
Equational and Rule-Based Programming:
Visualization, Reliability, and Knowledge

Base Generation

Jee-In Kim

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

September 1991

Equational and Rule-Based Programming:
Visualization, Reliability, and Knowledge

Base Generat ion

TECHNICAL REPORT

August 1991

Jee-In Kim

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania

Prepared Under Contract AFOSR-90-0335A
from the

A i r Force Off i c e of S c i e n t i f i c Research
Bol l ing Air-Force Base, DC 20332-6448

Equational and Rule-Based Programming:
Visualization, Reliability, and Knowledge

Base Generation

DISSERTATION PROPOSAL

August 1991

Jee-In Kim

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania

Advisor:
Noah S. Prywes

Committee:
Insup Lee
Tim Finin

Contents

1 INTRODUCTION 6

1.1 Research Problem . 6

1.2 Contributions . 10

1.3 Research Plan . 15

2 THEORETICAL FOUNDATIONS 17

2.1 Introduction . 17

2.2 MODEL . 19

2.2.1 Functional Units . 19

2.2.2 Data Declaration . 19

2.2.3 Equations . 19

2.2.4 Array and Scalar Variables . 20

2.2.5 Operations . 21

2.2.6 Implicit Universal and Existential Quantifiers 21

2.2.7 Execution Model . 24

2.3 AMODELCalculus . 25

2.3.1 Basic Notions . 25

2.3.2 Algebraic Laws . 26

2.3.3 Rewriting Rules . 28

2.3.4 Induction Rule . 28

2.4 Example . 29

3 VISUALIZATION 36

. 3.1 Introduction 36

. 3.2 Example 38

. 3.3 Graphical User Interface 40

. 3.3.1 Views and Windows 40

. 3.3.2 Graphicalobjects 42

. 3.3.3 Pull-Down Menu 43

. 3.3.4 Composition 45

. 3.3.5 Modification 45

. 3.3.6 Graphical Operations 46

4 CHECKING

. 4.1 Introduction

. 4.2 Graph Construction

. 4.2.1 Ambiguous Definitions

. 4.2.2 Incomplete Definitions

. 4.2.3 Solvability

. 4.3 Existence Requirement

. 4.3.1 Dimension Propagation

. 4.3.2 Range Propagation

. 4.4 Causal Chain

. 4.5 Termination 61

5 KNOWLEDGE BASE GENERATION AND SOFTWARE TEST-
ING 63

. 5.1 Introduction 63

. 5.1.1 Objective of the Use of an Expert System 65

5.1.2 Similarity between a MODEL equation and a CLIPS rule 67

. 5.1.3 Procedural versus Equational Testing 71

. 5.2 Translation 72

. 5.3 Example 73

5.4 Interactive 1/0 Testing and Path Analysis 75

6 INTERACTIVE HETEROGENEOUS REASONING FOR PROGRAM
VERIFICATION 79

6.1 Introduction . 79

6.2 Interactive Heterogeneous Reasoning 81

6.3 Example . 82

Chapter 1

INTRODUCTION

Research Problem

This document concerns developing a software development environment for effec-
tive use of equational and rule-based programming paradigms. These programming
paradigms have significant advantages for developing programs which have require-
ments for (1) reliability, (2) parallelism, and (3) accumulation of expertise in knowledge
bases. The research is motivated by the following questions:

(1) Why equational and rule-based programming paradigms are not used more widely
even in areas where they have significant advantages?

(2) What is the software development environment that will make these paradigms
attractive to various communities of users?

We hypothesize that a requisite environment for equational and rule-based program-
ming should support (1) visualization of inherent algorithms to facilitate users' com-
posing and understanding of programs, (2) consistency checking of definitions and
references of variables, (3) accumulation of expertise in knowledge bases, (4) software
testing, and (5) program verification.

To st ate the research problem, this section presents advantages and disadvantages
of three programming paradigms: procedural paradigm which is currently the most
popular, functional/equational paradigm which is advantageous for reliability and par-
allelism, and rule-based paradigm which is advantageous for accumulating expertise.
This is followed a brief summary of the proposed software development environment
and by a plan for its realization.

A procedural (or imperative) paradigm employs procedural languages such as COBOL,
FORTRAN, and C. Procedural languages are tightly related to the popular Von Neu-
mann machine architecture for sequential computers. A procedural language is based

on states that are represented by the contents of the memory, control statements for
order of the execution, and assignment statements which modify the states.

The advantages of this class of languages can be summerized as follows:

(1) Effective use of sequential computers: The Von Neumann machine is effec-
tively utilized by executing procedural language programs. Compilers for proce-
dural languages produce efficient code.

(2) Substantial programming environments: There are powerful tools for li-
braries, testing, etc. for these languages.

For these reasons, most of current software has been written in procedural languages.

The disadvantages may be summerized as follows:

(1) Side-effects: The procedural style of programming results in side-effects that
makes programs difficult to understand [Bac78, PP831.

(2) Software testing: Testing to assure program reliability usually involves complex
path analysis [Wey86, How87, BeigO].

(3) Parallelism: Implementation of parallelism in programs requires eliminating the
sequential orientations, much analysis, and intuition [Hud89, Szygl].

(4) States: The state-based computation is performed in a "word-at-a- time" style
which forces a programmer to "think like a computer" [Bac78].

(5) Program verification: The state- based computation model makes it compli-
cated to reason about programs [Bac78, Hud89, Szy911; there exist formal veri-
fication methods for procedural languages [BM81, MP81, OL82, Lam83, HM85,
Hoa85, CES86, Lin88, Mi189, CPS9Ol but they are too complicated to be widely
used by programmers, mainly because dealing with program states is compli-
cated.

As a result, it is claimed to be difficult to guarantee a high degree of reliability for
procedural language programs.

Functional/equationaI languages employ algebraic definitions of variables. The
value of a variable is uniquely defined and is not modifiable. The computational
model of equational languages is based on regular and boolean algebras [Hudgl, Szygl].
There are no implicit states, no side-effects, and no predefined sequence of compu-
tation. Equational languages such as EPL[Szy9 11, Haskell [Hudg 11, and MODEL
[PP83, SP88, Hud891 are a special case of functional languages. They are characterized
by the followings:

(1) Equational look: A statement looks like an equation.

(2) Referential transparency [Hud89, GJ901: A variable has a unique value de-
fined by an equation in equational languages. Once the value is defined, it is not
modifiable.

(3) Equational reasoning: It is possible because of referential transparency to
employ equational reasoning for program verification [Hud89, Szy91, Hudgl].
Equational languages can be based on "high schooln algebras such as equivalence
laws, substitution, transitivity, and induction [Gri81]. Thus the equational rea-
soning method for program verification can be easily understood and performed
by ordinary programmers. The equational reasoning is not only for reasoning
about programs but also for writing and debugging programs without consider-
ing implementation details [Hud89].

(4) I terative definition: Data elements of arrays can be defined iteratively in equa-
tional languages. Recursive definitions can be used (as in pure LISP), but they
may be more difficult to analyze and reason about.

(5) Program visualization: The execution of an equational language program can
be visualized with the aid of Petri-net like graphs. The nodes denote equations
and data elements and the edges denote data flows among the nodes. Functional
languages, where program execution is recursive, form a tree structure. They
may be visualized by a tree where its root node denotes the main function of a
program, its children nodes denote the subfunctions called by the main function,
and its edges denote function calls.

The advantages of use of an equational language may be summerized as follows:

(1) Use of well known algebraic equations: An equational language is based
on algebra which is widely known. While the paradigm of programming in this
manner is new, it can be easily taught to attain wide usage.

(2) Parallelism: An equational language paradigm is not biased by the need for
sequential execution. Therefore it is easier to create compilers that map equations
into parallel processors [Szygl, CCL911.

(3) Reliability: As will be argued later, a thorough testing methodology for im-
proving reliability of programs is easier to implement. Also, verifying correctness
using equational reasoning is easier to employ and teach.

The disadvantages of equational languages may be summerized as follows:

(1) New paradigm: The great numbers of programmers are familiar with proce-
dural languages and may decline to learn a new paradigm and/or be unwilling
to change their mode of programming. This is even more so as in some cases
procedural language programs may be shorter.

(2) Complexity of equational language compilers: Smarter compilers are nec-
essary which optimize use of memory and allocate computations of equations
to parallel processors. Such compilers are being developed [Lu81, SP88, Bru89,
CCL91, SzySl]

Rule-based languages employ a set of rules to form a program which is executed by
an expert system. Each rule in a program has preconditions that must be satisfied be-
fore executing the rule and actions that specify the consequences of the execution. As
soon as the preconditions are satisfied, the corresponding rules are fired to perform the
specified actions. Rules represent expertise in certain areas and can be accumulated in
knowledge bases [GR89]. A rule-based expert system is the underlying computing sys-
tem that consists of knowledge base, where the expertise is accumulated, and inference
engine, which actually executes the rules of the system to exercise the expertise.

The advantages of the rule-based paradigm can be summerized as follows:

(1) Incremental augmentation: Knowledge bases can be incrementally augmented
through adding a consistent and reliable set of rules.

(2) Interactive explanation: The rule-based paradigm provides man-machine in-
teraction for "explaining" the results of computation. For example, an expert
system can explain how a decision was reached by revealing the inferences that
were employed. As will be shown, this capability can be used to test programs
to attain higher reliability.

(3) Forward and backward chaining: These capabilities of expert systems enable
users to compute "outputs" from "inputs" as well as in some cases "inputs" from
given "outputs".

The disadvantages may be summerized as follows:

(1) Quality of expertise: The success of rule-based programming depends on the
quality of expertise in knowledge bases. In general, it is difficult to collect ex-
pertise. There are difficult procedures for extracting expertise rules from human
experts and organizing the rules into knowledge bases.

(2) Reliability of expertise: It is difficult to define the domain where the rules in
the knowledge bases can be fully relied on for optimal decisions.

Equational and rule-based languages have not been popular in solving "real world"
problems in spite of their distinctive merits over procedural languages. We believe that
a lack of programming tools and environments, especially in the areas of visualization,
knowledge base generation, testing, and verification, is one of the main reasons why the
software industry has not been more active in taking advantage of these languages. Our
research problem is to define a programming environment for an equational language

and a rule-based language where programmers (1) understand and compose programs
with ease, (2) produce reliable programs, and (3) extract expertise embodied in existing
and new programs for augmenting knowledge bases.

1.2 Contributions

A software development environment for equational and rule-based paradigms is pro-
posed in this document. The aim is to make it easier for a programmer to understand
and use these languages, compose more reliable programs, and automatically enrich
rule-based knowledge bases with the expertise in existing programs. We believe that
the merits of programming in equational and rule-based languages will be recognized
if programmers are equipped with such an environment.

Figure 1.1 provides an overview of the proposed environment. It provides interac-
tive tools for visualization, consistency checking, knowledge base generation, software
testing, and program verification. The graphical user interface controls interactions
between programmers and all the tools. The repository of the environment contains
programs, requirements, graphs, equations, proofs etc.

Chapter 2 provides introductory theoretical foundations of the proposed environ-
ment: syntax, semantics, an execution model, and a calculus for manipulating an
equational language.

Subsequent chapters discuss the tools of the proposed environment. The innovative
aspects of the tools are summerized as follows:

(1) Visualization:

Visualization of programming activities has the following advantages over the
conventional (textual) programming style [Mye88, ChaSO]: (1) The capability of
human beings for visual information processing can be utilized. (2) Graphical
representation of programming is helpful for human beings in composing and
understanding programs, especially non-programmers or novice programmers.
(3) Understanding of complex problems, such as concurrent processes and real-
time systems, can be enhanced through visualization.

There are two notions of visualization: program visualization that reveals some
aspects of programs in graphical forms such as graphs, diagrams, and charts
and visual programming that allows programmers to compose programs using
graphical objects such as icons [Mye88]. The proposed environment provides
tools for both program visualization and visual programming.

The visualization tool produces a graphical user interface for all the other tools:
for consistency checking, knowledge base generat ion, software testing, and pro-
gram verification. The graphical user interface provides programmers convenient
and easy accesses to the tools which may be too complicated to be used otherwise.

Checking Generation Verification

Visualization

(Graphical User Interface)

visual/textual retrieval
icon-based editing
menu selection

programs, requirements,
graphs, equations,
data declarations, proofs, etc.

REPOSITORY

Figure 1.1: A software development environment for equational and rule- based
paradigms

The basic graphical object of the visualization of equational and rule-based pro-
grams is a Petri-net like data flow graph; its nodes denote equations and data
elements; its edges denote data flows among the nodes. These graphs are re-
ferred to array graphs [Lu81, PP831. These graphs facilitate the visualization
much better than flow charts of procedural language programs. The visualized
data flow graphs can be piecewise examined due to referential transparency, while
the whole flow chart of a procedural language program must be examined due to
possible side-effects of changes of program states. It has been argued that flow
charts are a poor abstraction of software structure and useless as a design tool
[B ro8 71.

Programmers will construct the Petri-net like graphs using an icon-based graph-
ical editor. Textual definitions for the detailed descriptions of the computation
will be associated with the graphs. While the graphs are displayed in graph
windows on a screen, the textual definitions are given in text windows. By se-
lecting proper operations from pull-down menus using a mouse, programmers
can perform a variety of tasks, interactively exercising both visual and textual
information.

There are also many graphical operations such as for managing windows, explod-
inglimploding nodes, zooming, taking a snap-shot , etc. They are selected from
pull-down menus.

The graphical user interface and operations for program visualization are de-
scribed in Chapter 3. An icon-based graphical editor is proposed for visual pro-
gramming.

(2) Consistency checking:

The checking mechanism of the environment aims to facilitate users composing an
equational or a rule-based language program in accordance with the semantics of
the languages. It utilizes techniques developed for equational language compilers
[Lu81, Bru89, Set891. If errors are detected, the mechanism generates error mes-
sages. The mechanism also generates warning messages that spell out implicit
assumptions made because of omissions. The checking mechanism is combined
with the icon-based graphical editor so that programmers interactively exercise
composing and debugging their programs. It is one of the unique features of the
proposed environment. Chapter 4 describes the checking mechanisms.

The checking mechanism is based on the semantics of these languages: One re-
quirement is for existence of a causal chain that computes a solution set for a
given input values. A cyclic definition of variables may cause an infinite compu-
tation. The checking mechanism detects such a cycle in Petri-net like graphs and
tests if it represents a cyclic definition.

It is required in equational languages that every variable must exist and be de-
fined. Such an existence requirement is also checked. It is examined by checking
the definitions of variables and their references.

As the Petri-net like graph is examined, a table of variables and their definitions
is constructed. The table is used by the checking mechanism [Lu81]. It aims to
detect ambiguous definitions, incomplete definitions, and data type mismatches
of the variables and the equations.

There may be omissions or discrepancies in declarations and references of vari-
ables about dimensionalities, or ranges of arrays referenced in subscript expres-
sions. They are checked by propagating attributes such as dimensions and ranges1
via edges of a Petri-net like graph.

The condition of terminating the execution of iterations can be checked too.
Even though there is no algorithm to decide program termination in general, the
checking mechanism can statically check the termination condition and gener-
ate the conditions for iterations in warning messages Programmers utilize such
an information displayed visually in the graphs in order for composing reliable
programs.

(3) Knowledge base generation and software testing:

There is valuable expertise in existing programs that can be automatically trans-
lated to rules in order to enrich knowledge bases of rule-based expert systems.
The proposed environment will allow users to extract such expertise from ex-
isting programs and accumulate it as rules in knowledge bases. The expertise,
such as algorithms and methods in programs, will be automatically translated
to rules of expert systems. The notion is to have two translation steps: (1) use
of an existing method [Lu81, GP891 to translate procedural language programs
into equational language programs and (2) translation of the equational language
programs into rule-based language programs. Testing will be performed on the
rule-based language programs using an expert system in order to increase the
program reliability. Verification will be also exercised to assure a higher degree
of the reliability. Through the translation steps, the expertise in programs can be
transferred to knowledge bases, tested, and verified. We believe that the trans-
lation, testing, and verification will reduce the labor of collecting expertise for
knowledge bases.

Software testing aims to discover faults in a program by executing it with test
input data [DMMP87, Ham88, BeiSO]. This enhances the reliability of programs.
The procedures required for software testing in the procedural paradigm are
complicated and tedious. Every paths of changing values of each variable must
be tested. Data flow analysis has been claimed to be more effective and powerful
[RW85, How86, How87, WeySO]. The data flow analysis in procedural paradigm
requires to test every path between definitions of each variable and its references
[RW85]. Since the procedural paradigm allows modification of variable values,
we must test multiple paths by which the value of each variable is changing.
However, in using equational or rule-base languages, it is sufficient to test only
a single path for each variable, because each variable is uniquely defined. It

'size of a dimension of an array variable.

13

greatly reduces the complexity of software testing procedures, especially the data
flow analysis. Human testers interactively exercise the testing using an expert
system in conjunction with the visualization where programs are executed. Test
input and the test results are interactively entered and processed. The expert
system not only computes the results from a given set of test input data but also
gives detailed explanations about the testing. Moreover it computes "inputsn
from given "outputsn using backward chaining. The testing is exercised via the
graphical user interface which (1) accepts test inputs via the displayed Petri-net
like graphs, (2) shows the status of the testing via the graphs, and (3) displays
the results of the testing such as test output data, test coverage, etc. on the
graphs. The visual information makes it easier to exercise the testing.

Chapter 5 discusses translation of equations into expert system rules. The trans-
lation technique is applied to both the knowledge base generation and the software
testing. The software testing methodology via the graphical user interface is also
described.

(4) Program verification:

A higher degree of program reliability can be obtained by employing program ver-
ification. It is a process of proving logical assertions about computational prop-
erties of programs [BM81, Dij81, OL82, Lam83, CES86, Kro87, BGMSO, CPSSO].
The assertions usually concern whether or not programs properly perform desired
functions specified in their functional requirements. This has todate required a
highly trained expert in both mathematics and software engineering.

In equational languages, equational reasoning offers simple and more intuitive
ways for program verification utilizing only substitution, transitivity, equivalence
laws. We propose an equational reasoning system and a graphical user interface
for interactive program verification. It borrows the concepts from interactive het-
erogeneous reasoning [BESOa, BESOb, ShiSl], which consists of equational reason-
ing based on visual and textual information. Visual information about programs
such as Petri-net like graphs is combined with textual information such as equa-
tions and data declarations during the verification. A human tester dictates the
procedures of the verification. He guides the verification system by requesting it
to make substitutions and simplify expressions via the graphical user interface. A
symbolic manipulator mechanically applies the equivalence laws and the rules of
equational reasoning to simplify expressions. The program verification procedure
is illustrated in Chapter 6. It is exercised through interaction between a human
tester, the symbolic manipulator, and the graphical user interface.

The tools of the visualization, the consistency checking, the knowledge base genera-
tion, the software testing, and the program verification, are integrated in the proposed
environment. Programmers can employ these facilities to understand and compose
reliable programs. Programmers can utilize both visual and textual information in
programming, testing, and verification. The environment facilitates automatic aug-
mentation of knowledge bases with expertise extracted from existing programs. We

believe that the environment will greatly reduce the costs and increase the reliability
of software development and maintenance.

1.3 Research Plan

The plan to implement the environment includes the following tools:

(1) An equational language, MODEL:

MODEL [Lu81, MOD891 is an equational language based on regular and boolean
algebras; it has no side-effects, no states, and no control statements. It has an
equational look and referential transparency. Its data elements can be iteratively
defined. Equational reasoning can be applied for program verification. A Petri-
net like data flow graphs can be visualized. It has high level data structures
such as arrays and supports structured variables, records, and files. MODEL
has been successfully used in various applications of science, engineering and
business [PP83]. The research on MODEL includes: language translation [Lu81,
MOD891, consistency checking [Lu81, SLPP841, code optimization [SP88], reverse
engineering [PLGS88], concurrent programming [PGLS9O], etc. Therefore we
can take advantage of the MODEL compiler and the theories of MODEL in
implementing the proposed environment.

(2) An expert system, CLIPS:

CLIPS (C Language Integrated Production System) [GR89, Met911 is a rule-
based expert system developed by NASA. It is written in C to support high porta-
bility, low cost, and ease of integration with external systems [Metgl]. CLIPS
can be run under various operating systems such as Unix, VMS, MS-DOS, Mac-
intosh, etc. We will use CLIPS as the rule-based programming language of the
environment, mainly because of its availability. A CLIPS rule consists of pre-
conditions and actions. Its execution is based on pattern-matching, the Rete
algorithm [For82, GR89, Metgl]. CLIPS also supports object-oriented program-
ming. A number of applications with graphical user interfaces are built on CLIPS.
In the proposed environment CLIPS will be used as knowledge based system for
software testing where expertise extracted from programs are accumulated.

(3) A meta-environment, DECdesign:

DECdesign [DecSO] is a meta-environment that helps users develop their own
graphical environment. It allows users to customize the environment by encod-
ing their own methodologies using MDF (Methodology Definition File) and MIL
(Methodology Implementation Language). It also provides tools of creating and
managing graphical objects on X Window System. The graphical user inter-
face, the icon-based graphical editor, and the program visualizer will be imple-
mented using MIL. DECdesign provides tools of implementing a repository, such

as managing user accounts, creating libraries, moving data between libraries, etc.
[DecSO]. The repository of the environment will be implemented using MIL too.

The implementation of the complete proposed environment will require much effort.
At this stage of the research, we plan to implement only a basic part of the environment.
This will consist of only the three of the five components in Figure 1.1: visualization,
software testing, and knowledge base generation. It is planned that the visualization
part is implemented using DECdesign. Since MIL is a very high level language, it
would take 6 months to implement the program visualizer and the icon-based graphical
editor. The implementation of the CLIPS rule translator is estimated to take 3 months.
The total integration of the tools requires a significant amount of time: The MODEL
compiler (already implemented), the CLIPS rule translator (to be implemented), and
the CLIPS expert system (to be purchased) will be combined with the graphical user
interface. We estimate that the integration of the prototype will take 3 months.

Chapter 2

THEORETICAL FOUNDATIONS

Introduction

MODEL is a high level mathematical language. It can be used for composing equations
and declarations that specify an algorithm and writing its requirement assertions.' Pro-
grammers can compose programs using equations and data declarations to implement
the algorithm without considering implementation details. The MODEL specification
of the algorithm can be understood by programmers with ease because it is based on
regular and boolean algebras that can be learned from high school. Formal verification
of the correctness of a MODEL specification is easier than that of a program, because
it utilizes only algebraic manipulation of equations and requirement assertions. Equa-
tional reasoning cab consist of algebraic laws of equivalence, rewriting rules, such as
substitution and transitivity, and an induction rule. This can be used for the MODEL
verification. The theoretical foundations of MODEL and its calculus are defined in
this chapter, as a basis for composing, understanding, testing and verifying a MODEL
specification. Their use in proving correctness of programs is illustrated with a simple
example.

Figure 2.1 illustrates the overall approach to program verification based on equa-
tional reasoning. The input to the verification system consists of a MODEL specifica-
tion, and proof goals. The verification system is based on equational reasoning that
utilizes algebraic laws, rewriting rules, and an induction rule. As outputs of the system,
formal proofs about the proof goals are constructed.

A MODEL specijication expresses algorithms to solve a given problem in terms of
equations. Each equation in the specification is considered as an axiom in the MODEL
calculus. Thus the following requirements must be satisfied:

'In practice, requirements of software are usually written in natural language. We assume that a
human tester must be able to translate requirements written in natural language or any other forms
into respective formal representation in MODEL. From now on, requirement assertions are assumed
to be written in MODEL.

A MODEL
Verification

Specification
'

Formal
(Equations) Proofs

Algebraic Laws I
Rewriting Rules I
Induction Rule

MODEL Calculus

Figure 2.1: An overview of a process of verifying the correctness of a MODEL specifi-
cat ion.

(1) A user must assure that all the inputs of each equation are available.

(2) The equation must compute the unique value of its left-hade side (LHS) variable.

(3) There must exist at least one causal chain [GR89] from input to output via the
equations.

(4) The execution of a specification must terminate with a solution.

The verification process aims to prove the correctness of the specification as pre-
sented in the proof goals. The proof goals may consist, in the simplest case, of con-
straints on inputs and their expected outputs. They may consist of assertions (ex-
pressed as MODEL equations) about computational properties of the specification.
Proof goals are decomposed into a collection of subgoals that can be proven one at a
time.

The MODEL calculus has the same syntax of the MODEL language. It uses alge-
braic equivalence laws and rewriting rules which evaluate and manipulate expressions
during the process of verification. The calculus also employs an induction rule.

This chapter is organized as follows: Section 2.2 describes the syntax and the
semantics of the equational language. The basic notions of the MODEL calculus, the
algebraic laws, the rewriting rules and the induction rule are presented in Section 2.3.
An example is given in Section 2.4 of verifying the correctness of a MODEL specification
under this calculus.

2.2 MODEL

2.2.1 Functional Units

A functional unit in MODEL consists of a header, declaration and equations. A header
is an interface of a functional unit and specifies its type (module, function or procedure),
name and a list of inputs and outputs. A multi-unit specification consists of a main
functional unit, called module, and a set of subsidiary functional units, either functions
or procedures [PLGS88]. A function accepts structures of input parameters and returns
a single output structure. A procedure has input, output and update (treated as
"new7' and "old") parameters. As will be shown, definitions of subsidiary functions
or procedures are in fact definitions of operations. An individual functional unit does
not have recursive definition in itself, although it can use itself as an operation thus
creating recursion. In the following, we focus on an individual module, function or
procedure which are called "programs-in- the-small" . For "programs-in- t he-largen , see
[LPgO].

2.2.2 Data Declaration

Data structures and their types are declared in a declaration part of a functional
unit. There are input, output and interim variables. Input and output variables are
declared in its header. A structure of each input and output variable, i.e. an entire
hierarchy of the structured variable, must be specified in a declaration part (it may
be typed). Interim variables are used within a functional unit and cannot be accessed
from the outside. Their declaration is optional. If there is no explicit declaration for
an interim variable in a declaration part, a translator from MODEL to a procedural
language inserts its declaration automatically. A primitive type of a variable is one of
the followings: boolean, integer, real, or literal. The primitive type is defined either
explicitly or implicitly in the data declaration. We do not discuss the data declaration
further as the focus of the following is on the equations.

2.2.3 Equations

The syntax of an equation is defined as follows [MOD89]:

Equation ::= SimpleEquation~ConditionalEquation2

SimpleEquation ::= VarName(SubExprl, ..., SubExpr,) = AnyExpression

AnyExpression ::= ArthExpression IStrExpressionI BoolExpression

'we have three meta-symbols; "::=" defines a term in its left-hand side, ''I" denotes or and "[ezpr]"
means "ezpr" is optional.

ConditionalEquation ::= VarName(SubExprl, ..., SubExpr,) = CondExpression

CondExpression ::= IF BoaIExpression THEN CoAnEx [ELSE CoAnEx]

CoAnEx ::= CondExpressionlAnyExpression

An equation is either simple (SimpleEquation) or conditional (ConditionalEquation).
They define an LHS variable VarName(SubExprl, ...) in terms of expressions. In
composing a MODEL specification, only a variable (possibly subscripted) is allowed in
the LHS of an equality in an equation.3 An expression in the right-hand side (RHS) of
an equality defines the variable. BoolExpression defines a Boolean variable. Integer
and real type variables are defined by arithmetic expressions. String expressions return
literal values for a string variable.

2.2.4 Array and Scalar Variables

A MODEL variable is either a scalar or an array. An array variable is indexed by a
set of subscript expressions. As in mathematics, each variable has a single value in
MODEL. Once its value is assigned, it never changes. On the other hand, a subscript
variable assumes all integer values in the range of the elements of the arrays. Such
subscripts are further discussed below.

Every array has a data declaration or an equation that defines its dimensionality,
either implicitly or explicitly. For example, an equation END.x(i) = exp(i) may be
defined for the range of an array x with a subscript i , where exp is a Boolean expression
and a function of i. The variable END.x(i) is called a control variable [Lu81, MOD891.
E N D is prefixed to the array variable x. It is a "shadow" variable of x in the sense that
it has the same shape as x. See Figure 2.2. The value (a truth symbol, either TRUE
or FALSE) of the control variable is defined by the equation END.x(i) = exp(i). The
values of END.x(i) are FALSE except for the value of the last element in the most
right dimension that has the value TRUE. The size of the array variable x can be
alternately defined directly by another prefixed control variable, SI2E.x . The array
variable x is defined only when its subscript i satisfies a predicate 1 5 i 5 SI2E.x.
If the array is finite, SI2E.x has a finite value. Every element of END.x has the
FALSE value while the last element END.x(SI2E.x) is TRUE. If x is an infinite
array, however, there is no TRUE element in the array END.2, i.e., the value of
S I 2 E . x is infinite. It concludes that the following two equations are equivalent:

Rule of Control Variables:

(END.x(i) = exp(i)) - (exp(i) = IF (i = SI2E.x) THEN TRUE ELSE
FALSE)

3The restriction that only a variable is allowed in the LHS is relaxed by [Ge89]. In his extension,
an LHS expression is defined as equal to an RHS expression. We use the extended MODEL language
in formulating requirement assertions.

20

END.x<i> = exp<i>

Figure 2.2: An array variable x and its "shadow" array variable END.x.

x(l)

x(2)

0

., -

2.2.5 Operations

FALSE

FALSE
- -

0 -

The expressions of a MODEL specification use a set of operations. The operations
are defined by operators, functions and their arguments. The followings are MODEL
operators for expressions:

x<i> L

FALSE -
0 -
0 - -

x(S1ZE.x) w

I TRUE

(1) Arithmetic Operators: + (addition), - (subtraction), * (multiplication) and /
(division).

(2) Relational Operators: < (less than), 5 (less than equal), > (greater than), 2
(greater than equal), = (equal) and # (not equal).

(3) Logical Operator: & (and), 1 (or), 1 (not) and IF-THEN-ELSE.4

(4) String Operator: 1) (concatenation), string search and string replacement.

Functions are viewed as operations on their input arguments. They are either built-in
or user defined.

2.2.6 Implicit Universal and Existential Quantifiers

The most distinctive difference between a procedural language and an equational lan-
guage is that a variable has a single value in an equational language such as MODEL.

4ELSE is optional.

On the other hand, we can change the value of a variable in a procedural language as
many times as we want to.

A MODEL equation, x(i) = x(i - 1) + 1, defines all elements of x indexed by the
subscript i . It means that the equation represents a class of all equations such that
Vi, 1 5 i 5 SI2E.x .

The MODEL equation, x(i) = x(i - 1) + 1, can be interpreted into the following
code in a procedural programming language such as FORTRAN:

DO I = 1, SIZEX
X = X + 1

ENDDO

In the FORTRAN code, the assignment statement X = X + 1 cannot be executed if
the index variable I is out of its range, i.e. either I < 1 or I > S I Z E X . It can
be executed only when the index variable is properly defined. Likewise, a MODEL
equation is defined only when its LHS variable subscript expression is within the range.
If the LHS variable is size 0 or its subscript expression is out of range, the equation is
undefined. A MODEL equation that has undefined LHS variable is invalid. Such an
equation is called a null (or invalid) equation.

There is also the case of a null equation for specific subscript values: a conditional
expression without ELSE in the RHS of the equation. Suppose we have the following
equation: y = IF i = 10 THEN x(i) + 1. y is a scalar and its value is defined
only for the equation instance of i = 10. The equation is invalid for other value of i .
However there must be one instance (value of i) where the equation defines y, i.e. y
exists. In short, an instance of an equation becomes a null equation if its LHS variable
is undefined or its RHS expression cannot define valid operations for its legal LHS
variable.

A MODEL specification is regarded as a collection of valid equations. A valid
equation is defined to be able to uniquely determine the value of its LHS variable
in terms of its RHS expression. All the subscript expressions of every LHS variable
should be defined within their legal range. There exists a unique RHS expression of
a valid operation (that determines its value) for each element of an LHS variable. If
multiple equations define the same LHS variable, they must be mutually exclusive of
each other.

It concludes that existential (3) and universal (V) quantifiers implicitly exist for
each MODEL equation. Consider an equation

where the LHS variable x is defined by the function f ; the LHS variable is indexed
by the subscripts il, ..., in and the function f may have subscripts jl, ..., j, and the
variables varl, ..., vark as its arguments. If the ranges of the subscripts are 1 5 il 5

Figure 2.3: The Existence Condition.

SIZE;, , 1 5 i2 5 SIZE;, , etc., the following expression is equivalent to the MODEL
equation:

Existence Condition of Equation:
. . v il , . . - , zn , .?~ , ...,jm7 ((331, -..,jm,varl, ...,vark,

1 5 jl 5 SIZEjl , ..., 1 5 jm 5 SIZEjm7 f (jl, ..., jm, v a r ~ , ..., var,+)) +
(3i1, ..., in, 1 5 il 5 SIZE;,, ..., 1 5 in 5 SIZE;,,,

(~ (i l , ...,i n) = f (jl, ... ,jm, v a r ~ , ...,var k)))

The expression is interpreted as follows:

For all subscripts of the LHS variable, x, and the function, f , there exist the
subscripts of the function in the legal range, all input variables of the function
are available and the function is computable. Then the equation defines the value
of the LHS variable, x.

The existence condition of the equation, in fact, describes one of the requirements
that must be satisfied by MODEL equations in a specification: Every variable must

exist and be uniquely defined. The composition of such MODEL specifications is
facilitated by the checking mechanism as will be discussed in Chapter 4. Incom-
plete, ambiguous and/or inconsistent definitions of subscript expressions, variables and
equation are assumed to be removed after being detected by the checking mechanism
[Lu81, SLPP841. Any cyclic definition of variables is removed by the checking mecha-
nism.

2.2.7 Execution Model

One way to envisage MODEL specification execution is as a data flow machine [Arv82].
That is, the expression in its RHS is executed as soon as all of the inputs are available.
The value of the LHS variable is determined as the RHS expression is evaluated. The
notion of execution in MODEL consists of firing each equation when its inputs are
available and generating the corresponding output. An equation is fired once for each
combination of legal LHS and RHS subscript variables. However, due to the implicit
universal and existential quantifiers, only one LHS element is defined for each legal
LHS subscript variable.

A MODEL specification may include declaration of input and output data. Due to
the termination assumption, for any set of input data, there must exists at least one
order of firing that uniquely defines all the LHS variables (scalars or elements of arrays).
The specification will be checked to assure that such a sequence exists. Otherwise, the
specification is illegal.

Another way to envisage MODEL specification execution is an expert system [GR89].
An equation is implemented as a rule of an expert system. It is expressed as follows:

precondition + action

Each equation is a rule that has implicit universal and existential quantifiers as its
existence condition. It is in the form of the following:

existence-condition + equation

Since the equation is fired only if the existence condition is satisfied, it can be inter-
preted as the precondition of the rule. The execution of the equation is regarded as
the action of the rule. The specification of equations can be viewed as a set of rules.
The input data of the specification such as "x = 3;" can be interpreted as a set of
given facts of the expert system such as "(def ine- f act (x 3))". An array variable
like "y(i, j , I c) = 47;" is expressed as a fact (or relation) that maps multiple fields of its
subscripts to its value such as " (def ine-f act (y i j k 47))". As the precondition
(= the existence condition of the input variables) is satisfied, the values of the equa-
tions, the LHS subscripts and variables are determined through unification. Thus the
action (= the execution of the equation) determines the LHS variable. The execution
of a specification is actually the process of inference (or reasoning) on the given facts
in the expert system. The order of firing represents causal chain (or reasoning) among

the rules [GR89]. Since a specification is assumed to have at least one order of firing
that leads to a solution, there is at least one causal chain for a given set of facts. The
details of the expert system implementation are discussed in Chapter 5.

A MODEL Calculus

We define algebraic structure, laws and rewriting rules for manipulating MODEL ex-
pressions. The basic notions are described in Section 2.3.1. The laws of arithmetic
operators, relational operators and logical operators are described in Section 2.3.2. To
apply those laws to expressions, we need rewriting rules: Substitution and Transitivity.
Section 2.3.3 describes these rules. An induction rule is also needed and specified in
Section 2.3.4.

An equality (=) is used in MODEL expressions. In defining algebraic laws, an
equivalence relation (=) is used as a meta-symbol. It is reflexive, symmetric and
transitive.

2.3.1 Basic Notions

Well Formed Formula

The calculus shares the same syntax with the MODEL language. That is, legal MODEL
expressions and equations are defined as well-formed formulas (wffs) of the calculus.
The truth symbols, TRUE and FALSE, must be wffs. Constants and variables of
MODEL are wffs of the calculus. Since the calculus only allows the addition operator
(+) and the multiplication (*) operator as will be discussed, the subtraction opera-
tor (-) and the division operator (/) defined in MODEL are regarded as the inverse
operators of + and *, respectively. If A and B are wffs, A + B and A * B are wffs.
A - B and A/B in MODEL are translated as the wffs of the calculus, A + (-B) and
A * (l /B) , respectively.

Algebraic Structure

The algebraic structure for the calculus is defined as a field of fractions (rational num-
ber), (F, +, *) [Gi176]. It has the following components:

(1) F is a set of rational numbers. Its element is defined as a / b , where a E I (integer)
and b E I - (0). An equivalence relation N forms equivalence classes such that
a / b - c / d i f f a * d = b * c i n I.

(2) addition (+) and multiplication (*) are defined as follows:

(alb) + (cld) = (a * d + b * c) / (b * d)

(alb) * (cld) = (a * c)/(b * d)

(3) identities: 011 for + and 111 for *
(4) inverses: an inverse of alb for + is - a / b and an inverse of non-zero a/b for * is

bla

Semantics of Relational Operators

Relational operators are used in comparing values of expressions. The semantics of the
operators are defined as follow^:^

1. El = El is TRUE if the values of El and E2 are equal and is FALSE otherwise.

2. El > E2 is TRUE if the value of El is greater than that of E2 and is FALSE
otherwise.

3. El < E2 is TRUE if the value of El is less than that of E2 and is FALSE
otherwise.

4. El I E2 = ((El < E2)1(E1 = E2))

2.3.2 Algebraic Laws

Laws of Arithmetic Operators

Algebraic laws for arithmetic operators are defined. Landau describes theories for the
arithmetic of numbers [Lan66]. Commutative, associative and distributive laws are
defined. The algebra is defined in terms of the following laws:

1. Commutative Laws:

El , E2 and E3 are expressions.

2. Associative Laws:

x + (y + z) - (a : + y) + z

x * ((y * z) = (x * y) * z

3. Distributive Laws:

" * (Y + z) - (a: * y) + (y * 2)

Laws of Logical Operators

Equivalence laws are defined using the logical operators. They are based on the equiv-
alence laws in [GriBl]. E l , E2 and E3 in the following are expressions.

1. Commutative Laws:

(E1&E2) -- (&&El)

(ElIE2) = (E21E1)

(El = E2) - (E2 = E l)

2. Associative Laws:

3. Distributive Laws:

(El I(Ez&E3)) ((E I I E ~) & (E Z ~ E ~))

(El&(~%lE3)) = ((E1kE2) I (El&&))

4. De Morgan's Laws:

l (E l&E2) EE (i E l I-7E2)

l (E l lE2) 3 (i E 1 & i E 2)

5. Law of Negation: l (l E l) = El

6. Law of the Excluded Middle: (E l (l E l) = T R U E

7. Law of Contradiction: (E l & i E l) = FALSE

8. Laws of Implication:

(IF T R U E THEN E l) - El

(IF T R U E THEN El ELSE E2) - El

(IF FALSE T H E N El ELSE E2) E2

9. Laws of OR-simplification:

(ElIEl) = El

(E1)TRUE) TRUE

(El / F A L S E) z El

(ElI(El&E2)) -- El

10. Laws of AND-simplification:

(El&E1) G El

(El&TRUE) s El

(E1&FALSE) G FALSE

(El&(El I &)) = El

2.3.3 Rewriting Rules

Based on the algebraic laws described in the previous subsection, the rules of substi-
tution and transitivity are defined as follow^:^

Substitution Rule:

where el and e2 are expressions, P is a predicate and P[el/e2] is generated by
replacing the el in P by the expression e2.

Transitivity Rule:

el = e2, e2 = e3 t- el = e3,

where el, e2 and e3 are expressions.

2.3.4 Induct ion Rule

We may have an equation, x(sub) = IF sub = 1 T H E N 0 ELSE x(sub - 1) + 1 and
a proof goal, A: x(sub) = sub - 1 for 1 5 sub 5 SI2E.x . Notice that the proof goal
is based on the subscript, sub, that is a natural number. We can prove the proof goal
by induction on sub.

First, the basis of the induction, namely x(1) = 1 - 1 = 0, is proven by substitution
and the arithmetic laws. As an inductive hypothesis, we assume x(sub - 1) = (sub -

61- is a symbol of derivability. A i- B means that a wff B is derived from a wff A by a law of the
MODEL calculus.

1) - 1, where 2 5 sub 5 5'IZE.x. According to the equation, x(sub) = x(sub- 1) + 1.
By replacing the variable, x(sub- 1), by the expression, (sub- 1) - 1, as assumed in the
inductive hypothesis, we have x(sub) = ((sub - 1) - 1) + 1. Hence, x(sub) = sub - 1.
We conclude that the proof goal is proven.

Such a proof technique of induction on its subscript variable is stipulated as follows:

Induction Rule:

basis: A(1) holds, where A is a proof goal.

step: If A(i - 1) holds, so does A(i), for all 2 5 i 5 SIZE;.

conclusion: A holds for 1 5 i 5 SIZE;.

2.4 Example

This section demonstrates the methodology of verification based on equational rea-
soning. It only involves substitution and transitivity based on the algebraic laws of
equivalences where reflexivity and syrnmetricity are encoded by the equivalence rela-
tion (E). For a set of equations in a specification (that are regarded as axioms) and
its requirement assertions (axioms), a proof goal (also expressed as an equation) is
given. We rewrite the equations in the specification using the rewriting rules and the
algebraic laws until we get the proof goal. A proof formulated under the equational
reasoning is a sequence of substitutions. This contrast with other formal reasoning
methods such as "natural deduction system" which employs a Gentzen style implica-
tion rule [Man74, Gri81, Ga186, Lin881. For our purpose of reasoning for an equational
language like MODEL, the equational reasoning is adequate.

Most verification methodologies keep track of changes of execution states that are
values of program variables [Man74]. Since a variable has a single value in a mathe-
matical language such as MODEL, we never trace changes of execution states (values
of program variables) during the verification of a mathematical language program.

Unlike other mathematical languages such as Lucid [AW76, AW771, no temporal
operators (first, next, as soon as etc.) are necessary in MODEL. In its calculus,
passage of time [MP81, OL82, Lam83, Kro871 is replaced by the notion of implicit uni-
versal and existential quantifiers (the conditions of existence of variables) and "firing"
of equations. In some cases, the order of subscripts corresponds to the ordering of
firing equations to determine variables. In other cases, "firing" of equations may be in
parallel. The calculus provides these notions in place of procedurally representing the
notion of time-passing and proving properties related to time-passing.

Usually, programs being tested are written in a programming language that a user
is familiar with. Their requirement assertions and proof goals are normally expressed
in the object language7 of the formal verification system is often very formal and rigid.

7a logical language in which propositions are expressed and reasoned about

29

It has been pointed out that the user must spend much time and energy translating the
"na t~ra l '~ descriptions of the programs, the requirements and the proof goals into the
"complicatedn logical forms of the object language [Lin88]. Ideally, the object language
of the formal verification system should be close to the language of programs. In this
methodology, the object language is same as the specification language.

The problem of finding a greatest common divisor (gcd) of two positive integers is
chosen as an illustrating example. As discussed in Section 2.1, proving the correctness
of the specification requires three inputs: the specification equations, requirement as-
sertions and proof goals. These are discussed in the following. Next, the formal proof
of the correctness is presented.

Euclid's algorithm for computing a gcd of two positive integers x l and 22 is ex-
pressed as a MODEL specification [PLGS88]. Subsequent chapter discusses the use
of graphics in composition, modification, testing and verification of MODEL specifica-
tions. Therefore, we briefly present here as well this graphical approach. The graphic
representation of the gcd example is illustrated in Figure 2.4.

Each instance of an equation in the specification is envisaged as executed as soon as
its inputs are available. The execution of the equations may be in parallel. However,
there is precedences or dependencies8 among the equations and the variables. A r r a y
graph is a Petri-net like graph that specifies such precedences [Lu81, PP83, SLPP84,
SP881.

When a specification is composed, the user conceives variables and equations that
are represented in an array graph using icons. The array graph describes variables,
equations and precedences among them as shown in Figure 2.4. The simple box icon
in the graph denotes a scalar variable, x l , x2 and z. Array variables, y l (i) and y 2 (i) ,
are represented by the icon of a box with lines denoting its dimensionality. The edges
expressed as arrows denote the precedences, i.e., data dependencies and parameter
precedences. They are labeled by the associated subscript expressions. For example,
the edge from the y l (i) node to the Eq 1 node is labeled by the subscript expression,
i - 1. It means the value of the element y l (i - 1) is provided as the input of the
equation node, Eq 1.

As soon as the array graph is completed by the user, a prompting mechanism
examines the syntax of an array graph, finds LHS variables to be defined, and queries
the user to provide the definitions of the LHS variables. For example, a prompt "Eql:
yl(i) =" is generated on the the text window by the checking mechanism. The user
would provide the following equation:

IF i=1 THEN IF x1 3 x2 THEN xl
ELSE x2

ELSE IF y l (i - 1) 3 y2(i-1) THEN y l (i - 1) - y2(i-1)

'There are hierarchical precendence within the structures of the variables, data dependency in
evaluating the variables of the equations, and parameter precedence in evaluating the control variables
of the variables.[Lu81, PP83, SP881.

Figure 2.4: A sample MODEL specification computing a GCD of two integer inputs.

TEXT WINDOW

Eql: yl(i)= IF i = 1 THEN IF xl>x2

THEN xl ELSE x2
ELSE IF y 1 (i- l)>y2(i- 1)

THEN y l(i- 1)-y2(i-1)

ELSE y 1 (i- 1)

Eq2: y2(i)= IF i= 1 THEN IF x 1 > x2

THEN x2 ELSE xl

ELSE IF y 1 (i- l)>y2(i- 1)

THEN y2(i-1)

ELSE y2(i-l)-y l (i-1)

Eq3: END.yl(i)= (y l(i) = y2(i))

Eq4: z= IF END.yl(i) THEN yl(i)

L

ARRAY GRAPH WINDOW

ELSE yl (i-I) ;

As will be discussed in the next chapter, there is a checking mechanism that finds
undefined or redundant variables, checks data types and locates inconsistent definitions
of subscript expressions and dimensionality of variables. The checking mechanism fa-
cilitates the process of formulating an array graph without inconsistent and ambiguous
definitions of variables. Inconsistency and ambiguity in definitions of variables are
detected and removed by the user through changing the graph or the equations.

Similarly, the query "Eq 2: y2(i) = " is generated by the prompting mechanism
and the definition of y2(i) is provided as the equation presented in Figure 2.4. Then
the checking mechanism is invoked to locate the inconsistency and the ambiguity. Eq
i and Eq 2 in the text window define two array variables yl and y2 which contain
intermediate values of the computation. The size of the array variables is determined
by the control variable END.yl(i). Eq 3 specifies the expression that determines the
values of the elements, END.yl(i)'s. The output of the computation, i.e. a gcd of
x l and 22, is the value of the last element of y l . That is, the gcd of x l and 22
is yl(SIZE.yl) where yl(SIZE.yl) = y2(SIZE.yl). Eq 4 defines the operation of
determining z , which is gcd(x1, x2).

As discussed in Chapter 1, MODEL is also used in reverse engineering. The graph-
ical user interface can be used to display an existing specification to facilitate under-
standing and modifying a specification generated from the old procedural programs.
In that case, array graph and equations of the specification are displayed on the screen
by the system. User tries to understand the meaning of the specification by reviewing
the array graph and the equations.

The procedure described above is used in both composing and understanding a
MODEL specification through the graphical user interface. The graphics is also used
in the stage of interactive verification on the specification. It effectively helps people
to understand the internal structures of the specification. The textual representation
of equations specifies their operations that cannot be precisely defined through the
graphics. The interactive verification process on the specification removes errors at
the early stage of the software development. Therefore, the interactive graphical user
interface increases productivity of programmers and quality of programs.

Next, the user enters requirement assertions about the specification. They define
behavior of the specification and they become axioms in the verification system. The
following assertion about a gcd of two positive integers v and w is the basis of the
Euclid algorithm:

gcd(v,w) = IF v = w THEN v
ELSE I F v < w THEN gcd(v,w-v)

ELSE gcd (v-w , w)

Next, the goals for the verification are specified in proof goals. The proof goals
consist of the goals and their subgoals as follows:

Goal I. x = gcd(xl,x2)

Subgoal 1. gcd(xl,x2) = gcd(yl(l), y2(1))

Subgoal 2. gcd(yl(i), y2(i)) = gcd(yl(i - I), y2(i - 1))

Subgoal 3. z = gcd(yl(SIZE.yl), y2(SIZE.yl))

Goal 11. SIZE.y l < finite-val

Subgoal 1. max(y1 (i - 1)) y2(i - 1)) - max(yl(i), y2(i)) 2 1

Subgoal 2. SIZE .y l < max(xl,x2)

The first goal is to prove that the specification correctly computes the gcd of the input
variables. The second one is to prove that its execution terminates within a finite
amount of time. It can be proven by showing that the size of the array y l is bounded
by a finite number, i.e. max(xl,x2).

The algebraic laws, the rewriting rules and the induction rule are applied during
the process of verification. The subgoals presented in the proof goals are proven one by
one. The followings are the steps of the verification. For each step of verification, the
names of the rules and/or the algebraic laws used for the verification step are given:

1. Proof of gcd(x1, x2) = gcd(yl(l), y2(1)):

a. i = 1, Eql I-
yl(1) = IF 1 = 1 THEN IF x l > 22 THEN x l ELSE 22

ELSE IF yl(1- 1) > y2(1- 1) THEN yl(1- 1) -y2(1- 1) ELSE yl(1-1);

(by Substitution)

b. yl(1) = IF 1 = 1 THEN IF x1 > 22 THEN x1 ELSE 22

ELSE IF yl(1-1) > y2(1-1) THEN ~ l (l - l) - ~ 2 (1 - 1) ELSE yl(1-1);

I-
yl(1) = IF TRUE THEN IF x l > x2 THEN x l ELSE x2
ELSE IF yl(1- 1) > y2(1- 1) THEN yl(1- 1)-y2(1- 1) ELSE yl(1-1);

(by Semantics of Relational Operators)

c. ~ l (1) = IF T R U E THEN IF x l > 22 THEN x l ELSE 22
ELSE IF ~l(1-1) > y2(1-1) THEN yl(l- l)-y2(1 -1) ELSE yl(1-1);

t
yl(1) = IF x l > 22 THEN x l ELSE 22
(by Law of Implication)

d. i = 1, Eq 2 I- y2(1) = IF x l > 22 THEN 22 ELSE x1
(by Substitution, Semantics of Relational Operators, and Law of Implica-
tion)

CASE x l > 22:

e. (c) I- yl(1) = x l
f. (d) I- ~ 2 (1) = 22

g. (e),(f) I- gcd(xl,x2) = gcd(yl(l), ~ 2 (1))
(by Substitution)

CASE x l 2 22:

h. (c) I- yl(1) = 22
i. (d) I- y2(1) = x1

j. (h),(i) I- gcd(xl,x2) = gcd(~2(1), yl(1))
(by Substitution)

k. (j), the requirement assertion t gcd(y2(1), yl(1)) = gcd(yl(l),y2(1))

1. (j),(k) I- gcd(x17x2) = gcd(yl(l), ~ 2 (1))
(by Transitivity)

2. Proof of gcd(y1 (i), y2(i)) = gcd(y l(i - I) , y2(i - I)):

CASE yl(i - 1) > y2(i - 1):

a. v = yl(i - I), w = y2(i - I) , yl(i - 1) > y2(i - 1) I- v > w.
(by Substitution)

b. v > w, requirement assertion t- gcd(v, w) = gcd(v - w, w)
(by Law of Implication)

c. v = ~ l (i - I), w = ~ 2 (i - I) , (b) t- gcd(yl(i - I), y2(i- 1)) = gcd(yl(i -
1) - y2(i - I) , y2(i - 1))
(by Substitution)

d. yl(i - 1) > ~ 2 (i - 1)) Eq 1 I- yl(i) = yl(i - 1) - y2(i - 1)
(by Law of Implication)

e. yl(i - 1) > y2(i - l) , Eq 2 I- y2(i) = y2(i - 1)
(by Law of Implication)

f. (d),(e), (c) I- gcd(yl(i - 1) , ~ 2 (i - 1)) = gcd(yl(i),y2(i))
(by Substitution)

g. gcd(y1 (i-1), y2(i-1)) = gcd(yl(i), y2(i)) I- gcd(yl(i), y2(i)) = gcd(yl(i-
11, ~ 2 (i - 1))
(by Law of Equality)

CASE yl(i - 1) 5 y2(i - 1):
Likewise, gcd(yl(i), y2(i)) = gcd(yl(i - I) , y2(i - 1))

3. Proof of z = gcd(yl(SIZE.yl), y2(SIZE.yl)):

a. i = SIZE-yl , Eq3 t E N D . Y ~ (S I Z E . ~ ~) = (y l (s I Z E . ~ l) = y 2 (s I Z E . ~ l))
(by Substitution)

b. END.yl(SIZE.yl) = (yl(SIZE.yl) = y2(SIZE.yl)) I- (yl(SIZE.yl) =
y2(SIZE.yl)) = TRUE
(by The Rule of Control Variables)

c. (a),(b) I- END.yl(SIZE.yl) = TRUE
(by Transitivity)

d. i = SIZE.yl , Eq 4 I- z = IF END.yl(SIZE.yl) THEN yl(SIZE.yl)
(by Substitution)

e. (c),(d) I- z = yl(SIZE.yl)
(by Law of Implication)

f. Let v = ~ l (s I Z E . y l) and w = y2(SIZE.yl).
v = w, requirement assertion I- gcd(v, w) = v

(by Law of Implication)

g. v = yl(SIZE.yl) , w = y2(SIZE.yl), (f) I- gcd(yl(SIZE.yl), y2(SIZE.yl)) =
yl(SIZE.yl)
(by Substitution)

h. (e) , (g) I- z = gcd(yl(SIZE.yl), y2(SIZE.yl))
(by Transitivity)

+ Conclude z = gcd(xl,x2) by Induction Rule.

4. Proof of max(yl(i - I), y2(i - 1)) - max(yl(i), y2(i)) 2 1:

a. x1 > 0, 22 > 0 t (yl(i) > 0)&(y2(i) > 0)
(by Induction Rule)

b. (a) t (yl(i - 1) - yl(i) > 0)((y2(i - 1) - y2(i) > 0)
(by Induction Rule)

c. (b) I- max(yl(i - 1) - y l (i) , y2(i - 1) - y2(i)) > 1
(by Induction Rule)

5. Proof of SIZE.yl < max(xl,x2):

+ Conclude SIZE.yl < f inite-val by the assumption such that x l > 0 and x2 > 0.

Chapter 3

VISUALIZATION

3.1 Introduction

The visualization system employs program visualization, visual programming, pull-
down menus, and texts. The objective of this chapter is to describe the visual program-
ming (VP) environment for MODEL. Visual programming allows a user to compose a
program in a two dimensional fashion [Har88, Mye88, ChaSO]. The VP environment
offers an interactive graphical user interface where a user can effectively compose and
modify a MODEL specification. It also facilitates generating reliable programs by of-
fering three types of utilities: checking unique computability of variables, testing, and
verification. The interactive graphical user interface improves interactions between the
user and the environment in composing, modifying, checking, testing and verifying a
specification. This chapter describes the VP environment. Its use in checking, testing
and verification is described in respective chapters.

There are a number of advantages of visual programming over conventional (tex-
tual) programming. A human being can recognize and process multi-dimensional data
such as pictures and diagrams. A conventional computer program written in a textual
form does not fully utilize the capability of the human for visual information process-
ing. Many researchers have demonstrated that two-dimensional displays of programs
are helpful for humans in composing and understanding programs, especially for non-
programmers or novice programmers [Mye88, ChaSO]. A graphical description can
explain a complex problem, such as a concurrent process or a real-time system. Even
a professional programmer could benefit from use of high-level graphical descriptions
when dealing with very complex problems.

The VP environment for MODEL overcomes some problems with existing VP sys-
tems. First, it does not use a control flow diagram, e.g. a flow chart, on which many
VP systems are based. It has been proven that a flow chart is a poor abstraction
of software structure and useless as a design tool [Bro87]. In the VP environment, an
equational language, MODEL, is visualized as a Petri-net like data flow diagram, array

graph. Recall that a MODEL specification is a collection of equations and the order
of executing them is not specified; every variable has a single value; every equation is
fired as soon as its inputs are available. As a result, the user does not have to trace
flows of program states around the whole diagram. He can examine properties of any
MODEL equation or a group of connected equations locally in the displayed graph.

A MODEL equation is regarded as residing on a processing element of a data
flow machine. It is fired as soon as all of its inputs are available. Each equation is
represented as a node. Each variable (whether a scalar or a multi-dimensional array
variable) also forms a node. A hierarchical structure of a variable is denoted by a set of
variable nodes and edges of hierarchical precedences. The other types of edges visualize
data dependency and parameter precedence among equations and the input and output
variables. The array graph has more expressive power and is more readable than a flow
chart.

The VP environment combines graphics and an equational language, MODEL. A
data flow graph of a specification (= array graph) is represented in graphics to help
the user understand its meaning. At the same time, compact and intuitive mathemat-
ical definitions of the equations are precisely expressed. Both the graphics and the
mathematics complementarily enhance the user's understanding of the specification.

As a specification is composed, its consistent definitions/references (of the dimen-
sionality of array variables, the ranges of dimensions, the data dependency, etc.) is
interactively checked as discussed in Chapter 4. The consistency of the specifica-
tion is also tested after its composition and/or its modification. As will be dis-
cussed in the following chapter, the testing1 of a specification may be performed
[Kin76, Cla76, DLS78, RW85, How87, Ham88, GH88, BeiSO]. The graphical user inter-
face facilitates the testing procedure. The correctness of a specification may be proven
using the verification system through the interactive graphical user interface. Note that
the procedures of checking, testing and verification of programs are frequently carried
out by users incompletely, partially because of their complexity and tediousness. The
combination of interactive checking, testing, verification and graphics will make those
procedures easier.

There are a number of graphic systems that can be utilized for the graphical user
interface[Dec90, BMS WSO]. DECdesign is a software development environment based
on graphics [DecSO]. It helps a user to analyze and design software systems according
to sound rules of the design methodology. As an example, the design methodology of
the Yourdon Data Flow Diagram (DFD) was implemented in DECdesign. It provides
an icon-based graphical editor where a user creates a diagram using icons. The icons
and their meanings may be based on the Yourdon DFD notation. A graph has two edit
windows: the graphics window and the forms window. The graphics window displays
the diagram. To edit or examine information about a graph, a user opens the respective
forms window.

l a process of discovering faults that cause failure of software

The VP environment for MODEL is proposed to be implemented in terms of any
one of existing graphic systems. We propose to customize DECdesign by providing the
methodology of visual programming to the DECdesign core environment in terms of
graphical objects and rules. An array graph is displayed on the graphical window for
the VP environment (called array graph window). Its data declarations and equations
are presented in other window (called text window).

This chapter discusses mainly the composition and modification of specifications
using the VP environment. Section 3.2 illustrates the idea of the visual programming.
The graphical user interface and its use in the composition and the modification are
described in Section 3.3.

3.2 Example

A user composes a specification by constructing an array graph in graphics. Declaring
data structures and defining equations in MODEL are performed textually. The vari-
ables and the equations of the specification are represented by graphical objects (icons)
in the array graph. The mouse and the keyboard inputs are used in formulating and
modifying an array graph. It is similar to an icon-based graphical editor [TB86].

As illustrated in Figure 3.1, a view of an array graph is seen through the array
graph window. It consists of a "canvas" for drawing the graphs, a menu of icons and
pull-down menus ("FILEn, "ED IT", "VIEW", "TOOLS" and "HELP") . The graph
denotes the data structures, the equations and the precedence of executing the equa-
tions graphically. Each equation has its mat hemat ical definition in the corresponding
text window. The VP environment facilitates the maintenance of consistency in the
contents of the windows.

For example, consider a simple MODEL specification of information retrieval in
Figure 3.1. The module, info-retrieval, finds a list of books written by "Prywes"
from the input file, in-f i l e , where the titles of the books are stored under the names
of their authors. The equation, Eq 1, copies titles of the books written by "Prywes"
to the l-D array, p-book(j). The size of the array is limited by the control variable,
SIZE .p-book, determined by the equation Eq 2. The array, p-book(j), forms a record,
out, of the target file, out-f i l e . The input data are the records, p(i) , of the data type,
author. It consists of author's name (name), an array of titles (t i t l e (j)) and the size
of the array (n). The structure of the data type, author, is graphically expressed in the
array graph window (in terms of icons with dotted lines) while its textual declaration
("TYPES:") and its usage ("VARIABLES:") are presented in the text window.

........... C

EQUATIONS:
MODULE: info-retrieval; Eql: p-book(j) =
SOURCE: in-file; IF (p(i).name = "Prywes") THEN p(i).title(i);
TARGET: out-file;

DATA DECLARATIONS: ~ q 2 : SIZE.^-book =
IF(p(i).name = "Prywes") THEN p(i).n;

1 author IS GROUP,
2 name IS FIELD (CHAR(20)),
2 n IS FIELD (NUM),
2 title(j) IS FIELD (CHAR(80));

VARIABLES:
1 in-file IS FILE,

2 p(i) IS RECORD TYPE author;

1 out-file IS FILE,
2 out IS RECORD,

Figure 3.1: An array graph window and its text window

Graphical User Interface

The graphical user interface of the VP environment manages multiple windows on a
screen, invokes utilities requested by a user, accepts keyboard and mouse input, and
displays an array graph of a MODEL specification, equations, and messages.

The utilities of managing multiple views and windows are described in Section
3.3.1. The graphical objects such as icons and menus are discussed in Sections 3.3.2
and 3.3.3. The methodology of composing a specification is explained in Section 3.3.4.
The graphical user interface also facilitates modifying a specification graphically and
textually. The modification procedure is presented in Section 3.3.5. The graphical
operations on the displayed array graphs are explained in Section 3.3.6.

3.3.1 Views and Windows

A user can selectively have many different views of an array graph of a specification. For
instance, the user may want to see only field variables, equations and data dependencies
of the array graph. Or he may want to modify the graph through graphical operations
such as zooming a part of the graph, imploding a partition of the graph, exploding
imploded partitions, etc. A graphical representation of either an array graph itself or
a result of the graphical operations on the graph is called a view of the array graph.

The user can "see" the view through a window. The physical size of the window
may or may not cover the whole view. In case that the window is not big enough to
show the whole view, the user may move the window around the view to get the whole
picture. Figure 3.2 illustrates the relationship among an array graph, a view and a
window. An array graph of a specification is displayed in Figure 3.2-(a). A user may
delete all field nodes of the input and the output of the specification, x i , x2, x3, x4,
x i 1 and x12, to replace them by their ancestor nodes, in-grp and out-grp, as shown
in Figure 3.2-(b). The user creates the view. The window of the VP environment may
be able to cover only a portion of the view. In Figure 3.2-(b), the user can "see" the
equations, Eq 1, Eq 2, Eq 3, Eq 5 and Eq 8, the variables, x5, x6 and x7, and the
data dependencies among them through the window.

A scrollingoperation is needed when the user moves the array graph window around
a view. As shown in Figure 3.1, the array graph window has two scroll bars for moving
the window (up-and-down and left-and-right). The size of the array graph window can
be changed using the resize icon in the lower-right corner of the window. He can also
enlarge a part of the graph by zooming. When the user examines a complicated graph,
the zooming operation is useful. These graphical operations are already implemented
as standard ones in X window system [SGN88, AS901 and DECdesign [DecSO].

a window of the vie I out-file

a view of an array graph

Figure 3.2: An array graph, a view and a window.

3.3.2 Graphical Objects

An array graph consists of variables, equations and their precedences. The variables
and the equations are nodes of the graph, while the precedences are denoted by edges
of the graph. The nodes and the edges are created by selecting the icons illustrated in
Figure 3.1.

A scalar variable is expressed as a box icon. Multi-dimensional array variables (1-D,
2-D, 3-D and n-D arrays) are denoted by boxes and subscripts as presented in Figure
3.1. Those icons of variables are called data icons.

The hierarchical structure of a variable is also expressed by the data icons, the
"FILE" and the "HIERARCHICAL PRECEDENCEn icons in Figure 3.1. For example,
consider the hierarchical structures for i n - f i l e and o u t f i l e declared in the text
window of Figure 3.1. The variables, name, n , t i t l e (j) and p-book(j) , are called
fields.2 The fields may form a logical unit called a group3 or a physical reco9d4 A group
and a record could be regarded as a scalar variable like out or a multi-dimensional array
variable like p (i) .

We can distinguish a field node from a group node by hierarchical structure in an
array graph. However, a record node is not distinguished from a group node. The
"RECORDn icon is provided to mark a record node by shading. A user first clicks the
"RECORD" icon and selects a proper data icon for a record node. Then the selected
icon is shaded and appears on the array graph window. The p (i) , out and author
nodes in Figure 3.1 are shaded to denote that they are records.

The files,5 in-f i l e and o u t f i l e , may have a number of groups or records. They
are denoted by the "FILE" icon. The "SOURCEn (= input) and the "TARGET" (=
output) files of the module are declared in the header part.

Control variables such as E N D , E N D F I L E and SUBLINEAR [MOD891 are
represented by the "SHADOW ARRAYn icon which is attached to the correspond-
ing arrays. For example, the 1-D array, p (i) , in Figure 3.1 has a shadow variable,
ENDFILE. p (1) . It has the same shape (dimensionality and range) of the record, p (i) .
The shadow array icon is attached to the 1-D array icon of p (i) as its shadow. With
the notion of the shadow array icon, we can reduce the complexity of the array graph
and can graphically denote the relationship between an array variable and its shadow
array.

An equation is denoted by the circle icon. Inside the circle, the name of the equation
such as Eq 1 is specified. Each equation has a number of inputs and a single output.
They are expressed as attach points on the icon. For instance, the circle icon in Figure
3.1 has three attach points. Two of them are its inputs and the rest is its output. The

21eaf nodes of the tree that shows the entire hierarchy of the declared data structure
3a non-leaf node of the tree
4a physical unit of communicating with external devices
5a root of the tree

attach points disappear as soon as they are connected to edges from all inputs and
output of the equation.

As will be discussed in Section 3.3.6, a user may partition a class of equations that
can be classified as a single equation. A collection of data structures can be partitioned
to form a new hierarchical data structure. It is used to simplify the displayed array
graph. A user selects the "PARTITIONn icon from the icon menu in Figure 3.1 and
surrounds nodes that form a new node.

A user may define a new data type. He is able to create a new data type using
the data icons and the hierarchical precedence icons. It is implemented by the icon
of "DEFINE A TYPEn. For example, the data type, author, in Figure 3.1 is created
using the icon. The 1-D array, p (i) , is defined as an instance of the type as presented
in the text window in Figure 3.1. To distinguish the declaration of a new data type
from normal data declaration, all icons used in the new type declaration are expressed
by dotted lines. A generic equation can be defined as a new type equation using the
"DEFINE A TYPE" icon. The user clicks the icon and defines a new type equation in
terms of variables and equations. Both a new type variable and a new type equation
are instantiated by selecting their definitions on the window.

The text window contains textual representations of equations, data declarations
and user-defined data types for the graphical objects on the array graph window.
It gives accurate and detailed information of the array graph window. The graphical
objects on the array graph window and their textual representation must be consistent.
The user and the VP environment can eliminate discrepancies between the two different
representations (graphics and text) using the checking mechanism. The two different
representation of a same specification complementarily helps the user's understanding
of the specification.

3.3.3 Pull-Down Menu

Some operations are invoked using the pull-down menus. File operations such as cre-
ating a new array graph, reading a whole or a part of an existing array graph etc. are
invoked by choosing the "FILE" menu in Figure 3.3-(a). A user can edit graphical
objects on the graph by choosing the edit operations listed under the "EDITn menu in
Figure 3.3-(b).

There may be multiple views of an array graph. The user may want to save the
generated views as a report. The graphical user interface offers a utility of making a
snap-shot of a currently displayed array graph. The "VIEW" menu has the selections
of graphical operations as shown in Figure 3.3-(c).

Utilities for composing, checking, testing and verifying a MODEL specification are
categorized as "TOOLS". The user can initiate the operations by choosing the menu
of Figure 3.3-(d). Finally, the "HELP" menu provides an on-line help facility.

CLOSE

... SAVE AS

(a) FILE menu

VIEW TOOLS HELP

UNDO

CUT

PASTE

SELECT

SELECT ALL

DELETE

(b) EDIT menu

FILE EDIT HELP
......................

IMPLOSION

EXPLOSION

SNAP-SHOT

ZOOM

(c) VIEW menu

(d) TOOLS menu

Figure 3.3: The "pull-downn menus

FILE EDIT VIEW
i ~ , ~ ~ , j j j j j $ < ~

: f < : k . y @ + ~ g i ~ :.:.:.:.: : HELP ...
L

PROMPTING

CHECKING

TESTING

VERIFICATION

3.3.4 Composition

A user composes a specification by creating nodes of its variables and equations and
connecting them using edges of precedences. For the input and the output variables,
the hierarchical structures (declarations) must be specified in both a graphical form
and a textual form. The data icons are used to define fields, records, groups and files.
A record node is shaded. Their hierarchical precedences are denoted by the broken
arrows. A new data type can be created by the user. Its graphical representation
in dotted lines appears in the array graph window. The textual declaration of the
data type is presented in the text window. The equations are declared as the circle
icons on the array graph window. The data dependencies and parameter precedences
among the variables and the equations are denoted by the edges of the solid arrow
icon. The edges must be annotated by the subscript expressions that are used in the
corresponding equations.

Once the graph is completed, the user invokes the prompting mechanism from the
"TOOLS" menu to get the textual definitions of the equations via the text window.
The prompting mechanism recognizes the LHS variables and their corresponding RHS
expressions. The mechanism issues a prompt such as "Eq 1: xl(i) =" meaning to
query the user the textual definition of the RHS expression for the LHS variable, x i (i).
The RHS expression should be able to define the value of the LHS variable uniquely
as long as its existence condition is satisfied.

As discussed in Chapter 2 and 4, the user must meet the requirements (the existence
condition, the computability of equations, etc.) when he composes a specification.
The user can detect ambiguous definitions and incomplete definitions of variables and
equations as completing the array graph using the prompting mechanism. Then, he
starts the checking mechanism using the "TOOLS" menu. It checks the consistent
definitions and references of variables and equations in the specification. The user
interactively composes and checks a specification using the VP environment.

3.3.5 Modification

A user can modify a specification by changing its array graph and/or its data declara-
tions and equations.

The user can rearrange the positions of icons (nodes and edges) of an array graph
on the array graph window. It is a graphical change of the graph and does not affect
the meaning of the array graph and the specification.

A new variable and its hierarchical structure can be created and inserted into an
array graph. By selecting a data icon from the menu, the user can create a new variable
node of an array graph. The new variable can be an input of an equation but it should
not be an output of an existing equation. If the variable is created as an input of an
equation, the user must change the definition of the corresponding equation on the text

window. The data dependency or the parameter precedence relationship between the
new variable and the equation is also specified by connecting them with the arrow icon.
The dimensions, subscript expressions and their ranges must be consistently specified
along the edge.

In case of creating a new equation, the user modifies both the array graph win-
dow and the text window. A circle icon denoting an equation is newly inserted into
the array graph. Next, the output variable node and its hierarchical structures are
defined. The data dependency or the parameter precedence between the equation and
its output must be specified in terms of the solid arrow icons. The input variables
of the new equation may already exist or must be created. The creation of its new
input variables is as same as discussed before. The data dependencies or the parameter
precedences between the input variables and the equation are represented by the arrow
icons. Finally, a textual expression of the new equation is specified via the text window
by invoking the prompting mechanism. The incomplete definitions, the ambiguous def-
initions and any inconsistent definitions and references among the variables and the
equations must be checked and removed. To perform these jobs, the prompting and
the checking mechanisms are invoked during the modification procedure.

3.3.6 Graphical Operations

A complicated array graph may obstruct user's understanding of the meaning of a
specification. Thus a user simplifies a complicated graph by imploding a class of equa-
tions into a single equation node. Accordingly, a cluster of variables are imploded into
a single variable node. For example, the equations and the variables of the array graph
of Figure 3.4 can be partitioned (by selecting the "PARTITION" icon) according to
their functional behaviors. The partitioned node must behave like a single node. The
following rules are stipulated for partitioning:

(1) A closure6 can be partitioned to form an imploded equation node.

(2) A set of equation nodes can be an imploded equation node, if the resulting node
can have a single output variable node.

(3) A set of variable nodes can be an imploded variable node, if the resulting node
can be defined by a single equation node.

For example, the two closures in Figure 3.4 can be partitioned and named P a r t - E q
1 and P a r t - E q 2, respectively. The set of equations, {Eq 9 , Eq 10, Eq 11)) ca.n
be partitioned to make an imploded equation node, P a r t - E q 3, since the set of vari-
ables, {output 1, output 2 , output 31, can form an imploded variable node and
vice versa. A simplified version of the array graph is presented in Figure 3.5.

61t is a set of equations and variables that can be executed as one loop [Lu81]. A closure has a
single output variable. The equations and the variables in a closure share the same subscript of the
same range.

Figure 3.4: Partitioning equations and variables.

+rL !Hr<T -!yrl
i

(0 - - - -
5 (0 (i) C 5

<i) - - - - . (0
0

C \ 0 \

\ I \
8

Part-Eq 1)

: Part-Eq 2.1
8 8 N 8

0 \ . 0
0 \ . 0

i

- - - - - - 5

C -
*

: Part-Eq 3 1
8 I

*
* .

I - - - - - - - - - -
4 : Var-~art I i

;- - - - - - - - - - - - I

i f - - - - - - - - - - - :
I

I - - - - - - - - - - - -

Figure 3.5: An "imploded" array graph.

Notice that the imploded equation node, P a r t - E q I in Figure 3.5, does not have
the subscript, k, which denotes the third dimension of the variable, x4, in Figure 3.4.
Since the subscript, k, is internal in the closure, it does not appear in its imploded
node.

On the other hand, a user may want to examine the details of nodes of the simplified
array graph. The user can explode any imploded node by creating another window.
For example, the imploded equation node named P a r t - E q 3 of Figure 3.5 is created by
merging three equations, Eq 9, Eq 10, and Eq I I. The explosion operation reveals
the detailed structure of the node and its input nodes and its output node as shown
in Figure 3.6. Similarly, the imploded variable node can be exploded and its structure
and its corresponding equation nodes are exposed as shown in Figure 3.6.

Figure 3.6: The imploded nodes of the array graph are exploded.

Chapter 4

CHECKING

4.1 Introduction

This chapter describes the checking system of MODEL. As discussed in Chapter 2, a
user must compose a MODEL specification adhering to a number of requirements. The
most important requirement is the existence of all variables of the equations and at
least one causal chain from input to output[GR89] via the equations of a specification.
Thus a unique output (= a solution for the equations) must be always computable for
a given input set. A corollary requirement is that its execution must terminate.

The checking system helps a user in composing a specification that complies with
these requirements. The checking system performs static checking that detects errors or
warns the user when satisfying these requirements is conditioned on the values of input
data. Responding to the error messages, the user fixes the faults in the specification.
He either modifies the specification or sets up assertions that specify the condition of
successfully computing equations, regarding to the warning messages. For example,
consider an equation, "x(i) = I F a(i) > b(i) THEN y(i)". It cannot define the values
of x (i) if the condition, a(i) > b(i), is never satisfied for all i. The checking system
issues a warning message to the user on the equation. It is required that he must
either modify the equation or provide an assertion that assures the satisfiability of the
condition such as "3, a(i) > b(i)". Such an assertion becomes a part of the axioms of
the MODEL proof system when the correctness of the specification is verified.

The checking system aims to check the computability of the equations. That is, the
checking system facilitates a user composing a specification which has one output set (=
a solution) of the specification (= a set of equations) for a given input set. The resulting
specification consists of the checked equations and the generated assertions that specify
the requirements of the computability. They become axioms of the proof system. Since
every variable of the equations has a unique definition, the axioms transformed from the
equations cannot contradict each other. It follows that the set of axioms are consistent.
That is, the checking mechanism facilitates the user in generating the axioms consistent.

The inconsistency of the axioms makes the soundness and the completeness of the proof
system, which consists of the axioms and the rewriting rules based on the equivalence
laws, meaningless. In that sense, the checking system supports the soundness and the
completeness of the proof system.

Ambiguous definitions and incomplete definitions of the variables and the equa-
tions are detected as their array graph and dictionary [Lu81, MOD891 are completed.'
If the same name is used for more than one data structures, it causes ambiguity. It
is resolved by using qualifying (or prefixing) names for variables [Lu81, SLPP841.
The incomplete definition of an LHS variable of an equation means that it does
not have an RHS expression that defines its value. Also an interim variable may
not be explicitly declared. Section 4.2 describes a method of discovering the
ambiguous and the incomplete definitions through completing an array graph.

(2) The existence requirement for defining variables is checked. It is examined by
checking the definitions of variables and their references. There may be discrep-
ancies between declarations and references about dimensionalities, data types of
variables and ranges of subscript expressions. They are checked by propagating
attributes such as dimensions and ranges2 via edges of an array graph. The
existence requirement checking is discussed in Section 4.3.

(3) The presence of a causal chain that computes a solution set for a given input
values is checked. A cyclic definition of variables (called circular logic [SLPP84])
causes an infinite computation. It should not be a part of any causal chain. The
checking mechanism detects such a cycle in an array graph and tests if it results
a cyclic definition. The method of detecting and removing the cyclic definitions
of variables is presented in Section 4.4.

(4) The condition of terminating the execution is checked for the specification. Even
though there is no circular logic in an array graph, it may not terminate if their
control variables specifying the termination condition such as END do not have
finite values. The presence of such control variables and their computability
are checked. If they are not found on a causal chain or their values cannot be
determined as finite, a warning message is generated. Checking the termination
condition is discussed in Section 4.5.

4.2 Graph Construction

Every variable and its definition are listed in the dictionary of a MODEL specification.
An array graph is a graphical implementation of a dictionary. A user invokes the
prompting mechanism to complete an array graph. The mechanism recognizes every

'The dictionary is an internal representation of a specification. The header, the detailed declaration
of variables, the equations and their precedence relationships are stored in the dictionary.

'size of a dimension of an array variable.

variable and the corresponding equation in the array graph displayed on the array graph
window. A textual definition of the equation is requested by the prompting mechanism
and provided the user via the text window. The two representations (graphical and
textual) on the windows must be consistent. If ambiguous definitions and incomplete
definitions of variables are found, an error or a warning message is issued.

4.2.1 Ambiguous Definitions

When several data structures have the same name, it is ambiguous to reference the data
structures from equations. The ambiguity is removed as an array graph is constructed.
It is done by applying the following rules [Lu81, SLPP841:

(1) An LHS may reference only interim or output variables.

(2) An RHS may reference also input variables.

In many cases, however, it is necessary to require the user to remove the ambiguity.
He may rename the variables by qualifying (or prefixing) them [SLPP84]. For example,
we may have the following declaration statements:

1 a I S GROUP, 1 b IS GROUP,
2 x (i) IS FIELD NUM(4) ; 2 x (i) I S FIELD NUM(4);

The following equation has ambiguity due to the field x:

y (i) = I F x (i)> lO THEN x (i) - 10
ELSE x (i) ;

The ambiguity is resolved by using the qualified (or prefixed) names as follows:

y (i) = IF a . x (i) > l O THEN b . x (i) - 10
ELSE b . x (i) ;

4.2.2 Incomplete Definitions

If equations or interim data declarations are omitted, the checking system at tempts to
provide an appropriate equation or a data declaration. The process is based on the
following rules [Lu81, SLPP841:

(1) If an output data node is not explicitly defined, a new equation may be composed
using its implicit input nodes.

(2) An omitted data declaration of a node (an interim variable) and/or its parent
node can be formulated using its implicit inputs.

If the implicit source of the omitting equations and the declarations are not found
in the array graph and/or the dictionary, the system requests the user to provide
equations and/or data declarations.

4.2.3 Solvability

A specification without the ambiguous and the incomplete definitions is guaranteed to
have at least n equations for n unknown variables. It is one of necessary conditions
to have a solution of the equations. Each equation could uniquely determine the
value of its LHS variable. If multiple exclusive equations define the same variable, a
warning message is issued. A user may respond it by formulating an assertion about
the exclusiveness and merging the equations into a single one. For example, consider
the following equations:

x (i) = IF a (i) > c (i) THEN y (i) ;
x (i) = I F c (i) < b (i) THEN z (i) ;

To have a unique definition of x (i) , the two conditions, a (i) > c (i) and c (i) <
b (i) , must be exclusive. That is, the following assertion must be true:
'di, ((((a (i) > c (i >) & (c (i) < b (i))) I (1 (a (i) > c (i)) & (c (i) < b (i)))))
The condition of computing the unique value of x (i) becomes an assertion that is
regarded as an axiom of the proof system. Since we only allow one equation for one
LHS variable, those equations are merged into the following one:

x (i) = I F a (i) > c (i) THEN y (i)
ELSE IF c (i) < b (i) THEN z (i) ;

The solvability checking is performed by removing the ambiguous and the incom-
plete definitions of variables and equations as the array graph of a specification is
constructed.

4.3 Existence Requirement

As discussed in Section 2.2.6, the existence requirement of variables is the most im-
portant property that a MODEL specification must employ. To facilitate a user to
comply with the requirement, the checking mechanism provides utilities that examine
the consistent definitions/references of dimensions and their ranges.

For each equation of the specification, the RHS expression, f (il, ..., in , j l , ..., jk, varl, ..., wark)
in Figure 2.3, for instance, and its input variables, warl, ..., vark, have consistent defi-
nitions of their dimensions. The LHS variable, x(il , .. . , in), has consistent definitions of
dimensions with respect to the equation. The dimension propagation algorithm checks
the consistent definitions of dimensions and their references through out the equations
of a specification. The ranges of the dimensions are checked by the range propagation
algorithms. As a result, the existence condition, namely, 3jl, ..., j,, varl, ..., vark and
3il, ..., in is checked.

4.3.1 Dimension Propagation

Since some subscripts may be omitted in an equation, it is necessary to check if the
dimensionality of arrays referenced in equations is consistent with that of those arrays
specified in the respective data declaration. A user does not have to specify the detailed
dimensionality of every variable. The checking system completes the data declarations
and the equations whose dimensionalities are not explicitly specified.

The checking system propagates attributes of a node of an array graph to another
via an edge that connects them. The attributes of an edge stored in the dictionary
include the followings [LuS 1, GeS91:

(1) source node of the edge.

(2) its target node.

(3) its type, i.e., hierarchical precedence, data dependency or parameter precedence.

(4) difference of the source and the target nodes in their dimensionality (DIMDIF).

(5) its subscript expression list.

(6) range set for each dimension.

If two nodes are linked by an edge, the attributes of the nodes must be matched
according to the attributes of the edge.

An algorithm for the dimension propagation is described in [Lu81]. The dimen-
sionality differences, D I M D I F , are set up for all the edges of the array graph. For
the input file nodes, the dimensionality is 0. An intermediate node, n , (either a
variable or an equation) has an initially declared number of denoting its dimension,
D,. Suppose m source nodes, sl, ..., s,, are connected to the node, n, via the re-
spective coming edges of dimension differences, DIMDIF,, , ..., DIMDIFSm. It may
have k target nodes, t l , ..., tk, connected by k outgoing edges of dimension differences,
DIMDIFt l , ..., DIMDIFt , , as shown in Figure 4.1. The current dimensionality of
a node, x, is denoted by C,: the source nodes, sl, ..., s,, have the dimensionalities,

Figure 4.1 : Dimension Propagation.

Csl , ..., Cs, and the target nodes, t l , ..., t k , have the dimensionalities, Ctl , ..., Ctk. Then,
the dimensionality of the node n is defined as follows:

The algorithm computes C, for all nodes of the graph. If every node of the graph has
a finite dimension, the algorithm converges [Lu81]. An infinite propagation cycle of
the graph can be detected by the algorithm. Then, its nodes and edges are revealed so
that a user can fix it. If the dimensionalities of the nodes and the edges are correctly
defined, the output file node must have 0 dimensionality.

Missing subscripts of the equations are filled up during the dimension propagation.
A node subscript list is formulated for each variable node. Based on these lists, missing
subscripts of equation nodes and missing subscript expressions of edges are filled up.
The detailed procedure is described in [Lu81].

4.3.2 Range Propagat ion

After the dimension propagation, the ranges of the dimensions are examined for all
the nodes in the array graph. The basic strategy is to find and propagate the user
specified ranges of the nodes to the rest of the nodes via the edges connecting them.
The propagation aims:

(1) to derive a range for a node subscript not having an explicit range.

(2) to determine range sets each of which contains two node subscripts of the same
range.

(3) to check the consistent definitions and uses of the ranges.

Definitions

A node subscript is defined for a node of an array graph as follows:

(1) < x, i >: a node subscript for an i-th (i is a positive integer) dimension of the
node of the array variable, x.

(2) < Eqn, I >: a node subscript for I (a subscript variable) with the equation node,
E q n -

A range (or size) of a node subscript, < n, d >, is defined as R(< n, d >).

User Specified Ranges

A range is specified explicitly or implicitly for each node. It may be explicitly defined
by:

(1) a data declaration statement

(2) a subscript declaration statement

(3) the values of control variables (S I Z E or E N D)

(4) the system default: the end-of-file or end-of-record marker (E N D F I L E) of an
input sequential file

Condition of the Propagation

When two node subscripts of different nodes are related through some dependency
relation and one of them does not have an explicit range specification, the range of the
other node subscript is propagated through the edge denoting the dependency relation.

If a subscript expression i - k, where i is a subscript and k is a positive integer, is
used in an equation, a mapping exists between the values of elements indexed by i and
i - k. It is assumed that the node indexed by i and the equation node indexed by i - k
are in the same range set.

Figure 4.2: Example of Range Propagation.

ray Graph Window

1
subl

a(sub1)
R(<a,l>)=20

R(<Eql,subl>)=?
A

(sub 1)

1
sub1

- b(subl)
R(<b,l>)=?

A

R(cEq2,subb) =?
4

(sub 1)

1
sub 1

c(sub1)
R(<c,l>)=lO

Prior i ty of t h e Propagat ion

There may be many alternatives of range propagation. It is performed based on the
following rules:

(1) All the node subscripts with the same global subscripf are considered as a single
group, i.e., a set of variables and statements in a single loop in a procedural
language program. Thus the range of the global subscript is propagated with the
top priority.

(2) A data array node and its associated control variable such as END and SIZE
must have the same range. The range of the control variable is required to be
explicitly specified. The range is propagated from the control variable to its data
array node with the second priority.

(3) The range of an output node is propagated to its associated equation node with
the second priority.

(4) From an equation node to its associated input data node, the range can be
propagated. It has the third priority.

(5) The lowest priority is given to the range propagation from an input data node to
its equation node.

Consider a simple example illustrated in Figure 4.2. Two simple equations, Eq 1
and Eq 2, of transferring values from an array to another are presented. The ranges
of the arrays, a(sub1) and ~ (s u b l) , are given as 20 and 10, respectively. Note that
the subscript, subl, is not defined as a global subscript. Since the condition of the
range propagation is satisfied, we can propagate the ranges to determine the ranges of
the node subscripts for Eq I , Eq 2 and b(sub1). We have the following alternatives:
(a) propagate the range of the local subscript subl of a(sub1) to the equation node,
Eq 1, to determine the value of R(<Eq 1, subl>) or (b) propagate the range of the
subscript subl of the output node, c(subl) , backward to the equation node, Eq 2, to
get the value of R(<Eq 2,subi>) . According to the rules of the range propagation,
the first alternative, (a), has the fourth priority and the second alternative, (b), has the
second priority. Thus the value of R (<Eq 2, subl>) is defined as 10. Next, we have
the following two alternatives: (a) and (c) propagate the value of R(<Eq 2 , subl>)
to its input data node, b (subl) . The alternative, (c), has higher priority. Therefore
the value of R(<b, I>) becomes 10. Finally, the following two alternatives remain:
(a) and (d) propagate the range of the subscript, subl, for the output node, b(subl) ,
to its equation node, R(<Eq 1 ,subl>) . The second alternative, (d), has the second
priority. It follows that R(<Eq 1, subi>) is equal to 10.

3defined by either a subscript declaration statement or a control variable, FOR-EACH [Lu81,
MOD891.

Range Functions and Real Arguments

A node subscript represents an iteration over its range by a loop control statement in
a procedural program [Lu81]. An equation and a data node in an array graph may
have multiple node subscripts and they represent a multi-level nested loop. In such a
situation, the range of a node subscript can be a function of the other subscripts. For
example, consider the following MODEL specification:

a IS FIELD;
b IS FIELD;

The range of the third dimension, k, of the array variables, a(i , j , k) and b (i , j , k) ,
depends on the ranges of the first and the second dimensions, i and j, as Eq 2 defines.
The specification is translated into the following code of a procedural language program
[Lu8 11 :

DO <a,l>;
DO <a,2>;

DO <a,3> = 1 TO SIZE.a(<a,l>,<a,2>);
b(<a,l>,<a,2>,<a,3>) = a(<a,l>,<a,2>,<a,3>);

END;
END;

END ;

An n-dimensional mnge array, SIZE.x(il, ..., in), is regarded as a mnge function.
The range function accepts integer arguments, il , ..., in, and computes the range of the
n+l-th or higher dimension of the variable, x. Arguments of a range function are called
real arguments, if they really contribute to determining the value of the function. An
algorithm of finding real arguments of range functions is described in [Lu81].

It is required that the loops of an array are nested according to the sequence of the
array dimensions. That is, the loops of a variable, x(il, ..., in) must be nested in the
following way:

DO <x,l>;
DO <x,2>;

...
DO <x,n>;

. . .
END;

. . .

Array Graph Window

(i-

Figure 4.3: A maximally strongly connected component (MSCC) of an array graph.

I

I

I

END ;
END ;

Text Window
Eql: a(i) =

IF i=l THEN
0

ELSE
a(i- 1)+ 1

It follows that a range function for a dimension, ik, 1 < k < n, does not affected by its
lower dimensions for all i,, k < m 5 n.

Range Propagation Algorithm

There are three basic algorithms for the range propagation. The first algorithm locates
the user specified ranges of node subscripts. As discussed before, the ranges are speci-
fied by declaration statements (either data or subscript), the control variables such as
END and SIZE or the system default (end-of-file or end-of-record). Secondly, the
explicit range specifications are propagated. It requires the node subscripts to be parti-
tioned into their corresponding range sets. Finally, the real argument list is formulated
for the node subscripts in the same range set and is propagated. See [LuSl] for the
details of the algorithms.

4.4 Causal Chain

A causal chain in the array graph of a specification is a path from its input nodes to
the output nodes via the equations. A solution of the equations is computed along

the causal chain. Therefore, a circular definition of variables, namely circular logic (or
dependency), that cause an infinite computation, should not be on a causal chain.

A maximally strongly connected component (MSCC) of an array graph could re-
sult in circular logic. However, not all MSCC's form circular logic. The checking
mechanism identifies and decomposes an MSCC by deleting edges that represent data
dependencies assured by iteration statements [Lu81, SLPP841. Such edges of iteration
can be determined by examining the subscript expression of the edges. If its subscript
expression is in the form of sub - k, where k > 0 and sub denotes a subscript common
to all MSCC nodes, the edge is determined to be representing iteration.

For example, an MSCC can be found in Figure 4.3: a cycle formed by the edge
labeled with i and the edge with i-I. In this particular example, sub = i and k = 1.
Therefore, the edge with i- I is classified as one representing iteration. It follows that
the MSCC does not have circular logic. Such an iteration solution method is recursively
applied until all MSCC7s in the array graph are examined.

A cycle that cannot be decomposed by the iteration solution method is reported as
a possibly infinite loop. A user has to examine and remove such a cycle by decomposing
it. If it is not possible, he may use a set of simultaneous equations that perform the
same function of the cycle. In general, it is very complicated to remove an infinite loop
from a program by static checking. We only deal with a specification that always has
at least one causal chain of the equations.

4.5 Termination

Suppose we have an acyclic array graph without any cycle. Then a causal chain can
be formulated. However, it does not mean that a solution of equations is obtained.
To check the termination condition, the equations defining control variables such as
E N D and S I Z E are examined for each causal chain. It aims to check the finiteness
of the subscripts, namely, 1 5 il 5 SIZE;,, ..., 1 5 in 5 SIZEi, and 1 5 jl 5
SIZEj,, ..., 1 5 j , 5 SIZEj, of the existence condition in Section 2.2.6. The values
of the S I Z E variables (= the ranges of the subscripts), if computable, may be obtained
during the range propagation. There may exist some constraints of defining the ranges
that cannot be computed during the range propagation. Such constraints are discovered
and checked during the termination checking.

Note that the E N D variable can define a minimum range of 1 because it must have
at least one boolean value. However, the S I Z E variable can have a minimum range
of 0. The value of the E N D variable can be infinite while the SIZE variable has a
finite value. END.x(il, ..., in) may depend on the values of the array, x(il, ..., in). But
SIZE.x(il, ..., in) must be computed before any element of x(il, ..., in) is used.

The termination checking discovers an equation of defining the size of the array
variables such as "END.x(il, ..., in) = ..." and "SIZE.x(i17 ..., in) = ..." for each causal

chain of a specification. If there is no equation of such control variables, a warning
message is issued so that a user examines the termination condition of a specification.
Though such an equation is defined on a causal chain, it may not have an explicit finite
value denoting the termination. In such a case, a warning message is also issued.

Procedural
Programs

Figure 5.1: Extracting expertise from programs, converting it to rules, and accumulat-
ing the rules into knowledge base.

and a graphical user interface. Each MODEL equation is regarded a functional unit
expressed as an equation node of an array graph that is used as a graphical user interface
during the testing. A MODEL variable is denoted by a data node of the array graph.
The data flows between the equation nodes and the data nodes are expressed by edges
of the array graph. A human tester can examine inputs and outputs of an individual
equation (called 1/0 testing) and/or a number of equations along the selected data
flows (called path analysis) specified in the array graph.

This section presents introductory descriptions of the proposed testing method in
use of an expert system: The objectives of using an expert system for software testing
are discussed. The advantages of the testing based on equational language programs
(MODEL specifications) over procedural language programs are also presented. The
procedure starts with the translation of a MODEL equation into a CLIPS rule using
the CLIPS translator. This is also used for the knowledge base generation. Section 5.2
explains the translator. The translation process is illustrated using the specification of
the gcd example1 into CLIPS rules in Section 5.3. The interactive procedures of the
1 / 0 testing and the path analysis are illustrated in Section 5.4.

5.1.1 Objective of the Use of an Expert System

We build a processor that directly executes MODEL equations so that the testing of
the equations (a MODEL specification) is possible using such a processor. A data flow
machine could be the processor, since it can be envisaged as an execution model of
MODEL, as discussed in Chapter 2. Also an expert system could serve as a MODEL
processor because an expert system rule can simulate an execution of a MODEL equa-
tion. Recall Section 2.2.7 for details. We use an existing expert system called CLIPS
[GR89] as a MODEL processor. With the MODEL processor, we can perform the
software testing at a specification level.

MODEL equations of a specification can be translated into expert system rules as
will be shown in Section 5.1.2. The expert system executing the translated rules is
able to compute the same outputs for the same input data as the MODEL equations
do. Therefore the expert system can simulate functional behaviors of the MODEL
specification as it executes the translated rules. It follows that a human tester can
do the software testing oftthe specification using the expert system. As illustrated in
Figure 5.2, a MODEL specification is translated into a set of expert system (CLIPS)
rules by the CLIPS rule translator. Then the expert system fires the rules according to
the requests from the user. He designates the equation(s) which he wants to evaluate
and enters the values of the associated input variables. Then the system computes the
output(s) of the tested equation(s) by executing the corresponding rule(s) translated
from the equation(s). It is usually assumed that he know the desired output values
from the given input data set during the software testing [RW85, How871. The inter-
action between the user and the system is performed through the array graph of the

lpresented in Section 2.4 of Chapter 2

Programs

Knowledge Base Generation

Equational-to-
Rule-Based

Language Translator

(CLIPS Rule
Translator)

B -
\

\

REPOSITORY

Software Testing

Expert System

(CLIPS)

+ I

4

Figure 5.2: Software testing at a specification level using an expert system.

\
\ @ I
\

\ \
4 I

\ 4
\ \ I I

\ \
\ I

I
\ \ I
I 1 I I

I I I
I

I
I

visiali@ion I

I
I
I : (~ r a ~ h i c a l : ~ s $ Interface) I

I I
I

I
I I

I I
I I
I

I I
I

I I

I I

I

(CLIPS)

specification via the graphical user interface. The user types the test input values using
a keyboard and a mouse. The values of the computed output variables are displayed
through the graphical user interface. CLIPS is also able to "explain" how to compute
the outputs according to the test inputs. The textual and the graphical results of
the testing are stored as test reports in the data base (the repository of the software
developing environment).

As discussed in Chapter 3, an array graph of a MODEL specification is visualized
and serves as a graphical user interface of the software developing environment. It is
also used as a graphical user interface for the testing. We claim that the interaction
between the user and the environment is enhanced. Also, it is possible to produce both
the textual and the graphical forms of the test reports. The textual form includes test
input data sets and their generated output values. The coverage of each test data set
for either a part of or a whole specification is marked on the displayed array graph.

5.1.2 Similarity between a MODEL equation and a CLIPS
rule

How an expert system rule can simulate a MODEL equation? As an example, consider
the following equation, Eq 1 in Figure 2.4, Chapter 2:

E q 1: yl(i) = IF i=1 THEN IF x1 > x2 THEN xi ELSE x2
ELSE I F yl(i-1) > y2(i-1) THEN yl(i-1) - y2(i-1)

ELSE y1 (i-1) ;

The equation accepts the input values of variables, x l , 22, y l (i) and y2(i), where 1 5
i < SIZE.yl and computes the values of yl(i) for 1 5 i 5 SIZE.yl. As discussed in
Chapter 2, the existence condition of Eq 1 must be:

Vi, 1 < i < SIZE.yl, (3xl1x213y1(i - 1)) y2(i - 1))

It means that the values of x l and 22 OR y 1 (i - 1) and y2(i - 1) must be available when
the value of yl(i) is determined by the equation, Eq 1. The existence condition can be
satisfied either 3xl,x2 or 3yl (i - 1)) y2(i - 1) not both. It is because the first elements
of the array variables, yl(1) and y2(1), are initialized by x l and x2, respectively, and
the rest elements of the arrays, yl(i),y2(i), for 2 < i < SIZE.yl , are computed from
their "ancestor" elements, yl (i - 1) and y2(i - 1). Scheduler of the MODEL compiler
is able to detect such data dependency by examining array graphs [Lu81, MOD891. It
can statically decompose such a complex equation into the following simple equations:

E q 1-1: yl(1) = IF x1 > x2 THEN x1 ELSE x2;
E q 1-2: yl(i) = IF yl(i-1) > y2(i-1) THEN yl(i-1) - y2(i-I)

ELSE y1 (i-1) ;

~q 1-1 is similar to an initialization statement of an iteration block while Eq 1-2 can
be regarded as a body of the iteration block. Then the existence conditions for Eq 1-1
is 3x1, x2. On the other hand, the equation, Eq 1-2, has the existence condition such
that Vi,2 5 i 5 SIZE.yl, 3yl(i - I), y2(i - 1).

We translate a MODEL equation into a CLIPS rule that performs the same function
as the equation does. A CLIPS rule, in general, has two components: preconditions
and actions, Whenever the preconditions of the rule are satisfied, the actions are
executed. The CLIPS expert system maintains a list of facts stored in its knowledge
base, called fact-list in CLIPS. The satisfiability of the preconditions is tested through
pattern matching [GR89]. We propose that the existence conditions of a MODEL
equation are translated into preconditions of a CLIPS rule; The body of the equation
is denoted by the actions of a CLIPS rule; Every element of array variables in MODEL
is represented by a CLIPS fact in the fact-list; A MODEL subscript is expressed as a
variable in CLIPS.

A set of MODEL equations are translated into a collection of CLIPS rules. Input
values of the equations are provided as facts for CLIPS. Then, the expert system
performs the pattern matching with the patterns specified in the precondition part
and the facts (the input values for the equations) stored in the fact-list. It checks if
the facts of such patterns are in the fact-list (if the required inputs are available). If
so, the values of the variables specified in the precondition part are obtained from the
facts. It follows that the rules, whose preconditions are satisfied, are invoked. A set of
new facts (the outputs of the equations) are generated and the fact-list is updated.

A CLIPS rule, ru l e l , which will be shown to be equivalent to the equation, Eq
1-1, is defined as follows:

(defrule rule1 ; f o r Eq 1-1
; "preconditions"

(x i ?XI) ; get i n i t i a l values of XI and x2
(x2 ?x2)
=>

. I (act ions '
(if (> ?XI ?x2) then

(assert (y l 1 ?XI))
e l s e

(assert (y1 1 ?x2))))

The variables, x l and 22, are represented as CLIPS facts, (x i x i -0) and (x2 x2-0)
in Figure 5.3-(b), where x i and x2 are relation names of the facts and xi-0 and x2-0
are their values. The CLIPS variables denote the values of the input variables of the
equation, x1 and x2. The existence conditions of the equation, 3xl,x2, are encoded as
the preconditions of the rule. The body of the equation is translated into the actions of
the rule. As shown in Figure 5.3, ru l e l defines a new fact, (y1 I y i - I) , where y1-1
is a value computed by the actions of the rule, from the input facts, (x i xi-0) and

(a) execution of MODEL equations

FACT-LIST RULES

(b) execution (pattern matching) of CLIPS rules

Figure 5.3: MODEL equations and their translation into CLIPS rules.

(x2 x2-0). It is equivalent to the computation such that the equation, Eq 1-1 defines
the value of yl(1) from x l and 22. For example, the equation computes yl(1) = 65
if x l = 26 and 22 = 65. The execution can be simulated by CLIPS as follows: The
input values are provided by commands, (a s s e r t (x i 26)) and (a s s e r t (x i 65)) .
The satisfiability of the preconditions is checked through the pattern matching and
the CLIPS variables, ?xl and ?x2, get the values, 26 and 65, respectively. Since the
preconditions are satisfied, the actions are executed. In this particular example, CLIPS
command, (a s s e r t (y l 1 ?x2)), is invoked. Since x2 is asserted as 65, a new fact,
(y i 1 65), is formulated and stored in the fact-list, as shown in Figure 5.3-(b).

Eq 1-2 is translated into the following rule, ru le2:

(d e f r u l e r u l e 2 ; f o r E q 1 - 2
(end-y1 =(- ? i 1) ?val&:(not ?val)) ; check i f END.yl(i-1) is f a l s e

; ?va l denotes t h e t r u t h value of END.yl(i-I)
; i f ?va l is TRUE, r u l e2 is not executed.

(y l =(- ? i I)&(> ? i 1) ?y l) ; y l ex i s tence condi t ion, namely,
; t h e value of y l (i -1) e x i s t s and
; t h e subscr ip t i i s g r e a t e r than 1.

(y2 =(- ? i I)&(> ? i 1) ?y2) ; y2 ex i s tence condi t ion, namely,
; t h e value of y2(i-1) e x i s t s and
; t h e subscr ip t i is g r e a t e r than 1.

=>

(i f (> ? y l ?y2) t h e n
(a s s e r t (y l ? i =(- ? y l ?y2)))
e l s e
(assert (y l ?i ? y l) 1)

The array variables, yl(i) and y2(i), of the equation are represented by multiple argu-
ment facts like (y i i y i - i) and (y2 i y2- i) , 1 5 i 5 n, as shown in Figure 5.3-(b).
y i and y2 denote relation names of the facts. The first argument, i, represents the
subscript of the array variables (the index of the facts). The second arguments, y i - i
and y2-i , denote the values of the elements of the array variables, yl(i) and y2(i),
respectively. The existence conditions of Eq 1-2 contains Vi, 2 5 i 5 SIZE.yl . Note
that we determine the value of SIZE.y l using the control variable, END.yl, such
that Vi, 1 5 i < SIZE.y l , END.yl(i) = false and END.yl(SIZE.yl) = true. Pre-
condition, (end-yl = (- ? i 1) ?val& : (not ? v a l)) , checks the existence condition.
It tests if there is a fact named end-yi, if the first argument of the fact is equivalent
to the value of =(- ? i i), and if its second argument, ?va l , such that (no t ? v a l)
is true, exists. When ? v a l is false, the pattern matching succeeds because it makes
(no t ? v a l) true. That is, it checks if END.yl(i - 1) = false. (y1 = (- ?i 1) &(> ? i
I) ? y l) means that there must exist yl(i - 1) such that i is greater than 1. If so, the
expert system assigns a value to the variable, ?y1. Similarly, (y2 = (- ? i I) & (> ? i
1) ?y2) checks the existence condition of 3y2(i - 1). The actions of the rule represent
the consequence of executing the equation. New facts, (y i 2 ? y i) , . . . , (y i n ? y l) ,
where n = S I Z E . y 1, are generated by the rule and they represent the elements of the
array variable, y 1(2), .. ., y 1 (n) .

We can find the following similarities of the two systems:

(1) The variables of the equation can be represented by the facts of the expert system:
The value of a MODEL variable cannot be changed after it is "assigned" (using
"=") by an equation. Similarly, the fact of the expert system cannot be modified
either once it is "asserted" (using the a s s e r t command) by a rule.

(2) The existence condition of the equation can be regarded as the preconditions
of the rule: The equation is fired only when all of its inputs are available (the
existence condition is true). Similarly, the rule is executed only when all of the
preconditions, which check the existence of facts denoting the MODEL input
variables, are satisfied.

(3) The consequences of executing the equation can be simulated by the actions of
the rule: The assertion of new facts in the expert system is equivalent to the
assignment of values to the outputs in MODEL.

It concludes that the execution of a MODEL equation is similar to the execution of
a rule in the expert system, CLIPS. Therefore, an array graph for a MODEL specifi-
cation can be translated into the sequence of pattern matching scheduled by the Rete
algorithm [For82, GR891. In many rule-based expert systems, the Rete algorithm is

(a) Data flow testing in procedural programs. (b) Testing of an equation node and its data nodes

Figure 5.4: Data Flow Analysis

used in scheduling efficient pattern matching in a large collection of rules and facts.
Normally, the fact-list of expert systems are modified during each cycle of the pat-
tern matching process [GR89]. And the changes of the fact-list during each cycle are
typically small percentage of the whole fact-list. Therefore we can reduce unnecessary
computations of searching for facts by having the new or updated facts search for rules
instead of having rules search for the whole facts in the fact-list. The details of the
algorithm is described in [For82, GR891.

5.1.3 Procedural versus Equational Testing

Traditional software testing methods of procedural program codes are based on program-
path analysis [DLS78, DMMP87, How87, Ham88, BeiSO]. It checks the changes of the
values of program variables (= states) along the control flows of program (= program-
~ a t h s) . The basic idea is to execute paths of a program as a part of testing it.

One such approach is called data flow testing. It aims to test the consequences of
each and every computation using the produced values [RW85, BeigO]. As illustrated in
Figure 5.4-(a), the data flow testing focuses on definition of variables and their uses. For
example, the value of the variable, x, could be determined by the multiple statements,
x=gl (yl) , x=g2 (y2) and x=g3 (y3), as shown in the definitionluse graph [RW85] of
Figure 5.4. We must invent a test data set that covers all paths, pa th l , path2 and
pat h3, between the definitions of the values for x and their use, f (x) , in the data flow

testing [RW85]. Similarly, variable, y, that is defined by the statement, y=f (x) , can be
used by multiple statements, z=g4 (y) and w=g5 (y) as shown in Figure 5.4-(a). The
paths must be covered by the test data. In contrast, there is only one equation that
determines the value of the variable, x, in an equational language program. Figure 5.4-
(b) illustrates the characteristic of equational languages such as MODEL. Since a single
equation uniquely defines the value of a MODEL variable and a MODEL equation is
executed only when all of its inputs are available, we only check the paths between the
equation, y = f (x), its input variable nodes, x, and its output node, y.

The analysis on an equational language program is less complicated than that on
a procedural language program: The number of paths to be analyzed must be smaller.
When the testing is performed via a graphical representation and the results are re-
ported in graphics, the equational testing offers simpler diagrams than the procedural
testing does.

5.2 Translation

A MODEL variable is represented by a CLIPS fact: A subscript and a scalar are
expressed by single argument facts. An array is denoted by a multiple argument
fact. A MODEL equation is translated into CLIPS rule(s) depending on its existence
conditions. The procedure of the translation is described in this section. An example
of translation will be given in the next section.

The translation is performed in the following steps:

(1) Data declaration is translated: A subscript and a scalar variable are translated
into single argument facts. A multi-dimensional array is converted to a multiple
argument fact.

(2) The existence conditions of each equation are examined. Depending on the struc-
ture of the existence conditions, an equation may have to be decomposed. The
scheduler of the MODEL compiler can statically decompose such a complex equa-
tion into simple ones each of which can be represented by a single CLIPS rule.

(3) The existence conditions of each equation are translated into the preconditions
of the corresponding rule.

(4) The equation body of each equation is translated into the actions of the corre-
sponding rule.

A MODEL variable is stored as a CLIPS fact. A scalar variable, x l , is represented
by a CLIPS fact. Thus, a MODEL equation such as x i = 26; is translated into
an assertion of a new fact, (asser t (xi 26)) . On the other hand, the value can
retrieved by the following command, (XI ?xi) , where x l is the relation name and
?xi is a variable. Through the pattern matching between the asserted fact, (xi 26)

and the command, (XI ?XI) , the variable has the value, 26. A subscript variable is
also denoted by a single argument fact. An element of an n-dimensional array such as
w (i l , i2, ..., in), where il, i2, ..., in are subscripts, is expressed as a CLIPS fact such
as (w il i2 . . . in val) , where val is the value of the element. Its definition and
retrieval are as same as those of the scalar variable.

A MODEL function is translated into a CLIPS function using the deffunction
command.

A MODEL equation consists of two parts: the implicit existence condition and the
equation body. The existence condition is translated into the preconditions of a CLIPS
rule. The equation body becomes the actions of the rule.

5.3 Example

The equations of the gcd example shown in Figure 2.4, Chapter 2, are translated into
CLIPS rules to illustrate the translation procedure.

As illustrated in Section 5.1.2, equation, Eq 1, has to be decomposed into two
simple ones, Eq 1-1 and Eq 1-2, due to its complex existence condition. The simple
equations are translated into CLIPS rules, rule1 and rule2, respectively. Similarly,
equation, Eq 2:

Eq 2: y2(i) = IF i=l THEN IF x i > x2 THEN x2 ELSE x i
ELSE I F yl(i-1) > y2(i-I) THEN y2(i-I)

ELSE y2(i-1) - y l (i - I) ;

should also be decomposed into the following two simple equations:

Eq 2-1: y2(1) = I F x i > x2 THEN x2 ELSE x1;
Eq 2-2: y2(i) = IF yl(i -1) > y2(i-1) THEN y2(i-1)

ELSE y2(i-I) - y l (i - I) ;

The existence conditions for Eq 2-1 is 3x1, $2. The equation is translated into the
following rule:

(def r u l e rule3 ; f o r Eq 2-1
(xl ?XI) ; get i n i t i a l values of x1 and x2
(x2 ?x2)
=>
(i f (> ?XI ?x2) then

(asser t (y2 1 ?x2))
else

(asser t (y2 I ?XI))))

The equation, Eq 2-2, has the following existence condition:

The rules are translated into the following rules:

(def r u l e ru l e4 ; f o r Eq 2-2
(end-y1 =(- ? i 1) ?val&:(not ?va l)) ; check i f END.yl(i-1) is f a l s e

; ?val denotes t h e t r u t h value of END.yl(i-1)
; if ?va l i s TRUE, ru l e2 is not executed.

(y1 =(- ? i I)&(> ? i 1) ?y1) ; y l exis tence condi t ion, namely,
; t h e value of y l (i -1) e x i s t s and
; t h e subscr ip t i is greater than 1.

(y2 =(- ?i I)&(> ? i 1) ?y2) ; y2 exis tence condi t ion, namely,
; t h e value of y2(i-1) e x i s t s and
; t h e subscr ip t i is g r e a t e r than I.

=>
(i f (> ?y1 ?y2) then

(a s se r t (y2 ?i ?y2))
e l s e
(a s se r t (y2 ? i =(- ?y2 ?y i)) 1))

Those four rules, r u l e 1 to rule4, compu.te the facts, Vi, 1 < i < SIZE.yl , (y l i
y l - i) , (y2 i y2-i), where y l - i and y2-i represent the values of y l (i) and y2 (i) ,
respectively.

The equation, Eq 3:

becomes the following rule:

(def ru le ru l e5
(y l ? i ?y1) ; y i exis tence condit ion
(y2 ? i ?y2) ; y2 exis tence condit ion
=>
(a s s e r t (end-y1 ?i =(= ?y1 ?y2))))

The multiple argument fact, end-yl), contains boolean values in its second argu-
ment. The boolean value is determined by evaluating expression, = (= ?y 1 ?y2). The
expression returns true if the values of ?y1 and ?y2, which represent the MODEL
variables, y l(i) and y2(i), respectively, are same. Otherwise, it returns false. The
first argument, ? i , is an index of the fact which is in fact a subscript of a MODEL
variable, E N D - y l . Since y l (i) # y2(i) for all i, 1 5 i 5 SIZE.y l , the fact looks

like as follows: (end-yl 1 f a l s e) , (end-yl 2 f a l s e) , . . . , (end-yl SIZE. y1 - I
f a l s e) , (end-yl SIZE.yl true).

Finally, the equation, Eq 4:

Eq 4: z = I F (~ ~ ~ . y l (i)) THEN y l (i) ;

becomes the following rule:

(defrule rule6
(y l ? i ?y l) ; y l existence condition
(end-y1 ? i ?end-y1) ; end-yl existence condition
=>
(if (?end-yl) then

(assert (z ?y l)) 1)

5.4 Interactive I/O Testing and Path Analysis

The basic notion of the software testing is to execute a MODEL specification with
a test input data set and analyze the results. The default method of the testing is
such a testing of the whole specification. A human tester, however, may want to
test individual equation (110 testing) or a set of equations along data flows (path
analysis). In that case, he may set the testing mode as either "I/O TESTING" or
"PATH ANALYSIS" using a pull-down menu. During the 110 testing of an individual
equation, he designates the equation being tested and supply inputs for it. For the
path analysis, he chooses a set of equations on some data paths to be tested. Then a
selected test input data set is provided for the analysis.

It is required that the expert system, CLIPS, activates all rules and facts for the
specification before the testing. A human tester must choose a test input data set that
can cover all or the part of the MODEL specification being tested. It is assumed that
the desired output values according to the inputs are known. Thus the teser can decide
whether or not the specification works as desired by reviewing the outputs from the
given test inputs.

The interaction is performed through the array graph of the specification via the
graphical user interface. That is, test input data are provided via the input data nodes
of the displayed array graph and the outputs are shown through the output data nodes
of the graph.

Suppose a human tester has a test input set, z l = 26 and 22 = 65, for the gcd
test program of Figure 2.4, Chapter 2. He would clicks the nodes of x l and $2 using
a mouse and supplies the inputs, 26 and 65, via the displayed array graph. They are
automatically converted by the system as CLIPS assertions such as (assert (x i 26))
and (assert (x2 65)) . Then the tester initiates the testing operation. The expert

(a) Testing the specification. (b) Testing Eq 2.

Figure 5.5: Testing via array graphs: T and F represent the truth symbols, TRUE
and FALSE, respectively.

system, then, invokes the rules and generates the temporal and final outputs via the
array graph. Figure 5.5- (a) shows the results of the testing.

He may want to perform the 1 / 0 testing of an individual equation, Eq 2 of Figure
2.4, Chapter 2 is performed as illustrated in Figure 5.5-(b):

(1) The human tester sets the mode of the testing as "I/O TESTING".

(2) The human tester clicks the equation node, Eq 2, on the displayed array graph
using a mouse. It means he wants to test the equation. Then, the expert system
recognizes its input and output nodes.

(3) The input nodes, XI and x2, are shaded by the expert system to denote the status
that their input values are needed for the testing.

(4) The user provides test input values for the equation.

(5) The values of the local subscript of the equation (number of test execution of
the equation) may be specified by the tester. He positions the cursor next to the
subscript and enters a value. Otherwise, the system executes the equation until
it terminates.

(6) The expert system executes the specification by firing the rules. The edges (=
paths) of the array graph that were visited during the execution are marked to
denote the coverage of the testing with the input data.

(7) The output values must be printed vis the output data node as shown in Figure
5.5-(b).

In this particular example, the testing stops after the system outputs 26 for y2(1).
Notice that the equation, Eq 2, is in fact translated into two rules, ru l e3 for Eq 2-1
and ru le4 for Eq 2-2. Since the precondition of ru l e3 holds, the value of y2 (I) can be
computed immediately. It follows that the new fact, (y2 1 26) is asserted. However,
the expert system cannot proceed because the value of y i (i) is not defined, i.e. the
part of the precondition of rule4, (yi ?i ?yi) , is not satisfied. Thus the system
notifies that there is data dependency between Eq 1 and Eq 2 and stops the testing as
shown in Figure 5.5-(b).

The human tester can also perform the path analysis by selecting multiple equation
nodes along data paths that he wants to evaluate. The nodes must form a causal
path (or chain). Since the causal chain has its inputs, computation on them and the
corresponding outputs, the procedure of the path analysis is similar to that of the 1/0
testing. The tester may select the equations that make a causal path. The system
recognizes the inputs and the output of the causal path. The user provides the input
values to evaluate the path. Then the system executes the selected equation and the
results are computed. The data and the equation nodes are shaded as they are tested.
The edges on the causal path are marked.

The path analysis aims to examine not only the outputs of the causal path but
also the execution sequences and the data type transformations. To accomplish such
objectives, the expert system must be able to do symbolic processing. It requires more
rules of manipulating variables and equations of a MODEL specification. We leave it
as a future research project and concentrate on the evaluation of MODEL equations
using CLIPS rules.

Since the coverage of the test data set used in the path analysis is important, the
analyzed causal path of the array graph is marked by "high-lightening" with a different
color or by thicker lines as shown in Figure 5.5. The marked graph will become a
graphical representation of the test report.

The results of the testing are documented. For the I/O testing, test inputs and their
corresponding output are reported for each equation that is tested. The graphical form
of the report for the path analysis includes the textual report of testing results and the
array graphs each of which specifies the analyzed causal path.

Chapter 6

INTERACTIVE
HETEROGENEOUS
REASONING FOR PROGRAM
VERIFICATION

6.1 Introduction

The formal verification method allows us to prove the reliability of programs with a high
degree of confidence in the sense that it actually constructs mathematical proofs [Dij81].
On the other hand, it has been argued that the methodology has not been successfully
applied to the real world programs due to the following reasons [Bro87, Dengl]:

(1) A human tester of programs, who actually performs the formal verification of
the programs, is required to be highly trained in both mathematics and software
engineering.

(2) Most real world programs are not "mathematic-prone" (easy to model and con-
struct mathematical proofs). The formal verification has not been very successful
for such programs.

(3) Due to the complexity of the formal method, a large-scale system cannot be
efficiently verified.

We propose to solve those problems by writing formal specifications in an equational
language and adopting software tools of supporting the verification of the specifications.
First, we deal with formal specifications written in an equational language, MODEL.
We can mechanically translated the MODEL specifications into their equivalent codes
in procedural programming languages such as Ada and C [Lu81, PLGS88, PGLSSO].
Since a MODEL specification consists of a set of equations and only basic algebraic

manipulation techniques are needed in verifying its correctness as discussed in Chapter
2, the human tester may not need to be a highly trained logician. Secondly, MODEL
equations are powerful enough to describe any real world programs. It is capable
of declaring and managing complex data structures such as multi-dimensional arrays
and structured variables [MOD89]. At the same time, we can view them as a set of
algebraic expressions that uniquely define the values of MODEL variables. Thus the
proposed verification system is capable of verifying programs in the real world. Finally,
the proposed system performs not only program verification but also software testing
as discussed in Chapter 5. For a large-scale program, the software testing is mainly
performed and the security-critical part of the program is verified using the formal
verification method. Also, the MODEL compiler provides a method of static checking
[Lu81, PP83, SLPP84, SP881 on the specification as discussed in Chapter 4. Thus the
different software tools complementarily work together.

The proposed system uses both the graphical (array graphs) and the textual rep-
resentations (equations) of the specifications during the verification. The array graphs
serve as a graphical user interface of the verification system. An equational reasoning
system (called symbolic manipulator) based on the equivalence laws and the inference
rules proposed in Chapter 2 is a work-horse of the verification system.

Heterogeneous reasoning is defined as a process of reasoning where valid inference
proceed from information represented in more than one form [BESOa, BESOb]. The
importance of the heterogeneous reasoning in general is argued in [BESOb] and its the-
oretical framework is introduced in [BESOa] . We view inference as information extrac-
tion. That is, inference is a process of deriving implicit information from a given set of
explicit information. Note that information can be expressed in multiple formats such
as natural languages, formal languages, graphs, diagrams etc. As argued in [BESOb],
such information in various formats are very useful in valid reasoning by human be-
ings. Thus we propose to utilize such capability in program verification. Fortunately,
we have a tool for representing information in various ways such as graphics and texts,
namely a computer. For the heterogeneous reasoning for MODEL specification, an
array graph serves as a graphical representation for easy perception of the specification
and MODEL equations provides more abstract information. As a result, the proposed
system is an interactive inference engine based on the heterogeneous reasoning on array
graphs and equations. It is called the interactive heterogeneous reasoning system.

The methodology of the interactive heterogeneous reasoning is described in Section
6.2. It includes assumptions for the verification system and the protocol of the reasoning
using the system. The sample specification of the gcd problem is used in demonstrating
how the system works. It is illustrated in Section 6.3.

I PROMPTING 1
I CHECKING I
I TESTING I

I GENERATION (
I ASSERTION I
I CASES I
I SUBSTITUTION I
I TRANSITIVITY I
I INDUCTION I

Figure 6.1: Extended pull-down menu for VERIFICATION.

6.2 Interactive Heterogeneous Reasoning

In the interactive heterogeneous reasoning for verifying a MODEL specification, the
followings are assumed:

(1) We only deal with a MODEL specification that terminates. Every equation in the
specification must terminate. Every variable of each equation must be defined.
Thus the symbolic manipulator can algebraically simplify MODEL variables and
expressions based on the equivalence laws and the inference rules discussed in
Chapter 2.

(2) A human tester must be able to set up his "plan" to prove the properties of the
MODEL specification. The properties to be proven are specified as proof goals
and subgoals.

(3) An array graph (used as a graphical user interface) is displayed on the array
graph window while a set of equations (a MODEL specification being analyzed)
is presented on the text window. The human tester can understand and inter-
actively verify the proof goals and the subgoals set up for the specification via
the graphical user interface. He uses the symbolic manipulator for simplifying
algebraic expressions.

The interactive heterogeneous reasoning system offers a set of operations for the
verification of MODEL specifications. Each operation can be invoked by selecting it
using a pull-down menu. It is shown in Figure 6.1.

The operation of "GENERATION" aims to find an algebraically simplified expres-
sion (with respect to the algebraic laws in Chapter 2) for a designated output variable
in terms of designated input variables. A human tester is responsible for designating
the variables properly. The symbolic manipulator generates an equation for the out-
put variable in terms of the designated input variables. That is, the output variable
becomes the LHS variable of the generated equation while the RHS expression of the
generated equation is a function of the input variables. If the symbolic manipulator
always derives satisfiable equations from the given set of equations (it is sound), we can
use the generated equations as proven assertions (or theorems) for further reasoning.
The human tester can initiate the "ASSERTION" operation from the pull-down menu
and makes the derived equation be a valid assertion.

When a conditional expression is evaluated, it is necessary to break the expres-
sion into cases. The "CASES" operation enables the tester to separate the reasoning
procedure according to different cases.

As discussed in Chapter 2, the symbolic manipulator utilizes three inference rules:
substitution, transitivity and induction. The human tester dictates what rule must be
applied during the interactive heterogeneous reasoning. It is performed by selecting
the operations from the pull-down menu and picking up expressions to be manipulated
by the designated rule. If the tester chooses the "SUBSTITUTION" operation from
the menu in Figure 6.1, he means to replace some variables by their corresponding
expressions. Next, he points the variable that he wants to replace using a mouse. He
also chooses an expression to be substitute for the variable. The expression might be
either the generated one or the one directly from the equations of the specification.
The "TRANSITIVITY" operation needs two equations which share one variable or
an expression. As an output of the operation, a new equation is formulated. Finally,
the tester can construct an inductive proof for a theorem using the "INDUCTION"
operation. He supplies a base case and an induction step to get a theorem proven by
the symbolic manipulator.

6.3 Example

The protocol of the interactive heterogeneous reasoning is illustrated using the example
of computing a gcd of two integers presented in Figure 2.4, Chapter 2. As assumed
before, the following proof goals and their subgoals are given:

Goal I. z = gcd(xl,x2)

Subgoal 1. gcd(x1, x2) = gcd(yl(l), y2(1))

Subgoal 2. gcd(yl(i),y2(i)) = gcd(yl(i - I), y2(i - 1))

Subgoal 3. z = gcd(yl(SIZE.yl), y2(SIZE.yl))

Goal 11. SIZE.91 < finite-val

Subgoal 1. max(yl(i - I) , y2(i - 1)) - max(yl(i), y2(i)) 2 1

Subgoal 2. SIZE.yl < max(xl,x2)

A human tester may have the following plan to prove Subgoal 1:

P-1. Express the first elements of the array variables, y l (1) and y2(1), in terms of the
input variables, x l and 22.

P-2. Derive the LHS expression, gcd(x1, x2), from the RHS expression, gcd(yl(l), y2(1)).

P-3. Conclude gcd(xl7x2) = gcd(yl(l), y2(1)).

The first step, P-1, can be achieved by the "GENERATION" operation. The
operation is selected first from the pull-down menu illustrated in Figure 6.1. Then,
the human tester chooses a target variable, which becomes the LHS variable of the
generated equation, from the displayed array graph using a mouse. In this particular
example, the variable, yl(l) , is selected first. By reviewing the displayed array graph
and the equations, the human tester can figure that the value of yl(1) must be defined
by the equation, Eq I, and its inputs must be x l and 22. So he designates its source
variables, x l and 22. Those variables are marked in the displayed array graph. The
system then invokes the symbolic manipulator. Thus, the simplified equation, yl(1) =
IF x1 > 22 THEN xl ELSE 22, is produced through the text window. It ends one
cycle of the operation.

Since the derived expression is conditional and not fully simplified, the tester breaks
it into two cases using the "CASES" operation: x l > 22 and x l 5 22. The symbolic
manipulator then evaluates the expression and derives equations, yl(1) = x l and
yl(1) = 22, respectively, as shown in Figure 6.2.

To get an expression for y2(1) in terms of x l and x2, the "GENERATION" opera-
tion is invoked again. The human tester marks the variable, y2(1), as a target variable.
The input variables, x l and 22, are chosen. The symbolic manipulator works. The
equation, y2(1) = IF xl > $2 THEN 22 ELSE xl , is produced as an output on the
text window. Like the case for yl(l) , the "CASES" operation is needed as illustrated
in Figure 6.2.

The generated equations can be new assertions (or theorems) for the program
verification. The tester may want to modify them into simpler form. He simplifies
the results from the "GENERATION" operation and stipulates them as new asser-
tions. It is performed by the "ASSERTION'7 operation. As shown in Figure 6.3,
yl(1) = xl , y2(1) = 22 when x l > 22 and y l (1) = 22, y2(1) = x1 when x l < x2. They
are stored in the knowledge base of the symbolic manipulator, where other equations
are also contained.

The second step, P-2, is performed through the "SUBSTITUTION" operation and
the "CASES" operation. Since variables yl(1) and y2(1) have different values ac-
cording to the values of x l and x2, Subgoal 1 must be proven for the different two

C

ARRAY GRAPH WINDOW TEXT WINDOW

Eql: yl(i)= IF i = 1 THEN IF xl>x2
THEN xl ELSE x2

ELSE IF y 1 (i- l)>y2(i- 1)
THEN y 1 (i- 1)-y2(i- 1)
ELSE y l(i-1)

Eq2: y2(i)= IF i= 1 THEN IF x l>x2
THEN x2 ELSE x 1

ELSE IF y 1 (i- l)>y2(i-1)
THEN y2(i- 1)
ELSE y2(i- 1)-y l(i- 1)

Eq3: END.yl(i)= (y l(i) = y2(i))

Eq4: z= IF END. y 1 (i) THEN y 1 (i)

GOAL I. z = gcd(x1 ,x2)

SUBGOA L I. gcd(xr,x2)=gcd(yl(l)~2(1))

GENERATION

y l(1) = IF xl>x2 THEN xl ELSE x2

CASExl>x2: yl(l)=xl
CASE xI<=x2: yl(1) = x2

y2(1) = IF xl>x2 THEN x2 ELSE xl

CASE x 1>x2: y2(1) = x2

CASE xl<=x2: y2(1) = xl

Figure 6.2: Generation.

TEXT WINDOW
GOAL I. z = gcd(xl,x2)
SUBGOA L 1. gcd(x1 j 2) = gcd(yZ (l),y2(1))

GENERATION
ASSERTION:

CASE xl>x2: yl(1) = xl , y2(1) = x2
CASE xl<=x2: yl(1) = x2, y2(1) = x l

SUBSTITUTION

CASE xl>x2:
..............

g c d (m ,y2(1)) = gcd(nl ,y2(1))

............................
g ~ d (~ 1 ,) = gcd(xl,x2)

CASE xl<=x2:
.__......... ..,..:

g c d (m ,y2(1)) = g'.&2,y2(1))
. . .

...................
g7(x2,) = gd(x2,xl)

.

ASSERTION:

gcd(x1 ,x2) = gcd(x2,x 1)

TRANSITIVITY

gcd(y l(l),y2(1)) = gcd(xl,x2)

Figure 6.3: Substitution.

cases. Suppose x l > $2. The human tester can designate variable yl(l) , which
is equal to x1, in the expression as shown in Figure 6.3. The symbolic manipula-
tor, then, searches its knowledge base to get the assertion for the variable, namely
yl(1) = 21. Next, the expression, gcd(x1, y2(1)), is generated by the symbolic ma-
nipulator. It must be equal to the expression, gcd(yl(l),y2(1)). Thus the equation,
gcd(yl(l),y2(1)) = gcd(x1, y2(1)), is displayed in the text window and stored the
knowledge base. Next, the human tester replaces the variable, y2(1), by x2 by mark-
ing variable y2(1). Then the symbolic manipulator substitutes 22 for variable, y2(1).
Therefore, we get the equation, gcd(x1, y2(1)) = gcd(xl,x2) as shown in Figure 6.3. It
partially proves Subgoal 1. Secondly, the case of x l 5 22 is checked. Similarly, we can
get gcd(yl(l), y2(1)) = gcd(x2,xl). As shown in Figure 6.3, the tester may use a new
assertion gcd(x1, x2) = gcd(x2, x l) which is derived from the requirement assertions
of Euclid's algorithm for the gcd problem. Then, the transitivity rule is applied to
conclude that gcd(yl(l), y2(1)) = gcd(xl,x2) for the case.

The third step, P-3, concludes that that Subgoal 1 is proven.

Consider Subgoal 2, gcd(y l(i), y2(i)) = gcd(y l (i - I), y2(i - 1)). It has to be proven
by the following two cases: ~ l (i - 1) > y2(i - 1) and y l (i - 1) < y2(i - 1). As shown
in Figure 6.4, the requirement assertion is used to prove Subgoal 2. Let v be yl(i - 1)
and w be y2(i - 1). It is the first case, yl(i - 1) > y2(i - 1). The "SUBSTITUTION"
operations and the "GENERATIONn operation lead the conclusion. Similarly, the
second case can be proven. The rest of the proof goals and subgoals can be proven in
the similar fashion.

Figure 6.4: Proof of Subgoal 2.

ARRAY GRAPH
‘WINDOW

TEXT WINDOW
GOAL I. z = gcd(xl j2)
SUBGOAL I. gcd(x1,xZ) = gcd(yl(l),y2(1))

SUBGOAL 2. gcd(yl(i),y2(i)) =
gcd(y1 (i-l),y2(i-1))

REQUIREMENT ASSERTION:

gcd(v,w) = IF v=w THEN v

ELSE IF vew THEN gcd(v,w-v)
ELSE gcd(v-w,w)

CASE yl(i-1) > y2(i-1) :
ASSERTION: v=y l(i- 1), w=y2(i-1)
SUBSTITUTION
g w y 10- l),y2(i- 1))

= gcd(y l(i- 1)-y2(i-1),y2(i-1))

GENERATION
yl(i) = yl(i-1) - y2(i-1)
y2(i) = y2(i-1)

SUBSTITUTION

g a y l(i),y2(i)) = g a y 1 (i- 1),y2(i- 1))

CASE y l(i-1) <= y2(i-1) :
ASSERTION: v=y2(i-1), w=y 1 (i-1)

SUBSTITUTION plus GENERATION

gCd(y1 (i),y2(i)) = g W y l (i-l),y2(i-l))

Bibliography

T. A. Arvind. Data flow systems. Computer, February 1982.

P. J. Asente and R. R. Swick. X Window System Toolkit. Digital Press,
Bedford, Massachusetts, 1990.

E. A. Ashcroft and W. W. Wadge. Lucid - a formal system for writing and
proving programs. SIA M Journal of Computing, 5(3):336-354, September
1976.

E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural language with
iteration. Communications of ACM, 20(7):519-526, July 1977.

John W. Backus. Can programming be liberated from the Von Neumann
style: a functional style and its algebra of programs. Communications of
ACM, 21(8):613-640, 1978.

Jon Barwise and John Etchemendy. Information, infons and inference.
In R. Cooper, K. Mukai, and J . Perry, editors, Situation Theory and its
Applications, University of Chicago Press, 1990.

Jon Barwise and John Etchemendy. Visual information and valid reason-
ing. In W. Zimrnerman, editor, Visualization in Mathematics, pages 9-24,
MAA, 1990.

B. Beizer. Software Testing Techniques - Second Edition. Van Nostrand
Reinhold Company, New York, New York, 1990.

R. S. Boyer, M. W. Green, and J. S. Moore. The use of a formal simulator
to verify a simple real-time control program. In W.H.J. Feijen, A.J.M.
van Gasteren, D. Greis, and J. Misra, editors, Beauty Is Our Business: A
Birthday Salute to Edsger W. Dijkstra, pages 54-66, Springer-Verlag, New
York, New York, 1990.

R. S. Boyer and J. S. Moore. A verification condition generator for FOR-
TRAN. In R. S. Boyer and J. S. Moore, editors, The Correctness Problem
in Computer Science, pages 9-101, Academic Press, London, England,
1981.

[BMSW9O] L.M. Burbs, A. Malhotra, G.H. Sockut, and K.Y. Whang. AERIAL: Ad
hoc Entity-Relationship Investigation and Learning. Research Report RC
16186, IBM T. J.Watson Research Center, October 1990.

[Bro87] F. P. Brooks, Jr. No silver bullet: essence and accidents of software engi-
neering. Computer, 20(4):10-19, April 1987.

[Bru89] J . Bruno. Analyzing Conditional Data Dependencies in an Equational
Language Compiler. P hD thesis, Rensselaer Polytechnic Institute, Troy,
NY, December 1989.

[CCL91] Marina Chen, Young-il Choo, and Jingke Li. Crystal: theory and prag-
matics of generating efficient parallel code. In B. K. Szymanski, editor,
Parallel Functional Languages and Compilers, pages 255-308, ACM Press,
1991.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8(2):244-263, April
1986.

[ChaSO] S. K. Chang. Visual Languages and Visual Programming. Plenum Press,
1990.

[Cla76] L. A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Transactions on Software Engineering, SE-2(3):215-222,
September 1976.

[CPS9O] R. Cleaveland, Joachim Parrow, and Bernhard Steffen. The concurrency
workbench: a semantics based tool for the verification of concurrent sys-
tems. 1990. manuscript.

[Dec9O] Guide to DECdesign. digital equipment corporation, Maynard, Mas-
sachusetts, May 1990.

[Den911 Peter J. Denning. Beyond formalism. American Scientist, 79:8-10,
January-February 1991.

[Dij81] E. W. Dijkstra. Why correctness must be a mathematical concern. In R. S.
Boyer and J. S. Moore, editors, The Correctness Problem in Computer
Science, pages 1-8, Academic Press, London, England, 1981.

[DLS78] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data
selection: help for the practicing programmer. Computer, 11 (4):34-41,
April 1978.

[DMMP87] R. A. DeMillo, W. M. McCracken, R. J. Martin, and J. F. Passafiume.
Software Testing and Evaluation. Benjamin/Cummings Publishing Co.,
Menlo Park, California, 1987.

C. L. Forgy. Rete: a fast algorithm for the many patternlmany object
pattern match problem. Artificial Intelligence, 19(1):17-37, 1982.

Jean H. Gallier. Logic for Computer Science: Foundations of Automatic
Theorem Proving. Harper and Row Computer Science and Technology
Series, Harper and Raw Publishers Inc., New York, New York, 1986.

Xiang Ge. An Intelligent Mathematical Modeling System. P hD thesis,
University of Pennsylvania, 1989.

D. Gelperin and B. Hetzel. The growth of software testing. Communica-
tions of the ACM, 31(6):687-695, 1988.

W. J. Gilbert. Modern Algebra with Applications. John Wiley and Sons,
1976.

D. Gelernter and S. Jagannathan. Programming Linguistics. The MIT
Press, Cambridge, Massachusetts, 1990.

Xiang Ge and Noah S. Prywes. Reverse software engineering of concurrent
programs. 1989. manuscript.

J. C. Giarratano and G. Riley. Expert Systems: Principles and Program-
ming. P WS-KENT Publishing Company, 1989.

David Gries. The Science of Programming. Text and Monographs in Com-
puter Science, Springer-Verlag, New York, New York, 1981.

R. Hamlet. Special section on software testing. Communications of the
ACM, 31(6):662-667, June 1988.

D. Harel. On visual formalisms. Communications of the ACM, 514-530,
May 1988.

M. C. Hennessy and R. Milner. Algebraic laws for nondeterminism and
concurrency. Journal of ACM, 32(1):137-161, January 1985.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1985.

W. E. Howden. A functional approach to program testing and analysis.
IEEE Transactions on Software Engineering, SE-12(10):997-1005, October
1986.

W. E. Howden. Functional Program Testing and Analysis. McGraw-Hill
Inc., New York, New York, 1987.

Paul Hudak! Conception, evolution and application of functional pro-
gramming languages. A CM Computing Surveys, 21 (3):359-411, September
1989.

[Lam831

[Lan 661

Paul Hudak. Para-functional programming in Haskell. In B. K. Szymanski,
editor, Parallel Functional Languages and Compilers, pages 105-158, ACM
Press, 1991.

J. C. King. Symbolic execution and program testing. Communications of
the ACM, 19(7):385-394, July 1976.

F. Kroger. Temporal Logic of Programs. Volume 8 of EA TCS Monographs
on Theoretical Computer Science, Springer-Verlag, New York, New York,
1987.

L. Lamport. What good is temporal logic? In Proceedings IFIP Congress,
Paris, pages 657-668, North-Holland, Amsterdam, Holland, 1983.

E. Landau. Foundations of Analysis: The Arithmetic of Whole, Rational,
Irrational and Complex Numbers. Chelsea Publishing Co., New York, New
York, third edition, 1966. translated by F. Steinhardt in English.

P. A. Lindsay. A survey of mechanical suppport for formal reasoning.
Software Engineering Journal, 3-27, January 1988.

Evan Lock and Noah S. Prywes. Software Engineering Environment for
Parallel/Concurrent Programs on a Computer Network. Technical Re-
port, Computer Command and Control Company, 2300 Chestnut Street,
Philadelphia, PA 19103, 1990.

K. S. Lu. Program Optimization Based on a Non-Procedural Specification.
PhD thesis, University of Pennsylvania, 1981.

Z. Manna. Mathematical Theory of Computation. McGmw-Hill Computer
Science Series, McGraw-Hill Book Co., New York, New York, 1974.

William Mettrey. A comparative evaluation of expert system tools. Com-
puter, 19-31, February 1991.

Robin Milner. Communication and Concurrency. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1989.

The MODEL Compiler Usage and Reference Guide - Non-Procedural
Programming for Non-Programmers. Computer Command and Control
Company, 2300 Chestnut Street, Philadelphia, PA 19103, 1989.

2. Manna and A. Pnueli. Verification of concurrent programs: the temporal
framework. In The Correctness Problem in Computer Science, pages 215-
273, Academic Press, London, England, 1981.

B. A. Myers. The State of Art in Visual Programming and Program Visu-
alization. Technical Report CMU-CS-88-114, Carnegie Mellon University,
February 1988.

[OL82] S. Owicki and L. Lamport. Proving liveness properties of concurrent
programs. ACM Transactions on Programming Languages and Systems,
4(3):455-495, July 1982.

[RW 851

Noah S. Prywes, Xiang Ge, Insup Lee, and Mitchel Song. Procedural to
Equational Language Translation. Technical Report Contract AFSOR-88-
0116, Department of Computer and Information Science, University of
Pennsylvania, 1990.

Noah S. Prywes, Insup Lee, Xiang Ge, and Mitchel Song. Reverse Software
Engineering. Technical Report MS-CIS-88-99, Department of Computer
and Information Science, University of Pennsylvania, 1988.

Noah S. Prywes, Insup Lee, and Jee-In Kim. Extracting rules from software
for use in a knowledge base of an expert system. August 1991. Prepared
for Workshop at Rome, NY in October, 1991.

Noah S. Prywes and A. Pnueli. Compilation of nonprocedural specifi-
cations into computer programs. IEEE Trans. on Software Engineering,
33-9(3):267-279, May 1983.

S. Rapps and E. J. Weyuker. Selecting software test data using data flow
information. IEEE Transactions on Software Engineering, SE-11(4):367-
375, April 1985.

R. Sethi. Programming Languages: Concenpts and Constructs. Addison-
Wesley, 1989.

R. W. Scheifler, James Gettys, and Ron Newman. X Window System -
C Libra y and Protocol Reference. Digital Press, Bedford, Massachusetts,
1988.

Sun-Joo Shin. Valid Reasoning and Visual Representation. PhD thesis,
Stanford University, August 1991.

B. Szymanski, Evan Lock, A. Pnueli, and Noah S. Prywes. On the scope of
static checking in definitional languages. In Proceedings of the ACM Annual
Conference, pages 197-207, San Francisco, California, October 1984.

B. K. Szymanski and Noah S. Prywes. Efficient handling of data structures
in definitional languages. Science of Computer Programming, 10:221-245,
1988.

B. K. Szymanski. EP L - parallel programming with recurrent equations.
In B. K. Szymanski, editor, Parallel Functional Languages and Compilers,
pages 51-104, ACM Press, 1991.

T. H. Taylor and R. P. Burton. An icon-based graphical editor. Computer
Graphics World, 77-82, October 1986.

[Wey86] E. J. Weyuker. Axiomatizing software test data adequacy. IEEE Trans-
actions on Software Engineering, SE-12(12):1128-1138, December 1986.

[WeySO] E. J. Weyuker. The cost of data flow testing: an empirical study. IEEE
Transactions on Software Engineering, SE-16(2):121-128, February 1990.

