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Abstract

Embedded systems are complex as a whole but con-
sist of smaller independent modules interacting with each
other. This structure makes them amenable to composi-
tional design. Real-time embedded systems consist of real-
time workloads having deadlines. Compositional design of
such systems can be done using real-time components ar-
ranged in a scheduling hierarchy. Each component con-
sists of some real-time workload and a scheduling policy for
the workload. To simplify schedulability analysis for such
systems, analysis should be done compositionally using in-
terfaces that abstract timing requirement of components.
To facilitate analysis of dynamically changing systems, the
framework should also support incremental analysis. In this
paper, we overview our approach to compositional and in-
cremental schedulability analysis of hierarchical real-time
systems. We describe a compositional analysis technique
that abstracts resource requirement of components using
periodic resource models. To support incremental analy-
sis and resource bandwidth minimization, we describe an
extension to this interface model. Each extended interface
consists of multiple periodic resource models for different
periods. This allows the selection of a periodic model that
can schedule the system using minimum bandwidth. We also
account for context switch overhead of components in these
extended interfaces. We then describe an associative com-
position technique for such interfaces, that supports incre-
mental analysis.

1. Introduction

The increasing complexity of real-time embedded sys-
tems demands advanced design and analysis methods for
the assurance of timing requirements. Component-based
design has been widely accepted as an approach to facil-
itate the design of complex systems. It provides means
for decomposing a complex system into simpler compo-
nents and for composing the components using interfaces

that abstract component complexities. To take advantage
of this component-based design, schedulability analysis
should be addressed for component-based real-time sys-
tems. It is desirable to achieve schedulability analysis com-
positionally by combining component interfaces that ab-
stract component-level timing requirement. Ideally, these
abstractions must satisfy the timing requirement of compo-
nents using minimum resource supply.

Component-based real-time systems often involve hier-
archical scheduling frameworks for supporting hierarchical
resource sharing among components having varied priori-
ties and under different schedulers. The hierarchical frame-
work can be generally represented as a tree of nodes, where
each node represents a component consisting of some real-
time workload and a scheduling policy for the workload. In
this framework, resources are allocated from a parent node
to its children. Also, in such frameworks a component is
typically an open system, i.e., it can be an element in the
workload of another component. System may then com-
prise of components with partially specified workload, i.e.,
components that are not yet closed. The unspecified ele-
ments in the workload may be added to the system, on the
fly, in some arbitrary order. Interface generated for a com-
ponent must then be independent of the order in which ele-
ments are added to its workload. Analysis frameworks that
possess this property are said to be incremental.

In this paper we summarize our work [16, 7] on schedu-
lability analysis of hierarchical real-time systems. Our in-
terface model is based on the periodic resource model [16,
12, 7], which can characterize the periodic behavior of re-
source allocations. This choice is implementation-oriented
because many existing real-time schedulers support the
periodic model. We describe our component interface
model [16] that abstracts the resource demand of compo-
nents in the form of a periodic resource model for a fixed
period value. We develop schedulability conditions for the
generation of such interfaces, when components comprise
of periodic and independent tasks scheduled under RM or
EDF scheduler. We then describe an interface composition
technique that facilitates compositional analysis for such in-

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00  © 2007



terfaces. However, this framework neither supports incre-
mental analysis nor can it minimize the resource bandwidth
required to schedule the system taking into account context
switch overhead of components. We then describe an ex-
tended interface model [7] that allows component interfaces
to consist of multiple periodic resource models for different
periods. This interface allows the framework to select a re-
source model that can schedule the system using minimum
bandwidth. We also describe how this model can account
for context switch overheads. Finally, we describe a compo-
sition technique for such interfaces that is associative, and
hence, can support incremental analysis.

Related Work. For real-time systems, there has been a
growing attention to hierarchical scheduling frameworks [5,
10, 11, 8, 15, 12, 1, 2, 13, 20, 18] that support hierarchical
resource sharing under different scheduling algorithms.

Deng and Liu [5] proposed a two-level real-time
scheduling framework for open systems, where the system-
level scheduler schedules independently developed ap-
plication components and each component has its own
component-level scheduler for its internal tasks. Kuo and
Li [10] presented an exact schedulability condition for such
a two-level framework with the RM system scheduler and
Lipari and Baruah [11] presented similar conditions with
the EDF system scheduler. The common assumption shared
by these previous approaches is that the system scheduler
has a (schedulable) utilization bound of 100%. In open sys-
tems, however, it is desirable to be more general since there
could be more than two-levels and different schedulers may
be used at different levels.

Mok and Feng proposed the bounded-delay resource par-
tition model for a hierarchical scheduling framework [14,
8]. In their framework, a parent component and its chil-
dren are separated such that they interact with each other
only through their resource partition model. However, they
did not consider the component abstraction problem. The
periodic resource model has been introduced to specify the
periodic resource allocation guarantees provided to a com-
ponent from its parent component [16, 12]. There have
been studies [15, 12, 1, 2] on the component abstraction
problem with periodic resource models. For a component
with RM scheduler and a periodic resource model abstrac-
tion, Saewong et al. [15] introduced an exact schedula-
bility condition based on worst-case response time analy-
sis, and Lipari and Bini [12] presented a similar condition
based on time demand calculations. Pedreira [1] and Davis
and Burns [2] introduced worst-case response time analysis
techniques under RM component-level scheduling, which
enhance the previous work. All these techniques, however,
do not support incremental analysis.

Matic and Henzinger [13] considered the issue of ad-
dressing the component abstraction problem in the pres-

ence of interacting tasks within a component. Davis and
Burns [3] presented the Hierarchical Stack Resource Policy
(HSRP) for supporting mutually exclusive resource sharing
between components in a hierarchical scheduling frame-
work. These techniques as well, do not support incremental
schedulability analysis.

There have been studies on the development of interface
theory for supporting incremental analysis of component-
based real-time systems, applying the interface theory [4]
and network calculus [17] into real-time context. These
studies have proposed assume-guarantee interfaces for
real-time components, with a generic real-time interface
model [19, 20, 18] and with a bounded-delay resource parti-
tion interface model [9], to support interfaces towards com-
positional and incremental schedulability analysis. Their
techniques support compositional analysis for components
with EDF or RM scheduler. However, their techniques
for supporting incremental analysis have been restricted to
components with EDF scheduler [20, 18, 9], i.e., they are
not applicable to components with RM scheduler. Also,
these approaches do not address the problem of minimiz-
ing the resource bandwidth requirement of interfaces taking
into account context switch overhead of components.

The rest of the paper is organized as follows: Section 2
defines our system model and the schedulability analysis
problem that we address. Section 3 gives schedulabil-
ity conditions for components scheduled using periodic re-
source models. Sections 4 and 5 describe our work on com-
positional and incremental schedulability analyses, respec-
tively, of component-based hierarchical real-time systems.
Section 6 concludes the paper and discusses future work.

2. System Model and Problem Statement

In this paper, we assume that each real-time task is an
independent periodic task with deadline equal to period.
For schedulability analysis using our approach, the com-
ponent must export its worst case resource demand which
depends on the task model and scheduler. Any task model
for which the component can compute its resource demand
can be used in our framework. A real-time component con-
sists of a real-time workload and a scheduling policy for the
workload. The workload of a simple component comprises
of periodic real-time tasks only. Whereas the workload of a
complex component comprises of other simple and/or com-
plex real-time components.

Definition 1 (Simple Component) A simple component C
is specified as C = 〈{T1 = (p1, e1), . . . , Tn =
(pn, en)}, A〉, where each Ti is a real-time task with period
pi and worst case execution time ei, and A is a scheduler.

Definition 2 (Complex Component) A complex compo-
nent C is specified as C = 〈{C1, . . . , Cn}, A〉, where each
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Ci is a simple/complex component different from C, and A
is a scheduler.

We use the term component to refer to both simple as
well as complex components. The context should make the
meaning clear and we explicitly make a distinction wher-
ever necessary. In this paper, we address the schedulability
analysis problem for a hierarchical real-time system. Fig-
ure 1 shows such a system, where C4 is a complex compo-
nent composed from components C1 and C2, and C5 is a
complex component consisting of components C3 and C4.
For compositional schedulability analysis of such a system,
resource demand of components in the system must be ab-
stracted into interfaces. These interfaces must be such that if
a component interface is schedulable then the correspond-
ing component must also be schedulable. Here, an inter-
face or a component is schedulable means that its resource
requirement can be satisfied on a dedicated uniprocessor.
Furthermore, interface for a complex component will be
generated by composing the interfaces of components that
form its workload. This composed interface must satisfy
the property of compositionality which can be defined as
follows.

Definition 3 (Compositionality of Interface) Let C =
〈{C1, . . . , Cn}, A〉 denote a complex component with in-
terface I . Let I be generated by composing interfaces
I1, . . . , In of components C1, . . . , Cn, respectively. I satis-
fies the property of compositionality if and only if whenever
I is schedulable, interfaces I1, . . . , In are also schedulable
under A.

Real-time components in a hierarchical system can be
modified on the fly. These modifications could happen ei-
ther due to desired customizations, or due to changes in the
operating environment of the system. A hierarchical system
can be modified either by adding new components to it or by
removing existing components from it. In this paper, we as-
sume that these are the only modifications that can be done.
Analysis frameworks for such a dynamically changing sys-
tem must then support incremental schedulability analysis.
In an incremental framework, interface generated for a com-
plex component is independent of the order in which inter-
faces of components in its workload are composed. If a
framework is not incremental, then it can generate two dif-
ferent interfaces for the same complex component, and this
is undesirable.

Definition 4 (Incremental Analysis) Let C =
〈{C1, . . . , Cn}, A〉 denote a complex component and
I1, . . . , In denote interfaces of components C1, . . . , Cn, re-
spectively. Let P denote the set of all possible permutations
of the set {1, . . . , n}. Also, for each σ ∈ P , let Iσ denote
an interface for C generated by composing interfaces

EDF

EDF RM RM

EDF
C3

C1 C2

Component comprising of C1, C2

C4

C5

Component comprising of C4, C3

Figure 1. Hierarchical Real-Time System

I1, . . . , In such that the order of composition is given by
σ. Then, this composition supports incremental analysis if
and only if Iσ1 = Iσ2 , for all σ1, σ2 ∈ P .

Context switches play an important role in schedulability
analysis because they consume real-time resources. There-
fore, in our analysis framework we must account for the
context switch overhead incurred by components. In a hi-
erarchical system, context switches can occur at each level
of the hierarchy. Since our focus in this work is on com-
ponent abstraction and composition problems, we ignore
context switch overhead incurred as a result of scheduling
tasks within a simple component. Existing techniques [6]
can be used in our framework to upper bound this overhead.
Hence, we only consider context switch overhead incurred
by components when they are scheduled among themselves.
For example, in Figure 1 we only consider context switches
that occur when components C1 and C2 or C4 and C3 are
scheduled together.

The schedulability analysis problem that we address in
this paper can be stated as follows: Given a hierarchical
real-time system,

1. Generate an interface for each simple component such
that if the interface is schedulable, then the component
is also schedulable. This interface must account for the
context switch overhead incurred by the component.

2. Generate an interface for each complex component by
composing interfaces of its workload, such that the
composed interface satisfies compositionality. This
composed interface must account for the context
switch overhead incurred by the component and the
composition must support incremental analysis.

Finally, the framework must minimize resource bandwidth
required to schedule the hierarchical system, when analysis
is done using this interface model.
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Figure 2. Periodic Demand and Supply: T =
(p, e), R = (p, e/p)

3. Schedulability Conditions

A real-time task consists of a set of real-time jobs that
are required to meet temporal constraints. The resource de-
mand bound function (dbf : Real → Real) of a real-time
task upper bounds the amount of computational resource
required to meet all of its temporal constraints. For a time
interval length t, the demand bound function of a task gives
the largest resource demand of the task in any time interval
of length t. For example, Figure 2 shows the demand bound
function dbfT of a periodic task T = (p, e). As shown
in the figure, the task requires e units of computational re-
source every p units of time in order to meet its deadlines.
Similar to the demand bound function of a task, the demand
bound function of a simple component is the worst-case re-
source requirements of tasks in the component. Given a
component C and time interval length t, dbfC(t) gives the
largest resource demand of tasks in C in any time interval of
length t, when the tasks are scheduled using the scheduler
in C. Note that for a component, we need to consider its
scheduling policy in computing its demand bound function.

In our earlier work [16], we gave demand bound func-
tions for simple components that use either RM or EDF
scheduling policy. We reproduce these functions here for
easy reference. Equation (1) gives the demand bound func-
tion for a component C = 〈{T1 = (p1, e1), · · · , Tn =
(pn, en)}, EDF 〉. Similarly, Equation (2) gives the demand
bound function for a task Ti in a component C = 〈{T1 =
(p1, e1), · · · , Tn = (pn, en)}, RM〉, where HP (Ti) de-
notes a set of tasks in C having priority higher than Ti.

dbfC(t) =
n∑

i=1

(�t/pi�ei) (1)

dbfC,i(t) =
∑

Tk∈HP (Ti)

(�t/pk�ek) + ei (2)

To satisfy the resource requirements of a real-time task
or component, the system must supply sufficient computa-
tional resources. A resource model is a model for specify-
ing the timing properties of this resource supply provided

by the underlying system. For example, a periodic resource
supply that provides Θ units of resource every Π units of
time can be represented using the periodic resource model
R = (Π, Θ/Π). Here, Θ/Π represents the resource band-
width for model R. The supply bound function (sbf :
Real → Real) of a resource model lower bounds the

amount of resource that the model supplies. That is, given
a resource model R and interval length t, sbfR(t) gives the
minimum amount of resource that model R is guaranteed
to supply in any time interval of length t. For a periodic
resource model R = (Π, Θ/Π), Equations (3) and (4), pro-
posed by Shin and Lee [16], give the supply bound func-
tion sbfR and its linear lower bound lsbfR, respectively. In
Equation (3), k is equal to max(1, �(t−(Π−Θ))/Π�). Fig-
ure 2 shows the supply bound function sbfR for a periodic
model R = (p, e/p).

sbfR(t) =t − (k + 1)(Π − Θ) If t ∈ [(k + 1)Π − 2Θ,

(k + 1)Π − Θ]
(k − 1)Θ Otherwise

(3)

lsbfR(t) =Θ/Π(t − 2(Π − Θ)) (4)

In this paper, we limit to periodic resource models as ab-
stractions for the resource requirement of components. For
this purpose, schedulability conditions must be defined for
simple components over the resource models. A periodic
resource model R will satisfy the resource demand of a sim-
ple component C if the maximum resource demand of C is
smaller than the minimum resource supply of R in any time
interval. The demand and supply bound functions of C and
R, respectively, can then be used to define these schedula-
bility conditions. Theorems 1 and 2 give schedulability con-
ditions under EDF and RM schedulers, respectively [16].
Here, LCMC denotes the least common multiple of periods
of all the periodic tasks in component C.

Theorem 1 A component C = 〈{T1 = (p1, e1), · · · , Tn =
(pn, en)}, EDF 〉 is schedulable over the worst-case re-
source supply of a periodic resource model R, if and only
if

∀t s.t. 0 < t ≤ LCMC , dbfC(t) ≤ lsbfR(t) (5)

Theorem 2 A component C = 〈{T1 = (p1, e1), · · · , Tn =
(pn, en)}, RM〉 is schedulable over the worst-case re-
source supply of a periodic resource model R, if and only
if

∀Ti, ∃ti ∈ [0, pi] s.t. dbfC,i(ti) ≤ lsbfR(ti) (6)

The interface generation algorithms described in this pa-
per use Equations (5) and (6) to compute resource models
that guarantee component schedulability. These equations
use linear supply bound functions instead of supply bound
functions in order to make these algorithms tractable.
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Figure 3. Schedulable Region of Periodic Resource Model R(Π, Θ/Π) in Example 1

4. Compositional Schedulability Analysis

In our paper [16], we proposed an interface R for a com-
ponent C = 〈W, A〉 that abstracts the collective resource
requirements of workload W under scheduler A. This inter-
face abstracts the resource requirement of the component as
a periodic resource model R = (Π, Θ/Π), where Π is user
defined. This interface does not reveal the internal informa-
tion of the component such as the number of elements in its
workload or its scheduling algorithm. Note that a periodic
resource model interface R = (Π, Θ/Π) is schedulable on
a dedicated uniprocessor if and only if Θ/Π ≤ 1.

We define the (periodic) component abstraction problem
as the problem of deriving a periodic resource model inter-
face for a real-time component. More specifically, given a
simple component C = 〈W, A〉 and period Π, find a pe-
riodic resource model interface R = (Π, Θ/Π) that can
schedule C and is “optimal.” Here, optimality is with re-
spect to minimizing the resource bandwidth of R.

Example 1 Let us consider a workload set {T1 =
(50, 7), T2 = (75, 9)} and a scheduling algorithm A =
EDF/RM. We now consider the problem of finding a pe-
riodic resource model R = (Π, Θ/Π) that can schedule
component C = 〈{T1 = (50, 7), T2 = (75, 9)}, A〉. We
can obtain a solution space to this problem by simulating
Equation (5) under EDF scheduler or Equation (6) under
RM scheduler. For any given resource period Π, we can
find the smallest Θ/Π such that component C is schedula-
ble according to Theorem 1 or Theorem 2. Figure 3 shows
such a solution space as the gray area for resource peri-
ods in the range 1 to 75, under both RM and EDF sched-
ulers. For instance, when Π = 10, the minimum resource
bandwidth that guarantees schedulability of C is 0.28 under
EDF scheduler or 0.35 under RM scheduler.

We define the (periodic) component composition prob-
lem as the problem of generating an interface for a com-
plex component from the interfaces of sub-components.
More specifically, given a complex component C =
〈{C1, · · · , Cn}, A〉 and period Π, find a periodic resource

model interface R = (Π, Θ/Π) that can schedule C and
is “optimal.” Our approach is to develop “optimal” peri-
odic resource model interfaces R1, . . . , Rn that can sched-
ule components C1, . . . , Cn, respectively. We then treat C
as consisting of n periodic tasks such that C = 〈{T1 =
(p1, e1), · · · , Tn = (pn, en)}, A〉, where for each i, 1 ≤
i ≤ n, Ri = (Πi, Θi/Πi) implies Ti = (Πi, Θi). We can
now address this component composition problem because
it is equivalent to the component abstraction problem. The-
orem 3 shows that this composition satisfies the property of
compositionality of interfaces. In the theorem, by “inter-
faces R1, . . . , Rn are schedulable under A” we mean that
the resource requirement of these interfaces, represented
by their linear supply bound functions, are satisfied under
scheduler A.

Theorem 3 Let C = 〈{C1, · · · , Cn}, A〉 denote a com-
plex component and let R1 = (Π1, Θ1/Π1), . . . , Rn =
(Πn, Θn/Πn) denote interfaces of components C1, . . . , Cn,
respectively. Consider a periodic task set {T1, . . . , Tn}
where each Ti = (Πi, Θi). Let R = (Π, Θ/Π) and the
task set {T1, . . . , Tn} satisfy Theorem 1 if A is EDF or
Theorem 2 if A is RM. Now, if Θ/Π ≤ 1, then interfaces
R1, . . . , Rn are schedulable under A.

Proof Demand bound function dbfT for a periodic task
T = (p, e) is given as dbfT (t) = �t/p�e. Then from Equa-
tion (4), we get that for each i, 1 ≤ i ≤ n, dbfTi(t) ≥
lsbfRi(t) for all t. This theorem can then be trivially proved
using Theorem 1 if A is EDF, or Theorem 2 if A is RM. �

5. Incremental Schedulability Analysis

In this section, we extend the framework described in
Section 4 to support incremental analysis and also to min-
imize resource bandwidths of interfaces. Our approach is
to allow component interfaces to comprise of multiple peri-
odic resource models for different period values. We also
include context switch overhead incurred by components
in these interfaces. We can then select a resource model
that minimizes the overall resource bandwidth required to
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schedule the hierarchical system. To support incremental
analysis we also describe an associative technique for com-
position of such interfaces.

5.1. Component Interface Extension

Component interfaces described in Section 4 abstract the
resource requirement of components using a single peri-
odic resource model. We assume that the resource period
for this model is fixed a priori, and hence, the framework
is unable to select a period value that minimizes the re-
source bandwidth of the model while taking into account
context switch overhead. Note that if we do not consider
context switch overhead, a smaller period requires less re-
source bandwidth. So, we extend component interfaces to
include multiple periodic resource models [7]. Each inter-
face then consists of a set of periodic resource models for
different periods.

Definition 5 (Extended Component Interface) An
extended interface can be specified as,

I ={(Π, Θ/Π)|1 ≤ Π ≤ P ∗},

where P ∗ is an user-defined upper bound for the period.

For each period value, a component interface includes a
resource model having minimum bandwidth that can sched-
ule the component. Schedulability of an extended interface
depends on schedulability of resource models in the inter-
face. On a dedicated uniprocessor system, an interface I
can be scheduled with period Π if and only if Θ/Π ≤ 1,
where (Π, Θ/Π) ∈ I . Interface I is then schedulable on
a dedicated uniprocessor if and only if ∃Π ∈ {1, . . . , P ∗}
such that I can be scheduled with period Π. Furthermore,
if a component interface I is schedulable then the corre-
sponding component must also be schedulable. This can be
ensured if resource models in the interface satisfy schedu-
lability conditions given in Section 3, i.e., for all R ∈ I ,
lsbfR must satisfy Equation (5) if the component uses EDF
scheduler or Equation (6) if it uses RM scheduler.

5.2. Extended Interface Generation

Algorithm 1 generates an extended interface Ik for a sim-
ple component Ck that uses EDF scheduler. The algorithm
uses schedulability conditions given in Equation (5) to gen-
erate the interface. It computes the minimum bandwidth bi

that a resource model with period i must have in order to
schedule component Ck. To generate interface Ik, the algo-
rithm computes such minimum bandwidth resource models
with periods in the range 1 to P ∗. Let relevant time in-
stants denote a set of time instants at which some task in
the workload of Ck has a deadline. Then, dbfCk

changes

EDF

EDF RM

RM EDF

I5

{C4, C3}

C5

I1

C1

I2

C2

I4

{C1, C2}

C4

I3

C3

Θ4/Π = Θ1+δ+Θ2+δ
Π

Θ5/Π = Θ3+δ+Θ4+δ
Π

dbf() ≤ lsbf ()

Figure 4. Extended Component Interfaces

its value only at these time instants. Also, the linear sup-
ply bound function of any resource model that schedules
component Ck using minimum bandwidth must intersect
dbfCk

at one of the relevant time instants. Since there are
O(LCMCk

) relevant time instants in the time interval be-
tween 0 and LCMCk

, minimum bandwidth resource model
for any period can be computed in O(LCMCk

) time using
Equation (5). Therefore, Algorithm 1 computes interface Ik

in O(LCMCk
× P ∗) time. In our earlier work [7] we have

given a more involved, but efficient algorithm that can gen-
erate the interface in time O(P ∗+LCMCk

×ln LCMCk
). In

this paper, we describe a simpler but less efficient algorithm
to simplify the presentation.

Algorithm 1 Interface Generation under EDF Scheduler
Input: Component Ck = 〈{T1, . . . , Tn}, EDF〉
Output: Extended interface Ik

1: for i = 1 to P ∗ do
2: Solve Equation (5) with Π = i to compute Θ
3: Set Ri = (i, bi = Θ/i) to denote the minimum band-

width resource model for period i
4: Update Ik = Ik

⋃
{Ri}

5: end for

Algorithm to generate compact interfaces for simple
components that use RM scheduler can be derived from Al-
gorithm 1. Schedulability conditions in Algorithm 1 must
use the conditions given in Equation (6). Given a simple
component Ck = 〈{T1, · · · , Tn}, RM〉, these conditions
check for schedulability of each task Ti using the demand
bound function dbfCk,i. For any task Ti in Ck there are
O(pi) relevant time instants in dbfCk,i. Hence, for each
period, the minimum bandwidth resource model that can
schedule task Ti can be computed in O(pi) time. Then,
the minimum bandwidth model with that period which can
schedule component Ck can be computed in O(maxl{pl}×
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Figure 5. Interface Plots: Period vs. Bandwidth

n) time using Equation (6). Hence the interface generation
algorithm for components that use RM scheduler can gen-
erate an extended interface in O(maxl{pl}×n×P ∗) time.

Example 2 Let component C1 in Figure 4 consist of three
tasks T1 = (45, 2), T2 = (65, 3) and T3 = (85, 4),
C2 consist of three tasks T1 = {35000, 2000}, T2 =
{55000, 3000} and T3 = {75000, 4000}, and C3 consist
of two tasks T1 = (45, 1) and T2 = (75, 2). Extended
interfaces I1, I2 and I3 for components C1, C2 and C3, re-
spectively, are plotted in Figure 5(a) for resource periods in
the range 1 to 30.

5.3. Extended Interface Composition and
Bandwidth Minimization

Extended interface for a complex component can be gen-
erated by composing the extended interfaces of components
that form its workload. Interfaces generated using the algo-
rithm given in Section 5.2 do not account for context switch
overhead incurred by components. Context switch over-
head for a component depends on the period of the resource
model that will be used to schedule it. A smaller period will,
in general, result in a larger number of context switches. In
our framework once an interface for the root component is
generated, the framework selects a value for resource period
such that the corresponding resource model in the root in-
terface has the least bandwidth among all the models in that
interface. Furthermore, all the components in the system are
scheduled using resource models that have the same cho-
sen period, from their respective interfaces. All the compo-
nents in the workload of any complex component then have
a single priority under both RM, as well as, EDF scheduler.
Hence, each component is context switched exactly once
per resource period in our framework. If δ denotes the ex-
ecution overhead incurred by the system for each context
switch, then a component scheduled using resource model
R = (Π, Θ/Π) incurs a context switch overhead of δ in ev-
ery Π time units. This means that given a resource model
R = (Π, Θ/Π) to schedule a component, the actual band-
width available for scheduling the component is (Θ−δ)/Π.

In our framework, we compose interfaces by adding the
bandwidths of resource models in the interfaces. For each
value of resource period, the resource model in the inter-
face of a complex component is generated by adding the
bandwidths of resource models in the interfaces of its work-
load. Since addition is an associative operation, this com-
position supports incremental schedulability analysis. Prior
to composition, resource models of interfaces are modified
to account for context switch overhead. For every resource
model being composed we add overhead δ/Π to its band-
width, where Π denotes the period of the model. For exam-
ple, in Figure 4 interface I4 for component C4 is generated
by adding the resource bandwidths of interfaces I1 and I2

along with appropriate context switch overheads.

Definition 6 (Interface Composition) Interface I gener-
ated by composing interfaces I1, . . . , In is given as,

I = {(Π,

n∑

i=1

(Θi + δ)/Π)|1 ≤ Π ≤ P ∗},

where for each period Π, (Π, Θi/Π) ∈ Ii for all i =
1, . . . , n.

Any interface generated using Definition 6 satisfies com-
positionality only under resource period restriction, i.e., if a
composed interface is schedulable using a resource model
having period i, then each of the interfaces that were used
in the composition are also schedulable as long as they use
resource models having period i. This restriction, formally
stated in Theorem 4, forces the framework to schedule all
the components in the system using resource models that
have the same period.

Theorem 4 (Compositionality of Extended Interface)
Let I denote an extended interface of a component
with scheduler A, and generated by composing ex-
tended interfaces I1, . . . , In using Definition 6. If I
can be scheduled with period Π, then resource models
(Π, Θ1/Π), . . . , (Π, Θn/Π) are schedulable under A on
a dedicated uniprocessor where for each i, 1 ≤ i ≤ n,
(Π, Θi/Π) ∈ Ii.
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Proof Obvious from Definition 6. �

Interface composition can be applied iteratively in the
hierarchical system until an interface Ir for the root com-
ponent is generated. Then, the system is schedulable if
Ir is schedulable. Also, the framework picks a value i
for resource period such that the corresponding resource
model in Ir has the least bandwidth among all resource
models in Ir. For any other component in the system, re-
source model with period i in its interface then guarantees
schedulability of the component (Theorem 4). For exam-
ple, from Figure 5(b) which assumes δ = 0.1, we get that
the minimum resource bandwidth for interface I5 is 0.447
and the corresponding resource period is 9. Then, compo-
nents C1, C2, C3 and C4 are all schedulable using resource
models having period 9 from interfaces I1, I2, I3 and I4,
respectively.

6. Conclusion

In this paper, we have summarized our work [16, 7]
on schedulability analysis of hierarchical real-time systems.
We abstracted components using periodic resource models
and also defined composition for such abstractions. To sup-
port incremental analysis and to minimize resource band-
width in the presence of context switches, we extended
component abstractions. Extended component interface
comprised of a set of periodic resource models for different
periods. This representation made it possible to determine
a periodic model that minimizes the resource bandwidth for
the interface while taking into account context switch over-
head of the component. Composition for extended inter-
faces was achieved by addition of resource bandwidths of
individual interfaces. This composition supports incremen-
tal analysis.

In the future, we aim to extend this framework so that
it can support analysis of hierarchical systems with inter-
component task dependencies. Furthermore, we would also
like to reduce the abstraction, as well as, composition over-
heads incurred by our framework.

References

[1] L. Almeida and P. Pedreiras. Scheduling within temporal
partitions: response-time analysis and server design. In
Proc. of the Fourth ACM International Conference on Em-
bedded Software, September 2004.

[2] R. I. Davis and A. Burns. Hierarchical fixed priority pre-
emptive scheduling. In Proc. of IEEE Real-Time Systems
Symposium, December 2005.

[3] R. I. Davis and A. Burns. Resource sharing in hierarchical
fixed priority pre-emptive systems. In Proc. of IEEE Real-
Time Systems Symposium, December 2006.

[4] L. de Alfaro and T. A. Henzinger. Interface theories for
component-based design. In Proceedings of the First Inter-
national Workshop on Embedded Software, pages pp. 148–
165. Lecture Notes in Computer Science 2211, Springer-
Verlag, 2001.

[5] Z. Deng and J. W.-S. Liu. Scheduling real-time applications
in an open environment. In Proc. of IEEE Real-Time Systems
Symposium, pages 308–319, December 1997.

[6] A. Easwaran, I. Shin, I. Lee, and O. Sokolsky. Bounding pre-
emptions under EDF and RM schedulers. Technical Report
MS–CIS–06–07, University of Pennsylvania, USA, 2006.

[7] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee. Incremen-
tal schedulability analysis of hierarchical real-time compo-
nents. In Proceedings of the 6th ACM International Confer-
ence on Embedded Software (EMSOFT ’06), 2006.

[8] X. Feng and A. Mok. A model of hierarchical real-time
virtual resources. In Proc. of IEEE Real-Time Systems Sym-
posium, pages 26–35, December 2002.

[9] T. A. Henzinger and S. Matic. An interface algebra for real-
time components. In Proc. of IEEE Real-Time Technology
and Applications Symposium, pages 253–263, April 2006.

[10] T.-W. Kuo and C. Li. A fixed-priority-driven open environ-
ment for real-time applications. In Proc. of IEEE Real-Time
Systems Symposium, pages 256–267, December 1999.

[11] G. Lipari and S. Baruah. Efficient scheduling of real-time
multi-task applications in dynamic systems. In Proc. of
IEEE Real-Time Technology and Applications Symposium,
pages 166–175, May 2000.

[12] G. Lipari and E. Bini. Resource partitioning among real-
time applications. In Proc. of Euromicro Conference on
Real-Time Systems, July 2003.

[13] S. Matic and T. A. Henzinger. Trading end-to-end latency
for composability. In Proc. of IEEE Real-Time Systems Sym-
posium, pages 99–110, December 2005.

[14] A. Mok, X. Feng, and D. Chen. Resource partition for real-
time systems. In Proc. of IEEE Real-Time Technology and
Applications Symposium, pages 75–84, May 2001.

[15] S. Saewong, R. Rajkumar, J. Lehoczky, and M. Klein. Anal-
ysis of hierarchical fixed-priority scheduling. In Proc. of
Euromicro Conference on Real-Time Systems, June 2002.

[16] I. Shin and I. Lee. Periodic resource model for composi-
tional real-time guarantees. In Proc. of IEEE Real-Time Sys-
tems Symposium, pages 2–13, December 2003.

[17] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A frame-
work for evaluating design tradeoffs in packet processing ar-
chitectures. In Proceedings of the 39th Design Automation
Conference (DAC 2002), 2002.

[18] L. Thiele, E. Wandeler, and N. Stoimenov. Real-time inter-
faces for composing real-time systems. In Proceedings of
the 6th ACM International Conference on Embedded Soft-
ware (EMSOFT ’06), pages 34–43, October 2006.

[19] E. Wandeler and L. Thiele. Real-time interface for
interface-based design of real-time systems with fixed prior-
ity scheduling. In Proceedings of the 5th ACM International
Conference on Embedded Software (EMSOFT ’05), pages
80–89, October 2005.

[20] E. Wandeler and L. Thiele. Interface-based design of real-
time systems with hierarchical scheduling. In Proc. of IEEE
Real-Time Technology and Applications Symposium, pages
243–252, April 2006.

Proceedings of the 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (ISORC'07)
0-7695-2765-5/07 $20.00  © 2007


