
Journal of Machine Learning Research 7 (2006) 1861-1885 Submitted 8/05; Revised 6/06; Published 9/06

Streamwise Feature Selection

Jing Zhou JINGZHOU@SEAS.UPENN.EDU

Electrical and Systems Engineering
University of Pennsylvania
Philadelphia, PA 19104, USA

Dean P. Foster FOSTER@WHARTON.UPENN.EDU

Robert A. Stine STINE@WHARTON.UPENN.EDU

Statistics Department
University of Pennsylvania
Philadelphia, PA 19104, USA

Lyle H. Ungar UNGAR@CIS.UPENN.EDU

Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA

Editor: Isabelle Guyon

Abstract

In streamwise feature selection, new features are sequentially considered for addition to a predic-
tive model. When the space of potential features is large, streamwise feature selection offers many
advantages over traditional feature selection methods, which assume that all features are known in
advance. Features can be generated dynamically, focusing the search for new features on promising
subspaces, and overfitting can be controlled by dynamically adjusting the threshold for adding fea-
tures to the model. In contrast to traditional forward feature selection algorithms such as stepwise
regression in which at each step all possible features are evaluated and the best one is selected,
streamwise feature selection only evaluates each feature once when it is generated. We describe
information-investing and α-investing, two adaptive complexity penalty methods for streamwise
feature selection which dynamically adjust the threshold on the error reduction required for adding
a new feature. These two methods give false discovery rate style guarantees against overfitting.
They differ from standard penalty methods such as AIC, BIC and RIC, which always drastically
over- or under-fit in the limit of infinite numbers of non-predictive features. Empirical results show
that streamwise regression is competitive with (on small data sets) and superior to (on large data
sets) much more compute-intensive feature selection methods such as stepwise regression, and
allows feature selection on problems with millions of potential features.

Keywords: classification, stepwise regression, multiple regression, feature selection, false discov-
ery rate

1. Introduction

In many predictive modeling tasks, one has a fixed set of observations from which a vast, or even
infinite, set of potentially predictive features can be computed. Of these features, often only a small
number are expected to be useful in a predictive model. Pairwise interactions and data transforma-
tions of an original set of features are frequently important in obtaining superior statistical models,

c©2006 Jing Zhou, Dean P. Foster, Robert A. Stine and Lyle H. Ungar.

ZHOU, FOSTER, STINE AND UNGAR

but expand the number of feature candidates while leaving the number of observations constant.
For example, in a recent bankruptcy prediction study (Foster and Stine, 2004b), pairwise interac-
tions between the 365 original candidate features led to a set of over 67,000 resultant candidate
features, of which about 40 proved to be significant. The feature selection problem is to identify
and include features from a candidate set with the goal of building a statistical model with minimal
out-of-sample (test) error. As the set of potentially predictive features becomes ever larger, careful
feature selection to avoid overfitting and to reduce computation time becomes ever more critical.

In this paper, we describe streamwise feature selection, a class of feature selection methods
in which features are considered sequentially for addition to a model, and either added to the
model or discarded, and two simple streamwise regression algorithms1, information-investing and
α-investing, that exploit the streamwise feature setting to produce simple, accurate models. Figure
1 gives the basic framework of streamwise feature selection. One starts with a fixed set of y values
(for example, labels for observations), and each potential feature is sequentially tested for addition
to a model. The threshold on the required benefit (for example, error or entropy reduction, or sta-
tistical significance) for adding new features is dynamically adjusted in order to optimally control
overfitting.

Streamwise regression should be contrasted with “batch” methods such as stepwise regression
or support vector machines (SVMs). In stepwise regression, there is no order on the features; all
features must be known in advance, since all features are evaluated at each iteration and the best
feature is added to the model. Similarly, in SVMs or neural networks, all features must be known in
advance. (Overfitting in these cases is usually avoided by regularization, which leaves all features
in the model, but shrinks the weights towards zero.) In contrast, in streamwise regression, since
potential features are tested one by one, they can be generated dynamically.

By modeling the candidate feature set as a dynamically generated stream, we can handle can-
didate feature sets of unknown, or even infinite size, since not all potential features need to be
generated and tested. Enabling selection from a set of features of unknown size is useful in many
settings. For example, in statistical relational learning (Jensen and Getoor, 2003; Dzeroski et al.,
2003; Dzeroski and Lavrac, 2001), an agent may search over the space of SQL queries to augment
the base set of candidate features found in the tables of a relational database. The number of candi-
date features generated by such a method is limited by the amount of CPU time available to run SQL
queries. Generating 100,000 features can easily take 24 CPU hours (Popescul and Ungar, 2004),
while millions of features may be irrelevant due to the large numbers of individual words in text.
Another example occurs in the generation of transformations of features already included in the
model (for example, pairwise or cubic interactions). When there are millions or billions of potential
features, just generating the entire set of features (for example, cubic interactions or three-way table
merges in SQL) is often intractable. Traditional regularization and feature selection settings assume
that all features are pre-computed and presented to a learner before any feature selection begins.
Streamwise regression does not.

Streamwise feature selection can be used with a wide variety of models where p-values or
similar measures of feature significance are generated. We evaluate streamwise regression using

1. The algorithms select features and add these features into regression models. Since feature selection and regression
are closely coupled here, we use “streamwise feature selection” and “streamwise regression” interchangeably. Some
papers use the terms “regression” for continuous responses and “classification” for categorical responses. We use
“regression” for both cases, since generalized linear regression methods such as logistic regression handle categorical
responses well.

1862

STREAMWISE FEATURE SELECTION

Input: A vector of y values (for example, labels), and a stream of features x.
{initialize}
model = {} //initially no features in model
i = 1 // index of features
while CPU time used < max CPU time do

xi ← get next feature()
{Is xi a “good” feature?}
if fit of(xi, model) > threshold then

model ← model ∪ xi // add xi to the model
decrease threshold

else
increase threshold

end if
i ← i+1

end while

Figure 1: Algorithm: general framework of streamwise feature selection. The threshold on statis-
tical significance of a future new feature (or the entropy reduction required for adding
the future new feature) is adjusted based on whether current feature was added. fit of(xi,
model) represents a score, indicating how much adding xi to the model improves the
model. Details are provided below.

linear and logistic regression (also known as maximum entropy modeling), where a large variety
of selection criteria have been developed and tested. Although streamwise regression is designed
for settings in which there is some prior knowledge about the structure of the space of potential
features, and the feature set size is unknown, in order to compare it with stepwise regression, we
apply streamwise regression in traditional feature selection settings, that is, those of fixed feature
set size. In such settings, empirical evaluation shows that, as predicted by theory, for smaller feature
sets such as occur in the UCI data sets, streamwise regression produces performance competitive
to stepwise regression using traditional feature selection penalty criteria including AIC (Akaike,
1973), BIC (Schwartz, 1978), and RIC (Donoho and Johnstone, 1994; Foster and George, 1994).
As feature set size becomes larger, streamwise regression offers significant computational savings
and higher prediction accuracy.

The ability to do feature selection well encourages the use of different transformations of the
original features. For sparse data, principal components analysis (PCA) or other feature extraction
methods generate new features which are often predictive. Since the number of potentially useful
principal components is low, it costs very little to generate a couple different projections of the
data, and to place these at the head of the feature stream. Smaller feature sets should be put first.
For example, first PCA components, then the original features, and then interaction terms. Results
presented below confirm the efficiency of this approach.

Features in the feature stream can be sorted by cost. If features which are cheaper to collect
are placed early in the feature stream, they will be preferentially selected over redundant expensive
features later in the stream. When using the resulting model for future predictions, one needs not
collect the redundant expensive features.

1863

ZHOU, FOSTER, STINE AND UNGAR

Alternatively, features can be sorted so as to place potentially higher signal content features
earlier in the feature stream, making it easier to discover the useful features. Different applications
benefit from different sorting criteria. For example, sorting gene expression data on the variance of
features sometimes helps (see Section 6.2). Often features come in different types (person, place,
organization; noun, verb, adjective; car, boat, plane). A combination of domain knowledge and
use of the different sizes of the feature sets can be used to provide a partial order on the features,
and thus to take full advantage of streamwise feature selection. As described below, one can also
dynamically re-order feature streams based on which features have been selected so far.

2. Traditional Feature Selection: A Brief Review

Traditional feature selection typically assumes a setting consisting of n observations and a fixed
number m of candidate features. The goal is to select the feature subset that will ultimately lead
to the best performing predictive model. The size of the search space is therefore 2m, and iden-
tifying the best subset is NP-complete. Many commercial statistical packages offer variants of a
greedy method, stepwise feature selection, an iterative procedure in which at each step all features
are tested at each iteration, and the single best feature is selected and added to the model. Stepwise
regression thus performs hill climbing in the space of feature subsets. Stepwise selection is termi-
nated when either all candidate features have been added, or none of the remaining features lead
to increased expected benefit according to some measure, such as a p-value threshold. We show
below that an even greedier search, in which each feature is considered only once (rather than at
every step) gives competitive performance. Variants of stepwise selection abound, including for-
ward (adding features deemed helpful), backward (removing features no longer deemed helpful),
and mixed methods (alternating between forward and backward). Our evaluation and discussion
will assume a simple forward search.

There are many methods for assessing the benefit of adding a feature. Computer scientists tend
to use cross-validation, where the training set is divided into several (say k) batches with equal
sizes. k− 1 of the batches are used for training while the remainder batch is used for evaluation.
The training procedure is run k times so that the model is evaluated once on each of the batches
and performance is averaged. The approach is computationally expensive, requiring k separate
retraining steps for each evaluation. A second disadvantage is that when observations are scarce the
method does not make good use of the observations. Finally, when many different models are being
considered (for example, different combinations of features), there is a serious danger of overfitting
when cross-validation is used. One, in effect, is selecting the model to fit the test set.

Penalized likelihood ratio methods (Bickel and Doksum, 2001) for feature selection are pre-
ferred to cross-validation by many statisticians, as they do not require multiple re-trainings of the
model and they have attractive theoretical properties. Penalized likelihood can be represented as:

score = −2log(likelihood)+F ×q

where F is a function designed to penalize model complexity, and q represents the number of fea-
tures currently included in the model at a given point. The first term in the equation represents a
measure of the in-sample error given the model, while the second is a model complexity penalty.
Table 1 contains the definitions which we use throughout the paper. In addition, we define ben-

1864

STREAMWISE FEATURE SELECTION

Symbol Meaning
n Number of observations
m Number of candidate features
m∗ Number of beneficial features in the candidate feature set
q Number of features currently included in a model

Table 1: Symbols used throughout the paper and their definitions.

Name Nickname Penalty
Akaike information criterion AIC 2
Bayesian information criterion BIC log(n)
risk inflation criterion RIC 2log(m)

Table 2: Different choices for the model complexity penalty F .

eficial2 or spurious features as those which, if added to the current model, would or would not
reduce prediction error, respectively, on a hypothetical infinite large test data set. Note that under
this definition of beneficial, if two features are perfectly correlated, the first one in the stream would
be beneficial and the second one spurious, as it would not improve prediction accuracy. Also, if a
prediction requires an exact XOR of two features, the raw features themselves could be spurious,
even though the derived XOR-feature might be beneficial. We speak of the set of beneficial features
in a stream as those which would have improved the prediction accuracy of the model at the time
they were considered for addition if all prior beneficial features had been added.

Only features that decrease the score defined in Equation (1) are added to the model. In other
words, the benefit of adding the feature to the model as measured by the likelihood ratio must
surpass the penalty incurred by increasing the model complexity. We focus now on choice of F .
Many different functions F have been used, defining different criteria for feature selection. The most
widely used of these criteria are the Akaike information criterion (AIC), the Bayesian information
criterion (BIC), and the risk inflation criterion (RIC). Table 2 summarizes the penalties F used in
these methods.

For exposition we find it useful to compare the different choices of F as alternative coding
schemes for use in a minimum description length (MDL) criterion framework (Rissanen, 1999). In
MDL, both sender and receiver are assumed to know the feature matrix and the sender wants to
send a coded version of a statistical model and the residual error given the model so that the receiver
can construct the response values. Equation (1) can be viewed as the length of a message encoding
a statistical model (the second term in Equation (1)) plus the residual error given that model (the
first term in Equation (1)). To encode a statistical model, an encoding scheme must identify which
features are selected for inclusion and encode the estimated coefficients of the included features.
Using the fact that the log-likelihood of the data given a model gives the number of bits to code
the model residual error leads to the criteria for feature selection: accept a new feature xi only
if the change in log-likelihood from adding the feature is greater than the penalty F , that is, if

2. Some papers use the terms “useful” or “relevant”; please see Kohavi and John (1997) and Blum and Langley (1997)
for a discussion and definitions of these terms. If the features were independent (orthogonal), then we could speak
of “true” features, which improve prediction accuracy for a given classification method regardless of which other
features are already in the model.

1865

ZHOU, FOSTER, STINE AND UNGAR

2log(P(y|ŷxi))−2log(P(y|ŷ−xi)) > F where y is the response values, ŷxi is the prediction when the
feature xi is added into the model, and ŷ−xi is the prediction when xi is not added. Different choices
for F correspond to different coding schemes for the model.

Better coding schemes encode the model more efficiently; they produce a more accurate depic-
tion of the model using fewer bits. AIC’s choice of F = 2 corresponds to a version of MDL which
uses universal priors for the coefficient of a feature which is added into the model (Foster and Stine,
1999). BIC’s choice of F = log(n) employs more bits to encode the coefficient as the training set
size grows larger. Using BIC, each zero coefficient (feature not included in the model) is coded with
one bit, and each non-zero coefficient (feature included in the model) is coded with 1+ 1

2 log(n) bits
(all logs are base 2). BIC is equivalent to an MDL criterion which uses spike-and-slab priors if the
number of observations n is large enough (Stine, 2004).

However, neither AIC nor BIC are valid codes for m � n. They thus are expected to perform
poorly as m grows larger than n, a situation common in streamwise regression settings. We confirm
this theory through empirical investigation in Section 6.2.

RIC corresponds to a penalty of F = 2log(m) (Foster and George, 1994; George, 2000). Al-
though the criterion is motivated by a minimax argument, following Stine (2004) we can view RIC
as an encoding scheme where log(m) bits encode the index of which feature is added. Using RIC,
no bits are used to code the coefficients of the features that are added. This is based on the assump-
tion that m is large, so that the log(m) cost dominates the cost of specifying the coefficients. Such
an encoding is most efficient when we expect few of the m candidate features enter the model.

RIC can be problematic for streamwise feature selection since RIC requires that we know m in
advance, which is often not the case (see Section 3). We are forced to guess a m, and when our guess
is inaccurate, the method may be too stringent or not stringent enough. By substituting F = 2log(m)
into Equation (1) and examining the resulting chi-squared hypothesis test, it can be shown that the
p-value required to reject the null hypothesis must be smaller than 0.05

m . In other words, RIC may be
viewed as a Bonferroni p-value thresholding method. Bonferroni methods are known to be overly
stringent (Benjamini and Hochberg, 1995), a problem exacerbated in streamwise feature selection
applications when m should technically be chosen to be the largest number of features that might be
examined. On the other hand, if m is picked to be a lower bound of the number of predictors that
might be examined, then it is too small and there is increased risk that some feature will appear by
chance to give significant performance improvement.

Streamwise feature selection is closer in spirit to an alternate class of feature selection methods
that control the false discovery rate (FDR), the fraction of the features that are added to the model
that reduce predictive accuracy (Benjamini and Hochberg, 1995). Unlike AIC, BIC and RIC, which
require each potential feature to be above the same threshold, FDR methods compute p-values (here,
the probability of feature increasing test error), sort the features by p-value, and then use a threshold
which depends on both the total number of features considered (like RIC) and the number of features
that have been added, making use of the fact that adding some features which are almost certain to
reduce prediction error allows us to add other features which are more marginal, while still meeting
the FDR criterion. In this paper we propose an alternative to FDR that, among other benefits, can
handle infinite feature streams, and make the above claims precise.

1866

STREAMWISE FEATURE SELECTION

3. Interleaving Feature Generation and Testing

In streamwise feature selection, candidate features are sequentially presented to the modeling code
for potential inclusion in the model. As each feature is presented, a decision is made using an
adaptive penalty scheme as to whether or not to include the feature in the model. Each feature needs
be examined at most once.

The “streamwise” view supports flexible ordering on the generation and testing of features.
Features can be generated dynamically based on which features have already been added to the
model.3 Note that the theory provided below is independent of the feature generation scheme used.
All that is required is a method of generating features, and an estimation package which given
a proposed feature for addition to the model returns a p-value for the corresponding coefficient
or, more generally, the change in likelihood of the model resulting from adding the feature. One
can also test the same feature more than once (as in stepwise regression), but we have not found
significant benefit from doing multiple passes through the features.

New features can be generated in many ways. For example, in addition to the m original fea-
tures, m2 pairwise interaction terms can be formed by multiplying all m2 pairs of features together.
(Almost half of these features are, of course, redundant with the other half due to symmetry, and so
need not be generated and tested.) We refer to the interaction terms as generated features; they are
examples of a more general class of features formed from transformations of the original features
(square root, log, etc.), or combinations of them including, for instance, PCA. Such strategies are
frequently successful in obtaining better predictive models.

Rather than testing all possible interactions in an arbitrary order, it is generally better to initially
test interactions of the features that have already been selected with themselves, then to test interac-
tions of the selected features with the original features, and finally (if computer power permits) to
test all interactions of the original features. This requires dynamic generation of the feature stream,
since the first interaction terms can not be specified in advance, as they depend on which features
have already been selected. (It can be the case, as in an XOR or parity problem, that interactions are
significant when none of the individual component features are, but it still makes sense as a search
strategy to try the smaller parts of the feature space first.)

Statistical relational learning (SRL) methods can easily generate millions of potentially predic-
tive features as they “crawl” through a database or other relational structure and generate features
by building increasingly complex compound relations or SQL queries (Popescul and Ungar, 2004).
For example, when building a model to predict the journal in which an article will be published,
potentially predictive features include the words in the target article itself, the words in the articles
cited by the target article, the words in articles that cite articles written by the authors of the target
article, and so forth.

Both stepwise regression and standard shrinkage methods require knowing all features in ad-
vance, and are poorly suited for the feature sets generated by SRL. Since stepwise regression tests
all features for inclusion at each iteration, it is computational infeasible on large data sets. Even if
computer speed and memory were not an issue, control of overfitting using standard penalty meth-
ods would fail. Some other strategy such as streamwise feature selection is required. Interleaving
the generation of features with the assessment of model improvement allows the search over po-

3. One cannot use the coefficients of the features that were not added to the model, since streamwise regression does
not include the cost of coding these coefficients, and so this would lead to overfitting. One can, of course, use the
rejected features themselves in interaction terms, just not their coefficients.

1867

ZHOU, FOSTER, STINE AND UNGAR

tential features to be pruned to promising regions. A potentially intractable search thus becomes
tractable.

In SRL, one searches further in those branches of a refinement graph where more component
terms have proven predictive. In searching for interaction terms, one looks first for interactions or
transformations of features which have proven significant. This saves the computation, and more
importantly, avoids the need to take a complexity penalty for the many interaction terms which are
never examined.

There are also simple ways to dynamically interleave multiple kinds of features, each of which is
in its own stream. The main feature stream used in streamwise regression is dynamically constructed
by taking the next feature from the sub stream which has had the highest success in having features
accepted. If a previously successful stream goes long enough without having a feature selected, then
other streams will be automatically tried. To assure that all streams are eventually tried, one can use
a score for each stream defined as (number of features selected + a)/(number of features tried + b).
The exact values of a and b do not matter, as long as both are positive. A single feature stream is
used in this paper.

4. Streamwise Regression using Information-investing

Streamwise regression can be used either in an MDL setting (“information-investing”) or in a sta-
tistical setting using a t or F statistic (“α-investing”). We first present streamwise regression in an
information-investing setting. Information-investing (Ungar et al., 2005) is derived using a min-
imum description length (MDL) approach (Stine, 2004). From a coding viewpoint, we wish to
transmit a message to a receiver in order to let the receiver get the response values (y), assuming
that the receiver knows x. In this sense, the score in Equation (1) is the description length required
to code this message. The model is then chosen that minimizes the description length. If a feature is
added to the model and reduces the description length, we call this reduction the bits saved. There-
fore, bits saved is the decrease in the bits required to code the model error minus the increase in the
bits required to code the model. The coding used to calculate bits saved is described in details in
Section 4.3. If bits saved is larger than a threshold, we add the feature to the model. The algorithm
is shown in Figure 2. We set both W0 and WΔ to 0.5 bit in all of the experiments presented in this
paper.

Information-investing allows us, for any valid coding, to have a false discovery rate (FDR) style
bound, and thus to minimize the expected test error by adding as many features as possible subject
to controlling the FDR bound (Zhou et al., 2005).

Streamwise regression with information-investing consists of three components:

• Wealth Updating: a method for adaptively adjusting the bits available to code the features
which will not be added to the model.

• Bid Selection: a method for determining how many bits, εi, one is willing to spend to code
the fact of not adding a feature xi. Asymptotically, it is also the probability of adding this
feature. We show below how bid selection can be done optimally by keeping track of the
bits available to cover future overfitting (that is, the wealth).

• Feature Coding: a coding method for determining how many bits are required to code a
feature for addition. We use a two part code, coding the presence or absence of the features,
and then, if the feature is present, coding the sign and size of the estimated coefficient.

1868

STREAMWISE FEATURE SELECTION

Input: A vector of y values (for example, labels), a stream of features x, W0, and WΔ.
{initialize}
model = {} //initially no features in model
i = 1 // index of features
w1 = W0 // initial bits available for coding
while CPU time used < max CPU time do

xi ← get next feature()
εi ← wi/2i // select bid amount
{see Section 4.3 for the calculation of bits saved}
if bits saved(xi,εi,model) > WΔ then

model ← model ∪ xi // add xi to the model
wi+1 ← wi +WΔ // increase wealth

else
wi+1 ← wi − εi // reduce wealth

end if
i ← i+1

end while

Figure 2: Algorithm: streamwise regression using information-investing.

4.1 Wealth Updating

The information-investing coding scheme is adjusted using the wealth, w, which represents the
number of bits currently available for future overfitting. The wealth is “invested” in testing features.
Wealth starts at an initial value W0.

Each time a feature is added, it is (in expectation) likely to be a beneficial feature and lead to a
decrease in the total description length, leaving more bits available to risk future overfitting. Thus,
wealth is increased by WΔ. By increasing wealth, we gain more feature selection power under the
FDR bound. Our algorithm guarantees that the sum of wealth (which is increased by WΔ) and total
description length (which is decreased by more than WΔ) is decreased. If a feature is not added to
the model, ε bits is “invested” to code this fact and subtracted from wealth.

4.2 Bid Selection

The selection of εi as wi/2i gives the slowest possible decrease in wealth such that all wealth is
used; that is, so that as many features as possible are included in the model without systematically
overfitting.4

Theorem 1 Computing εi as proportional to wi/2i gives the slowest possible decrease in wealth
such that limi→∞ wi = 0.

4. Slightly better and more complex bid selection methods such as εi ← wi/(i log(i)) could be used, but they are sta-
tistically equivalent to the simpler one in terms of rates, and more importantly they generate tests that have no more
power. We will stick with the simpler one in this paper.

1869

ZHOU, FOSTER, STINE AND UNGAR

Proof Define δi = εi/wi to be the fraction of wealth invested at time i. If no features are added
to the model, wealth at time i is wi = Πi(1− δi). If we pass to the limit to generate w∞, we have
w∞ = Πi(1−δi) = e∑ log(1−δi) = e−∑δi+O(δ2

i). Thus, w∞ = 0 iff ∑δi is infinite.
Thus if we let δi go to zero faster than 1/i, say i−1−γ where γ > 0 then w∞ > 0 and we have

wealth that we never use.

4.3 Feature Coding

To code an added feature, we code both the fact that the feature is added and the value of its esti-
mated coefficient. Since ε is the number of bits available to code the fact of not adding a feature, the
probability of not adding a feature should be e−ε if the coding is optimal. Therefore, the probability
of adding a feature is 1− e−ε = 1− (1− ε +O(ε2)) ≈ ε, and the cost in bits of coding the fact the
feature is added is roughly − log(ε) bits. Different codings can be used for the feature’s estimated
coefficient. For example, BIC uses 1

2 log(n) bits. In section 4.3.1, we present an optimal coding of
the estimated coefficients.

For now, for simplicity assume we use b bits to code each feature x’s estimated coefficient β̂
when x is added to the model. Adding x to the model reduces the model entropy by 1

2 t2 log(e) bits

where t is the t statistic associated with β̂, as defined above. Here, and below log() is log based 2;
the log(e) converts the t2 to bits. Then,

bits saved =
1
2

t2 log(e)− (− log(ε)+b).

4.3.1 OPTIMAL CODING OF COEFFICIENTS IN INFORMATION-INVESTING

A key question is what coding scheme to use to code the coefficient of a feature which is added to
the model. We describe here an “optimal” coding scheme which can be used in the information-
investing criterion. The key idea is that coding an event with probability p requires log(p) bits. This
equivalence allows us to think in terms of distributions and thus to compute codes which handle
fractions of a bit. Our goal is to find a (legitimate) coding scheme which, given a “bid” ε, will
guarantee the highest probability of adding the feature to the model. We show below that given
any actual distribution f̃β of the coefficients, we can produce a coding corresponding to a modified
distribution fβ which produces a coding which uniformly dominates it.

Assume, for simplicity, that we increase the wealth by one bit when a feature xi with coefficient
βi is added. Thus, when xi is added, we have

log
p(xi is a beneficial feature)
p(xi is a spurious feature)

> 1 bit,

that is, the log-likelihood decreases by more than one bit.
Let fβi

be the distribution implied by the coding scheme for tβi
if we add xi and f0(tβi

) be the
normal distribution (the null model in which xi should not be added). The coding saves enough bits
to justify adding a feature whenever fβi

(tβi
) ≥ 2 f0(tβi

). This happens with probability αi ≡ p0({tβi
:

fβi
(tβi

) ≥ 2 f0(tβi
)}) under the null. αi is the area under the tails of the null distribution.

There is no reason to have fβi
(tβi

) � 2 f0(tβi
) in the tails, since this would “waste” probability

or bits. Hence, the optimal coding is fβ(tβi
) = 2 f0(tβi

) for all the features that are likely to be

1870

STREAMWISE FEATURE SELECTION

���

�

�

t ��- t ��

)(0 i
tf β

0

i
0

2 ()

() 1-2
()

1

i i i

i

i

i

f t if t t

f t
f t otherwise

β β α

β β
β

α
α

⎧ >
⎪= ⎨
⎪ −⎩

Figure 3: Optimal distribution fβ.

added. Using all of the remaining probability mass (or equivalently, making the coding “Kraft
tight”) dictates the coding for the case when the feature is not likely to be added. The most efficient
coding to use is thus: {

fβ(tβi
) = 2 f0(tβi

) if |tβi
| > tαi

fβ(tβi
) = 1−2αi

1−αi
f0(tβi

) otherwise

and the corresponding cost in bits is:

{
log(fβ(tβi

)/ f0(tβi
)) = log(2) = 1 bit if |tβi

| > tαi

log(fβ(tβi
)/ f0(tβi

) = log(1−2αi
1−αi

) ≈−αi bits otherwise.

Figure 3 shows the distribution fβ(t(βi)), with the probability mass transferred away from the
center, where features are not added, out to the tails, where features are added.

The above equations are derived assuming that 1 bit is added to the wealth. It can be generalized
to add WΔ bits to the wealth each time a feature is added to the model. Then, when a feature is added
to the model the probability of it being “beneficial” should be 2WΔ times that of it being “spurious”,
and all of the 2’s in the above equations are replaced with 2WΔ .

5. Streamwise Regression using Alpha-investing

One can define an alternate form of streamwise regression, α-investing (Zhou et al., 2005), which
is phrased in terms of p-values rather than information theory. The p-value associated with a t-
statistic is the probability that a coefficient of the observed size could have been estimated by chance
even though the true coefficient was zero (Larsen and Marx, 2001). Of the three components of
streamwise regression using information-investing, in α-investing, wealth updating is similar, bid
selection is identical, and feature coding is not required. The two different streamwise regression
algorithms are asymptotically identical (the wealth update of αΔ −αi approaches the update of WΔ
as αi becomes small), but differ slightly when the initial features in the stream are considered. The
relation between the two methods follows from the fact that coding an event with probability p
requires log(p) bits. The α-investing algorithm is shown in Figure 4, and the equivalence between
α-investing and information-investing is shown in Table 3. Wealth updating is now done in terms
of α, the probability of adding a spurious feature.

1871

ZHOU, FOSTER, STINE AND UNGAR

Input: A vector of y values (for example, labels), a stream of features x, W0, and αΔ.
{initialize}
model = {} //initially no features in model
i = 1 // index of features
w1 = W0 // initial prob. of false positives
while CPU time used < max CPU time do

xi ← get next feature()
αi ← wi/2i
{Is p-value of the new feature below threshold?}
if get p-value(xi,model) < αi then

model ← model ∪ xi // add xi to the model
wi+1 ← wi +αΔ −αi // increase wealth

else
wi+1 ← wi −αi // reduce wealth

end if
i ← i+1

end while

Figure 4: Algorithm: streamwise regression with α-investing.

information-investing α-investing
wi log(wi)

bits saved test statistic = Δlog-likelihood
bits saved > WΔ p-value < αi

Table 3: The equivalence of α-investing and information-investing.

α-investing controls the FDR bound by dynamically adjusting a threshold on the p-statistic
for a new feature to enter the model (Zhou et al., 2005). Similarly to the information-investing,
α-investing adds as many features as possible subject to the FDR bound giving the minimum out-
of-sample error.

The threshold, αi, corresponds to the probability of including a spurious feature at step i. It
is adjusted using the wealth, wi, which represents the current acceptable number of future false
positives. Wealth is increased when a feature is added to the model (presumably correctly, and hence
permitting more future false positives without increasing the overall FDR). Wealth is decreased
when a feature is not added to the model. In order to save enough wealth to add future features, bid
selection is identical to the information-investing.

More precisely, a feature is added to the model if its p-value is greater than α. The p-value is
computed by using the fact that Δlog-likelihood is equivalent to a t-statistic. The idea of α-investing
is to adaptively control the threshold for adding features so that when new (probably predictive)
features are added to the model, one “invests” α increasing the wealth, raising the threshold, and
allowing a slightly higher future chance of incorrect inclusion of features. We increase wealth by
αΔ −αi. Note that when αi is very small, this increase amount is roughly equivalent to αΔ. Each
time a feature is tested and found not to be significant, wealth is “spent”, reducing the threshold so
as to keep the guarantee of not adding more than a target fraction of spurious features. There are

1872

STREAMWISE FEATURE SELECTION

two user-adjustable parameters, αΔ and W0, which can be selected to control the FDR; we set both
of them to 0.5 in all of the experiments presented in this paper.

6. Experimental Evaluation

We compared streamwise feature selection using α-investing against both streamwise and stepwise
feature selection (see Section 2) using the AIC, BIC and RIC penalties on a battery of synthetic
and real data sets. After a set of features are selected from the real data sets, we applied logistic
regression on this feature set selected, calculated the probability of observation labels, provided a
cutoff/threshold of 0.5 to classify the response labels if label values are binary and get the prediction
accuracies or balance errors. (Actually, different cutoffs could be used for different loss functions.)
Information-investing gives extremely similar results, so we do not report them. We used R to
implement our evaluation.

6.1 Evaluation on Synthetic Data

The base synthetic data set contains 100 observations each of 1,000 features, of which 4 are pre-
dictive. We generated the features independently from a normal distribution, N(0,1), with the true
model being the sum of four of the features (their coefficients are one’s)5 plus noise, N(0,0.12). The
artificially simple structure of the data (the features are uncorrelated and have relatively strong sig-
nal) allows us to easily see which feature selection methods are adding spurious features or failing
to find features that should be in the model.

The results are presented in Table 4. As expected, AIC massively overfits, always putting in as
many features as there are observations. BIC overfits severely, although less badly than AIC. RIC
gives performance comparable to α-investing. As one would also expect, if all of the beneficial
features in the model occur at the beginning of the stream, α-investing does better, giving the same
error as RIC, while if all of the beneficial features in the model are last, α-investing does (two times)
worse than RIC. In practice, if one is not taking advantage of known structure of the features, one
can randomize the feature order to avoid such bad performance.

Stepwise regression gave noticeably better results than streamwise regression for this problem
when the penalty is AIC or BIC. Using AIC and BIC still resulted in n features being added, but at
least all of the beneficial features were found. Stepwise regression with RIC gave the same error
of its streamwise counterpart. However, using standard code from R, the stepwise regression was
much slower than streamwise regression. Running stepwise regression on data sets with tens of
thousands of features, such as the ones presented in Table 5, was not possible.

One might hope that adding more spurious features to the end of a feature stream would not
severely harm an algorithm’s performance.6 However, AIC and BIC, since their penalty is not a
function of m, will add even more spurious features (if they haven’t already added a feature for
every observation!). RIC (Bonferroni) produces a harsher penalty as m gets large, adding fewer
and fewer features. As Table 5 and 6 show, α-investing is clearly the superior method in this case.

5. Similar results are also observed, if instead of using coefficients which are strictly 0 or 1, we use coefficients that are
generated in either of the two cases: (a) most coefficients are zeros and several are from Gaussian distribution; (b) all
coefficients are generated from t distribution with degree of freedom of two.

6. One would not, of course, intentionally add features known not to be predictive. However, as described above, there
is often a natural ordering on features so that some classes of features, such as interactions, have a smaller fraction of
predictive features, and can be put later in the feature stream.

1873

ZHOU, FOSTER, STINE AND UNGAR

streamwise AIC BIC RIC α-invest. α-invest.
first last

features 100 90 4.3 4.2 4.6 3.7
error 6.13 1.91 0.33 0.42 0.33 0.71

stepwise AIC BIC RIC
features 100 100 4.5 – – –

error 0.54 0.54 0.33 – – –

Table 4: AIC and BIC overfit for m � n. The number of features selected and the out-of-sample
error, averaged over 20 runs. n = 100 observations, m = 1,000 features, m∗ = 4 beneficial
features in data. Synthetic data: x ∼N(0,1), y is linear in x with noise σ2 = 0.1. Beneficial
features are randomly distributed in the feature set except the “first” and “last” cases.
“first” and “last” denote the beneficial features being first or last in the feature stream.

m 1,000 10,000 100,000 1,000,000
RIC features 4.3 4.0 4.0 3.4
RIC false pos. 0.3 0.2 0.2 0.4
RIC error 0.33 0.42 0.50 0.97

α-invest. features 4.2 4.1 4.7 4.8
α-invest. false pos. 0.3 0.2 0.7 0.9
α-invest. error 0.42 0.42 0.43 0.45

Table 5: Effect of adding spurious features. The average number of features selected, false posi-
tives, and out-of-sample error (20 runs). m∗ = 4 beneficial features, randomly distributed
over the first 1,000 features. Otherwise the same model as Table 4.

Table 6 shows that when the number of potential features goes up to 1,000,000, RIC puts in one less
beneficial feature, while streamwise regression puts the same four beneficial features plus a half of a
spurious feature. Thus, streamwise regression is able to find the extra feature even when the feature
is way out in the 1,000,000 features.

6.2 Evaluation on Real Data

Tables 7, 8, and 9 provide a summary of the characteristics of the real data sets that we used. All are
for binary classification tasks. The six data sets in Table 7 were taken from the UCI repository. The
seven data sets in Table 8 are bio-medical data, in which each feature represents a gene expression
value for each observation (patient with cancer or healthy donor). For example, in aml data set,
observations consist of patients with acute myeloid leukemia and patients with acute lymphoblastic
leukemia. The classification task is to identify which patient has which cancer. ha and hung are
private data sets and other gene expression data sets are available to the public (Li and Liu, 2002).
The NIPS data sets are from the NIPS2003 workshop (Guyon, 2003).

The observations are shuffled and those observations which contain missing feature values are
deleted. Since the gene expression data sets have large feature sets, we shuffled their original fea-
tures five times (in addition to the cross validations), applied streamwise regression on each feature

1874

STREAMWISE FEATURE SELECTION

m 1,000 10,000 100,000 1,000,000
RIC features 4.3 4.2 3.9 3.7
RIC false pos. 0.3 0.3 0.1 0.6
RIC error 0.33 0.42 0.50 0.97

α invest. features 4.2 4.2 4.5 4.9
α invest. false pos. 0.3 0.3 0.6 0.8
α invest. error 0.42 0.42 0.43 0.42

Table 6: Effect of adding spurious features. The average number of features selected, false posi-
tives, and out-of-sample error (20 runs). m∗ = 4 beneficial features: when m = 1,000, all
four beneficial features are randomly distributed; in the other three cases, there are three
beneficial features randomly distributed over the first 1,000 features and another benefi-
cial feature randomly distributed within the feature index ranges [1001, 10000], [10001,
100000], and [100001, 1000000] when m = 10000, 100000, and 1000000 respectively.
Otherwise the same model as Table 4 and 5.

cleve internet ionosphere spect wdbc wpbc
features, m 13 1558 34 22 30 33

nominal features 7 1555 0 22 0 0
continuous features 6 3 34 0 30 33

observations, n 296 2359 351 267 569 194
baseline accuracy 54% 84% 64% 79% 63% 76%

Table 7: Description of the UCI data sets.

order, and averaged the five evaluation results. The baseline accuracy is the accuracy (on the whole
data set) when predicting the majority class. The feature selection methods were tested on these
data sets using ten-fold cross-validation.

On the UCI and gene expression data sets, experiments were done on two different feature sets.
The first experiments used only the original feature set. The second interleaved feature selection
and generation, initially testing PCA components and the original features, and then generating in-
teraction terms between any of the features which had been selected and any of the original features.
On the NIPS data sets, since our main concern is to compare against the challenge best models, we
did only the second kind of experiment.

aml ha hung ctumor ocancer pcancer lcancer
features, m 7,129 19,200 19,200 2,000 15,154 12,600 12,533

observations, n 72 83 57 62 253 136 181
baseline accuracy 65% 71% 63% 65% 64% 57% 92%

Table 8: Description of the gene expression data sets. All features are continuous.

1875

ZHOU, FOSTER, STINE AND UNGAR

arcene dexter dorothea gisette madelon
features, m 10,000 20,000 100,000 5,000 500

observations, n 100 300 800 6,000 2,000
baseline accuracy 56% 50% 90% 50% 50%

Table 9: Description of the NIPS data sets. All features are nominal.

On UCI data sets (Figure 5)7 , when only the original feature set is used, paired two-sample
t-tests show that α-investing has better performance than streamwise AIC and BIC only on two of
the six UCI data sets: the internet and wpbc data sets. On the other data sets, which have relatively
few features, the less stringent penalties do as well as or better than streamwise regression. When
interaction terms and PCA components are included, α-investing gives better performance than
streamwise AIC on five data sets, than streamwise BIC on three data sets, and than streamwise RIC
on two data sets. In general, when the feature set size is small, there is no significant difference in
the prediction accuracies between α-investing and the other penalties. When the feature set size is
larger (that is, when new features are generated) α-investing begins to show its superiority over the
other penalties.

On the UCI data sets (Figure 5), we also compared streamwise regression with α-investing8 with
stepwise regression. Paired two-sample t-tests show that when the original feature set is used, α-
investing does not differ significantly from stepwise regression. α-investing has better performance
than stepwise regression in 5 cases, and worse performance in 3 cases. (Here a “case” is defined as
a comparison of α-investing and stepwise regression under a penalty, that is, AIC or BIC or RIC,
on a data set.) However, when interaction terms and PCA components are included, α-investing
gives better performance than stepwise regression in 9 cases, and worse performance in none of the
cases. Thus, in our tests, α-investing is comparable to stepwise regression on the smaller data sets
and superior on the larger ones.

On the UCI data sets (Table 10), α-investing was also compared with support vector machines
(SVM), neural networks (NNET), and decision tree models (TREE). In all cases, standard packages
available with R were used9. No doubt these could be improved by fine tuning parameters and kernel
functions, but we were interested in seeing how well “out-of-the-box” methods could do. We did
not tune any parameters in streamwise regression to particular problems either. Paired two-sample
t-tests show that α-investing has better performance than NNET on 3 out of 6 data sets, and than
SVM and TREE on 2 out of 6 data sets. On the other data sets, streamwise regression doesn’t have

7. In Figure 5, a small training set size of 50 was selected to make sure the problems were difficult enough that the
methods gave clearly different results. The right columns graphs differs from the left ones in that: (1) we generated
PCA components from the original data sets and put them at the front of the feature sets; (2) after the PCA component
“block” and the original feature “block”, there is an interaction term “block” in which the interaction terms are
generated using the features selected from the first two feature blocks. This kind of feature stream was also used in
the experiments on the other data sets. We were unable to compute the stepwise regression results on the internet
data set using the software at hand when interaction terms and PCA components were included giving millions of
potential features with thousands of observations. It is indicative of the difficulty of running stepwise regression on
large data sets.

8. In later text of this section, for simplicity, we use “α-investing” to mean the “streamwise regression with α-investing”.
9. Please find details at http://cran.r-project.org/doc/packages for SVM (e1071.pdf), NNET (VR.pdf), and TREE

(tree.pdf). SVM uses the radial kernel. NNET uses feed-forward neural networks with a single hidden layer. TREE
grows a tree by binary recursive partitioning using the response in the specified formula and choosing splits from the
terms of the right-hand-side.

1876

STREAMWISE FEATURE SELECTION

significant better or worse performance than NNET, SVM, or TREE. These tests shows that the
performance of streamwise regression is at least comparable to those of SVM, NNET, and TREE.

On the gene expression data sets (Figure 6), when comparing α-investing with streamwise AIC,
streamwise BIC, and streamwise RIC, paired two-sample t-tests show that when the original features
are used, the performances of α-investing and streamwise RIC don’t have significant difference on
any of the data sets. But when interaction terms and PCA components are included , RIC is often
too conservative to select even only one feature, whereas α-investing has stable performance and
the t-tests show that α-investing has significant better prediction accuracies than streamwise RIC on
5 out of 7 data sets. Note that, regardless of whether or not interaction terms and PCA components
are included, α-investing always has much higher accuracy than streamwise AIC and BIC.

The standard errors (SE) of prediction accuracies in shuffles gave us sense of the approach
sensitivity to the feature order. When the original features are used, α-investing has a maximum
SE of four percent on pcancer and its other SEs are less than two percents in accuracy. When PCA
components and interaction terms are included, α-investing has a maximum SE of two percents
on ha and its other SEs are around or less than one percent. Streamwise RIC has similar SEs as
α-investing has, but streamwise AIC and BIC usually have one percent higher SEs than α-investing
and streamwise RIC. We can see that the feature shuffles don’t change the performance much on
most of gene expression data sets.

When PCA components and interaction terms are included and the original feature set is sorted
in advance by feature value variance (one simple way of making use of the ordering in the stream),
the prediction accuracy of α-investing on hung is increased from 79.3% to 86.7%; for the other gene
expression data, sorting gave no significant change.

Also note that, for streamwise AIC, BIC, and RIC, adding interaction terms and PCA compo-
nents often hurts. In contrast, the additional features have not much effect on α-investing. With
these additional features, the prediction accuracies of α-investing are improved or kept the same on
4 out of 6 UCI data sets and 5 out of 7 gene data sets.

On the gene expression data sets (Figure 6), we also compared α-investing with stepwise re-
gression. The results show that, α-investing is competitive with stepwise regression with the RIC
penalty. Stepwise regression with AIC or BIC penalties gives inferior performance.

On the NIPS data sets (Table 11), we compared α-investing against results reported on the
NIPS03 competition data set using other feature selection methods (Guyon et al., 2006). Table
11 shows the results we obtained, and compares them against the two methods which did best in
the competition. These methods are BayesNN-DFT (Neal, 1996, 2001), which combines Bayesian
neural networks and Bayesian clustering with a Dirichlet diffusion tree model and greatest-hits-
one (Gilad-Bachrach et al., 2004), which normalizes the data set, selects features using distance
information, and classifies them using a perceptron or SVM.

Different feature selection approaches such as those used in BayesNN-DFT can be contrasted
based on their different levels of greediness. Screening methods or filters look at the relation
between y and each xi independently. In a typical screen, one computes how predictive each xi

(i = 1...m) is of y (or how are they correlated), or the mutual information between them, and all
features above a threshold are selected. In an extension of the simple screen, FBFS (Fleuret, 2004)
looks at the mutual information I(y;xi|x j) (i, j = 1...m), that is, the effect of adding a second feature

1877

ZHOU, FOSTER, STINE AND UNGAR

after one has been added.10 Streamwise and stepwise feature selection are one step less greedy,
sequentially adding features by computing I(y;xi|Model).

BayesNN-DFT uses a screening method to select features, followed by a sophisticated Bayesian
modeling method. Features were selected using the union of three univariate significance test-based
screens (Neal and Zhang, 2003): correlation of class with the ranks of feature values, correlation of
class with a binary form of the feature (zero/nonzero), and a runs test on the class labels reordered
by increasing feature value. The threshold was selected by comparing each to the distribution found
when permuting the class labels. This richer feature set of transformed variables could, of course,
be used within the streamwise feature selection setting, or streamwise regression could be used to
find an initial set of features to be provided to the Bayesian model.

greatest-hits-one applied margin based feature selection on data sets arcene and madelon, and
used a simple infogain ranker to select features on data sets dexter and dorothea. Assuming a fixed
feature set size, a generalization error bound is proved for the margin based feature selection method
(Gilad-Bachrach et al., 2004).

Table 11 shows that we mostly get comparable accuracy to the best-performing of the NIPS03
competition methods, while using a small fraction of the features. Many of the NIPS03 contestants
got far worse performance, without finding small feature sets (NIPS’03, 2003). When SVM is
used on the features selected by streamwise regression, the errors on arcene, gisette, and madelon
are reduced further to 0.151, 0.021, 0.214 respectively. One could also apply more sophisticated
methods, such as the Bayesian models which BayesNN-DFT used, to our selected features.

There is only one data set, madelon, where streamwise regression gives substantially higher
error than the other methods. This may be partly due to the fact that madelon has substantially
more observations than features, thus making streamwise regression (when not augmented with
sophisticated feature generators) less competitive with more complex models. Madelon is also the
only synthetic data set in the NIPS03 collection, and so its structure may benefit more from the
richer models than typical real data.

7. Discussion: Statistical Feature Selection

Recent developments in statistical feature selection take into account the size of the feature space,
but only allow for finite, fixed feature spaces, and do not support streamwise feature selection.
The risk inflation criterion (RIC) produces a model that possesses a type of competitive predictive
optimality. RIC chooses a set of features from the potential feature pool so that the loss of the
resulting model is within a factor of log(m) of the loss of the best such model. In essence, RIC
behaves like a Bonferroni rule (Foster and George, 1994). Each time a feature is considered, there
is a chance that it will enter the model even if it is merely noise. In other words, the tested null
hypothesis is that the proposed feature does not improve the prediction of the model. Doing a
formal test generates a p-value for this null hypothesis. Suppose we only add this feature if its p-
value is less than α j when we consider the jth feature. Then the Bonferroni rule keeps the chance
of adding even one extraneous feature to less than, say, 0.05 by constraining ∑α j ≤ 0.05.

Bonferroni methods like RIC are conservative, limiting the ability of a model to add features that
improve its predictive accuracy. The connection of RIC to α-spending rules leads to a more powerful
alternative. An α-spending rule is a multiple comparison procedure that bounds its cumulative type
one error rate at a small level, say 5%. For example, suppose one has to test the m hypotheses

10. FBFS has been developed only for binary features, but could be easily extended.

1878

STREAMWISE FEATURE SELECTION

60

65

70

75

80

85

90

95

AIC BIC RIC alpha

cleve

60

65

70

75

80

85

90

95

AIC BIC RIC alpha

internet

60

65

70

75

80

85

90

95

AIC BIC RIC alpha

60

65

70

75

80

85

90

95

AIC BIC RIC alpha

ionosphere

60

65

70

75

80

85

90

95

AIC BIC RIC alpha

60

65

70

75

80

85

90

95

AIC BIC RIC alpha

spect

60

65

70

75

80

85

90

95

AIC BIC RIC alpha
60

65

70

75

80

85

90

95

AIC BIC RIC alpha

wdbc

60

65

70

75

80

85

90

95

AIC BIC RIC alpha

60

65

70

75

80

85

90

95

AIC BIC RIC alpha

wpbc

60

65

70

75

80

85

90

95

AIC BIC RIC alpha

60

65

70

75

80

85

90

95

AIC BIC RIC alpha

Figure 5: UCI Data Streamwise vs. Stepwise Validation Accuracy for different penalties. Training
size is 50. The average accuracy is on 10 cross-validations. The black-dot and solid black
bars are the average accuracies using streamwise regressions. The transparent bars are the
average accuracies using stepwise regressions. Raw features are used in the left column
graphs. Additional interaction terms and PCA components are used in the right column
graphs. Please see Footnote 7 for additional information about this figure. Section 6.2
gives the results of paired two-sample t-tests.

1879

ZHOU, FOSTER, STINE AND UNGAR

cleve internet ionosphere
stream. (α-invest.) 84.3±1.8 (8.5) 96.5±0.3 (166) 91.4±1.8 (23)

SVM 82.0±2.0 93.4±0.6 92.2±1.7
NNET 70.3±4.5 84.2±0.9 91.7±1.9
TREE 76.0±3.3 96.5±0.5 86.7±1.8

spect wdbc wpbc
stream. (α-invest.) 82.2±2 (2) 95.1±0.6 (37) 77±3.4 (4.4)

SVM 81.5±2.4 96.3±0.8 76.5±4.9
NNET 78.9±2.2 68.8±4.5 75.0±5.0
TREE 81.1±1.9 94.2±0.9 74.0±3.0

Table 10: Comparison of streamwise regression and other methods on UCI Data. Average accuracy
using 10-fold cross validation. The number before ± is the average accuracy; the num-
ber immediately after ± is the standard deviation of the average accuracy. The number
in parentheses is the average number of features used by the streamwise regression, and
these features includes PCA components, raw features, and interaction terms (see Foot-
note 7 for the details of this kind of feature stream). SVM, NNET, and TREE use the
whole raw feature set. Section 6.2 gives the results of paired two-sample t-tests.

arcene dexter dorothea gisette madelon
α-invest. error 0.176 0.067 0.090 0.037 0.295

α-invest. features 8 21 8 72 24
greatest-hits-one error 0.172 0.053 0.109 0.030 0.086

greatest-hits-one features 10,000 1,400 300 5,000 18
BayesNN-DFT error 0.133 0.039 0.085 0.013 0.072

BayesNN-DFT features 10,000 303 100,000 5,000 500

Table 11: Comparison of Streamwise regression and other methods on NIPS Data. error is the
“balanced error”(Guyon, 2003); features is the number of features selected by models.

1880

STREAMWISE FEATURE SELECTION

aml

50
55
60
65
70
75
80
85
90
95

100

AIC BIC RIC alpha

ha

50
55
60
65
70
75
80
85
90
95

100

AIC BIC RIC alpha

hung

50
55
60
65
70
75
80
85
90
95

100

AIC BIC RIC alpha

ctumor

50
55
60
65
70
75
80
85
90
95

100

AIC BIC RIC alpha

ocancer

50
55
60
65
70
75
80
85
90
95

100

AIC BIC RIC alpha

pcancer

50
55
60
65
70
75
80
85
90
95

100

AIC BIC RIC alpha

lcancer

50
55
60
65
70
75
80
85
90
95

100

AIC BIC RIC alpha

Figure 6: Gene expression data Streamwise vs. Stepwise Validation Accuracy for different penal-
ties. Average accuracy using 10-fold cross validation. The black-dot bars are the average
accuracies using streamwise regressions on raw features. The solid black bars are the
average accuracy using streamwise regressions with PCA components, raw features, and
interaction terms (see Footnote 7 for the details of this kind of feature stream). The trans-
parent bars are the average accuracies using stepwise regressions on raw features. Section
6.2 gives the results of paired two-sample t-tests.

1881

ZHOU, FOSTER, STINE AND UNGAR

H1,H2, . . . ,Hm. If we test the first using level α1, the second using level α2 and so forth with
∑ j α j = 0.05, then we have only a 5% chance of falsely rejecting one of the m hypotheses. If we
associate each hypothesis with the claim that a feature improves the predictive power of a regression,
then we are back in the situation of a Bonferroni rule for feature selection. Bonferroni methods and
RIC simply fix α j = α/m for each test.

Alternative multiple comparison procedures control a different property. Rather than controlling
the cumulative α (also known as the family wide error rate), they control the so-called false discov-
ery rate (Benjamini and Hochberg, 1995). Control of the FDR at 5% implies that at most 5% of the
rejected hypotheses are false positives. In feature selection, this implies that of the included features,
at most 5% degrade the accuracy of the model. The Benjamini-Hochberg method for controlling
the FDR suggests the α-investing rule used in streamwise regression, which keeps the FDR below
α: order the p-values of the independents tests of H1,H2, . . . ,Hm so that p1 ≤ p2 ≤ ·· · pm. Now find
the largest p-value for which pk ≤ α/(m−k) and reject all Hi for i ≤ k. Thus, if the smallest p-value
p1 ≤ α/m, it is rejected. Rather than compare the second largest p-value to the RIC/Bonferroni
threshold α/m, reject H2 if p2 ≤ 2α/m. Our proposed α-investing rule adapts this approach to eval-
uate an infinite sequence of features. There have been many papers that looked at procedures of this
sort for use in feature selection from an FDR perspective (Abramovich et al., 2000), an empirical
Bayesian perspective (George and Foster, 2000; Johnstone and Silverman, 2004), an information
theoretical perspective (Foster and Stine, 2004a), or simply a data mining perspective (Foster and
Stine, 2004b). But all of these require knowing the entire list of possible features ahead of time.
Further, most of them assume that the features are orthogonal and hence tacitly assume that m < n.
Obviously, the Benjamini-Hochberg method fails as m gets large; it is a batch-oriented procedure.

The α-investing rule of streamwise regression controls a similar characteristic. Framed as a
multiple comparison procedure, the α-investing rule implies that, with high probability, no more
than α times the number of rejected tests are false positives. That is, the procedure controls a
difference rather than a rate. As a streamwise feature selector, if one has added, say, 20 features to
the model, then with high probability (tending to 1 as the number of accepted features grows) no
more than 5% (that is, one feature in the case of 20 features) are false positives.

8. Summary

A variety of machine learning algorithms have been developed over the years for online learning
where observations are sequentially added. Algorithms such as the streamwise regression presented
in this paper, which are online in the features being used are much less common. For some prob-
lems, all features are known in advance, and a large fraction of them are predictive. In such cases,
regularization or smoothing methods work well and streamwise feature selection does not make
sense. For other problems, selecting a small number of features gives a much stronger model than
trying to smooth across all potential features. (See JMLR (2003) and Guyon (2003) for a range of
feature selection problems and approaches.) For example, in predicting what journal an article will
be published in, we find that roughly 10−20 of the 80,000 features we examine are selected (Popes-
cul and Ungar, 2003). For the problems in citation prediction and bankruptcy prediction that we
have looked at, generating potential features (for example, by querying a database or by computing
transformations or combinations of the raw features) takes far more time than the streamwise fea-
ture selection. Thus, the flexibility that streamwise regression provides to dynamically decide which
features to generate and add to the feature stream provides potentially large savings in computation.

1882

STREAMWISE FEATURE SELECTION

Empirical tests show that for the smaller UCI data sets where stepwise regression can be done,
streamwise regression gives comparable results to stepwise regression or techniques such as deci-
sion trees, neural networks, or SVMs. However, unlike stepwise regression, streamwise regression
scales well to large feature sets, and unlike the AIC, BIC and RIC penalties or simpler variable
screening methods which use univariate tests, streamwise regression with information-investing or
α-investing works well for all values of number of observations and number of potential features.
Key to this guarantee is controlling the FDR by adjusting the threshold on the information gain or
p-value necessary for adding a feature to the model. Fortunately, given any software which incre-
mentally considers features for addition and calculates their p-value or entropy reduction, stream-
wise regression using information-investing or α-investing is extremely easy to implement. For
linear and logistic regression, we have found that streamwise regression can easily handle millions
of features.

The results presented here show that streamwise feature selection is highly competitive even
when there is no prior knowledge about the structure of the feature space. Our expectation is that in
real problems where we do know more about the different kinds of features that can be generated,
streamwise regression will provide even greater benefit.

Acknowledgments

We thank Andrew Schein for his help in this work and Malik Yousef for supplying the data sets ha
and hung.

References

F. Abramovich, Y. Benjamini, D. Donoho, and I. Johnstone. Adapting to unknown sparsity by
controlling the false discovery rate. Technical Report 2000–19, Dept. of Statistics, Stanford
University, Stanford, CA, 2000.

H. Akaike. Information theory and an extension of the maximum likelihood principle. In B. N.
Petrov and F. Csàki, editors, 2nd International Symposium on Information Theory, pages 261–
281, Budapest, 1973. Akad. Kiàdo.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful ap-
proach to multiple testing. Journal of the Royal Statistical Society, Series B(57):289–300, 1995.

P. Bickel and K. Doksum. Mathematical Statistics. Prentice Hall, 2001.

A. Blum and P. Langley. Selection of relevant features and examples in machine learning. Artificial
Intelligence, 97(1-2):245–271, 1997.

D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81:
425–455, 1994.

S. Dzeroski and N. Lavrac. Relational Data Mining. Springer-Verlag, 2001. ISBN 3540422897.

S. Dzeroski, L. D. Raedt, and S. Wrobel. Multi-relational data mining workshop. In KDD-2003,
2003.

1883

ZHOU, FOSTER, STINE AND UNGAR

F. Fleuret. Fast binary feature selection with conditional mutual information. Journal of Machine
Learning Research, 5:1531–1555, 2004.

D. P. Foster and E. I. George. The risk inflation criterion for multiple regression. Annals of Statistics,
22:1947–1975, 1994.

D. P. Foster and R. A. Stine. Local asymptotic coding. IEEE Trans. on Info. Theory, 45:1289–1293,
1999.

D. P. Foster and R. A. Stine. Adaptive variable selection competes with Bayes experts. Submitted
for publication, 2004a.

D. P. Foster and R. A. Stine. Variable selection in data mining: Building a predictive model for
bankruptcy. Journal of the American Statistical Association (JASA), 2004b. 303-313.

E. I. George. The variable selection problem. Journal of the Amer. Statist. Assoc., 95:1304–1308,
2000.

E. I. George and D. P. Foster. Calibration and empirical bayes variable selection. Biometrika, 87:
731–747, 2000.

R. Gilad-Bachrach, A. Navot, and N. Tishby. Margin based feature selection - theory and algorithms.
In Proc. 21’st ICML, 2004.

I. Guyon. Nips 2003 workshop on feature extraction and feature selection. 2003. URL
http://clopinet.com/isabelle/Projects/NIPS2003.

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh. Feature Extraction, Foundations and Applications.
Springer, 2006.

D. Jensen and L. Getoor. IJCAI Workshop on Learning Statistical Models from Relational Data.
2003.

JMLR. Special issue on variable selection. In Journal of Machine Learning Research (JMLR),
2003. URL http://jmlr.csail.mit.edu/.

I. M. Johnstone and B. W. Silverman. Needles and straw in haystacks: Empirical bayes estimates
of possibly sparse sequences. Annals of Statistics, 32:1594–1649, 2004.

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):
273–324, 1997.

R. J. Larsen and M. L. Marx. An Introduction to Mathematical Statistics and Its Applications.
Prentice Hall, 2001.

J. Li and H. Liu. Bio-medical data analysis. 2002. URL http://sdmc.lit.org.sg/GEDatasets.

R. M. Neal. Bayesian Learning for Neural Networks. Number 118 in Lecture Notes in Statistics.
Springer-Verlag, 1996.

R. M. Neal. Defining priors for distributions using dirichlet diffusion trees. Technical Report 0104,
Dept. of Statistics, University of Toronto, 2001.

1884

STREAMWISE FEATURE SELECTION

R. M. Neal and J. Zhang. Classification for high dimensional problems using bayesian neural
networks and dirichlet diffusion trees. In NIPS 2003 workshop on feature extraction and feature
selection, 2003. URL http://www.cs.toronto.edu/ radford/slides.html.

NIPS’03. Challenge results. 2003. URL http://www.nipsfsc.ecs.soton.ac.uk/results.

A. Popescul and L. H. Ungar. Structural logistic regression for link analysis. In KDD Workshop on
Multi-Relational Data Mining, 2003.

A. Popescul and L. H. Ungar. Cluster-based concept invention for statistical relational learning. In
Proc. Conference Knowledge Discovery and Data Mining (KDD-2004), 2004.

J. Rissanen. Hypothesis selection and testing by the mdl principle. The Computer Journal, 42:
260–269, 1999.

G. Schwartz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978.

R. A. Stine. Model selection using information theory and the mdl principle. Sociological Methods
Research, 33:230–260, 2004.

L. H. Ungar, J. Zhou, D. P. Foster, and R. A. Stine. Streaming feature selection using iic. In
AI&STAT’05, 2005.

J. Zhou, D. P. Foster, R. A. Stine, and L. H. Ungar. Streaming feature selection using alpha-
investing. In ACM SIGKDD’05, 2005.

1885

