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ABSTRACT

CONTROLLING DEFECTS IN NEMATIC AND SMECTIC LIQUID CRYSTALS

THROUGH BOUNDARY GEOMETRY

Daniel A. Beller

Randall D. Kamien

Liquid crystals (LCs), presently the basis of the dominant electronics display technol-

ogy, also hold immense potential for the design of new self-assembling, self-healing,

and “smart” responsive materials. Essential to many of these novel materials are

liquid crystalline defects, places where the liquid crystalline order is forced to break

down, replacing the LC locally with a higher-symmetry phase. Despite the energetic

cost of this local melting, defects are often present at equilibrium when boundary

conditions frustrate the material order. These defects provide micron-scale tools for

organizing colloids, focusing light, and generating micropatterned materials. Manipu-

lating the shapes of the boundaries thus offers a route to obtaining new and desirable

self-assembly outcomes in LCs, but each added degree of complexity in the boundary

geometry increases the complexity of the liquid crystal’s response. Therefore, concep-

tually minimal changes to boundary geometry are investigated for their effects on

the self-assembled defect arrangements that result in nematic and smectic-A LCs in

three dimensions as well as two-dimensional smectic LCs on curved substrates. In

nematic LCs, disclination loops are studied in micropost confining environments and

in the presence of sharp-edged colloidal inclusions, using both numerical modeling

and topological reasoning. In both scenarios, sharp edges add new possibilities for the

shape or placement of disclinations, permitting new types of colloidal self-assembly

beyond simple chains and hexagonal lattices. Two-dimensional smectic LCs on curved

substrates are examined in the special cases where the substrate curvature is confined
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to points or curves, providing an analytically tractable route to demonstrate how

Gaussian curvature is associated with disclinations and grain boundaries, as well

as these defects’ likely experimental manifestations. In three-dimensional smectic-A

LCs, novel self-assembled arrangements of focal conic domains (FCDs) are shown to

arise from geometric patterning or curvature in boundaries exhibiting so-called hybrid

anchoring. These new arrangements allow control over both the packing of the FCDs

and their eccentricities. In general, defect self-assembly behavior in LCs is shown to

depend sensitively on the shapes of confining boundaries, colloidal inclusions, and

substrates, and several broad, new geometrical principles for directing the assembly of

nontrivial defect configurations are presented.
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Chapter 1

Introduction

Much of what we would like to know about an ordered material—its symmetries, its

material properties—is reflected in, or indeed determined by, the nature of its defects.

For example, dislocation defects in the molecular lattices of metallic crystals determine

the strength of the metallic solid, and deformations of a stressed metal take place

through the motion of dislocations through the lattice [22]. Defects may appear not

only in response to applied stress or fields but also due to thermal fluctuations, and

the proliferation of defects provides the mechanism for melting into a less ordered

phase [50, 72, 95]. Defects may in general be walls, lines, or points, with a small

volume occupied by a defect core where the material order is destroyed in favor of a

higher-symmetry phase. The symmetries of the ordered phase determine the types

of defects that can arise and the ways in which those defects can interact, and in

fact those symmetries are often first deduced through observations of the defects

[5, 22, 23, 86].

Of both great theoretical interest and great practical importance is the fact that

many commonly occurring defects are topological defects: The symmetries broken

by the material order allow the existence of singularities that cannot be removed

through any smooth deformation, except possibly by merging with another defect [86].

Analogously to an electric point charge, the presence of a defect can be detected by

measuring the material order on a surface or loop enclosing the defect. Though they
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can move, topological defects carry fixed topological charges, again in analogy with

electric charges, and the total topological charge in a sample is typically conserved.

Therefore, by appropriately choosing a material’s boundary conditions (and sometimes

the topology on which the material is formed), we can ensure the existence of topological

defects with a certain total topological charge. It is a more difficult task to predict the

types and locations of all defects in equilibrium; some special cases are analytically

tractable, while others benefit from numerical energy minimization techniques, and

we will examine both types of problems here.

There are also, in certain translationally ordered media, geometrical “cusp” grain

boundary singularities analogous to the caustics formed by light rays at the bottoms

of swimming pools and teacups, for example. These geometrical defects, while not

protected to the same degree as topological defects, would nonetheless require highly

nonlocal deformations to be removed.

From a more applied perspective, defects in condensed matter systems have at-

tracted a great deal of attention in recent years as potential tools and building blocks

in self-assembly. A major goal of condensed matter science is to identify principles

by which complex, functional materials could be designed to build themselves spon-

taneously in “bottom-up” processes from simpler materials. Inspired in part by the

ubiquitous self-assembly growth processes in nature, and driven by the limitations in

scale and structure of traditional “top-down” fabrication methods, materials scien-

tists and engineers seek scenarios where maximizing entropy leads to reproducible

microstructures with desired responses to light, mechanical stress, surface chemistry,

etc.

Liquid crystals (LCs) are a class of materials in which defects can be observed

and manipulated readily. In both their symmetries and their materials properties,

liquid crystals are, as the name suggests, intermediate between solid crystals and
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isotropic (disordered) liquids. Their fluidity permits reorganization of the material

order in response to mechanical stresses or applied electric or magnetic fields. At the

same time, their broken symmetries permit defects that are difficult or (topologically)

impossible to remove without melting the sample into a higher-symmetry phase. These

defects can often move through the liquid crystal and effectively exert forces, mediated

by the LC’s elasticity, on one another and on embedded particles called “colloidal

inclusions”—so that it is tempting (though false) to think of the defects as solid

objects! In addition, because the colloidal inclusions also move through the liquid

crystal to minimize elastic distortions, there is a complex interplay between colloids

and defects as they seek the positions and orientations that minimize the total energy

of the system.

The central theme of this dissertation is learning how to tune the properties of the

boundaries, substrates, and colloidal inclusions so that liquid crystalline defects become

tools guiding the self-assembly of liquid crystalline and/or colloidal micropatterns

with order more complex than any of the inputs. In particular, we study the role of

nontrivial boundary shape in guiding the spontaneous assembly of liquid crystalline

defects into new configurations and large-scale patterns.

We focus on two LC phases, the nematic and smectic-A phases, both composed of

rod-like particles with one dimension significantly larger than the other two.

1.1 The nematic phase and disclination defects

The nematic phase is translationally disordered—its particles’ positions have no

long-range correlation—but orientationally ordered, meaning that the particles’ long

axis orientation exhibits long-range order. This long-axis orientation, once thermal

fluctuations have been averaged over, provides the order parameter of the nematic
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phase, the nematic director ~n. Because ~n represents a direction in a system with

“head-tail” symmetry, the director obeys |~n| = 1 and ~n = −~n. In three-dimensional

nematics, the order parameter space in which the director lives is RP2, the unit 2-sphere

with diametrically opposite points identified.

Nematic liquid crystals in two dimensions have point topological defects called

disclinations, singularities in the director field around which the director rotates

by an integer multiple of π radians on a measuring loop enclosing the disclination

(see Fig 1.1a,b for examples). These defects are easily observed in polarized optical

microscopy, where the LC is viewed between crossed polarizers (a “polarizer” and

an “analyzer”), as the confluence of an even number of dark brushes on a bright

background in what is known as a schlieren texture (Fig. 1.1c), from the German word

for “streak”. In three dimensions, the topological defects of the nematic phase are

line-like disclinations and point-like hedgehogs. Hedgehogs are defined by a topological

charge counting the number of times the director field on an imaginary measuring

surface around the defect wraps around the unit sphere [5]. Disclinations are defined

by a topological winding number, measuring along a loop linking the disclination

the number of times the director loops through RP2. In the simplest cases where the

director field lies in the plane of a cross section normal to the disclination curve’s

tangent direction, the winding number is analogous to the winding number (or “index”)

of point defects in 2D nematics (Fig. 1.1). However, the 3D director’s freedom to

rotate into the disclination tangent direction means that the winding number is only

an element of Z2 rather than Z. [5, 88]. Disclination loops also carry a hedgehog charge

as measured on a surface surrounding a loop.

Defects in nematic liquid crystals have attracted much attention for use in self-

assembled materials, such as photonic crystals [96, 108]. A goal of recent and ongoing

research is to reliably predict, and thus control, the formation of nematic defects in
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(a) (b) (c)

Figure 1.1: Illustrated examples of disclinations in 2D nematics, with winding number
+1/2 (a) and −1/2 (b). (c) A simulated schlieren texture for both configurations (a)
and (b); the blue arrows denote the directions of the polarizer and analyzer.

response to colloidal inclusions (in the bulk or at the free surface) [21, 44, 45, 47, 53,

54, 74, 94, 114, 120, 128] and to topographic features in the substrate [19]. Nontrivial

boundary conditions make analytical approaches difficult, but it is important to develop

a theoretical understanding of the structure of the director field near defects and of

the effective interactions between colloids that result from these defects.

To this end, we have developed a computer program to numerically find energy-

minimizing nematic configurations with nontrivial boundary conditions. The program

employs Landau-de Gennes (LdG) numerical modeling, a tensorial approach to nematic

LCs that includes defects as well as the director field among its degrees of freedom

[108]. Simulating the relevant boundary conditions, we numerically evolve our modeled

nematic LC toward equilibrium, providing predictions of defect type and location, as

well as the relative contribution of surface, elastic, and defect core energies. Furthermore,

by slowly varying the boundary conditions and comparing the free energies of the

modeled equilibrium states, we extract the LC-mediated effective potential felt by

colloidal inclusions.
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1.2 Smectic-A liquid crystals and their defects

The smectic phase has the orientational order of the nematic phase as well as

broken translational symmetry in one dimension. The rod-like molecules organize

into a one-dimensional crystal of two-dimensional fluid layers, each layer one molecule

in thickness. We focus in particular on the smectic-A phase, in which the nematic

director aligns with the layer normal. There is a strong energetic preference for the

layers to maintain equal spacing along the layer normal direction, with the spacing

set by the particle length. The ground state consists of planar, evenly spaced layers

separated by one particle length, with the particles oriented on average normal to the

layer (see Fig. 1.2a).

The topological defects of smectics in 2D are point disclinations as in 2D nematics,

as well as dislocations, points where a layer ends or begins. Only disclinations of index

≤ 1 may exist in the 2D smectic, however [23]. We will also be interested in linear,

geometrical defects in 2D smectics which are “cusps” or tilt grain boundaries. In 3D

smectics, the topological defects are likewise the linear disclinations and a certain type

of hedgehog point defect from the 3D nematic, along with linear edge dislocations and

screw dislocations. Tilt grain boundary walls are allowed two-dimensional defects in

3D smectics, although in practice such walls are often reduced to curves, a fact that

is crucial to the formation of our self-assembly building block of interest in Chapter

4, the focal conic domain. In a focal conic domain, illustrated in Fig. 1.2b, smectic

layers curve around two singular lines: one branch of a hyperbola, which is a cusp

geometrical defect, and an ellipse, which is a disclination topological defect as well

as possibly a cusp defect. The two defects together with the region of smectic layers

curved around them comprises the focal conic domain, which from a self-assembly

perspective we think of as a single composite defect object. The origin and properties
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(a) (b)

Figure 1.2: Schematically illustrated smectic-A ground state (a) with representative
rodlike molecules shown in green, and (b) an illustration of a focal conic domain.

of the focal conic domain are explored in the first two sections of Chapter 4.

1.3 Outline

The remainder of this dissertation is organized as follows. In Chapter 2, we apply

Landau-de Gennes numerical modeling to the study of disclinations in 3D nematic

liquid crystals with boundaries of complex shape, including micropost1 confining

environments and colloidal inclusions with sharp-edges. Chapter 3 explores cusp and

disclination defects that arise in 2D smectics formed on curved substrates, in the special,

analytically tractable cases where the substrate’s Gaussian curvature is confined to

points and curves. In Chapter 4, we study the influence of curvature and topographic

patterning in the boundaries on the assembly of focal conic domains in thin films of

3D smectic-A liquid crystals, using both geometrical models and computed free energy

estimates. Finally, we conclude with a brief summary and outlook.

Some of the work presented here has appeared in print in the following publications

1Throughout, we use the terms “micropost”, “micropillar”, and “pillar” interchangeably.
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and has been reprinted with permission:

• A. Honglawan et al., Advanced Materials 23 5519 (2011).

• R.A. Mosna, D.A. Beller, and R.D. Kamien, Physical Review E 86 011707 (2012).

• A. Honglawan et al., Proceedings of the National Academy of Sciences 110 34
(2013).

• M.A. Gharbi et al., Liquid Crystals 40 1619 (2013).

• M. Cavallaro et al., Proceedings of the National Academy of Sciences 110 18804
(2013).

• D.A. Beller et al., Physical Review X 3 041026 (2013).
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Chapter 2

Disclinations in nematic liquid

crystals with boundaries of

complex shape

2.1 Introduction

We develop new principles for directed colloidal self-assembly in nematic liquid

crystals through the use of Landau-de Gennes (LdG) numerical modeling [108] to

study nematics with boundary conditions of complex geometry. An important and

recurring theme will be the importance of shapes with sharp edges, whether in the

shapes of colloidal inclusions or on a larger scale in the geometry of the confining cell.

We have developed a computer program that implements LdG numerical modeling

with a versatile set of options for the boundary conditions, including microposts and

colloidal particles of various shapes. The code uses the “conjugate gradient” method,

which is significantly faster than the gradient descent or “molecular field” update

method used by other groups [108, 128], without parallelization. As well as including

a versatile array of boundary conditions suitable to modeling a variety of experimental

situations, the program uses a rigorous, systematic method of numerically calculating

free energy components that depend on spatial gradients, to ensure downward motion

9



in the discretized free energy landscape at each timestep.

This chapter overviews the theoretical background and numerical setup, and then

presents results for disclinations (line defects) around colloidal inclusions with sharp-

edged shapes such as cylinders and cubes. Sharp edges are shown to drastically change

the defect behavior compared to that seen with smooth colloid shapes like spheres and

ellipsoids. Disclinations follow the sharp edges in surprising patterns, and as a result,

the colloids tend to reorient relative to the background nematic director field by an

angle that depends on details of the colloid shape. This has significant implications for

colloidal assembly, and we explore the possibility of tuning effective colloid interaction

potentials, mediated by nematic elasticity, as a function of colloid shape. In addition,

we apply LdG numerical modeling to gain insights into experiments on nematics in the

presence of cylindrical microposts, examining the spontaneous formation of disclination

rings around microposts and their interaction with colloids at the air/liquid crystal

interface.

This chapter is organized as follows. Section 2.2 reviews the Landau-de Gennes

theory of nematic liquid crystals. Section 2.3 describes the numerical approach to

finding free energy-minimizing nematic director fields and defect configurations. Finally,

Section 2.4 presents results for disclination rings around colloidal inclusions with sharp

edges, and Section 2.5 presents results for disclination rings in micropost confining

geometries.

2.2 Theory

2.2.1 The Q-tensor

Uniaxial nematic liquid crystals have as their order parameter a director, ~n, which

is a unit vector with the identification ~n = −~n. It has two degrees of freedom for a 3D

10



nematic. The liquid crystal configuration is an assignment of a director ~n(~x) to each

point ~x in the nematic, i.e., a mapping from the sample space (minus any defect sets)

to the order parameter space, RPd, where ~n lives (usually with d one less than the

dimension of the sample space).

Here, we model nematic LCs with greater generality using instead a second-rank,

traceless, symmetric tensor Q called the Q-tensor. With Q, one can simulate the more

general case of the biaxial nematic, where the rotational symmetry about ~n is broken,

picking out a second director ~m orthogonal to ~n, along which one of the shorter axes

of the molecules aligns. Also, because one of the Q-tensor’s degrees of freedom is the

nematic degree of order, defects in the nematic can arise from the evolution of the

field Q(~x) and need not be prescribed as part of the boundary conditions.

Generally, in three dimensions the components of Q are given by [93]

Qαβ = S1nαnβ + S2mαmβ − 1
3
(S1 + S2)δαβ. (2.1)

The above expression is frequently written in the equivalent form

Qαβ =
3

2
S

(
nαnβ −

1

3
δαβ

)
+

1

2
SB (mαmβ − `α`β)

where ~l = ~n× ~m.

Whereas identifying ~n with −~n leads to computational challenges in the presence

of half-integer strength disclinations, Q is well-defined because it is invariant under

~n → −~n. Q has five degrees of freedom: two angles from ~n and one from ~m, along

with the real numbers S1 and S2. In a basis where two of the axes are given by ~n and

11



~m, Q is diagonal and reads

Q = 1
3
diag (2S1 − S2, 2S2 − S1,−S1 − S2) . (2.2)

The diagonal elements are the eigenvalues. Without loss of generality, suppose that

S1 ≥ S2. Then S ≡ 1
3

(2S1 − S2) is the largest eigenvalue; the second-largest is

1
3

(2S2 − S1) = −1
2

(S − S2), and the smallest is 1
3

(−S1 − S2) = −1
2

(S + S2).

The nematic director ~n is recovered as the eigenvector of Q corresponding to

its largest eigenvalue, which is S. Notice that when the smaller two eigenvalues are

degenerate (equal), we have S2 = 0 and hence S1 = 3
2
S. This is the uniaxial limit,

where no ~m is selected. Equation (2.1) then reduces to

Qαβ =
3

2
S
(
nαnβ − 1

3
δαβ
)
. (2.3)

Because S2 goes to zero in the uniaxial phase, it is a measure of the degree of biaxial

order, and is sometimes labeled SB. S is called the nematic degree of order. In terms

of S and SB, Equation 2.2 reads (for a frame in which Q is diagonal)

Q = diag
(
S,−1

2
(S − SB),−1

2
(S + SB)

)
. (2.4)

2.2.2 Defects

As well as allowing biaxiality, the Q-tensor provides the advantage that, since it

contains the scalar order parameters S and SB, it can realistically simulate disclinations

in the nematic by allowing degeneracy of the leading eigenvalue, corresponding to a

local melting of the nematic into the isotropic phase. Wherever the largest eigenvalue

is degenerate (the two largest eigenvalues are equal), ~n is ill-defined and that point is
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part of a defect. Degeneracy of the largest eigenvalue implies that S2 = S1 = 3S, and

therefore that

det(Q) = 1
4
S(S2 − S2

2) = −2S3, (2.5)

tr(Q2) = 1
2
(3S2 + S2

2) = 6S2. (2.6)

We could therefore consider as belonging to a defect any point where the quantity

(
tr(Q2)

)3 − 54| det(Q)|2 (2.7)

is sufficiently close to zero.

In practice, we take the simpler approach of marking any site where S falls

sufficiently below its bulk equilibrium value S0 as belonging to a defect [108]. Our

program outputs the location and order parameter of all points where S < 0.9S0.

Further filtering of S values on a case-by-case basis is needed before we can plot the

defect locations.2

2.2.3 Landau-de Gennes theory

Here we discuss a formulation for the free energy density in the bulk of the nematic

in terms of Q, postponing consideration of the surface energies until Subsection 2.2.5.

2A third possible method is to define as a defect any point where det(Q) is negative, or less than
some small positive threshold value. This works because, in the uniaxial case,

Q = diag
(
S,− 1

2S,− 1
2S
)

⇒ det(Q) = 1
4S

3.

From this result together with Equation (2.5), we see that det(Q) goes from positive to nonpositive
in going from a uniaxial nematic to a defect. In the uniaxial limit, where the smaller two eigenvalues
are equal, the defect condition that the greater two eigenvalues are equal implies that all eigenvalues
are equal. Since tracelessness implies that the eigenvalues sum to zero, we must have S = 0 and thus
det(Q) = 0.
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The following energy goes by the name of Landau-de Gennes.

FLdG =

∫
V

dV

{[
1
2
Atr

(
Q2
)

+ 1
3
Btr

(
Q3
)

+ 1
4
C
(
tr
(
Q2
))2
]

+
L1

2
(∇×Q + 2q0Q)2 +

L2

2
(∇ ·Q)2

}
. (2.8)

The term in square brackets is the “phase” free energy which stabilizes the nematic

phase against the isotropic phase, with A ∝ T − T ∗NI, where T ∗NI is the supercooling

temperature of the isotropic phase. In the uniaxial limit, Q = diag(S,−1
2
S,−1

2
S), so

tr(Q2) = 3
2
S2

1
3
tr(Q3) = det(Q) = 1

4
S3

and the phase free energy becomes

fphase = 3
4
AS2 + 1

4
BS3 + 9

16
CS4,

and then fphase is minimized either by S = 0 or by

S = S0 ≡
−B +

√
B2 − 24AC

6C
, (2.9)

with a first-order transition given by the condition 36AC+B(−B+
√
B2 − 24AC) = 0.

2.2.4 Relation of distortion energy to Frank elasticity

By equating the distortion energy in the Landau-de Gennes theory,

fd =
L1

2
(∇×Q + 2q0Q)2 +

L2

2
(∇ ·Q)2, (2.10)
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in the uniaxial limit where Qαβ = 3
2
S
(
nαnβ − 1

3
δαβ
)
, to the free energy density of

Frank elasticity,

fFrank =
K1

2
(∇ · ~n)2 +

K2

2
(~n · (∇× ~n))2 +

K3

2
((~n · ∇)~n)2 (2.11)

(where K1, K2, and K3 are respectively the splay, twist, and bend elastic moduli), we

find

K1 = 9
4
S2(L1 + L2), K2 = 9

2
S2L1, K3 = 9

4
S2(L1 + L2). (2.12)

The calculation can be found in Appendix A.

Unfortunately, this shows that Landau-de Gennes theory at quadratic order requires

K1=K3. It is possible to add higher-order terms that allow us to distinguish K1 from

K3 ([3], [108], [93]), though this involves making some arbitrary choices from among

many suitable higher-order terms in the free energy. Following [108], the choice we

make is:

fd =
1

2
L1
∂Qij

∂xk

∂Qij

∂xk
+

1

2
L2
∂Qij

∂xj

∂Qik

∂xk
+

1

2
L3Qij

∂Qkl

∂xi

∂Qkl

∂xj
(2.13)

where L1 = (2/3)(−K1 + 3K2 + K3)/9S
2, L2 = 4(K1 −K2)/9S

2, and L3 = 4(K3 −

K1)/27S3 (see Appendix A for calculation).

In the case where all elastic constants are equal, the distortion free energy density

is simply

fd =
L1

2

∂Qij

∂xk

∂Qij

∂xk
, (2.14)

with the correspondence K1 = K2 = K3 = 9
2
S2L1 to the Frank free energy density

in the case of equal elastic constants. Computation is significantly faster in the

equal-constants case.
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The Frank elastic energy technically also includes a saddle-splay term,

f24 = −K24

2
∇ · [~n (∇ · n)− (~n · ∇)~n] (2.15)

As this term is a total divergence, it can be integrated to a surface term. It becomes

important when ~n is allowed to vary at the boundaries, or when the energies of different

boundary configurations are being compared. As K24 is notoriously difficult to measure,

this term is often excluded, and we do not compute it in our numerical approach.

However, the term in square brackets in Equation 2.15 can be rewritten in terms of

the Q-tensor (in the uniaxial limit) as [122]

[~n (∇ · n)− (~n · ∇)~n]i =

(
3S

2

)−2

[Qij∂kQjk −Qjk∂kQij] . (2.16)

We may therefore call the divergence of the right-hand side of Equation 2.16 “the

saddle-splay” in the LdG approach.

2.2.5 Boundary terms

In the numerical approach discussed in the next section, every simulated point

on the simulation lattice contributes to the Landau-de Gennes free energy (2.8).

Points adjacent to a boundary surface (e.g. substrate, air, post, colloid) contribute

an additional energy per unit area fs associated with the local deviation of ~n from a

locally preferred alignment direction or set of directions, referred to as anchoring. For

most boundary surfaces, we allow for two cases: homeotropic and degenerate planar

anchoring. For homeotropic anchoring, the preferred direction is along the unit normal

ν̂s to the interface s, and we use the Rapini-Papoular (or Nobili-Durand) anchoring
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potential,

Φs,H = W s
0

∫
s

dA tr
(
(Q−Qs)2) = W s

0

∫
s

dA
(
Qαβ −Qs

αβ

) (
Qβα −Qs

βα

)
(2.17)

Here, W s
0 is the anchoring strength of the surface s, the integration is carried out over

that surface, and Qs is the locally preferred Q-tensor, which we take to be

Qs
αβ = 3

2
S0

(
νsαν

s
β − 1

3
δαβ
)

(2.18)

with S0 as defined in Equation (2.9). This anchoring is easily adapted to unidirectional

planar anchoring simply by changing the definition of ν̂s to the locally preferred director

(“easy axis” or “rubbing direction”), an approach that we will use to study colloidal

particles in thin-cell nematics in Section 2.4. In terms of ~n, the Rapini-Papoular

potential is often written

Φs,H =
W

2

[
1− (~n · ν̂2)

]
, (2.19)

which in a uniaxial limit is the same as Equation 2.18 with the identification W =

9S2
0W0.

The effect of the anchoring on the system is often described by an extrapolation

length

ξs = K3/W (2.20)

where K3 is the Frank bend elastic constant [123]. The anchoring is strong or weak

depending on whether ξs is small or large (respectively) compared to the length scales

of the system. A particle of radius a with radial anchoring will induce an elastic

energy ∼ K3a (assuming uniform alignment infinitely far from the particle) and a

surface energy ∼ Wa2. Thus, for ξs � a, there is perfect anchoring; for ξs � a there
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is uniform alignment in violation of the anchoring potential. Alternatively, Stark [123]

characterizes the anchoring strength by the dimensionless quantity γN , defined as

the ratio of the surface extrapolation length L/W0 to the nematic corellation length

ξN ∼
√
L/A defined in subsection 2.3.3:

γn =
L

ξNW0

. (2.21)

For degenerate planar anchoring, we penalize deviations of ~n from the plane

orthogonal to the interface normal ν̂s. We use the potential given in Ref. [39]:

Φs,D.G. = W s
1

(
Q̃αβ − Q̃⊥αβ

)(
Q̃αβ − Q̃⊥αβ

)
+W s

2

(
Q̃αβQ̃αβ −

(
3
2
S0

)2
)2

, (2.22)

where

Q̃αβ ≡ Qαβ + 1
2
S0δαβ (2.23)

and Q̃⊥ is the projection of Q̃ onto the substrate,

Q̃⊥αβ = PαγQ̃γδPδβ, (2.24)

using the projection operator Pαβ ≡ δαβ − νsανsβ.3 The first term in (2.22) penalizes

deviations of ~n out of the plane orthogonal to ν̂s, while the second term penalizes

deviations of the scalar order parameter from S0. We make the simplifying assumption

W s
2 = W s

1 .

The total free energy to be minimized is then

F = FLdG +
∑
s

Φs (2.25)

3Note that our definition of S0 differs by a factor of 3/2 from that used in Ref. [39].
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where the last term is a summation over all boundary surfaces. In Section 2.3, we will

discuss how we minimize F .

2.3 Numerical approach

This section summarizes our numerical approach to finding free energy-minimizing

nematic configurations.

2.3.1 Minimization algorithm

To minimize F , the program offers the option of using either nonlinear conjugate

gradient (CG) or LBFGS, both using routines from the ALGLIB library for C++

(http://www.alglib.net).4 These methods do not simulate a realistic relaxational

dynamics for the liquid crystal, in contrast to the molecular field approach used by

others [3] [108] (sometimes augmented by simulated hydrodynamics). Instead, they

efficiently search for local minima in the free energy landscape. The speeds of CG and

LBFGS seem to be roughly equivalent for our problem, and all results presented here

are obtained using CG. The gradient descent (a.k.a. steepest descent) method is also

available but is typically at least an order of magnitude slower. This implementation

of gradient descent is effectively equivalent to the molecular field approach used by

others (e.g. [108]).

2.3.2 Discretizing the free energy

The free energy F is written as a functional of Qαβ(x) where (α, β) = (x, x), (x, y),

(x, z), (y, y), (y, z). That is, the symmetry and tracelessness of Q are taken into account

before discretization. F is then discretized in a finite difference scheme as a function

4For an introduction to CG minimization, see Ref. [116].
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of the 5N independent variables {Qαβ(j)} where j = 1, ...N labels the lattice site:

F =
∑
j

f(j).

For energy terms that depend only on the local value of Q, such as the “phase” free

energy term, this discretization is straightforward. For energy terms that depend on

first derivatives of Q, we use discretized forms of the derivative given by (for the case

of the x derivative)

∂+
x Qαβ(j) = Qαβ(xup)−Qαβ(j)

∂−x Qαβ(j) = Qαβ(j)−Qαβ(xdwn)

Here xup and xdwn are the j-values labeling the neighboring lattice sites to the right

and left of site j. At each lattice site j, the program checks whether the neighboring

sites xup and xdwn are simulated sites (as opposed to outside of the boundaries). If

xup is not a simulated site but xdwn is simulated, then ∂−x is used; if xdwn is not a

simulated site but xup is, then ∂+
x is used. (If both xup and xdwn are not simulated,

then the derivative is set to 0, but this situation is to be avoided.) For the bulk case

where both xup and xdwn are simulated sites, we take as f(j) the average of its value

using ∂+
x and its value using ∂−x . We do this rather than using the symmetric form of

the first derivative ∂xQαβ(j) = Qαβ(xup)−Qαβ(xdwn) (i.e. “squaring before adding”

rather than “adding before squaring”) because the latter results in a numerical artifact

wherein next-nearest neighbors in each direction align but nearest neighbors do not.

This procedure is repeated similarly for y and z derivatives, while averaging all

uses of ∂+ and ∂− that are compatible with the status (simulated or not simulated) of

neighboring sites. Thus a site whose six nearest neighbor sites are all simulated sites
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will use an average of 23 = 8 combinations of derivative definitions.

Minimization algorithms such as CG and LBFGS require us to provide a definition of

the discretized version grad(j, α, β) of the functional derivative δF/δQαβ(x) of the free

energy with respect to each of the independent variables. We do this straightforwardly

by differentiating the discretized version of the free energy density f with respect to

Qαβ(j):

grad(j, α, β) ≡ ∂

∂Qαβ(j)

∑
j′

f(j′) =
∂

∂Qαβ(j)

∑
j′ = j and

nearest neighbors

f(j′).

For energy terms not involving spatial derivatives, this is straightforward. For energy

terms that do contain spatial derivatives, we have to allow for the possibility of any

combination of nearest neighbors being simulated or not simulated, a total of 26 = 64

possibilities. Our approach is to explicitly differentiate the discretized free energy

expressions with respect to the Q-values of neighboring sites for all possible combina-

tions of simulated and not simulated neighbors, and then evaluate the appropriate

expressions as needed during the calculation. A Mathematica routine has been devel-

oped to automate this case-by-case differentiation and output the explicit discretized

free energy gradient expressions to C++ files.

2.3.3 Nondimensionalization, material constants, and the

mesh size

The LdG free energy in Equation (2.8) is nondimensionalized using the grid spacing

∆x as follows.

F̃LdG =

∫
V

dṼ

{[
−1

2
tr
(
Q2
)

+
B̃

3
tr
(
Q3
)

+
C̃

4

(
tr
(
Q2
))2

]
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+
L̃1

2

(
∇̃ ×Q + 2q̃0Q

)2

+
L̃2

2

(
∇̃ ·Q

)2
}

(2.26)

where F̃LdG ≡ FLdG /(|A|(∆x)3), dṼ ≡ dV/(∆x)3, B̃ ≡ B/|A|, C̃ ≡ C/|A|, L̃1,2 ≡

L1,2/ (|A|(∆x)2), ∇̃ ≡ ∆x∇, q̃0 ≡ ∆xq0. Likewise, in the surface energy we will replace

anchoring strengths W with W̃ ≡ W/(|A|∆x).

In the numerical modeling, we choose the energy and length scales by setting |A| = 1

and ∆x = 1. When using the numerical modeling to obtain free energy differences, we

have to multiply the free energy result by |A|(∆x)3 using the actual value of |A| and

∆x = Lx,exp/Lx where Lx,exp is the actual system size in the x direction (for example)

and Lx is the number of grid points in that direction.

From Ref. [108], we take typical values for the material constants of the commonly

used nematic liquid crystal 5CB: A = −0.172 × 106 J/m3, B = −2.12 × 106 J/m3,

C = 1.73 × 106 J/m3. These values give S0 ≈ 0.533. We set the elastic constants

L1 = L2 ≡ L = 8×10−12 N so that the Frank elastic constant K = L·9S2
0/2 ≈ 10−11 N

roughly matches the elastic constants of 5CB [47]. In practice, the procedure is

numerically stable and produces reasonable results only in a small range of L̃ near the

default value 2.32, so changing L amounts to changing ∆x.

For homeotropic anchoring (5CB in contact with a surface treated with DMOAP

at room temperature), the typical anchoring strength is W0 ≈ 1× 10−2 J m−2 [118],

giving an extrapolation length L/W0 = 4 nm. For oriented planar anchoring (5CB in

contact with a rubbed PVA layer at room temperature), the typical anchoring strength

is W0 ≈ 1.5× 10−5 J m−2 [102].

When nondimensionalizing, we take B̃ = −2.12/0.172, C̃ = 1.73/0.172. We com-

pute L̃ as

L̃ =
8× 10−12 N

0.172× 106 J/m3 (∆x)2
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and W for homeotropic anchoring as

W̃ =
1× 10−2 J m−2

0.172× 106 J/m3 (∆x)

Using these values, the simulation gives reasonable results for ∆x = 10 nm but not

for ∆x = 20 nm. For ∆x = 4.5 nm, we have L̃ ≈ 2.32 and W̃ ≈ 12.9. (For oriented

planar anchoring, W̃ ≈ 0.0193.)

The order of magnitude of the mesh size ∆x is set by the nematic correlation

length ξN . This is a length scale associated with spatial distortions in S, neglecting

spatial distortions in ~n. We derive ξN following the discussion in Ref. [108]. The

single-elastic-constant distortion energy expression (L/2)(∇Q)2 becomes (3/4)L(∇S)2

upon taking the uniaxial limit, and the Landau-de Gennes free energy density becomes

fLdG =
[

3
4
AS2 + 1

4
BS3 + 9

16
CS4

]
+

3

4
L(∇S)2. (2.27)

The Euler-Lagrange equation for this energy density is

3

2
L∇2S − ∂fLdG

∂S
= 0. (2.28)

Linearizing with respect to small deviations ∆S(x) about the equilibrium value S0,

we find that the length scale associated with spatial change in ∆S(x) is

ξN =

√
3

2

L

(∂2fLdG/∂S2)|S0

(2.29)

=

√
L

A+BS0 + 9
2
CS2

0

(2.30)

For the typical material constants of 5CB mentioned above, we obtain S0 ≈ 0.533 and
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ξN ≈ 6.63 nm. Note that this is very similar to the surface extrapolation length L/W0

for homeotropic anchoring discussed above.

2.4 Results for sharp-edged colloidal inclusions

2.4.1 Background: Disclination rings around homeotropic

genus-zero colloids

If the nematic director relaxes to a uniform director field at large distances or

at the sample boundary, then the sample must contain zero total topological charge

[86]. Thus, a defect of unit topological charge will be accompanied by a defect of the

opposite charge, and the two will tend to annihilate for energetic reasons, leaving

a defect-free nematic configuration. However, a spherical colloid imposing strong

homeotropic (normal) anchoring on the director field at the colloid’s surface acts as a

radial hedgehog, and is thus accompanied by a stable topological defect [129].

This companion defect can be either a hyperbolic point hedgehog or a ring disclina-

tion of unit topological charge (Fig. 2.1). In the latter case, the ring’s stable position

is around the equator of the colloid, and the ring is referred to as a “Saturn ring”

defect. For an isolated spherical colloid, the director field in a cross-section transverse

to the disclination tangent is that of a 2D nematic disclination with winding number

−1/2 (Fig. 1.1b). The Saturn ring sits in the plane orthogonal to the far-field nematic

director ~n0, and the director field has quadrupolar symmetry [81]. In the case of a

hedgehog defect, the separation vector between the colloid’s center and the hedgehog

is parallel to ~n0, and the director field has dipolar symmetry. Smaller colloid size or

stronger confinement tends to stabilize the Saturn ring relative to the hedgehog.
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These sphere-defect pairs self-assemble into chains parallel to ~n0 in the case

of hedgehog defects, and kinked chains nearly perpendicular to ~n0 in the case of

Saturn rings [94, 118]. Saturn rings of neighboring colloids may also join into a single

disclination ring that entangles pairs or chains of colloids [106].

For homeotropic colloids that are topologically but not geometrically spheres, such

as cubes and cylinders (with edges at least slightly rounded), the same topology applies

to the surrounding nematic: Each genus-zero colloid is accompanied by a companion

defect, either a hedgehog or a disclination ring [53, 54, 131]. Colloidal cylinders were

shown to form chains and bound pairs depending on the types and positions of their

companion defects [131]. In the case of a hedgehog, the cylinders oriented so that their

long axis was parallel to the topological dipole and ~n0. In the case of a disclination

ring, the ring wrapped around the long axis of the cylinder.

(a) (b)

Figure 2.1: Companion topological defects to spherical homeotropic colloids in nematic
liquid crystals. (a) Hyperbolic hedgehog (dipolar configuration). (b) Saturn ring
disclination (quadrupolar configuration).
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2.4.2 Evidence for realigning effects of sharp edges

“Microbullet” colloids, colloidal rods with one hemispherical end and one flat

end, were studied in thin nematic cells [44]. In the case of hedgehog defects, the

microbullet oriented parallel to ~n0, as do colloidal cylinders. However, the hedgehog

always formed near the rounded end of the microbullet. As a result, colloidal assembly

took on a polar character: parallel colloids attracted end-to-end but repelled laterally,

while antiparallel colloids assembled into tilted dimers when approaching head-on and

attracted side-to-side. In thin homeotropic cells (vertical director anchoring at the top

and bottom surfaces), these interactions led after long times to triangular lattices of

repelling parallel microbullets, with some sites occupied by aggregates of antiparallel

microbullets.

In a planar cell (~n0 is horizontal), when the cell thickness is decreased to slightly

greater than the microbullet’s diameter, the hedgehog defect is replaced by a disclination

ring that wraps around the long axis of the colloid. Surprisingly, the colloid is oriented

with its long axis making an oblique angle with ~n0 (and lying in a horizontal plane).

Figure 2.2 shows an experimental micrograph of two microbullets, one with a hedgehog

defect and aligned parallel to ~n0 as expected, and the other with a disclination ring

and aligned at a roughly 72◦ angle from ~n0. Cylindrical colloids have also been shown

to orient with their long axes at angles ranging from 35◦ to 90◦ relative to ~n0, though

the shapes of these colloids were less precisely controlled [131].

LdG numerical modeling of ellipsoidal inclusions shows that this oblique alignment

of microbullets and cylinders does not arise merely from the fact that the colloids

are elongated. Figure 2.3 gives numerical results for ellipsoidal colloids of diameter

0.2 µm and various aspect ratios in a thin planar cell of 5CB, where infinitely strong

unidirectional planar anchoring at the top and bottom surfaces defines a horizontal
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Figure 2.2: Two microbullet colloids in a thin nematic cell. The microbullet at top
right has a disclination ring, while the microbullet at bottom left has a hedgehog
(point) defect. The black arrow represents the far-field nematic director set by the cell
boundaries. Both colloids are 10 µm in length. Image courtesy of M. Gharbi.

far-field director ~n0. The colloid surface imposes homeotropic anchoring of infinite

strength, and the one-elastic-constant material values as given in subsection 2.3.3 are

used to model 5CB. We calculate the change in free energy as the angle φ between

the ellipsoid’s long axis and ~n0 is varied. The disclination always wraps around the

long axis of the ellipsoid, but the preferred orientation for all aspect ratios greater

than 1 is φ = 90◦. (When the aspect ratio is 1, the ellipsoid is a sphere, and varying

φ changes nothing.) Thus changing the colloidal shape from spherical to ellipsoidal

shows wrapping of the disclination ring around the colloid’s long axis, but does not

demonstrate oblique colloidal orientation.

2.4.3 Colloidal cylinders and microbullets: Shape-controlled

orientation

In order to examine the details of the shape dependence of colloidal alignment and

assembly in nematics, we alter the simulated particles to model the sharp features of

these shapes. However, we have to take care not to make the modeled corners too sharp

because perfectly sharp corners introduce an unrealistic ambiguity into the director

field: The rotation of the director through 90◦ can be accomplished through either
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(a)

(b) (c) (d)

Figure 2.3: (a) Free energy of an ellipsoidal colloid (short axis diameter 0.2 µm) in a
planar-aligned nematic cell (thickness 0.6 µm), with the colloid’s long axis lying in the
horizontal plane and making an angle φ with the far-field director ~n0. The reference
energy for each curve is the free energy at φ = 0. At all aspect ratios larger than unity,
φ = 90◦ is energetically preferred. The setup used to calculate this plot is illustrated in
(b). As shown in (b)-(d), the disclination ring wraps around the long axis of the colloid.
(c) and (d) show side and top views, respectively, of the minimum-energy colloidal
orientation. Boundaries are colored green; defects are marked by blue isosurfaces of
order parameter S = 0.48; and red rods show the director field in a chosen plane.
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splay (Fig. 2.4a), or bend (Fig. 2.4b). Because the colloidal corners are expected to

be rounded convexly at least at the molecular scale of the nematic correlation length

ξN , the splay configuration is more realistic. In order to obtain this configuration, we

round the corners of simulated cylinders using the “superegg” equation:

(
ρ2

b2

)p
+

(
z2

a2

)p
= 1 (2.31)

Here, ρ ≡
√
x2 + y2 and the coordinate frame has been rotated so that the colloid

long axis points along the z direction; b is the colloid radius; a is half the colloid

length; and p is a parameter we refer to as the “sharpness” of the shape. For p = 1,

the shape is an ellipsoid. As p is increased above 1, the superegg interpolates between

an ellipsoid and a right circular cylinder as p→∞ (Fig. 2.4c). To model microbullets,

only the half of the colloid opposite the hemispherical cap is given the superegg shape;

the other half is spherocylindrical, with no sharp edges to worry about.

The numerical results for cylinders modeled as supereggs with sharpness p = 10

are given in Fig. 2.5. (Here and for microbullets, the colloid diameter 0.2µm and

cell thickness 0.6µm are the same as for the ellipsoids above.) As with the ellipsoid,

the disclination ring wraps around the long axis of the colloid. However, something

new happens at the sharp edges at the ends of the cylinder: The disclination loop

kinks into an “S” shape to follow one half of the circular edge at one end and the

opposite half of the circular edge at other end! Why? Disclinations are actually tubes

of locally melted nematic. Since a disclination must exist topologically, its geometry

ought to adapt to melt the nematic near places where the boundary conditions

require the most director distortion, with the caveat that a core energy per unit

length discourages longer disclination ring configurations. At the sharp edges of the

cylinder, homeotropic boundary conditions require the director to rotate by 90◦ within
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(a) (b)

(c)

Figure 2.4: Near a sharp right-angled edge, a nematic director field can rotate by 90◦

either through splay (a) or bend (b). We select the more physical splay solution by
modeling cylindrical colloids as supereggs of aspect ratio a/b and “sharpness” p (c).
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a small region, producing more splay than anywhere else. The configuration of Fig. 2.5

represents a compromise of the disclination’s splay-reducing attraction to edges with

the configuration preferred by an ellipsoid in Fig. 2.3, where the ring lay in a plane

perpendicular to ~n0.

As a result, the cylinder prefers to orient with its long axis at an oblique angle φ0

relative to ~n0 that increases with aspect ratio toward 90◦ at large a/b. For aspect ratios

a/b & 2, φ0 is well approximated by tan−1(a/b), suggesting that (at least heuristically)

the energy is minimized when the separation vector between the kinked ends of

the disclination lies in the plane perpendicular to ~n0.5 This analytic approximation

improves in accuracy as the sharpness p is increased, while the qualitative trend of

φ0 increasing with aspect ratio persists with decreasing p down to p ≈ 2. For oblate

cylinder shapes with aspect ratios below 1 (down to a/b = 0.25, the lowest tested),

the kinked disclination configuration and oblique colloid orientation remain, but the

positive correlation of φ0 with a/b disappears. While all results presented here assume

infinite anchoring strength on the colloid’s surface,6 the same qualitative trend of

φ0 increasing with aspect ratio is preserved when the anchoring strength is made

finite and reduced to W = 10−3 N/m, 10% of the anchoring strength for 5CB at

DMOAP-treated surfaces.

An alternative configuration, with the disclination ring encircling the colloid’s

short axis about its center (Fig. 2.5d), is also observed at high aspect ratio, but this

state only appears when the colloid is constrained to orient at unfavorably small

angles φ relative to ~n0. If the aspect ratio is increased further, we expect that the

5These results are for confinement in a cell of thickness 3 times the colloid diameter. For stronger
confinement in a cell of thickness 1.5 times the colloid diameter, the analytic approximation is less
accurate, but φ0 still increases monotonically with aspect ratio.

6The infinite anchoring strength approximation is reasonable because 5CB near DMOAP treated
surfaces experiences an anchoring strength W ≈ 10−2 N/m [118], so the anchoring extrapolation
length ξW = K/W is on the order of nanometers, similar to the nematic corellation length ξN ∼√
L1/|A| ≈ 7 nm.
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core defect energy per unit length of defects will allow the short-axis disclination ring

to eventually overtake the kinked long-axis disclination loop in stability, resulting in

alignment of long cylindrical colloids parallel to the far-field director at φ = 0. However,

in the numerical results, the kinked long-axis disclination loop remains stable, with

φ0 ≈ tan−1(a/b), for aspect ratios up to a/b = 10, the highest tested.

A similar result is found for microbullets (Fig. 2.6). Here, the disclination again

wraps around the colloid’s long axis and kinks to follow half of the circular end. At

the rounded end, the disclination is nearly undeflected. The energetically preferred

colloidal orientation φ0 is again oblique and increases with increasing aspect ratio. At

all aspect ratios tested, φ0 is well approximated simply by the average of tan−1(a/b)

and 90◦.

In Ref. [131], a wide range of cylinder orientations 35◦ . φ0 . 90◦ was reported for

a wide range of aspect ratios 1.3 . a/b . 4.7. The results presented here suggest that

orientation and aspect ratio ought to be correlated, and moreover that controlling

particle aspect ratio and corner sharpness offers a means of tuning the preferred

colloidal alignment.

2.4.4 Pair potentials for colloidal cylinders

Another consequence of the disclination configuration found above is that there are

actually two equivalent ground states: that of Fig. 2.5b,c/Fig. 2.6b and its mirror image

reflected through ~n0, as shown in Fig. 2.7. We now wish to calculate pair potentials for

colloidal cylinders in the thin planar cell geometry, but we must keep in mind these

two equivalent ground states for isolated cylinders.

To begin to understand how the effect of sharp edges on individual colloidal

orientation affects the properties of colloidal assembly, we seek to calculate the energy
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(a)

(b) (c) (d)

Figure 2.5: (a) Free energy of a colloidal cylinder (diameter 0.2µm, sharpness parameter
p = 10), modeled as a superegg, in a planar nematic cell (thickness 0.6 µm) with strong
unidirectional planar anchoring, as a function of the angle φ between the cylinder’s
long axis and the far-field director ~n0. The disclination ring wraps around the long axis
of the colloid but is kinked into an “S”-shaped configuration at the cylinder’s ends to
follow the sharp edges (b, c). As a result, the colloid prefers to orient obliquely relative
to ~n0 at angles φ0 marked by disks in (a). These angles depend on the aspect ratio
a/b and, for a/b & 2, are well approximated by φ0 = tan−1(a/b), shown as the dashed
lines in (a). An alternative disclination arrangement shown in (d) is responsible for
the sharp peaks at small φ for aspect ratios 4 and 5 in (a).
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(a) (b)

Figure 2.6: (a) Free energy of a microbullet (diameter 0.2µm, sharpness parameter p =
10) with various aspect ratios a/b in a planar nematic cell (thickness 0.6 µm) with strong
unidirectional planar anchoring, as a function of the angle φ between the cylinder’s
long axis and the far-field director ~n0. Colored disks show the energy-minimizing angle
φ0 for each aspect ratio, which is well approximated by φ0 = 1

2
(90◦ + tan−1(a/b)),

shown as the dashed lines. (b) The disclination ring wraps around the long axis but is
kinked at the flat end of the microbullet where there is a sharp edge.

of pairs of cylindrical colloids. In principle, this requires varying not only the separation

of the two colloids but also the orientation of each one. To reduce the number of

variables, we assume that both cylinders remain in the ground state orientation of an

isolated cylinder. The remaining variables are the distance and angle of the cylinders’

center-to-center separation, as well as the choice of equivalent or mirror-image ground

states for the colloidal pair.

The pair potential for two cylinders in the same ground state is shown in Fig. 2.8.

These cylinders attract end-to-end, as shown by the decrease in energy with decreasing

center-to-center separation distance as the cylinders, oriented at angle φ0, approach

along a separation angle φsep = φ0 relative to ~n0. This result predicts end-to-end

chaining for a series of cylinders in the equivalent ground state orientation. Whether a

chain of cylinders remains oriented at an angle φ0 relative to ~n0 is an open question.

Preliminary data suggests a chained cylinder pair can lower its energy by acting as a
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single cylinder of twice the length and therefore twice the aspect ratio of the original

cylinders individually, such that the final state contains a single kinked disclination

loop; the colloidal chain then prefers to reorient at the larger angle (relative to ~n0)

preferred by a cylinder with the higher aspect ratio. However, there may be a significant

energy barrier to such a rearrangement of two disclination loops into one, just as the

entangling of spherical colloids requires an input of energy, typically from laser tweezers,

to melt the nematic locally [106]. Therefore, it remains an open question whether long

chains of cylinders orient obliquely relative to ~n0. Meanwhile, the two cylinders in

Fig. 2.8 repel at two angles near φsep = φ0, corresponding to the configurations shown

in Fig. 2.8 where the cylindrical edge half with (without) a disclination running along

it approaches an edge half on the other cylinder likewise with (without) a disclination.

The pair potential changes drastically when the two cylinders are in the different

mirror-image states (Fig. 2.9). At large distances, the cylinders repel strongly when

approaching along a line perpendicular to ~n0. However, if the cylinders are forced close

enough together, one of the two disclinations switches the side of the cylinder end

that it follows, replacing the “S” configuration with a “C” configuration. Thereafter,

the repulsion at separation angle φ = 90◦ is replaced with an attraction that strongly

binds the two cylinders together. It is quite likely that such a switching move in

an experiment would be followed by a reorientation of the cylinder to the opposite

ground-state angle and a switch of the other end’s disclination kink to turn the “C”

back into an “S”, after which the cylinders could assemble end to end. Also, worth

noting in Fig. 2.9 is a slight attractive well corresponding to cylinder ends approaching

disclination-free side to disclination-laden side.

The fact that disclinations follow the sharp edges of cylinders also has implications

for colloids’ entanglement by merging of their disclinations. Such entanglement has

drawn great interest for generating a variety of stable structures [106], including
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hierarchical assembly of colloids of different sizes [119] and a wide array of defect knots

and links in colloid lattices [132]. An entangled state of two equal-size spheres is shown

in Fig. 2.10a, where a “twist cell” geometry with 90◦ offset between rubbing (anchoring)

directions at the top and bottom surfaces is used to stabilize the entanglement. A pair

of entangled cylinders is shown in the same twist cell geometry in Fig. 2.10b. As with

individual cylinders, the disclination travels in a straight line (roughly) along the long

axis of the cylinder and then follows a portion of the sharp edge at the cylinder end

before traversing to the end edge of the other cylinder.

Figure 2.7: The two mirror-image ground states of a colloidal cylinder.

2.4.5 Colloidal cubes

In going from ellipsoids to cylinders and microbullets, we found that adding an

edge or two created a new realignment effect with significant consequences for colloidal

assembly. What will happen then, if the colloids are cuboidal, with twelve edges?

Now there exist a multitude of ways for a disclination to wrap around the colloid by

following only edges!

We again want to round out the edges slightly to ensure that the boundary

conditions impose splay rather than bend on the director field. This is accomplished
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Figure 2.8: Pair potential for two colloidal cylinders in the same one-cylinder ground
state at various center-to-center separation distances as a function of the angle φ that
their separation vector makes with the far-field director ~n0. Insets show examples of
attractive (right) and repulsive (bottom left) configurations.
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Figure 2.9: Pair potential for two colloidal cylinders in opposite mirror-symmetric
one-cylinder ground states at various center-to-center separation distances as a function
of the angle φ that their separation vector makes with the far-field director ~n0. Insets
show examples of attractive and repulsive configurations. At φ = 90◦, a repulsive
interaction at long distances becomes attractive at short distances after one disclination
kink switches sides.
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(a) (b)

Figure 2.10: A pair of entangled colloidal spheres (a) and cylinders (b) in a nematic
twist cell with alignment directions at the two surfaces shown as pink arrows. The
colloid diameter is 0.2 µm in both cases. The boundary conditions are periodic in the
lateral directions. For the cylinders, the aspect ratio is 1 and the sharpness parameter
p = 5.

with the superellipsoid equation:

(
x2

b2

)p
+

(
y2

b2

)p
+

(
z2

a2

)p
= 1 (2.32)

Again, the coordinates have been rotated so that the colloid long axis is the z-axis;

the aspect ratio is given by a/b where a is half the cuboid length. For simplicity we

investigate only a/b = 1. Here, the “sharpness” p interpolates the shape between an

ellipsoid (a sphere for a/b = 1) at p = 1 and a rectangular cuboid (a cube at a/b = 1)

as p→∞.

We assume that two of the cube’s faces have normals in the vertical direction.

As with the ellipsoids, cylinders, and microbullets above, the cube is then rotated

about the z-axis to find the orientation that minimizes the free energy. We find that

the cube prefers to have the normals of its side faces oriented at 45◦ relative to ~n0.

The disclination wraps around six of the colloid’s twelve edges, dividing three faces
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from the other three, in one of the configurations shown in Fig. 2.11b. (The sharpness

parameter used in this case is p = 3.)

The multiplicity of possible disclination arrangements has a peculiar consequence:

snap-through reconfiguration of the disclination ring when the cube is rotated. To see

this, we conduct LdG energy minimization at an initial cube orientation, then rotate

the cube by small increments, re-minimizing the energy after each increment. (Actually,

we rotate ~n0 and leave the cube fixed, but the two processes are physically equivalent.)

This models a quasi-static rotation of the colloid relative to fixed anchoring conditions

at the top and bottom surfaces. The result, shown in Fig. 2.11a, is that the elastic

stress builds up until a sudden rearrangement of the disclination to a set of edges

more compatible with the new cube orientation, leading to a sharp drop-off in energy.

Increasing the sharpness parameter p delays the defect rearrangement and increases the

amount of elastic energy that builds up before the switch occurs. Upon further rotation,

the cube keeps the same disclination arrangement through an energy minimum with

φ at odd multiples of 45◦ before the elastic energy builds up again, leading to another

snap-through defect reorganization. A similar but less drastic snap-through defect

reconfiguration also occurs for cylindrical colloids, between the two mirror-symmetric

configurations mentioned previously.

Generally, the disclination around a cubical colloid always follows two horizontal

edges of the bottom face, two vertical edges on opposite sides of the cube, and two

horizontal edges of the top face. The vertical edges chosen by the disclination lie

roughly in the plane perpendicular to ~n0. This leaves two choices of edge pairs for each

of the top and bottom faces, but the defect ring always makes the opposite choice at

the top face compared to the bottom. There are thus four disclination arrangements

exhibited by the cube, as shown in the first four panels of Fig. 2.11b. Very sharp edges

on the cube slightly modify these defect configurations with a peculiar waviness, as
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the disclination appears to avoid the vertices of the cube (last panel of Fig. 2.11b).

Pair potentials for colloidal cubes are shown in Fig. 2.12. As for pairs of cylinders

above, the colloid orientations are fixed in the single-cube ground state, with the faces’

normals at 45◦ angles to ~n0. The interaction here is simple but interesting: Cubes

attract face-to-face but repel edge-to-edge.

2.4.6 Summary and future work

Through Landau-de Gennes numerical modeling of anisotropic homeotropic colloids,

we have found that colloid shape, and in particular the presence of sharp edges, has

a remarkable effect in reshaping the companion disclination ring. The disclination

executes sharp turns in order to follow the edges so as to alleviate the elastic energy

cost of splay at the edges required by strong homeotropic anchoring. While it would

at first seem to be only a microscopic effect, the defect’s attraction to edges leads to

a realignment of the colloid relative to the background director field. This predicted

realignment offers an explanation for the experimentally observed oblique orientation

of colloidal cylinders and microbullets in thin cell nematics. The colloidal realignment

in turn affects the geometry of colloidal assembly, as colloids tend to attract along

the directions normal to the faces with sharp edges. We also predict sudden changes

in defect arrangement as the colloid is rotated relative to the far-field director, or as

colloids are forced together along a repulsive direction.

Lithographic techniques are advanced enough to provide fairly precise control over

the aspect ratio and edge sharpness of colloidal microbullets, and possibly cylinders as

well. Experiments are underway to test these predictions at the time of this writing.

The snap-through defect rearrangements predicted for rotating and translating colloids

can likely be tested with the use of laser tweezers.
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(a)

(b)

Figure 2.11: (a) Change in free energy as a cubical colloid is rotated about a vertical
line through its center by angle φ, after numerically minimizing the energy with each
incremental rotation. The cube is 0.4 µm on each side; the planar cell is 1.2 µm thick.
Left: sharpness parameter p = 3. Right: p = 10. The disclination cycles through four
possible arrangements, shown in the first four panels of (b) for the p = 3 case. The
last panel of (b) shows one configuration for the cube with p = 10.
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Figure 2.12: Pair potential for colloidal cubes, oriented with their side faces at ±45◦

to the far-field director ~n0, as a function of the angle φ that their separation vector
makes with ~n0. Insets show examples of the most attractive and most repulsive cube
arrangements at φ = 45◦, 135◦, and 90◦. Cubes are 0.2µm on each side with sharpness
parameter p = 3; the cell has thickness 0.6µm.
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Future numerical work will proceed in three key directions. First, pairs of col-

loids will be replaced with chains and lattices to test various self-assembly outcomes.

Snap-through defect rearrangement could be especially important here in developing

multistable systems. Second, the interactions of colloids with different sizes and shapes

will be studied to determine the potential for new hierarchical self-assemblies, just as

disclination entanglement led to hierarchical assembly of differently-sized spheres [119].

Third, colloid shapes of increased complexity will be investigated to determine the

geometric possibilities offered by disclinations effectively confined to a one-dimensional

subset of a three-dimensional system—a prospect that suggests exciting connections to

topology. All of these areas of investigation will further the key finding presented in this

section: Colloidal assembly and alignment in nematic liquid crystals are highly sensitive

to details of colloid shape, offering a route to tunable effective colloid interactions and

an expanded library of self-assembly outcomes.

2.5 Disclinations in nematic liquid crystals in mi-

cropost confining geometries

2.5.1 Introduction

Classically, the bulk of a material system is where the action is: the interface is

oft relegated to a set of “boundary conditions.” However, crystal faceting [136], the

quantum hall effect [130], and even the AdS-CFT correspondence [2] fundamentally

reverse this relationship—the bulk properties can be read off from their effects on the

boundaries. In this section, we demonstrate migration and organization of colloids

constrained to a liquid crystal-air interface, driven remotely by the elastic distortion

created by the presence of topological defects in the liquid crystalline bulk. We examine
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experimental results in a nematic liquid crystalline system confined in a micropost

geometry, meaning a thin film of nematic on a substrate topographically patterned with

cylindrical microposts. A disclination ring is observed to form consistently in the bulk

of the liquid crystal 5CB around each micropost in the experiment. Colloidal spheres

on the interface experience an attraction to the regions above the submerged defects,

as well as an elastic repulsion from each other, leading to complex new assemblies.

The long range of these elastic interactions allows defects in the bulk nematic phase

far below the interface to direct assembly at the interface. Other recent work on

producing ordered arrangements of particles at liquid crystal interfaces beyond simple

triangular lattices—such as chains [46], stripes [91], and dense quasihexagonal lattices

[97]—has focused on confining the nematic in thin film or droplet geometries and

varying the surface coverage fraction. In these experiments, sensitive control over

substrate topography provides the ability to tune the defects’ positions and their

influence on the interface, offering a route to tunable non-trivial colloidal assemblies.

To understand how topological defects in the bulk drive complex assembly at the

boundary, in this section we use theoretical tools to examine both the appearance

of bulk disclination rings in the micropost geometry and the attraction of colloids

at the surface to the bulk disclinations below. We begin with a description of the

experimental setup and microscopy results, along with an analytic approximation

to broadly characterize the defect complexion. We corroborate this approach with

Landau-de Gennes numerical modeling and find that, surprisingly, the connection

between the boundary conditions and the substrate topography is not always entirely

geometric. Finally, we study the migration and arrangement of colloids at the surface

in response to disclinations in the bulk, and again gain insights through LdG numerical

modeling.
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2.5.2 Experimental setup and results

A square array of cylindrical microposts is prepared, with homeotropic anchoring

imposed at all surfaces. A thin film of the nematic liquid crystal 5CB is deposited on

this substrate, with its top surface exposed to air. As a result, a circular disclination ring

appears around each micropost. The defect lines encircle the microposts and appear

as bright lines in an otherwise black polarized optical micrograph shown in Fig. 2.13a.

Under sample rotation, the dark regions remain black, confirming homeotropic an-

choring, while bright field optical microscopy corroborates this observation (inset of

Fig. 2.13a). When the sample is heated above the clearing point (TNI = 34 ◦C), the

defect line is absorbed into the isotropic phase, resulting in a completely black image

under crossed polarizers. Upon cooling back to the nematic phase (either slowly at

0.1 ◦C/min or in contact with the room environment), the disclination reappears,

confirming that the texture is due to the equilibrium elasticity of the nematic liquid

crystal and the frustrated director field near the surface of the micropost. Fluorescence

confocal polarizing microscopy (FCPM) is used to determine the vertical position of

the disclination line, showing that, for a wide range of post heights, the disclination

occurs near the mid-height position (Fig. 2.13b). In addition, FCPM results indicate

that the disclination’s lateral separation from the micropost surface is within 5µm.7

Finally, varying the cross sectional shape of the microposts demonstrates that the

disclination line bears the signature of the micropost shape as shown in Fig. 2.13c.

7Though both bright field and polarized microscopy suggest a larger gap between the posts and
defects, this is believed to be an optical effect due to the curved interface and the birefringence of
the LC.
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Figure 2.13: Micropost-induced bulk defect rings. (a) Polarized optical microscopy
(POM) image of a micropost array where all surfaces have homeotropic anchoring
resulting in defect rings that circumscribe each micropost. INSET: Bright field image
of a single micropost where the bright line indicates the approximate lateral position
of the defect loop. (b) Fluorescence confocal polarization microscopy (FCPM) image
indicating the location of defects in an otherwise uniform director field. Top: A top
view of the micropost. Bottom: A z-stack of FCPM images in which the maximum
intensity represents the location of the defect core that occurs at approximately the
post mid-height. (c) Disclination lines are dictated by the shape of the micropost as
shown around triangular, square and pentagonal microposts. All scale bars are 50µm.
Red arrows mark the polarizer and analyzer directions in POM images. [19]
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2.5.3 Landau-de Gennes numerical modeling of bulk discli-

nation ring

What does the observed disclination ring imply about the bulk director field and

the boundary conditions associated with confinement? To address this theoretically, we

use LdG numerical modeling to study nematic 5CB in micropost confining geometries,

examining both the calculated director field and disclinations. In this section we use the

unequal elastic constants measured for the elastic anisotropy of 5CB, abandoning the

one-elastic-constant approximation in order to most accurately model the experiment.

The elastic constant values are L1 = 3.8 × 10−12 N, L2 = 5.3 × 10−12 N, and L3 =

5.3× 10−12 N, which are used to model 5CB with elastic constants K1 = 0.64× 10−11

N, K2 = 0.3×10−11 N, K3 = 1×10−11 N [70] (see Appendix A for relations between Li

and Kj constants). The mesh spacing corresponds to 4.4 nm. The microposts modeled

have diameter 440 nm and height 264 nm. The simulation box has length 1320 nm

in both horizontal dimensions. We model the anchoring strength on all the substrate

surfaces as infinite by imposing a fixed, uniaxial Q at the boundaries. We have verified

that finite anchoring strength in the strong anchoring regime does not significantly

change the results using a Rapini-Papoular-type surface potential as used in Ref. [108].

Periodic boundary conditions in the horizontal directions are used to simulate a square

array of microposts.

The micropost is modeled as a right cylinder bridging two planar interfaces. We

find four distinct local minima of the free energy: two in which there is no defect in

the bulk (Fig. 2.14b and its reflection through the horizontal), one with a disclination

ring around the micropost with +1/2 winding geometry (Fig. 2.14c), and one in which

the disclination ring has instead a −1/2 geometry (Fig. 2.14d). All the minima exhibit

axial symmetry and we find that the director field has no axial component as in Fig.
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2.14b-d. It follows that we can discuss the topology of the texture in terms of two-

dimensional nematics corresponding to each radial slice, promoting the ±1/2 geometry

into a pseudo-topological charge. The disclination ring is topologically charged in

the three-dimensional sense, as the director field profile is essentially constant along

its contour [5, 29, 55]; we will henceforth focus exclusively on the two-dimensional

pseudo-charge.

The total pseudo-charge can be calculated via the winding of the director around

the boundary of the sample. However, as our numerics demonstrate in Fig. 2.14, the

sharp corners at the cylinder-planar junctions require careful consideration of the

topology in each slice. Each corner can be resolved via a splay or bend texture leading

to a director rotation of ±π/2, respectively. Thus the defect pseudo-charge in each

radial slice is determined by the details of each junction. When the winding sense

is positive at corner X and negative at corner Y (Fig. 2.14b) or vice versa, there is

no disclination ring in the bulk. On the other hand, a disclination ring of winding

number +1/2 (Fig. 2.14b) is predicted at mid-height around the micropost when

the two corners both have positive winding. Likewise, a disclination ring of winding

number −1/2 (Fig. 2.14c) is predicted at mid-height around the micropost when the

two corners both have negative winding. Thus, the experimental observation of a

disclination in the bulk implies that the director winding has the same sign at both

corners. The nematic degree of order is diminished locally at the corners due to the

incompatible boundary conditions. It should be noted that the computed free energies

of the states with the bulk disclination ring (Figs. 2.14c and 2.14d) are slightly higher

than that of the states with no bulk defect (Fig. 2.14b), whereas the bulk disclination

is stable in experiment. A similar multistability due to sharp-cornered boundaries has

been reported for nematics in square wells with planar anchoring [82, 134]. There, the

choice of winding sense at each corner gives rise to two optically distinct states, a
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Figure 2.14: Numerical and topological evaluation of the director field. (a) The system
has two corners, labeled X and Y, where the director field can choose between two
winding senses. (b-d) Director fields corresponding to the relative minima of the
Landau-de Gennes free energy for a cylindrical micropost and planar interfaces, found
numerically. Isosurfaces of S = 0.48 are shown in red, where S is the leading eigenvalue
of Q. Blue ellipsoids indicate the director field. The nematic is locally melted at the
sharp corners. (b) Opposite winding at the two corners precludes the possibility of a
disclination in the bulk. (c) A bulk disclination with +1/2 (i.e., anticlockwise) winding
number requires positive winding at both corners. (d) A bulk disclination with −1/2
(i.e., clockwise) winding number requires negative winding at both corners. Since the
numerics show that the (meta)stable states have azimuthal symmetry and that the
director has no azimuthal component, we may think of these winding numbers as
pseudo-charges. [19]
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useful situation for bistable displays.

In the numerical model, we can induce a local preference for a given winding sense

by altering the geometry of either corner. For example, Fig. 2.15a shows a 5CB-air

interface curving upward to meet the micropost at a nonzero pinning angle as in

the experiment. As a result, bend is favored over splay and the winding is negative.

Conversely, curvature at the bottom of the micropost favors positive winding, as shown

in Fig. 2.15b. With this resolution of the sharp boundaries, the bulk disclination ring

is not even metastable in the numerics. To probe this experimentally, the sharp corner

at X was replaced with a curved base to favor a positive winding sense (+1/4) as in

Fig. 2.15b; the surface pinning maintains the preference for negative winding at corner

X. When the base of the micropost is slightly curved (Fig. 2.15c) the bulk disclination

persists but is pushed away from the base, closer to the 5CB-air interface. This result

is in contrast to the numerical prediction that any curvature at the micropost base

will cause the disclination to disappear. The defect position is verified using FCPM as

shown in Fig. 2.15d. Heating into the isotropic phase and re-cooling into the nematic

phase several times demonstrates the stability of the defect, which re-forms upon each

cooling into the nematic phase. Further, the bulk disclination remains even when the

microposts are completely submerged in a thick nematic film. However, when the

microposts are tapered all the way to the top (Fig. 2.15e-g), the bulk disclination ring

fails to form in the experiment (Fig. 2.15f and 2.15g), as verified by FCPM, which is

in agreement with the numerical results. Thus, the geometry of the boundary alone is

not sufficient to predict the qualitative features of the bulk director field. We suspect

that variations in surface chemistry, roughness, or relative magnitudes of anchoring

strength are important for the stabilization of bulk defects. On the other hand, these

findings demonstrate that sensitive control over the boundary shape offers the ability

to tune the stable position of the disclination ring.
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Figure 2.15: The effect of surface curvature. (a) Where the 5CB-air interface curves
upward to meet the micropost, LdG numerical modeling predicts that negative winding
is favored. (b) Likewise, curvature at the bottom of the micropost favors positive
winding; the surface defect in this case can be viewed as virtual, inside the micropost.
(c) Scanning electron microscopy (SEM) image of microposts with a curved base and a
corresponding (d) FCPM image detecting the presence of a disclination loop when the
micropost array is filled with LC. Typically this defect will sit toward the upper half of
the micropost. (e-g) Curved microposts tapered along their entire lengths, SEM image
shown in (e), do not induce the formation of a bulk disclination ring (verified with
FCPM), as is evident when viewed between crossed polarizers. The relaxation of the
director to the vertical direction with increasing distance from the micropost is much
more gradual in (f) than in Fig. 2.13a. Axial symmetry is lost at smaller micropost
spacing (g). All scale bars are 50µm. [19]
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As a further demonstration of the influence of boundary shape on defect con-

figuration, we consider numerically a micropost design with an undulating profile

(Fig. 2.16). Surprisingly, multiple disclination rings appear around the micropost.

Their cross-sectional winding number alternates in sign, with a −1/2 disclination ring

around the convex region and +1/2 disclination rings around the concave regions. In

comparison with a cylindrical micropost, the curvature of the undulating micropost

favors positive or negative winding of nearby disclinations in ways that are visually

obvious in the figure. The stability of multiple disclinations suggests the possibility of

multistable systems based on undulating microposts, with the number of disclinations

alterable by application of an electric field, for example. (Note that we have been

careful to curve the intersections of the micropost with both the top and bottom

boundaries to avoid the π/2 ambiguities discussed above and thus isolate the effects

of boundary curvature on disclinations in the bulk.)

Figure 2.16: Appearance of multiple disclination rings of alternating sign around a
micropost with undulating profile.
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2.5.4 Effect of bulk disclination on colloidal self-assembly at

an interface

Having carefully characterized the bulk nematic configuration, we now turn to the

interaction of the liquid crystal with colloidal particles. Prior work has established

that colloids are attracted to disclination lines, an effect that has been exploited in the

bulk to form wire-like chains of colloidal particles along the defects [38, 103, 114, 118].

Here, however, we study how to use the distortion field generated by the defect

to remotely steer particles trapped at the 5CB-air interface. Experimentally, when

a 5µm diameter silica microsphere with homeotropic anchoring is placed on the

interface, it migrates radially toward the micropost until contact (Fig. 2.17a). Though

capillary interactions are known to induce particle migration along curved surfaces [20],

capillarity effects are absent in this system since the interfacial distortions induced

by the microspheres are negligible [46, 98]. Further, when the system is heated above

the nematic-isotropic transition to annihilate the disclination lines, migration is no

longer observed, demonstrating that the observed migration must be orchestrated

solely by the elastic director field. In other words, the elastic distortion created by

the spherical particle is interacting with the bulk nematic texture. As noted in [46],

however, the distortions made by the particles are quadrupolar in nature and die off

rapidly away from the surface. Thus we expect that the colloids will only interact with

large director deformations. In a number of experimentally tested micropost-nematic

thin film geometries, colloidal migration was shown to depend on distance from the

bulk disclination but not (or at best weakly) on the distortion of the interface or on

nematic elastic distortion at Corner Y.

As the surface density of the microspheres is increased, a single ring of colloids

around each micropost (Fig. 2.17b and 2.17c) gives way to complex structures that form
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Figure 2.17: Elastic migration of colloidal particles induced by bulk topological defects.
(a) Time-lapsed images of the migration of spherical colloids towards a micropost (∆t
= 1 s). (b) A ring of colloids forms above a submerged micropost. (c) At moderate
surface coverage, ordered rings assemble around the micropost due to attraction by
the bulk defect and repel one another via long range interparticle repulsion. (d) As
particle density continues to increase, radial assemblies evolve into hexagonal ordering
until (e) highly complex structures form at a very high surface coverage. All scale bars
are 50µm. [19]

owing to the balance of attraction to the micropost and the long-range interparticle

elastic repulsion. This competition results in complex, ordered structures as shown in

Fig. 2.17d and Fig. 2.17e that nucleate from the post and evolve with distance away

from the post into a hexagonal lattice.

Since the particles migrate in creeping flow, the elastic potential in which they move

can be estimated by balancing the elastic and viscous forces. Particle trajectories were

tracked, and drag coefficients were inferred from the Brownian fluctuation of particles

at the interface and the Stokes-Einstein relation. The estimated elastic interaction

energies of order Ep ≈ 104 kT (Fig. 2.18a) were found to fall off as the inverse square

of the radial position from the post center. We again apply LdG numerical modeling

to study this attraction of colloids at the nematic-air interface to the micropost. We

do this by moving a small simulated spherical colloid with a quadrupolar defect at

fixed height near the top surface toward a micropost with a defect ring. As shown

in Fig. 2.18b, the elastic energy is well described by Ep = E0 − α(r − rd)−2, where
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rd is the radius of the disclination ring around the micropost and E0 and α are fit

parameters. The dependence of this potential on distance from the disclination, rather

than from the center or edge of the micropost, for example, further underscores the

role of the disclination as the principal cause of the elastic attraction.

2.5.5 Summary

We have demonstrated that bulk defects can be generated in confined liquid crystals

and can guide the assembly of remote colloidal particles into ordered structures through

nematic elasticity. The colloids assemble to mimic the defect structure in the bulk,

in this case, a ring around the micropost. At high surface coverage, attraction to

the defect ring is coupled with long-range interparticle repulsion and leads to highly

ordered structures that nucleate radially outward from microposts. LdG numerical

modeling has been applied to shed light on the important relationship between the

existence of a disclination around each micropost in the bulk of the nematic and the

nematic director field at the corners where the microposts meet the interfaces. The

inverse square dependence of the surface colloids’ elastic attraction to the microposts

was also verified in LdG numerical modeling, which highlights the relevant distance

as the colloids’ lateral separation the disclination itself. Coupled with the ability

to manipulate the nematic director through flow, fields, and functionalization, these

results paves the way to dynamically tunable assemblies at fluid interfaces.
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Figure 2.18: Elastic potential. (a) Migration of colloids implies bulk-colloid interaction
energies on the order of 1× 104 kT and follow Ep ∝ r−2 (solid curves), where Ep is the
inferred elastic potential and r is the radial distance in the horizontal plane from the
center of the micropost. As the height of a micropost is increased (different curves),
attractions become weaker due to an increased separation between particles and the
bulk defect. INSET: Migration rates are faster for microposts with base curvature
compared to those of comparable height that have a sharp corner at the base (corner
Y in Fig. 2.14a). This is due to the tendency of the bulk disclination to position itself
closer to the free interface for microposts with curved bases. Closed (open) symbols:
microposts with (without) curved base. (b) Numerically modeled energy of a colloidal
sphere approaching a micropost capturing the Ep ∝ (r − rd)−2 dependence of the
quadrupolar colloid interacting with a disclination ring. The red dashed line represents
the asymptotic value for Ep at large distances and rd is the radius of the micropost’s
disclination ring. INSET: Representative image of the numerical modeling. [19]
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Chapter 3

Cusps and disclinations in 2D

smectics on piecewise developable

surfaces

3.1 Introduction and summary

Dramatic progress has been made in algorithmic origami; it is now possible to

design nearly arbitrary three-dimensional constructions out of unstretched [73] or

nearly unstretched [31] plaquettes, isometric to pieces of the Euclidean two-plane. At

the same time, there has been theoretical and technological interest in crystalline and

liquid crystalline order on curved substrates [15, 56, 101, 135, 137]. The latter problem

can be studied in reduced complexity by considering surfaces with vanishing Gaussian

curvature except at isolated points and curves. Were we to consider only intrinsic

interactions between the substrate and the ordered phase, it follows that the in-plane

positional and orientational order would be completely determined by the folds and

conical points of the substrate. The connection between smectic textures, geometric

optics [57, 111, 137], and shocks [7] on flat and curved surfaces makes studies of the

smectic phase amenable to exact analytic study [6, 110] while capturing the salient

features of broken translational and rotational invariance [23]. Combined with the
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Figure 3.1: Substrates with conical defects. Notice that all of these surfaces are
intrinsically flat almost everywhere—they fail to be flat at points and lines only. [92]

simplified geometries we consider, we are led to highly tractable models of order on

curved backgrounds.

Here we study equally-spaced smectic textures on infinite cones, cones interesecting

with planes, and cones intersecting with cones, the latter two standing in for simple

bumps on surfaces and saddle-like regions, respectively; see Fig. 3.1. Not only do we

see the occurrence of focal lines and cusps in the ensuing smectic textures in Section

3.2, but we also see violations of the rules that usually govern the schlieren textures

of the sample in Section 3.3. Recall that curved geometry interacts with topological

defects [9] to alter the conservation of topological charge in much the same way the

background intrinsic curvature changes the rules for the sum of the interior angles

of a triangle. In the case of schlieren textures in flat geometries, defects mark the

confluence of an even number of dark brushes. However, even this simple counting

rule is violated on curved surfaces, as we will demonstrate. In Section 3.4, we develop

additional rules for equally spaced smectic layers on substrates with both conical

points and linear folds.

We commence with a cone C embedded in R3. C is a singular surface which

has zero Gaussian curvature everywhere except at its apex, where all the Gaussian

curvature is concentrated. The geometry of C may be conveniently examined by

cutting the cone along a radial line L and laying it flat on a plane (Fig. 3.2). This

way, C looks like a disk with a circular sector of angle δ removed and with its two

straight edges identified. The angle δ is called the deficit angle. A direct application
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Figure 3.2: A cone is isometric to a cut planar disk with two radial lines (denoted by
L above) identified. The point A is the apex of the cone. [92]

of the Gauss-Bonnet Theorem shows that δ is also the total Gaussian curvature of

any region of the cone which contains its apex.

In order to establish notation, let X, Y, Z and x, y be Cartesian coordinates as in

Fig. 3.2. A parameterization of C is given by:

X(R,Φ) =R cos Φ sin ζ,

Y (R,Φ) =R sin Φ sin ζ,

Z(R,Φ) =−R cos ζ,

where, as can be easily seen, the apex angle 2ζ is related to δ by sin ζ = 2π−δ
2π

. In terms

of x, y (see Fig. 3.2) and their polar coordinates, r =
√
x2 + y2 and tanφ = y/x, we

have

R = r,

Φ =

(
φ− δ

2

)
csc ζ. (3.1)

60



3.2 Building the layers

A necessary condition for the layers to be uniformly spaced is that their normal

vector field points along geodesics of the surface [1, 12, 57, 111]. In the flattened

model, these geodesics are just the straight lines of the plane. We know that defects

(even in flat space) tend to concentrate on lower dimensional sets in order to save

energy so, in a 2-dimensional surface, this means that point defects are favored and

this gives rise to layered structures in the form of wavefronts emanating from a point.

Note that the case where this point is taken to infinity formally corresponds to a

defect free configuration. We are thus led to consider a wavefront starting at some

point P0, whose corresponding point p0 on the cut disk lies at a distance r0 from

the disk center, which maps to the cone apex. Experimentally, this scenario can be

created deliberately with a colloidal particle that induces homeotropic anchoring for

the molecules of the liquid crystal. We can always cut the cone so that L is exactly

opposed to P0 and then choose coordinates such that L lies in the XZ plane. By doing

so, we have p0 = (−r0, 0). The geodesic “light rays” may then be parameterized by

x(λ) = −r0 + λ cosω, y(λ) = λ sinω; see Fig. 3.3. Whereas computing the geodesics

on a generic surface is nontrivial, for a conical substrate we have a simple analytic

mapping of straight lines on the cut disk to geodesics on the cone. The associated

smectic layers are concentric circles centered at p0. Note that we could choose the cut

L along any direction we like as long as we identify the two edges. Were we to do so,

when a straight line in the flattened model hits one of these cuts, we would continue

it with a straight line emanating from the other cut, making the same angle with

the new edge. This ensures that the geodesics remain straight and demonstrates that

the smectic texture is independent of the choice of L. The presence of any cusps or

grain boundaries in the smectic does not result from the flattened geometry—all this
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Figure 3.3: Cut-disk view of the cone, showing a parameterization of geodesics ema-
nating from a point disclination. [92]

could be computed directly on the cone, for instance. Note that we could, alternatively,

construct geodesics on a (full) two-disk, parameterized by X and Y with induced

metric:

ds2 =

[(
1 + cot2 ζ

X2

X2 + Y 2

)
dX2 + cot2 ζ

2XY

X2 + Y 2
dXdY

+

(
1 + cot2 ζ

Y 2

X2 + Y 2

)
dY 2

]
. (3.2)

Let X(λ), Y (λ), Z(λ) be the coordinates on the cone of the geodesics defined above.

A straightforward calculation shows that


Ẋ(λ)

Ẏ (λ)

Ż(λ)

 = k


cos ΨX + sin ΨY

− sin ΨX + cos ΨY

cos ΨZ

 , (3.3)
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where

k =
sin2 ζ

X2 + Y 2

√
(λ− r0 cosω)2 +

(
r0 sinω

sin ζ

)2

, (3.4)

Ψ = arctan

(
r0 sinω

(λ− r0 cosω) sin ζ

)
. (3.5)

The unit vector field obtained after normalizing this expression is given by

N =
1√

1 + cot2 ζ cos2 Ψ


cos(Φ−Ψ)

sin(Φ−Ψ)

− cos Ψ cot ζ

 . (3.6)

Therefore, the projection of N onto the XY plane makes an oriented angle Φ − Ψ

with the X axis (note that Ψ depends on X and Y through λ and ω (Fig. 3.3)). The

corresponding vector in the XY plane points along the unit direction

Np =

cos(Φ−Ψ)

sin(Φ−Ψ)

 . (3.7)

The projected layers can also be directly obtained in these coordinates by drawing

lines which are everywhere perpendicular to Np, with respect to the induced cone

metric (3.2). Thus, a single prescribed defect, together with the constraint of equal

layer spacing, uniquely determines the layer structure everywhere.

Alternatively, we can compute the layers as the level sets of a function D(P ) that

measures the distance from a given point P to the wavefront source P0. If the cut line

L is appropriately chosen (so that it contains P0, for example), the distance between

two points P = (X, Y, Z) and P0 = (X0, Y0, Z0) on the cone is just the planar distance

between their counterparts p = (x, y) and p0 = (x0, y0) on the cut disk. In terms of
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Figure 3.4: Layer structure on the 3D cone for a deficit angle δ = 5π/4. The image on
the right shows the back of the image on the left and vice versa. [92]

the coordinates R,Φ (see Eq. (3.1)), this yields

D(P ) =
√

(x+ r0)2 + y2 (3.8)

=

√
R2 + r2

0 + 2r0R cos

(
δ

2
+ Φ sin ζ

)
.

The layer structure on the cone, obtained from equally spaced level sets of D, is shown

in Fig. 3.4. The projected layers and geodesics seen from above are shown in the left

panels of Fig 3.5. Notice that the positive X axis develops a grain boundary for any

nontrivial deficit angle.

Indeed, the existence of a cusp is a consequence of the Gauss-Bonnet Theorem

[57, 111]; the maximum cusp angle of the layers at the grain boundary is equal to

π− δ and occurs at the cone apex. To see this, consider a closed path consisting of the

geodesic at ω = ω0 from P0 to an arbitrary point P1 on the grain boundary, followed

by the “mirror” geodesic at ω = −ω0 from P1 back to P0. The geodesics form an

interior angle π−αc on the cone at P1, where αc is the cusp angle formed by the layer

at P1. At P0, 2ω0 is the interior angle formed by the geodesics on the cone. Because

the geodesic curvature is zero on this path, and the integrated Gaussian curvature is
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Figure 3.5: The left panels show the layer structure (black lines) superimposed on
geodesics (gray lines on the bottom half) on the cone, as seen from above (i.e., projected
on the XY plane), for deficit angles δ = π/2, π, and 3π/2, respectively. The right
panels show the corresponding schlieren textures for the same deficit angles. A and P0

label the cone apex and the disclination location, respectively. [92]
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simply δ, the Gauss-Bonnet Theorem implies

δ = 2π − (π − αc)− (π − 2ω0) = αc + 2ω0 (3.9)

(notice that this equation also follows at once from the flattened model by elementary

geometry). The cusp angle αc is therefore maximized when we take ω0 → 0+, which

corresponds to taking P1 arbitrarily close to the cone apex. For values of δ greater than

π, the cusp angle becomes π at some point to the right of the cone apex, meaning that

the layers turn back toward the apex. Consequently, when δ > π the grain boundary

is interrupted by two new point defects: a +1-index disclination at the apex and

a −1-index disclination on the positive X-axis! This is shown in the left panels of

Fig. 3.5 and also in Fig. 3.4. The negative-index defect results from the fact that

the normal of some layers turns through an angle greater than or equal to π, and

the outermost such layer has a self-intersection on the grain boundary, resulting in a

locally hyperbolic configuration. By setting Y = 0, Np = (0,±1) and solving for X,

we discover that the −1-index disclination is located at X = −2π−δ
2π

r0 cos(δ/2) when

this quantity is positive. As δ → π+, the −1-index disclination coincides with the +1

disclination at the cone apex, and for smaller values of δ the grain boundary is free of

point disclinations. Note that this disclination dipole does not create a dislocation

and is an example of a pincement [23, 69] that is so “large” as to have generated extra

internal concentric layers, the dual to large Burgers vector dislocations [69].

3.3 Schlieren textures

How would these layer structures appear in an experiment? In examining nematic

and smectic liquid crystalline textures, it is common to view the sample between a pair

of perpendicularly crossed polarizers. The resulting schlieren texture, characterized
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by dark brushes on a bright background, reveals where in the sample the molecular

orientation aligns on average with the direction of either polarizer. For a smectic-A

liquid crystal on a conical substrate, the molecules are normal to the layers aligned

along the unit vector field N = (NX , NY , NZ) in the three-dimensional ambient space.

If we were to view the sample between a pair of crossed polarizers parallel to the XY

plane, we would measure Np, the normalized horizontal projection of N . Denoting

Θ as the oriented angle between the axis of one of the polarizers and the X axis, it

follows from Eq. (3.7) that the intensity of the light observed at a point (X, Y ) is

proportional to sin2 [2(Φ−Ψ−Θ)]. Fig. 3.5 shows the schlieren texture along with

the layer structure for several choices of the deficit angle when Θ = 0. It is interesting

to note that, besides the defect at P0 (wavefront source), the schlieren texture also

displays what is usually the signature of defects, the termination of dark brushes, at

the apex and at another point farther down the cone at positive X. This occurs due to

the grain boundary even for δ < π, when the positive X axis contains no topological

defects. More surprising deviations from the usual rules governing schlieren textures

are apparent when δ = 3π/2 and we rotate the polarizers, as shown in Fig. 3.6. To

the right of the apex, dark brushes abruptly disappear into the horizontal axis from

below, while other dark brushes spring into existence in the upper half-plane, as the

polarizers turn counterclockwise. In an experiment, such a schlieren texture would

be the clearest evidence of a grain boundary, demonstrating the range of “missing”

angles associated with a discontinuity in layer normals. Furthermore, the number of

dark brushes emerging from the point defect at the apex is not constant and is odd

for certain polarizer angles. In contrast, liquid crystalline textures that are continuous

except (only) at point disclinations typically exhibit a constant, even number of dark
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Figure 3.6: Schlieren textures for deficit angle δ = 3π/2, with the polarizer direction
at angles of Θ = 0, π/8, π/4 and 3π/8 with the X-axis, respectively. The analyzer
direction rotates to remain perpendicular to the polarizer direction. A and P0 label
the cone apex and the disclination location, respectively. [92]

brushes emanating from each disclination.8 This strange behavior can be understood

by noting that the normalized horizontal projection Np of N is not orthogonal to the

projection of the layers on the XY plane (as opposed to the 3D vector N and the

layers on the 3D cone which are, of course, orthogonal to each other). This can be

easily seen in the left panels of Fig. 3.5 and follows from the form of ds2 in (3.2). We

will come back to this point in the next section when we discuss the conical bump.

A slight generalization of the conical surface above is given by a tent, as shown in

Fig. 3.7 for δ = π. When δ > π, a ±1-index disclination pair appears as on the cone,

with the +1-index disclination located at the right endpoint of the tent ridge. The

8A notable exception is the case of degenerate hybrid aligned nematic (HAND) films, where the
number of dark brushes may vary with the polarizer angle because distortions in the director field
are most concentrated in a small sector of a disk surrounding the defect [76].
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Figure 3.7: Substrate in the shape of a tent. (a) A flattened model from which a tent
can be constructed by gluing along the lines AB and the lines BC. Also shown are a
point disclination at P0 and its associated geodesics (dashed lines) and layers (solid
lines). (b-c) The corresponding layers in the 3D tent (b) and their 2D projection (c)
for the case when δ = π and AB = AP0 = 1. A, B, and P0 label the cones apices and
the prescribed disclination location, respectively. [92]

layer structure can be obtained identically as before by employing the flattened model

shown in Fig. 3.7a.

3.4 Smectics around edges

The infinite cone has an isolated singularity at the apex. We have also considered

the case of a tent, where the substrate has an edge, i.e., a line where the surface

is not smooth. Other examples are shown in the last three images of Fig. 3.1, for

which a flattened model is not easily obtained because the edge is not straight in the

xy-coordinate system. The geodesics of such surfaces will generally appear kinked at

the edge. In fact, an argument similar to what is used in geometric optics, in connection

to Fermat’s principle, shows that a geodesic should cross an edge following Snell’s law.

This can be easily seen by noting that a geodesic is a curve with constant velocity

that provides the path of minimal length—and therefore minimal time—between two

given points. Note that the smectic analog of time is the number of layers through

which the geodesic passes over a given distance. Since the smectic layer spacing is the

same on both sides of the interface, Snell’s law implies that the angle of incidence
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equals the angle of “refraction” from the edge, where these angles are measured in the

tangent planes on either side of the edge. The angle of refraction might differ from

the angle of incidence if an interface separated two smectic phases of different layer

spacing, as larger layer spacing is analogous to smaller index of refraction. This could

occur in systems of immiscible smectics or at first-order transitions between different

smectic phases of the same material. But we digress.

Consider the “crater” on the second panel of Fig. 3.1. By symmetry, its layer

structure (provided some boundary condition) can be immediately obtained from

that on the single cone by reflection across an appropriate horizontal plane. A more

interesting configuration is the mountain pass shown in the third panel of Fig. 3.1. Here

we can also use symmetry to simplify matters. Since the substrate has mirror symmetry

across the vertical plane that contains the intersection, a geodesic that crosses the

interface is simply the mirror image of a geodesic reflected through the edge. In the

flattened model of the cone, the intersection will thus appear as a boundary Γ that acts

like a mirror, reflecting the “incident rays” according to the “angle of incidence equals

angle of reflection” rule on the plane. This is displayed in Fig. 3.8, which also shows

the resulting layer structure for this case. Notice that a grain boundary is formed at

the intersection between the surface and the XZ plane for all points on the left of the

rightmost apex, even between the cones.

Our discussion so far illustrates the general principle that, whenever curvature is

present, the constraint of having equally spaced layers leads to singularities in their

structure, with the appearance of cusps and grain boundaries. In particular, smectics

on substrates composed of Gaussian bumps have been shown to provide an accessible

system where these ideas take place [57, 111]. We now analyze a minimalist and

localized version of the Gaussian bump, the conical bump on the rightmost panel of

Fig. 3.1.
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(a) (b) (c)

Figure 3.8: Smectic layers on two intersecting cones with deficit angle π and apices A,
B. The layer structure is determined by a point disclination at P0, located a distance
r0 from apex A as measured on the cone. The horizontal distance between the two
apices is chosen to be 2r0. (a) Geodesics in the flattened out model of the rightmost
cone. Notice that the cut line L (Fig. 3.2) coincides, in this case, with the positive and
negative y axes so that (0, r0) and (0,−r0) represent the same point. The intersection
line is represented by Γ. Geodesics on the rightmost cone are represented by solid lines
while the mirror reflection of those geodesics that enter the leftmost cone are depicted
by dashed lines. (b-c) The layer structure on the cones. [92]

(a) (b) (c)

Figure 3.9: Conical bump with deficit angle given by π. We consider as boundary
conditions layers parallel to the X axis at Y → −∞. (a) The layers on the 3D bump.
(b) The projected layers (black) and projected geodesics (gray) on the substrate; notice
that they are not orthogonal to each other in the plane metric. (c) The projected
layers (black) along with fictitious layers (thin blue lines) which are constructed by
demanding orthogonality with the projected geodesics (see text). The intersection
between the cone and the plane is depicted by a dashed circle and A labels the cone
apex. [92]
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We consider a situation with the boundary condition chosen to be layers parallel

to the X axis at Y → −∞. Before meeting the cone, a geodesic γ which is normal to

the layers is a straight line parallel to the Y axis. At the interface it deflects according

to Snell’s law and then becomes a geodesic on the cone. There are two possibilities at

this point, as the geodesics can become trapped in the cone or can escape. If γ enters

the cone near the Y axis, i.e., with X = X0 close to 0, it will reach the X = 0 plane

before leaving the cone. As X0 grows, γ will leave the cone and become a straight

line again before crossing the X = 0 plane. By symmetry, the same will happen to

the geodesic corresponding to −X0 and, as a result, a grain boundary will develop at

the points of the cone located along the positive Y axis. An interesting observation

can be made about the escaped geodesics. Since a cone is an axisymmetric surface,

γ must satisfy Clairaut’s relation. This means that if ρ(s) is the radial distance of

the point γ(s) (in the XY plane) from the cone apex and α(s) is the angle that γ′(s)

makes with a longitude line of the surface, then ρ(s) sinα(s) is constant for each such

geodesic. At the boundary of the cone all the values of ρ are the same and α is just

the angle that γ makes with the interface. Therefore, γ enters and leaves the cone

making the same angle with the edge. As before, to determine the trajectory of the

geodesics inside the cone (and their exit point), we may either trace straight lines in

the flattened model or solve the geodesic equations on the cone. This is all illustrated

in Fig. 3.9 for a conical bump with deficit angle δ = π.

We saw in the previous section that the projected layers of a non-planar surface are

generally not orthogonal to their projected geodesics. This leads to schlieren textures

exhibiting an odd behaviour when the sample is analyzed with crossed polarizers

parallel to the XY plane. Now, suppose that we do not initially know that the sample

is really a curved surface and try to interpret it as a planar substrate. Apart from

the fact that we would be surprised by the unusual pattern of brushes, we would also
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be led to identify a fictitious set of planar layers which are everywhere orthogonal to

the projected geodesics, the latter being inferred from measurements under crossed

polarizers. Since the projected geodesics are not geodesics on the plane by themselves,

these fictitious layers cannot be equally spaced! This is illustrated by Fig. 3.9b,c.

Notice that, as expected, both the projected and the fictitious layers agree in the

planar region but, inside the bump, the latter are highly compressed and have the

opposite sign of curvature than the projected layers. This explains why the schlieren

textures resulting from a non-planar surface look so odd. If these fictitious layers were

real, they would correspond to a high energy configuration, due to compression, and

therefore would not represent the ground state. The transition to an equally spaced

structure amounts precisely to escaping to the third dimension and assuming the layer

configuration and shape of the bump. The infinite strain in the fictitious layers near

the cone apex signals this incompatibility as well. Whether the fictitious layers and

their geometry can be used as a surrogate to calculate the back reaction forces on a

deformable surface is an open question.
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Chapter 4

Focal conic domains in smectic-A

liquid crystals with confining

boundaries of complex shape

This chapter explores new types of micropatterning in smectic-A liquid crystals achieved

through the influence of boundary geometry—specifically, curvature and topographic

patterning—on the self-assembly of focal conic domains (FCDs). We begin in Section

4.1 with an overview of the structure and energetics of focal conic domains, as well

as an elegant geometrical model of complex FCD self-organization called the law

of corresponding cones. Topographically patterned substrates are shown to confine

and direct the patterning of a special, axially symmetric kind of FCD, called the

toric focal conic domain, in Section 4.2. In Section 4.3, topographic patterning in

the boundary leads to more complicated, hierarchical packings of more general FCDs

without axial symmetry, and we model both the geometry and energetics of resulting

smectic structures. Finally, in Section 4.4, curvature in the boundary is shown to

promote an unusual, radial organization of FCDs, which we explain via analogy with

the FCDs found in smectic tilt grain boundaries and then connect with the classical

“law of corresponding cones” through a new geometrical model.
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4.1 Background: Focal conic domains and the law

of corresponding cones

4.1.1 The smectic-A phase, focal sets and Dupin cyclides

The smectic-A liquid crystal (SmA LC) phase consists of rod-like molecules assem-

bled into layers one molecule in thickness, with the molecules’ long axes oriented on

average normal to the layer. It can be considered a two-dimensional fluid within each

layer, and a one-dimensional crystal along the layer normal direction. The ground state

(Fig. 4.1a) consists of parallel, planar layers with constant spacing d0 approximately

equal to the molecular length.

The bulk free energy for a SmA LC can be written

F =

∫
dV

[
1

2
K1(σ1 + σ2)2 + K̄σ1σ2 +

1

2
B

(
d− d0

d0

)2
]
. (4.1)

In the first term, the splay elastic modulus K1 penalizes mean curvature of the layers,

defined in terms of the principal curvatures σ1 and σ2, which are functions of space. In

the second term, a Gaussian curvature modulus K̄ multiplies the Gaussian curvature

of the layers. In the third term, a bulk modulus B penalizes compression or dilation of

the layer spacing d from the preferred layer spacing d0. Generally, compression/dilation

distortions are much more energetically costly than layer curvature distortions. More

precisely, the length scale λ ≡
√
K1/B is usually on the order of the layer spacing d0,

a microscopic length, so that distortions significantly affecting the layer spacing ought

to be confined to regions of microscopic volume [30]. For this reason, it is common

to assume the “limit of incompressibility”, according to which the smectic layers are

equally spaced everywhere except possibly in sets of dimensionality smaller than the
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sample dimensionality: walls, curves, or points for 3D smectics. From a macroscopic

perspective, these sets, known as focal sets, appear to have “cusp” discontinuities in

the layer normal direction, and they are treated as geometrical singularities where

smectic order breaks down. Crucially, however, the energetic cost of these singular

sets depends strongly on their dimensionality. The limit of incompressibility leads to

an intriguing mathematical explanation for the shapes of experimentally observed

singular curves in SmA LCs, which will be the signature of focal conic domains, as we

will explore below. Everywhere outside of the focal sets, the layers maintain constant

spacing d0 along the layer normal direction, which requires that consecutive layers are

parallel, i.e., the layer normal direction integrates to a straight streamline.

Whereas the smectic ground state easily satisfies uniform boundary conditions,

in this chapter we will mainly study thin films of SmA LCs under hybrid anchoring

conditions, with a substrate/LC interface below and an air/LC interface above providing

mutually antagonistic boundary conditions. At the free air/LC interface, the rod-like

molecules prefer an orientation perpendicular to the interface, so that a topmost layer

is parallel to the interface. This is homeotropic anchoring, and is illustrated in Fig. 4.1a

where we imagine the topmost layer to be the air/LC interface. At the substrate/LC

interface, the substrate chemistry is chosen to promote degenerate planar anchoring,

meaning that the rod-like molecules prefer any direction in the plane of the substrate,

so that the layers prefer to approach the substrate perpendicularly, as illustrated in

Fig. 4.1b.

The antagonistic nature of the two interfaces defining hybrid anchoring conditions

requires the smectic layers to distort away from the ground state in the bulk. However,

the high energetic cost of compression/dilation distortions, along with the associated

assumption of parallel layers, means that almost all distorted layer configurations will

prove highly energetically costly because of the nature of their focal sets. On the other
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(a) (b)

Figure 4.1: Schematic illustrations of the smectic-A ground state and anchoring
conditions, with smectic layers in red and representative rod-like molecules in green.
(a) Smectic-A ground state. If the topmost layer is the air/LC interface, then this
illustrates homeotropic anchoring. (b) Smectic-A ground state illustrating degenerate
planar anchoring at a planar substrate.

hand, a very special set of layer configurations will have significantly lower free energy;

these will be the focal conic domains.

To explore the concept of focal sets, we begin in two dimensions with planar curves.

Fig. 4.2 illustrates the concept with an ellipse as the example curve. At any point

on the curve, the tangent vector is perpendicular to a unit normal vector, and the

magnitude of the tangent vector’s rate of change is the curvature, inverse to a radius

of curvature that defines the distance along the normal direction from the point on

the curve to its associated center of curvature. Generically, as we move the point

under consideration around the ellipse, the center of curvature moves, tracing out a

one-dimensional set which is the ellipse’s focal set, also known as the evolute. There

exists a special curve, the circle, whose focal set is one dimensional, namely the center

of the circle.

Surfaces embedded in three dimensions generically have two-dimensional focal

sets. This is illustrated in Fig. 4.3 with a saddle-shaped surface. Each point on the

surface has curves passing through it in all directions in the tangent plane, each with

its own curvature. The maximum and minimum such curvatures are the principal
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(a) (b) (c)

Figure 4.2: Concept of focal sets for planar curves illustrated with an ellipse (red).
For a given point (yellow) on the curve, the magnitude of the rate of change of the
tangent vector (purple) gives the radius of curvature, which describes the size of a
circle (blue) that approximates the curve locally and that is centered at the local
center of curvature, shown in green in (a). In (b), the locus of centers of curvature
associated with all points on the curve traces out a one-dimensional set called the
focal set, or evolute. (c) For the special case of a circle, the focal set collapses to a
point at the circle’s center.

curvatures σ1 and σ2, which are respectively inverse to radii of curvature R1 and R2

and are associated with two principal directions. The radii of curvature give the size of

circles that approximate the surface locally along the principal directions (Fig. 4.3a).

Importantly, the point on the surface and its two centers of curvature are collinear,

separated along a line parallel to the surface normal direction called the generator.

As we trace out the locus of centers of curvature for all points on the surface, we

generically trace out two disjoint two-dimensional sets, which are the focal set (evolute)

of the surface (Fig. 4.3b).

The key fact about focal sets that is pertinent to SmA LCs is that in a family of

parallel surfaces (e.g., smectic layers), all the surfaces share the same focal set. Consider

a surface S0 and a parallel surface Sφ constructed by shifting every point on S0 a

distance φ in the surface normal direction. This shift changes the radii of curvature R1

and R2 at any given point P0 on S0 to R1 + φ and R2 + φ at the corresponding point

Pφ on Sφ [32]. As the layer normal direction remains unchanged by the shift, the center
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of curvature associated with Pφ is the same point as the center of curvature associated

with P0; the change in the radii of curvature simply offsets the shift distance φ. This

implies that, as we keep adding smectic layers, eventually the layers will intersect their

own focal set. At such places, a radius of curvature vanishes so that one of the principle

curvatures diverges, and also the layer normal experiences a “cusp” discontinuity so

that equal layer spacing much break down. Thus there is a significant energetic cost

both in terms of curvature and compression/dilation. A single layer might intersect its

focal set along a one-dimensional subset, so a portion of the family of parallel layers

will suffer from these singularities along a two-dimensional set, namely, the focal set

itself.

When boundary conditions require distortion, SmA LCs would therefore encounter

a major energetic problem, unless they can have focal sets of dimensionality smaller

than two. Just as circles are the only planar curves with zero-dimensional focal sets,

we seek a special class of surfaces with only one-dimensional focal sets. As it turns

out, collapsing the focal surfaces to focal curves is indeed possible, but only for a

very special class of surfaces called the Dupin cyclides [35]. The focal curves must

be conjugate conic sections: an ellipse and one branch of a hyperbola in orthogonal

planes, each passing through a focus of the other (Figures 4.4 and 4.5a). (In a limiting

case that we will not consider here, the focal curves may instead be two parabolas

intersecting at a point.)

As shown in Fig. 4.5a, we restrict our attention to the inner portions of the Dupin

cyclides with negative Gaussian curvature. Negative Gaussian curvature implies smaller

mean curvature than a positively curved surface with principle curvatures of similar

magnitude; moreover, the portions of the cyclides considered are sufficient to explain

the experimental observations. A focal conic domain (FCD) is a family of parallel,

equally spaced smectic layers in the form of portions of Dupin cyclides (Fig. 4.5b).
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(a) (b) (c)

Figure 4.3: Concept of focal sets for surfaces illustrated with a saddle (red). (a)
Any point on the surface has two centers of curvature (green) which describe the
size of circles (blue) that approximate the surface along the two principal directions.
The circles’ radii are radii of curvature, inverse to the principal curvatures. Both
centers of curvature are separated from the point on the surface along the normal
direction (black). (b) Tracing out the locus of centers of curvature generically yields
two disjoint two-dimensional sets, which together form the surface’s focal set, or evolute.
(c) Surfaces (orange) parallel to the original surface (red) share the same focal set
(green). Eventually, adding parallel layers requires some layer to intersect its own focal
set.
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(a) (b) (c)

Figure 4.4: Dupin cyclides, with their focal ellipse in green and focal hyperbola in
orange. A cyclide may be singular on the ellipse (a), on the hyperbola (c), or neither
(b) (as shown from different viewing angles).

The ellipse-hyperbola pair comprises the focal set of the FCD, which is therefore

one-dimensional.

In addition, it is possible for a family of parallel surfaces to have a zero-dimensional

focal set, but only in the special case where the surfaces are concentric spheres

(Fig. 4.5c), their focal set being the common center. Due in part to their high mean

curvature, concentric sphere families do not destabilize FCDs. However, the availability

of concentric sphere families as a smectic building block will turn out to be of great

importance to FCD assembly.

We might think of Dupin cyclides as merely a mathematical curiosity were it

not for the fact that SmA LCs frequently show evidence of possessing them. In fact,

the prototypical kinetically-trapped texture of this LC phase exhibits singular lines

in the form of nearly perfect elliptical and hyperbolic singular lines, visible under

bright-field microscopy [40]. Such “focal conics” are also present at equilibrium in

many situations (see, e.g., Fig. 4.21a and Fig. 4.22c below). Moreover, under polarized

optical microscopy, one focus of each ellipse exhibits a four-fold crossing of light and
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dark bands, characteristic of a +1 winding of the director in the plane of the ellipse

around the focus (see Fig. 4.21b). It was actually from such observations of focal

conics that the physical manifestation of Dupin cyclides, and thus the equally-spaced

layer structure of the SmA LC phase, were first deduced [40].

Why should the smectic free energy disallow 2D focal sets but permit 1D focal

sets, when 0D focal sets are also available? Part of the answer lies in the fact that

FCDs provide a natural way to satisfy hybrid anchoring conditions, as we will explore

in Section 4.2. But we can also gain some insight from a simplified energetic scaling

argument based on the bulk free energy of Eqn. 4.1. We assume that there is a single

macroscopic length scale L, the system’s linear size. We also assume that there is a

single microscopic length scale λ ≡
√
K1/B roughly equal to the smectic layer spacing

and the molecular length, which for the SmA LCs considered in this chapter is around

3 nm. The microscopic defect core size is taken to be ∼ λ. We also define a relative

layer compression/dilation factor ε ≡ (d− d0)/d0.

Using these definitions, we calculate how the compression and mean curvature ener-

gies of Eqn. 4.1 scale for smectic layer configurations with focal sets of dimensionality 0

(concentric spheres), 1 (focal conic domains), or 2 (tilt grain boundaries). A singularity

of dimensionality n has size L in n dimensions and size λ in 3− n dimensions. The

energetic scaling estimates are:

n name compression energy curvature energy

0 concentric spheres ∼ (Bε2)λ3 ∼ K1λε
2 ∼ K1L

1 focal conic domains ∼ (Bε2)Lλ2 ∼ K1Lε
2 ∼ K1L ln(L/λ)

2 tilt grain boundaries ∼ (Bε2)L2λ ∼ K1L(L/λ)ε2 ∼ K1L(L/λ)

The total energy scales as ∼ K1L for concentric spheres, ∼ K1L ln(L/λ) for FCDs,

and ∼ K1L(L/λ) for tilt grain boundaries. Tilt grain boundaries are more energetically

costly than concentric spheres by a factor L/λ ∼ 103 − 104. However, FCDs are more
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(a)

(b) (c)

Figure 4.5: Construction of a focal conic domain from Dupin cyclides. (a) Dupin
cyclides and their focal set (the “focal conics”), with example centers of curvature
shown as green balls. The point on the surface and its associated centers of curvature
on the hyperbola and the ellipse are collinear along the generator line. We consider
only the portions of the cyclides with negative Gaussian curvature, which are the
surfaces relevant to physical FCDs. (b) A focal conic domain (FCD), constructed
from a family of equally spaced Dupin cyclides, along with its focal set (the “focal
conics”). (c) A family of equally spaced concentric spherical layers, whose focal set is
zero-dimensional.

83



energetically costly than concentric spheres by a smaller factor ln(L/λ) which is

typically less than 10, and therefore not prohibitive. In combination with surface

energies from the hybrid anchoring conditions, FCDs are therefore often more stable

than concentric spheres despite having focal sets of one higher dimensionality.

4.1.2 The usual parameterization

Here we review the mathematical construction of idealized elliptic-hyperbolic focal

conic domains (FCDs). We take as focal sets an ellipse, parameterized as ~E(u), and a

hyperbola, parameterized as ~H(v), as follows:

~E(u) = (a cos(u), b sin(u), 0), u ∈ [0, 2π) (4.2)

~H(v) = (c cosh(v), 0, b sinh(v)), v ∈ (−∞,∞) (4.3)

Here, a and b are respectively the semi-major and semi-minor axes of the ellipse, and

c ≡
√
a2 − b2 ≡ ae where e is the eccentricity of the ellipse. We call e the eccentricity

of the FCD, as well. We now wish to construct smectic layers that, for fixed u, are

circles concentric about the ellipse point ~E(u), and, for fixed v, are circles concentric

about the hyperbola point ~H(v). We first calculate the distance from ~E(u) to ~H(v):

d(u, v) ≡
√
~H(v)− ~E(u)

=
[
a2 cos2(u) + c2 cosh2(v)− 2ac cos(u) cosh(v) + b2 sin2(u) + b2 sinh2(v)

]1/2
=
[
(b2 + c2) cos2(u) + (a2 − b2) cosh2(v)− 2ac cos(u) cosh(v) + b2 sin2(u)

+b2 sinh2(v)
]1/2

=
[
c2 cos2(u) + a2 cosh2(v)− 2ac cos(u) cosh(v) + b2 − b2

]1/2
= a cosh(v)− c cos(u)
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Every point ~X in the domain is associated with a single generator line G(u, v)

connecting ~E(u) to ~H(v). For each ~X, there are two possible choices of G: one for

which ~X lies between ~E(u) and ~H(v), and the other for which ~H(v) lies between ~E(u)

and ~X. Type I FCDs are constructed of the former, and Type II FCDs are constructed

of the latter. We can consider all the possible ~E(u) points simultaneously by imagining

the cone of revolution C ~X with base on the ellipse and with apex at ~X. C ~X intersects

the hyperbola at one point, which gives ~H(v) for a Type II FCD. The rays of C ~X can

be extended to produce an inverted cone C ′~X with apex at ~X. C ′~X also intersects the

hyperbola at up to one point, which gives ~H(v) for a Type I FCD. However, C ′~X may

not intersect the hyperbola at all, in which case the virtual branch of the hyperbola

must be considered, as we will discuss below.

Each layer is parameterized by (u, v). The entire FCD is parameterized by (u, v, φ),

where φ parameterizes the layer normal direction and is defined such that φ = c cos(u)

on the ellipse and φ = a cosh(v) on the hyperbola, with the positive φ direction

pointing from ~E(u) to ~H(v). Then (u, v, φ) is an orthogonal coordinate system. The

parameterization of a Type I FCD is

x(u, v, φ) =
a cosu(a cosh v − φ) + c cosh v(φ− c cosu)

a cosh v − c cosu

=
φ(c cosh v − a cosu) + b2 cosu cosh v

a cosh v − c cosu

y(u, v, φ) =
b sinu(a cosh v − φ)

a cosh v − c cosu

z(u, v, φ) =
b sinh v(φ− c cosu)

a cosh v − c cosu

u ∈ [0, 2π), v ∈ (−∞,∞), φ ∈ [c cosu, a cosh v].

This actually parameterizes only the portions of the Dupin cyclides that have non-

positive Gaussian curvature, which are the layer configurations typically seen in FCDs.
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To construct the entire Dupin cyclides, we have to introduce another, virtual focal set

located at the non-physical branch of the hyperbola. We do this by changing variables

from v to t defined by cos t ≡ 1/ cosh v. Then sinh v = tan t and tanh v = sin t. The

physical and unphysical branches of the hyperbola are parameterized together by

H̃(t) = (c/ cos t, 0, b tan t), with t spanning the whole range of angles (−π, π). Making

the change of variables in the FCD-I parameterization from above, we obtain

x(u, t, φ) =
φ(c− a cosu cos t) + b2 cosu

a− c cosu cos t
=
φ(e− cosu cos t) + a(1− e2) cosu

1− e cosu cos t

y(u, t, φ) =
b sinu(a− φ cos t)

a− c cosu cos t
=

√
1− e2 sinu(a− φ cos t)

1− e cosu cos t

z(u, t, φ) =
b sin t(φ− c cosu)

a− c cosu cos t
=

√
1− e2 sin t(φ− ae cosu)

1− e cosu cos t
(4.4)

u ∈ [0, 2π), t ∈ [−π, π), φ ∈ [c cosu, a cosh v] (Type I)

The same parameterization can be used to construct Type II FCDs, simply by changing

the intervals used for the variables to

u ∈ [0, 2π), t ∈ (−π/2, π/2), φ ∈ [a cosh v,∞) (Type II)

4.1.3 An aside: Transformations between Type I and Type

II FCDs

Define ϕ ≡ φ− a/ cos t, so that ϕ = 0 on the hypebola. Now the parameterization

reads

x(u, t, ϕ) =
ϕ(c− a cosu cos t) + ac/ cos t− a2 cosu+ b2 cosu

a− c cosu cos t
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Figure 4.6: Left: Complete Dupin cyclides of Type I FCD. Right: Type II FCD.
Physical focal sets are shown as black curves. Virtual focal sets are shown as light
gray curves.

=
ϕ(c− a cosu cos t) + ac/ cos t− c2 cosu

a− c cosu cos t

y(u, t, ϕ) = − bϕ sinu cos t

a− c cosu cos t

z(u, t, ϕ) =
b sin t(ϕ− c cosu) + ab tan t

a− c cosu cos t
(4.5)

The intervals for ϕ are [c cosu− a/ cos t, 0] for Type I FCDs and [0,∞) for Type II

FCDs. ϕ is nonpositive for Type I FCDs and nonnegative for Type II FCDs.

Now consider the following transformation: Send the ellipse major and minor axis

lengths to their opposites and rotate the FCD about ẑ by π, while keeping the sign of

c unchanged. In symbols,

a→ −a, b→ −b, c→ c, u→ u+ π. (4.6)
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Then, parameterization (4.5) becomes

x(u, t, ϕ) =
−ϕ(c− a cosu cos t) + ac/ cos t− c2 cosu

a− c cosu cos t

y(u, t, ϕ) =
bϕ sinu cos t

a− c cosu cos t

z(u, t, ϕ) = −b sin t(−ϕ− c cosu) + ab tan t

a− c cosu cos t
(4.7)

Comparing with parameterization (4.5), we see that transformation (4.6) is equivalent

to taking ϕ→ −ϕ. (There is an additional reflection through the xy plane required to

formally return to the original parameterization, but the FCD was symmetric under

this reflection in the first place.) This means that taking a, b to −a,−b, along with

a rotation by π, transforms an FCD of type I into an FCD of type II with the same

eccentricity, and vice versa.

A continuous transformation of a and b into their opposites can be accomplished by

taking them through 0, at which point the smectic layer configuration passes through

concentric spheres. To see this more clearly, we can rewrite parameterization (4.5)

with numerator and denominator divided by a:

x(u, t, ϕ) =
ϕ(e− cosu cos t) + ae/ cos t− ae2 cosu

1− e cosu cos t

y(u, t, ϕ) = −
√

1− e2ϕ sinu cos t

1− e cosu cos t

z(u, t, ϕ) =

√
1− e2 (sin t(ϕ− ae cosu) + a tan t)

1− e cosu cos t
(4.8)

Taking a→ 0,

x(u, t, ϕ) =
ϕ(e− cosu cos t)

1− e cosu cos t

y(u, t, ϕ) = −
√

1− e2ϕ sinu cos t

1− e cosu cos t
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z(u, t, ϕ) =

√
1− e2ϕ sin t

1− e cosu cos t
(4.9)

which reduces to x2 + y2 + z2 = ϕ2. Alternatively, we could take a, b to −a,−b through

±∞. At a = ±∞, the FCD becomes a family of cylinders coaxial about the line

x = y = 0. This is less easy to see from the parameterization, but it is geometrically

obvious for the e = 0 case where the focal sets are the line x = y = 0 and the circle in

the xy plane at infinity; furthermore, the structure is invariant under Lorentz boosts

and therefore does not change for e 6= 0. [4].

This relation between Type I and Type II FCDs under reversing the sign of a, b

is seen clearly in the general formula of Ref. [4] for zero-eccentricity FCDs as the

“product of two cones”,

[
(s+ r)2 + z2 − φ2

] [
(s− r)2 + z2 − φ2

]
= 0 (4.10)

where s =
√
x2 + y2. Setting the first factor equal to zero gives Type II FCDs; setting

the second factor equal to zero gives Type I FCDs. It is obvious that the two factors

are related by reversing the sign of r.

4.1.4 The law of corresponding cones

The law of corresponding cones [40] allows multiple Type I FCDs to be joined

together with no dislocations or discontinuities in the smectic layer normal. We now

review the law of corresponding cones for a family of FCDs. The ith FCD is bounded

by a right circular cone Ci that has its apex P on the hyperbola Hi and that includes

the ellipse Ei. Thus, Ci consists entirely of generators, straight lines which are normal

to the smectic layers and which each connect a point on Ei to a point on Hi. In the

“fan” texture typical of kinetically trapped FCD assemblies, when two ellipses E1 and
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E2 are tangent at a point Q, then their boundary cones C1 and C2 are tangent along

an entire generator if C1 and C2 have a common apex P where the hyperbolae H1

and H2 intersect (Fig. 4.7a). Tangency along the generator QP means that the layer

normals of the two FCDs agree precisely where the FCDs come into contact with

each other. Similarly, an FCD with bounding cone apex at P may be joined smoothly

onto a family of concentric spheres centered at P (Fig. 4.7b) [115]. This is fortunate

because concentric spheres, like FCDs, have a focal set of dimension less than two,

avoiding energetically costly cusp wall defects.

(a) (b)

Figure 4.7: (a) The law of corresponding cones (LCC) illustrated for a pair of Type
I focal conic domains (blue and red) with focal ellipses E1 and E2 tangent at point
Q, focal hyperbolae H1 and H2 intersecting at point P , and bounding cones C1 and
C2 tangent along the generator QP . (b) A Type I focal conic domain (blue) with
elliptical focal curve E and bounding cone C (outlined by black lines) intersecting
the hyperbolic focal curve (a straight line in this case) at point P , with layers joined
smoothly onto a family of spherical layers concentric about P .

What about Type II FCDs? Do they have a law of corresponding cones? For Type

I FCDs, the key was to first construct a bounding cone consisting of generators (layer

normals). Let’s starting by considering, for Type II FCDs, the cone of revolution C with

apex on the hyperbola at ~H(v) and containing the elliptical focal curve. Unfortunately,

the FCD generators no longer lie on the cone. However, if we continue the lines that
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formed the cone, from ~E(u) to ~H(v) for u ∈ [0, 2π), upward past ~H(v), we form an

inverted cone of revolution C ′ that does consist of generators of the Type II FCD. By

keeping only the region of the Type II FCD that is inside C ′, we can join the Type II

FCD onto other Type II FCDs, onto concentric spheres, and even onto Type I FCDs,

all with bounding cone apex or center at ~H(v). This construction is illustrated in

Fig. 4.8.

Figure 4.8: Left: Corresponding cones for Type II FCDs. Right: Composite texture of
Type I and II FCDs and concentric spheres. Physical focal sets are shown in black,
virtual focal sets in gray. For both figures, zero eccentricity is taken for simplicity.
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4.2 Epitaxial directed assembly of toric focal conic

domains on topographically patterned sub-

strates

4.2.1 Introduction

Self-assembly, self-processing, and bottom-up design are ever more important tools

for the development of new materials of both fundamental and technological interest

due to their robust capability for generating complex, hierarchical structures. In general,

self-assembling materials, including colloids, block copolymers, and supramolecules or

DNA form thermodynamically stable structures over a broad range of length scales,

from the micro- to nanoscales. Structure formation in these long-range ordered phases

is often governed by entropic and geometric considerations, leading frequently to a

limited variety of optimal, close-packed structures. However, close-packed structures are

not always appropriate in device applications. Some control has been gained through

so-called graphoepitaxy, which exploits substrates with topological [8, 11, 60, 112, 125]

or chemical [36] surface relief patterns that nearly match the domain structures of

block copolymers, for instance, and direct their epitaxial assembly into nanostructures

with long-range positional order and orientation in thin films. However, epitaxial

assembly of highly ordered square arrays has only been recently achieved in both

triblock copolymers [26, 126] and supermolecular assemblies of hydrogen-bonding

diblock copolymer in thin films [127].

Because of their geometrical, mechanical, and electronic anisotropy, liquid crys-

tals are not only highly sensitive to external aligning fields but can also exquisitely

control the propagation of electromagnetic phenomena. Consequently, the patterning

of LC molecules has long been of interest for scientific discovery and technological
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advancement. When the surface chemistry promotes planar alignment of LC molecules,

smectic-A LCs spontaneously form highly ordered hexagonal arrays of toric focal conic

domains (TFCDs; see Fig. 4.9c) [62], an axially symmetric case of the focal conic

domain in which the focal ellipse and hyperbola degenerate to a circle and a straight

line through the circle’s center (Fig. 4.9b). The Dupin cyclides in the TFCD case are

simply portions of nested tori; hence the name “toric”.

With a self-assembly viewpoint, we regard the entire TFCD as a composite defect

object. In surface measurements, a defect domain appears as a circular, cone-shaped

dimple at the LC/air interface. The bending of the LC layers under hybrid anchoring

conditions to form TFCDs results from the competing effects of planar anchoring at

the LC/substrate interface and homeotropic anchoring at the LC/air interface. In the

standard smectic ground state, the smectic layers are flat and parallel to the substrate

and thus the molecular orientation points normal to both the LC/air and LC/substrate

interfaces (Fig. 4.9a). The TFCDs form spontaneously when the decrease in surface

energy obtained by planar anchoring on the substrate outweighs the elastic energy

cost of bending the layers and the increase in surface energy due to the dimple-like

deformation of the LC/air interface. Regular hexagonal lattices of TFCDs have been

used to create microlens arrays [61], matrices for the self-assembly of soft microsystems

[85, 105, 138], lithographic templates [63], 2D charge transport models [25], and

patterned functional surfaces. The ability to control the size and arrangement of

TFCDs is currently under investigation; for instance, studies have employed substrates

presenting different surface chemistries [25, 117, 140, 141], confinement within 1D

microchannels [24, 25, 62, 109, 139], and randomly patterned planar and depressed

substrates [49]. Little is known, however, about a higher level of control of TFCDs

into three dimensions [32, 33]. Controlling topological defects and smectic LC phases

in three dimensions is of particular interest to the generation of blue phases and
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(a) (b) (c)

Figure 4.9: Thin-film smectic-A LC under hybrid boundary conditions on a featureless,
planar substrate. (a-b) Schematic illustration of smectic configurations, with smectic
layers in red, substrate in blue, and representative rod-like molecules in green. (a)
Smectic ground state. (b) A toric focal conic domain. (c) Scanning electron microscopy
(SEM) image of the top surface of a hexagonal lattice of TFCDs, with yellow circles
added to illustrate the close-packing of cylindrical domains. Images from Supporting
Information to Ref. [52].

other topologically structured materials, which will lead to possibly disruptive display

technologies.

Here, we study the epitaxial assembly of SmA LCs into arrays of TFCDs with

variable sizes and arbitrary symmetries (e.g., a square lattice) directed by pillar arrays.

In the experiments accompanying our theoretical description, planar anchoring of LC

molecules is induced by a substrate made of SU-8, a bisphenol A epoxy derivative. We

show that varying the pillar dimensions (size, height, and spacing) and thickness of

the LC film allows one to confine and direct the growth of each TFCD. As a result, we

promote a new variety of TFCD arrays beyond the close-packed hexagonal arrangement

formed spontaneously on a flat surface by controlling the size and symmetry of the

underlying pillar pattern. We hope that this template-directed assembly method will

benefit a number of engineering applications and advanced device concepts.

Using 1D microchannels, Kim et al. studied confined assembly of high density
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TFCDs and reported that domain formation was strongly influenced both by the

channel width W and, even more dramatically, by the channel depth H [62]. They

found that an energetically stable, hexagonal array of TFCDs is formed when W and

H are above the critical values, Wc ≈ 4µm and Hc ≈ 2µm. Here, we study planar-

anchoring pillar arrays with varying pillar diameter, height, spacing, and symmetry as

a 3D confinement system for SmA LCs.

4.2.2 Experimental results

Figures 4.10 and 4.11 demonstrate different TFCD morphologies from the assembly

of SmA LCs directed by confinement and interaction with the underlying square

pillar arrays at variable length scales. The SmA LC is composed of rigid biphenyl

molecules with semifluorinated chains. The geometry created by a square array of

pillars is described by three parameters: S, the smallest distance between the edges

of two diagonally neighboring (next-nearest-neighbor) pillars; D, the pillar diameter;

and H, the pillar height. Depending on the values of these parameters and of the LC

thickness h, the pillars define anchoring points for TFCDs at the centers of the pillars’

top surfaces, or on the substrate positioned symmetrically between four neighboring

pillars, or both.

When the LC thickness h exceeds the pillar height H by at least 1.5µm, a single

TFCD forms on the circular top of each pillar (see Fig. 4.10a). No TFCDs were

observed on the tops of pillars, however, when D < 1µm. This is due to inadequate

anchoring area for a circular defect. For such small TFCD diameters, the negative

energy contribution from the surface term at the LC-substrate boundary is outweighed

by the elastic energy cost and the increased surface area at the air-LC interface.

The experimental value of this critical diameter, Dc ≈ 1µm, agrees well with our
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(a) (b) (c)

Figure 4.10: Epitaxial assembly of TFCDs on SU-8 square pillar arrays with diagonal
next-nearest-neighbor separation S < Sc (the critical value of S). (a) Schematic
illustration of SmA LCs confined by a square pillar array with S < Sc. (b) Scanning
electron microscopy (SEM) image of the SU-8 square pillar array with diameter
D = 1µm, diagonal separation S = 3µm, and height H = 1.5µm. (c) SEM image
of the corresponding TFCDs assembled on the SU-8 pillar array (b) at LC thickness
h = 3.5µm. A representative square unit cell is outlined in pink. Inset: Polarized
optical microscopy image at a high magnification, each cross corresponding to one
TFCD.

calculations of TFCD energies in 3D pillar arrays (see Fig. 4.13b), which predict the

minimum domain diameter of an energetically stable TFCD to be approximately

1.0µm. Notably, this critical diameter does not change appreciably over a wide range

of h−H. Thus, with directing pillars of D ≥ Dc, a square array of TFCDs could be

generated that grows relatively large distances into the bulk. Indeed, we find that

both the square symmetry and dimensions of the pillar array were maintained in the

TFCDs for LC thicknesses up to 40µm (Fig. 4.13a), demonstrating the long-range

ordering into the bulk from surface epitaxy. Since the main aim of this study is to

control the arrangements of TFCDs other than the natural close-packed structures

using geometric confinement by pillars, in all experiments D and h − H were kept

small enough to avoid generating multiple close-packed TFCDs on the top surface of

a single pillar.

The experimental data also show that the pillar array defines TFCD anchoring
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(a) (b) (c)

Figure 4.11: Epitaxial assembly of TFCDs on SU-8 square pillar arrays with diagonal
separation S > Sc and diameter D > Dc (the critical value of D). (a) Schematic
illustration of SmA LCs confined by a square pillar array with S > Sc. (b,c) Scanning
electron microscopy (SEM) image of an SU-8 square pillar array with diameter D =
10µm, diagonal separation S = 15µm, and height H = 7.5µm. (b) At LC thickness
h = 7.5µm, a square lattice of TFCDs (centers circled in red) forms between the
pillars. (c) At LC thickness h = 9µm, two simultaneous square lattices of TFCDs
form, one with TFCDs between the pillars (centers circled in red) and one with TFCDs
on top of the pillars (centers circled in blue). [52]

points on the substrate between pillars: In the center of each unit cell defined by four

neighboring pillars, a single TFCD is observed when the diagonal pillar spacing S

exceeds a critical value, Sc ≈ 5µm, and the LC thickness h exceeds the critical height,

hc ≈ 1.5µm. The pillars cause this transition in two ways: They limit the surface

area on the substrate available to the TFCD for planar anchoring and they impose

additional planar anchoring conditions along the vertical pillar sides, requiring the

smectic layers to orient horizontally as they approach the pillars. As a result, when

S < Sc, LC layers align parallel to the bottom of the substrate, filling up the spaces

between pillars without forming a focal conic domain at any LC thickness. Conversely,

TFCDs formed between the pillars when S = 15µm > Sc for h ≥ hc, as shown in

Fig. 4.11b. When S ≥ Sc, D ≥ Dc, and h surpasses the pillar height H by at least

1.5µm (i.e., h−H ≥ hc), TFCDs are observed to develop from both anchoring sites,

the surface between pillars and the top surface of the pillars, as shown in Fig. 4.11c.
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4.2.3 Calculation of smectic free energy and critical pillar

diameter

We first calculate the energy of a TFCD on a planar substrate. The energy of a

TFCD relative to the flat-layer state is the sum of a surface energy term and a bulk

elastic term:

∆F = ∆Fs + ∆Fel.

The first term is the surface energy,

∆Fs = (σair
⊥ A

′ + σsubs
‖ A)− (σair

⊥ A+ σsubs
⊥ )A = σair

⊥ A
′ + (∆σsubs − σair

⊥ )A,

where A is the “undistorted” area taken up by the TFCD on the substrate; A′ is the

surface area of the distorted LC exposed to the air; σ air
⊥ is the energy per unit area for

molecules at the air/LC interface with orientation perpendicular to the interface; and

∆σsubs = σsubs
‖ − σsubs

⊥ is the difference in energy per unit area for molecules at the

LC/substrate boundary with orientation parallel vs. perpendicular to the boundary.

The second term is the bulk elastic energy, ∆Fel =
∫
dV∆fel , where the integral

is over the volume of the TFCD, and the elastic energy density is the integrand of

Eqn. 4.1, which we rewrite as

∆fel =
K1

2

(
1

R1

+
1

R2

)2

+
K̄

2

1

R1R2

+
1

2
Bε2

where R1, R2 are the layers’ principal radii of curvature and ε is a relative com-

pression/dilation factor. Because the smectic-A system is equally spaced, or more

specifically because the length scale λ ≡
√
K1/B is microscopic, we will assume that

the costly compression/dilation term vanishes outside of the cores of defects, so that
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ε = 0 throughout the region of integration. Following Kim et al. [62], we take K̄ = 0.

What remains is

∆fel =
K1

2

(
1

R1

+
1

R2

)2

.

The elastic energy is always positive, whereas the surface energy may be negative.

In the absence of pillars, the balance of the elastic energy and surface energy determines

whether a TFCD of a given radius is energetically favorable compared to the flat-layer

ground state.

We now find an explicit formula for ∆Fel, following the the method laid out in

the Supporting Information to [62]. The smectic layers are assumed to distort from

the horizontal ground state inside a cylindrical volume of radius a. With respect to

the origin at the center of the unit cell, we first use the cylindrical coordinates z, the

height above the substrate; s, the radial distance from the origin in a plane parallel

to the substrate; and φ, an azimuthal angle. We assume that the layers are distorted

into portions of tori as follows: If a layer’s height above the substrate is η for s > a

(0 ≤ η ≤ h), then the layer has height function z(s) =
√
η2 − (s− a)2 for s ≤ a.

Fixing φ selects a half-plane, in which we define new planar polar coordinates (r, θ)

relative to an origin at the point (z = 0, s = a, φ), with θ ∈ [0, π/2] and r ∈ [0, h]. The

two principal radii of curvature (of opposite sign) are

R1 = r

R2 = −(a− r sin θ)/ sin θ = r − a/ sin θ

where R1 corresponds to curvature about the circular defect, and R2 corresponds to
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curvature about the central line defect. Therefore,

∆fel =
K1

2

(
1

r
+

1

r − a/ sin θ

)2

=
K1

2r2

(
2r − a/ sin θ

r − a/ sin θ

)2

and the area measure on each layer is dS = r(a/ sin θ−r) sin θdθdφ = r(a−r sin θ)dθdφ.

We divide the cylindrical region occupied by the TFCD into two: Region I, a cone of

hypotenuse h, defined by:

ξ ≤ r ≤ a/ sin θ − ξ, arcsin(a/h) ≤ θ ≤ π/2,

and Region II:

ξ ≤ r ≤ h, 0 ≤ θ ≤ arcsin(a/h)

(see Fig. 4.12a). Here, ξ defines the core size of the line defect in the center of the TFCD;

its value of 3 nm is comparable to the layer spacing. Let ρ = a/h and θ∗ = arcsin(ρ).

The total elastic free energy is then

∆Fel =

∫ 2π

0

dφ

(∫ π/2

θ∗
dθ

∫ a/ sin θ−ξ

ξ

dr +

∫ θ∗

0

dθ

∫ h−ξ

ξ

dr

)
r(a− r sin θ)

[
K1

2

1

r2

(
2r − a/ sin θ

r − a/ sin θ

)2]
= 2πK1hρ

(
ln

(
hρ

ξ

)
− 2

)(π
2
− θ∗

)
− 2πK1hρ

∫ π/2

θ∗
dθ ln(sin θ)

+ 4πK1h(
√

1− ρ2 − 1) + πK1hρθ
∗ ln(hρ/ξ)− πK1hρ

∫ θ∗

0

dθ ln(ρ− sin θ)

To calculate the surface energy, we need the undistorted area A = πr2 and the

distorted area of the air-LC interface

A′ =

∫ a

0

ds

∫ 2π

0

sdφ

√
1 +

(
d

ds

√
h2 − (s− a)2

)2

=

∫ a

0

ds

∫ 2π

0

dφ
sh√

h2 − (s− a)2
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= 2πh2
(√

1− ρ2 − 1 + ρθ∗
)
.

The total free energy of the TFCD relative to the flat-layer state is therefore

∆F = 2πK1hρ

(
ln

(
hρ

ξ

)
− 2

)(π
2
− θ∗

)
− 2πK1hρ

∫ π/2

θ∗
dθ ln(sin θ)

+ 4πK1h(
√

1− ρ2 − 1) + πK1hρθ
∗ ln(hρ/ξ)− πK1hρ

∫ θ∗

0

dθ ln(ρ− sin θ)

+ 2σair
⊥ πh

2
(√

1− ρ2 − 1 + ρθ∗
)

+
(
∆σsubs − σair

⊥
)
πh2ρ2.

This energy as a function of the domain radius a is plotted in Fig. 4.12b for LC

thickness h = 3µm. Material constants used in the calculation, corresponding to the

SmA LC used in the experiments, include the splay elastic constant K1 = 5× 10−11 N,

the defect core size ξ = 3 × 10−9 m, and the energy per unit area for molecules

oriented normal to the LC/air interface σair
⊥ = 20 × 10−3 N m−1. The energy per

unit area for molecules oriented parallel vs. normal to the LC/SU-8 interface is

∆σsubs = −1.1 × 10−3 N m−1; this is found by requiring that the calculated TFCD

energy allow energetically stable TFCDs only for values of h ≥ hc = 1.5µm.

In Fig. 4.12c, we consider the case where a TFCD is confined on top of a pillar of

radius D/2 = 1µm. When the domain radius a is less than D/2, the free energy is

the same as in the planar substrate case. However, for a ≥ D/2, the energy benefit of

planar anchoring on the pillar top ceases to increase with increasing a; the surface

energy term is replaced by

∆Fs = σair
⊥ (A′ − A) + ∆σsubsπ(D/2)2.

Meanwhile, the elastic energy cost and the surface tension at the LC-air interface
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continue to increase with increasing a, so that the total free energy increases mono-

tonically for a ≥ D/2. As a result, we know with certainty that the free energy of an

isolated TFCD is minimized by a = D/2 (for sufficiently large h), meaning that the

pillar defines the lateral size of the TFCD.

In Fig. 4.13b, we plot the TFCD energy on a planar substrate as a function of

domain radius a at various values of the LC thickness h. We see from this plot that

the value of a where ∆F changes from positive to negative is approximately 0.5µm

for all LC thicknesses h ≥ 2µm. This size gives the predicted critical pillar diameter

Dc = 1µm below which the flat-layer state replaces the TFCD, which agrees well with

the experimentally observed value. A very similar calculation predicts the same value

for the critical diagonal spacing Sc between the sides of next-nearest-neighbor pillars

for TFCDs confined in the spaces between pillars, though the experimental value

of Sc is mysteriously far larger. The details of the calculation for Sc are somewhat

tedious and are omitted here in the interest of brevity, but they can be found in the

Supporting Information to [52].

(a) (b) (c)

Figure 4.12: Calculated free energy of a single TFCD as a function of domain radius
a. (a) Schematic diagram showing calculation parameters. (b) Free energy of a TFCD
on a planar substrate with LC film thickness h = 3µm. (c) Free energy of a TFCD
confined on a pillar of radius 1µm (solid curve) and height H = h− 3µm, with the
dashed curve showing the energy from (b). [52]
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(a) (b)

Figure 4.13: Insensitivity of epitaxial assembly to LC thickness. (a) SEM image of a
square array of TFCDs assembled in a SmA LC film of thickness h = 40µm on an
SU-8 square pillar array with D = 5µm, S = 5µm ∼ Sc, and H = 2.5µm. Image
courtesy of A. Honglawan. (b) Dashed black curves: TFCD free energy relative to
the flat-layer state versus domain radius a for a flat substrate, with LC thickness h
increasing from 2µm to 5µm by increments of 0.5µm. Red dashed curve: The same
energy in the limit h→∞. Thick red curve: The free energy for a TFCD of radius
a confined on top of a pillar with radius 0.6µm, in the limit h→∞. Adapted from
Fig. S7 in the Supporting Information to Ref. [52].

4.2.4 Discussion

Our results demonstrate three important features with regard to epitaxial assembly

of LC molecules confined and directed by an SU-8 pillar array. First, it is possible to

alter the naturally occurring close-packed lattice of the TFCD arrays via anchoring on

a non-planar boundary. The effect is not unique to square lattices; a non-close-packed

TFCD lattice was also generated experimentally by a hexagonal lattice of pillars [52].

Second, defect size and spacing can be controlled simply by varying the dimensions

of the directing pillars, which enables generation of TFCD arrays with defect size

and spacing smaller than previously observed in the same material at any given LC

thickness (≈ 5µm on treated and untreated flat Si surfaces and ≈ 2.6µm in a 1D

microchannel [49] for the smallest tested h = 5µm). The possibility of down-scaling

the spacing between defects is advantageous for possible LC-based device fabrication.

The third and most important implication of pillar-directed epitaxial assembly of
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LCs is the conservation of the symmetry and size scale of TFCD arrays at relatively

large LC thickness, experimentally observed up to 40µm (Fig. 4.13a) despite the fact

that on a flat non-patterned substrate the domain size scales roughly as the film

thickness [48, 49]. This behavior is a direct result of LC confinement and epitaxial

growth of individual TFCDs in which the geometry of the pillar sets the upper limit

for the size of a domain by imposing a sharp energy barrier to further domain growth.

Furthermore, the minimum allowable domain size is also nearly independent of LC

thickness, as predicted by the energy model: In Fig. 4.13b, we plot the calculated

energy of a TFCD relative to the flat-layer state as a function of domain radius. The

energy curve crosses zero at approximately the same domain radius (0.5µm) at any

h ≥ 2µm, setting the predicted Sc and Dc independently of h. While this finding does

not show that the TFCD is the state with globally minimizing free energy at all h,

the calculation does show that the simplest alternative state of planar layers remains

higher-energy than the epitaxially assembled TFCD lattice at arbitrarily large h, in

agreement with the experimental robustness of the lattice at h/a > 10. As a result, the

simple proof-of-principle experiments and modeling presented here provide a viable

technique to generate a uniform array with arbitrary symmetry of equal-sized TFCDs

that extend into the bulk.

4.2.5 Conclusion

We have demonstrated epitaxial assembly of focal conic domain arrays in SmA LCs

using substrates of patterned topography. The 3D nature of the pillar array is crucial

to confine and direct the formation of toric focal conic domains on the top of each

pillar as well as between neighboring pillars. Independently of LC thickness (above

a critical thickness hc), the pattern of pillar arrays determins the final crystal habit
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of the TFCD array: both highly ordered square and hexagonal array TFCDs were

obtained. The epitaxial approach presented here offers an entirely new and promising

organizational principle for smectic LC systems using simple topographic substrates.

In turn, it may lead to the formation of more complex LC phases in 3D that are

critical to the advancement of LC-based electronic and optical devices [32, 33], and

perhaps generation of novel materials when incorporating functional units such as

nanoparticles, nanocrystals, and carbon nanotubes into the LC layers.

4.3 Hierarchical assembly of elliptic-hyperbolic fo-

cal conic domains on topographically pat-

terned substrates

4.3.1 Introduction

In liquid crystals, average local molecular orientations assume geometries that can be

controlled by boundary conditions [17, 78] and external fields [58, 90], and the resulting

mechanical and electric anisotropies of LCs provide powerful tools in controlling the

propagation of light and the assembly of soft materials [71, 77, 91, 94, 104, 121].

A quintessential example is the blue-phase LC organized around a 3D disclination

network [27, 107]; as a display component, it offers rapid response time without

surface alignment [42]. The ability to tailor LCs with complex, topologically structured

geometries will be necessary for the next generation of display technologies and beyond.

In smectic-A LCs, focal conic domains have gone from mere geometric curiosities to

the focus of much attention in recent years as an enabling technological tool [49, 59, 138,

140]. Toric focal conic domain arrays have been used to fabricate functional surfaces

[61, 64], to direct the self-assembly of soft microsystems [89, 105, 138], to template
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lithographic patterns [63], and to enhance charge transport in photovoltaics and

transistors [100]. So far, most attention has been devoted to the precise manipulation

of the locations of FCDs in 2D lattices by confining individual domains within small

regions through both chemical and topographical patterning of the substrate [49, 59, 62].

For device applications, it is desirable to produce FCDs with prescribed arrangements

in 2D and 3D over large regions and to scale down the LC patterning.

Here, we present a unique level of control to direct the growth of FCD arrays by

inducing hierarchical assembly of multiple FCDs centered at the edges of micropillars

with nonoverlapping elliptical focal curves. Below a critical pillar height, the confining

effects produced by anchoring conditions on the pillar sides are diminished, but the

LC elastic and surface energies remain sensitive to the positions of the FCDs on the

patterned substrate. Consequently, multiple FCDs “share” a single pillar and self-

assemble in a hierarchical manner; changing the shape of the pillars promotes a variety

of nontrivial FCD arrangements. We use a simple energetic model for the smectic

LC that predicts the transition between this hierarchical assembly and topographic

confinement of FCDs as the pillar height varies. Additionally, we exploit the size and

spacing of the pillar array to tune the eccentricity, e, of the FCDs. In the case of TFCDs

with circular focal curves, e = 0, whereas parabolic FCDs have e = 1. The ability

to tune the eccentricity allows the creation of a versatile assortment of asymmetric

FCD arrays, the first step toward the formation of 3D networks and more complex

geometries. Finally, we present a geometric ansatz for the layer configurations that

allows us to numerically investigate the energetic effects of nonzero eccentricity. These

calculations are consistent with the observed nonzero eccentricity in the samples.

In a thin film geometry, smectic layers spontaneously assemble into FCDs in

response to antagonistic boundary conditions, with homeotropic anchoring at the

air interface and degenerate planar anchoring at the substrate. We now write the
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total free energy of the system as a sum of three terms, the elastic energy of the

LC and (separately) the surface energies at the air and substrate interfaces: ∆F =

∆Fel +∆Fair +∆Fsubs, where ∆Fsubs is highly dependent on topography of the substrate

and where we measure the free energy with respect to a reference state of horizontal

flat layers. In Section 4.2, we studied the uses of circular micropillar arrays of SU-8 to

confine SmA LCs both by limiting the surface area on the substrate available to each

FCD with degenerate planar anchoring and by imposing frustrating degenerate planar

anchoring conditions along the vertical pillar sides [52]. It is natural to ask (i) how the

FCD arrangement changes when the pillars become short enough so that their vertical

sides do not present an insurmountable barrier to local FCD anchoring, and (ii) how

the arrangement of FCDs and the smectic layer structure depend on pillar shapes

and lateral dimensions. Previous research on nematic LCs in micropillar arrays has

highlighted the importance of pillar shape in determining the texture and controlling

the placement of defects, demonstrating an inherently bistable LC display [65, 66].

4.3.2 Experimental results

Three sets of short (height H = 1µm) SU-8 micropillar arrays were constructed

with differing cross-section (circular vs. elliptical; Fig. 4.14 a1-c3). The SmA LC film

thickness cast on pillars was kept constant (h ≈ 7µm) so that h−H > hc ≈ 1.5µm,

the minimum film thickness at which FCDs form (using the same SmA LC material

as in Section 4.2). In the case of circular pillars, the center-to-center spacing between

pillars along a diagonal of the square lattice is S = 12µm, roughly twice the TFCD

diameter (7.2µm) that minimizes the free energy of a single TFCD on a substrate

with degenerate planar anchoring at the same h. As seen in Fig. 4.14 a2 and a3, four

FCDs formed on each pillar with their centers lying on the lattice diagonal and near

107



the pillar edges. On elliptical pillars, the number of FCDs on each pillar decreased

from four, to three (aspect ratio A/B = 1.2; Fig. 4.14 b2 and b3), to two (A/B = 2.5;

Fig. 4.14 c2 and c3), which is in sharp contrast to the confinement effect with taller

pillars (H ≥ 1.5µm) explored in Sec. 4.2 [52], where FCD centers were positioned only

in the centers of pillars or evenly spaced between neighboring pillars (see schematics

in Fig. 4.15). Simply reducing the height of pillars effectively changes the interaction

between pillar sides and FCD centers from repulsive to attractive, thereby promoting

“edge-pinning” of FCD centers to the boundaries of short pillars. As the pillar’s minor

axis length decreases, fewer FCDs are packed with their centers on the pillar edge.

To further elucidate the edge-pinning effect, an array of 1µm-tall, Y-shaped pillars

was prepared with each side of length 30µm, a much larger lateral scale than the

cylindrical pillars. Under crossed polarizers, the Maltese cross patterns of each FCD

were clearly distorted at the edges of the Y-shaped pillar (Fig. 4.14d). The distortion

was even more apparent in the 3D topography of the top surface imaged by atomic

force microscopy (AFM; Fig. 4.14 d4): the surface was depressed at the periphery of

the Y pattern but relaxed in the middle to the height of the surrounding flat region,

confirming that the attraction of FCD centers to pillar edges is strong enough to

disrupt the assembly of close-packed hexagonal lattices of TFCDs. The hierarchical

nature of the epitaxial assembly leads to geometric relations among the orientations of

FCD groups from one pillar to the next over regions spanning the whole pillar array.

For example, in Fig. 4.14a the centers of the four FCDs surrounding each circular pillar

form a square aligned with the substrate patterning’s lattice directions consistently

from pillar to pillar. Different pillar shapes yield distinct hierarchical arrangements

of FCDs. An especially interesting case is presented by the most eccentric pillars in

Fig. 4.14c, where the two FCDs on each pillar are connected by a line slightly rotated

off the major axis of the ellipse. This pattern breaks mirror symmetry along the pillar’s
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Figure 4.14: Formation of FCD arrays on 1µm-tall SU-8 pillars with variable sizes
and shapes. Optical images of top view of SU-8 pillars (a1–e1) and LC defect textures
on pillars without (a2–e2), and with crossed polarizers (a3–e3). (Scale bars: 20µm.)
(a) Circular pillars with diameter D = 5.5µm, the center-to-center spacing of the
nearest pillars W = 8.5µm, and the diagonal center-to-center distance of the next-
nearest pillars S = 12.0µm. (b) Elliptically shaped pillars with major axis length
2A = 6.2µm, minor axis length 2B = 5.2µm, W = 7.4µm (along the shorter
lattice vector), and S = 12.2µm. (c) Elliptically shaped pillars with 2A = 7.0µm,
2B = 3.4µm, W = 6.3µm (along the shorter lattice vector) and S = 11.8µm. (d)
Y-shaped post with equal peripheral dimension of 30µm at all sides. (e) Triangularly
shaped pillars with each side of length 10µm. The LC thickness h is ≈ 7µm (a–c) and
≈ 10µm (d and e). (d4) AFM height profile of LC defects assembled on a Y-shaped
post with equal lateral dimensions of 30µm. [51]
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major axis, and the choice of ground state is consistent over regions spanning tens of

pillars, even though the substrate patterning does not break this symmetry. In this

way, simply varying the pillar height and shapes causes transforms of the arrangements

of FCDs into anisotropic patterns, exhibiting order over large regions.

The importance of pillar shape to hierarchical assembly of FCDs is further evidenced

by the attraction of domains to the more highly curved regions of convex pillar edges

shown in Fig. 4.14c. We attribute this effect to the strong steric repulsion between

the neighboring FCDs. Two FCDs will prefer to position their centers as far apart

as possible while remaining tangent and keeping their centers pinned to the pillar

edge. The effective attraction of FCD centers to pillar “corners” is especially evident

in pillars with triangular cross-sections (Fig. 4.14e).

4.3.3 Surface confinement/edge-pinning transition

The transition from surface confinement to edge-pinning results from a delicate

balance of the elastic (layer curvature) energy in the bulk and the surface energy of

both the LC/air and the LC/substrate interfaces (details will be presented in Section

4.3.5). Degenerate planar anchoring along the pillar’s vertical surface imposes an energy

penalty for rod-like molecules tilted out of the vertical direction unless the molecule

happens to tilt in the tangent plane to the pillar edge. For tall pillars (empirically,

H ≥ 1.5µm), the substrate surface energy favors smectic layers horizontal at the pillar

edge, a condition that is not satisfied in the interior of an FCD. Thus, the surface

energy promotes confinement, with the FCD centers as far as possible from the pillar

edges. In contrast, the elastic energy is concentrated most strongly near the elliptic

and hyperbolic defect curves of the FCD, the focal set of the Dupin cyclides. This

effect would be further enhanced by including a core energy for the defect curves;

110



in this analysis, we have omitted this core energy because its form is uncertain and

because a transition from confinement to edge-pinning can be predicted by considering

only the bulk elastic energy. If the dimensions of the pillar and the LC thickness are

chosen so that two or more FCDs form for each pillar, then the elastic energy often

favors “hiding” the lower portion of the hyperbolic defect curve inside of the pillar,

removing a significant fraction of the elastic energy. The role of the pillar’s top surface

is more subtle, but the degenerate planar anchoring conditions on this surface generally

favor the edge-pinning configuration for short pillars. The balance of these energies

promotes edge-pinning as the confining effects of the pillar diminish with decreasing

pillar height.

To understand the transition from confinement to edge-pinning with decreasing

pillar height, we use numerical energy calculations to investigate a simplified scenario:

two TFCDs and one pillar in the shape of a circular cylinder. Fig. 4.15 presents the

calculated free energy ∆F relative to the reference state of equally spaced, horizontal

planar layers, as a function of the relative position of the pillar center along the line

connecting the two TFCD centers (see Sec. 4.3.5). We set the pillar radius to 1.1

times the TFCD radius, so that it is possible to hide portions of both straight-line

focal curves within the pillar. The LC thickness is 10µm and the TFCD radius is

5.2µm, chosen to minimize the analytic expression for ∆F on a flat substrate [64].

For all values of H, local minima in ∆F are seen when the pillar is centered directly

at the center of either TFCD, and when the pillar is positioned symmetrically between

the two TFCDs. The results reveal that the global minimum changes abruptly as H

decreases: for H > 2µm, the energy is minimized by centering the pillar at the center

of either TFCD, corresponding to a confinement effect. For shorter pillars, the global

minimum switches to a symmetric configuration of two TFCDs “sharing” a pillar

equally, with their centers near the pillar edges. This calculation correctly captures the
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transition of FCDs from confinement to edge-pinning with decreasing pillar height.

Figure 4.15: A plot of the numerically calculated free energy ∆F , relative to the
reference state of planar layers, as a function of the relative position of the circular
pillar center along the line connecting the two TFCD centers for different pillar heights
(H = 0.5− 4µm). The TFCD radius is set to 5.2µm at LC thickness h = 10µm on
the pillar array with radius of 5.72µm. Schematics illustrate the TFCD arrangements
on the pillar with edge-pinning and confinement effects.

The edge-pinning regime provides a geometric means to tune the eccentricity

of FCDs. By comparing the AFM height profile of FCD arrays formed on circular

and elliptical pillar arrays to LC textures observed in optical and scanning electron

microscopy (SEM) images (Fig. 4.16), we find two surprising features. First, the LC

thickness is typically smaller over the pillar, where the substrate is raised, than over

the lower regions between pillars. Along a line that passes through successive cusp-like

indentations marking the terminations of hyperbolic defects at the air interface, we

measure an alternating set of large and small arcs on the topmost layer. Second,
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relatedly, there is a lack of axial symmetry about the cusp. The absence of axial

symmetry clearly implies that the edge-pinned FCDs are not toric; their eccentricity

is nonzero.

Figure 4.16: Surface characterization of FCD formation on the circular (a–d) and
elliptical pillar arrays (e–h); the former correspond to the pillars seen in Fig. 4.14a, the
latter to Fig. 4.14c. Optical images (a and e) reveal a defect texture with the polarizer
and analyzer at a relative angle of 45◦, and the corresponding surface topography of
FCDs arrays obtained from SEM (b and f). (c and g) 3D maps of the surface of the
LC films extracted from AFM measurements based on their height profiles with color
representation of relative thickness of the film. (d and h) Plots of the height profiles
along the dashed white lines in c and g.

FCDs with zero and nonzero eccentricity are illustrated in Fig. 4.17a-c. Nontoric

FCDs select a particular direction in the plane given by the direction in which the

hyperbola bends. In the topmost-layer profile, the periodic alternation of small and

large arcs suggests the following model: the hyperbolae face inward toward the pillar
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centers, and thus face away from each other over the spaces between the pillars

(Fig. 4.17d).

Why should nonzero eccentricity be favored in the edge-pinning regime? We propose

an answer based on geometry. Consider the square array of circular pillars (Fig. 4.14a),

where S slightly exceeds 4 times the pillar radius of 2.75µm. Consequently, TFCDs in

a symmetrical arrangement with their centers pinned to the edges of one pillar could

not possibly have their circular focal curves tangent to those of the corresponding

TFCDs of the neighboring pillars. A small gap would be left in between, creating

extra area on the substrate with unfavorable, homeotropic anchoring rather than the

preferred degenerate planar anchoring.

However, the FCD array can close the gap by shifting to small but nonzero

eccentricity. Like the TFCD, an FCD of any eccentricity enjoys degenerate planar

anchoring on a level surface in the area enclosed by its ellipse. Because the hyperbolic

defect passes through the focus of the ellipse rather than through its center, nonzero

eccentricity can shift the FCD center so that the ellipse is tangent to the ellipse of

a neighboring pillar’s FCD, while maintaining edge-pinning of the hyperbolic defect.

Based on the dimensions presented for Fig. 4.14a, this geometric model predicts

an eccentricity, e = 0.12, which agrees reasonably well with a separate estimate

e = 0.08, based on the AFM data in Fig. 4.16c,d (see Sec. 4.3.5). Furthermore, nonzero

eccentricity can decrease the elastic energy by bending the hyperbolic focal curve

toward the pillar center, thus hiding more of the FCD’s high-curvature central region

inside the pillar.
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Figure 4.17: Schematic illustration of internal structures of FCDs with zero (a) and
nonzero (0.2) (b and c) eccentricity in regions bounded by a cylinder (a and b) or a
cone configuration (c). (d) Representation of a possible arrangement of FCDs with
nonzero eccentricity on circular pillars with the edge-pinning effect.

4.3.4 Filling the smectic regions between focal conic domains

The regular assembly of FCDs in groups of two to four poses an interesting problem

as to how the LC molecules fill the interstices between the domains. For TFCDs, the

interstices are filled by horizontal layers, onto which the layers of the TFCD match with

continuous layer normals on a right cylinder containing the circular focal curve. FCDs

of nonzero eccentricity oriented in different directions cannot be joined by planar layers.

Instead, elliptic-hyperbolic FCDs typically assemble in groups with their hyperbolic

focal curves, or their imagined extensions, all intersecting at a single point P , and

with the elliptical focal curves tangent to their neighbors, as prescribed by the law

of corresponding cones. Friedel [40] showed that FCDs associated in this way can be

joined, with continuous layer position and normal direction, across bounding surfaces

in the form of right circular cones that have apices at P and that include the elliptical
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focal curves.

It is geometrically possible for smectic layers to fill the space immediately outside

of these “corresponding cones” with portions of spheres concentric about P , again

without discontinuity in layer position or normal direction, as demonstrated by Sethna

and Kléman [115]. In a model originally proposed by Bragg [16] and confirmed in

experiments by Lavrentovich [75], the sample is divided into quasi-pyramidal regions,

each filled by FCDs and spheres organized around a given point P , as well as wedges

between the pyramids, which are filled by portions of still more FCDs. This construction

fills a region entirely with layer configurations possessing only zero- and one-dimensional

focal sets. In thin-film smectics, there is no energetic prohibition of more general layer

configurations with 2D focal sets outside the FCDs, provided that the focal sets of

these interstitial regions lie below or above the sample as “image cusps” that are not

physically realized in the smectic. In this sense, confinement dramatically expands the

range of possible layer geometries even in an ideal system.

To quantitatively estimate the effect of nonzero eccentricity on the free energy,

we propose an ansatz configuration for the layers in the case of four FCDs around a

circular pillar as in Fig. 4.14a. (We focus on this case for modeling because it enjoys the

highest symmetry.) Our ansatz employs the conical bounding surfaces of Friedel [40]

but not the concentric spheres of Sethna and Kléman [115] or Bragg’s pyramids [16].

First, we choose a point on the hyperbolic focal curve to serve as the apex of a right

circular cone C that passes through all points on the elliptical focal curve. C provides

a boundary separating the FCD on the inside from some other layer configuration on

the outside (Fig. 4.18a).

However, how will we bridge the gaps between the cones? Because C consists of

generators for the Dupin cyclides, the layers meet the cone at right angles. Generators

are straight lines consisting of surface normals to parallel layers, which remain constant
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from layer to layer in the normal direction and point toward the center of curvature.

Consider a point Eu on the elliptical focal curve parameterized by u ∈ [0, 2π) (see

Sec. 4.3.5), and the subset of the FCD with one center of curvature at Eu, the other

center lying on a variable point on the hyperbola (Fig. 4.18b). This subset consists of

circular arcs concentric about Eu. Continuity of the layer normal across the bounding

cone requires that the cone generator through Eu is also the generator of the layers just

outside the cone. We must choose a new center of curvature along the same generator.

A natural choice is the intersection Iu of the cone generator with the corresponding

generator of the neighboring FCD’s bounding cone. This intersection lies somewhere

below the sample. The simplest reasonable construction is to fill in the regions outside

the bounding cones with circular arcs concentric about Iu, in the plane containing the

cone generator through Eu and the cone normal direction along this generator. When

the construction is repeated for all u ∈ [0, 2π), we obtain a set of parallel surfaces that

matches the FCD layers along the boundary cone and bridges the space between FCDs

in a manner compatible with the observed fourfold symmetry (Fig. 4.18c). Using this

construction, we can produce simulated AFM data for the topmost layer that agrees

reasonably well with the experimental data (compare Figures 4.18d and 4.16c). In

combination with the structure of the FCD itself, this ansatz provides a family of

space-filling smectic layer geometries parameterized by the eccentricity. We numerically

evaluate the elastic- and surface-energy integrals for these geometries and plot the

total ∆F as a function of e in Fig. 4.18e. This plot shows that ∆F for eccentricity

e . 0.04 is comparable to that at e = 0, whereas ∆F increases nearly monotonically

for larger e. This result is consistent with the experimental observation of stability of

nonzero eccentricity on the order of 0.1. Adding a core defect energy for the hyperbolic

focal curve would decrease the free energy at e & 0.1 relative to that at e = 0, due to

a portion of the hyperbola disappearing inside the pillar as discussed above.
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Figure 4.18: Schematic illustrations of (a) a single FCD bounded by a cone, (b) a
smectic layer construction bridging between two bounding cones with circular arcs
concentric about Iu, in the plane containing the cone generator through Eu and the
cone normal direction along this generator, and (c) a complete layer construction of
four FCDs surrounding a pillar for all u ∈ [0, 2π) based on B. (d) A 2D map of the
top-most surface of (c) with a color representation of surface height. (e) A plot of
the total free energy of the LC geometry in C as a function of the eccentricity of the
FCDs. [51]
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Could this system alternatively be modeled by the pyramids and wedges construc-

tion of Bragg? In the case of four FCDs around a circular pillar, we could imagine

constructing an indented square pyramid around each pillar, containing four FCDs

whose hyperbolae intersect at the pyramid’s apex, along with portions of concentric

spheres (Fig. 4.19a). A roughly tetrahedral wedge containing a portion of an FCD

is inserted between every pair of neighboring pyramids (Fig. 4.19b,c). Finally, each

four-corner meeting point of the pyramids’ bases on the substrate also serves as the

apex of an inverted square pyramid filled only with concave-down portions of spherical

layers (Fig. 4.19d), forming the purple regions in Fig. 4.16c. The resulting structure is

illustrated for a single layer in Fig. 4.19e. This model predicts a concave-up region above

the center of every pillar, where the layers would form portions of spheres concentric

about a point above the sample. It is possible that the slight depression in the middle

of the smaller arc of Fig. 4.16d is evidence of such a concave-up region. However, the

concave-up regions in the AFM data are no more than 1µm in width, implying that

the ellipse eccentricity exceeds 0.7, far greater than our estimate e ≈ 0.080 based on

calculations independent of our model for the interstices (see Sec. 4.3.5). Furthermore,

similar slight depressions are arguably visible in Fig. 4.16h, for the case of two FCDs

around elliptical pillars, but are not expected in a model using Sethna-Kléman filling

with concentric spheres [115]: If the bounding cones of FCDs are tangent to those

of their neighbors, then the white dashed line in Fig. 4.16g passes from one FCD to

the next without going through a region of spherical layers over the pillars. With

maximum parsimony in mind, we propose our model, which fits the geometry and

eccentricity more readily.
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(a) (b) (c)

(d) (e)

Figure 4.19: A “classical” model for the filling of smectic layers between FCDs in the
geometry of Fig. 4.14 a, based on the theories of Bragg [16], Sethna and Kléman [115],
and Lavrentovich [75]. (a) Four FCDs (red surfaces) assembled around a micropillar
self-organize according to the law of corresponding cones, with their ellipses (magenta)
tangent to those of their neighbors and their hyperbolic focal curves (red) converging
at a point above the pillar’s center. The intersection of their hyperbolae serves as
the center of a family of (portions of) spherical layers that join together the four
FCDs to form a “pyramid”. (b) We construct another FCD (blue surfaces) whose
focal sets (yellow curves) lie in vertical planes, the ellipse in the mid-plane between
two neighboring pyramids and the hyperbola bridging between the apices of the two
pyramids. The new FCD, mirror symmetric through the plane of its ellipse, joins
together the portions of spherical layers of the two pyramids. (c) We excise from the
blue FCD all regions generated by the portions of the ellipse lying within the sample,
as the yellow ellipse is not observed experimentally. (d) The sample is now divided
into roughy pyramidal and tetrahedral cells by a scaffolding of the new FCDs’ focal
sets (yellow curves). The inverted “pyramids” are filled with portions of spherical
layers, concentric about the intersections of the yellow ellipses on the substrate, which
math smoothly onto the blue FCDs of (c). (e) The entire structure for a single layer,
composed only of portions of FCDs (red and blue surfaces) and portions of spheres
(green and yellow surfaces).
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4.3.5 Details of calculations

Numerically integrated free energy

All calculations for the free energy of a smectic layer configuration are taken relative

to a reference state where all of the layers are horizontal planes with equal spacing.

The free energy is a sum of three terms,

∆F = ∆Fel + ∆Fair + ∆Fsubs.

The first term is the elastic energy,

∆Fel =

∫
dV

[
2K1H

2 +
1

2
K̄G

]
,

where H is the layer mean curvature, G is the layer Gaussian curvature, and K1 and K̄

are associated elastic moduli. The second term is the surface tension energy associated

with the dimple-like deformation in the topmost layer,

∆Fair = σair
⊥

∫
dA
[√

1 + (∇h)2 − 1
]
,

where σair
⊥ is the surface tension associated with homeotropic anchoring at the air

interface and h(x, y) is the height function describing the topmost layer. The third

term represents the preference for degenerate planar anchoring on the substrate. For

the horizontal substrate surfaces on pillar top and between pillars, it has the form

∆Fsubs = ∆σsubs

∫
dA
[
1− (ρ̂ · ẑ)2

]
,
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where ρ̂ is the smectic layer’s unit normal vector at the substrate, ẑ is the unit vector

in the vertical direction, and ∆σsubs = σsubs
‖ − σsubs

⊥ < 0 is the relative energy per unit

area of degenerate planar vs. homeotropic anchoring. The anchoring potential is of

the commonly used Rapini-Papoular form. For the pillar side surfaces,

∆Fsubs = ∆σsubs

∫
dA
[
−(ρ̂ · ν̂)2

]
,

where ν̂ is the unit normal vector on the pillar side. Numerical integration is performed

using Mathematica 7.0 and 8.0. We make the assumption K̄ = K1. (The choice of the

value of K̄ turns out not to strongly affect the results so long as K̄ is on the same

order as K1). All other material constants are the same as in Sec. 4.2.

We now describe the calculation of each energy component in more detail. To

calculate the elastic free energy, we use expressions for the curvature energy adapted

from Kléman and Lavrentovich [67]:

∆Fel = W1 +W2

Wi = Wi,I +Wi,II , i = 1, 2

Wi,I =

∫ 2π

0

du

∫ arccos( aΦ)

0

dt

∫ sec t−ρc

e cosu+ρc

dρΘ(u, t, ρ)wi(u, t, ρ)

Wi,II =

∫ 2π

0

du

∫ T

arccos( aΦ)
dt

∫ Φ
a
−ρc

e cosu+ρc

dρΘ(u, t, ρ)wi(u, t, ρ)

w1(u, t, ρ) = −1

2
K1(1− e2)a

1

(e cosu− ρ)(1− ρ cos t)

w2(u, t, ρ) = −Λ(1− e2)a
cos t

(1− e cosu cos t)2
.

Here, a is the focal conic domain semi major axis length; e is the FCD eccentricity, K1

is the splay (mean curvature) elastic modulus, Λ ≡ K̄ + 2K1, where K̄ is the Gaussian
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curvature modulus; u parameterizes the elliptical focal curve; t parameterizes the

hyperbolic focal curve; ρ parameterizes the layers, measuring distance in the layer

normal direction divided by a; Φ measures the maximum value of ρ × a at the air

interface and is comparable to the LC thickness; T determines the t-value giving

the point on the hyperbola that serves as the apex of the bounding cone; region I

corresponds to generators that terminate on the hyperbola; region II corresponds

to generators that terminate at the air interface; Θ(u, t, ρ) is a unit step function

whose value is zero inside of the pillar (where there is no LC) and one outside of the

pillar. Whereas Kléman and Lavrentovich [67] obtain an elegant analytic result for

the integrated elastic free energy by assuming that the hyperbolic focal curve extends

to infinity, here the nontrivial boundaries at the pillars and the air interface require

us to compute ∆Fel numerically.

Because the boundary of the pillar is more naturally expressed in Cartesian

coordinates than in the FCD coordinates (u, t, ρ), we use the following transformation

to calculate Θ(u, t, ρ) for an FCD with its hyperbola in the xz plane:


x

y

z

 =
1

1− e cosu cos t


ρa(e− cosu cos t) + a(1− e2) cosu

a
√

1− e2 sinu(1− ρ cos t)

a
√

1− e2 sin t(ρ− e cosu)

 . (4.11)

To calculate ∆Fair, we use the area measure of the smectic layer at ρ = Φ/a, again

adapted from Ref. [67]:

∆Fair = σair
⊥ a

2(1− e2)

∫ 2π

0

∫ T

arccos( a
Φ

)

dt

∣∣∣∣∣
(
1−

(
Φ
a

)
cos t

) (
e cosu−

(
Φ
a

))
(1− e cosu cos t)2

∣∣∣∣∣ . (4.12)

To calculate the substrate interface energy ∆Fsubs, we need the smectic layers’

normal direction ρ̂ as a function of x, y, z. In the region of the substrate that is enclosed
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by the elliptical focal curve and outside of the pillar, ρ̂ has no z-component, so the

energy per unit area is simply ∆σsubs. However, for the pillar top and side surfaces, we

are required to compute ρ̂. In the FCD coordinates, we have the analytic expression

ρ̂(u, t) =


ρ̂x

ρ̂y

ρ̂z

 =
1

1− e cosu cos t


e− cosu cos t

−
√

1− e2 sinu cos t
√

1− e2 sin t

 . (4.13)

We then need (u, t) as functions of (x, y, z), i.e., the inverse of transformation 4.11.

Though no analytic relation for this transformation is available for arbitrary eccentricity

e, at e = 0 (TFCD case), we can readily write

u = arctan
(y
x

)
(4.14)

t = arctan

(
z

b−
√
x2 + y2

)
(4.15)

φ ≡ bρ =

√(
b−

√
x2 + y2

)2

+ z2, (4.16)

where b is the domain radius. Remarkably, it has been shown that the FCD coordinates

at arbitrary e are related to those of a TFCD by a Lorentz transformation [4]:

x′ = γ(x− βφ), φ′ = γ(φ− βx), y′ = y, z′ = z. (4.17)

This transformation maps each point on a TFCD in the unprimed system to a

corresponding point on an FCD of arbitrary eccentricity having the same values of u

and t in the primed system. Here we make the identifications β ≡ −e, γ ≡ (1− β2)−
1
2 ,

and φ′ ≡ ρ′a, where a is the semi major axis length in the primed system. The semi

minor axis length b = a
√

1− e2 in the primed system equals the TFCD radius in the
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unprimed system, so φ = ρb as defined above. By substituting Eqn. 4.16 into the

transformation 4.17, we obtain a quartic equation in x whose coefficients depend on

(x′, y′, z′) and e:

0 = [γ−4]x4 − [4x′γ−3]x3

+ [4x′2γ−2 + 2(x′2y−2 − β2(b2 + y′2 + z′2))γ−2 − 4β4b2]x2

− [4x′γ−1(x′2γ−2 − β2(b2 + y′2 + z′2))]x

+ [(x′2γ−2 − β2(b2 + y′2 + z′2))2 − 4β4b2y′2]. (4.18)

Equation 4.18 is solved numerically for x, from which u and t are obtained via

Equations 4.14 and 4.15. Finally, we can compute ρ̂(u, t) as in Eqn. 4.13 at the

Cartesian coordinates (x′, y′, z′) corresponding to the pillar boundaries.

For our geometric ansatz connecting the smectic layers between neighboring FCDs,

the energetic contribution of the regions outside the FCDs is calculated from an

explicit expression for the height of the topmost layer h(x, y) constructed from a union

of circular arcs as described above. The height function gives the topmost layer’s

principal curvatures k0
1 and k0

2, reciprocal to radii of curvature R0
1 and R0

2, as well as

the unit normal direction ρ̂. From each point (x, y) on the topmost layer, a generator

is constructed by traveling downward along ρ̂ until reaching the substrate, and the

generator is parameterized by φ, which has units of length and equals zero at the

topmost layer. Along the generator, the assumption of parallel layers implies that the

principal radii of curvature are Ri(φ) = R0
i + φ for i = 1, 2, and thus the area measure

on a layer varies as

dA(φ) = dxdy
√

1 + (∇h)2

(
R0

1 + φ

R0
1

)(
R0

2 + φ

R0
2

)
.
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These expressions allow us to integrate the mean and Gaussian curvatures over φ

along each generator, and then integrate over all generators parameterized by their

values (x, y) at the air interface, weighted by the appropriate area measure. Implicit

in these calculations is the assumption that no focal sets exist in the sample outside

the FCDs. The contribution of ∆Fair is similarly calculated from h(x, y) and the

area measure. Additionally, the contribution of ∆Fsubs on the horizontal substrate

surfaces is calculated from h(x, y) by finding the value φ∗ of φ where a given generator

intersects the substrate, setting ρ̂ · ẑ = [1 + (∇h)2]−
1
2 , and integrating over generators

using the area measure dA(φ∗). For the contribution to ∆Fsubs on the pillar sides,

we approximate the layer normal direction at (x, y, z) to be the same as the normal

direction of the topmost layer at the same (x, y), which is valid in the limit of slowly

varying h(x, y).

The ansatz requires us to choose a value of T , which marks the point on the

hyperbola that serves as the apex of the FCD’s bounding cone. Because the bounding

cone apex is expected to be located above the LC/air interface, a lower bound for T is

provided by Tmin = arccos(a/Φ), corresponding to the termination of the hyperbolic

focal curve at the air interface. An upper bound for T is provided by Tmax = arccos(c/a),

which corresponds to the point on the imaginarily extended hyperbola positioned

directly over the point on the ellipse at u = 0. If T > Tmax, then the layer normal

would be vertical at some point within the FCD, which is not observed in the atomic

force microscopy (AFM) data. Generally, we find that the choice of T in the interval

[Tmin, Tmax] has little effect on the calculation result or on agreement with the AFM

data. We therefore choose T = 1
2
(Tmin + Tmax) for the results presented here.
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Estimation of FCD eccentricity

The FCD eccentricity is estimated from the AFM data by the following procedure.

First we recall the standard parameterization 4.11 for the FCD layers, where the

plane of the hyperbolic focal curve is chosen to be the xz plane. We let b = a
√

1− e2,

c =
√
a2 − b2 = ae, and φ = ρa, while Φ equals the value of φ at the topmost layer. We

also recall that Tmin = arccos(a/Φ) is the value of t where the hyperbola terminates at

the air interface. The hyperbola is given by ~H(t) = (c sec t, 0, b tan t). It follows that,

for two FCDs with hyperbolic focal curves oriented toward each other, the distance

between their ellipse foci (where the hyperbolae meet the xy plane at t = 0) is

df = δx+ 2c(secTmin − 1) = δx+ 2c(Φ/a− 1), (4.19)

where δx is the horizontal distance between the two cusps in the AFM data.

Now consider the geometry observed in Fig. 4.14a, with four FCDs per pillar on

a square array of pillars with circular cross-section. We assume that each FCD is

tangent at four points to a square with one vertex at the center of the pillar, with side

length equal to half of the center-to-center spacing W of nearest-neighbor pillars, and

whose sides are aligned with the substrate patterning lattice directions (Fig. 4.20).

This geometry requires that √
a2 + b2

2
= W/4.

Replacing b2 with a2 − c2, we obtain the relation

a =

√
1

2

(
W 2

8
+ c2

)
. (4.20)

The distance from the ellipse center to the ellipse focus is simply c. Furthermore, the
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distance from the pillar center to the ellipse center is
√
a2 + b2 =

√
2W/4. We thus

obtain another expression for the distance between the ellipse foci of two FCDs facing

each other,

df = 2

(√
2W

4
− c
)
. (4.21)

Equating the two expressions 4.19 and 4.21 for df yields

Φ =
a

c

(√
2W

4
− δx

2

)
. (4.22)

To obtain an expression for the cusp angle αc, as measured along the ellipse’s major

axis in the AFM data (Fig. 4.16d,h), we compute the two layer normal vectors

∂φ ~X|(u,t,φ)=(0,arccos(a/Φ),Φ), ∂φ ~X|(u,t,φ)=(π,arccos(a/Φ),Φ),

normalize them, and equate their dot product to cos(π − αc) = − cosαc. The general

form of the unit normal vector is

N̂ =
∂φ ~X

|∂φ ~X|
=

(c− a cosu cos t,−b sinu cos t, b sin t)

a− c cosu cos t
.

After some algebraic simplification, we find

− cosαc =
Φ2 − a2 − b2

Φ2 − c2
=

Φ2 − 2a2 + c2

Φ2 − c2
. (4.23)

We substitute for a and Φ the functions of c given by Eqns. 4.20 and 4.22. The result

is an equation relating c, αc, δx, and W (implicitly through a). The latter three are

measured quantitates from the AFM data. For the samples in Fig. 4.14a, we measure

αc ≈ 147◦ δx ≈ 4.8µm, and W ≈ 8.5µm. Using these values in Eqn. 4.23 gives
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c ≈ 0.17µm, a ≈ 2.1µm, and Φ ≈ 7.5µm. Dividing c by a gives the eccentricity,

e ≈ 0.080. The value of Φ obtained by this method is in good agreement with the

liquid crystal thickness, h ≈ 7µm.

x
y

D

a

b

8
c

Figure 4.20: Schematic diagram of the FCD arrangement assumed for the pillar
topography of Fig. 4.14a, viewed from above. The circular pillar, of diameter D, is
represented in gray. The elliptical focal curves of four FCDs, assumed to lie in the
plane of the substrate, are each tangent at four points to squares comprising one fourth
of the unit cell. The solid black circles are the ellipse foci as well as the intersections of
the hyperbolic focal curves with the plane; these lie at the pillar edge. The open circle
is the center of one ellipse. The x- and y-axes of the coordinates used in Eqn. 4.11 are
as shown in the diagram. From the Supporting Information to [51].

We can follow a similar calculation for the geometry in Fig. 4.14c. Here, we assume

that each FCD is tangent to two neighbors, with both points of tangency lying along the

major axis. The FCD semi major axis is then related to the diagonal center-to-center

separation S of next-nearest-neighbor pillars by

a = S/4 (4.24)

in place of Eqn. 4.20. Equation 4.21 is replaced with df = 2(a− c). Equating this to

the right side of Eqn. 4.19 gives

Φ =
a

2c
(2a− δx) (4.25)

129



in place of Eqn. 4.22. As before, Eqns. 4.24 and 4.25 are substituted into Eqn. 4.23,

allowing us to solve for c. For the samples in Fig. 4.14c, we measure αc ≈ 163◦,

δx ≈ 4.7µm, and S ≈ 13.0µm. Using these values in Eqn. 4.23 gives c ≈ 0.13µm,

a ≈ 3.3µm, and Φ ≈ 22.0µm. Dividing c by a gives the eccentricity e ≈ 0.041.

Returning to the geometry of Fig. 4.14a, we consider the prediction of an alternative

model for the interstices between FCDs, in which the spherical layers of Sethna and

Kléman [115] fill the space between FCDs over the pillars. The cones bounding the

FCDs around a given pillar all have a common apex above the pillar center, where the

extensions of the four hyperbolic focal curves meet. Therefore, each bounding cone

has in its interior a vertical generator line connecting the point on the ellipse at u = 0

to the point on the hyperbola directly above. Where this generator meets the topmost

layer, the height profile in Fig. 4.16d would form a local maximum, with tangent

passing through the horizontal. The distance δm between the two local maxima in

Fig. 4.16d, which is at least as great as the width of the concave-up region, equals the

minimum distance between ellipses on opposite sides of the pillar. Referring to the

geometry of Fig. 4.20, this means

1

2
δm =

√
2

4
W −

√
1

2

(
W 2

8
+ c2

)
.

Solving for e = c/a.

e =

√
−1

8
+ 2

(
δm
W
−
√

2
4

)2

√
2

4
− δm

W

.

Substituting δm = 1µm and W = 8.5µm gives e ∼ 0.75.
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4.3.6 Conclusion

In conclusion, we have shown that using micropillar arrays of variable dimension

and geometry (height, shape, and spacing) as topographical templates, we can introduce

hierarchical assembly of FCDs and tune their eccentricity in a SmA LC assembly. By

decreasing the micropillar height, we observe a transition from confinement of isolated

domains to the hierarchical growth of FCDs, tangent to their neighbors, with their

hyperbolic focal lines pinned near the pillar edges. The size and shape of the pillars

can be used to control the type of hierarchical FCD arrangement; the anisotropy of

the pillar shape allows us to reliably predict the locations of FCDs relative to the

substrate patterning due to the effective attraction of FCDs to pillar corners. The

nontrivial, but apparently smooth, matching of smectic layers between neighboring

FCDs on a nonuniform substrate presents an intriguing theoretical problem for which

we have suggested a geometric ansatz. These topographic tools significantly enrich

the library of possible FCD arrays, making it possible to create more complex 3D

structured soft systems beyond trivial assembly.

4.4 Focal conic flower textures in smectic liquid

crystals with curved boundaries

4.4.1 Introduction

A common theme in much research on self-assembly in LCs is the sensitive depen-

dence of the assembly behavior on non-trivial boundary geometry, such as colloid shape

[34, 44, 74, 114] and substrate topography [24, 51, 52, 62]. While the defects produced

by anchoring on colloidal surfaces have been extensively studied in the nematic LC

phase, relatively little is known about how smectic defects, including FCDs, assemble
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in response to such inclusions, especially in confined geometries [12, 28, 80, 110, 113].

Even when not organized in a lattice, FCDs exhibit a high level of geometric

organization as seen in the arrangement of their focal curve pairs, which are conjugate

conic sections: an ellipse and a hyperbola (or two parabolae, a case that we will not

study here). Typically, groups of FCDs spontaneously assemble into the so-called

fan texture, with the hyperbolae all intersecting at a single point. Friedel [40], in a

theory supplemented by later authors [16, 68, 75, 115], explained the fan texture by

positing the law of corresponding cones (LCC), in which the smectic layers smoothly

join together neighboring FCDs across conical boundary surfaces. These geometrical

rules suggest a route to targeted assembly of FCDs with vastly increased sophistication

as a result of nonzero eccentricity of the ellipse in the conjugate pair [51, 99, 142].

A supreme example of FCD self-organization with nonzero eccentricity is the “flower

texture” in a smectic droplet reported in Ref. [87]. There, many FCDs pack with their

ellipse long axes oriented radially from a common point P . However, the foci of the

ellipses that are pierced by the hyperbolae, seen easily in bright field microscopy, are on

the “far side” of the ellipse—unlike in the fan texture where the hyperbolae converge, in

the flower they diverge away from P with no obvious intersection, apparently violating

Friedel’s LCC.

In this section, we show that such packings of FCDs with diverging hyperbolae can

be obtained by designing hybrid anchoring conditions such that one boundary is

(approximately) a surface of revolution with negative slope in the radial outward

direction. More generally, we demonstrate that curved interfaces provide a way to

promote spatially varying FCD eccentricity, leading to complex patterns which could

guide the assembly of technologically important materials, such as colloids, nanoparti-

cles, and quantum dots, for novel metamaterials, sensors, optoelectronic devices, and

solar cells [41, 79, 124, 133]. Further, thanks to the lensing properties of individual
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(a) (b) (c)

(d) (e)

Figure 4.21: System A. (a-b) Smectic flower texture organized around a single colloid
with homeotropic anchoring in response to the distortion of the LC-air interface
produced by pinning at the colloid boundary. (a) Bright field. (b) Polarized optical
microscopy. (c) Flower texture organized around a colloidal dimer. (d) Interferometric
measurement of the LC-air interface profile around one colloid: smectic film thickness
as a function of distance from the colloid center. (e) FCD eccentricity vs. magnitude
of local slope of the smectic-air interface in the radial direction, measured above the
middle of ellipses in four different radial directions. Solid line is the eccentricity given
in Equation 4.26 corresponding to the limit of zero interfacial curvature. All scale bars
are 10 µm. [10]
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FCDs [61], arrays of FCDs organized radially as in the flower texture could efficiently

focus light toward a central point, where the virtual (unphysical) branches of the

hyperbolae intersect, for optical and photovoltaic applications.

We study two experimental examples of smectic flower textures obtained from

different material systems. In System A (Fig. 4.21), the smectic-air interface is deformed

by pinning at the boundary of a large colloidal inclusion, resulting in a flower texture

with FCDs organized radially around the colloid. In System B, a SmA LC is placed on a

substrate promoting degenerate planar anchoring, and the air interface, which imposes

homeotropic anchoring, is partly replaced by a fluorosilane modified layer of SiO2

nanoparticles that instead impose degenerate planar anchoring on the LC (Fig. 4.22a).

The smectic layers tilt toward the boundary between the nanoparticle-covered and

nanoparticle-depleted regions, and FCDs of varying eccentricity interpose between

these tilted layers and the nanoparticle interface. In both systems, the key geometric

feature is a mismatch in orientation between the interface with degenerate planar

anchoring and the smectic layers at the opposite boundary. Finally, we provide a

theoretical model applying the LCC to the flower texture. By geometrically constructing

a “background texture” that approximates an arbitrary homeotropic interface profile,

we show that FCDs of nonzero eccentricity can be smoothly embedded such that their

hyperbolae extend radially outward, without violating the LCC.

4.4.2 Experimental results

In both System A and System B, smectic flower textures are observed in thin

smectic films subjected to (effectively) hybrid anchoring conditions. Figure 4.21 shows

an example of such a texture in System A, in which flower textures assemble around

a large colloidal inclusion. The average smectic thickness is smaller than the critical
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(a) (b) (c)

(d) (e)

Figure 4.22: System B. (a) Schematic illustration of smectic phase (yellow layers, with
representative rod-like molecules in red) between two interfaces covered with silica
nanoparticles, shown in blue. (b) Smectic flower texture in a nanoparticle-covered
region surrounded by a nanoparticle-depleted region. (c) A less equilibrated smectic
flower texture. The smectic layer arrangement at the top interface is visible in the
arrangement of the nanoparticles. (d) Cross-section of smectic liquid crystal at the
boundary between a nanoparticle-covered region and a nanoparticle-depleted region.
(e) Schematic illustration of the geometry of (d), with an arbitrarily chosen bent layer
colored green to represent the analog of System A’s curved homeotropic interface. All
scale bars are 10 µm. [10]
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thickness hc below which FCDs cost greater energy than homeotropically-aligned layers

[62]. However, pinning of the LC-air interface at the colloid increases the thickness

locally above hc, so that FCDs form near the colloid. The film thickness, and thus the

typical domain size, decrease with increasing distance from the colloid. Under bright

field microscopy (Fig. 4.21a), the nonzero eccentricity of the FCDs is apparent both

from the elongation of the ellipses and from the off-center dots marking the termination

of the hyperbolae. As in Ref. [87], the hyperbolae are oriented radially outward from the

center, in contrast to typical fan textures where the hyperbolae converge to a central

point. This organization is confirmed by polarized optical microscopy (Fig. 4.21b),

which reveals dark crosses shifted off of the ellipse centers away from the colloid. The

interfacial deformation created by the colloid leads to capillary attraction between

nearby colloids to minimize the excess free energy caused by the overlap of deformations

in the LC-air interface. Figure (4.21c) shows a colloidal dimer with nearby FCDs.

Nonzero eccentricity is correlated with nonzero slope of the LC/air interface due

to surface pinning at the colloid, which satisfies wetting conditions at particle surfaces

as described by the Young equation [37]. The slope in the radial outward direction

decreases from a maximum at the colloid to zero asymptotically, as shown in Fig. 4.21d,

where the profile of the LC/air interface around the inclusion, measured using scanning

white-light interferometry (SWLI), is represented. Accordingly, the FCDs nearest to the

colloid have the highest eccentricity, while those far away have nearly zero eccentricity

(Fig. 4.21e). Thus, FCD eccentricity is controlled by the orientation mismatch between

the horizontal substrate, which imposes degenerate planar anchoring, and the locally

tilted LC/air interface, which imposes homeotropic anchoring.

In addition to the substrate and air interfaces, we might expect that anchoring on

the colloid would also affect FCD formation. However, when the colloids were treated

with polyvinyl alcohol (PVA) to replace homeotropic anchoring with strong degenerate
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Figure 4.23: Geometric construction of a background texture. (a) The law of corre-
sponding cones (LCC) in the traditional case of converging hyperbolae, with focal
curves in black. (b-e) Construction of a complex background texture for the flower
texture in accordance with the LCC. TFCDs are shown in blue, while concentric
spherical regions are shown in yellow. Focal curves are shown in magenta. Black lines
outline boundary cones between TFCDs and spheres. (b) One TFCD bounded by
a right circular cone C with apex P and base E. (c) The TFCD now occupies the
space between two cones C and C ′, both containing the circular focal curve E but
with different apices P , P ′. Two different families of concentric spherical regions are
centered at P , P ′, respectively. (d) A smaller circle E ′ defines the base of a third
cone C ′′ as well as the focal curve of a second TFCD bounded by this cone. (e) This
construction works also with Type-II FCDs. Black lines outlining boundary cones are
continued past the cone apex to the focal circles as gray lines. [10]
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planar anchoring on their surfaces, qualitatively similar flower textures were observed.

We therefore conclude that the importance of the colloid in producing the flower

texture lies in the colloid’s wetting chemistry that deforms the LC-air interface, not

the liquid crystalline anchoring on the colloid surface.

In System B, flowers textures also form in small planar-aligned islands covered by

perfluorosilane treated SiO2 nanoparticles surrounded by hybrid-aligned, nanoparticle-

depleted regions, as shown in Figure 4.22b. Here, the elliptical focal curves are visible

at the top interface; the hyperbolae extend downward. Figure 4.22c shows a less

well-ordered flower texture, with striations in the nanoparticle arrangement revealing

the arrangement of smectic layers. The ellipse focus of each FCD, where the hyperbola

meets the LC-nanoparticle interface, is clearly visible as the center of a set of concentric

circles in this plane. The hyperbolae are consistently oriented outward from the center

of the planar-aligned region, toward the boundary with the hybrid aligned region.

The cause of the flower texture in this system is made clear by a cross-sectional

scanning electron microscopy (SEM) image of the smectic layers (Fig. 4.22d). Layers in

the planar-aligned region bend outward toward the hybrid-aligned region. Consequently,

the layer geometry as viewed from above consists of a planar-anchoring horizontal

surface at the top and what can be thought of as a tilted homeotropic surface below,

created by the bent layers. This is the geometry that produced a flower texture in

Fig. 4.21, only upside-down! To see this connection more clearly, we illustrate the

geometry of System B schematically in Fig. 4.22e. There, an arbitrarily selected bent

layer, colored green, conceptually plays the same role as the curved homeotropic

interface of System A. A slight difference between the two experiments is that as

distance from the center of the flower texture increases, the typical domain size increases

in System B whereas it decreases in System A.
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4.4.3 Geometric model

Can these flower textures be described by the law of corresponding cones? In

Ref. [87], the authors suggest that the virtual branches of the hyperbolae meet at a

common point above the center of the flower, rather than the physical hyperbolae as

in fan textures under the LCC. We put forth a geometric construction that applies

the LCC to hybrid-aligned smectics where the homeotropic interface is a surface

of revolution, while the degenerate planar interface is flat. We then compare the

predictions of this model to the data.

We begin by recalling that the law of corresponding cones describes how families of

adjacent FCDs can be smoothly joined together by orienting such that their hyperbolic

focal curves intersect at a common point, which also serves as the apex of a right

circular cone containing the elliptical focal curve which bounds the FCD (Fig. 4.23a).

Similarly, an FCD with bounding cone apex at P may be joined smoothly onto a

family of concentric spheres centered at P (Fig. 4.23b) [115]. This is fortunate because

concentric spheres, like FCDs, have a focal set of dimension less than two, avoiding

energetically costly cusp wall defects.

In the case of tilt grain boundaries split into FCDs, the cone apex P is moved off

to infinity along H so that in place of a “background” texture of concetric spheres, the

FCD matches smoothly onto a background texture of planes whose normal direction

matches the hyperbola’s asymptotic direction [68]. The bounding cone C has become

a bounding cylinder.

Exactly the same reasoning would apply in a hybrid-aligned smectic if the homeotropic

interface were a tilted plane, with the degenerate planar interface replacing the tilt

grain boundary. Thus, if the homeotropic interface is gently curved, it is reasonable

to expect the eccentricity to increase with the slope of the interface, which is indeed
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the case as seen in Fig. 4.21. Quantitatively, however, the tilt grain boundary model

disagrees with the FCD eccentricities e in our System A: For a (local) homeotropic

interface slope of dh/dr, the formula given in Ref. [68] predicts

e2 =
(dh/dr)2

1 + (dh/dr)2
(4.26)

which does not fit our data (Fig. 4.21e). The curvature of the interface is therefore an

important factor. But with a curved interface, what is the background geometry into

which we are to imagine placing FCDs?

We construct such a background texture as follows. First consider a single toric

FCD (TFCD), bounded by a right circular cone C with apex P , whose base E (the

circular focal curve of the TFCD) has radius a. As already noted, the layers of the

TFCD join smoothly onto a family of spheres concentric about P that exist outside of

C (Fig 4.23b). But we can also bound a TFCD inside the space between two cones C

and C ′, with the same base but with different apices P and P ′, respectively. Then, the

TFCD also matches smoothly onto spherical layers concentric about P ′ that exist only

inside of C ′ (Fig 4.23c). But once we have this second family of concentric spheres, it

is straightforward to cut out from these spheres a cone C ′′ sharing the apex P ′ with

C ′ but with circular base E ′ of radius a′ < a, and then fill in this cone with a second

TFCD (Fig 4.23d). We could continue in this fashion, dividing a region into arbitrarily

many nested alternating concentric sphere families and TFCDs, separated by conical

bounding surfaces that alternately share a common base or a common apex with the

next cone. By construction, axial symmetry is preserved.

Now, by turning the picture upside down, we see that an arbitrary surface of

revolution can be approximated by an outermost layer of this alternating set of TFCDs

and concentric spheres (Fig. 4.24a). Thus, if the homeotropic interface is a surface of
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revolution, this construction generates a smectic layer that approximates that surface,

as well as a family of parallel, equally spaced layers below. If the homeotropic interface

is planar at large radius, then the background TFCD of largest radius can be made to

match smoothly onto planar layers by moving the apex of the largest bounding cone

off to infinity, turning the cone into a cylinder. This is the case in Fig. 4.24. Finally, in

each family of concentric spheres bounded between two cones with common apex Pi, we

can place a ring of FCDs with nonzero eccentricity, all bounded by smaller cones with

common apex at Pi (Fig. 4.24b). These FCDs obey the LCC and match smoothly onto

the background texture. Furthermore, because the FCDs’ bounding cones have apex

below the degenerate planar interface rather than above the homeotropic interface,

all of the hyperbolic focal curves will be oriented radially outward (Fig 4.24c)! The

virtual branches of the hyperbolae, meanwhile, intersect at the common apex Pi below

the center of the flower for all FCDs in the same ring. Thus the defining feature of

the smectic flower texture can be brought into accordance with the LCC using this

construction.

Note that there is no requirement that the circular focal curves sit at the same

height, though we have made this choice in Figures 4.23 and 4.24 for simplicity. A

reasonable, though not unique, alternative is to position each circle at the local center of

curvature of the interface’s profile. Also, an analogous geometric construction employs

Type-II FCDs (Fig 4.23e), which produce an interface of purely positive Gaussian

curvature [13, 14], i.e., the tilt angle increases with increasing radius. In this case, the

picture does not need to be inverted to produce a flower texture, as the cones bounding

the concentric spherical regions open upward in Fig 4.23e. Finally, we note that this

model naturally extends a previous model for polygonal domains, in which the FCDs

visible in the experiment are grouped inside background textures of concentric spheres,

the various sphere families being glued together by portions of other FCDs whose
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focal curves lie outside the sample [16, 75].

4.4.4 Comparison and discussion of theoretical and experi-

mental results

Does this geometric construction describe the experimental results? While we

have successfully captured the radial divergence of hyperbolic focal curves within

the LCC, we pause to note some other implications of the model. First, while FCDs

within each ring are tangent to their neighbors, the FCDs in different rings must have

some space between their ellipses, where the background TFCD interposes between

concentric sphere families. This gap is also present in the previously mentioned model

for polygonal domains [16, 75]. While such a gap is not visible in the experimental

images, it can be made small in the model by appropriate choices of bounding cones,

to squeeze the background TFCDs into very small angles.

Second, a corollary of the previous point is that FCDs are predicted to pack within

each ring but not to show any consistent organization from one ring to the next. This

is plausibly consistent with the results in System A (Fig. 4.21), provided that the

radius of the ring is given some leeway to vary so as to allow for compromise with

the quasi-hexagonal packing of ellipses preferred by the degenerate planar substrate.

However, System B appears to show FCDs grouped into radial wedges rather than

concentric rings (Fig. 4.22), contrary to our expectation from the LCC. Instead, it

is possible that each wedge of FCDs in System B has a background texture with no

curvature in the azimuthal direction, this curvature being concentrated instead into

small-angle tilt grain boundaries between neighboring wedges.

Thin-film smectics need not precisely obey the LCC because more general layer

structures, other than spheres and FCDs, don’t incur prohibitive energy penalties if
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Figure 4.24: Flower texture in the LCC. (a) Background texture approximating a
curved homeotropic interface and its parallel layers by alternating TFCDs (blue) and
concentric spheres or planes (yellow). TFCD focal curves are in magenta. The gray
plane, arbitrarily placed, schematically represents the degenerate planar interface,
below which there is no smectic physically. (b) FCDs of radially varying eccentricity
punctuate the concentric spherical and planar regions. The focal curves of these FCDs
are shown in cyan. Focal hyperbolae are physical above the substrate and virtual
below. (c) The focal curves of the smectic flower geometry in (b). [10]
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they are generated by virtual focal sets lying outside the sample, i.e., their geometry

does not require cusps in the smectic [51]. The model presented here demonstrates

that the LCC is flexible enough to account for the basic features of the smectic flower

but probably not capable of quantitatively describing the textures we observe.

4.4.5 Conclusion

We have demonstrated that control over the orientation mismatch between the hy-

brid aligning interfaces of a smectic thin film provides control over the FCD eccentricity

and, thus, over complex patterns of self-organization in a liquid crystal. In particular,

we have studied similar smectic flower textures produced in two different experiments:

one in which the LC-air interface is curved by pinning at the surface of a colloidal inclu-

sion, the other in which the boundary between a planar-aligned region covered by SiO2

nanoparticles and a hybrid-aligned region exposed to air creates effective tilted hybrid

anchoring. The radial outward orientation of the focal hyperbolae, unique to the flower

texture, is deduced to arise from the outward tilt of the homeotropic interface’s normal

vector. We have extended previous LCC-based models by proposing a geometric model

for hybrid-aligned smectics in the case that the homeotropic interface is a surface of

revolution. The resulting nested system of background TFCDs and concentric spheres

naturally allows for FCDs with their hyperbolae oriented radially outward, as in the

flower texture. Comparing the implications of this model with the experimental results

shows that the LCC can accommodate the arrangement of FCDs in a flower texture

but does not describe the details of their packing behavior. The findings presented

here will open the door to crafting highly sophisticated self-assembled patterns in

smectic liquid crystals, for use in guiding functional materials such as colloids and

nanoparticles into technologically useful arrangements, by clever preparation of the
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boundaries.
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Chapter 5

Conclusion

The assembly of defects in liquid crystals can be directed to a great extent by geometry

of the boundaries, colloidal inclusions, and substrates, as we have demonstrated in

several new and often surprising ways. In 3D nematic LCs, numerical modeling

reveals that disclination loops cause anisotropic colloidal particles to change their

orientations and interactions in ways sensitive to their shape parameters. The kinked

disclination configurations lead to mirror-symmetric ground state colloidal orientations,

snap-through disclination rearrangements, and tunable shape-dependent interparticle

potentials, all of which may now be examined in experiment. Future numerical work

in this area will include the study of 2D lattices of anistropic colloidal particles and

investigations of mixtures of different colloidal shapes. For nematics in micropost

confining environments, we have found that disclination rings around microposts

depend sensitively on the winding of the director field at the sharp corners where

the micropost meets the substrate and air interfaces. The disclination ring, in turn,

remotely guides the assembly of complex colloidal patterns at the air/LC interfaces

through an elasticity-mediated attraction elucidated by the numerical modeling. A

recurring theme in these results is the startling effects of sharp edges; one must exercise

caution even when discussing topological charge due to the ambiguities that sharp

edges introduce, but such edges can also be utilized for guiding disclinations along

desired paths. It is possible that disclination “wires” with many turns and possibly
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multistable configurations could be designed by this principle; similar ideas are being

explored currently in the study of knots in nematic director fields [83, 84].

In 2D smectic liquid crystals, curvature of the substrate together with an imposed

point disclination gives rise to a cusp grain-boundary line, and above a threshold

curvature a pair of ±1-index point disclinations appears, as well. This generically

complicated problem was studied in analytically tractable cases where the substrate is

shaped as a cone, a plane, or intersections of the two types of objects. By concentrating

the Gaussian curvature in points and lines, we gain insight not only into the defects

we can expect in smectics on more general curved substrate shapes but also into the

peculiar effects on smectic layers of sharp edges and conical points in the substrate—in

other words, the relationship between defects in a metric and defects in a field defined

on that space. It would be interesting to determine whether the strain induced in the

smectic can in turn affect the shape of the substrate, which could have important

implications for designing surfaces of programmable shape.

In 3D smectic liquid crystals, focal conic domains offer a route to self-assembled

micropatterned functional materials, and we have demonstrated methods by which

nontrivial boundary shape can guide FCD self-assembly into a number of otherwise

inaccessible patterns. In the “confinement” regime, substrates topographically pat-

terned with regular arrays of micropillars allow sensitive control over the size, spacing,

and lattice symmetry of a regular array of toric focal conic domains. Patterning at

the substrate controls the self-assembly through a relatively large bulk thickness, for

reasons elucidated by analysis of the balance of bulk and surface energies. In a newly

discovered “edge-pinning” regime, smaller micropillars direct FCDs into hierarchical

assemblies with higher density and possibly different lattice symmetries than the

substrate patterning. Our model of the smectic layer structure and accompanying

energetic analysis suggest that tuning the relative size scales of micropillar arrays
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offers a route to controlling not only FCD positions but also their eccentricities and

and nonuniform orientations. The latter goal is taken a step further in our work

on the smectic flower texture, where curvature of the LC/air interface is shown to

control the domain eccentricities and orientations in groupings of many FCDs in an

unconventional radial pattern. There, we have shown that the dependence of FCD

properties on boundary orientation mismatch is not purely a local problem, but instead

forms a component of a sophisticated packing problem strongly constrained by the

energetic preference for avoiding 2D tilt grain boundaries in the sample. Whereas the

flower texture would at first seem to contradict the canonical law of corresponding

cones, we have extended the LCC in an iterative fashion to capture the qualitative

features of the flower texture, suggesting that the classical theory may still be used as

a starting point for higher-order theories aiming to quantitatively predict the structure

of such radial FCD assemblies, whose resemblance of insect eyes suggests novel optical

applications [43].

All of these findings point to new principles for directing the spontaneous assembly

of liquid crystalline defects into new and useful configurations. There is substantial

room for extending these investigations into situations of greater complexity, both from

an engineering standpoint through the study of new shape and size-scale combinations

adapted for device interface, and from a physics perspective through the addition

of chirality (of the liquid crystal and/or of the colloidal particles), applied electric

or magnetic fields, and higher-genus topology, for example. By developing such an

expanded toolkit for controlling defects, we hope to promote defects into building blocks

and colloid-guiding tools for the self-assembly of new materials far more sophisticated

than the liquid crystal phases on which they are based. Far from being unwanted

obstructions to a homogenous ground state, liquid crystalline defects will, we hope,

offer a route to new technological applications beyond electronic displays. As Robert
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Browning put it when writing about something completely different, “So may a glory

from defect arise” [18].
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Appendix A

Relations between LdG elastic

constants Li and Frank elastic

constants Ki

Here we find expressions for the Frank coefficients Ki in terms of the Landau-de Gennes

coefficients Lj. We are now going to equate the distortion energy in the Landau-de

Gennes theory (Equation 2.10),

fd =
L1

2
(∇×Q + 2q0Q)2 +

L2

2
(∇ ·Q)2, (A.1)

to the free energy density of Frank elasticity,

fFrank =
K1

2
(∇ · ~n)2 +

K2

2
(~n · (∇× ~n))2 +

K3

2
((~n · ∇)~n)2, (A.2)

where K1, K2, and K3 are respectively the splay, twist, and bend elastic moduli. We

work in the uniaxial limit, where

Qαβ = 3
2
S
(
nαnβ − 1

3
δαβ
)
. (A.3)
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In terms of ~n, the L1 term in Equation (A.1) becomes

(∇×Q + 2q0Q)2 = [(εαβγ∂βQγδ + 2q0Qαδ) (εαµν∂µQνδ + 2q0Qαδ)]

= 9
4
S2
[
εαβγ(nδ∂βnγ + nγ∂βnδ) + 2q0

(
nαnδ − 1

3
δαδ
)]

×
[
εαµν(nδ∂µnν + nν∂µnδ) + 2q0

(
nαnδ − 1

3
δαδ
)]

= 9
4
S2
[
εαβγεαµν(nδ∂βnγ + nγ∂βnδ)(nδ∂µnν + nν∂µnδ)

+4q0

(
εαβγ(nδ∂βnγ + nγ∂βnδ)(nαnδ − 1

3
δαδ)

)
+4q2

0

(
nαnαnδnδ − 2

3
nαnδδαδ + 1

9
δαδδαδ

)]
= 9

4
S2
[
(δβµδγν − δβνδγµ)(nδ∂βnγ + nγ∂βnδ)(nδ∂µnν + nν∂µnδ)

+4q0

(
(~n · ~n)(~n · (∇× ~n))− 1

2
~n · (~n×∇)(~n · ~n)

−1
3
(~n · (∇× ~n) + εαβγnγδβnα)

)
+ 4q2

0

(
1− 2

3
+ 1

3

)]
= 9

4
S2
[
(nδ∂βnγ + nγ∂βnδ)

(
nδ∂βnγ + nγ∂βnδ)− (nδ∂γnβ

+nβ∂γnδ)
)

+ 4q0

(
2
3
~n · (∇× ~n)− 1

3
εαβγnγδβnα

)
+ 8

3
q2

0

]
= 9

4
S2
[
2(∇~n)2 + 2 · (1

2
∇(~n · ~n))2 − (∂βnγ∂γnβ)

−1
2
nβ∂βnγ∂γ(~n · ~n)− 1

2
nγ∂γnβ∂β(~n · ~n)− ((~n · ∇)~n)2

+4q0

(
2
3
~n · (∇× ~n)− 1

3
(εαβγ(∂β(nγnα))− ~n · (∇× ~n))

)
+ 8

3
q2

0

]
= 9

4
S2
[
2(∇× ~n)2 + (∇ · ~n)2 − ((~n · ∇)~n)2

+2q0(2~n · (∇× ~n) + q0) + 2
3
q2

0

]
Here and throughout, we use the convention of summation over repeated indices. We

have made use of the fact that ~n is a unit vector, so any derivative of ~n · ~n vanishes.

In the last line, we have used the following:

(∇~n)2 = ∂αnβ∂βnα + (∇× ~n)2
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∂αnβ∂βnα = ∂α∂β(nβnα)− ∂αnα∂βnβ − nα∂α∂βnβ − nβ∂α∂βnα

= ∂α∂β(nβnα)− ∂αnα∂βnβ − 2∂α(nα∂βnβ) + 2∂αnα∂βnβ

= ∂α∂β(nβnα) + (∇ · ~n)2

⇒ 2(∇~n)2 − ∂αnβ∂βnα = 2(∇× ~n)2 + (∇ · ~n)2,

dropping a total derivative in the last line. Now recall that

(∇× ~n)2 = (~n · (∇× ~n))2 + (~n× (∇× ~n))2 = (~n · (∇× ~n))2 + ((~n · ∇)~n)2

since v̂ ×∇× v̂ = −(v̂ · ∇)v̂ for unit vectors v̂. Thus we obtain

(∇×Q + 2q0Q)2 = 9
4
S2
[
(∇ · ~n)2 + 2 (~n · (∇× ~n) + q0)2 + ((~n · ∇)~n)2 + 2

3
q2

0

]
.

The second term in fd is easier.

(∇ ·Q)2 = ∂αQαγ∂βQβγ

= 9
4
S2 [(∇ · ~n)nγ + (~n · ∇)nγ] [(∇ · ~n)nγ + (~n · ∇)nγ]

= 9
4
S2
[
(∇ · ~n)2 + ((~n · ∇)~n)2 + 2(∇ · ~n)nγ(~n · ∇)nγ

]
= 9

4
S2
[
(∇ · ~n)2 + ((~n · ∇)~n)2]

Therefore,

fd =
L1

2
(∇×Q + 2q0Q)2 +

L2

2
(∇ ·Q)2

= 9
8
S2
[
(L1 + L2)(∇ · ~n)2 + 2L1 (~n · (∇× ~n) + q0)2

+(L1 + L2)((~n · ∇)~n)2 + 2
3
L1q

2
0

]
. (A.4)

152



Comparing this to the Frank free energy density (A.2), we obtain result 2.12

K1 = 9
4
S2(L1 + L2), K2 = 9

2
S2L1, K3 = 9

4
S2(L1 + L2). (A.5)

For the one-constant form of the LdG distortion energy, the uniaxial limit gives

fd =
L1

2

∂Qαβ

∂xi

∂Qαβ

∂xi

=
L1

2

9

4
S2

(
nα

∂

∂xi
nβ + nβ

∂

∂xi
nα

)(
nα

∂

∂xi
nβ + nβ

∂

∂xi
nα

)
=

9

4
L1S

2

(
∂nα
∂xi

∂nα
∂xi

)

Comparing this to the equal-constants form of the Frank free energy, fFrank = K
2
∂nα
∂xi

∂nα
∂xi

,

we see that L1 = (2/9)S2K.

For the three-constant form of the LdG distortion energy, the uniaxial limit gives

fd =
1

2
L1
∂Qij

∂xk

∂Qij

∂xk
+

1

2
L2
∂Qij

∂xj

∂Qik

∂xk
+

1

2
L3Qij

∂Qkl

∂xi

∂Qkl

∂xj

=
9S2

8

{
2L1

[
∂nα
∂xi

∂nα
∂xi

]
+ L2

[
(∇ · ~n)2 + ((~n · ∇)~n)2

]
+ 3SL3

[
((~n · ∇)~n)2 − 1

3

(
∂nα
∂xi

∂nα
∂xi

)]}
=

9S2

8

{
(∇ · ~n)2 [2L1 + L2 − SL3] + (~n · ∇ × ~n)2 [2L1 − SL3]

+ ((~n · ∇)~n)2 [2L1 + L2 + 2SL3]

}

Equating this result to the Frank free energy density

fFrank =
1

2
K1 (∇ · ~n)2 +

1

2
K2 (~n · ∇ × ~n)2 +

1

3
K3 ((~n · ∇)~n)2 ,
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we obtain L1 = (2/3)(−K1 + 3K2 + K3)/9S
2, L2 = 4(K1 − K2)/9S

2, and L3 =

4(K3 −K1)/27S3.
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