AFM ordering. Stronger AFM coupling is seen in materials 

with smaller, more localized moments (M = Ti, V, Cr; T = OH, F) while stronger FM 

coupling is generally seen in materials with larger, more delocalized moments (M = Mn, T 

= O). 
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3.3.2 Magnetic anisotropy 

With a basic understanding of ground state magnetic ordering in MXenes, we next 

turn a deeper exploration of the fundamental spin interactions in the FM nitrides. Due to 

the many degrees of freedom in choice of transition metal, layer thickness, and surface 

functionalization, it is possible to fine-tune desirable magnetic properties and anisotropy 

in 2D magnetic MXenes. In particular, spin-orbit coupling (SOC) mediated by the 

transition metal atom and electron localization via surface functionalization can be 

exploited to tune the spin symmetry and magnetic anisotropy energy (MAE) [66]. 

 

Figure 3.2 Schematic of M2NTx MXenes with high-symmetry axes highlighted. (a) Top 

view including in-plane high-symmetry axes. (b) Side view including out-of-plane high-

symmetry axes. Reproduced with permission from [66].   

 

 The MAE is defined as the energy difference between the system with spins aligned 

to the magnetic easy axis (lowest energy orientation) and a spin quantization axis �̂�(𝜙, 𝜃), 

where 𝜙  is the azimuthal angle and 𝜃  is the polar angle. For systems with hexagonal 

symmetry, the uniaxial anisotropy evolves according to the equation 

𝐸

𝑉
= 𝐾 sin 𝜙 + 𝐾 sin 𝜙  (3.6) 

where 𝐾  and 𝐾  are material-specific anisotropy constants and only even orders of the 

expansion survive due to rotational invariance. Positive values of the coefficients indicate 

Ising-like ferromagnetism and an out-of-plane easy axis. In general, ≫ 1 and higher-

order terms can be neglected. Figure 3.3a shows the evolution of MAE as �̂� rotates from 
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the easy axis (001), through the ac plane, to (100) in the Ising ferromagnet Mn2NO2. The 

MAE is fit to Eq. 3.6, confirming the Ising-like spin symmetry. The entire energetic 

landscape of the magnetization orientation was determined by computing the energy for 

finely discretized values of �̂� (Figure 3.3b), thereby identifying the out-of-plane easy axis. 

The MAE exhibits a strong dependence on 𝜙 and is nearly isotropic with respect to 𝜃. The 

MAE reaches a maximum value of 63 𝜇 eV/atom in the ab plane. With OH 

functionalization, the MAE decreases to 1.3 𝜇eV/atom and the polar dependence reflecting 

the 3-fold rotational symmetry is much more apparent. Cr2NO2 exhibits similar Ising-like 

qualities, with an MAE of 22 𝜇eV/atom. 

 

Figure 3.3 Magnetic anisotropy in the Ising ferromagnet Mn2NO2. (a) MAE energy as a 

function of azimuthal angle in the ac plane. (b) Spherical plot indicating higher MAE 

(lighter coloration and greater radial distance) as the spin quantization axis rotates away 

from the easy axis. (c) Electron localization function with isosurface value 0.05. 

Reproduced with permission from [66].  

 

 To further quantify the magnetic anisotropy, we define the dimensionless parameter 

𝛾 =
𝐸∥ − 𝐸

3(𝐽 + 2𝐽 )
  (3.7) 

where 𝐸∥, 𝐸 , 𝐽 , and 𝐽  are the energies with �̂� aligned parallel or perpendicular to the 

plane of the monolayer, and the interlayer (next nearest-neighbor) and intralayer (nearest-

neighbor) exchange couplings, respectively. With this parameter, we estimate the critical 

temperatures using a simplified anisotropic Heisenberg Hamiltonian 
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𝐻 = −𝐽 (1 − 𝛾) 𝑆 𝑆 + 𝑆 𝑆 + 𝑆 𝑆

〈 〉

.  (3.8) 

This model neglects single-ion anisotropy, but has been fit to Monte Carlo simulations of 

2D systems [67] to enable a simple estimation of 𝑇  and it has been shown that for small 

values 10 < 𝛾 < 10 , the 𝑇  values are comparable regardless of whether anisotropy 

is incorporated via single-ion or exchange mechanisms. We also find through DFT 

calculations that, due to the octahedral symmetry, the orbital moments are nearly 

completed quenched in all MXenes, so exchange anisotropy dominates any contribution 

from single-ion anisotropy. The MAEs, anisotropy constants, anisotropy parameters, and 

estimated 𝑇  values are given in Table 3.1. 

 

Table 3.1 Magnetic anisotropy energies, magnetic anisotropy parameters, and estimated 

Curie temperatures from anisotropic Heisenberg model and *XY model. Reproduced with 

permission from [66]. 

 

 In agreement with previous studies, even small finite amounts of anisotropy are 

sufficient to stabilize Ising-like ferromagnetism and yield a finite 𝑇 . 𝛾 ~ 𝑂(10 ) gives 

nonzero Curie temperatures, while smaller values (e.g. for Mn2N(OH)2) are insufficient to 

stabilize long-range order against thermal fluctuations. Importantly, these estimates neglect 

the longer-range FM exchange couplings in the MXenes and the higher coordination 

number in the bilayer-triangular lattice, so these values are underestimated. However, these 

order-of-magnitude estimates establish two promising Ising-like 2D ferromagnets in 

Mn2NO2 and Cr2NO2. 
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Figure 3.4 Magnetic anisotropy in the XY ferromagnet Mn2NF2. (a) MAE energy as a 

function of azimuthal angle in the ac plane. (b) Contour plot indicating higher MAE (lighter 

coloration) as the spin quantization axis rotates away from the easy plane. (c) Electron 

localization function with isosurface value 0.05. Reproduced with permission from [66]. 

 

 Motivated by this successful identification, we consider the Mn2N system and 

modify the surface functionalization to reduce the anisotropy and modify the spin structure. 

We find that F-functionalized Mn2N exhibits an easy plane with no energetic barrier to 

rotating spins within the plane, while there is an MAE barrier (2 𝜇eV/atom) to rotating 

spins perpendicular to the plane. The MAE as a function of rotation 𝜙 and the heatmap in 

Figure 3.4 show the characteristic energetics of an XY ferromagnet with a continuous O(2) 

spin symmetry in the plane. According to the Mermin-Wagner theorem, this prohibits true 

long-range FM ordering, but instead we expect a Berezinskii−Kosterlitz−Thouless (BKT) 

transition to a quasi-long-range ordered phase [68,69]. 
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Figure 3.5 Magnetic anisotropy in the Heisenberg ferromagnet Ti2NO2. Reproduced with 

permission from [66]. 

 

 Next, we consider the half-metallic ferromagnet with the lightest transition metal 

atom and therefore, the weakest SOC: Ti2NO2. Indeed, the plot of MAE in Figure 3.5 

(which is reminiscent of a pz orbital) reveals that the MAE < 1 𝜇eV/atom for all rotations. 

Collinear AFM spin states are unstable in Ti2NO2, so it is not possible to estimate the 

anisotropy parameter, but the anisotropy constants are extremely low. Hence, we conclude 

that Ti2NO2 is a Heisenberg ferromagnet with a continuous O(3) spin symmetry. An 

applied magnetic field can be used to easily rotate the magnetic moments and open a spin-

wave excitation gap to produce a nonzero transition temperature, as demonstrated in 

atomically-thin layers of Cr2Ge2Te6 [8]. 

 Appealing to a simple physical model, we rationalize the diversity of spin structures 

predicted in the FM MXenes. To understand the trends in magnetic anisotropy, we consider 

the strength of the spin-orbit interaction and the degree of electron localization modulated 

by the surface terminations. The SOC strength evolves as 𝑍 , where 𝑍  is the atomic 

number of the M atom. In the M = Ti, Cr, Mn series (Z = 22, 24, 25) we estimate that the 

SOC strength increases by roughly 42% from Ti to Cr and by 18% from Cr to Mn. SOC-

induced contributions are expected to dominate the anisotropy. However, further 

anisotropy-tuning is possible due to the three most common surface terminations in 
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MXenes (in order of increasing electronegativity): O, OH, and F. O terminations form 

highly directional, anisotropic covalent bonds (seen in the electron localization function 

plotted in Figure 3.3c), while OH and F bonds form isotropic, ionic bonds (Figure 3.4c). 

This is seen both in the electron localization function (ELF) and in the site-projected DOS, 

in which there is substantial overlap between p orbitals from the O atoms and d orbitals in 

the Ising-like Mn2NO2 and Cr2NO2 systems, while the more isotropic systems have little 

contribution from ligand p orbitals near the Fermi level. 

 

Figure 3.6 Phase diagram of spin symmetries in the ferromagnetic MXenes as a function 

of spin-orbit interactions and electron localization. Reproduced with permission from [66]. 

 

 Indeed, the phase diagram in Figure 3.6 shows exactly the trend of increasing SOC 

and decreasing electron localization leading to stronger magnetic anisotropy. These two 

axes: SOC (mediated by transition metal atom) and electron localization (mediated by 

surface functionalization) provide controllable chemical degrees of freedom to tune the 

magnetic anisotropy and achieve any spin symmetry. We further examine the effects of 

electron localization by varying the Hubbard U parameter from 0 to 7 eV in Mn2NO2. As 
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U increases, the spins on the Mn atoms are increasingly localized and the magnetic moment 

per atom increases monotonically from 2.4 to 4.2 𝜇 . The system remains a strong Ising-

like ferromagnet over the full range of reasonable U values. 

 

Figure 3.7 Electronic band structure with SOC showing the appearance of Dirac-like 

dispersion near the Fermi level in Mn2NF2. Reproduced with permission from [66]. 

 

 We also investigate the appearance of Dirac-like dispersion in the band structure of 

these ferromagnets. There have been predictions of Dirac points and potential nontrivial 

band topology in MXenes [70–73], although these predictions are still awaiting 

experimental verification. It is expected that Dirac points may appear at high-symmetry 

points and accidental points in the hexagonal Brillouin zone [74]. Essential Dirac points do 

indeed appear at the K point along the Γ − 𝑀 − 𝐾 − Γ path for Cr2NO2, Mn2N(OH)2, and 

Mn2NF2 (Figure 3.7). Further study is required of these and other magnetic nitride MXenes 

to explore the possibility of 2D magnetic topological phases in these materials. Surface 

termination effects, varying the monolayer thickness, doping, and applied electric fields 

may allow for tuning the linear dispersion in these systems. 
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3.3.3 Magnetism with inversion symmetry breaking 

 These findings naturally raise questions about the effects of more realistic 

(disordered) surface chemistries and symmetry breaking on the magnetic properties of 

MXenes. For that reason, we next turn to exploring so-called “Janus” MXenes with 

asymmetric surface functionalization. We propose a general strategy for exploiting 

disordered surface chemistries to enable electrical switching of magnetic order and 

enhanced magnetic anisotropy [63]. The term “Janus” MXene refers generally to materials 

with some compositional and/or structural asymmetry between the top and bottom faces of 

the monolayer. The local disorder spontaneously breaks inversion symmetry in the 

monolayer, inducing charge distribution asymmetries that allow for coupling to external 

electric fields. 
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Figure 3.8 Models of Janus functionalization and collinear magnetic ordering in 

M2XOxF2−x MXenes. (a) Side, top, and bottom views of the supercell with the four 

termination sites labeled. (b) Side views of the x = 1.0, 0.5, and 1.5 models. The space 

groups and termination species compositions are labeled in each model. (c) Collinear 

ferromagnetic (FM), intralayer antiferromagnetic (AFM1), and interlayer 

antiferromagnetic (AFM2) ordering configurations are shown with spin up (spin down) in 

yellow (blue). Reproduced with permission from [63]. 
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 We first construct five different models of asymmetric surface functionalization to 

span the entire range of surface termination compositions and structures in the M2XTxT’2−x 

MXene. We consider the most common terminations, O and F, neglecting OH which is 

isoelectronic to F and has been shown to display similar magnetic behavior [65,75]. With 

a 2 x 1 x 1 supercell, compositions of x = 0.5, 1.0, and 1.5 were sampled. There are four 

possible termination sites, yielding three unique orderings when x = 1.0. For this reason, 

the models are labeled by the composition with a superscript indicating the symmetry. For 

example, in the OF(3) model, the top surface is O-functionalized and the bottom surface is 

F functionalized, so x = 1.0 and the 3-fold rotation symmetry is preserved. The structural 

models with their compositions and symmetries are shown in Figure 3.8. We also consider 

the typical collinear magnetic orderings: FM, intralayer AFM (AFM1), and interlayer AFM 

(AFM2). Considering larger supercells would allow for a more thorough exploration of 

composition space, but as we will show, the main drivers of magnetic behavior are the 

crystal field (determined by the symmetry) and the transition metal oxidation state 

(determined by the termination composition), and both factors are well-sampled by the five 

models introduced here. 

 Two MXene systems with previously predicted robust magnetic order are 

considered (Mn2N and Cr2C) [65,76], as well as MXenes that can be synthesized and are 

therefore of immediate interest (Ti2C and V2C) [34]. Exhaustive first-principles 

calculations were performed for each MXene system with each of the five surface 

termination models. Rather than destroying the magnetic ordering seen in the pristine 

systems (as is predicted for many magnetic MXenes after surface functionalization) [77], 

the FM ordering remains robust for Mn2N regardless of the surface structure. Large energy 

splittings between the FM and AFM orders (up to 1291 meV) are calculated. 
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Figure 3.9 Magnetic and electronic structure in Janus M2X systems. (a) Mn2N remains 

strongly FM regardless of disordered functionalization, as predicted by the arrangement of 

electrons on the Mn atoms in the top and bottom layers. Semitransparent, dotted arrows 

indicate half-integer spin up electrons. (b, c) Nonmagnetic, pure O-terminated Ti2C and 

weakly AFM V2C become robustly AFM under all considered mixtures of O and F 

termination. Band structures of semiconducting, (d) FM Mn2NOF(3), (e) AFM Ti2COF(3), 

and (f) V2COF(3). Reproduced with permission from [63]. 

 

 Despite the distortions in the octahedral crystal field due to the disordered surfaces, 

the crystal field model successfully predicts the ground state magnetic ordering in the Janus 

MXenes. The t2g and eg orbital manifolds are present, and the net magnetic moments from 

first-principles calculations agree with the simplified crystal field model to within 0.1 

𝜇 /atom. Representative examples are shown for Mn2NOF(3)in Figure 3.9a. In the unit cell, 

the top layer Mn atoms are bonded to three N and three O atoms. The Mn donates 2/3 of 

an electron to each O atom and 1/2 of an electron to each N atom. Three electrons occupy 

the t2g orbitals, while any remaining electrons are forced into the eg manifold. On the 

bottom layer, each Mn is bonded to three N and three F atoms. The Mn donates 1/2 of an 
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electron to each N atom and 1/3 of an electron to each F. Between both Mn atoms in the 

unit cell, six electrons in total are donated, resulting in either two Mn3+ oxidation states or 

an Mn4+/Mn2+ pair if one of the unpaired electrons preferentially localizes on one of the 

Mn atoms. In the former case, the eg level is partially filled in both layers, and there is an 

average local magnetic moment of 4 𝜇  per Mn atom. The partial filling promotes hopping 

of the majority spins and favors FM ordering, which is consistent with the DFT 

calculations. The crystal field model predicts partial filling in the eg band of both layers 

regardless of surface termination, and the same reasoning can be applied to see that all the 

systems remains FM, regardless of the surface termination.  

The calculated intralayer and interlayer exchange parameters are FM in nature, 

ranging from 2 to 6 eV, indicating strong couplings. However, the mean field transition 

temperature estimates are significantly suppressed compared to the structures with pristine 

terminations. Although more careful studies of the transition temperatures including the 

spin-wave gap are needed, these crude estimates suggest that the mixed termination (which 

are unavoidable in experiments) may suppress critical temperatures and affect 

experimental measurements of magnetic MXenes [78].  

 The calculated magnetic ground states for all carbide MXene mixed-termination 

models have AFM ordering. This effect can be explained by the presence of carbon instead 

of nitrogen and the AFM superexchange between interlayer transition metal atoms, 

mediated by carbon. Generally, FM ordering is more robust in the nitrides because of the 

extra electron introduced by nitrogen compared to carbon, which leads to higher magnetic 

moments [65]. Moreover, there is a strong AFM superexchange interaction between 

interlayer transition metal atoms mediated through the C atom. We probe the strength of 

this interaction by inducing artificial strain in the out-of-plane direction in Cr2C to strain 

the Cr-C-Cr bond and reduce the AFM superexchange [79]. At a critical value of strain 

(14%), the Cr layers decouple, and the expected FM ground state is recovered. Due to the 

mixed oxidation states from the asymmetric functionalization, some materials with AFM 

spin configurations may be weakly ferrimagnetic (FiM). For example, Cr2CO1.5F0.5 has an 

AFM1 spin configuration, but the unequal O and F compositions result in a net 



52 

 

magnetization of 0.12 𝜇 /atom. We note that Ti2C and V2C, while predicted to be 

nonmagnetic when functionalized [80,81], recover their magnetic nature under Janus 

functionalization, which introduces free unpaired electrons. 

  

 

 

Figure 3.10 Scatter plot of transport (semiconducting (SC), half-metallic (HM), and 

metallic (M)) and magnetic behavior available in Janus MXenes. The density of states of a 

representative half-metallic antiferromagnet is shown in the inset. Reproduced with 

permission from [63]. 

 

Asymmetric surface functionalization also results in a variety of interesting 

transport behavior. As in Mn2N with pure termination, the minority spin channel is gapped 

and the Janus Mn2N structures exhibit robust half-metallic FM states. In the carbides, we 

find that the mixed termination causes a symmetry breaking, resulting in two distinct 

sublattices and an exchange splitting between the spin channels. This yields elusive half-

metallic AFM states, which are difficult to construct but highly desirable for spintronic 

devices that require spin-polarized currents without stray magnetic fields [82]. We also 
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find other rare combinations of transport and magnetic behavior, like semiconducting 

ferromagnets. The range and diversity of accessible properties in the Janus MXenes are 

shown in Figure 3.10.  

 

3.3.4 Electro-mechanical coupling 

The tendency towards AFM ordering and the suppression of magnetic interactions 

under disordered surface termination seems to suggest that achieving intrinsic magnetism 

in MXenes (without dopants) will require careful control of surface chemistry, which has 

proven to be immensely challenging. High-temperature annealing is routinely used to cause 

desorption of OH and F, but currently there are no available methods for creating pristine 

MXene surfaces with a single surface termination or avoiding surface termination 

altogether. This motivates the search for a different method, one that takes advantage of 

local disorder, requiring only the degree of control of surface termination that can be 

achieved with annealing. One such avenue is highlighted by the fact that out-of-plane stress 

reduces AFM superexchange and promotes FM ordering, as discussed above. Although 

mechanically induced out-of-plane strain may be difficult to apply experimentally, its 

theoretical utility in switching nanoscale magnetic states encourages us to pursue 

analogous means of external magnetic control. 

In the Janus systems there is a surface dipole moment induced by the charge 

asymmetry and finite separation of the M atom layers. To achieve an out-of-plane strain 

effect, we couple the surface dipole to an external electric field, which causes charge 

redistribution and changes bond lengths, effectively tuning the strength of the magnetic 

exchange interactions in the system. We relax each structure and compute the changes in 

bond lengths and energy for each magnetic phase while applying small fields between 0.1 

and 1.0 V/nm. Calculating the zone-centered (Γ-point) phonon frequencies as a function of 

electric field for Mn2NOF(3) and Cr2CO1.5F0.5, we find no negative frequencies, confirming 

the dynamical stability of the structures under an applied field. In the simplest case, 

applying a small electric field of the order 1.0 V/nm to Janus Mn2N further destabilizes the 
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AFM phases and increases the exchange splitting, commensurate with the asymmetry 

present in the system. These results indicate that robust FM states can be achieved in Mn2N 

via applied electric fields without requiring pristinely terminated surfaces. 

Beyond stabilizing 2D magnetic ordering, electric fields can be used to rapidly 

switch between magnetic states. There has been recent success in using applied electric 

fields for magnetic switching of bilayer CrI3, which is AFM in bilayer form [83], back to 

the FM state observed in the monolayer [84]. In an analogous manner to the electrostatic 

gating that induces FM coupling in bilayer CrI3, small electric fields enable magnetic 

switching of AFM Cr2COxF2−x. Extremely small fields, below 1.0 V/nm, were sufficient to 

induce an FM ground state by altering the 180° Cr−C−Cr bonds and reducing the AFM 

superexchange (Figure 3.11a). 
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Figure 3.11 Electrical control of magnetic ordering in Cr2CO1.5F0.5. (a) Applied electric 

field increases the Cr−C−Cr bond length, b, reduces AFM superexchange, and causes a 

transition from AFM to FM phase. The out-of-plane deformation is exaggerated for visual 

clarity to emphasize the structural change. (b) Linear relationship between strain and dipole 

moment (eÅ) and electric field (V/nm). (c) PDOS before (left) and after (right) application 

of an electric field. Reproduced with permission from [63]. 
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 As the field strength is increased, we compute the change in the M−X−M bond 

length(strain) and the corresponding change in the dipole moment.  Figure 3.11b shows the 

relationship between induced strain and dipole moment as a function of applied electric 

field in Cr2CO1.5F0.5. Over the whole range of applied electric fields, between 0.1 and 1.0 

V/nm, the structure transitions from an AFM ground state to FM. The strain is measured 

compared to the zero-field relaxed ground state, and the surface dipole moment is estimated 

by multiplying the interlayer separation by the interlayer charge difference (obtained from 

Bader charge analysis). In the O1.5F0.5 structure there is significant charge separation 

because of the mixed average oxidation states in the upper layer (Cr3.5+) and the bottom 

layer (Cr4+), and the commensurate strain-electric field coupling is strong. The linear 

relationship is explained via the model developed in section 3.2.4 of this chapter. 

 The macroscopic picture describes the induced strain under applied fields, and 

fitting the DFT data to this model (blue dashed line in Figure 3.11b) gives α = 1.12 nm/V 

for Cr2CO1.5F0.5. The magnitude of α quantifies the degree of asymmetry in a system as a 

function of the electric field response. Additionally, plotting the dipole moment as a 

function of applied field (red triangles in Figure 3.11b) for the O1.5F0.5 configuration 

reaffirms that the assumption of linear behavior is valid for the small field strengths 

considered. 

Examining the electronic structure evolution with applied fields provides a deeper, 

microscopic understanding of the magnetic state switching. Because of the broken 

inversion symmetry and intrinsic charge asymmetry in the Janus MXenes, the out-of-plane 

external field causes further charge redistribution, raising the energy of the dz
2 orbitals and 

weakening the bonds. The applied potentials on both sides of the monolayer tune the energy 

of the highly localized d states and the resulting bond elongation weakens AFM super- 

exchange, driving the AFM to FM transition. Just as in the intrinsically FM MXenes, the 

induced FM transition leads to a strong magnetic exchange field that promotes exchange 

splitting between the majority and minority bands and half-metallic transport. The shift in 

the d state energies and the resultant half-metallicity can be seen in the partial density of 

states (PDOS) before (Figure 3.11c, left) and after (Figure 3.11c, right) application of an 
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electric field. Because of the generality of this result, we expect this strategy can be used 

for electrical control of magnetism in any asymmetric magnetic MXene. Further, electric 

fields can be combined with in-plane stress [85,86] to achieve even finer control of 

magnetic ordering and to enhance local magnetic moments. 

Practical electrical control of magnetic ordering is not the only advantage inherent 

to magnetic Janus MXenes. We discussed above that tuning electron localization through 

pure surface terminations in Mn2N can promote robust Ising ferromagnetism or introduce 

a noncollinear XY spin structure [66]. Since the SOC and electron localization that govern 

noncollinear magnetism can be controlled to produce strong magnetic anisotropy in pristine 

MXene systems, it is of great interest to consider the effects of asymmetric 

functionalization on the anisotropy, which enables long-range magnetic ordering at finite 

temperatures in 2D. In pristine Mn2NO2, the magnetic anisotropy energy (MAE) is greater 

than 60 μeV/atom, while pristine Mn2NF2 has MAE less than 2 μeV/atom and no in-plane 

MAE, resulting in a continuous XY spin symmetry and no out-of-plane Ising 

ferromagnetism. In a realistic experimental setting then, the mixture of F and O surface 

functionalization might be expected to destroy long- range order. However, there is also 

structural symmetry breaking that may contribute to anisotropy. 
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Figure 3.12 MAE (μeV/atom) as a function of in-plane angle ϕ (deg) for mixed termination 

models of Mn2N. Reproduced with permission from [63]. 

 

 Surprisingly, we find that for all mixed termination models, Mn2N remains a strong 

Ising ferromagnet with an out-of-plane easy axis, robust to both thermal and chemical 

disorder. We performed DFT calculations with SOC to calculate the total energies for each 

structure with the spin quantization axis along the high symmetry directions: out-of-plane 

(001), in-plane (100), (110), and (010), and canted out-of-plane (111). After confirming 

that the (001) direction is the easy axis for all structures, we then calculated the MAE 

between the (001) direction and in-plane directions, sampling the entire xy plane from 0° 

to 360° at intervals of 12°. The MAE between the (001) direction and an in-plane 

orientation (xy0) at an angle ϕ is given by E(𝑺 ) − E(𝑺 ). The MAE as a function of ϕ 

is plotted for each Mn2N model in Figure 3.12. 

 Starting from the O1.5F0.5 configuration, which has 75% O and 25% F termination 

(yellow points), we see that the MAE is in fact not at all reduced by the presence of F 

termination. It remains above 60 μeV/atom, as in the case of pure O termination, suggesting 
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that the structural asymmetry compensates for the increased electron localization (isotropic 

bonding) from the F termination. When the compositions are switched to 25% O and 75% 

F as in the O0.5F1.5 model (purple points), the MAE is reduced to between 20 and 40 

μeV/atom, but the presence of O ensures that the MAE is still an order of magnitude larger 

than that of pristine F terminated Mn2N. The substantial ϕ dependence of the MAE can be 

understood by recognizing that the peaks occur at 30° and 210° (identical due to 2-fold 

rotation symmetry), the orientations that align spins with the highly directional, covalent 

Mn−O bond. The ϕ dependence is similarly pronounced in structures with significant 

asymmetry in the xy plane, e.g., OF(2
1

).At intermediary composition (50% O and 50% F) 

in models OF(3) and OF(2) (blue and red points), the MAE is between that of O0.5F1.5 and 

O1.5F0.5 and shows little to no angular dependence because of the in-plane symmetry of 

these structures. The OF(2
1

) model, despite having the same 1:1 composition, exhibits 

stronger anisotropy than even the pure O-terminated structure. It reaches values above 100 

μeV/atom, and the 2-fold rotation symmetry is strongly apparent in the angular variation 

of the MAE. This is because the OF(21) configuration uniquely breaks the structural 

symmetry, distorting the Mn−N−Mn bond angle, introducing significant anisotropy. Two 

powerful conclusions can be drawn from these results: (1) Ising ferromagnetism persists 

with surface impurities, such that observable 2D magnetism is robust to both thermal and 

chemical disorder, and (2) rather than undermining the magnetic ordering, local disorder 

and induced structural symmetry breaking can be used to enhance the magnetic anisotropy. 

  

3.4 Conclusions 
In this chapter we developed models for understanding magnetic ground states, 

noncollinear ordering and relativistic effects, and electrical switching of magnetism in 2D 

transition metal carbides and nitrides. We used these models to inform a rational-design 

strategy and identified functionalized MXenes with robust Ising-like, XY, and Heisenberg 

spin symmetries. Mn2NO2, Mn2N(OH)2, and Cr2NO2 are 2D Ising ferromagnets, due to the 

interplay of sufficiently strong SOC and bond anisotropy. Ti2NO2 was predicted to be a 2D 
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isotropic Heisenberg magnet with continuous O(3) spin symmetry, with magnetic 

anisotropy less than 1 μeV/TM for all spin orientations. F-functionalized Mn2N has no in-

plane anisotropy, but does possess appreciable out-of-plane anisotropy, yielding an XY 

system expected to have a BKT transition to a quasi-long-range ordered configuration. We 

showed how the chemical and structural degrees of freedom in these systems could be 

exploited to tune the spin states and control the magnetic anisotropy that enables long-

range magnetic ordering in two dimensions. Ground-state FM ordering is preserved in 

Janus Mn2N for all models of mixed termination, and Janus Cr2C, V2C, and Ti2C were 

found to be robustly AFM. Surprisingly, asymmetric surface functionalization also induces 

or stabilizes magnetic ground states in systems that are predicted to be nonmagnetic or 

weakly magnetic in their pristine states. Janus MXenes exhibit a diverse range of magnetic 

and transport behavior, including semiconducting ferromagnets and half-metallic 

antiferromagnets. Beyond their interesting intrinsic behavior, the structural, chemical, and 

charge asymmetries in Janus MXenes enable external control of their magnetic states. 

Small applied electric fields tune the magnetic exchange parameters and enable switching 

from AFM to FM states. This work provides insight into tuning magnetic anisotropy in 2D 

systems for practical device applications and obtaining robust, electrically controllable 

nanoscale magnetism in MXenes with realistic surface functionalization. 
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Chapter 4                                   

High-throughput discovery of 

quantum materials 
Reprinted (adapted) with permission from  

N. C. Frey, M. K. Horton, J. M. Munro, S. M. Griffin, K. A. Persson, V. B. Shenoy, Sci. 

Adv. 6, eabd1076 (2020) 
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4.1 Introduction 
The discovery of intrinsic magnetic topological order in MnBi2Te4 [87,88] has invigorated 

the search for materials with coexisting magnetic and topological phases. These multi-

order quantum materials are expected to exhibit new topological phases that can be tuned 

with magnetic fields, but the search for such materials is stymied by difficulties in 

predicting magnetic structure and stability. In this chapter we detail automated workflows 

developed to determine exchange parameters, critical temperatures, and topological 

invariants in magnetic materials. We apply these workflows to a subset of over 3,000 

transition metal oxides to determine their magnetic ground states and identify 18 candidate 

magnetic topological semimetals and insulators. 

 

4.2 Methods 

4.2.1 Automated first-principles calculation workflows 

High-throughput workflows for materials science calculations are enabled by state-of-the-

art open-source libraries: pymatgen [89], custodian, FireWorks [90], and atomate [91]. 

Together, these codes provide a framework for setting up and analyzing first-principles 

calculations in an automated fashion. They provide a dynamic workflow system and 

flexible job management for complex, interdependent calculations and automated error 

correction. We make use of a recently developed workflow for the high-throughput 

determination of collinear magnetic ground states [92]. The workflow proceeds by 

enumerating potential collinear orderings, starting from the most symmetric (ferromagnetic 

(FM)) ordering and proceeding to antiferromagnetic (AFM) orderings sorted by symmetry. 

Constraints are imposed by restricting the maximum allowable supercell size and setting a 

“soft” cutoff of eight allowed orderings. If multiple AFM orderings with equal symmetry 

are found, the cutoff is extended to 16 orderings. Previous applications of this workflow 

found that the true, experimentally determined ground state is typically found within the 
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first two or three enumerated orderings, although a long tail exists in the distribution of 

orderings. 

 To extend the magnetic ordering workflow, we developed a follow-on “Exchange 

Workflow” that takes a set of low-energy magnetic orderings and fits them to a classical 

Heisenberg Hamiltonian to calculate the exchange parameters and critical temperatures. 

The underlying physics of this procedure is discussed above, in section 3.2.3. The 

automated Hamiltonian fitting is performed by representing magnetic structures as graphs 

with the NetworkX package [93], where magnetic ions are nodes and exchange interactions 

are edges in the graph. Using the calculated exchange parameters, Monte Carlo calculations 

of the critical temperature are automated using the VAMPIRE atomistic simulations 

package [94]. It should be noted that this method is only applicable for systems that are 

well described by the classical Heisenberg model, that is, systems with localized magnetic 

moments and reasonably high Curie or Néel temperatures (TC/N > 30 K), such that quantum 

effects can be neglected. 

4.2.2 Topological invariant calculation in magnetic systems 

We further developed a framework for high-throughput band topology analysis called 

Python Topological Materials (pytopomat) [95]. The package implements several methods 

for analyzing band topology and calculating topological invariants, as well as high-

throughput workflows to enable calculations at scale. Topological invariants are 

determined using the vasp2trace [96] and irvsp [97] codes to compute irreducible 

representations of electronic states, as well as the hybrid Wannier function method in 

Z2Pack [98]. 

 The goal is to identify materials with “nontrivial” band topology. A simple way to 

think about band topology is to imagine the trivial “atomic limit” of insulators. If an 

insulator can be pulled apart into a collection of isolated atoms without closing its bandgap, 

then the material is topologically trivial. More formally, we can smoothly deform the 

valence bands of the material to that of a Hamiltonian with no k-dependence. For these 

trivial insulators, localized Wannier functions exists that respect the crystal symmetry. 
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Topological phases cannot be smoothly deformed to the atomic limit without closing the 

gap. A brute-force method for diagnosing topological phases is then to enumerate all 

possible atomic limits by their symmetry eigenvalues at the high-symmetry points in the 

Brillouin zone. If a material’s band structure symmetry eigenvalues do not match one of 

the atomic limits, it must be topological. The band structure is completely specified by the 

material space group, the site symmetries and arrangement of atoms within that space 

group (Wyckoff positions), and the subset of atomic orbitals that make up the valence 

bands. The irreducible representations (irreps) of symmetries that leave high-symmetry k 

points invariant can be deduced from group theory, but their orderings in energy are 

unspecified without a Hamiltonian. By considering only orbitals that are irreps and 

maximal site symmetry groups (the highest symmetry sites in a lattice), there are found to 

be 10,403 elementary band representations (EBRs) [99], a large but finite space of atomic 

limits. Because smooth deformations cannot change k point symmetry labels, topological 

bands are those that are not a simple sum of EBRs [100]. This orbital + site symmetry 

description of band topology is called “topological quantum chemistry” [101]. 

 In this chapter we are interested in materials with broken time-reversal symmetry, 

Θ. To simplify the high-throughput evaluation of band topology, we restrict our search to 

ferromagnets that are invariant under inversion, ℐ, and antiferromagnets that are invariant 

under 𝒮 = Θ𝑇 ⁄ , where 𝑇 ⁄  is a primitive-lattice translational symmetry. For 

centrosymmetric ferromagnets, their band topology is determined by the parity eigenvalues 

of occupied bands at the eight time-reversal invariant momenta (TRIM) in the BZ. For 3D 

antiferromagnets with 𝒮 symmetry [102], we can define a set of indices 

ℤ = 𝑣; 𝑣 𝑣 𝑣 , 4.1𝑎

𝑣 = Δ(𝑘 = 0) + Δ(𝑘 = 1 2⁄ )  𝑚𝑜𝑑 2, 4.1𝑏 

𝑣 = Δ(𝑘 = 1 2⁄ ), 4.1𝑐

 

where Δ(𝑘 ) is the 2D topological invariant on the time-reversal invariant (TRI) plane 𝑘  

in the BZ and 𝑘  is in reduced coordinates. 𝑣 is the strong topological index, such that 𝑣 =

1 indicates a strong antiferromagnetic topological insulator (AFTI), while 𝑣 = 0 and 𝑣 =

1 for any 𝑣  is a weak topological insulator [98,103]. 
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 For ferromagnets with ℐ  symmetry, we define the strong topological index 

ℤ  [104,105] in terms of parity eigenvalues as 

ℤ =
1 + 𝜉 (Λ )

2
 𝑚𝑜𝑑 4.  4.2 

The eight TRIM points are Λ , 𝑛 is the band index, 𝑛  is the number of occupied bands, 

and 𝜉 (Λ ) is the parity eigenvalue (±1) of the 𝑛-th band at Λ . ℤ = 1, 3 indicates a 

Weyl semimetal phase (WSM) with an odd number of Weyl points in half the BZ. ℤ = 2 

indicates either an axion insulator phase, a WSM phase with an even number of Weyl 

points in half the BZ, or a 3D Chern insulator phase [106]. ℤ = 0  corresponds to a 

topologically trivial phase.  

With these definitions in place, the problem of diagnosing band topology in 

magnetic materials is reduced to calculating parity eigenvalues at TRIM points and 2D 

topological invariants on TRI planes in the BZ. The parity eigenvalues are straightforward 

to determine by calculating the wavefunction via first principles. For atomic orbitals the 

parity is simply (−1)  where 𝑙 is the angular momentum. Thus, parity is odd for p and f 

orbitals where 𝑙 = 1, 3 and even for s and d orbitals where 𝑙 = 0, 2. For materials with ℐ 

symmetry and non-interacting fermions that are well-described by band structures, we 

calculate the parity eigenvalue, 𝑐, as ℐ|𝜓 𝒌⟩ = 𝑐|𝜓 𝒌⟩ for the Bloch function |𝜓 𝒌⟩ with 

band index 𝑛 and momentum 𝒌. 

The hybrid Wannier function (HWF) method is more complex and more generally 

applicable. HWFs are localized in one direction and delocalized in the others. The main 

signature of nontrivial topology in this formalism is the flow of HWF charge centers, which 

determines the Chern number. Wannier functions [107] are a non-unique localized basis 

obtained from delocalized Bloch functions through a Fourier transform. Likewise, HWFs 

can be thought of as a 1D Wannier function [108] in 𝑘  coupled to external parameters 𝑘  

and 𝑘 . The Wannier charge center (WCC) is simply the average position of charge of a 

Wannier function in the unit cell; similarly, the hybrid WCC is the WCC of a 1D system 
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coupled to external parameters. To calculate ℤ  phases [109] with the HWF method, 2D 

invariants are calculated by tracking the evolution of hybrid WCCs on TRI planes. 

 

4.3 Results 

4.3.1 Magnetic topological material discovery workflow 

The workflow presented here is graphically summarized in Figure 4.1. For any candidate 

magnetic material, the method previously developed by some of the coauthors [92] is used 

to generate likely collinear magnetic configurations based on symmetry considerations. 

The method proceeds by generating up to eight candidate magnetic orderings and sorting 

them by symmetry (with ferromagnetic being the most symmetric). If multiple orderings 

are found with equal symmetry at the eighth index, then the cutoff is increased and up to 

16 orderings are considered. The exact number of orderings considered depends on the size 

of the unit cell, the number of unique magnetic sublattices, and the number of different 

species of magnetic ions. Exhaustive DFT calculations are performed to compute the 

energies of each magnetic ordering and determine the ground state. Alternatively, the 

machine learning classifier discussed below can be used to predict the ground state ordering 

based solely on structural and elemental data to accelerate the ground state classification. 

The low energy orderings are then mapped to the Heisenberg model for classical spins. 
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Figure 4.1 Workflow diagram for high-throughput computation of magnetic ordering, 

exchange parameters, and topological invariants. Reproduced with permission from [110]. 

 

Solving the resulting system of equations yields the exchange parameters. The 

computed exchange parameters and magnetic moments provide all the necessary inputs to 

obtain the critical temperature through Monte Carlo simulations. The crystal is represented 

as a structure graph where nodes represent atoms and edges represent exchange 

interactions. Monte Carlo calculations are enabled in the workflow by interfacing with the 

VAMPIRE atomistic simulations package [94]. It should be noted that this method is only 

applicable for systems that are well described by the classical Heisenberg model, that is, 
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systems with localized magnetic moments and reasonably high Curie or Néel temperatures, 

such that quantum effects can be neglected. 

The second branch of the workflow diagnoses band topology. Topological 

invariants are determined using the vasp2trace [96] and irvsp [97] codes to compute 

irreducible representations of electronic states, as well as the hybrid Wannier function 

method in Z2Pack [98]. Automated workflows to calculate topological invariants are 

implemented in the Python Topological Materials (pytopomat) code [95]. By coordinating 

workflows, we are able to discover materials with coexisting quantum orders, like magnetic 

topological insulators, in a high-throughput context. The schematic in Figure 4.1 shows 

one such example: a magnetic system exhibiting the quantum anomalous Hall effect. 

 

4.3.2 Transition metal oxide database construction 

We restrict our search to the family of transition metal oxides (TMOs), which has 

the advantages of encompassing thousands of candidate magnetic materials and having 

standardized Hubbard U values based on experimental enthalpies of formation [111]. A 

subset of 3,153 TMOs were considered, encompassing over 27,000 computed magnetic 

orderings, with any combination of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, O, and any other non f-

block elements. Because we have considered only oxides with magnetic ions and Hubbard 

U interactions that favor localized magnetic moments, most of the materials in the TMO 

data set will exhibit magnetic ordering at 0 K. However, it is possible that some systems 

are nonmagnetic or weakly magnetic. Importantly, only stable and metastable phases 

within 200 meV of the convex hull are included in our database. For each TMO, up to 16 

likely magnetic orderings were generated, yielding a total of 923 ferromagnetic (FM) and 

2,230 antiferromagnetic (AFM) ground states. Seven structures relaxed into nonmagnetic 

ground states and were discarded. For simplicity, ferrimagnetic (FiM) ground states were 

called AFM if they have an anti-parallel spin configuration with a net magnetic moment 

less than 0.1 𝜇 /cell, and FM if the net magnetic moment in the system is greater than 0.1 

𝜇 /cell.  Our results on predicting AFM vs FM ground states are not sensitive to the choice 
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of cutoff, as increasing the cutoff by an order of magnitude (to 1.0 𝜇 /cell) yields only 25 

additional materials labeled AFM rather than FM. 

 

Figure 4.2 Survey of magnetic transition metal oxides in the database. (A) Histogram of 

crystal systems.  (B) Maximum magnetic moment per atom in each system.  Clustering is 

observed around integer values. (C) Average nearest  neighbor  distance  between  magnetic  

ions. (D) Occurrence of 3d block transition metal atoms across FM and AFM systems. 

Reproduced with permission from [110]. 

 

A statistical summary of the data set is presented in Figure 4.2. Figure 4.2A is a 

histogram of the crystal systems contained in the data. All seven crystal systems are 

represented, with monoclinic being the most prevalent and hexagonal the least. Similarly, 

there are a variety of space groups, compositions, and symmetries present in the materials 

considered. There are compounds with one, two, three, or more magnetic sublattices. As 

expected for TMOs, most compounds have an average coordination number of four or six. 

Considering the computed ground states, there is a large range of maximum magnetic 

moments per atom, with clustering observed around the integer values of 1, 2, 3, and 4 

𝜇 /atom (Figure 4.2B). This plot shows the maximum moment present in a unit cell, rather 

than the net magnetic moment per cell, which is simply zero for AFM materials. The 

histogram of average nearest neighbor distance between two TM atoms in a compound is 

shown in  Figure 4.2C. There is again a large range of values, from 2 to 6 Å, with a peak 

around 3 Å. We also show the relative occurrence of 3d block transition metal species 

across FM and AFM compounds in  Figure 4.2D. Mn is the most common transition metal, 
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occurring in 1016 compounds in the database, while Cu is the least prevalent, occurring in 

fewer than 100 compounds. 

 

 

Figure 4.3 Low-energy ordering and effective exchange interactions.  (A) Energy splitting 

be-tween ground state and first excited state.  (B) Jeff versus maximum magnetic moment 

in the unit cell. Reproduced with permission from [110]. 

 

A wealth of information is available in the computed higher energy orderings as 

well. We define the energy gap, Δ𝐸 = 𝐸 − 𝐸 , where 𝐸  is the ground state energy and 

𝐸  is the energy of the first excited state. When the low-energy orderings are successfully 

found, Δ𝐸 quantifies the robustness of the ground state ordering. The plot of Δ𝐸 in Figure 

4.3A shows the heavy-tailed distribution of the energy gaps. Over 600 compounds exhibit 

Δ𝐸  < 0.5 meV/unit cell and may have correspondingly small J and 𝑇 ⁄  values. An 

effective J parameter can be estimated from the energy gap as 𝐽 = , where N is the 

number of magnetic atoms in the unit cell and S is the magnitude of the average magnetic 
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moment. From this crude estimate, the transition temperature is given in the mean field 

approximation as 𝑇 ⁄ = , where 𝑘 is Boltzmann's constant. The plot in Figure 4.3B 

shows the 𝐽  values, more or less clustered by the integer values of the maximum 

magnetic moment (indicated by the light red ovals) in each material. One representative 

high 𝐽 material is 𝐿𝑎 𝑁𝑖𝑂  (41.7 meV), which has an AFM ground state and an 

estimated 𝑇  of 323 K (measured value of 335 K [112]). The mean field critical 

temperature estimates may be useful as an additional screening criterion for identifying 

materials that warrant further investigation, but they are not accurate enough to provide 

quantitative agreement with experiment. 

We briefly highlight some promising material candidates that may be reduced into 

a two-dimensional (2D) form [29] with possible access to intriguing low-dimensional 

magnetic properties [113,114], and materials with strong spin-orbit coupling (SOC). We 

apply the method from Ref.  [115] to identify potentially layered TMOs, which yields 105 

candidates. There are also 66 TMOs that contain either Bi or Hg and are therefore expected 

to exhibit strong SOC. At the intersection, we find three Bi-containing layered magnetic 

materials, 𝐵𝑎 𝑀𝑛 𝐵𝑖 𝑂, 𝐶𝑜𝐵𝑖𝑂 , and 𝐶𝑟𝐵𝑖𝑂 . It should be noted that in monolayers, the 

magnetic behavior and critical temperature is strongly dependent on magnetic 

anisotropy [66,116]. Therefore, the estimated exchange parameters and critical 

temperatures for the bulk phases will not correspond to the 2D limit. 

 

4.3.3 Machine learning classifier for magnetic ordering 

 

The primary computational burden in generating this data set is calculating the 

relaxed geometries and energies of all likely magnetic orderings, as we have no a priori 

way of determining the magnetic ground states. Further, it is useful to compute the 

spectrum of low-energy magnetic orderings to estimate the strength of exchange couplings, 

thereby determining the nature of magnetic interactions and critical temperatures. For 

simple compounds with small unit cells and a single type of magnetic ion, it is relatively 
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easy to determine the ground state and only a few (< 4) orderings need to be computed. 

However, there is a long tail to the number of orderings required for complex structures 

that may have many highly symmetric AFM orderings [92]. For the TMO data set, nine 

orderings per compound are required, on average, to find the ground state. Due to the 

computational cost, we are limited to collinear magnetic orderings in this combinatorial 

approach. Considering noncollinear ordering with SOC often increases the computation 

time by 1-2 orders of magnitude, due to the inclusion of the full spin-density matrix and 

the reduced symmetry [92]. For this reason, a full noncollinear screening of the TMO 

database is not currently feasible (although all band topology calculations include SOC). 

Collinearity is a reasonable assumption, as many materials exhibit collinear magnetic 

ordering, although this assumption breaks down for triangular and Kagome lattices with 

frustrated antiferromagnetism and in systems with lanthanides and actinides [117]. 

However, this work is an important and necessary first step towards determining possible 

noncollinear orderings. It is highly desirable to augment these laborious DFT calculations 

with computationally inexpensive, physics-informed models that can predict magnetic 

behavior. 

The size of the TMO data set and the number of easily available, physically relevant 

descriptors suggests that a physics-informed machine learning classifier may be able to 

predict magnetic ground states. Our goal is to use features based purely on structural and 

compositional information, without any DFT calculations, to predict magnetic orderings 

and prioritize calculations. With the matminer [118] package, we have access to thousands 

of descriptors that are potentially correlated with magnetic ordering. Drawing on physical 

and chemical intuition, this list was reduced to ~100 descriptors that are likely indicators 

of magnetic ordering, e.g. elemental d orbital filling, electronegativity, and tabulated 

atomic magnetic moments. We note that to explore the possible magnetic and topological 

ordering of a material, a composition and crystal structure is required. Crystal structures 

are already available in the Materials Project database and are used for generating features. 

The DFT geometry relaxations that yield reasonable crystal structures are not sufficient to 

determine magnetic and topological order. Our goal is to use these already available crystal 
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structures and compositions to generate descriptors and predict magnetic properties. We 

use relaxed structures already available in the Materials Project database to generate 

additional features more specific to magnetic compounds, including the average nearest 

neighbor distance between TM atoms, TM-O-TM bond angle information, TM atom 

coordination number, and the number of magnetic sublattices. We have implemented these 

features in the ‘magnetism’ module of pymatgen.  

Unsurprisingly, no features have Pearson correlation coefficients larger than 0.3 

with respect to ground state ordering. There are no features with strong enough linear 

correlation to reliably predict magnetic behavior. To further reduce the feature space, we 

train a minimal model and discard features with extremely low impurity importance and 

then perform hierarchical clustering [119] of the features based on the Spearman rank 

correlation, removing a feature from each cluster. Hierarchical clustering with Spearman 

rank correlation is a standard method of feature selection for eliminating redundant features 

based on the dependence between the rankings of features, rather than their linear 

correlation. This kind of feature reduction is useful to simplify the inputs to the model and 

remove redundancies in the feature set. 

 

 

Figure 4.4 Random forest classifiers for magnetic ground state prediction. (A) An example 

of a “leaf” in the decision tree. (B) Graphic representation of a decision tree in the random 

forest. Reproduced with permission from [110]. 

 

Next, using the reduced feature set of 14 features, we construct an ensemble of 

machine learning classifiers to predict the magnetic behavior. For simplicity and 

interpretability, a random forest classifier was used, although other techniques like 
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Adaptive Boosting and Extra Trees perform similarly. The random forest achieves superior 

performance compared to other models considered through AutoML in 

Automatminer [120]. Automatminer compares model performance between many standard 

classifiers, including random forest, logistic regression, and support vector classification, 

to determine the optimal classifier. The random forest is an ensemble of decision trees 

made up of “leaves” like the one shown schematically in Figure 4.4A. For each feature, the 

tree splits the data set to enable classification. In the illustration in Figure 4.4A, the 

simplified split illustrates that samples with more than one magnetic sublattice are more 

likely to be AFM than FM. To capture the complexity of the data, a full decision tree is 

more fleshed out, like the one shown in Figure 4.4B. The random forest is an ensemble of 

many such trees, where the predictions of uncorrelated trees are averaged over to reduce 

overfitting. 10% of the data was held as a test set, hyperparameters were tuned through a 

grid search, and five-fold cross-validation was used for validation, following the 

conventions in Matbench and Automatminer [120]. 

Because of the class imbalance between FM and AFM ground states (30% of 

compounds are FM), the FM compounds are synthetically oversampled using 

SMOTE [121]. SMOTE generates synthetic data from the minority class (ferromagnets) 

by randomly choosing a sample and one of its nearest neighbors (in feature space), taking 

the feature vector between the two and multiplying it by a random number between 0 and 

1. In this way, synthetic data that resembles data in the minority class is generated without 

simply duplicating samples. Rather than using accuracy (number of correct predictions 

divided by the total number of predictions), which can be artificially inflated in imbalanced 

learning problems by always guessing the majority class, we use three more robust 

classification metrics to evaluate our models: F1 score, receiver operating characteristic 

(ROC) area under the curve (AUC) and precision-recall (PR) AUC. The classifier exhibits 

good and consistent performance in five-fold cross-validation, as seen in the mean and 

median F1 scores of 0.85 for both FM and AFM classes. The trained model achieved an 

F1 score of 0.85 (0.59) for AFM (FM) compounds on the test set, suggesting that the 

synthetic oversampling results in difficulties generalizing to new FM compounds, while 
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AFM systems are well characterized. However, the classifier performs much better than 

either random guessing or naively always choosing the majority class. The F1 scores, ROC, 

and PR curves all show that the classifier outperforms random and majority class guessing. 

For the test set of 315 samples (236 AFM and 79 FM), 198 AFM samples are correctly 

classified, and 50 FM samples are correctly classified.  

The success of the classifier allows us to reexamine the input features and use the 

model feature importances to identify nontrivial predictors of magnetic behavior. Whereas 

the Gini impurity-based feature importance somewhat misleadingly shows equal 

contributions from many features, here we use the permutation importance, which avoids 

bias towards numerical and high cardinality features. By far the most important descriptor 

is the number of magnetic sublattices. Other features relate to space group symmetry, d 

electron counts, coordination number, and distances between TM atoms; features we 

expect to describe magnetism. Another important descriptor is the sine Coulomb matrix, 

which is a vectorized representation of the crystal structure that has been introduced and 

used in previous studies to predict formation energies of crystals [122]. Finally, the 

structural complexity is observed to be 47% higher on average for AFM compounds than 

FM. The AFM systems exhibit an average structural complexity that is 17 bits/unit cell 

higher than the FM systems. This simple metric might indicate that more structurally 

complex materials are more likely to favor the more complex AFM orderings, rather than 

simple FM configurations. This could be related to the most important descriptor, which is 

also a metric of magnetic lattice complexity. Surprisingly, these complexity metrics along 

with simple TM-TM atom distances and the sine Coulomb matrix are much better 

predictors of magnetic ordering than bond angle information, as might be expected from 

the Goodenough-Kanamori rules. It is possible that more sophisticated features may do a 

better job at capturing the superexchange mechanisms that govern the magnetic behavior. 

We note that high model performance, measured by ROC area under the curve, was 

achieved for magnetic material classification in Ref. [123] using similar features, including 

d-orbital chemical descriptors. 



76 

 

It is clear that models like the one presented here are not guaranteed to generalize 

beyond the material types that comprise the training data. However, we expect that the 

physical insights related to feature engineering, as well as the tested methods, will be of 

use in future studies. The developed models are particularly useful in the context of high-

throughput virtual screening, where tens of thousands of materials are potentially of interest 

and it is highly desirable to quickly predict target properties to prioritize calculations. Even 

for smaller data sets of 100 - 1,000 materials, models for property prediction can be used 

in active learning [124] to efficiently identify materials with desired properties. Further 

difficulties will be encountered when constructing machine learning models for critical 

temperature prediction, which is inherently a problem of outlier-detection. Fortunately, this 

work provides both a set of promising materials to consider for further study and the 

framework to automate evaluation of exchange parameters and critical temperatures. 

 

4.3.4 Topological material discovery 
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Figure 4.5 Magnetic topological materials.   (A)  Time-reversal invariant momenta  

(TRIM)  in the Brillouin zone.   (B) Schematic of parity eigenvalues of occupied bands at 

TRIM points. (C) The candidate ferromagnetic topological semimetal, spinel CuCr2O4.  

(D) Schematic of a Dirac cone in an antiferromagnetic topological insulator with 𝓢 

symmetry.  (E) Schematic of Weyl cones in a ferromagnetic topological semimetal without 

time-reversal and with inversion symmetry. (F) The candidate ferromagnetic axion 

insulator, spinel CdNi2O4. Reproduced with permission from [110]. 

 

Finally, we discuss the search for nontrivial band topology in the magnetic TMOs. 

The zoo of available topological order is ever expanding. Here, we simplify our search by 

considering classes of centrosymmetric magnetic topological materials that can be readily 

classified with high-throughput calculations of topological indices, where band topology 

can be determined by the parity eigenvalues of occupied bands at the eight time-reversal 

invariant momenta (TRIM) in the Brillouin zone (BZ) (Figure 4.5, A and B). We consider 

antiferromagnetic topological insulators (AFTIs), ferromagnetic topological semimetals 
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(FMTSMs), and ferromagnetic axion insulators. In the first case, we consider materials that 

exhibit an AFM ground state that breaks both time-reversal (Θ) and a primitive-lattice 

translational symmetry 𝑇 ⁄ , but is invariant under the combination 𝒮 = Θ𝑇 ⁄ . The 

preserved 𝒮  symmetry (Figure 4.5D) allows for the definition of a ℤ  topological 

invariant [102] that lends itself to high-throughput evaluation. For ferromagnets, we 

consider FM ground states that break Θ symmetry but preserve inversion symmetry (ℐ). 

Specifically, we restrict our search to ferromagnets with centrosymmetric tetragonal 

structures, where ideal Weyl semimetal (WSM) features (Figure 4.5E) may appear and 

where the magnetization direction can tune the band topology [125]. These filters greatly 

simplify the screening, but recent work suggests that over 30% of non-magnetic [96,126]  

and magnetic [105] materials exhibit nontrivial topology, so there are almost certainly 

many more interesting MTQMs to uncover in the TMO data set than we have considered 

here. 

 

Table 4.1 Candidate tetragonal ferromagnetic topological semimetals and axion insulators. 

Theoretical materials that have not yet been experimentally synthesized are labeled with a 

†. 
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The TMO database was screened for materials with FM ground states, a tetragonal 

crystal structure, and inversion symmetry, resulting in 27 candidates. By computing the 

ℤ indices for these materials, we identify eight materials with ℤ = 2, indicating either a 

WSM phase with an even number of Weyl points in half of the BZ, or an axion insulator 

phase. Recent work has shown ℤ = 2 can also indicate a 3D Chern insulator phase [106]. 

Five materials have an odd number of Weyl points in half of the BZ, with ℤ = 1,3. The 

candidate FMTSMs and axion insulators and their respective ℤ  indices are listed in Table 

4.1. We also give the unique identifiers for the Materials Project database entries and the 

calculated energy above the convex hull. Here, we highlight the candidate FMTSM  

CuCr2O4 (Figure 4.5C). CuCr2O4 has an FM ground state and ℤ = 1 . CuCr2O4 is a 

hausmannite-like spinel structure with the tetragonal I41/amd space group. Cr atoms bond 

with O atoms to form CrO6 octahedra that share corners with CuO4 tetrahedra. Cr3+ atoms 

occupy Wyckoff position 8d, Cu2+ occupy Wyckoff 4a, and O2- occupy Wyckoff 16h. We 

also draw special attention to the spinel CdNi2O4 (Figure 4.5F), which is predicted to be an 

FM axion insulator  with ℤ = 2 and a bandgap Ebg = 0.125 eV. This material has not yet 
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been successfully synthesized and represents one of many promising opportunities to grow 

new magnetic oxides and investigate their topology. 

 

Table 4.2 Candidate antiferromagnetic topological insulators. Theoretical materials that 

have not yet been experimentally synthesized are labeled with a †. 

 

 

 

Figure 4.6 The candidate antiferromagnetic topological insulator, Ca2MnO3. (A) Crystal 

structure of Ca2MnO3 in the tetragonal I4/mmm phase. (B) Phase diagram of bandgap 

versus the Hubbard U value for Mn showing the dependence of the band topology on the 

strength of Hubbard interactions. Reproduced with permission from [110]. 
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Potential AFTIs were identified by screening the TMO database for AFM ground 

states with 𝒮 symmetry, yielding 298 candidate materials. Of these, 46 are predicted to be 

layered antiferromagnets by at least one of the methods available in pymatgen. These 

layered systems are of special interest due to their unique and tunable topological and 

magnetic properties [113,127]. Eight additional antiferromagnets with 𝒮 symmetry exhibit 

small bandgaps (< 0.5 eV) and are therefore likely candidates to exhibit band inversion. 

For each of these 54 materials, the ℤ  invariant is calculated using the hybrid Wannier 

function method in Z2Pack. Four layered AFTIs were identified: FeMoClO4, MnMoO4, 

Ca2MnO3, and SrV3O7. One small bandgap AFTI was also discovered: Li2TiVO4 in a P2/m 

phase. These systems and their ℤ  indices are listed in Table 4.2. We highlight the 

tetragonal I4/mmm phase of Ca2MnO3 (Figure 4.6A), which has a nontrivial ℤ  = (1;000). 

It is a caswellsilverite-like structure in which Ca2+ ions are bonded with O atoms to form 

CaO6 octahedra and Mn2+ ions bond to form MnO6 octahedra. In the primitive cell, Ca 

atoms occupy Wyckoff position 4e, Mn occupies Wyckoff 2a, and the O atoms occupy 

Wyckoff 2b and 4e. Because the topology of the AFTI phase is sensitive to the nature of 

the bandgap and the strength of electron correlations, we plot a phase diagram (Figure 

4.6B) for Ca2MnO3 indicating the regions where the system is a strong AFTI or a trivial 

insulator. We find that the material is a strong AFTI under a wide range of Hubbard U 

values, although it is predicted to be topologically trivial at U = 4 eV and for U > 6 eV. 

Future work will identify the origin of this correlation-dependent change in topological 

order. 

Importantly, none of the identified candidate MTQMs were considered in previous 

efforts to screen the Materials Project for topological materials [96], because the correct 

magnetic orderings were not available [92]. We have also highlighted theoretical materials, 

unique to the Materials Project database, that have not yet been experimentally synthesized 

and do not have experimental structures reported in the ICSD. Theoretical materials are 

labeled with a † in Table 4.1 and Table 4.2. Three materials (CuFe2O4, VMg2O4, and 

Li2TiVO4) relaxed into new phases not previously included in the Materials Project 

database after determining the magnetic ground states. Notably, all MTQM candidates are 
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within 100 meV per atom of the convex hull, indicating that all candidate materials are 

thermodynamically stable or metastable and may be synthesizable [20]. 

 

4.3.5 Machine learning magnetic topological phases 

We have extended the machine learning approach discussed above to classify 

magnetic topological materials from a recently published data set [105] of 403 magnetic 

structures containing 130 magnetic topological materials. Calculations were performed 

with U values of 0, 2, 4, and 6 eV for each material and the 130 predicted magnetic 

topological materials are magnetic enforced semimetals or topological insulators for at 

least one tested value of the Hubbard U parameter. Using only structural and chemical 

information, we trained a machine learning classifier to identify magnetic materials that 

are topologically nontrivial for at least one U value, versus materials that are trivial for all 

U values. The random forest model achieves a 0.74 F1 score on topological material 

classification in five-fold cross-validation, using 13 primarily symmetry- and orbital-based 

descriptors, requiring no calculations. The F1 scores, ROC, and PR curves indicate that the 

classifier does much better than random guessing and majority class guessing. 

Due to the modularity and interoperability of the workflows developed and applied 

here, it is straightforward to extend the search to other types of quantum orders. Here, we 

have provided a high-throughput, relatively coarse-grained method to identify promising 

MTQMs. The topological structure can be sensitive to the Hubbard U parameter value, 

noncollinear magnetic order and the resulting magnetic space group (MSG) determination, 

and how the strength of SOC compares to the bandgap. Future work will involve detailed 

studies of candidate materials with the recently introduced Magnetic Topological Quantum 

Chemistry (MTQC) [105,128] formalism, better exchange-correlation functionals to more 

accurately compute bandgaps, applying the workflow to non-centrosymmetric materials, 

and careful determination of U values with the linear response approach. 
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4.4 Conclusions 
In this chapter, we have developed and applied a high-throughput computational workflow 

to determine magnetic exchange couplings, critical temperatures, and topological 

invariants of electronic band structures in magnetic materials. By studying over 3,000 

transition metal oxides spanning all crystal systems, nearly all space groups, and a wide 

range of compositions, we have produced a data set of materials rich in magnetic and 

topological physics. This enabled the training of a machine learning classifier to predict 

magnetic ground states and give insight into structural and chemical factors that contribute 

to magnetic ordering. We extended this machine learning approach to classify topological 

order in magnetic materials from a recently published data set using only symmetry- and 

orbital-based descriptors. We identified five promising candidate antiferromagnetic 

topological insulators (e.g. tetragonal Ca2MnO3), including four layered materials, as well 

as 13 candidate ferromagnetic topological semimetals (spinel CuCr2O4) and axion 

insulators (spinel CdNi2O4). 
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and point defects for information 

processing 
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(2020). 
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5.1 Introduction 
Achieving robust, localized quantum states in two-dimensional (2D) materials like 

graphene is desirable for optoelectronics, solid-state devices [129,130], and quantum 

information [131] yet challenging due to the difficulties in constructing and controlling 

these localized states. In this chapter, we design and optimize 2D heterostructures and point 

defects in monolayers to engineer individual quantum states. We propose nanoscale 

monolayer transition-metal dichalcogenide (TMD) heterostructures to natively host 

massive Dirac fermion bound states. We introduce an integrated multiscale approach to 

translate first-principles electronic structure to higher length scales, where we apply a 

continuum model to consider arbitrary 2D quantum dot geometries and sizes. We further 

develop an approach based on deep transfer learning, machine learning, and first-principles 

calculations to rapidly predict key properties of point defects in 2D materials. Physics-

informed featurization is used to generate a minimal description of defect structures and 

present a general picture of defects across materials systems. We identify over one hundred 

promising, unexplored dopant defect structures in layered metal chalcogenides, hexagonal 

nitrides, and metal halides. These defects are prime candidates for quantum emission, 

resistive switching, and neuromorphic computing. 

 

5.2 Methods 

5.2.1 Low-energy Dirac fermion description with tight binding and the 

k·p method 

The computational workflow for describing 2D quantum dots is shown in Figure 5.1a. For 

any two TMDs, MX2 and M’X2, with direct band gaps at the high symmetry K point, the 

band structures are calculated via DFT. The chalcogen X atom is chosen to be the same in 

both TMDs to minimize lattice mismatch and ensure that the band gaps remain 



86 

 

direct [132,133]. The valence and conduction bands are fit around the K point to obtain the 

parameters for a two-band 𝒌 ⋅ 𝒑  model, which captures the relevant physics of the 

conduction and valence bands in the K valley [134]. 

 

Figure 5.1 Schematic of the continuum approach to describing planar quantum dot 

electronic structure. (a) Parameters from density functional theory are used as inputs to a 

𝒌 ⋅ 𝒑  model that is solved for device geometries with the finite element method. (b) 

Triangular and hexagonal regions of MX2 in an M’X2 matrix form 2D quantum dots. (c) 

The band offsets between MX2 and M’X2 create quantum wells for confining electrons and 

holes. Reproduced with permission from [135]. 

 

The two-band 𝒌 ⋅ 𝒑  model to first order in 𝒌  corresponds to a massive Dirac 

Hamiltonian, 𝐻, which captures the salient structure of the K valley in MoS2 [136], while 
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the second order contribution describes the anisotropic dispersion and electron-hole 

asymmetry, and including the third order contribution completely recovers the DFT band 

structure [134,137,138]. We ignore the spin degree of freedom (reducing 𝐻 to a 2 x 2 

matrix) and spin-orbit coupling and include contributions up to second order in 𝒌, such that 

the model is given by [134]: 

 

𝐻 (𝒌) =

Δ

2
𝑎𝑡 𝑘 − 𝑖𝑘

𝑎𝑡 𝑘 + 𝑖𝑘 −
Δ

2

  5.1 

 

 
𝐻 (𝒌) = 𝑎

𝛾 𝑘 𝛾 𝑘 + 𝑖𝑘

𝛾 𝑘 − 𝑖𝑘 𝛾 𝑘
  5.2 

  

where Δ is the direct band gap, a is the lattice constant, t is the hopping parameter, 𝛾 − 𝛾  

are energy parameters, and 𝑘 = 𝑘 + 𝑘 . With the Fermi level in the middle of the gap 

set to zero, the valence band maximum and conduction band minimum of MX2 are −Δ/2 

and Δ/2, respectively, where the band gap of the MX2 quantum dot is Δ. The top (or 

bottom) of the potential well is then Δ/2 + V  or −Δ/2 − V  for electrons or holes, 

respectively. 

Figure 5.1b shows an atomistic model of the physical realization of a laterally 

confined TMD quantum dot system. A TMD with the formula unit MX2 forms a nanoscale 

regular triangle or hexagon [139] within an M’X2 matrix. The spatial extent of a quantum 

dot is defined by 𝑅▲ and 𝑅⬢, which gives the corner-to-corner distance of the minority 

material region. The band offsets between the two TMDs create the quantum confinement 

depicted in Figure 5.1c. To describe the spatially dependent band gap variation, we 

introduce an external finite potential term 𝑉(𝒙) given by 

 
𝑉(𝒙) =

𝑉 (𝒙) 0

0 𝑉 (𝒙)
 

5.3 

where 𝑉  is the conduction band offset and 𝑉  is the valence band offset. 𝑉(𝒙) is zero 

inside the quantum dot and nonzero in the M’X2 matrix. The magnitudes |𝑉 | and |𝑉 | 
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control the strength of the confining potentials. If 𝑉  is positive, there is a confining electron 

potential well in the quantum dot. Likewise, if 𝑉  is negative, there is a confining hole 

potential well in the dot. The model 𝐻 (𝒌, 𝒙) = 𝐻 (𝒌) + 𝐻 (𝒌) + 𝑉(𝒙) can then be 

numerically solved in the COMSOL MULTIPHYSICS package for any device geometry 

or material combination, given the appropriate parameters [140]. The computed 

eigenvalues and eigenvectors correspond to the bound state energies and wavefunctions of 

the quantum dot system. 

 The tight-binding model was constructed by considering nearest-neighbor hopping 

between Mo 𝑑 , 𝑑 , and 𝑑  orbitals [134]. The tight-binding Hamiltonian for the 

finite triangular quantum dot includes diagonal submatrices that account for the on-site 

energies, spin-orbit coupling, and an external scalar potential 𝑉(𝒙) , and off-diagonal 

submatrices that describe the directional hopping between Mo d orbitals [141]. The 

external potential was adjusted on the outermost edge of atoms to model the band offset 

between Mo and W. 

  

5.2.2 Toy model: 2D massive Dirac Hamiltonian in a radial finite 

potential well 

Our investigation into the existence of bound states in the MoS2/WS2 heterostructure 

begins with a simple toy model that emphasizes the unusual behavior of the massive Dirac 

fermions. It is well known that for a particle in a finite potential well described by the 

Schrodinger equation, the ground state is bound for any arbitrarily shallow or narrow well 

in one or two dimensions. [142] On the contrary, due to particle-antiparticle conversion, 

bound state existence is not guaranteed for Dirac fermions and depends explicitly on the 

form of the potential and the effective fermion mass. There is evidence that the existence 

of a bound ground state in 2D is uncertain even for simple radially symmetric potential 

wells. [143,144]  

We construct a toy model of the MoS2/WS2 system by approximating the MoS2 

quantum dot as a circular region in a radially symmetric finite potential. Following 
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DiVincenzo and Mele, [145] we solve the massive Dirac Hamiltonian for a finite potential 

to develop straightforward existence criteria for bound states in the MoS2/WS2 quantum 

disk system. For simplicity, we consider the simplified Hamiltonian 𝐻(𝒌, 𝒓) = 𝐻 (𝒌) +

𝑉(𝒓)  and set the finite band offset 𝑉 = 𝑉 = 𝑉 , such that 𝑉(𝑟 < 𝑟 ) = 0  and 𝑉(𝑟 >

𝑟 ) = 𝑉 , where 𝑟  is the radius of the MoS2 dot and 𝑟 is the radial coordinate. Since we 

are interested in potential well dimensions that support at least one bound state, we restrict 

the solution space to the ground state, where the angular quantum number 𝑚 = 0. We 

apply continuity boundary conditions to the wavefunction at the well edge 𝑟 = 𝑟  and look 

for bound state solutions with energy 𝐸 in the range < 𝐸 < + 𝑉 . To exclude quasi-

bound states, we only allow terms in the wavefunction which exponentially decay as 𝑟 →

 ∞. [146] This leads to a transcendental equation for the bound state which must satisfy: 

𝑅𝑒[𝑌 (−𝑟 𝛼 )]

𝐽 (𝑟 𝛼 )
=

𝑖𝛼

𝛼

𝐸 +
Δ
2

𝑉 − 𝐸 −
Δ
2

𝐼𝑚[𝑌 (−𝑟 𝛼 )]

𝐽 (𝑟 𝛼 )
 5.4 

where 

𝛼 = , 𝛼 = . 

  Here 𝐽  and 𝑌  are the Bessel functions of the first and second kind, and Δ, 𝑎, and 

𝑡  are material parameters corresponding to the bandgap, lattice constant, and hopping 

energy taken from 𝐻 (𝒌). We numerically solve for the roots of Equation 5.4 and plot 

(Figure 5.2) the lowest bound state energy as a function of the dimensionless quantities  

and . The phase map provides a completely general estimate of the ground state energy 

for any material parameters, with darker contours representing ground states closer to the 

bottom of the potential well and lighter contours approaching the top of the well.  
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Figure 5.2 (a) Phase diagram for bound state existence as a function of heterostructure 

parameters 𝚫 (band gap), 𝑽𝟎 (confining potential magnitude), 𝒂 (lattice constant), 𝒕 (k.p 

hopping energy), and 𝒓𝟎 (dot radius), for the toy model circular finite well. The inset shows 

comparison with bound state existence boundary taken from numerical solutions for 

triangular wells. (b) Evolution of the ground state probability density showing decreasing 

localization with increased number of vertices for dots with equivalent corner-to-corner 

length. (c) Ground state energy relative to the continuum band edge corresponding to the 

dot geometries in (b). Reproduced with permission from [135]. 
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5.2.3 Deep transfer learning for 2D material property prediction 

Graph-based deep learning methods that account for lattice periodicity in crystals have 

shown promise in mapping bulk crystal structures directly to target properties when large 

data sets are available [147–149]. Due to the smaller number of available 2D materials 

compared to bulk crystals and the resulting lack of data, there have been few studies of 

machine learning applied to 2D systems [29,150–152]. Additional difficulties arise when 

trying to apply ML to predict quantum properties, which may arise from strong correlations 

between electrons that are difficult to capture with first-principles methods. 

 As the first step in designing ideal defect structures, we apply deep learning as a 

framework for 2D material property prediction and identify optimal host 2D materials. The 

Computational 2D Materials Database (C2DB) [42] contains nearly 4,000 2D materials 

and it would be highly desirable to leverage this data to produce powerful, general models 

that can predict properties of arbitrary 2D materials. However, even 4,000 materials are 

not sufficient to train data hungry deep neural networks (DNNs). To address the lack of 

data on 2D materials, transfer learning [153,154] is used for property prediction by starting 

from networks trained on large data sets of bulk crystals. Here, we make use of graph 

networks [155] (a generalization of graph-based neural networks) as implemented in 

MatErials Graph Network (MEGNet) [148] models. Any material, e.g. h-BN and MoS2 

(shown in Fig. 1a), can be mapped to a graph representation characterized by the atomic 

numbers of the constituent elements and the spatial distance (bond lengths) between atoms. 

The graph network maps input graphs to outputs by “learning” the relationship between 

material structure and some target property. We use three MEGNet models constructed to 

predict formation energy, band-gap, and Fermi energy, and one that classifies metals versus 

nonmetals. These models were trained on between 104 – 105 crystal structures from the 

Materials Project database [156] and as such, the model weights are already tuned to 

capture material properties. Furthermore, they contain elemental embeddings (vector 

representations of elements) from the formation energy model using the largest data set 

(133,000+ materials) to encode chemical trends. Starting from these pretrained models, we 
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fine-tune the model weights by training on the much smaller data set of 2D materials 

(~103).  

 

5.2.4 Minimal model of point defects in 2D wide band gap materials 

Even greater challenges are involved in studying defects due to the exploding 

combinatorics in the defect search space, but this also provides opportunity to increase the 

amount of data available by orders of magnitude and use ML [157–159] to obtain insight 

into the many outstanding questions about how imperfections affect material 

behavior [157,160–164]. An understanding of defects across materials systems is 

necessary not only for engineering artificial atoms to enable new technologies, but also 

because defects are inextricably linked to material properties and performance. 

We describe the defect state by a simple model Hamiltonian 

𝐻 = 𝐻 + 𝐻 + 𝐻 . 5.5 

𝐻  includes a minimal description of the electrically neutral defect, namely the formation 

energy (Figure 5.3a) and the position of defect levels relative to the conduction and valence 

bands (Figure 5.3c). 𝐻  contains symmetry breaking terms (crystal field splitting, spin-

orbit coupling, Jahn-Teller distortion, uniaxial strain, etc.) that split degenerate levels. 

𝐻  includes terms that preserve the crystal symmetry (biaxial strain, small applied 

fields, doping) but tune the energy levels and charge states of defect levels in the gap 

(Figure 5.3d). All the host structures considered in this work have either D3h (h-BN, AlN), 

D3d (MgI2), or C3v (GeS) point group symmetry (neglecting large structural distortions). 

The point group symmetry immediately gives a first-order description of the defect energy 

level splitting due to the crystal field.  
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Figure 5.3 Machine learning a description of point defects in 2D wide band-gap 

semiconductors. (a) Schematic of formation energy for a substitutional defect species, M, 

replacing an A atom in an A-B binary system. (b) An average of 70 point defects are 

considered for 150 materials to generate nearly 10,000 defect structures. More than 1,000 

band structures are computed to train machine learning models, leading to the identification 

of 100 promising defects. (c) Deep defect center located in the gap acts as a two-level 

system. (d) Diagram of an engineered two-level system from a deep center defect. Solid 

(dashed) up or down arrows indicate occupied (unoccupied) spin states. Reproduced with 

permission from [165]. 
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The process of taking a proposed deep center defect and engineering an ideal two-

level system is shown in Figure 5.3d. For example, dopants or vacancies with C3v symmetry 

have levels split into three irreducible representations denoted a1, a2, and e. These levels 

are further split by other symmetry breaking effects like SOC and external stimuli like 

applied strain, which generates a two-level system with an optically accessible transition. 

Applied fields and doping will then tune the position of the levels within the gap and the 

Fermi level. Complexing the dopants with vacancies is one particularly robust strategy to 

engineer isolated two-level systems [161,166]. In this work, we focus on characterizing 𝐻  

to obtain statistics, trends, and understanding of point defects across many materials 

systems with machine learning and without prohibitively expensive hybrid functional 

calculations. The most promising candidates can then be further studied with higher levels 

of theory to determine and design the perturbative effects of the symmetry breaking and 

energy shifting terms [161,166–168]. 

 

 

5.3 Results 

5.3.1 Van der Waals heterostructure quantum dot architecture 

First, we discuss the application of the tight binding and 𝒌 ⋅ 𝒑  models to TMD 

heterostructure design for ideal quantum confinement. We consider two model systems for 

lateral quantum confinement: an MoS2 dot in a WS2 matrix (MoS2/WS2), and a WS2 dot in 

an MoS2 matrix (WS2/MoS2). The band offsets between these TMDs result in Type 2 band 

alignment [169]; for MoS2/WS2, 𝑉 = 0.31 eV, and for WS2/MoS2, 𝑉 = −0.36 eV [170]. 
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Thus, the first configuration yields an electron potential well, while the second forms a 

hole potential well. 

In our model system of an MoS2 dot in a WS2 matrix, we find that minimum values 

of 𝑟  and 𝑉  define a phase boundary beyond which no bound states are supported. This 

behavior is particular to massive Dirac fermions in 2D. In contrast with a 2D Schrodinger 

quantum dot where confinement effectively disappears beyond some maximum diameter, 

in the Dirac quantum disk there is additionally a minimum critical size beyond which there 

is no confinement due to the Klein effect. This condition can also be achieved by taking Δ 

to 0 at finite 𝑉  and fixed size 𝑟 , which recovers the massless graphene case. For the toy 

model MoS2/WS2 system with a conduction band offset 𝑉 = 𝑉 = 0.31 eV, we find that 

the circular well has a critical radius of 2.6 Å, which is less than one unit cell. However, 

for more realistic quantum dot geometries that are not radially symmetric, the critical radius 

will be larger. In the limit of small 𝑟 , breaking the radial symmetry of the quantum disk 

and introducing a three-fold rotational symmetry shifts the critical bound state phase 

boundary in a non-trivial way, increasing the minimum critical size for the MoS2/WS2 

system from 0.5 nm to 1.5 nm (Figure 5.2a, inset). These critical sizes are highly dependent 

on the band offset, and the criteria are more restrictive for confining wells with smaller 

band offsets. Having shown the existence of bound states for massive fermions in TMD 

heterostructures, we next turn to exploring the effects of realistic quantum dot geometries 

on confinement.  

Several different quantum dot geometries are accessible based on the crystal 

symmetry of the component TMD materials and synthesis conditions [139]. We compute 

the ground state using the continuum method for a circular quantum dot, finding 

quantitative agreement with the toy model results (𝐸 − 𝐸 = 0.5 meV, 

which equals the 𝐸(𝐻 )  correction absent from the toy model), and then repeat the 

process for hexagonal, square, and triangular geometries. Figure 5.2b shows the evolution 

of the ground state wavefunction as the number of vertices in the dot geometry increases 

from three (triangle) to infinity (circle), with the vertex-vertex distance fixed at 10 nm 

(significantly above the bound state existence boundary). At this size, at least one bound 
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state is present for the MoS2/WS2 system in all geometries, but as shown in Figure 5.2c, 

the energy of this state relative to the band offset varies considerably. This is primarily 

explained by the fact that the dot area is minimized for a given vertex-vertex length in the 

triangle, and this reduction in area manifests as an effective geometric confinement. The 

sensitivity of the ground state energy to this geometrical effect is an important 

consideration for device design, as the transition from a hexagonal dot to a triangular dot 

(two common geometries in TMD flake systems) [171,172] in the model system increases 

the ground state energy by a factor of almost three (30 meV vs 80 meV). Therefore, the 

triangular system is better for engineering confinement at larger dot sizes, which may be 

advantageous for experimental observations.  

 

5.3.2 Energy scaling relations  

Since triangular and hexagonal shapes are most commonly observed for TMD 

monolayers due to the hexagonal unit cell, we focus on these geometries to investigate the 

evolution of the electron and hole ground states with system size. To engineer quantum 

confinement, we determine the maximum and optimal dot sizes for hosting bound states. 

We systematically vary 𝑅▲  and 𝑅 ⬢ and compute the ground state energies for each 

geometry. The electron (Figure 5.4a) and hole (Figure 5.4b) ground state energies are 

plotted versus inverse side length for triangular (green points) and hexagonal (blue points) 

geometries to show the characteristic scaling. The corresponding 𝑅▲ and 𝑅⬢ values are 

given on the upper x-axis for convenience. Rescaling the energies such that  (the bottom 

of the well) corresponds to 0, we see a monotonic decrease in the electron ground state 

with increasing dot size. For small dots (𝑅▲ < 5 nm), the ground state energy is close to 

the top of the electron well. The quantum confinement persists for large dots (𝑅▲ > 20 

nm), as the ground state approaches the bottom of the potential well. This confinement 

predicted for large nanoscale geometries is a consequence of the ideal confinement in the 

out-of-plane direction in these 2D structures, despite the finite nature of the potential 

barrier and relativistic properties of the carriers. 
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Figure 5.4 Scaling of the electron and hole ground states with inverse side length. (a) 

Electron and (b) hole ground state energies for triangular (green) and hexagonal (blue) 

quantum dots show a characteristic dependence on quantum dot size. (c) Electron and (d) 

hole ground state wavefunctions delocalize with increasing quantum dot size. Reproduced 

with permission from [135]. 

 

The ground state energy dependence on quantum dot size follows the simple 

relation 

𝐸 (𝑅) = 𝛼𝑅 + 𝛽𝑅 + 𝑐 5.6 

where 𝑅 is length, 𝛼 and 𝛽 are materials-dependent constants, and 𝑐 is a constant specified 

to set the bottom of the potential well equal to zero. This scaling with inverse length and 

inverse length squared follows immediately from the expansion in 𝒌 (which has units of 

inverse length) in the 𝒌 ⋅ 𝒑 model. The ground state energy for any geometry is then totally 

specified by the 𝛼 and 𝛽 coefficients for a given MX2/M’X2 pair. The same characteristic 

scaling behavior is seen for holes in WS2/MoS2 (Figure 5.4b). 

Visualizing the ground state wavefunctions provides a qualitative picture of the 

extent of quantum confinement. Figure 5.4c shows the electron ground state wavefunction 

in hexagonal MoS2 quantum dots with 𝑅⬢ = 10, 20, and 30 nm. At 𝑅⬢= 10 nm, the 

wavefunction is strongly localized. The amplitude is large at the center of the dot and 



98 

 

radially decays, as expected. As the area of the hexagon increases, the wavefunction 

becomes increasingly delocalized until confinement is no longer apparent. At this point, 

the ground state of the system is indistinguishable from the infinite periodic band structure, 

and the finite dot region is no longer discretely quantized. The same wavefunction 

delocalization is observed for hole ground states in triangular WS2 dots with increasing 

area (Figure 5.4d). 

 

Figure 5.5 Tight-binding model results for finite size scaling of electron and hole ground 

state energies in a triangular quantum dot. (a) Schematic of workflow for obtaining 

electronic structure of quantum dot from tight-binding. (b) Electron (top) and hole (bottom) 

ground state energy in a triangular quantum dot as a function of side length. (c) Ground 

and excited state wave functions from tight-binding. Reproduced with permission 

from [135]. 

 

To verify the validity (and limitations) of the continuum approach, we repeat the 

analysis at small dot sizes using a three-band tight-binding model [134] of a triangular 

MoS2 quantum dot [141] with an outer edge of WS2 atoms that forms the finite electron 
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confining well. We recover the same characteristic ground state energy scaling described 

by Equation 5.5 in the tight binding model results (Figure 5.5b). The computed 

wavefunctions (Figure 5.5c) agree with those from the continuum model, although the 

inclusion of an additional d band and spin-orbit coupling in the tight-binding model leads 

to degeneracy breaking in the excited states. Importantly, while 𝒌 ⋅ 𝒑 is a long wavelength 

theory that is expected to break down at small length scales, the tight-binding approach 

describes the quantum dot system at these length scales. The continuum approach is well-

suited for device-relevant length scales, so there seem to be no apparent gaps in our 

multiscale approach. Independently, we verify the validity of the truncation of the 𝒌 

expansion to second order by measuring the magnitude of the correction introduced by 

𝐻 (𝒌) as a function of dot size. As expected, the higher order terms are more important 

for smaller dot sizes, and for a 4 nm MoS2/WS2 triangular dot, the second order correction 

reaches a maximum of 8.5 meV, which is well within the perturbative regime. At small dot 

sizes in the tight-binding regime, the higher order terms in the continuum model will affect 

the quantitative energy values, but overall trends such as the geometry-critical size 

relationships are minimally impacted. 

 

5.3.3 Layered hosts for quantum point defects 

Next, we turn to a different paradigm for achieving local control of quantum states 

for information processing. We synthesize recent advances in deep learning, machine 

learning, materials informatics, and ab initio materials design to systematically investigate 

hundreds of 2D materials (both van der Waals and non-van der Waals) [173,174] and 

quickly identify the most promising defect structures for quantum sensing and 

neuromorphic computing. 
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Figure 5.6 Deep learning property prediction for 2D materials. (a) 2D structures are 

mapped to structure graphs. (b) Graph network models are pretrained on large data sets of 

bulk crystals. Transfer learning is used to fine-tune model weights for predicting formation 

energies, band-gaps, and Fermi energies of 2D materials. (c) Parity plot of DFT calculated 

2D material formation energies versus formation energies predicted with deep transfer 

learning for a test set of 381 materials. R2 value and mean absolute error (MAE) are given. 

(d) Schematic of the entire workflow. Deep transfer learning is used to predict 2D host 

material properties and identify promising hosts, a random forest machine learning model 
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is trained to predict defect structure properties, and finally ideal candidate defects are 

predicted. Reproduced with permission from [165]. 

 

The transfer learning procedure (Figure 5.6b) enables rapid model training and 

accurate property prediction for 2D materials, simply by exploiting the learning process 

for the much larger data set of bulk crystal structures. The purpose of the 2D material 

property prediction models is to efficiently identify promising host materials, without 

requiring DFT calculations, whether they are present in a database or not. Not all 2D 

materials are suitable for quantum emission and resistive switching, so it is important to 

easily be able to screen candidate host materials for these applications. Predicted quantities 

like the host band-gap and formation energy are also important for ML predictions of defect 

properties. Figure 5.6c shows the parity plot for the test data of formation energy calculated 

by density functional theory (DFT) versus formation energy predicted by the graph 

network. The formation energy per atom of a material is given by 

𝐸 =
𝐸 − ∑ 𝑛 𝜇

𝑛
, 5.7 

where 𝐸  is the total energy of a unit cell, 𝑛 is the total number of atoms in a unit cell, 

and 𝑛  and 𝜇  are the number and chemical potential (referenced to the most stable bulk 

unary phase) of the ith atomic species, respectively. 𝐸 > 0 eV/atom indicates that the 

material is thermodynamically unstable or metastable.  

The model achieves an impressive R2 score of 0.98 and a mean absolute error 

(MAE) of 0.06 eV/atom on the test data. The metal versus nonmetal classifier has a test set 

accuracy of 0.84 and an F1 score of 0.88 (0.73) for metals (nonmetals). The band-gap model 
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performs more poorly (R2 = 0.73) than the others, while still achieving an MAE (0.36 eV) 

similar to that of the band-gap model trained on the bulk nonmetals (0.33 eV) [148]. This 

is expected because the set of 2D nonmetals comprises only 28% (1067 of 3810 2D 

materials have non-zero calculated band-gaps) of the total data set. We note that it would 

be highly desirable to construct a single “multi-task” model with multiple outputs. In this 

work, we were limited by the availability of models pre-trained on bulk crystal structures, 

and by significant differences in the training datasets. For example, the band-gap regressor 

datasets for bulk and 2D crystals are smaller than the formation energy dataset, because 

they include only nonmetals. These models enable rapid and accurate prediction of 2D 

material properties with deep learning, requiring no feature engineering or ML experience.  

The entire workflow is summarized in Figure 5.6d: deep transfer learning enables 

efficient prediction of critical host material properties (particularly band-gap and formation 

energy) to identify promising hosts, a random forest machine learning model is trained to 

predict defect structure properties that are referenced to first-principles calculations, and 

finally ideal candidate defects are predicted.   

 

5.3.4 Engineered defects workflow 

We narrow our focus to only those 2D materials that will make optimal hosts for 

engineered point defects. A good host material should have a wide band-gap allowing for 

isolated deep defect levels and small spin-orbit coupling (SOC) [175]. These conditions 

are satisfied by screening for nonmagnetic materials with band-gaps greater than 2 eV 
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calculated with the GW approximation. This yields 158 potential WBG materials. We 

further screen out compounds with heavy elements as needed to reduce the effects of SOC. 

To identify promising defects in these systems, we establish some screening criteria and 

specify which are amenable to a high-throughput, machine learning-driven approach, and 

which require more individual study. By analogy to the NV- center in diamond, a deep 

defect center should have a paramagnetic qubit state with an energy splitting between two 

spin sublevels that is isolated from the bulk and other bound states [175]. Further details 

involving the magnitude of the two-level splitting and transitions between ground and 

excited states are important for assessing whether the state is optically 

addressable [166,175]. For resistive memory applications, the defect state should be 

reversible, long-lived, and controllable with experimentally feasible switching 

voltages [176,177]. By estimating the neutral defect formation energy and the position of 

defect states relative to the band edges, we evaluate hundreds of defects with machine 

learning and treat the other criteria as engineerable perturbations. This method has been 

validated by previous studies [158,159] on point defects in bulk crystals. 

We generated over 10,000 defects in the WBG materials by considering all possible 

vacancies, divacancies, antisites, and common dopants. Of these, we computed relaxed 

defect geometries and band structures for over 1,000 quantum point defects (QPDs) and 

for 140 substitutional metal defects in the atomically-thin resistive memory materials MX2 

(M = Mo, W; X = S, Se, Te) and h-BN. Figure 5.3b shows a schematic of the process: the 

candidate defects are funneled into a subset for electronic structure calculations, which are 
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then used to test ML models for defect property prediction, and finally to predict ideal 

defect structures. 

 

Figure 5.7 Machine learning model prediction of defect properties. (a) Host material and 

defect properties that are easily available from online databases or deep transfer learning 

model predictions are used as inputs to a random forest model. Decision trees in the random 

forest make predictions that are averaged to generate final predictions. (b) Deep defect 

center classifier predicts whether defect levels are energetically separated from the valence 

and conduction bands by at least 𝒌𝑩𝑻 ≈ 25 meV. (c) Distribution of computed defect 

formation energies. Reproduced with permission from [165]. 

 

5.3.5 Machine learning models of defect parameters 
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Because detailed defect calculations at a high level of theory are computationally 

expensive and necessarily low-throughput, here we develop an ML approach to predict 

defect formation energy and energy-level position without requiring any DFT calculations. 

Fig. 3 shows the ML workflow developed in this paper. For any WBG material, first the 

host material parameters are obtained (Figure 5.7a). The host material is well-described by 

automatically generated structural and chemical descriptors [118,120,178] and calculated 

electronic properties like the band-gaps at the Perdew-Burke-Ernzerhof (PBE) [15], Heyd-

Scuseria-Ernzerhof (HSE) [179], and GW approximation [180] levels of theory, which are 

available in the C2DB. Because of the scarcity of defect data and the large differences in 

target properties and defect structure graphs compared to pristine host materials, the graph-

based approach used above is not tractable here. Instead, defects are described by structural 

and chemical properties and by percent changes in properties compared to the pristine bulk. 

For example, one feature may be the mean atomic radius in the structure, �̅� , where the d 

subscript denotes a defect structure. The defect is described both by �̅�  and by Δ�̅� =
̅ ̅

̅
, 

where �̅�  is the mean atomic radius in the pristine 2D material. For an SnSe substitution (Sn 

occupying an Se site), Δ�̅� > 0, while Δ�̅� < 0 for mean electronegativity. Using percent 

differences as features, rather than absolute values, facilitates comparing defect structures 

across material systems that may have significantly different values. This is a form of 

feature normalization, which is standard in machine learning applications [120], although 

it is not strictly necessary for random forest models [181]. There are also features that are 

not averaged over the entire supercell and only relate to local differences at the defect site. 
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This is a simple representation for defect structures that is easily interpretable, well-suited 

as input to ML models, and requires no first-principles calculations. 

The ML approach is broken up into two models: a classifier to predict the existence 

of deep center defects and a regressor to predict defect formation energies. The existence 

of deep centers is determined by computing the energy differences between the defect level 

and the valence band maximum and conduction band minimum, denoted Δ𝑉𝐵 and Δ𝐶𝐵 

(Figure 5.7b), respectively. For simplicity, a defect is labeled a deep level if Δ𝐶𝐵 > 𝑘 𝑇 

and Δ𝑉𝐵 > 𝑘 𝑇 at room temperature (𝑘 𝑇 ≈ 25 meV). Otherwise, it is a shallow level 

which is either susceptible to thermal excitations or resonant with the bulk bands. Using 

this 𝑘 𝑇 threshold, 442 (roughly 35%) of the computed QPDs exhibit deep centers. Figure 

5.7c shows the histogram of defect formation energy, 𝐸 , values for the QPDs. These 

computed band structures and 𝐸  values determine the targets for ML prediction, but no 

first-principles defect calculation data is used as input features. 
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Figure 5.8 Physical mechanisms underlying defect energetics, model featurization, and 

model performance. (a) Schematic of a dopant, M, inducing strain and electrostatic 

interactions that govern formation energy. (b) Parity plot of DFT computed defect 

formation energy versus predicted formation energy with R2 value and mean absolute error 

(MAE). (c) Permutation feature importances in formation energy model. An asterisk (*) 

denotes the feature is derived from the pristine or defect structure. All other features are 

computed as differences in values between the defect and pristine structures. Reproduced 

with permission from [165]. 

 

Before discussing the particulars of the ML model performance, we briefly review 

the mechanisms at work in the defect that determine the energetics. Understanding the 

physics of defect formation will inform the feature generation and model training during 
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the ML process. Figure 5.8a is a schematic that shows the interactions between some 

dopant atom, M, and four atoms (blue spheres) it is bonded to. On the left side, there are 

the strain-dependent terms that include an elastic dipole contribution that is linear in the 

strain, 𝜖, and a strain energy that goes as 𝜖 . The strain is spontaneously induced to relax 

the geometry and lower the energy. On the right side, there are terms arising from electron-

electron interactions like Coulomb repulsion and charge transfer that account for the 

breaking and reforming of bonds, which raises the energy. This simple picture suggests 

that a minimal description of defects is realized by accounting for local relaxation (strain) 

and electronegativity (electrostatics) [182].   

By constructing feature vectors for defects that encode information about local 

relaxation and electronic interactions, the ML models are able classify deep centers and 

predict 𝐸 . In both cases we use random forest (RF) ensemble models for the benefits in 

interpretability, performance, and robustness to overfitting [181]. We split 90% of the data 

into a training set, making use of bootstrapping [27] to generate an out-of-bag (OOB) score 

for validation, and 10% of the data is held as a test set. The final trained RF model for 𝐸  

prediction has an OOB score of 0.75 and an R2 of 0.74 on the test set (Figure 5.8b). The 

MAE on the test set is 0.67 eV, which is small considering the range of computed 𝐸  values 

is from 0 to 8 eV. We use the permutation feature importance (Figure 5.8c) to rigorously 

inspect how the model is working [181]. Looking at only the top ten most important 

features, there are descriptors clearly related to local relaxation that encode how the defect 

will induce compression or tension in the lattice, e.g. the change in atomic weight of the 

defect compared to the host atom and the change in van der Waals radius. On the other 



109 

 

hand, the change in mean number of p valence electrons and the change in electronegativity 

relate to electrostatics and bonding. Finally, amongst the most important features, the 

chemical potential of the defect species (available from the Materials Project 

database) [156] is directly related to 𝐸 .  

The model performance is even better for the deep center classifier, with 𝐹 = 0.92 

on the test set for classifying deep level defects. The most important features are more 

directly related to band structure, with the most important being the lowest unoccupied 

molecular orbital (LUMO) energy. Other features related to changes in electronegativity 

and column position (electron count) of constituent elements are also weighted heavily. 

Importantly, the linear Pearson correlations of all these individual features with 𝐸  

and the defect energy level position is quite low (< 0.3); in other words, although our 

physical intuition guides the feature engineering process, it is not possible to construct a 

simple model to predict defect properties. Linear models like Lasso [183] and Ridge 

regression [184] fail at predicting 𝐸 , whereas the nonlinear RF performs much better. 

Despite the complex, nonlinear nature of the models, we can extract mechanistic insight 

by considering the permutation feature importance and the mean and median values of the 

most important features when defects are grouped by formation energy or energy level 

position. If we classify defects as either high or low formation energy based on whether 𝐸  

is greater than or less than the median formation energy (2.44 eV), it is possible to quantify 

the contributions from stress-induced and electronic interactions described above. We find 

that high energy defects have, on average, 23% larger changes in electronegativity 

compared to low energy defects. High energy defects also have a 7% larger median 
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chemical similarity value compared to low energy defects, indicating that high energy 

defect structures are associated with larger distortions. Likewise, deep center defects have 

a median change in the atomic number that is 39% higher than shallow defect states. The 

interplay between local relaxation and electronic interactions that determines defect 

energetics is not trivial, but the RF model is able to capture the defect physics we aimed to 

describe. The model results support our simple picture that structural and electronic 

distortions induce deep level defects [182,185,186], but large local distortions also raise 

the formation energy.   

 

5.3.6 Engineered defects in atomically thin memristors 
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Figure 5.9 Engineered defects in atomically thin resistive memory devices. (a) Schematic 

of a device with a semiconducting MoS2 layer sandwiched between two metallic 

electrodes. The MS substitutional defect controls the local resistivity. (b) Calculated 

distances, 𝑧, between different dopants and the Mo plane in MoS2 (MS). Colors correspond 

to magnitude of z value. (c) Cross-sections of the charge density in MoS2 (Au ). The Au 

dopant atom is circled in gold. (d) Calculated binding energies for dopants in MoS2 as a 

function of the dopant chemical potential. Colors correspond to magnitude of maximum 

𝜇  value. Reproduced with permission from [165]. 

 

Next, we will discuss a subset of engineered defects in TMDs and h-BN that are of 

importance for their applications in nonvolatile resistance switching (NVRS). These so-

called “atomristors” are comprised of a semiconducting monolayer sandwiched between 

two electrodes. A schematic of this device geometry is shown in Figure 5.9a. A voltage is 

applied across the electrodes to induce a metal atom, M, from the electrode to hop into a 

naturally occurring vacancy in the semiconductor, e.g. a sulfur vacancy in MoS2, forming 

a substitution MS. Reversing the voltage causes the vacancy to form again. This gives a 

voltage-controlled local resistivity that forms a kind of memory in an atomically thin 

device. The defect geometry can be probed via scanning tunneling microscopy (STM) to 

measure the out-of-plane distance 𝑧  between the defect and the plane of the transition 

metal (TM) atom in the TMD or the plane in h-BN. We define Δ𝑧 = (𝑧 −

𝑧 )/𝑧  as the change in out-of-plane distance relative to the equilibrium distance 

between the TM plane and the chalcogen plane; this value represents the local strain and 
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bond breaking/formation, although it is not perfectly correlated with the total binding 

energy. Because the dopants considered here always preserve the point group symmetry of 

the material (there is no in-plane displacement of the dopant), and because the out-of-plane 

displacement can be probed with STM [187], we have considered Δ𝑧  as the primary 

indicator of local strain. With the M atom electronegativity and atomic orbitals, we know 

from our ML results above that this information can be used to effectively predict the defect 

properties. In particular, we will focus on neutral and acceptor defects (chalcogen 

vacancies) with a metallic cation dopant, where electrically neutral substitutions are of 

interest. 

For this subset of defects, we calculate Δ𝑧 for every combination of host material 

and metallic dopant. Among the dopants we also consider C, Si, and Ge, which exist in 

few-layer semimetallic phases that could be used as electrodes in a completely van der 

Waals resistive device. The height profiles for all dopants in MoS2 are given in Figure 

5.9b, where the dashed red line indicates the equilibrium 𝑧 between the Mo and S planes. 

Δ𝑧  increases linearly with the increasing atomic radius of the dopant. We plot cross-

sections of the calculated charge density at varying distances from the Mo plane to 

visualize the defect height profile, as shown for Au  in MoS2 in Figure 5.9c. As z 

increases, charge density localized on the Au dopant (highlighted with a gold circle in 

Figure 5.9c) remains visible, while the charge density localized on neighboring S atoms 

decreases. 

We define the defect binding energy 𝐸  of a metallic dopant, M, as 

𝐸 (𝜇 ) = 𝐸 − 𝐸 − 𝜇 , 5.8 
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where 𝐸  is the total energy of the supercell with the dopant, 𝐸  is the energy of the 

supercell with the vacancy, and 𝜇  is the chemical potential of the dopant. In experiments, 

it is difficult to control the dopant chemical potential, so in Figure 5.9d we plot 𝐸 (𝜇 ) 

for each defect in MoS2 for the range from 𝜇 = 0 to 𝜇 = 𝜇 , where 𝜇  is the bulk 

reference value of the most stable unary phase. 𝐸 < 0 indicates that the dopant defect 

will occur spontaneously in the presence of the vacancy. 𝐸 (𝜇 ) corresponds to the 

switching voltage (neglecting kinetic barriers) and the plot in Figure 5.9d shows that by 

varying the M atom species, a wide range of switching voltages and dopant stabilities can 

be achieved to serve diverse switching applications from information storage to 

neuromorphic computing. The binding energy is correlated with the dopant species’ atomic 

radius (or equivalently, Δ𝑧), where the 𝑅  value is 0.51. However, the dopant atomic radius 

does not completely represent bond breaking and formation, so that the binding energy 

cannot be directly inferred from the dopant atomic radius. We note that the calculated 

binding energies for MoS2 with Au and Ag dopants agree well with experimental 

measurements [176] of ~1 V switching voltages. 

5.3.7 Identifying candidate quantum point defects 
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Figure 5.10 Top identified defect candidates. (a) Ten substitutional defects in h-BN, AlN, 

GeS, and MgI2 with highest defect scores. (b) Plot of defect scores for top 100 defects. The 

top ten are highlighted in the inset and color-coded to their corresponding host materials. 

(c) Highest five and lowest five defects for resistive switching by maximum binding 

energy. The light purple shaded region indicates high stability defects, while the light 

yellow shaded region indicates defects with a low switching voltage. Reproduced with 

permission from [165]. 

  

 In order to summarize the results of our analysis, we introduce a simple “defect 

score” metric that succinctly represents a candidate defect’s fitness as a potential deep 

center for quantum emission. The defect score is defined as 

𝑆 =
1

𝑁
𝐸 +

1

2
𝑠 +

1

2
𝑠 − 𝐴 − 𝐸 , 5.9 
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where 𝐸 , 𝑠 , 𝑠 , 𝐴, and 𝐸  are the GW band-gap, dynamic stability, thermodynamic 

stability, maximum atomic number in the host (corresponding to SOC), and defect 

formation energy, respectively. N is an overall normalization factor. Higher scores reflect 

larger band-gaps, greater stability, smaller defect formation energies, and smaller SOC 

(smaller maximum atomic number). Although there are not many examples of 

experimentally verified WBG material quantum emitters, we have compared the average 

defect scores for three materials (h-BN, h-AlN, and GaN) that have been shown to exhibit 

quantum emission in either monolayer or crystalline form. We find that the average defect 

score decreases with reported inverse emission lifetime (𝜏 ), i.e. a higher average defect 

score corresponds to higher emission lifetime. This could be due to materials with larger 

band-gaps and low 𝐸  deep center defects (higher average defect score) having longer-

lived two-level defect states [188]. 

The top ten dopant defects are shown in Figure 5.10a. Defects in h-BN score highly, 

as expected because of its ideal WBG material properties, but we also find optimal defect 

candidates in AlN, GeS, and MgI2. Notably, room temperature quantum emission was 

recently shown in bulk AlN [189]. The top 100 defect scores are plotted in Figure 5.10b, 

with the top ten highlighted in the inset. The scores appear Pareto distributed, emphasizing 

the challenge in identifying promising defect candidates compared to the relatively more 

abundant, less promising defects. These dopants can be complexed with vacancies to 

engineer symmetry breaking and construct two-level systems [161,166]. Other than h-BN, 

these systems are relatively or completely unexplored for quantum emission applications 

and are prime candidates for further study. 
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Finally, we highlight the optimal defect candidates for resistive switching. Figure 

5.10c shows the highest five and lowest five defects by maximum binding energy, 

𝐸 (𝜇 = 𝜇 ) . The highest binding energy defects are of interest in memory 

applications for their assumed stability, while the lower binding energy defects require 

small switching voltages useful for neuromorphic architectures. We have also listed in the 

five defect structures with binding energies in an intermediary regime (between 0.60 and 

0.49 eV), such that they strike a balance between stability and switching voltage. In 

general, we find that MX defects in TMDs with larger Δ𝑟  differences in atomic radii 

between dopant atoms, M, and chalcogen atoms, X, have larger binding energies. TMDs 

with smaller band-gaps and therefore weaker bonds (larger in-plane lattice constants) have 

lower binding energies for metallic dopants. This suggests that the unexplored MTe2 (M = 

Mo, W) systems are optimal low voltage resistive switching materials, similar to their bulk 

counterparts [190]. We also find a number of defects with high values of 𝐸 /𝐸 , which 

may form easily and simultaneously offer high ON/OFF current ratios due to the large 

band-gap [177]. Relatively few experiments [176,177,187,191] have been done on 2D 

monolayer resistive switching, hence our results here provide ample opportunity to explore 

more optimal host/dopant architectures that span a large range of accessible switching 

voltages.  
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5.4 Conclusions 
We have presented and analyzed a lateral TMD heterostructure architecture for ideal 

quantum confinement. In doing so, we demonstrated a multiscale computational approach 

for optimizing realistic material and device parameters to achieve robust, coherent single 

quantum states in ambient conditions. By considering a toy model of a 2D quantum well, 

we established the criteria for supporting bound states in a TMD heterostructure and clearly 

emphasized the advantage of intrinsic confinement of massive Dirac fermions, compared 

to graphene which supports only quasi-bound states under applied fields. With a continuum 

method for solving a two-band 𝒌 ⋅ 𝒑 model, geometric effects were shown to play an 

important role in engineering robust confinement, with triangular 2D quantum dots 

exhibiting maximal geometric confinement. The ground state energies scale with the 

system size as 𝛼𝑅 + 𝛽𝑅 , such that the lowest bound state energy can be predicted for 

any size and shape of quantum dot simply by computing the material dependent 

coefficients 𝛼 and 𝛽 via fitting to continuum results.  

We have systematically investigated and identified optimal point defects in 2D 

materials using a combination of deep transfer learning, machine learning, and first-

principles calculations. We have leveraged graph networks trained on tens of thousands of 

bulk crystal structures to enable deep learning for predicting formation energies, Fermi 

energies, and band-gaps in 2D materials. Nearly 10,000 defect structures were constructed 

from over 150 wide band-gap semiconductors and layered metal chalcogenides. Band 

structures and formation energies were calculated for over 1,000 of these defects and used 

to test ensemble machine learning models based on physics-informed featurization. The 

models used easily accessible descriptors, requiring no electronic structure calculations, to 

encode information about local relaxation and electronic interactions that captures defect 

physics. The resulting models were able to predict key defect properties including 

formation energies and the position of defect levels relative to the valence and conduction 

bands. We identified the 100 most promising deep center defects for quantum emission 

applications and ten optimal defects for nonvolatile resistive switching in atomically thin 
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memristor devices. Our findings establish straightforward design principles for engineering 

optimal defects and 2D quantum confinement at room temperature that should be of 

immediate use in the experimental realization of coherent quantum states. 
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Chapter 6                        

Conclusions and future directions 

6.1 Summary 
In the introduction of this thesis, we identified three principal goals: 1) accelerating the 

synthesis of advanced materials with machine learning; 2) designing materials with novel 

quantum properties; and 3) engineering materials with controllable local quantum states. 

These goals were achieved by developing physics-informed, rational design principles and 

using a suite of multi-scale modeling techniques including machine learning, first-

principles calculations, and continuum methods. We designed and investigated platforms 

for the creation and control of quantum states in layered transition metal nitrides, carbides, 

dichalcogenides, and oxides. We showed that these synthetically accessible material 

platforms (Chapter 2) host robust and tunable magnetic (Chapter 3), multi-order 

(Chapter 4), defect, and bound Dirac fermionic states (Chapter 5). New information 

processing platforms based on coherent quantum states in materials like the model systems 

investigated in this thesis will have far-reaching impacts across science, technology, and 

engineering. 

 

 

6.2 Outlook 
The future is bright for investigations of emergent phenomena in layered quantum 

materials. Here, we highlight four particularly interesting directions that build on the work 

presented in this thesis and work by others in the field. 
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Figure 6.1 Future directions for quantum engineering in layered materials. 1) 

Heterostructure engineering for quantum control. 2) Alloying in 2D materials for property 

optimization and entropy-stabilized materials [192]. 3) Atomically-thin multiferroic 4-

state memories. 4) Moiré spin textures and excitons in heterostructures [193]. 

 

 First, we make the general observation that constructing designer heterostructures 

is an active and increasingly vibrant area of research. These heterostructures will couple 

quantum effects in monolayers; e.g. the magnetic and topological properties of one layer 

could be used to interact with engineered defect states in an adjacent layer. In the upper 

left quadrant of Figure 6.1, we show a schematic of three potential quantum systems (all 

investigated in this thesis) that could be combined to produce emergent, controllable 

quantum phases. Here, rational design principles should be applied to construct 

heterostructures of compatible layered materials where interesting physics may emerge at 

the interface. Interactions between quantum effects, van der Waals coupling, charge 

transfer, and strain fields induced by lattice mismatch will contribute to emergent behavior 

in these systems.  

Second, alloys and solid solutions in layered materials represent an exciting search 

space for optimizing properties and engineering composite materials. Just as alloying is a 
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standard method for engineering structural materials and metals, alloying may be a viable 

path for engineering 2D materials. While 2D materials are certainly an interesting 

playground for investigating quantum states (as shown in this thesis), there is much work 

to be done before 2D materials are ready for widespread adoption in devices. Key 

challenges to overcome include scaling synthesis procedures, controlling sample quality 

(defects), and engineering properties for iterative improvement. 2D alloys are a promising 

platform for the next generation of 2D material development. 

Third, as an example of a particular synergy between quantum phases, we can 

imagine achieving intrinsic multiferroic order in a monolayer material. By combining 

ferroic orders like ferromagnetism and ferroelectricity (which are competing effects) in a 

single material, we can achieve a sort of “4-state memory”, where the ferroic orders can 

interact and be independently controlled by external fields. There are many examples of 

quantum orders that arise from competing physical and chemical conditions, so tuning a 

single material to achieve competing orders represents an interesting scientific and 

engineering challenge. 

Finally, much recent progress in condensed matter physics has been concentrated 

in twisted graphene systems. Twist angles form Moiré patterns in stacked systems that 

experience in-plane and out-of-plane relaxation, resulting in correlated phases that are 

comparatively easy to tune and explore with electrostatic gating. As the field progresses, 

twisted stacks of magnetic and other quantum 2D materials will lead to even more exotic 

Moiré physics. 

Because of the rich variety of interactions and potential emergent phases, we can 

easily envision a data-driven approach applied to any of these areas, with machine learning 

models to predict phases and guide exploration of high-dimensional search spaces. 

Moreover, models and principles for inverse design may be developed, such that designer 

layered systems will be proposed to achieve desired quantum phases.  
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