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Chapter 1 

INTRODUCTION 

Research Problem 

This document concerns developing a software development environment for effec- 
tive use of equational and rule-based programming paradigms. These programming 
paradigms have significant advantages for developing programs which have require- 
ments for (1) reliability, (2) parallelism, and (3) accumulation of expertise in knowledge 
bases. The research is motivated by the following questions: 

(1) Why equational and rule-based programming paradigms are not used more widely 
even in areas where they have significant advantages? 

(2) What is the software development environment that will make these paradigms 
attractive to various communities of users? 

We hypothesize that a requisite environment for equational and rule-based program- 
ming should support (1) visualization of inherent algorithms to facilitate users' com- 
posing and understanding of programs, (2) consistency checking of definitions and 
references of variables, (3) accumulation of expertise in knowledge bases, (4) software 
testing, and (5) program verification. 

To st ate the research problem, this section presents advantages and disadvantages 
of three programming paradigms: procedural paradigm which is currently the most 
popular, functional/equational paradigm which is advantageous for reliability and par- 
allelism, and rule-based paradigm which is advantageous for accumulating expertise. 
This is followed a brief summary of the proposed software development environment 
and by a plan for its realization. 

A procedural (or imperative) paradigm employs procedural languages such as COBOL, 
FORTRAN, and C. Procedural languages are tightly related to the popular Von Neu- 
mann machine architecture for sequential computers. A procedural language is based 



on states that are represented by the contents of the memory, control statements for 
order of the execution, and assignment statements which modify the states. 

The advantages of this class of languages can be summerized as follows: 

(1) Effective use of sequential computers: The Von Neumann machine is effec- 
tively utilized by executing procedural language programs. Compilers for proce- 
dural languages produce efficient code. 

(2) Substantial programming environments: There are powerful tools for li- 
braries, testing, etc. for these languages. 

For these reasons, most of current software has been written in procedural languages. 

The disadvantages may be summerized as follows: 

(1) Side-effects: The procedural style of programming results in side-effects that 
makes programs difficult to understand [Bac78, PP831. 

(2) Software testing: Testing to assure program reliability usually involves complex 
path analysis [Wey86, How87, BeigO]. 

(3) Parallelism: Implementation of parallelism in programs requires eliminating the 
sequential orientations, much analysis, and intuition [Hud89, Szygl]. 

(4) States: The state-based computation is performed in a "word-at-a- time" style 
which forces a programmer to "think like a computer" [Bac78]. 

(5) Program verification: The state- based computation model makes it compli- 
cated to reason about programs [Bac78, Hud89, Szy911; there exist formal veri- 
fication methods for procedural languages [BM81, MP81, OL82, Lam83, HM85, 
Hoa85, CES86, Lin88, Mi189, CPS9Ol but they are too complicated to be widely 
used by programmers, mainly because dealing with program states is compli- 
cated. 

As a result, it is claimed to be difficult to guarantee a high degree of reliability for 
procedural language programs. 

Functional/equationaI languages employ algebraic definitions of variables. The 
value of a variable is uniquely defined and is not modifiable. The computational 
model of equational languages is based on regular and boolean algebras [Hudgl, Szygl]. 
There are no implicit states, no side-effects, and no predefined sequence of compu- 
tation. Equational languages such as EPL[Szy9 11, Haskell [Hudg 11, and MODEL 
[PP83, SP88, Hud891 are a special case of functional languages. They are characterized 
by the followings: 

(1) Equational look: A statement looks like an equation. 



(2) Referential transparency [Hud89, GJ901: A variable has a unique value de- 
fined by an equation in equational languages. Once the value is defined, it is not 
modifiable. 

(3) Equational reasoning: It is possible because of referential transparency to 
employ equational reasoning for program verification [Hud89, Szy91, Hudgl]. 
Equational languages can be based on "high schooln algebras such as equivalence 
laws, substitution, transitivity, and induction [Gri81]. Thus the equational rea- 
soning method for program verification can be easily understood and performed 
by ordinary programmers. The equational reasoning is not only for reasoning 
about programs but also for writing and debugging programs without consider- 
ing implementation details [Hud89]. 

(4) I terative definition: Data elements of arrays can be defined iteratively in equa- 
tional languages. Recursive definitions can be used (as in pure LISP), but they 
may be more difficult to analyze and reason about. 

(5) Program visualization: The execution of an equational language program can 
be visualized with the aid of Petri-net like graphs. The nodes denote equations 
and data elements and the edges denote data flows among the nodes. Functional 
languages, where program execution is recursive, form a tree structure. They 
may be visualized by a tree where its root node denotes the main function of a 
program, its children nodes denote the subfunctions called by the main function, 
and its edges denote function calls. 

The advantages of use of an equational language may be summerized as follows: 

(1) Use of well known algebraic equations: An equational language is based 
on algebra which is widely known. While the paradigm of programming in this 
manner is new, it can be easily taught to attain wide usage. 

(2) Parallelism: An equational language paradigm is not biased by the need for 
sequential execution. Therefore it is easier to create compilers that map equations 
into parallel processors [Szygl, CCL911. 

(3) Reliability: As will be argued later, a thorough testing methodology for im- 
proving reliability of programs is easier to implement. Also, verifying correctness 
using equational reasoning is easier to employ and teach. 

The disadvantages of equational languages may be summerized as follows: 

(1) New paradigm: The great numbers of programmers are familiar with proce- 
dural languages and may decline to learn a new paradigm and/or be unwilling 
to change their mode of programming. This is even more so as in some cases 
procedural language programs may be shorter. 



(2) Complexity of equational language compilers: Smarter compilers are nec- 
essary which optimize use of memory and allocate computations of equations 
to parallel processors. Such compilers are being developed [Lu81, SP88, Bru89, 
CCL91, SzySl] 

Rule-based languages employ a set of rules to form a program which is executed by 
an expert system. Each rule in a program has preconditions that must be satisfied be- 
fore executing the rule and actions that specify the consequences of the execution. As 
soon as the preconditions are satisfied, the corresponding rules are fired to perform the 
specified actions. Rules represent expertise in certain areas and can be accumulated in 
knowledge bases [GR89]. A rule-based expert system is the underlying computing sys- 
tem that consists of knowledge base, where the expertise is accumulated, and inference 
engine, which actually executes the rules of the system to exercise the expertise. 

The advantages of the rule-based paradigm can be summerized as follows: 

(1) Incremental augmentation: Knowledge bases can be incrementally augmented 
through adding a consistent and reliable set of rules. 

(2) Interactive explanation: The rule-based paradigm provides man-machine in- 
teraction for "explaining" the results of computation. For example, an expert 
system can explain how a decision was reached by revealing the inferences that 
were employed. As will be shown, this capability can be used to test programs 
to attain higher reliability. 

(3) Forward and backward chaining: These capabilities of expert systems enable 
users to compute "outputs" from "inputs" as well as in some cases "inputs" from 
given "outputs". 

The disadvantages may be summerized as follows: 

(1) Quality of expertise: The success of rule-based programming depends on the 
quality of expertise in knowledge bases. In general, it is difficult to collect ex- 
pertise. There are difficult procedures for extracting expertise rules from human 
experts and organizing the rules into knowledge bases. 

(2) Reliability of expertise: It is difficult to define the domain where the rules in 
the knowledge bases can be fully relied on for optimal decisions. 

Equational and rule-based languages have not been popular in solving "real world" 
problems in spite of their distinctive merits over procedural languages. We believe that 
a lack of programming tools and environments, especially in the areas of visualization, 
knowledge base generation, testing, and verification, is one of the main reasons why the 
software industry has not been more active in taking advantage of these languages. Our 
research problem is to define a programming environment for an equational language 



and a rule-based language where programmers (1) understand and compose programs 
with ease, (2) produce reliable programs, and (3) extract expertise embodied in existing 
and new programs for augmenting knowledge bases. 

1.2 Contributions 

A software development environment for equational and rule-based paradigms is pro- 
posed in this document. The aim is to make it easier for a programmer to understand 
and use these languages, compose more reliable programs, and automatically enrich 
rule-based knowledge bases with the expertise in existing programs. We believe that 
the merits of programming in equational and rule-based languages will be recognized 
if programmers are equipped with such an environment. 

Figure 1.1 provides an overview of the proposed environment. It provides interac- 
tive tools for visualization, consistency checking, knowledge base generation, software 
testing, and program verification. The graphical user interface controls interactions 
between programmers and all the tools. The repository of the environment contains 
programs, requirements, graphs, equations, proofs etc. 

Chapter 2 provides introductory theoretical foundations of the proposed environ- 
ment: syntax, semantics, an execution model, and a calculus for manipulating an 
equational language. 

Subsequent chapters discuss the tools of the proposed environment. The innovative 
aspects of the tools are summerized as follows: 

(1) Visualization: 

Visualization of programming activities has the following advantages over the 
conventional (textual) programming style [Mye88, ChaSO]: (1) The capability of 
human beings for visual information processing can be utilized. (2) Graphical 
representation of programming is helpful for human beings in composing and 
understanding programs, especially non-programmers or novice programmers. 
(3) Understanding of complex problems, such as concurrent processes and real- 
time systems, can be enhanced through visualization. 

There are two notions of visualization: program visualization that reveals some 
aspects of programs in graphical forms such as graphs, diagrams, and charts 
and visual programming that allows programmers to compose programs using 
graphical objects such as icons [Mye88]. The proposed environment provides 
tools for both program visualization and visual programming. 

The visualization tool produces a graphical user interface for all the other tools: 
for consistency checking, knowledge base generat ion, software testing, and pro- 
gram verification. The graphical user interface provides programmers convenient 
and easy accesses to the tools which may be too complicated to be used otherwise. 



Checking Generation Verification 

Visualization 

(Graphical User Interface) 

visual/textual retrieval 
icon-based editing 
menu selection 

programs, requirements, 
graphs, equations, 
data declarations, proofs, etc. 

REPOSITORY 

Figure 1.1: A software development environment for equational and rule- based 
paradigms 



The basic graphical object of the visualization of equational and rule-based pro- 
grams is a Petri-net like data flow graph; its nodes denote equations and data 
elements; its edges denote data flows among the nodes. These graphs are re- 
ferred to array graphs [Lu81, PP831. These graphs facilitate the visualization 
much better than flow charts of procedural language programs. The visualized 
data flow graphs can be piecewise examined due to referential transparency, while 
the whole flow chart of a procedural language program must be examined due to 
possible side-effects of changes of program states. It has been argued that flow 
charts are a poor abstraction of software structure and useless as a design tool 
[B ro8 71. 

Programmers will construct the Petri-net like graphs using an icon-based graph- 
ical editor. Textual definitions for the detailed descriptions of the computation 
will be associated with the graphs. While the graphs are displayed in graph 
windows on a screen, the textual definitions are given in text windows. By se- 
lecting proper operations from pull-down menus using a mouse, programmers 
can perform a variety of tasks, interactively exercising both visual and textual 
information. 

There are also many graphical operations such as for managing windows, explod- 
inglimploding nodes, zooming, taking a snap-shot , etc. They are selected from 
pull-down menus. 

The graphical user interface and operations for program visualization are de- 
scribed in Chapter 3. An icon-based graphical editor is proposed for visual pro- 
gramming. 

(2) Consistency checking: 

The checking mechanism of the environment aims to facilitate users composing an 
equational or a rule-based language program in accordance with the semantics of 
the languages. It utilizes techniques developed for equational language compilers 
[Lu81, Bru89, Set891. If errors are detected, the mechanism generates error mes- 
sages. The mechanism also generates warning messages that spell out implicit 
assumptions made because of omissions. The checking mechanism is combined 
with the icon-based graphical editor so that programmers interactively exercise 
composing and debugging their programs. It is one of the unique features of the 
proposed environment. Chapter 4 describes the checking mechanisms. 

The checking mechanism is based on the semantics of these languages: One re- 
quirement is for existence of a causal chain that computes a solution set for a 
given input values. A cyclic definition of variables may cause an infinite compu- 
tation. The checking mechanism detects such a cycle in Petri-net like graphs and 
tests if it represents a cyclic definition. 

It is required in equational languages that every variable must exist and be de- 
fined. Such an existence requirement is also checked. It is examined by checking 
the definitions of variables and their references. 



As the Petri-net like graph is examined, a table of variables and their definitions 
is constructed. The table is used by the checking mechanism [Lu81]. It aims to 
detect ambiguous definitions, incomplete definitions, and data type mismatches 
of the variables and the equations. 

There may be omissions or discrepancies in declarations and references of vari- 
ables about dimensionalities, or ranges of arrays referenced in subscript expres- 
sions. They are checked by propagating attributes such as dimensions and ranges1 
via edges of a Petri-net like graph. 

The condition of terminating the execution of iterations can be checked too. 
Even though there is no algorithm to decide program termination in general, the 
checking mechanism can statically check the termination condition and gener- 
ate the conditions for iterations in warning messages Programmers utilize such 
an information displayed visually in the graphs in order for composing reliable 
programs. 

(3) Knowledge base generation and software testing: 

There is valuable expertise in existing programs that can be automatically trans- 
lated to rules in order to enrich knowledge bases of rule-based expert systems. 
The proposed environment will allow users to extract such expertise from ex- 
isting programs and accumulate it as rules in knowledge bases. The expertise, 
such as algorithms and methods in programs, will be automatically translated 
to rules of expert systems. The notion is to have two translation steps: (1) use 
of an existing method [Lu81, GP891 to translate procedural language programs 
into equational language programs and (2) translation of the equational language 
programs into rule-based language programs. Testing will be performed on the 
rule-based language programs using an expert system in order to increase the 
program reliability. Verification will be also exercised to assure a higher degree 
of the reliability. Through the translation steps, the expertise in programs can be 
transferred to knowledge bases, tested, and verified. We believe that the trans- 
lation, testing, and verification will reduce the labor of collecting expertise for 
knowledge bases. 

Software testing aims to discover faults in a program by executing it with test 
input data [DMMP87, Ham88, BeiSO]. This enhances the reliability of programs. 
The procedures required for software testing in the procedural paradigm are 
complicated and tedious. Every paths of changing values of each variable must 
be tested. Data flow analysis has been claimed to be more effective and powerful 
[RW85, How86, How87, WeySO]. The data flow analysis in procedural paradigm 
requires to test every path between definitions of each variable and its references 
[RW85]. Since the procedural paradigm allows modification of variable values, 
we must test multiple paths by which the value of each variable is changing. 
However, in using equational or rule-base languages, it is sufficient to test only 
a single path for each variable, because each variable is uniquely defined. It 

'size of a dimension of an array variable. 

13 



greatly reduces the complexity of software testing procedures, especially the data 
flow analysis. Human testers interactively exercise the testing using an expert 
system in conjunction with the visualization where programs are executed. Test 
input and the test results are interactively entered and processed. The expert 
system not only computes the results from a given set of test input data but also 
gives detailed explanations about the testing. Moreover it computes "inputsn 
from given "outputsn using backward chaining. The testing is exercised via the 
graphical user interface which (1) accepts test inputs via the displayed Petri-net 
like graphs, (2) shows the status of the testing via the graphs, and (3) displays 
the results of the testing such as test output data, test coverage, etc. on the 
graphs. The visual information makes it easier to exercise the testing. 

Chapter 5 discusses translation of equations into expert system rules. The trans- 
lation technique is applied to both the knowledge base generation and the software 
testing. The software testing methodology via the graphical user interface is also 
described. 

(4) Program verification: 

A higher degree of program reliability can be obtained by employing program ver- 
ification. It is a process of proving logical assertions about computational prop- 
erties of programs [BM81, Dij81, OL82, Lam83, CES86, Kro87, BGMSO, CPSSO]. 
The assertions usually concern whether or not programs properly perform desired 
functions specified in their functional requirements. This has todate required a 
highly trained expert in both mathematics and software engineering. 

In equational languages, equational reasoning offers simple and more intuitive 
ways for program verification utilizing only substitution, transitivity, equivalence 
laws. We propose an equational reasoning system and a graphical user interface 
for interactive program verification. It borrows the concepts from interactive het- 
erogeneous reasoning [BESOa, BESOb, ShiSl], which consists of equational reason- 
ing based on visual and textual information. Visual information about programs 
such as Petri-net like graphs is combined with textual information such as equa- 
tions and data declarations during the verification. A human tester dictates the 
procedures of the verification. He guides the verification system by requesting it 
to make substitutions and simplify expressions via the graphical user interface. A 
symbolic manipulator mechanically applies the equivalence laws and the rules of 
equational reasoning to simplify expressions. The program verification procedure 
is illustrated in Chapter 6. It is exercised through interaction between a human 
tester, the symbolic manipulator, and the graphical user interface. 

The tools of the visualization, the consistency checking, the knowledge base genera- 
tion, the software testing, and the program verification, are integrated in the proposed 
environment. Programmers can employ these facilities to understand and compose 
reliable programs. Programmers can utilize both visual and textual information in 
programming, testing, and verification. The environment facilitates automatic aug- 
mentation of knowledge bases with expertise extracted from existing programs. We 



believe that the environment will greatly reduce the costs and increase the reliability 
of software development and maintenance. 

1.3 Research Plan 

The plan to implement the environment includes the following tools: 

(1) An equational language, MODEL: 

MODEL [Lu81, MOD891 is an equational language based on regular and boolean 
algebras; it has no side-effects, no states, and no control statements. It has an 
equational look and referential transparency. Its data elements can be iteratively 
defined. Equational reasoning can be applied for program verification. A Petri- 
net like data flow graphs can be visualized. It has high level data structures 
such as arrays and supports structured variables, records, and files. MODEL 
has been successfully used in various applications of science, engineering and 
business [PP83]. The research on MODEL includes: language translation [Lu81, 
MOD891, consistency checking [Lu81, SLPP841, code optimization [SP88], reverse 
engineering [PLGS88], concurrent programming [PGLS9O], etc. Therefore we 
can take advantage of the MODEL compiler and the theories of MODEL in 
implementing the proposed environment. 

(2) An expert system, CLIPS: 

CLIPS (C Language Integrated Production System) [GR89, Met911 is a rule- 
based expert system developed by NASA. It is written in C to support high porta- 
bility, low cost, and ease of integration with external systems [Metgl]. CLIPS 
can be run under various operating systems such as Unix, VMS, MS-DOS, Mac- 
intosh, etc. We will use CLIPS as the rule-based programming language of the 
environment, mainly because of its availability. A CLIPS rule consists of pre- 
conditions and actions. Its execution is based on pattern-matching, the Rete 
algorithm [For82, GR89, Metgl]. CLIPS also supports object-oriented program- 
ming. A number of applications with graphical user interfaces are built on CLIPS. 
In the proposed environment CLIPS will be used as knowledge based system for 
software testing where expertise extracted from programs are accumulated. 

(3) A meta-environment, DECdesign: 

DECdesign [DecSO] is a meta-environment that helps users develop their own 
graphical environment. It allows users to customize the environment by encod- 
ing their own methodologies using MDF (Methodology Definition File) and MIL 
(Methodology Implementation Language). It also provides tools of creating and 
managing graphical objects on X Window System. The graphical user inter- 
face, the icon-based graphical editor, and the program visualizer will be imple- 
mented using MIL. DECdesign provides tools of implementing a repository, such 



as managing user accounts, creating libraries, moving data between libraries, etc. 
[DecSO]. The repository of the environment will be implemented using MIL too. 

The implementation of the complete proposed environment will require much effort. 
At this stage of the research, we plan to implement only a basic part of the environment. 
This will consist of only the three of the five components in Figure 1.1: visualization, 
software testing, and knowledge base generation. It is planned that the visualization 
part is implemented using DECdesign. Since MIL is a very high level language, it 
would take 6 months to implement the program visualizer and the icon-based graphical 
editor. The implementation of the CLIPS rule translator is estimated to take 3 months. 
The total integration of the tools requires a significant amount of time: The MODEL 
compiler (already implemented), the CLIPS rule translator (to be implemented), and 
the CLIPS expert system (to be purchased) will be combined with the graphical user 
interface. We estimate that the integration of the prototype will take 3 months. 



Chapter 2 

THEORETICAL FOUNDATIONS 

Introduction 

MODEL is a high level mathematical language. It can be used for composing equations 
and declarations that specify an algorithm and writing its requirement assertions.' Pro- 
grammers can compose programs using equations and data declarations to implement 
the algorithm without considering implementation details. The MODEL specification 
of the algorithm can be understood by programmers with ease because it is based on 
regular and boolean algebras that can be learned from high school. Formal verification 
of the correctness of a MODEL specification is easier than that of a program, because 
it utilizes only algebraic manipulation of equations and requirement assertions. Equa- 
tional reasoning cab consist of algebraic laws of equivalence, rewriting rules, such as 
substitution and transitivity, and an induction rule. This can be used for the MODEL 
verification. The theoretical foundations of MODEL and its calculus are defined in 
this chapter, as a basis for composing, understanding, testing and verifying a MODEL 
specification. Their use in proving correctness of programs is illustrated with a simple 
example. 

Figure 2.1 illustrates the overall approach to program verification based on equa- 
tional reasoning. The input to the verification system consists of a MODEL specifica- 
tion, and proof goals. The verification system is based on equational reasoning that 
utilizes algebraic laws, rewriting rules, and an induction rule. As outputs of the system, 
formal proofs about the proof goals are constructed. 

A MODEL specijication expresses algorithms to solve a given problem in terms of 
equations. Each equation in the specification is considered as an axiom in the MODEL 
calculus. Thus the following requirements must be satisfied: 

'In practice, requirements of software are usually written in natural language. We assume that a 
human tester must be able to translate requirements written in natural language or any other forms 
into respective formal representation in MODEL. From now on, requirement assertions are assumed 
to be written in MODEL. 
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Figure 2.1: An overview of a process of verifying the correctness of a MODEL specifi- 
cat ion. 

(1) A user must assure that all the inputs of each equation are available. 

(2) The equation must compute the unique value of its left-hade side (LHS) variable. 

(3) There must exist at least one causal chain [GR89] from input to output via the 
equations. 

(4) The execution of a specification must terminate with a solution. 

The verification process aims to prove the correctness of the specification as pre- 
sented in the proof goals. The proof goals may consist, in the simplest case, of con- 
straints on inputs and their expected outputs. They may consist of assertions (ex- 
pressed as MODEL equations) about computational properties of the specification. 
Proof goals are decomposed into a collection of subgoals that can be proven one at a 
time. 

The MODEL calculus has the same syntax of the MODEL language. It uses alge- 
braic equivalence laws and rewriting rules which evaluate and manipulate expressions 
during the process of verification. The calculus also employs an induction rule. 

This chapter is organized as follows: Section 2.2 describes the syntax and the 
semantics of the equational language. The basic notions of the MODEL calculus, the 
algebraic laws, the rewriting rules and the induction rule are presented in Section 2.3. 
An example is given in Section 2.4 of verifying the correctness of a MODEL specification 
under this calculus. 



2.2 MODEL 

2.2.1 Functional Units 

A functional unit in MODEL consists of a header, declaration and equations. A header 
is an interface of a functional unit and specifies its type (module, function or procedure), 
name and a list of inputs and outputs. A multi-unit specification consists of a main 
functional unit, called module, and a set of subsidiary functional units, either functions 
or procedures [PLGS88]. A function accepts structures of input parameters and returns 
a single output structure. A procedure has input, output and update (treated as 
"new7' and "old") parameters. As will be shown, definitions of subsidiary functions 
or procedures are in fact definitions of operations. An individual functional unit does 
not have recursive definition in itself, although it can use itself as an operation thus 
creating recursion. In the following, we focus on an individual module, function or 
procedure which are called "programs-in- the-small" . For "programs-in- t he-largen , see 
[LPgO]. 

2.2.2 Data Declaration 

Data structures and their types are declared in a declaration part of a functional 
unit. There are input, output and interim variables. Input and output variables are 
declared in its header. A structure of each input and output variable, i.e. an entire 
hierarchy of the structured variable, must be specified in a declaration part (it may 
be typed). Interim variables are used within a functional unit and cannot be accessed 
from the outside. Their declaration is optional. If there is no explicit declaration for 
an interim variable in a declaration part, a translator from MODEL to a procedural 
language inserts its declaration automatically. A primitive type of a variable is one of 
the followings: boolean, integer, real, or literal. The primitive type is defined either 
explicitly or implicitly in the data declaration. We do not discuss the data declaration 
further as the focus of the following is on the equations. 

2.2.3 Equations 

The syntax of an equation is defined as follows [MOD89]: 

Equation ::= SimpleEquation~ConditionalEquation2 

SimpleEquation ::= VarName(SubExprl, ..., SubExpr,) = AnyExpression 

AnyExpression ::= ArthExpression IStrExpressionI BoolExpression 

'we have three meta-symbols; "::=" defines a term in its left-hand side, ''I" denotes or and "[ezpr]" 
means "ezpr" is optional. 



ConditionalEquation ::= VarName(SubExprl, ..., SubExpr,) = CondExpression 

CondExpression ::= IF BoaIExpression THEN CoAnEx [ELSE CoAnEx] 

CoAnEx ::= CondExpressionlAnyExpression 

An equation is either simple (SimpleEquation) or conditional (ConditionalEquation). 
They define an LHS variable VarName(SubExprl, ...) in terms of expressions. In 
composing a MODEL specification, only a variable (possibly subscripted) is allowed in 
the LHS of an equality in an equation.3 An expression in the right-hand side (RHS) of 
an equality defines the variable. BoolExpression defines a Boolean variable. Integer 
and real type variables are defined by arithmetic expressions. String expressions return 
literal values for a string variable. 

2.2.4 Array and Scalar Variables 

A MODEL variable is either a scalar or an array. An array variable is indexed by a 
set of subscript expressions. As in mathematics, each variable has a single value in 
MODEL. Once its value is assigned, it never changes. On the other hand, a subscript 
variable assumes all integer values in the range of the elements of the arrays. Such 
subscripts are further discussed below. 

Every array has a data declaration or an equation that defines its dimensionality, 
either implicitly or explicitly. For example, an equation END.x(i) = exp(i) may be 
defined for the range of an array x with a subscript i ,  where exp is a Boolean expression 
and a function of i. The variable END.x(i) is called a control variable [Lu81, MOD891. 
E N D  is prefixed to the array variable x. It is a "shadow" variable of x in the sense that 
it has the same shape as x. See Figure 2.2. The value (a truth symbol, either TRUE 
or FALSE) of the control variable is defined by the equation END.x(i) = exp(i). The 
values of END.x(i) are FALSE except for the value of the last element in the most 
right dimension that has the value TRUE. The size of the array variable x can be 
alternately defined directly by another prefixed control variable, SI2E.x .  The array 
variable x is defined only when its subscript i satisfies a predicate 1 5 i 5 SI2E.x.  
If the array is finite, SI2E.x  has a finite value. Every element of END.x has the 
FALSE value while the last element END.x(SI2E.x) is TRUE. If x is an infinite 
array, however, there is no TRUE element in the array END.2, i.e., the value of 
S I 2 E . x  is infinite. It concludes that the following two equations are equivalent: 

Rule of Control Variables: 

(END.x(i) = exp(i)) - (exp(i) = IF (i = SI2E.x)  THEN TRUE ELSE 
FALSE) 

3The restriction that only a variable is allowed in the LHS is relaxed by [Ge89]. In his extension, 
an LHS expression is defined as equal to an RHS expression. We use the extended MODEL language 
in formulating requirement assertions. 
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END.x<i> = exp<i> 

Figure 2.2: An array variable x and its "shadow" array variable END.x. 
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2.2.5 Operations 

FALSE 

FALSE 
- - 

0 - 

The expressions of a MODEL specification use a set of operations. The operations 
are defined by operators, functions and their arguments. The followings are MODEL 
operators for expressions: 

x<i> L 

FALSE - 
0 - 
0 - - 

x(S1ZE.x) w 

I TRUE 

(1) Arithmetic Operators: + (addition), - (subtraction), * (multiplication) and / 
(division). 

(2) Relational Operators: < (less than), 5 (less than equal), > (greater than), 2 
(greater than equal), = (equal) and # (not equal). 

(3) Logical Operator: & (and), 1 (or), 1 (not) and IF-THEN-ELSE.4 

(4) String Operator: 1 )  (concatenation), string search and string replacement. 

Functions are viewed as operations on their input arguments. They are either built-in 
or user defined. 

2.2.6 Implicit Universal and Existential Quantifiers 

The most distinctive difference between a procedural language and an equational lan- 
guage is that a variable has a single value in an equational language such as MODEL. 

4ELSE is optional. 



On the other hand, we can change the value of a variable in a procedural language as 
many times as we want to. 

A MODEL equation, x(i) = x(i - 1) + 1, defines all elements of x indexed by the 
subscript i .  It means that the equation represents a class of all equations such that 
Vi, 1 5 i 5 SI2E.x .  

The MODEL equation, x(i) = x(i - 1) + 1, can be interpreted into the following 
code in a procedural programming language such as FORTRAN: 

DO I = 1, SIZEX 
X = X + 1  

ENDDO 

In the FORTRAN code, the assignment statement X = X + 1 cannot be executed if 
the index variable I is out of its range, i.e. either I < 1 or I > S I Z E X .  It can 
be executed only when the index variable is properly defined. Likewise, a MODEL 
equation is defined only when its LHS variable subscript expression is within the range. 
If the LHS variable is size 0 or its subscript expression is out of range, the equation is 
undefined. A MODEL equation that has undefined LHS variable is invalid. Such an 
equation is called a null (or invalid) equation. 

There is also the case of a null equation for specific subscript values: a conditional 
expression without ELSE in the RHS of the equation. Suppose we have the following 
equation: y = IF i = 10 THEN x(i) + 1. y is a scalar and its value is defined 
only for the equation instance of i = 10. The equation is invalid for other value of i .  
However there must be one instance (value of i) where the equation defines y, i.e. y 
exists. In short, an instance of an equation becomes a null equation if its LHS variable 
is undefined or its RHS expression cannot define valid operations for its legal LHS 
variable. 

A MODEL specification is regarded as a collection of valid equations. A valid 
equation is defined to be able to uniquely determine the value of its LHS variable 
in terms of its RHS expression. All the subscript expressions of every LHS variable 
should be defined within their legal range. There exists a unique RHS expression of 
a valid operation (that determines its value) for each element of an LHS variable. If 
multiple equations define the same LHS variable, they must be mutually exclusive of 
each other. 

It concludes that existential (3) and universal (V) quantifiers implicitly exist for 
each MODEL equation. Consider an equation 

where the LHS variable x is defined by the function f ;  the LHS variable is indexed 
by the subscripts il, ..., in and the function f may have subscripts jl, ..., j, and the 
variables varl, ..., vark as its arguments. If the ranges of the subscripts are 1 5 il 5 



Figure 2.3: The Existence Condition. 

SIZE;, , 1 5 i2 5 SIZE;, , etc., the following expression is equivalent to the MODEL 
equation: 

Existence Condition of Equation: 
. . v il ,  . . - , zn , .?~ ,  ...,jm7 ((331, -..,jm,varl, ...,vark, 

1 5 jl 5 SIZEjl ,  ..., 1 5 jm 5 SIZEjm7 f (jl,  ..., jm, v a r ~ ,  ..., var,+)) + 
(3i1, ..., in, 1 5 il 5 SIZE;,, ..., 1 5 in 5 SIZE;,,, 

( ~ ( i l ,  ...,i n) = f (jl, ... ,jm, v a r ~ ,  ...,var k))) 

The expression is interpreted as follows: 

For all subscripts of the LHS variable, x, and the function, f ,  there exist the 
subscripts of the function in the legal range, all input variables of the function 
are available and the function is computable. Then the equation defines the value 
of the LHS variable, x. 

The existence condition of the equation, in fact, describes one of the requirements 
that must be satisfied by MODEL equations in a specification: Every variable must 



exist and be uniquely defined. The composition of such MODEL specifications is 
facilitated by the checking mechanism as will be discussed in Chapter 4. Incom- 
plete, ambiguous and/or inconsistent definitions of subscript expressions, variables and 
equation are assumed to be removed after being detected by the checking mechanism 
[Lu81, SLPP841. Any cyclic definition of variables is removed by the checking mecha- 
nism. 

2.2.7 Execution Model 

One way to envisage MODEL specification execution is as a data flow machine [Arv82]. 
That is, the expression in its RHS is executed as soon as all of the inputs are available. 
The value of the LHS variable is determined as the RHS expression is evaluated. The 
notion of execution in MODEL consists of firing each equation when its inputs are 
available and generating the corresponding output. An equation is fired once for each 
combination of legal LHS and RHS subscript variables. However, due to the implicit 
universal and existential quantifiers, only one LHS element is defined for each legal 
LHS subscript variable. 

A MODEL specification may include declaration of input and output data. Due to 
the termination assumption, for any set of input data, there must exists at least one 
order of firing that uniquely defines all the LHS variables (scalars or elements of arrays). 
The specification will be checked to assure that such a sequence exists. Otherwise, the 
specification is illegal. 

Another way to envisage MODEL specification execution is an expert system [GR89]. 
An equation is implemented as a rule of an expert system. It is expressed as follows: 

precondition + action 

Each equation is a rule that has implicit universal and existential quantifiers as its 
existence condition. It is in the form of the following: 

existence-condition + equation 

Since the equation is fired only if the existence condition is satisfied, it can be inter- 
preted as the precondition of the rule. The execution of the equation is regarded as 
the action of the rule. The specification of equations can be viewed as a set of rules. 
The input data of the specification such as "x = 3;" can be interpreted as a set of 
given facts of the expert system such as "(def ine- f  act (x 3) )". An array variable 
like "y(i, j ,  I c )  = 47;" is expressed as a fact (or relation) that maps multiple fields of its 
subscripts to its value such as " (def ine-f  act (y i j k 47) )". As the precondition 
(= the existence condition of the input variables) is satisfied, the values of the equa- 
tions, the LHS subscripts and variables are determined through unification. Thus the 
action (= the execution of the equation) determines the LHS variable. The execution 
of a specification is actually the process of inference (or reasoning) on the given facts 
in the expert system. The order of firing represents causal chain (or reasoning) among 



the rules [GR89]. Since a specification is assumed to have at least one order of firing 
that leads to a solution, there is at least one causal chain for a given set of facts. The 
details of the expert system implementation are discussed in Chapter 5. 

A MODEL Calculus 

We define algebraic structure, laws and rewriting rules for manipulating MODEL ex- 
pressions. The basic notions are described in Section 2.3.1. The laws of arithmetic 
operators, relational operators and logical operators are described in Section 2.3.2. To 
apply those laws to expressions, we need rewriting rules: Substitution and Transitivity. 
Section 2.3.3 describes these rules. An induction rule is also needed and specified in 
Section 2.3.4. 

An equality (=) is used in MODEL expressions. In defining algebraic laws, an 
equivalence relation (=) is used as a meta-symbol. It is reflexive, symmetric and 
transitive. 

2.3.1 Basic Notions 

Well Formed Formula 

The calculus shares the same syntax with the MODEL language. That is, legal MODEL 
expressions and equations are defined as well-formed formulas (wffs) of the calculus. 
The truth symbols, TRUE and FALSE, must be wffs. Constants and variables of 
MODEL are wffs of the calculus. Since the calculus only allows the addition operator 
(+) and the multiplication (*) operator as will be discussed, the subtraction opera- 
tor (-) and the division operator (/) defined in MODEL are regarded as the inverse 
operators of + and *, respectively. If A and B are wffs, A + B and A * B are wffs. 
A - B and A/B in MODEL are translated as the wffs of the calculus, A + (-B) and 
A * ( l /B) ,  respectively. 

Algebraic Structure 

The algebraic structure for the calculus is defined as a field of fractions (rational num- 
ber), (F,  +, *) [Gi176]. It has the following components: 

(1) F is a set of rational numbers. Its element is defined as a / b ,  where a  E I (integer) 
and b  E I - (0). An equivalence relation N forms equivalence classes such that 
a / b - c / d i f f  a * d =  b * c i n  I. 

(2) addition (+) and multiplication (*) are defined as follows: 



(alb) + (cld) = (a * d + b * c) / (b  * d )  

(alb) * (cld) = ( a  * c)/(b * d )  

(3)  identities: 011 for + and 111 for * 
( 4 )  inverses: an inverse of alb for + is - a / b  and an inverse of non-zero a/b for * is 

bla 

Semantics of Relational Operators 

Relational operators are used in comparing values of expressions. The semantics of the 
operators are defined as  follow^:^ 

1. El = El is TRUE if the values of El and E2 are equal and is FALSE otherwise. 

2. El > E2 is TRUE if the value of El is greater than that of E2 and is FALSE 
otherwise. 

3. El < E2 is TRUE if the value of El is less than that of E2 and is FALSE 
otherwise. 

4. El I E2 = ( (El  < E2)1(E1 = E2)) 

2.3.2 Algebraic Laws 

Laws of Arithmetic Operators 

Algebraic laws for arithmetic operators are defined. Landau describes theories for the 
arithmetic of numbers [Lan66]. Commutative, associative and distributive laws are 
defined. The algebra is defined in terms of the following laws: 

1. Commutative Laws: 

El ,  E2 and E3 are expressions. 



2. Associative Laws: 

x + ( y + z ) -  ( a : + y ) + z  

x * ( ( y * z )  = ( x * y ) * z  

3. Distributive Laws: 

" * ( Y  + z )  - (a: * y )  + ( y  * 2 )  

Laws of Logical Operators 

Equivalence laws are defined using the logical operators. They are based on the equiv- 
alence laws in [GriBl]. E l ,  E2 and E3 in the following are expressions. 

1. Commutative Laws: 

(E1&E2) -- (&&El) 

(ElIE2) = (E21E1) 

(El = E2) - (E2 = E l )  

2. Associative Laws: 

3. Distributive Laws: 

(El I(Ez&E3)) ( ( E I I E ~ ) & ( E Z ~ E ~ ) )  

(El&(~%lE3)) = ((E1kE2) I (El&&)) 

4. De Morgan's Laws: 

l (E l&E2)  EE ( i E l  I-7E2) 

l (E l lE2)  3 ( i E 1 & i E 2 )  

5. Law of Negation: l ( l E l )  = El 

6. Law of the Excluded Middle: ( E l ( l E l )  = T R U E  

7. Law of Contradiction: ( E l & i E l )  = FALSE 

8. Laws of Implication: 

(IF T R U E  THEN E l )  - El 

(IF T R U E  THEN El ELSE E2) - El 



(IF FALSE T H E N  El ELSE E2)  E2 

9. Laws of OR-simplification: 

(ElIEl)  = El 

(E1)TRUE)  TRUE 

(El  / F A L S E )  z El 

(ElI(El&E2)) -- El 

10. Laws of AND-simplification: 

(El&E1) G El 

(El&TRUE)  s El 

(E1&FALSE) G FALSE 

(El&(El I & ) )  = El 

2.3.3 Rewriting Rules 

Based on the algebraic laws described in the previous subsection, the rules of substi- 
tution and transitivity are defined as  follow^:^ 

Substitution Rule: 

where el and e2 are expressions, P is a predicate and P[el/e2] is generated by 
replacing the el in P by the expression e2. 

Transitivity Rule: 

el = e2, e2 = e3 t- el = e3, 

where el, e2 and e3 are expressions. 

2.3.4 Induct ion Rule 

We may have an equation, x(sub) = IF sub = 1 T H E N  0 ELSE x(sub - 1) + 1 and 
a proof goal, A: x(sub) = sub - 1 for 1 5 sub 5 SI2E.x .  Notice that the proof goal 
is based on the subscript, sub, that is a natural number. We can prove the proof goal 
by induction on sub. 

First, the basis of the induction, namely x(1) = 1 - 1 = 0, is proven by substitution 
and the arithmetic laws. As an inductive hypothesis, we assume x(sub - 1 )  = (sub - 

61- is a symbol of derivability. A i- B means that a wff B is derived from a wff A by a law of the 
MODEL calculus. 



1) - 1, where 2 5 sub 5 5'IZE.x. According to the equation, x(sub) = x(sub- 1) + 1. 
By replacing the variable, x(sub- 1), by the expression, (sub- 1) - 1, as assumed in the 
inductive hypothesis, we have x(sub) = ((sub - 1) - 1) + 1. Hence, x(sub) = sub - 1. 
We conclude that the proof goal is proven. 

Such a proof technique of induction on its subscript variable is stipulated as follows: 

Induction Rule: 

basis: A(1) holds, where A is a proof goal. 

step: If A(i - 1) holds, so does A(i), for all 2 5 i 5 SIZE;. 

conclusion: A holds for 1 5 i 5 SIZE;. 

2.4 Example 

This section demonstrates the methodology of verification based on equational rea- 
soning. It only involves substitution and transitivity based on the algebraic laws of 
equivalences where reflexivity and syrnmetricity are encoded by the equivalence rela- 
tion (E). For a set of equations in a specification (that are regarded as axioms) and 
its requirement assertions (axioms), a proof goal (also expressed as an equation) is 
given. We rewrite the equations in the specification using the rewriting rules and the 
algebraic laws until we get the proof goal. A proof formulated under the equational 
reasoning is a sequence of substitutions. This contrast with other formal reasoning 
methods such as "natural deduction system" which employs a Gentzen style implica- 
tion rule [Man74, Gri81, Ga186, Lin881. For our purpose of reasoning for an equational 
language like MODEL, the equational reasoning is adequate. 

Most verification methodologies keep track of changes of execution states that are 
values of program variables [Man74]. Since a variable has a single value in a mathe- 
matical language such as MODEL, we never trace changes of execution states (values 
of program variables) during the verification of a mathematical language program. 

Unlike other mathematical languages such as Lucid [AW76, AW771, no temporal 
operators (first, next,  as soon as  etc.) are necessary in MODEL. In its calculus, 
passage of time [MP81, OL82, Lam83, Kro871 is replaced by the notion of implicit uni- 
versal and existential quantifiers (the conditions of existence of variables) and "firing" 
of equations. In some cases, the order of subscripts corresponds to the ordering of 
firing equations to determine variables. In other cases, "firing" of equations may be in 
parallel. The calculus provides these notions in place of procedurally representing the 
notion of time-passing and proving properties related to time-passing. 

Usually, programs being tested are written in a programming language that a user 
is familiar with. Their requirement assertions and proof goals are normally expressed 
in the object language7 of the formal verification system is often very formal and rigid. 

7a logical language in which propositions are expressed and reasoned about 
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It has been pointed out that the user must spend much time and energy translating the 
"na t~ra l '~  descriptions of the programs, the requirements and the proof goals into the 
"complicatedn logical forms of the object language [Lin88]. Ideally, the object language 
of the formal verification system should be close to the language of programs. In this 
methodology, the object language is same as the specification language. 

The problem of finding a greatest common divisor (gcd) of two positive integers is 
chosen as an illustrating example. As discussed in Section 2.1, proving the correctness 
of the specification requires three inputs: the specification equations, requirement as- 
sertions and proof goals. These are discussed in the following. Next, the formal proof 
of the correctness is presented. 

Euclid's algorithm for computing a gcd of two positive integers x l  and 22 is ex- 
pressed as a MODEL specification [PLGS88]. Subsequent chapter discusses the use 
of graphics in composition, modification, testing and verification of MODEL specifica- 
tions. Therefore, we briefly present here as well this graphical approach. The graphic 
representation of the gcd example is illustrated in Figure 2.4. 

Each instance of an equation in the specification is envisaged as executed as soon as 
its inputs are available. The execution of the equations may be in parallel. However, 
there is precedences or dependencies8 among the equations and the variables. A r r a y  
graph is a Petri-net like graph that specifies such precedences [Lu81, PP83, SLPP84, 
SP881. 

When a specification is composed, the user conceives variables and equations that 
are represented in an array graph using icons. The array graph describes variables, 
equations and precedences among them as shown in Figure 2.4. The simple box icon 
in the graph denotes a scalar variable, x l ,  x2 and z. Array variables, y l ( i )  and y 2 ( i ) ,  
are represented by the icon of a box with lines denoting its dimensionality. The edges 
expressed as arrows denote the precedences, i.e., data dependencies and parameter 
precedences. They are labeled by the associated subscript expressions. For example, 
the edge from the y l ( i )  node to the Eq 1 node is labeled by the subscript expression, 
i - 1. It means the value of the element y l ( i  - 1) is provided as the input of the 
equation node, Eq 1. 

As soon as the array graph is completed by the user, a prompting mechanism 
examines the syntax of an array graph, finds LHS variables to be defined, and queries 
the user to provide the definitions of the LHS variables. For example, a prompt "Eql: 
yl(i)  =" is generated on the the text window by the checking mechanism. The user 
would provide the following equation: 

IF i=1 THEN IF x1 3 x2 THEN xl 
ELSE x2 

ELSE IF y l ( i - 1 )  3 y2(i-1) THEN y l ( i - 1 )  - y2(i-1)  

'There are hierarchical precendence within the structures of the variables, data dependency in 
evaluating the variables of the equations, and parameter  precedence in evaluating the control variables 
of the variables.[Lu81, PP83, SP881. 



Figure 2.4: A sample MODEL specification computing a GCD of two integer inputs. 

TEXT WINDOW 

Eql: yl(i)= IF i = 1 THEN IF xl>x2 

THEN xl ELSE x2 
ELSE IF y 1 (i- l)>y2(i- 1) 

THEN y l(i- 1)-y2(i-1) 

ELSE y 1 (i- 1) 

Eq2: y2(i)= IF i= 1 THEN IF x 1 > x2 

THEN x2 ELSE xl 

ELSE IF y 1 (i- l)>y2(i- 1) 

THEN y2(i-1) 

ELSE y2(i-l)-y l (i-1) 

Eq3: END.yl(i)= (y l(i) = y2(i)) 

Eq4: z= IF END.yl(i) THEN yl(i) 

L 

ARRAY GRAPH WINDOW 



ELSE yl (i-I) ; 

As will be discussed in the next chapter, there is a checking mechanism that finds 
undefined or redundant variables, checks data types and locates inconsistent definitions 
of subscript expressions and dimensionality of variables. The checking mechanism fa- 
cilitates the process of formulating an array graph without inconsistent and ambiguous 
definitions of variables. Inconsistency and ambiguity in definitions of variables are 
detected and removed by the user through changing the graph or the equations. 

Similarly, the query "Eq 2: y2(i) = " is generated by the prompting mechanism 
and the definition of y2(i) is provided as the equation presented in Figure 2.4. Then 
the checking mechanism is invoked to locate the inconsistency and the ambiguity. Eq 
i and Eq 2 in the text window define two array variables yl  and y2 which contain 
intermediate values of the computation. The size of the array variables is determined 
by the control variable END.yl(i). Eq 3 specifies the expression that determines the 
values of the elements, END.yl(i)'s. The output of the computation, i.e. a gcd of 
x l  and 22, is the value of the last element of y l .  That is, the gcd of x l  and 22 
is yl(SIZE.yl) where yl(SIZE.yl) = y2(SIZE.yl). Eq 4 defines the operation of 
determining z ,  which is gcd(x1, x2). 

As discussed in Chapter 1, MODEL is also used in reverse engineering. The graph- 
ical user interface can be used to display an existing specification to facilitate under- 
standing and modifying a specification generated from the old procedural programs. 
In that case, array graph and equations of the specification are displayed on the screen 
by the system. User tries to understand the meaning of the specification by reviewing 
the array graph and the equations. 

The procedure described above is used in both composing and understanding a 
MODEL specification through the graphical user interface. The graphics is also used 
in the stage of interactive verification on the specification. It effectively helps people 
to understand the internal structures of the specification. The textual representation 
of equations specifies their operations that cannot be precisely defined through the 
graphics. The interactive verification process on the specification removes errors at 
the early stage of the software development. Therefore, the interactive graphical user 
interface increases productivity of programmers and quality of programs. 

Next, the user enters requirement assertions about the specification. They define 
behavior of the specification and they become axioms in the verification system. The 
following assertion about a gcd of two positive integers v and w is the basis of the 
Euclid algorithm: 

gcd(v,w) = IF v = w THEN v 
ELSE I F  v < w THEN gcd(v,w-v) 

ELSE gcd (v-w , w) 

Next, the goals for the verification are specified in proof goals. The proof goals 
consist of the goals and their subgoals as follows: 



Goal I. x = gcd(xl,x2) 

Subgoal 1. gcd(xl,x2) = gcd(yl(l), y2(1)) 

Subgoal 2. gcd(yl(i), y2(i)) = gcd(yl(i - I),  y2(i - 1)) 

Subgoal 3. z = gcd(yl(SIZE.yl),  y2(SIZE.yl)) 

Goal 11. SIZE.y l  < finite-val 

Subgoal 1. max(y1 (i - 1)) y2(i - 1)) - max(yl(i),  y2(i)) 2 1 

Subgoal 2. SIZE .y l  < max(xl,x2) 

The first goal is to prove that the specification correctly computes the gcd of the input 
variables. The second one is to prove that its execution terminates within a finite 
amount of time. It can be proven by showing that the size of the array y l  is bounded 
by a finite number, i.e. max(xl,x2). 

The algebraic laws, the rewriting rules and the induction rule are applied during 
the process of verification. The subgoals presented in the proof goals are proven one by 
one. The followings are the steps of the verification. For each step of verification, the 
names of the rules and/or the algebraic laws used for the verification step are given: 

1. Proof of gcd(x1, x2) = gcd(yl(l),  y2(1)): 

a. i = 1, Eql I- 
yl(1) = IF 1 = 1 THEN IF x l  > 22 THEN x l  ELSE 22 

ELSE IF yl(1- 1) > y2(1- 1) THEN yl(1- 1) -y2(1- 1) ELSE yl(1-1); 

(by Substitution) 

b. yl(1) = IF 1 = 1 THEN IF x1 > 22 THEN x1 ELSE 22 

ELSE IF yl(1-1) > y2(1-1) THEN ~ l ( l - l ) - ~ 2 ( 1 - 1 )  ELSE yl(1-1); 

I- 
yl(1) = IF TRUE THEN IF x l  > x2 THEN x l  ELSE x2 
ELSE IF yl(1- 1) > y2(1- 1) THEN yl(1- 1)-y2(1- 1) ELSE yl(1-1); 

(by Semantics of Relational Operators) 

c. ~ l ( 1 )  = IF T R U E  THEN IF x l  > 22 THEN x l  ELSE 22 
ELSE IF ~l(1-1) > y2(1-1) THEN yl(l- l)-y2(1 -1) ELSE yl(1-1); 

t 
yl(1) = IF x l  > 22 THEN x l  ELSE 22 
(by Law of Implication) 

d. i = 1, Eq 2 I- y2(1) = IF x l  > 22 THEN 22 ELSE x1 
(by Substitution, Semantics of Relational Operators, and Law of Implica- 
tion) 

CASE x l  > 22: 



e. ( c )  I- yl(1) = x l  
f. (d) I- ~ 2 ( 1 )  = 22 

g. (e),(f) I- gcd(xl,x2) = gcd(yl(l), ~ 2 ( 1 ) )  
(by Substitution) 

CASE x l  2 22: 

h. (c) I- yl(1) = 22 
i. (d) I- y2(1) = x1 

j. (h),(i) I- gcd(xl,x2) = gcd(~2(1), yl(1)) 
(by Substitution) 

k. (j), the requirement assertion t gcd(y2(1), yl(1)) = gcd(yl(l),y2(1)) 

1. (j),(k) I- gcd(x17x2) = gcd(yl(l), ~ 2 ( 1 ) )  
(by Transitivity) 

2. Proof of gcd(y1 (i), y2(i)) = gcd(y l(i  - I ) ,  y2(i - I)): 

CASE yl(i - 1) > y2(i - 1): 

a. v = yl(i  - I), w = y2(i - I) ,  yl(i - 1) > y2(i - 1) I- v > w. 
(by Substitution) 

b. v > w, requirement assertion t- gcd(v, w) = gcd(v - w, w) 
(by Law of Implication) 

c. v = ~ l ( i  - I), w = ~ 2 ( i  - I) ,  (b) t- gcd(yl(i - I), y2(i- 1)) = gcd(yl(i - 
1) - y2(i - I) ,  y2(i - 1)) 
(by Substitution) 

d. yl(i  - 1) > ~ 2 ( i  - 1)) Eq 1 I- yl(i) = yl(i - 1) - y2(i - 1) 
(by Law of Implication) 

e. yl(i - 1) > y2(i - l ) ,  Eq 2 I- y2(i) = y2(i - 1) 
(by Law of Implication) 

f. (d),(e), (c) I- gcd(yl(i - 1 ) , ~ 2 ( i  - 1)) = gcd(yl(i),y2(i)) 
(by Substitution) 

g. gcd(y1 (i-1), y2(i-1)) = gcd(yl(i), y2(i)) I- gcd(yl(i), y2(i)) = gcd(yl(i- 
11, ~ 2 ( i  - 1)) 
(by Law of Equality) 

CASE yl(i - 1) 5 y2(i - 1): 
Likewise, gcd(yl(i), y2(i)) = gcd(yl(i - I) ,  y2(i - 1)) 

3. Proof of z = gcd(yl(SIZE.yl), y2(SIZE.yl)): 

a. i = SIZE-yl ,  Eq3 t E N D . Y ~ ( S I Z E . ~ ~ )  = ( y l ( s I Z E . ~ l )  = y 2 ( s I Z E . ~ l ) )  
(by Substitution) 

b. END.yl(SIZE.yl) = (yl(SIZE.yl) = y2(SIZE.yl)) I- (yl(SIZE.yl) = 
y2(SIZE.yl)) = TRUE 
(by The Rule of Control Variables) 



c. (a),(b) I- END.yl(SIZE.yl)  = TRUE 
(by Transitivity) 

d. i = SIZE.yl ,  Eq 4 I- z = IF END.yl(SIZE.yl) THEN yl(SIZE.yl) 
(by Substitution) 

e. (c),(d) I- z = yl(SIZE.yl)  
(by Law of Implication) 

f. Let v = ~ l ( s I Z E . y l )  and w = y2(SIZE.yl). 
v = w, requirement assertion I- gcd(v, w) = v 

(by Law of Implication) 

g. v = yl(SIZE.yl) ,  w = y2(SIZE.yl), (f) I- gcd(yl(SIZE.yl), y2(SIZE.yl)) = 
yl(SIZE.yl)  
(by Substitution) 

h. ( e ) , ( g )  I- z = gcd(yl(SIZE.yl), y2(SIZE.yl)) 
(by Transitivity) 

+ Conclude z = gcd(xl,x2) by Induction Rule. 

4. Proof of max(yl(i - I), y2(i - 1)) - max(yl(i), y2(i)) 2 1: 

a. x1 > 0, 22 > 0 t (yl(i) > 0)&(y2(i) > 0) 
(by Induction Rule) 

b. (a) t (yl(i - 1) - yl(i) > 0)((y2(i - 1) - y2(i) > 0) 
(by Induction Rule) 

c. (b) I- max(yl(i - 1) - y l ( i ) ,  y2(i - 1) - y2(i)) > 1 
(by Induction Rule) 

5. Proof of SIZE.yl < max(xl,x2): 

+ Conclude SIZE.yl < f inite-val by the assumption such that x l  > 0 and x2 > 0. 



Chapter 3 

VISUALIZATION 

3.1 Introduction 

The visualization system employs program visualization, visual programming, pull- 
down menus, and texts. The objective of this chapter is to describe the visual program- 
ming (VP) environment for MODEL. Visual programming allows a user to compose a 
program in a two dimensional fashion [Har88, Mye88, ChaSO]. The VP environment 
offers an interactive graphical user interface where a user can effectively compose and 
modify a MODEL specification. It also facilitates generating reliable programs by of- 
fering three types of utilities: checking unique computability of variables, testing, and 
verification. The interactive graphical user interface improves interactions between the 
user and the environment in composing, modifying, checking, testing and verifying a 
specification. This chapter describes the VP environment. Its use in checking, testing 
and verification is described in respective chapters. 

There are a number of advantages of visual programming over conventional (tex- 
tual) programming. A human being can recognize and process multi-dimensional data 
such as pictures and diagrams. A conventional computer program written in a textual 
form does not fully utilize the capability of the human for visual information process- 
ing. Many researchers have demonstrated that two-dimensional displays of programs 
are helpful for humans in composing and understanding programs, especially for non- 
programmers or novice programmers [Mye88, ChaSO]. A graphical description can 
explain a complex problem, such as a concurrent process or a real-time system. Even 
a professional programmer could benefit from use of high-level graphical descriptions 
when dealing with very complex problems. 

The VP environment for MODEL overcomes some problems with existing VP sys- 
tems. First, it does not use a control flow diagram, e.g. a flow chart, on which many 
VP systems are based. It has been proven that a flow chart is a poor abstraction 
of software structure and useless as a design tool [Bro87]. In the VP environment, an 
equational language, MODEL, is visualized as a Petri-net like data flow diagram, array 



graph. Recall that a MODEL specification is a collection of equations and the order 
of executing them is not specified; every variable has a single value; every equation is 
fired as soon as its inputs are available. As a result, the user does not have to trace 
flows of program states around the whole diagram. He can examine properties of any 
MODEL equation or a group of connected equations locally in the displayed graph. 

A MODEL equation is regarded as residing on a processing element of a data 
flow machine. It is fired as soon as all of its inputs are available. Each equation is 
represented as a node. Each variable (whether a scalar or a multi-dimensional array 
variable) also forms a node. A hierarchical structure of a variable is denoted by a set of 
variable nodes and edges of hierarchical precedences. The other types of edges visualize 
data dependency and parameter precedence among equations and the input and output 
variables. The array graph has more expressive power and is more readable than a flow 
chart. 

The VP environment combines graphics and an equational language, MODEL. A 
data flow graph of a specification (= array graph) is represented in graphics to help 
the user understand its meaning. At the same time, compact and intuitive mathemat- 
ical definitions of the equations are precisely expressed. Both the graphics and the 
mathematics complementarily enhance the user's understanding of the specification. 

As a specification is composed, its consistent definitions/references (of the dimen- 
sionality of array variables, the ranges of dimensions, the data dependency, etc.) is 
interactively checked as discussed in Chapter 4. The consistency of the specifica- 
tion is also tested after its composition and/or its modification. As will be dis- 
cussed in the following chapter, the testing1 of a specification may be performed 
[Kin76, Cla76, DLS78, RW85, How87, Ham88, GH88, BeiSO]. The graphical user inter- 
face facilitates the testing procedure. The correctness of a specification may be proven 
using the verification system through the interactive graphical user interface. Note that 
the procedures of checking, testing and verification of programs are frequently carried 
out by users incompletely, partially because of their complexity and tediousness. The 
combination of interactive checking, testing, verification and graphics will make those 
procedures easier. 

There are a number of graphic systems that can be utilized for the graphical user 
interface[Dec90, BMS WSO]. DECdesign is a software development environment based 
on graphics [DecSO]. It helps a user to analyze and design software systems according 
to sound rules of the design methodology. As an example, the design methodology of 
the Yourdon Data Flow Diagram (DFD) was implemented in DECdesign. It provides 
an icon-based graphical editor where a user creates a diagram using icons. The icons 
and their meanings may be based on the Yourdon DFD notation. A graph has two edit 
windows: the graphics window and the forms window. The graphics window displays 
the diagram. To edit or examine information about a graph, a user opens the respective 
forms window. 

l a  process of discovering faults that cause failure of software 



The VP environment for MODEL is proposed to be implemented in terms of any 
one of existing graphic systems. We propose to customize DECdesign by providing the 
methodology of visual programming to the DECdesign core environment in terms of 
graphical objects and rules. An array graph is displayed on the graphical window for 
the VP environment (called array graph window). Its data declarations and equations 
are presented in other window (called text window). 

This chapter discusses mainly the composition and modification of specifications 
using the VP environment. Section 3.2 illustrates the idea of the visual programming. 
The graphical user interface and its use in the composition and the modification are 
described in Section 3.3. 

3.2 Example 

A user composes a specification by constructing an array graph in graphics. Declaring 
data structures and defining equations in MODEL are performed textually. The vari- 
ables and the equations of the specification are represented by graphical objects (icons) 
in the array graph. The mouse and the keyboard inputs are used in formulating and 
modifying an array graph. It is similar to an icon-based graphical editor [TB86]. 

As illustrated in Figure 3.1, a view of an array graph is seen through the array 
graph window. It consists of a "canvas" for drawing the graphs, a menu of icons and 
pull-down menus ("FILEn, "ED IT", "VIEW", "TOOLS" and "HELP" ) . The graph 
denotes the data structures, the equations and the precedence of executing the equa- 
tions graphically. Each equation has its mat hemat ical definition in the corresponding 
text window. The VP environment facilitates the maintenance of consistency in the 
contents of the windows. 

For example, consider a simple MODEL specification of information retrieval in 
Figure 3.1. The module, info-retrieval,  finds a list of books written by "Prywes" 
from the input file, in-f i l e ,  where the titles of the books are stored under the names 
of their authors. The equation, Eq 1, copies titles of the books written by "Prywes" 
to the l-D array, p-book(j). The size of the array is limited by the control variable, 
SIZE .p-book, determined by the equation Eq 2. The array, p-book(j), forms a record, 
out, of the target file, out-f i l e .  The input data are the records, p( i ) ,  of the data type, 
author. It consists of author's name (name), an array of titles ( t i t l e ( j ) )  and the size 
of the array (n). The structure of the data type, author, is graphically expressed in the 
array graph window (in terms of icons with dotted lines) while its textual declaration 
("TYPES:") and its usage ("VARIABLES:") are presented in the text window. 



........... C 

EQUATIONS: 
MODULE: info-retrieval; Eql: p-book(j) = 
SOURCE: in-file; IF (p(i).name = "Prywes") THEN p(i).title(i); 
TARGET: out-file; 

DATA DECLARATIONS: ~ q 2 :   SIZE.^-book = 
IF( p(i).name = "Prywes") THEN p(i).n; 

1 author IS GROUP, 
2 name IS FIELD (CHAR(20)), 
2 n IS FIELD (NUM), 
2 title(j) IS FIELD (CHAR(80)); 

VARIABLES: 
1 in-file IS FILE, 

2 p(i) IS RECORD TYPE author; 

1 out-file IS FILE, 
2 out IS RECORD, 

Figure 3.1: An array graph window and its text window 



Graphical User Interface 

The graphical user interface of the VP environment manages multiple windows on a 
screen, invokes utilities requested by a user, accepts keyboard and mouse input, and 
displays an array graph of a MODEL specification, equations, and messages. 

The utilities of managing multiple views and windows are described in Section 
3.3.1. The graphical objects such as icons and menus are discussed in Sections 3.3.2 
and 3.3.3. The methodology of composing a specification is explained in Section 3.3.4. 
The graphical user interface also facilitates modifying a specification graphically and 
textually. The modification procedure is presented in Section 3.3.5. The graphical 
operations on the displayed array graphs are explained in Section 3.3.6. 

3.3.1 Views and Windows 

A user can selectively have many different views of an array graph of a specification. For 
instance, the user may want to see only field variables, equations and data dependencies 
of the array graph. Or he may want to modify the graph through graphical operations 
such as zooming a part of the graph, imploding a partition of the graph, exploding 
imploded partitions, etc. A graphical representation of either an array graph itself or 
a result of the graphical operations on the graph is called a view of the array graph. 

The user can "see" the view through a window. The physical size of the window 
may or may not cover the whole view. In case that the window is not big enough to 
show the whole view, the user may move the window around the view to get the whole 
picture. Figure 3.2 illustrates the relationship among an array graph, a view and a 
window. An array graph of a specification is displayed in Figure 3.2-(a). A user may 
delete all field nodes of the input and the output of the specification, x i ,  x2, x3, x4, 
x i 1  and x12, to replace them by their ancestor nodes, in-grp and out-grp, as shown 
in Figure 3.2-(b). The user creates the view. The window of the VP environment may 
be able to cover only a portion of the view. In Figure 3.2-(b), the user can "see" the 
equations, Eq 1, Eq 2, Eq 3,  Eq 5 and Eq 8, the variables, x5, x6 and x7, and the 
data dependencies among them through the window. 

A scrollingoperation is needed when the user moves the array graph window around 
a view. As shown in Figure 3.1, the array graph window has two scroll bars for moving 
the window (up-and-down and left-and-right). The size of the array graph window can 
be changed using the resize icon in the lower-right corner of the window. He can also 
enlarge a part of the graph by zooming. When the user examines a complicated graph, 
the zooming operation is useful. These graphical operations are already implemented 
as standard ones in X window system [SGN88, AS901 and DECdesign [DecSO]. 



a window of the vie I out-file 

a view of an array graph 

Figure 3.2: An array graph, a view and a window. 



3.3.2 Graphical Objects 

An array graph consists of variables, equations and their precedences. The variables 
and the equations are nodes of the graph, while the precedences are denoted by edges 
of the graph. The nodes and the edges are created by selecting the icons illustrated in 
Figure 3.1. 

A scalar variable is expressed as a box icon. Multi-dimensional array variables (1-D, 
2-D, 3-D and n-D arrays) are denoted by boxes and subscripts as presented in Figure 
3.1. Those icons of variables are called data icons. 

The hierarchical structure of a variable is also expressed by the data icons, the 
"FILE" and the "HIERARCHICAL PRECEDENCEn icons in Figure 3.1. For example, 
consider the hierarchical structures for i n - f i l e  and o u t f i l e  declared in the text 
window of Figure 3.1. The variables, name, n ,  t i t l e ( j )  and p-book( j ) ,  are called 
fields.2 The fields may form a logical unit called a group3 or a physical reco9d4 A group 
and a record could be regarded as a scalar variable like out or a multi-dimensional array 
variable like p ( i )  . 

We can distinguish a field node from a group node by hierarchical structure in an 
array graph. However, a record node is not distinguished from a group node. The 
"RECORDn icon is provided to mark a record node by shading. A user first clicks the 
"RECORD" icon and selects a proper data icon for a record node. Then the selected 
icon is shaded and appears on the array graph window. The p ( i )  , out and author 
nodes in Figure 3.1 are shaded to denote that they are records. 

The files,5 in-f i l e  and o u t f  i l e ,  may have a number of groups or records. They 
are denoted by the "FILE" icon. The "SOURCEn (= input) and the "TARGET" (= 
output) files of the module are declared in the header part. 

Control variables such as E N D ,  E N D F I L E  and SUBLINEAR [MOD891 are 
represented by the "SHADOW ARRAYn icon which is attached to the correspond- 
ing arrays. For example, the 1-D array, p ( i ) ,  in Figure 3.1 has a shadow variable, 
ENDFILE. p (1) .  It has the same shape (dimensionality and range) of the record, p ( i )  . 
The shadow array icon is attached to the 1-D array icon of p ( i )  as its shadow. With 
the notion of the shadow array icon, we can reduce the complexity of the array graph 
and can graphically denote the relationship between an array variable and its shadow 
array. 

An equation is denoted by the circle icon. Inside the circle, the name of the equation 
such as Eq 1 is specified. Each equation has a number of inputs and a single output. 
They are expressed as attach points on the icon. For instance, the circle icon in Figure 
3.1 has three attach points. Two of them are its inputs and the rest is its output. The 

21eaf nodes of the tree that shows the entire hierarchy of the declared data structure 
3a non-leaf node of the tree 
4a physical unit of communicating with external devices 
5a  root of the tree 



attach points disappear as soon as they are connected to edges from all inputs and 
output of the equation. 

As will be discussed in Section 3.3.6, a user may partition a class of equations that 
can be classified as a single equation. A collection of data structures can be partitioned 
to form a new hierarchical data structure. It is used to simplify the displayed array 
graph. A user selects the "PARTITIONn icon from the icon menu in Figure 3.1 and 
surrounds nodes that form a new node. 

A user may define a new data type. He is able to create a new data type using 
the data icons and the hierarchical precedence icons. It is implemented by the icon 
of "DEFINE A TYPEn. For example, the data type, author, in Figure 3.1 is created 
using the icon. The 1-D array, p (i) , is defined as an instance of the type as presented 
in the text window in Figure 3.1. To distinguish the declaration of a new data type 
from normal data declaration, all icons used in the new type declaration are expressed 
by dotted lines. A generic equation can be defined as a new type equation using the 
"DEFINE A TYPE" icon. The user clicks the icon and defines a new type equation in 
terms of variables and equations. Both a new type variable and a new type equation 
are instantiated by selecting their definitions on the window. 

The text window contains textual representations of equations, data declarations 
and user-defined data types for the graphical objects on the array graph window. 
It gives accurate and detailed information of the array graph window. The graphical 
objects on the array graph window and their textual representation must be consistent. 
The user and the VP environment can eliminate discrepancies between the two different 
representations (graphics and text) using the checking mechanism. The two different 
representation of a same specification complementarily helps the user's understanding 
of the specification. 

3.3.3 Pull-Down Menu 

Some operations are invoked using the pull-down menus. File operations such as cre- 
ating a new array graph, reading a whole or a part of an existing array graph etc. are 
invoked by choosing the "FILE" menu in Figure 3.3-(a). A user can edit graphical 
objects on the graph by choosing the edit operations listed under the "EDITn menu in 
Figure 3.3-(b). 

There may be multiple views of an array graph. The user may want to save the 
generated views as a report. The graphical user interface offers a utility of making a 
snap-shot of a currently displayed array graph. The "VIEW" menu has the selections 
of graphical operations as shown in Figure 3.3-(c). 

Utilities for composing, checking, testing and verifying a MODEL specification are 
categorized as "TOOLS". The user can initiate the operations by choosing the menu 
of Figure 3.3-(d). Finally, the "HELP" menu provides an on-line help facility. 
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3.3.4 Composition 

A user composes a specification by creating nodes of its variables and equations and 
connecting them using edges of precedences. For the input and the output variables, 
the hierarchical structures (declarations) must be specified in both a graphical form 
and a textual form. The data icons are used to define fields, records, groups and files. 
A record node is shaded. Their hierarchical precedences are denoted by the broken 
arrows. A new data type can be created by the user. Its graphical representation 
in dotted lines appears in the array graph window. The textual declaration of the 
data type is presented in the text window. The equations are declared as the circle 
icons on the array graph window. The data dependencies and parameter precedences 
among the variables and the equations are denoted by the edges of the solid arrow 
icon. The edges must be annotated by the subscript expressions that are used in the 
corresponding equations. 

Once the graph is completed, the user invokes the prompting mechanism from the 
"TOOLS" menu to get the textual definitions of the equations via the text window. 
The prompting mechanism recognizes the LHS variables and their corresponding RHS 
expressions. The mechanism issues a prompt such as "Eq 1: xl(i) =" meaning to 
query the user the textual definition of the RHS expression for the LHS variable, x i  (i). 
The RHS expression should be able to define the value of the LHS variable uniquely 
as long as its existence condition is satisfied. 

As discussed in Chapter 2 and 4, the user must meet the requirements (the existence 
condition, the computability of equations, etc.) when he composes a specification. 
The user can detect ambiguous definitions and incomplete definitions of variables and 
equations as completing the array graph using the prompting mechanism. Then, he 
starts the checking mechanism using the "TOOLS" menu. It checks the consistent 
definitions and references of variables and equations in the specification. The user 
interactively composes and checks a specification using the VP environment. 

3.3.5 Modification 

A user can modify a specification by changing its array graph and/or its data declara- 
tions and equations. 

The user can rearrange the positions of icons (nodes and edges) of an array graph 
on the array graph window. It is a graphical change of the graph and does not affect 
the meaning of the array graph and the specification. 

A new variable and its hierarchical structure can be created and inserted into an 
array graph. By selecting a data icon from the menu, the user can create a new variable 
node of an array graph. The new variable can be an input of an equation but it should 
not be an output of an existing equation. If the variable is created as an input of an 
equation, the user must change the definition of the corresponding equation on the text 



window. The data dependency or the parameter precedence relationship between the 
new variable and the equation is also specified by connecting them with the arrow icon. 
The dimensions, subscript expressions and their ranges must be consistently specified 
along the edge. 

In case of creating a new equation, the user modifies both the array graph win- 
dow and the text window. A circle icon denoting an equation is newly inserted into 
the array graph. Next, the output variable node and its hierarchical structures are 
defined. The data dependency or the parameter precedence between the equation and 
its output must be specified in terms of the solid arrow icons. The input variables 
of the new equation may already exist or must be created. The creation of its new 
input variables is as same as discussed before. The data dependencies or the parameter 
precedences between the input variables and the equation are represented by the arrow 
icons. Finally, a textual expression of the new equation is specified via the text window 
by invoking the prompting mechanism. The incomplete definitions, the ambiguous def- 
initions and any inconsistent definitions and references among the variables and the 
equations must be checked and removed. To perform these jobs, the prompting and 
the checking mechanisms are invoked during the modification procedure. 

3.3.6 Graphical Operations 

A complicated array graph may obstruct user's understanding of the meaning of a 
specification. Thus a user simplifies a complicated graph by imploding a class of equa- 
tions into a single equation node. Accordingly, a cluster of variables are imploded into 
a single variable node. For example, the equations and the variables of the array graph 
of Figure 3.4 can be partitioned (by selecting the "PARTITION" icon) according to 
their functional behaviors. The partitioned node must behave like a single node. The 
following rules are stipulated for partitioning: 

( 1 )  A closure6 can be partitioned to form an imploded equation node. 

(2) A set of equation nodes can be an imploded equation node, if the resulting node 
can have a single output variable node. 

(3) A set of variable nodes can be an imploded variable node, if the resulting node 
can be defined by a single equation node. 

For example, the two closures in Figure 3.4 can be partitioned and named P a r t - E q  
1 and P a r t - E q  2,  respectively. The set of equations, {Eq 9 ,  Eq  10,  Eq 11)) ca.n 
be partitioned to make an imploded equation node, P a r t - E q  3, since the set of vari- 
ables, {output 1, output 2 ,  output 31, can form an imploded variable node and 
vice versa. A simplified version of the array graph is presented in Figure 3.5. 

61t is a set of equations and variables that can be executed as one loop [Lu81]. A closure has a 
single output variable. The equations and the variables in a closure share the same subscript of the 
same range. 



Figure 3.4: Partitioning equations and variables. 
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Figure 3.5: An "imploded" array graph. 

Notice that the imploded equation node, P a r t - E q  I in Figure 3.5, does not have 
the subscript, k, which denotes the third dimension of the variable, x4, in Figure 3.4. 
Since the subscript, k, is internal in the closure, it does not appear in its imploded 
node. 

On the other hand, a user may want to examine the details of nodes of the simplified 
array graph. The user can explode any imploded node by creating another window. 
For example, the imploded equation node named P a r t - E q  3 of Figure 3.5 is created by 
merging three equations, Eq 9, Eq 10, and Eq I I. The explosion operation reveals 
the detailed structure of the node and its input nodes and its output node as shown 
in Figure 3.6. Similarly, the imploded variable node can be exploded and its structure 
and its corresponding equation nodes are exposed as shown in Figure 3.6. 



Figure 3.6: The imploded nodes of the array graph are exploded. 



Chapter 4 

CHECKING 

4.1 Introduction 

This chapter describes the checking system of MODEL. As discussed in Chapter 2, a 
user must compose a MODEL specification adhering to a number of requirements. The 
most important requirement is the existence of all variables of the equations and at 
least one causal chain from input to output[GR89] via the equations of a specification. 
Thus a unique output (= a solution for the equations) must be always computable for 
a given input set. A corollary requirement is that its execution must terminate. 

The checking system helps a user in composing a specification that complies with 
these requirements. The checking system performs static checking that detects errors or 
warns the user when satisfying these requirements is conditioned on the values of input 
data. Responding to the error messages, the user fixes the faults in the specification. 
He either modifies the specification or sets up assertions that specify the condition of 
successfully computing equations, regarding to the warning messages. For example, 
consider an equation, "x(i) = I F  a(i) > b(i) THEN y(i)". It cannot define the values 
of x ( i )  if the condition, a(i) > b(i), is never satisfied for all i. The checking system 
issues a warning message to the user on the equation. It is required that he must 
either modify the equation or provide an assertion that assures the satisfiability of the 
condition such as "3, a(i) > b(i)". Such an assertion becomes a part of the axioms of 
the MODEL proof system when the correctness of the specification is verified. 

The checking system aims to check the computability of the equations. That is, the 
checking system facilitates a user composing a specification which has one output set (= 
a solution) of the specification (= a set of equations) for a given input set. The resulting 
specification consists of the checked equations and the generated assertions that specify 
the requirements of the computability. They become axioms of the proof system. Since 
every variable of the equations has a unique definition, the axioms transformed from the 
equations cannot contradict each other. It follows that the set of axioms are consistent. 
That is, the checking mechanism facilitates the user in generating the axioms consistent. 



The inconsistency of the axioms makes the soundness and the completeness of the proof 
system, which consists of the axioms and the rewriting rules based on the equivalence 
laws, meaningless. In that sense, the checking system supports the soundness and the 
completeness of the proof system. 

Ambiguous definitions and incomplete definitions of the variables and the equa- 
tions are detected as their array graph and dictionary [Lu81, MOD891 are completed.' 
If the same name is used for more than one data structures, it causes ambiguity. It 
is resolved by using qualifying (or prefixing) names for variables [Lu81, SLPP841. 
The incomplete definition of an LHS variable of an equation means that it does 
not have an RHS expression that defines its value. Also an interim variable may 
not be explicitly declared. Section 4.2 describes a method of discovering the 
ambiguous and the incomplete definitions through completing an array graph. 

(2) The existence requirement for defining variables is checked. It is examined by 
checking the definitions of variables and their references. There may be discrep- 
ancies between declarations and references about dimensionalities, data types of 
variables and ranges of subscript expressions. They are checked by propagating 
attributes such as dimensions and ranges2 via edges of an array graph. The 
existence requirement checking is discussed in Section 4.3. 

(3) The presence of a causal chain that computes a solution set for a given input 
values is checked. A cyclic definition of variables (called circular logic [SLPP84]) 
causes an infinite computation. It should not be a part of any causal chain. The 
checking mechanism detects such a cycle in an array graph and tests if it results 
a cyclic definition. The method of detecting and removing the cyclic definitions 
of variables is presented in Section 4.4. 

(4) The condition of terminating the execution is checked for the specification. Even 
though there is no circular logic in an array graph, it may not terminate if their 
control variables specifying the termination condition such as END do not have 
finite values. The presence of such control variables and their computability 
are checked. If they are not found on a causal chain or their values cannot be 
determined as finite, a warning message is generated. Checking the termination 
condition is discussed in Section 4.5. 

4.2 Graph Construction 

Every variable and its definition are listed in the dictionary of a MODEL specification. 
An array graph is a graphical implementation of a dictionary. A user invokes the 
prompting mechanism to complete an array graph. The mechanism recognizes every 

'The dictionary is an internal representation of a specification. The header, the detailed declaration 
of variables, the equations and their precedence relationships are stored in the dictionary. 

'size of a dimension of an array variable. 



variable and the corresponding equation in the array graph displayed on the array graph 
window. A textual definition of the equation is requested by the prompting mechanism 
and provided the user via the text window. The two representations (graphical and 
textual) on the windows must be consistent. If ambiguous definitions and incomplete 
definitions of variables are found, an error or a warning message is issued. 

4.2.1 Ambiguous Definitions 

When several data structures have the same name, it is ambiguous to reference the data 
structures from equations. The ambiguity is removed as an array graph is constructed. 
It is done by applying the following rules [Lu81, SLPP841: 

(1) An LHS may reference only interim or output variables. 

(2) An RHS may reference also input variables. 

In many cases, however, it is necessary to require the user to remove the ambiguity. 
He may rename the variables by qualifying (or prefixing) them [SLPP84]. For example, 
we may have the following declaration statements: 

1 a  I S  GROUP, 1 b  IS  GROUP, 
2 x  ( i )  IS FIELD NUM(4) ; 2 x ( i )  I S  FIELD NUM(4); 

The following equation has ambiguity due to the field x: 

y ( i )  = I F  x ( i )> lO THEN x ( i )  - 10 
ELSE x ( i ) ;  

The ambiguity is resolved by using the qualified (or prefixed) names as follows: 

y ( i )  = IF  a . x ( i ) > l O  THEN b . x ( i )  - 10 
ELSE b . x ( i )  ; 

4.2.2 Incomplete Definitions 

If equations or interim data declarations are omitted, the checking system at  tempts to 
provide an appropriate equation or a data declaration. The process is based on the 
following rules [Lu81, SLPP841: 

(1) If an output data node is not explicitly defined, a new equation may be composed 
using its implicit input nodes. 



(2) An omitted data declaration of a node (an interim variable) and/or its parent 
node can be formulated using its implicit inputs. 

If the implicit source of the omitting equations and the declarations are not found 
in the array graph and/or the dictionary, the system requests the user to provide 
equations and/or data declarations. 

4.2.3 Solvability 

A specification without the ambiguous and the incomplete definitions is guaranteed to 
have at least n equations for n unknown variables. It is one of necessary conditions 
to have a solution of the equations. Each equation could uniquely determine the 
value of its LHS variable. If multiple exclusive equations define the same variable, a 
warning message is issued. A user may respond it by formulating an assertion about 
the exclusiveness and merging the equations into a single one. For example, consider 
the following equations: 

x ( i )  = IF  a ( i ) > c ( i )  THEN y ( i ) ;  
x ( i )  = I F  c ( i )  < b ( i )  THEN z ( i )  ; 

To have a unique definition of x ( i ) ,  the two conditions, a ( i )  > c ( i )  and c ( i )  < 
b  ( i )  , must be exclusive. That is, the following assertion must be true: 
'di, ( ( ( ( a ( i )  > c ( i > )  & ( c ( i )  < b ( i ) ) )  I (1 ( a ( i )  > c ( i ) )  & ( c ( i )  < b ( i ) ) ) ) )  
The condition of computing the unique value of x ( i )  becomes an assertion that is 
regarded as an axiom of the proof system. Since we only allow one equation for one 
LHS variable, those equations are merged into the following one: 

x ( i )  = I F  a ( i ) > c ( i )  THEN y ( i )  
ELSE IF c ( i ) < b ( i )  THEN z ( i )  ; 

The solvability checking is performed by removing the ambiguous and the incom- 
plete definitions of variables and equations as the array graph of a specification is 
constructed. 

4.3 Existence Requirement 

As discussed in Section 2.2.6, the existence requirement of variables is the most im- 
portant property that a MODEL specification must employ. To facilitate a user to 
comply with the requirement, the checking mechanism provides utilities that examine 
the consistent definitions/references of dimensions and their ranges. 



For each equation of the specification, the RHS expression, f (il, ..., in , j l ,  ..., jk, varl, ..., wark) 
in Figure 2.3, for instance, and its input variables, warl, ..., vark, have consistent defi- 
nitions of their dimensions. The LHS variable, x(il , .. . , in), has consistent definitions of 
dimensions with respect to the equation. The dimension propagation algorithm checks 
the consistent definitions of dimensions and their references through out the equations 
of a specification. The ranges of the dimensions are checked by the range propagation 
algorithms. As a result, the existence condition, namely, 3jl,  ..., j,, varl, ..., vark and 
3il, ..., in is checked. 

4.3.1 Dimension Propagation 

Since some subscripts may be omitted in an equation, it is necessary to check if the 
dimensionality of arrays referenced in equations is consistent with that of those arrays 
specified in the respective data declaration. A user does not have to specify the detailed 
dimensionality of every variable. The checking system completes the data declarations 
and the equations whose dimensionalities are not explicitly specified. 

The checking system propagates attributes of a node of an array graph to another 
via an edge that connects them. The attributes of an edge stored in the dictionary 
include the followings [LuS 1, GeS91: 

(1) source node of the edge. 

(2) its target node. 

(3) its type, i.e., hierarchical precedence, data dependency or parameter precedence. 

(4) difference of the source and the target nodes in their dimensionality (DIMDIF). 

( 5 )  its subscript expression list. 

(6) range set for each dimension. 

If two nodes are linked by an edge, the attributes of the nodes must be matched 
according to the attributes of the edge. 

An algorithm for the dimension propagation is described in [Lu81]. The dimen- 
sionality differences, D I M D I F ,  are set up for all the edges of the array graph. For 
the input file nodes, the dimensionality is 0. An intermediate node, n ,  (either a 
variable or an equation) has an initially declared number of denoting its dimension, 
D,. Suppose m source nodes, sl, ..., s,, are connected to the node, n, via the re- 
spective coming edges of dimension differences, DIMDIF,,  , ..., DIMDIFSm.  It may 
have k target nodes, t l ,  ..., tk, connected by k outgoing edges of dimension differences, 
DIMDIFt l  , ..., DIMDIFt , ,  as shown in Figure 4.1. The current dimensionality of 
a node, x,  is denoted by C,: the source nodes, sl, ..., s,, have the dimensionalities, 



Figure 4.1 : Dimension Propagation. 

Csl , ..., Cs, and the target nodes, t l ,  ..., t k ,  have the dimensionalities, Ctl , ..., Ctk. Then, 
the dimensionality of the node n is defined as follows: 

The algorithm computes C, for all nodes of the graph. If every node of the graph has 
a finite dimension, the algorithm converges [Lu81]. An infinite propagation cycle of 
the graph can be detected by the algorithm. Then, its nodes and edges are revealed so 
that a user can fix it. If the dimensionalities of the nodes and the edges are correctly 
defined, the output file node must have 0 dimensionality. 

Missing subscripts of the equations are filled up during the dimension propagation. 
A node subscript list is formulated for each variable node. Based on these lists, missing 
subscripts of equation nodes and missing subscript expressions of edges are filled up. 
The detailed procedure is described in [Lu81]. 

4.3.2 Range Propagat ion 

After the dimension propagation, the ranges of the dimensions are examined for all 
the nodes in the array graph. The basic strategy is to find and propagate the user 
specified ranges of the nodes to the rest of the nodes via the edges connecting them. 
The propagation aims: 



(1) to derive a range for a node subscript not having an explicit range. 

(2) to determine range sets each of which contains two node subscripts of the same 
range. 

(3) to check the consistent definitions and uses of the ranges. 

Definitions 

A node subscript is defined for a node of an array graph as follows: 

(1) < x, i >: a node subscript for an i-th (i is a positive integer) dimension of the 
node of the array variable, x. 

(2) < Eqn, I >: a node subscript for I (a subscript variable) with the equation node, 
E q n  - 

A range (or size) of a node subscript, < n, d >, is defined as R(< n, d >). 

User Specified Ranges 

A range is specified explicitly or implicitly for each node. It may be explicitly defined 
by: 

(1) a data declaration statement 

(2) a subscript declaration statement 

(3) the values of control variables ( S I Z E  or E N D )  

(4) the system default: the end-of-file or end-of-record marker ( E N D F I L E )  of an 
input sequential file 

Condition of the Propagation 

When two node subscripts of different nodes are related through some dependency 
relation and one of them does not have an explicit range specification, the range of the 
other node subscript is propagated through the edge denoting the dependency relation. 

If a subscript expression i - k, where i is a subscript and k is a positive integer, is 
used in an equation, a mapping exists between the values of elements indexed by i and 
i - k. It is assumed that the node indexed by i and the equation node indexed by i - k 
are in the same range set. 



Figure 4.2: Example of Range Propagation. 
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Prior i ty  of t h e  Propagat ion 

There may be many alternatives of range propagation. It is performed based on the 
following rules: 

(1) All the node subscripts with the same global subscripf are considered as a single 
group, i.e., a set of variables and statements in a single loop in a procedural 
language program. Thus the range of the global subscript is propagated with the 
top priority. 

(2) A data array node and its associated control variable such as END and SIZE 
must have the same range. The range of the control variable is required to be 
explicitly specified. The range is propagated from the control variable to its data 
array node with the second priority. 

(3) The range of an output node is propagated to its associated equation node with 
the second priority. 

(4) From an equation node to its associated input data node, the range can be 
propagated. It has the third priority. 

(5) The lowest priority is given to the range propagation from an input data node to 
its equation node. 

Consider a simple example illustrated in Figure 4.2. Two simple equations, Eq 1 
and Eq 2, of transferring values from an array to another are presented. The ranges 
of the arrays, a(sub1) and ~ ( s u b l ) ,  are given as 20 and 10, respectively. Note that 
the subscript, subl,  is not defined as a global subscript. Since the condition of the 
range propagation is satisfied, we can propagate the ranges to  determine the ranges of 
the node subscripts for Eq I ,  Eq 2 and b(sub1). We have the following alternatives: 
(a) propagate the range of the local subscript subl of a(sub1) to the equation node, 
Eq 1, to determine the value of R(<Eq 1, subl>) or (b) propagate the range of the 
subscript subl of the output node, c(subl) ,  backward to the equation node, Eq 2, to 
get the value of R(<Eq 2,subi>) .  According to the rules of the range propagation, 
the first alternative, (a), has the fourth priority and the second alternative, (b), has the 
second priority. Thus the value of R (<Eq 2,  subl>)  is defined as 10. Next, we have 
the following two alternatives: (a) and (c) propagate the value of R(<Eq 2 ,  subl>) 
to its input data node, b (subl)  . The alternative, (c), has higher priority. Therefore 
the value of R(<b, I>)  becomes 10. Finally, the following two alternatives remain: 
(a) and (d) propagate the range of the subscript, subl, for the output node, b(subl) ,  
to its equation node, R(<Eq 1 ,subl>) .  The second alternative, (d), has the second 
priority. It follows that R(<Eq 1, subi>) is equal to 10. 

3defined by either a subscript declaration statement or a control variable, FOR-EACH [Lu81, 
MOD891. 



Range Functions and Real Arguments 

A node subscript represents an iteration over its range by a loop control statement in 
a procedural program [Lu81]. An equation and a data node in an array graph may 
have multiple node subscripts and they represent a multi-level nested loop. In such a 
situation, the range of a node subscript can be a function of the other subscripts. For 
example, consider the following MODEL specification: 

a IS FIELD; 
b IS FIELD; 

The range of the third dimension, k, of the array variables, a( i , j , k) and b (i , j , k) , 
depends on the ranges of the first and the second dimensions, i and j, as Eq 2 defines. 
The specification is translated into the following code of a procedural language program 
[Lu8 11 : 

DO <a,l>; 
DO <a,2>; 

DO <a,3> = 1 TO SIZE.a(<a,l>,<a,2>); 
b(<a,l>,<a,2>,<a,3>) = a(<a,l>,<a,2>,<a,3>); 

END; 
END; 

END ; 

An n-dimensional mnge array, SIZE.x(il, ..., in), is regarded as a mnge function. 
The range function accepts integer arguments, il , ..., in, and computes the range of the 
n+l-th or higher dimension of the variable, x. Arguments of a range function are called 
real arguments, if they really contribute to determining the value of the function. An 
algorithm of finding real arguments of range functions is described in [Lu81]. 

It is required that the loops of an array are nested according to the sequence of the 
array dimensions. That is, the loops of a variable, x(il, ..., in) must be nested in the 
following way: 

DO <x,l>; 
DO <x,2>; 

... 
DO <x,n>; 

. . .  
END; 

. . . 
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It follows that a range function for a dimension, ik, 1 < k < n, does not affected by its 
lower dimensions for all i,, k < m 5 n. 

Range Propagation Algorithm 

There are three basic algorithms for the range propagation. The first algorithm locates 
the user specified ranges of node subscripts. As discussed before, the ranges are speci- 
fied by declaration statements (either data or subscript), the control variables such as 
END and SIZE or the system default (end-of-file or end-of-record). Secondly, the 
explicit range specifications are propagated. It requires the node subscripts to be parti- 
tioned into their corresponding range sets. Finally, the real argument list is formulated 
for the node subscripts in the same range set and is propagated. See [LuSl] for the 
details of the algorithms. 

4.4 Causal Chain 

A causal chain in the array graph of a specification is a path from its input nodes to 
the output nodes via the equations. A solution of the equations is computed along 



the causal chain. Therefore, a circular definition of variables, namely circular logic (or 
dependency), that cause an infinite computation, should not be on a causal chain. 

A maximally strongly connected component (MSCC) of an array graph could re- 
sult in circular logic. However, not all MSCC's form circular logic. The checking 
mechanism identifies and decomposes an MSCC by deleting edges that represent data 
dependencies assured by iteration statements [Lu81, SLPP841. Such edges of iteration 
can be determined by examining the subscript expression of the edges. If its subscript 
expression is in the form of sub - k, where k > 0 and sub denotes a subscript common 
to all MSCC nodes, the edge is determined to be representing iteration. 

For example, an MSCC can be found in Figure 4.3: a cycle formed by the edge 
labeled with i and the edge with i-I. In this particular example, sub = i and k = 1. 
Therefore, the edge with i- I is classified as one representing iteration. It follows that 
the MSCC does not have circular logic. Such an iteration solution method is recursively 
applied until all MSCC7s in the array graph are examined. 

A cycle that cannot be decomposed by the iteration solution method is reported as 
a possibly infinite loop. A user has to examine and remove such a cycle by decomposing 
it. If it is not possible, he may use a set of simultaneous equations that perform the 
same function of the cycle. In general, it is very complicated to remove an infinite loop 
from a program by static checking. We only deal with a specification that always has 
at least one causal chain of the equations. 

4.5 Termination 

Suppose we have an acyclic array graph without any cycle. Then a causal chain can 
be formulated. However, it does not mean that a solution of equations is obtained. 
To check the termination condition, the equations defining control variables such as 
E N D  and S I Z E  are examined for each causal chain. It aims to check the finiteness 
of the subscripts, namely, 1 5 il 5 SIZE;,, ..., 1 5 in 5 SIZEi, and 1 5 jl 5 
SIZEj,, ..., 1 5 j ,  5 SIZEj, of the existence condition in Section 2.2.6. The values 
of the S I Z E  variables (= the ranges of the subscripts), if computable, may be obtained 
during the range propagation. There may exist some constraints of defining the ranges 
that cannot be computed during the range propagation. Such constraints are discovered 
and checked during the termination checking. 

Note that the E N D  variable can define a minimum range of 1 because it must have 
at least one boolean value. However, the S I Z E  variable can have a minimum range 
of 0. The value of the E N D  variable can be infinite while the SIZE variable has a 
finite value. END.x(il, ..., in) may depend on the values of the array, x(il, ..., in). But 
SIZE.x(il, ..., in) must be computed before any element of x(il, ..., in) is used. 

The termination checking discovers an equation of defining the size of the array 
variables such as "END.x(il, ..., in) = ..." and "SIZE.x(i17 ..., in) = ..." for each causal 



chain of a specification. If there is no equation of such control variables, a warning 
message is issued so that a user examines the termination condition of a specification. 
Though such an equation is defined on a causal chain, it may not have an explicit finite 
value denoting the termination. In such a case, a warning message is also issued. 
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Figure 5.1: Extracting expertise from programs, converting it to rules, and accumulat- 
ing the rules into knowledge base. 



and a graphical user interface. Each MODEL equation is regarded a functional unit 
expressed as an equation node of an array graph that is used as a graphical user interface 
during the testing. A MODEL variable is denoted by a data node of the array graph. 
The data flows between the equation nodes and the data nodes are expressed by edges 
of the array graph. A human tester can examine inputs and outputs of an individual 
equation (called 1/0 testing) and/or a number of equations along the selected data 
flows (called path analysis) specified in the array graph. 

This section presents introductory descriptions of the proposed testing method in 
use of an expert system: The objectives of using an expert system for software testing 
are discussed. The advantages of the testing based on equational language programs 
(MODEL specifications) over procedural language programs are also presented. The 
procedure starts with the translation of a MODEL equation into a CLIPS rule using 
the CLIPS translator. This is also used for the knowledge base generation. Section 5.2 
explains the translator. The translation process is illustrated using the specification of 
the gcd example1 into CLIPS rules in Section 5.3. The interactive procedures of the 
1 / 0  testing and the path analysis are illustrated in Section 5.4. 

5.1.1 Objective of the Use of an Expert System 

We build a processor that directly executes MODEL equations so that the testing of 
the equations (a MODEL specification) is possible using such a processor. A data flow 
machine could be the processor, since it can be envisaged as an execution model of 
MODEL, as discussed in Chapter 2. Also an expert system could serve as a MODEL 
processor because an expert system rule can simulate an execution of a MODEL equa- 
tion. Recall Section 2.2.7 for details. We use an existing expert system called CLIPS 
[GR89] as a MODEL processor. With the MODEL processor, we can perform the 
software testing at a specification level. 

MODEL equations of a specification can be translated into expert system rules as 
will be shown in Section 5.1.2. The expert system executing the translated rules is 
able to compute the same outputs for the same input data as the MODEL equations 
do. Therefore the expert system can simulate functional behaviors of the MODEL 
specification as it executes the translated rules. It follows that a human tester can 
do the software testing oftthe specification using the expert system. As illustrated in 
Figure 5.2, a MODEL specification is translated into a set of expert system (CLIPS) 
rules by the CLIPS rule translator. Then the expert system fires the rules according to 
the requests from the user. He designates the equation(s) which he wants to evaluate 
and enters the values of the associated input variables. Then the system computes the 
output(s) of the tested equation(s) by executing the corresponding rule(s) translated 
from the equation(s). It is usually assumed that he know the desired output values 
from the given input data set during the software testing [RW85, How871. The inter- 
action between the user and the system is performed through the array graph of the 

lpresented in Section 2.4 of Chapter 2 
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specification via the graphical user interface. The user types the test input values using 
a keyboard and a mouse. The values of the computed output variables are displayed 
through the graphical user interface. CLIPS is also able to "explain" how to compute 
the outputs according to the test inputs. The textual and the graphical results of 
the testing are stored as test reports in the data base (the repository of the software 
developing environment). 

As discussed in Chapter 3, an array graph of a MODEL specification is visualized 
and serves as a graphical user interface of the software developing environment. It is 
also used as a graphical user interface for the testing. We claim that the interaction 
between the user and the environment is enhanced. Also, it is possible to produce both 
the textual and the graphical forms of the test reports. The textual form includes test 
input data sets and their generated output values. The coverage of each test data set 
for either a part of or a whole specification is marked on the displayed array graph. 

5.1.2 Similarity between a MODEL equation and a CLIPS 
rule 

How an expert system rule can simulate a MODEL equation? As an example, consider 
the following equation, Eq 1 in Figure 2.4, Chapter 2: 

E q  1: yl(i) = IF i=1 THEN IF x1 > x2 THEN xi ELSE x2 
ELSE I F  yl(i-1) > y2(i-1) THEN yl(i-1) - y2(i-1) 

ELSE y1 (i-1) ; 

The equation accepts the input values of variables, x l ,  22, y l  (i) and y2(i), where 1 5 
i < SIZE.yl  and computes the values of yl(i) for 1 5 i 5 SIZE.yl.  As discussed in 
Chapter 2, the existence condition of Eq 1 must be: 

Vi, 1 < i < SIZE.yl,  (3xl1x213y1(i - 1)) y2(i - 1)) 

It means that the values of x l  and 22 OR y 1 (i - 1) and y2(i - 1) must be available when 
the value of yl( i )  is determined by the equation, Eq 1. The existence condition can be 
satisfied either 3xl,x2 or 3yl (i - 1)) y2(i - 1) not both. It is because the first elements 
of the array variables, yl(1) and y2(1), are initialized by x l  and x2, respectively, and 
the rest elements of the arrays, yl(i),y2(i), for 2 < i < SIZE.yl ,  are computed from 
their "ancestor" elements, yl  (i - 1) and y2(i - 1). Scheduler of the MODEL compiler 
is able to detect such data dependency by examining array graphs [Lu81, MOD891. It 
can statically decompose such a complex equation into the following simple equations: 

E q  1-1: yl(1) = IF x1 > x2 THEN x1 ELSE x2; 
E q  1-2: yl(i) = IF yl(i-1) > y2(i-1) THEN yl(i-1) - y2(i-I) 

ELSE y1 (i-1) ; 



~q 1-1 is similar to an initialization statement of an iteration block while Eq 1-2 can 
be regarded as a body of the iteration block. Then the existence conditions for Eq 1-1 
is 3x1, x2. On the other hand, the equation, Eq 1-2, has the existence condition such 
that Vi,2 5 i 5 SIZE.yl,  3yl(i - I), y2(i - 1). 

We translate a MODEL equation into a CLIPS rule that performs the same function 
as the equation does. A CLIPS rule, in general, has two components: preconditions 
and actions, Whenever the preconditions of the rule are satisfied, the actions are 
executed. The CLIPS expert system maintains a list of facts stored in its knowledge 
base, called fact-list in CLIPS. The satisfiability of the preconditions is tested through 
pattern matching [GR89]. We propose that the existence conditions of a MODEL 
equation are translated into preconditions of a CLIPS rule; The body of the equation 
is denoted by the actions of a CLIPS rule; Every element of array variables in MODEL 
is represented by a CLIPS fact in the fact-list; A MODEL subscript is expressed as a 
variable in CLIPS. 

A set of MODEL equations are translated into a collection of CLIPS rules. Input 
values of the equations are provided as facts for CLIPS. Then, the expert system 
performs the pattern matching with the patterns specified in the precondition part 
and the facts (the input values for the equations) stored in the fact-list. It checks if 
the facts of such patterns are in the fact-list (if the required inputs are available). If 
so, the values of the variables specified in the precondition part are obtained from the 
facts. It follows that the rules, whose preconditions are satisfied, are invoked. A set of 
new facts (the outputs of the equations) are generated and the fact-list is updated. 

A CLIPS rule, ru l e l ,  which will be shown to be equivalent to the equation, Eq 
1-1, is defined as follows: 

(defrule rule1 ; f o r  Eq 1-1 
; "preconditions" 

(x i  ?XI) ; get  i n i t i a l  values of XI  and x2 
(x2 ?x2) 
=> 

. I (  act  ions ' 
(if (> ?XI ?x2) then 

(assert  ( y l  1 ?XI))  
e l s e  

(assert  (y1 1 ?x2))) )  

The variables, x l  and 22, are represented as CLIPS facts, ( x i  x i -0)  and (x2 x2-0) 
in Figure 5.3-(b), where x i  and x2 are relation names of the facts and xi-0 and x2-0 
are their values. The CLIPS variables denote the values of the input variables of the 
equation, x1 and x2. The existence conditions of the equation, 3xl,x2, are encoded as 
the preconditions of the rule. The body of the equation is translated into the actions of 
the rule. As shown in Figure 5.3, ru l e l  defines a new fact, (y1 I y i - I ) ,  where y1-1 
is a value computed by the actions of the rule, from the input facts, ( x i  xi-0) and 



(a) execution of MODEL equations 

FACT-LIST RULES 

(b) execution (pattern matching) of CLIPS rules 

Figure 5.3: MODEL equations and their translation into CLIPS rules. 

(x2 x2-0). It is equivalent to the computation such that the equation, Eq 1-1 defines 
the value of yl(1) from x l  and 22. For example, the equation computes yl(1) = 65 
if x l  = 26 and 22 = 65. The execution can be simulated by CLIPS as follows: The 
input values are provided by commands, ( a s s e r t  (x i  26) ) and ( a s s e r t  (x i  65) ) . 
The satisfiability of the preconditions is checked through the pattern matching and 
the CLIPS variables, ?xl  and ?x2, get the values, 26 and 65, respectively. Since the 
preconditions are satisfied, the actions are executed. In this particular example, CLIPS 
command, ( a s s e r t  (y l  1 ?x2)), is invoked. Since x2 is asserted as 65, a new fact, 
(y i  1 65), is formulated and stored in the fact-list, as shown in Figure 5.3-(b). 

Eq 1-2 is translated into the following rule, ru le2:  

( d e f r u l e r u l e 2  ; f o r E q 1 - 2  
(end-y1 =(- ? i  1)  ?val&:(not ?val ) )  ; check i f  END.yl(i-1) is  f a l s e  

; ?va l  denotes t h e  t r u t h  value  of END.yl(i-I) 
; i f  ?va l  is TRUE, r u l e2  is not  executed. 

(y l  =(- ? i  I )&(>  ? i  1)  ?y l )  ; y l  ex i s tence  condi t ion,  namely, 
; t h e  value of y l ( i -1 )  e x i s t s  and 
; t h e  subscr ip t  i i s  g r e a t e r  than  1. 

(y2 =(- ? i  I)&(> ? i  1) ?y2) ; y2 ex i s tence  condi t ion,  namely, 
; t h e  value of y2(i-1) e x i s t s  and 
; t h e  subscr ip t  i is  g r e a t e r  than  1. 

=> 



( i f  (> ? y l  ?y2) t h e n  
( a s s e r t  ( y l  ? i  =(- ? y l  ?y2)) )  
e l s e  
(assert ( y l  ?i ? y l )  1) 

The array variables, yl(i) and y2(i), of the equation are represented by multiple argu- 
ment facts like ( y i  i y i - i )  and (y2 i y2- i ) ,  1 5 i 5 n, as shown in Figure 5.3-(b). 
y i  and y2 denote relation names of the facts. The first argument, i, represents the 
subscript of the array variables (the index of the facts). The second arguments, y i - i  
and y2-i ,  denote the values of the elements of the array variables, yl(i) and y2(i), 
respectively. The existence conditions of Eq 1-2 contains Vi, 2 5 i 5 SIZE.yl .  Note 
that we determine the value of SIZE.y l  using the control variable, END.yl,  such 
that Vi, 1 5 i < SIZE.y l ,  END.yl(i) = false and END.yl(SIZE.yl)  = true. Pre- 
condition, (end-yl = (- ? i  1) ?val& : (not  ? v a l )  ) , checks the existence condition. 
It tests if there is a fact named end-yi, if the first argument of the fact is equivalent 
to the value of =(- ? i  i), and if its second argument, ?va l ,  such that (no t  ? v a l )  
is true, exists. When ? v a l  is false, the pattern matching succeeds because it makes 
(no t  ? v a l )  true. That is, it checks if END.yl( i  - 1) = false. (y1 = (- ?i 1)  &(> ? i  
I )  ? y l )  means that there must exist yl(i  - 1) such that i is greater than 1. If so, the 
expert system assigns a value to the variable, ?y1. Similarly, (y2 = (- ? i  I ) & ( >  ? i  
1 )  ?y2) checks the existence condition of 3y2(i - 1). The actions of the rule represent 
the consequence of executing the equation. New facts, ( y i  2  ? y i )  , . . . , ( y i  n ? y l ) ,  
where n = S I Z E .  y 1, are generated by the rule and they represent the elements of the 
array variable, y 1(2), .. ., y 1 (n) . 

We can find the following similarities of the two systems: 

(1) The variables of the equation can be represented by the facts of the expert system: 
The value of a MODEL variable cannot be changed after it is "assigned" (using 
"=" ) by an equation. Similarly, the fact of the expert system cannot be modified 
either once it is "asserted" (using the a s s e r t  command) by a rule. 

(2) The existence condition of the equation can be regarded as the preconditions 
of the rule: The equation is fired only when all of its inputs are available (the 
existence condition is true). Similarly, the rule is executed only when all of the 
preconditions, which check the existence of facts denoting the MODEL input 
variables, are satisfied. 

(3) The consequences of executing the equation can be simulated by the actions of 
the rule: The assertion of new facts in the expert system is equivalent to the 
assignment of values to the outputs in MODEL. 

It concludes that the execution of a MODEL equation is similar to the execution of 
a rule in the expert system, CLIPS. Therefore, an array graph for a MODEL specifi- 
cation can be translated into the sequence of pattern matching scheduled by the Rete 
algorithm [For82, GR891. In many rule-based expert systems, the Rete algorithm is 



(a) Data flow testing in procedural programs. (b) Testing of an equation node and its data nodes 

Figure 5.4: Data Flow Analysis 

used in scheduling efficient pattern matching in a large collection of rules and facts. 
Normally, the fact-list of expert systems are modified during each cycle of the pat- 
tern matching process [GR89]. And the changes of the fact-list during each cycle are 
typically small percentage of the whole fact-list. Therefore we can reduce unnecessary 
computations of searching for facts by having the new or updated facts search for rules 
instead of having rules search for the whole facts in the fact-list. The details of the 
algorithm is described in [For82, GR891. 

5.1.3 Procedural versus Equational Testing 

Traditional software testing methods of procedural program codes are based on program- 
path analysis [DLS78, DMMP87, How87, Ham88, BeiSO]. It checks the changes of the 
values of program variables (= states) along the control flows of program (= program- 
~ a t h s ) .  The basic idea is to execute paths of a program as a part of testing it. 

One such approach is called data flow testing. It aims to test the consequences of 
each and every computation using the produced values [RW85, BeigO]. As illustrated in 
Figure 5.4-(a), the data flow testing focuses on definition of variables and their uses. For 
example, the value of the variable, x, could be determined by the multiple statements, 
x=gl (yl) , x=g2 (y2) and x=g3 (y3), as shown in the definitionluse graph [RW85] of 
Figure 5.4. We must invent a test data set that covers all paths, pa th l ,  path2 and 
pat h3, between the definitions of the values for x and their use, f (x) , in the data flow 



testing [RW85]. Similarly, variable, y, that is defined by the statement, y=f (x) ,  can be 
used by multiple statements, z=g4 (y) and w=g5 (y) as shown in Figure 5.4-(a). The 
paths must be covered by the test data. In contrast, there is only one equation that 
determines the value of the variable, x, in an equational language program. Figure 5.4- 
(b) illustrates the characteristic of equational languages such as MODEL. Since a single 
equation uniquely defines the value of a MODEL variable and a MODEL equation is 
executed only when all of its inputs are available, we only check the paths between the 
equation, y = f (x), its input variable nodes, x, and its output node, y. 

The analysis on an equational language program is less complicated than that on 
a procedural language program: The number of paths to be analyzed must be smaller. 
When the testing is performed via a graphical representation and the results are re- 
ported in graphics, the equational testing offers simpler diagrams than the procedural 
testing does. 

5.2 Translation 

A MODEL variable is represented by a CLIPS fact: A subscript and a scalar are 
expressed by single argument facts. An array is denoted by a multiple argument 
fact. A MODEL equation is translated into CLIPS rule(s) depending on its existence 
conditions. The procedure of the translation is described in this section. An example 
of translation will be given in the next section. 

The translation is performed in the following steps: 

(1) Data declaration is translated: A subscript and a scalar variable are translated 
into single argument facts. A multi-dimensional array is converted to a multiple 
argument fact. 

(2) The existence conditions of each equation are examined. Depending on the struc- 
ture of the existence conditions, an equation may have to be decomposed. The 
scheduler of the MODEL compiler can statically decompose such a complex equa- 
tion into simple ones each of which can be represented by a single CLIPS rule. 

(3) The existence conditions of each equation are translated into the preconditions 
of the corresponding rule. 

(4) The equation body of each equation is translated into the actions of the corre- 
sponding rule. 

A MODEL variable is stored as a CLIPS fact. A scalar variable, x l ,  is represented 
by a CLIPS fact. Thus, a MODEL equation such as x i  = 26; is translated into 
an assertion of a new fact, (asser t  (xi 26)) .  On the other hand, the value can 
retrieved by the following command, (XI ?xi) ,  where x l  is the relation name and 
?xi  is a variable. Through the pattern matching between the asserted fact, (xi  26) 



and the command, (XI ?XI) ,  the variable has the value, 26. A subscript variable is 
also denoted by a single argument fact. An element of an n-dimensional array such as 
w ( i l ,  i2, ..., in), where il, i2, ..., in are subscripts, is expressed as a CLIPS fact such 
as (w il i2 . . . in val) ,  where val  is the value of the element. Its definition and 
retrieval are as same as those of the scalar variable. 

A MODEL function is translated into a CLIPS function using the deffunction 
command. 

A MODEL equation consists of two parts: the implicit existence condition and the 
equation body. The existence condition is translated into the preconditions of a CLIPS 
rule. The equation body becomes the actions of the rule. 

5.3 Example 

The equations of the gcd example shown in Figure 2.4, Chapter 2, are translated into 
CLIPS rules to illustrate the translation procedure. 

As illustrated in Section 5.1.2, equation, Eq 1, has to be decomposed into two 
simple ones, Eq 1-1 and Eq 1-2, due to its complex existence condition. The simple 
equations are translated into CLIPS rules, rule1 and rule2, respectively. Similarly, 
equation, Eq 2: 

Eq  2: y2(i)  = IF i=l THEN IF x i  > x2 THEN x2 ELSE x i  
ELSE I F  yl(i-1) > y2(i-I) THEN y2(i-I)  

ELSE y2(i-1) - y l ( i - I ) ;  

should also be decomposed into the following two simple equations: 

Eq  2-1: y2(1) = I F  x i  > x2 THEN x2 ELSE x1; 
Eq 2-2: y2(i)  = IF yl( i -1)  > y2(i-1) THEN y2(i-1) 

ELSE y2(i-I)  - y l ( i - I ) ;  

The existence conditions for Eq 2-1 is 3x1, $2. The equation is translated into the 
following rule: 

(def r u l e  rule3 ; f o r  Eq 2-1 
(xl  ?XI)  ; get  i n i t i a l  values of x1 and x2 
(x2 ?x2) 
=> 
( i f  (> ?XI ?x2) then 

(asser t  (y2 1 ?x2)) 
else 

(asser t  (y2 I ?XI ) ) ) )  



The equation, Eq 2-2, has the following existence condition: 

The rules are translated into the following rules: 

(def r u l e  ru l e4  ; f o r  Eq 2-2 
(end-y1 =(- ? i  1)  ?val&:(not ?va l ) )  ; check i f  END.yl(i-1) is f a l s e  

; ?val  denotes t h e  t r u t h  value of END.yl(i-1) 
; if ?va l  i s  TRUE, ru l e2  is  not executed. 

(y1 =(- ? i  I )&(> ? i  1) ?y1) ; y l  exis tence condi t ion,  namely, 
; t h e  value of y l ( i -1 )  e x i s t s  and 
; t h e  subscr ip t  i is greater than  1. 

(y2 =(- ?i I )&(>  ? i  1) ?y2) ; y2 exis tence condi t ion,  namely, 
; t h e  value of y2(i-1) e x i s t s  and 
; t h e  subscr ip t  i is g r e a t e r  than  I. 

=> 
( i f  (> ?y1 ?y2) then 

( a s se r t  (y2 ?i ?y2)) 
e l s e  
( a s se r t  (y2 ? i  =(- ?y2 ?y i ) )  1)) 

Those four rules, r u l e 1  to rule4,  compu.te the facts, Vi, 1 < i < SIZE.yl ,  (y l  i 
y l - i )  , (y2 i y2-i), where y l - i  and y2-i represent the values of y l  (i) and y2 ( i )  , 
respectively. 

The equation, Eq 3: 

becomes the following rule: 

(def ru le  ru l e5  
(y l  ? i  ?y1) ; y i  exis tence condit ion 
(y2 ? i  ?y2) ; y2 exis tence condit ion 
=> 
( a s s e r t  (end-y1 ?i =(= ?y1 ?y2))) )  

The multiple argument fact, end-yl), contains boolean values in its second argu- 
ment. The boolean value is determined by evaluating expression, = (= ?y 1 ?y2). The 
expression returns true if the values of ?y1 and ?y2, which represent the MODEL 
variables, y l(i) and y2(i), respectively, are same. Otherwise, it returns false. The 
first argument, ? i ,  is an index of the fact which is in fact a subscript of a MODEL 
variable, E N D - y l .  Since y l ( i )  # y2(i) for all i, 1 5 i 5 SIZE.y l ,  the fact looks 



like as follows: (end-yl 1 f a l s e )  , (end-yl 2 f a l s e )  , . . . , (end-yl SIZE. y1 - I 
f a l s e ) ,  (end-yl SIZE.yl true).  

Finally, the equation, Eq 4: 

Eq 4: z = I F  ( ~ ~ ~ . y l ( i ) )  THEN y l ( i ) ;  

becomes the following rule: 

(defrule rule6 
( y l  ? i  ?y l )  ; y l  existence condition 
(end-y1 ? i  ?end-y1) ; end-yl existence condition 
=> 
(if (?end-yl) then 

(assert  (z ?y l ) )  1) 

5.4 Interactive I/O Testing and Path Analysis 

The basic notion of the software testing is to execute a MODEL specification with 
a test input data set and analyze the results. The default method of the testing is 
such a testing of the whole specification. A human tester, however, may want to 
test individual equation (110 testing) or a set of equations along data flows (path 
analysis). In that case, he may set the testing mode as either "I/O TESTING" or 
"PATH ANALYSIS" using a pull-down menu. During the 110 testing of an individual 
equation, he designates the equation being tested and supply inputs for it. For the 
path analysis, he chooses a set of equations on some data paths to be tested. Then a 
selected test input data set is provided for the analysis. 

It is required that the expert system, CLIPS, activates all rules and facts for the 
specification before the testing. A human tester must choose a test input data set that 
can cover all or the part of the MODEL specification being tested. It is assumed that 
the desired output values according to the inputs are known. Thus the teser can decide 
whether or not the specification works as desired by reviewing the outputs from the 
given test inputs. 

The interaction is performed through the array graph of the specification via the 
graphical user interface. That is, test input data are provided via the input data nodes 
of the displayed array graph and the outputs are shown through the output data nodes 
of the graph. 

Suppose a human tester has a test input set, z l  = 26 and 22 = 65, for the gcd 
test program of Figure 2.4, Chapter 2. He would clicks the nodes of x l  and $2 using 
a mouse and supplies the inputs, 26 and 65, via the displayed array graph. They are 
automatically converted by the system as CLIPS assertions such as (assert  ( x i  26) ) 
and (assert (x2 65) ) . Then the tester initiates the testing operation. The expert 



(a) Testing the specification. (b) Testing Eq 2. 

Figure 5.5: Testing via array graphs: T and F represent the truth symbols, TRUE 
and FALSE, respectively. 



system, then, invokes the rules and generates the temporal and final outputs via the 
array graph. Figure 5.5- (a) shows the results of the testing. 

He may want to  perform the 1 / 0  testing of an individual equation, Eq 2 of Figure 
2.4, Chapter 2 is performed as illustrated in Figure 5.5-(b): 

(1) The human tester sets the mode of the testing as "I/O TESTING". 

(2) The human tester clicks the equation node, Eq 2, on the displayed array graph 
using a mouse. It means he wants to test the equation. Then, the expert system 
recognizes its input and output nodes. 

(3) The input nodes, XI and x2, are shaded by the expert system to denote the status 
that their input values are needed for the testing. 

(4) The user provides test input values for the equation. 

(5) The values of the local subscript of the equation (number of test execution of 
the equation) may be specified by the tester. He positions the cursor next to the 
subscript and enters a value. Otherwise, the system executes the equation until 
it terminates. 

(6) The expert system executes the specification by firing the rules. The edges (= 
paths) of the array graph that were visited during the execution are marked to 
denote the coverage of the testing with the input data. 

(7) The output values must be printed vis the output data node as shown in Figure 
5.5-(b). 

In this particular example, the testing stops after the system outputs 26 for y2(1). 
Notice that the equation, Eq 2, is in fact translated into two rules, ru l e3  for Eq 2-1 
and ru le4  for Eq 2-2. Since the precondition of ru l e3  holds, the value of y2 (I) can be 
computed immediately. It follows that the new fact, (y2 1 26) is asserted. However, 
the expert system cannot proceed because the value of y i ( i )  is not defined, i.e. the 
part of the precondition of rule4,  (yi  ?i ?yi) ,  is not satisfied. Thus the system 
notifies that there is data dependency between Eq 1 and Eq 2 and stops the testing as 
shown in Figure 5.5-(b). 

The human tester can also perform the path analysis by selecting multiple equation 
nodes along data paths that he wants to evaluate. The nodes must form a causal 
path (or chain). Since the causal chain has its inputs, computation on them and the 
corresponding outputs, the procedure of the path analysis is similar to that of the 1/0 
testing. The tester may select the equations that make a causal path. The system 
recognizes the inputs and the output of the causal path. The user provides the input 
values to evaluate the path. Then the system executes the selected equation and the 
results are computed. The data and the equation nodes are shaded as they are tested. 
The edges on the causal path are marked. 



The path analysis aims to examine not only the outputs of the causal path but 
also the execution sequences and the data type transformations. To accomplish such 
objectives, the expert system must be able to do symbolic processing. It requires more 
rules of manipulating variables and equations of a MODEL specification. We leave it 
as a future research project and concentrate on the evaluation of MODEL equations 
using CLIPS rules. 

Since the coverage of the test data set used in the path analysis is important, the 
analyzed causal path of the array graph is marked by "high-lightening" with a different 
color or by thicker lines as shown in Figure 5.5. The marked graph will become a 
graphical representation of the test report. 

The results of the testing are documented. For the I/O testing, test inputs and their 
corresponding output are reported for each equation that is tested. The graphical form 
of the report for the path analysis includes the textual report of testing results and the 
array graphs each of which specifies the analyzed causal path. 



Chapter 6 

INTERACTIVE 
HETEROGENEOUS 
REASONING FOR PROGRAM 
VERIFICATION 

6.1 Introduction 

The formal verification method allows us to prove the reliability of programs with a high 
degree of confidence in the sense that it actually constructs mathematical proofs [Dij81]. 
On the other hand, it has been argued that the methodology has not been successfully 
applied to the real world programs due to the following reasons [Bro87, Dengl]: 

(1) A human tester of programs, who actually performs the formal verification of 
the programs, is required to be highly trained in both mathematics and software 
engineering. 

(2) Most real world programs are not "mathematic-prone" (easy to model and con- 
struct mathematical proofs). The formal verification has not been very successful 
for such programs. 

(3) Due to the complexity of the formal method, a large-scale system cannot be 
efficiently verified. 

We propose to solve those problems by writing formal specifications in an equational 
language and adopting software tools of supporting the verification of the specifications. 
First, we deal with formal specifications written in an equational language, MODEL. 
We can mechanically translated the MODEL specifications into their equivalent codes 
in procedural programming languages such as Ada and C [Lu81, PLGS88, PGLSSO]. 
Since a MODEL specification consists of a set of equations and only basic algebraic 



manipulation techniques are needed in verifying its correctness as discussed in Chapter 
2, the human tester may not need to be a highly trained logician. Secondly, MODEL 
equations are powerful enough to describe any real world programs. It is capable 
of declaring and managing complex data structures such as multi-dimensional arrays 
and structured variables [MOD89]. At the same time, we can view them as a set of 
algebraic expressions that uniquely define the values of MODEL variables. Thus the 
proposed verification system is capable of verifying programs in the real world. Finally, 
the proposed system performs not only program verification but also software testing 
as discussed in Chapter 5. For a large-scale program, the software testing is mainly 
performed and the security-critical part of the program is verified using the formal 
verification method. Also, the MODEL compiler provides a method of static checking 
[Lu81, PP83, SLPP84, SP881 on the specification as discussed in Chapter 4. Thus the 
different software tools complementarily work together. 

The proposed system uses both the graphical (array graphs) and the textual rep- 
resentations (equations) of the specifications during the verification. The array graphs 
serve as a graphical user interface of the verification system. An equational reasoning 
system (called symbolic manipulator) based on the equivalence laws and the inference 
rules proposed in Chapter 2 is a work-horse of the verification system. 

Heterogeneous reasoning is defined as a process of reasoning where valid inference 
proceed from information represented in more than one form [BESOa, BESOb]. The 
importance of the heterogeneous reasoning in general is argued in [BESOb] and its the- 
oretical framework is introduced in [BESOa] . We view inference as information extrac- 
tion. That is, inference is a process of deriving implicit information from a given set of 
explicit information. Note that information can be expressed in multiple formats such 
as natural languages, formal languages, graphs, diagrams etc. As argued in [BESOb], 
such information in various formats are very useful in valid reasoning by human be- 
ings. Thus we propose to utilize such capability in program verification. Fortunately, 
we have a tool for representing information in various ways such as graphics and texts, 
namely a computer. For the heterogeneous reasoning for MODEL specification, an 
array graph serves as a graphical representation for easy perception of the specification 
and MODEL equations provides more abstract information. As a result, the proposed 
system is an interactive inference engine based on the heterogeneous reasoning on array 
graphs and equations. It is called the interactive heterogeneous reasoning system. 

The methodology of the interactive heterogeneous reasoning is described in Section 
6.2. It includes assumptions for the verification system and the protocol of the reasoning 
using the system. The sample specification of the gcd problem is used in demonstrating 
how the system works. It is illustrated in Section 6.3. 



I PROMPTING 1 
I CHECKING I 
I TESTING I 

I GENERATION ( 
I ASSERTION I 
I CASES I 
I SUBSTITUTION I 
I TRANSITIVITY I 
I INDUCTION I 

Figure 6.1: Extended pull-down menu for VERIFICATION. 

6.2 Interactive Heterogeneous Reasoning 

In the interactive heterogeneous reasoning for verifying a MODEL specification, the 
followings are assumed: 

(1) We only deal with a MODEL specification that terminates. Every equation in the 
specification must terminate. Every variable of each equation must be defined. 
Thus the symbolic manipulator can algebraically simplify MODEL variables and 
expressions based on the equivalence laws and the inference rules discussed in 
Chapter 2. 

(2) A human tester must be able to set up his "plan" to prove the properties of the 
MODEL specification. The properties to be proven are specified as proof goals 
and subgoals. 

(3) An array graph (used as a graphical user interface) is displayed on the array 
graph window while a set of equations (a MODEL specification being analyzed) 
is presented on the text window. The human tester can understand and inter- 
actively verify the proof goals and the subgoals set up for the specification via 
the graphical user interface. He uses the symbolic manipulator for simplifying 
algebraic expressions. 

The interactive heterogeneous reasoning system offers a set of operations for the 
verification of MODEL specifications. Each operation can be invoked by selecting it 
using a pull-down menu. It is shown in Figure 6.1. 



The operation of "GENERATION" aims to find an algebraically simplified expres- 
sion (with respect to the algebraic laws in Chapter 2) for a designated output variable 
in terms of designated input variables. A human tester is responsible for designating 
the variables properly. The symbolic manipulator generates an equation for the out- 
put variable in terms of the designated input variables. That is, the output variable 
becomes the LHS variable of the generated equation while the RHS expression of the 
generated equation is a function of the input variables. If the symbolic manipulator 
always derives satisfiable equations from the given set of equations (it is sound), we can 
use the generated equations as proven assertions (or theorems) for further reasoning. 
The human tester can initiate the "ASSERTION" operation from the pull-down menu 
and makes the derived equation be a valid assertion. 

When a conditional expression is evaluated, it is necessary to break the expres- 
sion into cases. The "CASES" operation enables the tester to separate the reasoning 
procedure according to different cases. 

As discussed in Chapter 2, the symbolic manipulator utilizes three inference rules: 
substitution, transitivity and induction. The human tester dictates what rule must be 
applied during the interactive heterogeneous reasoning. It is performed by selecting 
the operations from the pull-down menu and picking up expressions to be manipulated 
by the designated rule. If the tester chooses the "SUBSTITUTION" operation from 
the menu in Figure 6.1, he means to replace some variables by their corresponding 
expressions. Next, he points the variable that he wants to replace using a mouse. He 
also chooses an expression to be substitute for the variable. The expression might be 
either the generated one or the one directly from the equations of the specification. 
The "TRANSITIVITY" operation needs two equations which share one variable or 
an expression. As an output of the operation, a new equation is formulated. Finally, 
the tester can construct an inductive proof for a theorem using the "INDUCTION" 
operation. He supplies a base case and an induction step to get a theorem proven by 
the symbolic manipulator. 

6.3 Example 

The protocol of the interactive heterogeneous reasoning is illustrated using the example 
of computing a gcd of two integers presented in Figure 2.4, Chapter 2. As assumed 
before, the following proof goals and their subgoals are given: 

Goal I. z = gcd(xl,x2) 

Subgoal 1. gcd(x1, x2) = gcd(yl(l), y2(1)) 

Subgoal 2. gcd(yl(i),y2(i)) = gcd(yl(i - I), y2(i - 1)) 

Subgoal 3. z = gcd(yl(SIZE.yl), y2(SIZE.yl)) 

Goal 11. SIZE.91 < finite-val 



Subgoal 1. max(yl(i - I) ,  y2(i - 1)) - max(yl(i), y2(i)) 2 1 

Subgoal 2. SIZE.yl < max(xl,x2) 

A human tester may have the following plan to prove Subgoal 1: 

P-1. Express the first elements of the array variables, y l ( 1 )  and y2(1), in terms of the 
input variables, x l  and 22. 

P-2. Derive the LHS expression, gcd(x1, x2), from the RHS expression, gcd(yl(l), y2(1)). 

P-3. Conclude gcd(xl7x2) = gcd(yl(l), y2(1)). 

The first step, P-1, can be achieved by the "GENERATION" operation. The 
operation is selected first from the pull-down menu illustrated in Figure 6.1. Then, 
the human tester chooses a target variable, which becomes the LHS variable of the 
generated equation, from the displayed array graph using a mouse. In this particular 
example, the variable, yl(l) ,  is selected first. By reviewing the displayed array graph 
and the equations, the human tester can figure that the value of yl(1) must be defined 
by the equation, Eq I, and its inputs must be x l  and 22. So he designates its source 
variables, x l  and 22. Those variables are marked in the displayed array graph. The 
system then invokes the symbolic manipulator. Thus, the simplified equation, yl(1) = 
IF x1 > 22 THEN xl  ELSE 22, is produced through the text window. It ends one 
cycle of the operation. 

Since the derived expression is conditional and not fully simplified, the tester breaks 
it into two cases using the "CASES" operation: x l  > 22 and x l  5 22. The symbolic 
manipulator then evaluates the expression and derives equations, yl(1) = x l  and 
yl(1) = 22, respectively, as shown in Figure 6.2. 

To get an expression for y2(1) in terms of x l  and x2, the "GENERATION" opera- 
tion is invoked again. The human tester marks the variable, y2(1), as a target variable. 
The input variables, x l  and 22, are chosen. The symbolic manipulator works. The 
equation, y2(1) = IF xl  > $2 THEN 22 ELSE xl ,  is produced as an output on the 
text window. Like the case for yl(l) ,  the "CASES" operation is needed as illustrated 
in Figure 6.2. 

The generated equations can be new assertions (or theorems) for the program 
verification. The tester may want to modify them into simpler form. He simplifies 
the results from the "GENERATION" operation and stipulates them as new asser- 
tions. It is performed by the "ASSERTION'7 operation. As shown in Figure 6.3, 
yl(1) = xl ,  y2(1) = 22 when x l  > 22 and y l ( 1 )  = 22, y2(1) = x1 when x l  < x2. They 
are stored in the knowledge base of the symbolic manipulator, where other equations 
are also contained. 

The second step, P-2, is performed through the "SUBSTITUTION" operation and 
the "CASES" operation. Since variables yl(1) and y2(1) have different values ac- 
cording to the values of x l  and x2, Subgoal 1 must be proven for the different two 





C 

ARRAY GRAPH WINDOW TEXT WINDOW 

Eql: yl(i)= IF i = 1 THEN IF xl>x2 
THEN xl ELSE x2 

ELSE IF y 1 (i- l)>y2(i- 1) 
THEN y 1 (i- 1)-y2(i- 1) 
ELSE y l(i-1) 

Eq2: y2(i)= IF i= 1 THEN IF x l>x2 
THEN x2 ELSE x 1 

ELSE IF y 1 (i- l)>y2(i-1) 
THEN y2(i- 1) 
ELSE y2(i- 1)-y l(i- 1) 

Eq3: END.yl(i)= (y l(i) = y2(i)) 

Eq4: z= IF END. y 1 (i) THEN y 1 (i) 

GOAL I. z = gcd(x1 ,x2) 

SUBGOA L I. gcd(xr,x2)=gcd(yl(l)~2(1)) 

GENERATION 

y l(1) = IF xl>x2 THEN xl ELSE x2 

CASExl>x2: yl( l )=xl  
CASE xI<=x2: yl(1) = x2 

y2(1) = IF xl>x2 THEN x2 ELSE xl 

CASE x 1>x2: y2(1) = x2 

CASE xl<=x2: y2(1) = xl 

Figure 6.2: Generation. 



TEXT WINDOW 
GOAL I. z = gcd(xl,x2) 
SUBGOA L 1. gcd(x1 j 2 )  = gcd(yZ (l),y2(1)) 

GENERATION 
ASSERTION: 

CASE xl>x2: yl(1) = xl ,  y2(1) = x2 
CASE xl<=x2: yl(1) = x2, y2(1) = x l  

SUBSTITUTION 

CASE xl>x2: 
.............. 

g c d ( m  ,y2(1)) = gcd(nl ,y2(1)) 

............................ 
g ~ d ( ~ 1 ,  ) = gcd(xl,x2) 

CASE xl<=x2: 
.__......... ..,..: 

g c d ( m  ,y2(1)) = g'.&2,y2(1)) 
. . .  

................... ....................... 
g7(x2, ) = gd(x2,xl) 

. . . . . . . . .  

ASSERTION: 

gcd(x1 ,x2) = gcd(x2,x 1) 

TRANSITIVITY 

gcd(y l(l),y2(1)) = gcd(xl,x2) 

Figure 6.3: Substitution. 



cases. Suppose x l  > $2. The human tester can designate variable yl(l) ,  which 
is equal to x1, in the expression as shown in Figure 6.3. The symbolic manipula- 
tor, then, searches its knowledge base to get the assertion for the variable, namely 
yl(1) = 21. Next, the expression, gcd(x1, y2(1)), is generated by the symbolic ma- 
nipulator. It must be equal to the expression, gcd(yl(l),y2(1)). Thus the equation, 
gcd(yl(l),y2(1)) = gcd(x1, y2(1)), is displayed in the text window and stored the 
knowledge base. Next, the human tester replaces the variable, y2(1), by x2 by mark- 
ing variable y2(1). Then the symbolic manipulator substitutes 22 for variable, y2(1). 
Therefore, we get the equation, gcd(x1, y2(1)) = gcd(xl,x2) as shown in Figure 6.3. It 
partially proves Subgoal 1. Secondly, the case of x l  5 22 is checked. Similarly, we can 
get gcd(yl(l), y2(1)) = gcd(x2,xl). As shown in Figure 6.3, the tester may use a new 
assertion gcd(x1, x2) = gcd(x2, x l )  which is derived from the requirement assertions 
of Euclid's algorithm for the gcd problem. Then, the transitivity rule is applied to 
conclude that gcd(yl(l), y2(1)) = gcd(xl,x2) for the case. 

The third step, P-3, concludes that that Subgoal 1 is proven. 

Consider Subgoal 2, gcd(y l(i), y2(i)) = gcd(y l ( i  - I), y2(i - 1)). It has to be proven 
by the following two cases: ~ l ( i  - 1) > y2(i - 1) and y l ( i  - 1) < y2(i - 1). As shown 
in Figure 6.4, the requirement assertion is used to prove Subgoal 2. Let v be yl(i - 1) 
and w be y2(i - 1). It is the first case, yl(i - 1) > y2(i - 1). The "SUBSTITUTION" 
operations and the "GENERATIONn operation lead the conclusion. Similarly, the 
second case can be proven. The rest of the proof goals and subgoals can be proven in 
the similar fashion. 



Figure 6.4: Proof of Subgoal 2. 

ARRAY GRAPH 
‘WINDOW 

TEXT WINDOW 
GOAL I. z = gcd(xl j2)  
SUBGOAL I. gcd(x1,xZ) = gcd(yl(l),y2(1)) 

SUBGOAL 2. gcd(yl(i),y2(i)) = 
gcd(y1 (i-l),y2(i-1)) 

REQUIREMENT ASSERTION: 

gcd(v,w) = IF v=w THEN v 

ELSE IF vew THEN gcd(v,w-v) 
ELSE gcd(v-w,w) 

CASE yl(i-1) > y2(i-1) : 
ASSERTION: v=y l(i- 1), w=y2(i-1) 
SUBSTITUTION 
g w y  10- l),y2(i- 1)) 

= gcd(y l(i- 1)-y2(i-1),y2(i-1)) 

GENERATION 
yl(i) = yl(i-1) - y2(i-1) 
y2(i) = y2(i-1) 

SUBSTITUTION 

g a y  l(i),y2(i)) = g a y 1  (i- 1 ),y2(i- 1)) 

CASE y l(i-1) <= y2(i-1) : 
ASSERTION: v=y2(i-1), w=y 1 (i-1) 

SUBSTITUTION plus GENERATION 

gCd(y1 (i),y2(i)) = g W y l  (i-l),y2(i-l)) 
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