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Abstract� It was observed by Curry that when �untyped� ��terms can be assigned types� for
example� simple types� these terms have nice properties �for example� they are strongly normal�
izing�� Coppo� Dezani� and Veneri� introduced type systems using conjunctive types� and showed
that several important classes of �untyped� terms can be characterized according to the shape of
the types that can be assigned to these terms� For example� the strongly normalizable terms� the
normalizable terms� and the terms having head�normal forms� can be characterized in some sys�
tems D and D�� The proofs use variants of the method of reducibility� In this paper� we present a
uniform approach for proving several meta�theorems relating properties of ��terms and their typa�
bility in the systems D and D�� Our proofs use a new and more modular version of the reducibility
method� As an application of our metatheorems� we show how the characterizations obtained by
Coppo� Dezani� Veneri� and Pottinger� can be easily rederived� We also characterize the terms
that have weak head�normal forms� which appears to be new� We conclude by stating a number of
challenging open problems regarding possible generalizations of the realizability method�
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� Introduction

In paper� we present a uniform approach for proving some general metatheorems relating properties
of �pure� ��terms and their typability in some type systems with conjunctive types D� and D� due to
Coppo� Dezani� and Venneri ��� 	� 
�� As applications� we give simple proofs of the characterizations
of the terms having head�normal forms� of the normalizable terms� and of the strongly normalizing
terms� Versions of these results were �rst obtained by Coppo� Dezani� and Venneri �
�� and Pottinger
��
�� We are perfectly aware that many of the results of this paper are not original� but what we
claim to be original is our restructuration of the method of reducibility� By separating sharply
the conditions that a property of ��terms needs to satisfy from the inductive conditions required
for the reducibility method to go through� we were able to obtain a more modular version of the
reducibility method� As a consequence� the proofs needed for the various classes of terms only need
minor incremental changes�

Thus� the novel aspect of this paper is really in the development of a new version of the reducibil�
ity method rather than in the applications of this method� However� we �nd these applications
particularly pretty� and thus� the paper can also be considered as a tutorial on conjunctive type sys�
tems and their use for studying properties of ��terms� In this respect� we were very much inspired
by Krivine�s book ��	�� As a matter of fact� at times� we follow Krivine�s presentation rather closely
��	�� except that we use a new notion of reducibility� and that we prove more general meta�theorems
�see below�� An excellent survey on Curry�style type assignment systems can be found in Coppo
and Cardone ���� where similar results are presented� and in some lecture notes on the ��calculus
by G�erard Huet ����� We also give a characterization of the terms having weak head�normal forms�
This last result appears to be new� The reducibility method presented in this paper is inspired
from a proof of the Church�Rosser property given by Georges Koletsos �����

The situation is that we have a unary predicate P describing a property of �untyped� ��terms�
and a type�inference system S� For example� P could be the property of being head�normalizable�
or normalizable� or strongly normalizing� and S could be the system D� of the next section� or
system D �see Krivine ��	��� Our main goal is to �nd su�cient conditions on the predicate P so
that every term M that type�checks in S with some �nice� type � satis�es the predicate P �

As an example of the above general schema� conditions �P��� �P��� �P	s� of de�nition 	��
together with conditions �P
� and �P�n� of de�nition 	�� are such conditions on P with respect to
system D� �see theorem 	���� Since the property of being head�normalizable satis�es properties
�P����P�n�� as a corollary� we have that every term that type�checks in D� with a nontrivial
type �see de�nition ��	� is head�normalizable �see theorem 	����� Another example is given by
conditions �P��� �P��� �P	� of de�nition ��� together with conditions �P
� and �P�� of de�nition
��� with respect to system D �see theorem ����� Since the property of being strongly normalizing
satis�es properties �P����P��� as a corollary� we have that every term that type�checks in D is
strongly normalizing�

The main technique involved is a kind of realizability argument known as reducibility � The
crux of the reducibility method is to interpret every type � as a set ����� of ��terms having certain
closure properties �see Tait ���� ���� Girard ��� ��� Krivine ��	�� and Gallier ��� ���� One of the
crucial properties is that for a �nice� type �� the terms in ����� satisfy the predicate P �but this
does not have to be the case for ugly types��� If the sets ����� are de�ned right� then the following
�realizability property� holds �for example� see lemma 	����
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If P is a predicate satisfying conditions �P����P�n�� then for every term M that type�checks in
D� with type �� for every substitution � such that ��y� � ����� for every y� � � FV �M�� we have
M ��� � ������

Now� if the properties �P����P�n� on the predicate P are right� every variable is in every ������
and thus� by chosing � to be the identity substitution� we get that M � ����� whenever M type�
checks in D� with type �� Furthermore� when � is a nice type �for example� nontrivial�� properties
�P����P�n� imply that ����� � P � and thus� we have shown thatM satis�es the predicate P whenever
M type�checks in D� with a nice type ��

Other examples of this schema are given by lemma 
�� and lemma ���� In order for an argument
of this kind to go through� the sets ����� must satisfy some inductive invariant� In the literature�
this is often referred to as being a candidate� Inspired by Koletsos ����� we use the notion of a
P�candidate de�ned in de�nition 	�	� This notion has the advantage of not requiring the terms
to be strongly normalizing �as in Girard ��� ���� or to involve rather strange looking terms such
as M �N�x�N� � � �Nk �as in Tait ����� Mitchell ����� or Krivine ��	��� By isolating the dual notions
of I�terms and simple terms� we can give a de�nition that remains invariant no matter what the
de�nition of the sets ����� is� Also� the de�nition of a P�candidate only requires that the predicate
P be satis�ed� but nothing to do with the properties �P����P�� on P � This separation is helpful in
understanding how to derive su�cient properties on P � In other presentations� properties of the
predicate P are often incorporated in the de�nition of a candidate� and this tends to obscure the
argument� Finally� our de�nition can be easily adapted to other type disciplines involving explicitly
typed terms� or to higher�order types� Also� nice proofs of con�uence can be obtained �see Koletsos
����� and Gallier ����� We now proceed with the details�

� Conjunctive Types and the System D�

The conjunctive types � due to Coppo� Dezani� and Venneri ��� 	� 
�� are constructed from a countably
in�nite set of base types and the unde�ned type �� using the type constructors� and �� We follow
Krivine ��	� �the reader may also want to consult Coppo� Dezani� and Venneri �
�� or Coppo and
Cardone ���� for additional background�� Let T denote the set of conjunctive types� As usual� a
context �or type assignment� is a �nite �possibly empty� set � � x�� ��� � � � � xn� �n of pairs xi� �i�
where xi is a variable and �i is a type� and where xi �� xj for i �� j�

De�nition ��� The system D� is de�ned by the following rules�

�� x� � � x� ��

�� x� � �M � 	

� � ��x�M�� �� 	
�abstraction�

� �M � �� 	 � � N � �

� � �MN�� 	
�application�

� �M � � � �M � 	

� �M � � � 	
���intro�

	



� �M � � � 	

� �M � �
���elim�

� �M � � � 	

� �M � 	
���elim�

� �M ���

where � and M are arbitrary�

We let � denote the set of all �untyped� ��terms and �� denote the set of all ��terms M such
that �D� � � M � � for some type � and some context �� In this section� the only reduction rule
considered is 
�reduction�

��x�M�N ��� M �N�x��

The system D� introduced by Coppo and Dezani �	�� is obtained by restricting the types to be
��free� and by by deleting the axiom

� �M ��

involving the special type � from the system D�� We let SN�� denote the set of all ��terms M
such that �D � �M � � for some type � and some context ��

De�nition ��� Given a term M � we let FV �M� denote the set of free variables in M � We say
that M is closed i� FV �M� � �� If FV �M� � fx�� � � � � xmg� the closure of M is the �closed� term
�x� � � ��xm� M �

We now de�ne a class of types that will turn out to characterize the head�normalizable terms�

De�nition ��� A type � is nontrivial i� either � is a base type and � �� �� or � � � � 	 where
	 is nontrivial and � is arbitrary� or � � �� � �� where �� or �� is nontrivial� If a type is not
nontrivial� we call it trivial � A type � is ��free if � does not occur in ��

� P�Candidates for Head�Normalizing ��Terms

It turns out that the behavior of a term depends heavily on the nature of the last typing inference
rule used in typing this term� A term created by an introduction rule� or I�term� plays a crucial
role� because when combined with another term� a new redex is created� On the other hand� for
a term created by an elimination rule� or simple term� no new redex is created when this term
is combined with another term� It should be noted that the rules ���intro� and ���elim� do not
generate any new I�terms or simple terms� since the termM appearing in the conclusion is identical
to the term�s� appearing in the premise�s�� This motivates the following de�nition�

De�nition ��� An I�term is a term of the form �x�M � A simple term �or neutral term� is a term
that is not an I�term� Thus� a simple term is either a variable x or an application MN � A term M

is stubborn i� it is simple and� eitherM is irreducible� orM � is a simple term wheneverM
�
��� M

�

�equivalently� M � is not an I�term��

Let P � � be a �nonempty� set of ��terms� Actually� P is the set of ��terms satisfying a given
unary predicate� Our goal is to give su�cient conditions on P so that this predicate holds for
certain sets of terms that type�check with types of a special form in system D��






De�nition ��� Properties �P����P	s� are de�ned as follows�

�P�� x � P � for every variable x�

�P�� If M � P and M ��� N � then N � P �

�P	s� If M is simple� M � P � N � �� and ��x� M ��N � P whenever M
�
��� �x� M �� then

MN � P �

From now on� we only consider sets P satisfying conditions �P����P	s� of de�nition 	���

De�nition ��� A nonempty set C of �untyped� ��terms is a P�candidate i� it satis�es the following
conditions�

�S�� C � P �

�S�� If M � C and M ��� N � then N � C�

�S	� If M is simple� M � P � and �x�M � � C whenever M
�
��� �x�M �� then M � C�

�S	� implies that any P�candidate C contains all variables� More generally� �S	� implies that
C contains all stubborn terms in P � and �P�� guarantees that variables are stubborn terms in P �

By �P	s�� if M � P is a stubborn term and N � � is any term� then MN � P � Furthermore�
MN is also stubborn since it is a simple term and since it can only reduce to an I�term �a ��
abstraction� if M itself reduces to a ��abstraction� i�e� an I�term� Thus� if M � P is a stubborn
term and N � � is any term� then MN is a stubborn term in P � As a consequence� since variables
are stubborn� for any terms N�� � � � � Nk� for every variable x� the term xN� � � �Nk is a stubborn
term in P �assuming appropriate types for x and N�� � � � � Nk�� Instead of �S	�� a condition that
occurs frequently in reducibility arguments is the following�

�S�n� If M �N�x�N� � � �Nk � C� then ��x�M�NN� � � �Nk � C�

It can be shown easily that �S�� and �S	� imply �S�n� �see the proof of lemma 	�
�� Terms of
the form xN� � � �Nk or M �N�x�N� � � �Nk are known to play a role in reducibility arguments �for
example� by Tait� Mitchell� or Krivine�� and it is no surprise that they crop up again� However� in
contrast with other presentations� we do not have to deal with them explicitly�

Given a set P � for every type �� we de�ne ����� � � as follows�

De�nition ��� The sets ����� are de�ned as follows�

����� � P � where � �� � is a base type�

����� � �� where � is a trivial type�

��� � 	 �� � fM j M � P � and for all N � if N � ����� then MN � ��	 ��g�

where � � 	 is nontrivial�

��� � 	 �� � ����� � ��	 ���

where � � 	 is nontrivial�
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By de�nition ��	� a type is trivial if either it is �� or it is of the form � � 	 where 	 is trivial�
or it is of the form ��	 where both � and 	 are trivial� We could have de�ned ����� by changing the
second clause to ����� � �� and by dropping the conditions � � 	 nontrivial and � � 	 nontrivial�
However� it would no longer be true that ����� � � for every trivial type� and this would be a
serious obstacle to the proof of lemma 	�
� The following lemma shows that the property of being
a P�candidate is an inductive invariant�

Lemma ��� If P is a set satisfying conditions �P����P�s�� then the following properties hold for
every type �� ��� ����� contains all stubborn terms in P �and in particular� every variable�� �	� �����
satis
es �S	� and �S��� ��� If � is a nontrivial type� then ����� also satis
es �S��� and thus it is a
P�candidate�

Proof � We proceed by induction on types� If � is a base type� then by de�nition ����� � P if
� �� �� and ����� � �� Then� ��� and ��� are clear by �P�� and by �P�� �note that �S	� is trivial�� If
� �� �� then �S�� is trivial since ����� � P �

We now consider the induction step�

�	� We prove that �S�� holds for nontrivial types� If � � 	 is nontrivial� then 	 is nontrivial�
and by the de�nition of ��� � 	 ��� we have ��� � 	 �� � P � If � � ����� is nontrivial� then �� or �� is
nontrivial� Assume �� is nontrivial� the case where �� is nontrivial being similar� By the induction
hypothesis� ������ � P � and since ���� � ���� � ������ � ������� it is clear that ���� � ���� � P �

The veri�cation of ��� and ��� is obvious for trivial types� since in this case� ����� � �� Thus� in
the rest of this proof� we assume that we are considering nontrivial types�

��� Given a type � � 	 � by the induction hypothesis� ��	 �� contains all the stubborn terms in P �
Let M � P be a stubborn term� Given any N � ������ obviously� N � �� Since we have shown that
MN is a stubborn term in P when M � P is stubborn and N is arbitrary� we have MN � ��	 ���
Thus� M � ��� � 	 ��� If � � �� � ��� by the induction hypothesis� all stubborn terms in P are in
������ and in ������� and thus in ���� � ���� � ������ � �������

��� We prove �S�� and �S	��

�S��� Let M � ��� � 	 �� and assume that M ��� M �� Since M � P by �S��� we have M � � P
by �P��� For any N � ������ since M � ��� � 	 �� we have MN � ��	 ��� and since M ��� M � we have
MN ��� M �N � Then� applying the induction hypothesis at type 	 � �S�� holds for ��	 ��� and thus
M �N � ��	 ��� Thus� we have shown that M � � P and that if N � ������ then M �N � ��	 ��� By the
de�nition of ��� � 	 ��� this shows that M � � ��� � 	 ��� and �S�� holds at type � � 	 �

If � � ������ by the induction hypothesis� �S�� holds for ������ and ������� and thus for ��������� �
������ � �������

�S	�� LetM � P be a simple term� and assume that �x�M � � ��� � 	 �� wheneverM
�
��� �x�M

��
We prove that for every N � if N � ������ thenMN � ��	 ��� The case whereM is stubborn has already
been covered in ���� Assume that M is not stubborn� First� we prove that MN � P � and for this�

we use �P	s�� If M
�
��� �x�M �� then by assumption� �x�M � � ��� � 	 ��� and for any N � ������ we

have ��x� M ��N � ��	 ��� Recall that we assumed � � 	 nontrivial� and thus� 	 is nontrivial� Then�
by �S��� ��x�M ��N � P � and by �P	s�� we have MN � P � Now� there are two cases�

If 	 is a base type� then ��	 �� � P since 	 �� �� and MN � ��	 �� �since MN � P��

�



If 	 is not a base type� the term MN is simple� Thus� we prove that MN � ��	 �� using �S	�
�which by induction� holds at type 	�� The case where MN is stubborn is trivial� Otherwise�

observe that if MN
�
��� Q� where Q � �y�P is an I�term� then the reduction is necessarily of the

form
MN

�
��� ��x�M

��N � ��� M
��N ��x�

�
��� Q�

where M
�
��� �x� M � and N

�
��� N �� Since by assumption� �x� M � � ��� � 	 �� whenever

M
�
��� �x�M �� and by the induction hypothesis applied at type �� by �S��� N � � ������ we conclude

that ��x� ��M ��N � � ��	 ��� By the induction hypothesis applied at type 	 � by �S��� we have Q � ��	 ���
and by �S	�� we have MN � ��	 ���

Since M � P and MN � ��	 �� whenever N � ������ we conclude that M � ��� � 	 ���

For the proof of the next lemma� we need to add two new conditions �P
� and �P�n� to �P���
�P	s��

De�nition ��� Properties �P
� and �P�n� are de�ned as follows�

�P
� If M � P � then �x�M � P �

�P�n� If M �N�x� � P � then ��x�M�N � P �

Lemma ��� If P is a set satisfying conditions �P����P�n�� and M �N�x� � ��	 �� for every N � ��
then �x�M � ��� � 	 ���

Proof � The lemma is obvious if � � 	 is trivial� since in this case� ��� � 	 �� � �� Thus� in the
rest of this proof� we assume that � � 	 is nontrivial� This implies that 	 is nontrivial�

We prove that for every every N � if N � ������ then ��x� M�N � ��	 ��� We will need the fact
that the sets of the form ����� have the properties �S����S	�� but this follows from lemma 	��� since
�P����P	s� hold� First� we prove that �x� M � P �

By the assumption of lemma 	�
� M �x�x� � M � ��	 �� �by choosing N � x�� Then� since 	 is
nontrivial� by �S��� M � P � and by �P
�� we have �x�M � P �

Next� we prove that for every every N � if N � ������ then ��x�M�N � ��	 ��� Let us assume that
N � ������ Then� by the assumption of lemma 	�
� M �N�x� � ��	 ��� Since 	 is nontrivial� by �S��� we
have M �N�x� � P � By �P�n�� we have ��x�M�N � P � Now� there are two cases�

If 	 is a nontrivial base type� then ��	 �� � P � Since we just showed that ��x�M�N � P � we have
��x�M�N � ��	 ���

If 	 is not a base type� then ��x� M�N is simple� Thus� we prove that ��x� M�N � ��	 �� using

�S	�� The case where ��x�M�N is stubborn is trivial� Otherwise� observe that if ��x�M�N
�
��� Q�

where Q � �y� P is an I�term� then the reduction is necessarily of the form

��x�M�N
�
��� ��x�M

��N � ��� M ��N ��x�
�
��� Q�

where M
�
��� M � and N

�
��� N �� But M �N�x� � ��	 ��� and since

M �N�x�
�
��� M ��N ��x�

�
��� Q�






by �S��� we have Q � ��	 ��� Since ��x�M�N � P and Q � ��	 �� whenever ��x�M�N
�
��� Q� by �S	��

we have ��x�M�N � ��	 ���

We now have the following main �realizability lemma��

Lemma ��	 If P is a set satisfying conditions �P����P�n�� then for every term M � ��� for
every substitution � such that ��y� � ����� for every y� � � FV �M�� we have M ��� � ������

Proof � We proceed by induction on the proof �D� � �M � �� The lemma is obvious if � is a
trivial type� since in this case� ����� � �� Thus� in the rest of this proof� we assume that we are
considering nontrivial types�

In the case of an axiom �� x� � � x� �� we have M � x� and then x��� � ��x� � ����� by the
assumption on ��

If the last rule is an application� then M �M�N�� where M� has type � � 	 and N� has type
�� By the induction hypothesis� M���� � ��� � 	 �� and N���� � ������ By the de�nition of ��� � 	 ���
we get M����N���� � ��	 ��� which shows that �M�N����� � ��	 ��� since M����N���� � �M�N������

If the last rule is an abstraction� then M � �x� �� M�� By �P�� and �S	�� ����� is nonempty
for every type �� Consider any N � ����� and any substitution � such that ��y� � ����� for every
y� � � FV ��x� ��M��� Thus� the substitution ��x� �N � has the property that ��y� � ����� for every
y� � � FV �M��� By suitable ��conversion� we can assume that x does not occur in any ��y� for
every y � dom���� and that N is substitutable for x in M�� Then� M����x� � N �� � M�����N�x��
By the induction hypothesis applied to M� and ��x� � N �� we have M����x� � N �� � ��	 ��� that is�
M�����N�x� � ��	 ��� Consequently� by lemma 	�
� ��x� ��M����� � ��� � 	 ��� that is� ��x� ��M����� �
��� � 	 ��� since ��x� ��M����� � ��x� ��M������

If the last rule is ���intro�� by the induction hypothesis� M ��� � ����� and M ��� � ��	 ��� Since
� � 	 is nontrivial� ��� � 	 �� � ������ ��	 ��� and thus� M ��� � ��� � 	 ���

If the last rule is ���elim�� by the induction hypothesis� M ��� � ��� � 	 ��� and since � � 	 is
nontrivial� ��� � 	 �� � ������ ��	 ��� and we have M ��� � ����� and M ��� � ��	 ���

As a corollary of lemma 	��� we obtain the following general theorem for proving properties of
terms that type�check in D��

Theorem ��
 If P is a set of ��terms satisfying conditions �P����P�n�� then �� � P for every
nontrivial type � �in other words� every term typable in D� with a nontrivial type satis
es the
unary predicate de
ned by P��

Proof � Apply lemma 	�� to every term M in �� and to the identity substitution� which is
legitimate since x � ����� for every variable of type � �by lemma 	���� Thus� M � ����� for every
term in ��� that is �� � ������ Finally� by lemma 	��� if � is nontrivial� �S�� holds for ������ that is
�� � ����� � P �

As a corollary of theorem 	��� we show that if a termM is typable in D� with a nontrivial type�
then the head reduction ofM is �nite �and so�M has a head�normal form� i�e� it is a solvable term
�see de�nition ������ This result was �rst shown by Coppo� Dezani� and Venneri �
�� Our treatment
is heavily inspired by Krivine ��	�� where we found the marvellous concept of a quasi�head reduction
�which is actually due to Barendregt��

�



De�nition ���� Given a term M � �x� � � ��xm� ���y� P �Q�N� � � �Nk� where m 	 � and k 	 ��
the term ��y�P �Q is the head redex ofM � A head reduction is a reduction sequence in which every
step reduces the head redex� A quasi�head reduction is a ��nite or in�nite� reduction sequence
s � hM��M�� � � � �Mi� � � �i such that� for every i 	 �� if Mi is not the last term in the sequence s�
there is some j 	 i such that Mj ��� Mj�� is a head�reduction step� A term is in head�normal
form i� it has no head redex� that is� it is of the form �x� � � � �xm� yN� � � �Nk� where m 	 � and
k 	 �� The variable y is called the head variable� A term is head�normalizable i� the head reduction
from M is �nite�

Note that the last step in a �nite quasi�head reduction is necessarily a head�reduction step� Also�
any su�x of a quasi�head reduction is a quasi�head reduction� The main advantage of quasi�head
reductions over head�reductions is that �P�� obviously holds for terms for which every quasi�head
reduction is �nite�

Theorem ���� If a term M is typable in D� with a nontrivial type� then every quasi�head
reduction from M is 
nite� As a corollary� the head reduction from M is 
nite �and so� M has a
head�normal form��

Proof � Let P be the set of ��terms for which every quasi�head reduction is �nite� To prove
theorem 	���� we apply theorem 	��� which requires showing that P sati�es the properties �P���
�P�n�� First� we make the following observation that will simplify the proof� Since there is only
a �nite number of redexes in any term� for any term M � the reduction tree� for M is �nitely
branching� Thus� if every quasi�head reduction sequence is �nite� since the reduction tree is �nite
branching� by K�onig�s lemma� the subtree consisting of quasi�head reduction sequences is �nite�
Thus� for any term M from which every quasi�head reduction sequence is �nite� the length of a
longest quasi�head reduction path in the reduction tree from M is a natural number� and we will
denote it as l�M�� Now� �P�� is trivial� and �P�� follows from the de�nition�

�P	s�� Let M be simple� and assume that every quasi�head reduction from M is �nite� We
prove that every quasi�head reduction from MN is �nite by induction on l�M�� Let MN ��� Q
be a reduction step� Because M is simple� MN is not a redex� and we must have M ��� M� or
N ��� N�� If M� is simple� since l�M�� � l�M�� the induction hypothesis yields that every quasi�
head reduction fromM�N is �nite� If N ��� N�� because we are considering quasi�head reductions
from MN � there is a �rst step where a head reduction is applied� and it must be applied to M �
Thus� we must have MN ��� MN�

�
��� MNi ��� M�Ni� Since l�M�� � l�M�� the induction

hypothesis yields that every quasi�head reduction from MN� is �nite� Otherwise� M� � �x� P �
and by assumption� every quasi�head reduction from ��x� P �N is �nite� Thus every quasi�head
reduction from MN is �nite�

�P
�� Assume that every quasi�head reduction from M is �nite� It is immediate to prove by
induction on l�M� that every quasi�head reduction from �x�M is also �nite�

�P�n�� Let k be the index of the �rst head�reduction step in any quasi�head reduction from
��x� M�N � We prove by induction on k that every quasi�head reduction from ��x�M�N is �nite�
If k � �� then ��x�M�N is a head�redex� However� by the assumption� every quasi�head reduction
from M �N�x� is �nite� Now� consider any quasi�head reduction s from ��x� M�N of index k 	 ��

�the tree of reduction sequences from M

�



The �rst reduction step from ��x� M�N is either ��x� M�N ��� ��x� M��N or ��x� M�N ���

��x� M�N�� In either case� the index of the �rst head�reduction step in the quasi�head reduction
tail�s� is k � �� and by the induction hypothesis� we get the desired result�

Note that we could have proved directly that �P�� holds using the following simple lemma�

Lemma ���� If M is head�normalizable and M ��� M �� then M � is head�normalizable�

Proof � We prove the following stronger property� IfM is head�normalizable andM � is obtained
from M by reducing in parallel any set of independant redexes in M �where the reduction applied
to each redex is a one�step reduction�� then M � is head�normalizable�

The above property is proved by induction on the length l�M� of the head reduction from
M � If l�M� � �� then M � �x� � � ��xm� yN� � � �Nk� and M � � �x� � � ��xm� yN

�
� � � �N

�
k� where

N �
i is obtained from Ni by performing reductions on independant redexes� We are done since

M � � �x� � � ��xm� yN
�
� � � �N

�
k is a head�normal form� If M � �x� � � ��xm� ���y� P �Q�N� � � �Nk�

then either M � � �x� � � ��xm� ���y� P
��Q��N �

� � � �N
�
k� or M

� � �x� � � � �xm� �P �Q�x��N
�
� � � �N

�
k�

In the second case� letting M� � �x� � � ��xm� �P �Q�x��N� � � �Nk be the result of reducing the
head redex in M � we have l�M�� � l�M�� and since M � is obtained from M� by reducing in�
dependant redexes� we conclude by applying the induction hypothesis� In the �rst case� letting
M �

� � �x� � � ��xm� �P
��Q��x��N �

� � � �N
�
k be the result of reducing the head redex in M �� since M �

� is
obtained from M� by reducing independant redexes� we also conclude by applying the induction
hypothesis�

The converse of theorem 	��� is true� if a ��term is head�normalizable� then it is typable in D�
with a nontrivial type �� The proof requires a careful analysis of type�ckecking in system D�� For
the time being� we prove the following weaker result�

Lemma ���� Given a term M � �x� � � ��xm� yN� � � �Nk in head�normal form� there are non�
trivial types � � �� � � � � �m � 	 and �� where 	 is a base type� such that� if y �� xi for all i� then
�D� y� � � M � � and the �i are arbitrary� else if y � xi� then �D� � M � �� �i � �� and the �j are
arbitrary for j �� i�

Proof � Let � � � � � � �� � � 	 with k occurrences of �� Let � � x�� ��� � � � � xm� �m� y� 	 if
y �� xi� It is easy to see that we have

�D� �� y� � � yN� � � �Nk� 	�

and thus�
�D� y� � � �x� � � ��xm� yN� � � �Nk� ��

where the �i are arbitrary� If y � xi� let �i � � and � � x�� ��� � � � � xm� �m� It is easy to see that
we have

�D� � � yN� � � �Nk� 	�

and thus�
�D� � �x� � � ��xm� yN� � � �Nk� ��

where the �j are arbitrary for j �� i�

Note that there are head�normalizable terms that are not normalizable� If 
 � �x� xx� then
y�

� is in head�normal form� but it is not normalizable since 

 is not�

��



� P�Candidates for Normalizable ��Terms

In this section� we modify the de�nition of condition �P	s� in de�nition 	��� so that our main
theorem applies to the normalizable ��terms� Although de�nition 	�� is unchanged� we repeat it
for the reader�s convenience�

De�nition ��� An I�term is a term of the form �x�M � A simple term �or neutral term� is a term
that is not an I�term� Thus� a simple term is either a variable x or an application MN � A term M

is stubborn i� it is simple and� eitherM is irreducible� orM � is a simple term wheneverM
�
��� M

�

�equivalently� M � is not an I�term��

De�nition ��� Properties �P����P	� are de�ned as follows�

�P�� x � P � for every variable x�

�P�� If M � P and M ��� N � then N � P �

�P	� If M is simple� M � P � N � P � and ��x� M ��N � P whenever M
�
��� �x� M �� then

MN � P �

Note that the di�erence with �P	s� of de�nition 	�� is that we now require that N � P � From
now on� we only consider sets P satisfying conditions �P����P	� of de�nition 
��� De�nition 	�	 is
also unchanged� but we repeat it for convenience�

De�nition ��� A nonempty set C of �untyped� ��terms is a P�candidate i� it satis�es the following
conditions�

�S�� C � P �

�S�� If M � C and M ��� N � then N � C�

�S	� If M is simple� M � P � and �x�M � � C whenever M
�
��� �x�M �� then M � C�

�S	� implies that any P�candidate C contains all variables� More generally� �S	� implies that
C contains all stubborn terms in P � and �P�� guarantees that variables are stubborn terms in P �

By �P	�� ifM � P is a stubborn term andN � P is any term� thenMN � P � Furthermore�MN

is also stubborn since it is a simple term and since it can only reduce to an I�term �a ��abstraction�
if M itself reduces to a ��abstraction� i�e� an I�term� Thus� if M � P is a stubborn term and
N � P is any term� then MN is a stubborn term in P � The di�erence with the previous section is
that N too must be in P for MN to be stubborn if M � P is stubborn� As a consequence� since
variables are stubborn� for any terms N�� � � � � Nk � P � for every variable x� the term xN� � � �Nk is
a stubborn term in P �assuming appropriate types for x and N�� � � � � Nk��

Given a set P � for every type �� we de�ne ����� � � as follows�

��



De�nition ��� The sets ����� are de�ned as follows�

����� � P � where � �� � is a base type�

����� � �� where � contains ��

��� � 	 �� � fM j M � P � and for all N � if N � ����� then MN � ��	 ��g�

where � � 	 is ��free�

��� � 	 �� � ����� � ��	 ���

where � � 	 is ��free�

Lemma ��� If P is a set satisfying conditions �P����P��� then the following properties hold for
every type �� ��� ����� contains all stubborn terms in P �and in particular� every variable�� �	� �����
satis
es �S	� and �S��� ��� If � is ��free� then ����� also satis
es �S��� and thus it is a P�candidate�

Proof � We proceed by induction on types� The proof is identical to that given in lemma 	��
when � is a base type�

We now consider the induction step�

�	� We prove that �S�� holds for ��free types� If � � 	 is ��free� then by the de�nition of
��� � 	 ��� we have ��� � 	 �� � P � If � � �� � �� is ��free� then �� and �� are ��free� By the
induction hypothesis� ������ � P and ������ � P � and since ���� � ���� � ������ � ������� it is clear that
���� � ���� � P �

The veri�cation of ��� and ��� is obvious for types containing �� since in this case� ����� � ��
Thus� in the rest of this proof� we assume that we are considering ��free types�

��� Given a type � � 	 � by the induction hypothesis� ��	 �� contains all the stubborn terms in
P � Let M � P be a stubborn term� Given any N � ������ because � � 	 is ��free� so is �� and by
�S��� N � P � Since we have shown that MN is a stubborn term in P when M � P is stubborn
and N � P � we have MN � ��	 ��� Thus� M � ��� � 	 ��� If � � �� � ��� by the induction hypothesis�
all stubborn terms in P are in ������ and in ������� and thus in ���� � ���� � ������ � �������

��� We prove �S�� and �S	��

�S��� The proof is identical to that given in lemma 	���

�S	�� LetM � P be a simple term� and assume that �x�M � � ��� � 	 �� wheneverM
�
��� �x�M

��
We prove that for every N � if N � ������ thenMN � ��	 ��� The case whereM is stubborn has already
been covered in ���� Assume that M is not stubborn� First� we prove that MN � P � and for this�

we use �P	�� If M
�
��� �x� M �� then by assumption� �x�M � � ��� � 	 ��� and for any N � ������ we

have ��x� M ��N � ��	 ��� Recall that we assumed that � � 	 is ��free� and thus� both � and 	 are
��free� Then� by �S��� N � P and ��x� M ��N � P � and by �P	�� we have MN � P � The rest of
the proof is identical to that given in lemma 	���

Conditions �P
� and �P�n� of de�nition 	�� are unchanged� but we repeat them for convenience�

De�nition ��� Properties �P
� and �P�n� are de�ned as follows�

�P
� If M � P � then �x�M � P �

�P�n� If M �N�x� � P � then ��x�M�N � P �

��



Lemma ��� If P is a set satisfying conditions �P����P�n�� and M �N�x� � ��	 �� for every N � ��
then �x�M � ��� � 	 ���

Proof � The lemma is obvious if � � 	 contains �� since in this case� ��� � 	 �� � �� Thus� in
the rest of this proof� we assume that � � 	 is ��free� This implies that both � and 	 are ��free�

We prove that for every every N � if N � ������ then ��x� M�N � ��	 ��� We will need the fact
that the sets of the form ����� have the properties �S����S	�� but this follows from lemma 
��� since
�P����P	� hold� First� we prove that �x�M � P �

By the assumption of lemma 
�
� M �x�x� � M � ��	 �� �by choosing N � x�� Then� since 	 is
��free� by �S��� M � P � and by �P
�� we have �x�M � P �

Next� we prove that for every every N � if N � ������ then ��x�M�N � ��	 ��� Let us assume that
N � ������ Then� by the assumption of lemma 
�
� M �N�x� � ��	 ��� Since 	 is ��free� by �S��� we
have M �N�x� � P � By �P�n�� we have ��x�M�N � P � The rest of the proof is identical to that of
lemma 	�
�

Lemma ��	 If P is a set satisfying conditions �P����P�n�� then for every term M � ��� for
every substitution � such that ��y� � ����� for every y� � � FV �M�� we have M ��� � ������

Proof � We proceed by induction on the proof �D� � �M � �� This proof is identical to that of
lemma 	��� with �nontrivial type� replaced by � ��free type��

Theorem ��
 If P is a set of ��terms satisfying conditions �P����P�n�� then �� � P for every
��free type � �in other words� every term typable in D� with an ��free type satis
es the unary
predicate de
ned by P��

Proof � Apply lemma 
�� to every term M in �� and to the identity substitution� which is
legitimate since x � ����� for every variable of type � �by lemma 
���� Thus� M � ����� for every
term in ��� that is �� � ������ Finally� by lemma 
��� if � is ��free� �S�� holds for ������ that is
�� � ����� � P �

As a consequence of theorem 
��� if �D� �M � � where � and all the types in � are ��free� then
M � P �

As a corollary of theorem 
��� we show that if a term M is typable in D� with an ��free type�
then M is normalizable� A version of this theorem was �rst shown by Coppo� Dezani� and Venneri
�
�� Again� our treatment is heavily inspired by Krivine ��	�� where we found the concept of a
quasi�leftmost reduction �which is actually due to Barendregt��

De�nition ���� Given a term M � the leftmost redex in M is either the head�redex ��y� P �Q of
M if M � �x� � � ��xm� ���y� P �Q�N� � � �Nk� �where m 	 � and k 	 ��� or the leftmost redex in
the leftmost reducible subterm Ni in M if M � �x� � � ��xm� yN� � � �Nk� � 
 i 
 k �and thus�
N�� � � � � Ni�� are irreducible�� A leftmost reduction is a reduction sequence in which every step
reduces the leftmost redex� A quasi�leftmost reduction is a ��nite or in�nite� reduction sequence
s � hM��M�� � � � �Mi� � � �i such that� for every i 	 �� if Mi is not the last term in the sequence s�
there is some j 	 i such that Mj ��� Mj�� is a leftmost reduction step� A term is in normal
form �or irreducible� i� it has no redex� A term is normalizable i� the leftmost reduction from M
is �nite�

�	



It is immediate that M is in normal form i� it is of the form �x� � � ��xm� yN� � � �Nk� where
N�� � � � � Nk are also in normal form �m 	 � and k 	 ��� Note that the last step in a �nite quasi�
leftmost reduction is necessarily a leftmost reduction step� Also� any su�x of a quasi�leftmost
reduction is a quasi�leftmost reduction� The main advantage of quasi�leftmost reductions over
leftmost reductions is that �P�� obviously holds for terms for which every quasi�leftmost reduction
is �nite�

Theorem ���� If a term M is typable in D� with an ��free type� then every quasi�leftmost
reduction from M in 
nite� As a corollary� the leftmost reduction from M is 
nite �and so� M has
a normal form��

Proof � Let P be the set of ��terms for which every quasi�leftmost reduction is �nite� To
prove theorem 	���� we apply theorem 	��� which requires showing that P sati�es the properties
�P����P�n�� First� note that the observation made at the beginning of the proof of lemma 	���
also applies� If every quasi�leftmost reduction sequence is �nite� since the reduction tree is �nite
branching� by K�onig�s lemma� the subtree consisting of quasi�leftmost reduction sequences is �nite�
Thus� for any term M from which every quasi�leftmost reduction sequence is �nite� the length of
a longest quasi�leftmost reduction path in the reduction tree from M is a natural number� and we
will denote it as l�M�� Now� �P�� is trivial� and �P�� follows from the de�nition�

�P	s�� Let M be simple� and assume that every quasi�leftmost reduction fromM or N is �nite�
We prove that every quasi�leftmost reduction from MN is �nite by induction on l�M�  l�N�� Let
MN ��� Q be a reduction step� Because M is simple� MN is not a redex� and we must have
M ��� M� or N ��� N�� If M� is simple� since l�M��  l�N� � l�M�  l�N�� the induction
hypothesis yields that every quasi�leftmost reduction from M�N is �nite� If N ��� N�� since
l�M�  l�N�� � l�M�  l�N�� the induction hypothesis yields that every quasi�leftmost reduction
from MN� is �nite� Otherwise� M� � �x� P � and by assumption� every quasi�leftmost reduction
from ��x� P �N is �nite� Thus every quasi�leftmost reduction from MN is �nite�

�P
�� Assume that every quasi�leftmost reduction fromM is �nite� It is immediate to prove by
induction on l�M� that every quasi�leftmost reduction from �x�M is also �nite�

�P�n�� Let k be the index of the �rst leftmost reduction step in any quasi�leftmost reduction
from ��x�M�N � We prove by induction on k that every quasi�leftmost reduction from ��x�M�N is
�nite� If k � �� then ��x�M�N is a head�redex� However� by the assumption� every quasi�leftmost
reduction from M �N�x� is �nite� Now� consider any quasi�leftmost reduction s from ��x� M�N
of index k 	 �� The �rst reduction step from ��x� M�N is either ��x� M�N ��� ��x� M��N or
��x� M�N ��� ��x� M�N�� In either case� the index of the �rst leftmost reduction step in the
quasi�leftmost reduction tail�s� is k��� and by the induction hypothesis� we get the desired result�

Actually� it is possible to prove directly that �P�� holds for leftmost reductions�

Lemma ���� If M is normalizable and M ��� M �� then M � is normalizable�

Proof � We prove the following stronger property� IfM is normalizable andM � is obtained from
M by reducing in parallel any set of independant redexes in M �where the reduction applied to
each redex is a one�step reduction�� then M � is normalizable�

�




The above property is proved by induction on the length l�M� of the leftmost reduction from
M � If l�M� � �� then M is in normal form and the lemma is trivial� If M � C���y� P �Q� where
��y� P �Q is the leftmost redex in M � then either M � � C����y� P ��Q��� or M � � C��P �Q�x��� In the
second case� letting M� � C�P �Q�x�� be the result of reducing the leftmost redex in M � we have
l�M�� � l�M�� and since M � is obtained from M� by reducing independant redexes� we conclude
by applying the induction hypothesis� In the �rst case� letting M �

� � C��P ��Q��x�� be the result of
reducing the leftmost redex in M �� since M �

� is obtained fromM� by reducing independant redexes�
we also conclude by applying the induction hypothesis�

The converse of theorem 
��� is true� if a ��term M is normalizable� then �D� � �M � � where
� and all the types in � are ��free� For the time being� we prove that every term in normal form is
typable in system D� First� observe that because the �rst axiom in both systems D� and D is of
the form �� x� ��x� �� for any two contexts � and !� if � � ! and �D� ��M � �� then �D� !�M � �
�and similarly for �D��

Lemma ���� If �D� x� ���� �M � �� then for any type 	�� �D� x� ��� 	��� �M � � �and similarly
for �D��

Proof � We proceed by induction on the proof� The only nonobvious case is the case where
x� ���� �M � � is an axiom� with M � x and � � ��� In this case� x� ��� 	��� � x� �� � 	� is also an
axiom� and by ���elim�� we get �D� x� �� � 	��� � x� ���

Lemma ���� If �D� �� � M � � and �D� �� � N � 	 � then there is a context �� � �� such that�
�D� �� � �� �M � � and �D� �� � �� � N � 	 �and similarly for �D��

Proof � By the remark before lemma 
��	� �� and �� can be extended to contexts �
�
� and

��� which are of the form ��� � x�� ��� � � � � xm� �m and ��� � x�� 	�� � � � � xm� 	m� Then� letting
����� � x�� ���	�� � � � � xm� �m�	m� by lemma 
��	 �applied m times�� we have �D� ����� �M � �
and �D� �� � �� � N � 	

We can now prove the desired result�

Lemma ���� If M is in normal form� then there is a context � and a type � �both ��free� such
that �D � �M � �� Furthermore� if M is not a ��abstraction� the type � can be chosen arbitrarily�

Proof � We proceed by induction on M � If M � x is a variable� for every ��free type �� and any
��free �� x� ��� � x� � is an axiom�

IfM � �x�M�� by the induction hypothesis� there is a context � and a type 	 �both ��free� such
that �D � �M�� 	 � If x �� dom���� we can pick any ��free type � and extend � so that we still have
�D x� ����M�� 	 � Thus� we assume that we are in the second case� But then� �D ���x�M�� �� 	 �

If M �M�M�� because M is in normal form� M� cannot be a ��abstraction� By the induction
hypothesis� there is a context �� and a type 	 �both ��free� such that �D �� �M�� 	 � and for any
arbitrary ��free type �� there is some ��free context �� such that �D �� �M�� 	 � �� By lemma

��
� we have �D �� � �� �M�� 	 � � and �D �� � �� �M�� 	 � and thus� �D �� � �� �M�M�� ��

Note that there are normalizable terms that are not strongly normalizing� If 
 � �x� xx� then
M � ��x� y��

� is normalizable since M ��� y� but it is not strongly normalizing since 

 is not�
There are even normalizable terms such that every subterm is SN that are not SN� For example�
M � ��x� ���y� z��x
���
 is such a term�

��



� P�Candidates for Strongly Normalizing ��Terms

Although de�nition 
�� is unchanged� we repeat it for convenience�

De�nition ��� An I�term is a term of the form �x�M � A simple term �or neutral term� is a term
that is not an I�term� Thus� a simple term is either a variable x or an application MN � A term M

is stubborn i� it is simple and� eitherM is irreducible� orM � is a simple term wheneverM
�
��� M

�

�equivalently� M � is not an I�term��

Similarly� although de�nition 
�� is unchanged� we repeat it for convenience�

De�nition ��� Properties �P����P	� are de�ned as follows�

�P�� x � P � for every variable x�

�P�� If M � P and M ��� N � then N � P �

�P	� If M is simple� M � P � N � P � and ��x� M ��N � P whenever M
�
��� �x� M �� then

MN � P �

From now on� we only consider sets P satisfying conditions �P����P	� of de�nition ���� De�nition

�	 is also unchanged� but we repeat it for convenience�

De�nition ��� A nonempty set C of �untyped� ��terms is a P�candidate i� it satis�es the following
conditions�

�S�� C � P �

�S�� If M � C and M ��� N � then N � C�

�S	� If M is simple� M � P � and �x�M � � C whenever M
�
��� �x�M �� then M � C�

The remarks following de�nition 
�	 apply here too� Thus� �S	� implies that C contains all
stubborn terms in P � and �P�� guarantees that variables are stubborn terms in P � Also� by �P	��
if M � P is a stubborn term and N � P is any term� then MN � P is stubborn� Instead of �S	��
a condition that occurs frequently in reducibility arguments is the following�

�S�sn� If N � P and M �N�x�N� � � �Nk � C� then ��x�M�NN� � � �Nk � C�

It can be shown easily that �S�� and �S	� imply �S�sn� �see the proof of lemma ��
��

Given a set P � for every type �� we de�ne ����� � � as follows�

De�nition ��� The sets ����� are de�ned as follows�

����� � P � where � is a base type�

��� � 	 �� � fM j M � P � and for all N � if N � ����� then MN � ��	 ��g�

��� � 	 �� � ����� � ��	 ���

��



Lemma ��� If P is a set satisfying conditions �P����P��� then the following properties hold for
every type �� ��� ����� contains all stubborn terms in P �and in particular� every variable�� �	� �����
satis
es �S��� �S	�� and �S��� and thus it is a P�candidate�

Proof � We proceed by induction on types� If � is a base type� then by de�nition ����� � P �
Then� ��� and ��� are clear by �P�� and by �P�� �note that �S�� and �S	� are trivial��

We now consider the induction step�

��� Given a type � � 	 � by the induction hypothesis� ��	 �� contains all the stubborn terms in P �
Let M � P be a stubborn term� Given any N � ������ by �S��� N � P � Since we have shown that
MN is a stubborn term in P when M � P is stubborn and N � P � we have MN � ��	 ��� Thus�
M � ��� � 	 ��� If � � �� � ��� by the induction hypothesis� all stubborn terms in P are in ������ and
in ������� and thus in ���� � ���� � ������ � �������

�S��� By the de�nition of ��� � 	 ��� we have ��� � 	 �� � P � If � � �� � ��� by the induction
hypothesis� ������ � P and ������ � P � and since ��������� � ������� ������� it is clear that ��������� � P �

�S��� The proof is identical to that of lemma 
���

�S	�� LetM � P be a simple term� and assume that �x�M � � ��� � 	 �� wheneverM
�
��� �x�M

��
We prove that for every N � if N � ������ thenMN � ��	 ��� The case whereM is stubborn has already
been covered in ���� Assume that M is not stubborn� First� we prove that MN � P � and for this�

we use �P	�� If M
�
��� �x� M �� then by assumption� �x�M � � ��� � 	 ��� and for any N � ������ we

have ��x�M ��N � ��	 ��� By �S��� N � P and ��x�M ��N � P � and by �P	�� we have MN � P � The
rest of the proof is identical to that of lemma 
���

Condition �P�n� of de�nition 
�� is modi�ed so that our main theorem applies to strongly
normalizing terms�

De�nition ��� Properties �P
� and �P�� are de�ned as follows�

�P
� If M � P � then �x�M � P �

�P�� If N � P and M �N�x� � P � then ��x�M�N � P �

Note that the di�erence between �P�n� of de�nition 
�� and �P�� is that we are now requiring
that N � P �

Lemma ��� If P is a set satisfying conditions �P����P�� and for every N � �N � ����� implies
M �N�x� � ��	 ���� then �x�M � ��� � 	 ���

Proof � We prove that for every every N � if N � ������ then ��x� M�N � ��	 ��� We will need the
fact that the sets of the form ����� have the properties �S����S	�� but this follows from lemma ����
since �P����P	� hold� First� we prove that �x�M � P �

By the assumption of lemma ��
� M �x�x� � M � ��	 ��� since by lemma ���� x � ������ Then� by
�S��� M � P � and by �P
�� we have �x�M � P �

Next� we prove that for every every N � if N � ������ then ��x�M�N � ��	 ��� Let us assume that
N � ������ Then� by the assumption of lemma ��
� M �N�x� � ��	 ��� By �S��� we have N � P and
M �N�x� � P � By �P��� we have ��x�M�N � P � The rest of the proof is identical to that of lemma

�
�

�




Lemma ��	 If P is a set satisfying conditions �P����P��� then for every term M � SN��� for
every substitution � such that ��y� � ����� for every y� � � FV �M�� we have M ��� � ������

Proof � We proceed by induction on the proof �D � �M � �� The proof is actually identical to
that of lemma 
��� except that we don�t even have to bother with types containing ��

Theorem ��
 If P is a set of ��terms satisfying conditions �P����P��� then SN�� � P for
every type � �in other words� every term typable in D satis
es the unary predicate de
ned by P��

Proof � Apply lemma ��� to every term M in SN�� and to the identity substitution� which
is legitimate since x � ����� for every variable of type � �by lemma ����� Thus� M � ����� for
every term in SN��� that is SN�� � ������ Since by lemma ���� �S�� also holds for ������ we have
SN�� � ����� � P �

As a corollary of theorem ���� we show that if a term M is typable in D� then M is strongly
normalizing� This result was �rst proved by Pottinger ��
��

De�nition ���� A term M is strongly normalizing �or SN� i� every reduction sequence from M
�w�r�t� ���� is �nite� The reduction relation ��� is strongly normalizing �or SN� i� every term
is normalizing �w�r�t� �����

Theorem ���� If a term M is typable in D� then M is strongly normalizing�

Proof � Let P be the set of ��terms that are strongly normalizing� To prove theorem ����� we
apply theorem ���� which requires showing that P sati�es the properties �P����P��� First� note that
the observation made at the beginning of the proof of lemma 	��� also applies� IfM is any strongly
normalizing term� every path in its reduction tree is �nite� and since this tree is �nite branching� by
K�onig�s lemma� this reduction tree is �nite� Thus� for any SN term M � the depth� of its reduction
tree is a natural number� and we will denote it as d�M�� We now check the conditions �P����P���
�P�� and �P�� are obvious�

�P	� Since M and N are SN� d�M� and d�N� are �nite� We prove by induction on d�M� d�N�
that MN is SN� We consider all possible ways that MN ��� P � Since M is simple� MN itself is
not a redex� and so P �M�N� where either N � N� andM ��� M�� orM �M� and N ��� N��

If M� is simple or M� � M � d�M��  d�N�� � d�M�  d�N�� and by the induction hypothesis�
P � M�N� is SN� Otherwise� M� � �x�M �� N� � N � By assumption� ��x�M ��N is SN� and so P
is SN� Thus� P �M�N� is SN in all cases� and MN is SN�

�P
� Any reduction from �x� M must be of the form �x� M
�
��� �x� M � where M

�
��� M ��

We use a simple induction on d�M��

�P�� Since N and M �N�x� are SN� the term M itself is SN� Thus� d�M� and d�N� are �nite�
We prove by induction on d�M�  d�N� that ��x� M�N is SN� We consider all possible ways that
��x�M�N ��� P � Either P � ��x�M��N whereM ��� M�� or P � ��x�M�N� where N ��� N��
or P �M �N�x�� In the �rst two cases� d�M�� d�N� � d�M� d�N�� d�M� d�N�� � d�M� d�N��
and by the induction hypothesis� P is SN� In the third case� by assumption M �N�x� is SN� But
then� P is SN in all cases� and so ��x�M�N is SN�

The converse of theorem ���� is true� if a ��term M is strongly normalizing� then �D � �M � �
for some � and some type ��

�the length of a longest path in the tree� counting the number of edges

��



� Typability in D� and D

We now prove the converse of each of the theorems 	���� 
���� and ����� Versions of these results
were �rst obtained by Coppo� Dezani� and Venneri �
�� and Pottinger ��
�� Our treatment is
basically that of Krivine ��	�� The crucial property of system D�� and this is where essential use of
conjunctive types and of the type � is made� is the following� if �D� � �N � � and M ��� N � then
we also have �D� � � M � �� This property fails in general for system D� but holds in the special
case where �D � �M �N�x�� � and �D � �N � �� for some ��� In that case� �D � � ��x�M�N � �� We
will need a number of preliminary results� First� we have the usual substitution lemma�

Lemma ��� Let S � fD��Dg� If �S �� x� � �M � 	 and �S � � N � �� then �S � �M �N�x�� 	 � In
particular� if x �� FV �M�� then �D� � �M � 	 �

Proof � An easy induction on typing derivations�

We say that a type � is prime i� � �� � and � is not of the form �� � ��� A type � is a prime
factor of a type 	 i� it is a subtype of 	 and it is prime� The following permutation lemma is
technically very important�

Lemma ��� Let S � fD��Dg� and let � be a prime type� ��� If �S � � x� �� then there is a
type �� such that x� �� � � and � is a prime factor of ��� �	� If �S � �MN � �� then either the last
rule used in the proof is �application�� or there is a type �� such that � is a prime factor of ���
�S ��MN � ��� and the last rule used in the proof is �application�� ��� Given a proof �S ���x�M � �
then there is a proof in which the last rule is �abstraction�� and given a proof �S � ��x�M � ������
then there is a proof in which the last rule applied is ���intro��

Proof � ��� We prove the slightly more general fact that ��� holds for any type �� where � is a
factor of ��� provided that the last step in the proof is not ���intro�� by induction on the depth k
of the derivation� Since � is prime� the last rule in �S � � x� � cannot be ���intro�� If �S � � x� � is
not an axiom� then the last rule must be ���elim� and either �S � � x� 	 � � or �S � � x� � � 	 is a
proof of depth k � �� If the last step is ���intro�� then we have a proof �S � � x� � of depth k � ��
and we conclude by applying the induction hypothesis� Otherwise� by the induction hypothesis�
there is some �� such that either 	 � � is a factor of �� or � � 	 is a factor of ��� and x� �� � �� In
either case� � is a prime factor of ���

��� We prove the slightly more general fact that ��� holds for any type �� where � is a factor
of ��� provided that the last step in the proof is not ���intro�� by induction on the depth k of the
derivation� Since � is prime� the last rule in in �S � � MN � � cannot be ���intro�� If the last
rule in �S � � MN � � is not �application�� it must be ���elim�� and either �S � � MN � � � 	� or
�S � � MN � 	� � � is a proof of depth k � �� If the last step is ���intro�� then we have a proof
�S ��MN � � of depth k��� and we conclude by applying the induction hypothesis� Otherwise� by
the induction hypothesis� there is some �� such that either ��	� is a factor of �

� and �S ��MN � ���
or 	� � � is a factor of �� and �S � � MN � ��� and the last rule applied is �application�� In either
case� � is a prime factor of ���

�	� We prove that given a proof �S � � �x� M � � of depth k� then there is a proof of depth at
most k in which the last rule is �abstraction�� and given a proof �S � � �x� M � �� � �� of depth
k� then there is a proof of depth at most k in which the last rule applied is ���intro�� Since � is

��



prime� the last rule in �S � � �x� M � � cannot be ���intro�� If the last rule in �S � � �x� M � � is
not �abstraction�� then it must be ���elim�� and either �S � � �x�M � �� 	� or �S � � �x�M � 	�� �
is a proof of depth k � �� By the induction hypothesis� there is a proof of depth at most k � � in
which the last rule is ���intro�� But then� we have a proof �S � � �x�M � � of depth at most k� ��
and we conclude by applying the induction hypothesis�

If the last rule in �S � � �x� M � �� � �� is not ���intro�� then it must be ���elim�� So� either
�S ���x�M � 	�� ������� or �S ���x�M � ��������	� is a proof of depth k��� By the induction
hypothesis� there is a proof of depth at most k � � in which the last rule in ���intro�� But then�
we have a proof �S � � �x�M � ��� � ��� of depth at most k � �� and we conclude by applying the
induction hypothesis�

We can now prove that 
�reduction preserves typing� This property is often known as �subject�
reduction� property�

Lemma ��� Let S � fD��Dg� If �S � �M � � and M ��� N � then �S � �N � �� As a corollary�

if �S � �M � � and M
�
��� N � then �S � � N � ��

Proof � We proceed by induction on the typing derivation� Since M ��� N � the last rule used
in the proof �S � �M � � cannot be an axiom�

If the last rule is �abstraction�� then M � �x�M� and N � �x�N�� where M� ��� N�� and we
have

�S �� x� � �M�� 


with � � 
 � �� By the induction hypothesis� we have

�S �� x� � � N�� 
�

and thus �S � � �x� N�� � � 
�

If the last rule is �application�� then M �M�M� and we have

�S � �M�� � � � and �S � �M�� ��

There are three cases depending on the reduction M ��� N �

If M �M�M� and N � N�M�� where M� ��� N�� then by the induction hypothesis� we have

�S � �N�� �� ��

and thus� �S � � N�M�� ��

If M �M�M� and N �M�N�� where M� ��� N�� then by the induction hypothesis� we have

�S � � N�� ��

and thus� �S � �M�N�� ��

If M � ��x�M��N� and N �M��N��x�� since

�S � � �x�M�� � � ��

��



by lemma ��� �	�� we have
�S �� x� � �M�� ��

Since we also have �S � � N�� �� by lemma ���� we have

�S � �M��N��x�� ��

The cases where the last rule is ���intro� or ���elim� are trivial� The corollary is obtained by
induction on the number of steps in the reduction M

�
��� N �

We now show a crucial lemma about type�checking in the systems D� and D� It is in this
lemma that the power of conjunctive types is really used� Again� we follow Krivine ��	��

Lemma ��� ��� If �D� � � M �N�x�� 	 � then there is a type � such that �D� �� x� � � M � 	 and
�D� � � N � ��

�	� If �D � � M �N�x�� 	 and �D � � N � �� then there is a type � that �D �� x� � � M � 	 and
�D � � N � ��

Proof � We proceed by induction on hjM j� j	 ji� where jM j is the size of M and j	 j is the size of
	 �

��� The case where 	 � � is trivial� we take � � ��

If 	 � 	� � 	�� since �D� � �M �N�x�� 	� � 	�� by ���elim�� we have

�D� � �M �N�x�� 	� and �D� � �M �N�x�� 	��

Since j	�j � j	 j and j	�j � j	 j� by the induction hypothesis� there are types �� and �� such that
�D� �� x� �� � M � 	� and �D� � � N � ��� and �D� �� x� �� � M � 	� and �D� � � N � ��� Taking
� � �� � ��� by lemma 
��	� we have �D� �� x� � �M � 	� and �D� �� x� � �M � 	�� and by ���intro��
we get �D� �� x� � � M � 	� � 	�� From �D� � � N � �� and �D� � � N � ��� by ���intro�� we get
�D� � � N � ��

From now on� we can assume that 	 is prime�

IfM � x� thenM �N�x� � x�N�x� � N � and �D� ��N � 	 � Take � � 	 � and then �D� �� x� 	 �x� 	
is an axiom�

If M � y with y �� x� then M �N�x� � y�N�x� � y� and �D� � � y� 	 � Take � � �� and then
�D� �� x�� � y� 	 and �D� � � N ���

If M � M�M�� then M �N�x� � �M�M���N�x� � M��N�x�M��N�x�� and we have �D� � �

M��N�x�M��N�x�� 	 where 	 is prime� By lemma ��� ���� there is a type 	
� such that 	 is a prime

factor of 	 �� �D� ��M��N�x�M��N�x�� 	 �� and the last rule used in the proof is �application�� Then�
we have �D� � �M��N�x�� �� 	 �� and �D� � �M��N�x�� �� for some type �� Since jM�j � jM j and
jM�j � jM j� by the induction hypothesis� there are types �� and �� such that�

�D� �� x� �� �M�� �� 	 �� �D� � � N � ���

�D� �� x� �� �M�� �� and �D� � � N � ���

��



Then� taking � � �� � ��� by lemma 
��	� we have �D� �� x� � � M�� � � 	 � and �D� �� x� � �
M�� �� Then� by �application�� we have �D� �� x� � �M�M�� 	

�� Since � is a prime factor of 	 �� by
application�s� of ���elim�� we have �D� �� x� � �M�M�� 	 � Since �D� � �N � �� and �D� � �N � ���
by ���intro�� we also have �D� � � N � �� This concludes this case�

If M � �y� M�� by suitable ��renaming� we can assume that y �� FV �N�� Then� M �N�x� �
��y� M���N�x� � �y� M��N�x�� and �D� � � �y� M��N�x�� 	 where 	 is prime� By lemma ��� �	��
there is a proof �D� � � �y� M��N�x�� 	 where the last rule used is �abstraction�� Then� we have
�D� �� y� � � M��N�x�� 
 for some types � and 
 such that 	 � � � 
� Since jM�j � jM j� by the
induction hypothesis� there is some type � such that

�D� �� y� �� x�� �M�� 
 and �D� �� y� � � N � ��

Since y �� FV �N�� by lemma ���� we have �D� � � N � �� Since �D� �� y� �� x�� � M�� 
� we have
�D� �� x� � � �y�M�� �� 
� that is� �D� �� x� � � �y�M�� 	 � This concludes the proof of ����

��� The proof is similar to that of ���� but we have to be careful not to use any type containing
�� A careful inspection reveals that this only happens when 	 � �� which is ruled out in system D�
or in the case where M � y and y �� x� But in the second case� since we assumed that �D � �N � ��
we can take � � ��

As a consequence of lemma ��
 we obtain the following important lemma�

Lemma ��� ��� If �D� � �M �N�x�� 	 � then �D� � � ��x�M�N � 	 �

�	� If �D � �M �N�x�� 	 and �D � � N � �� then �D � � ��x�M�N � 	 �

Proof � ��� By lemma ��
 ���� if �D� � �M �N�x�� 	 � then there is a type � such that

�D� �� x� � �M � 	 and �D� � �N � ��

Then� by �abstraction�� we have �D� � � ��x�M�� � � 	 � and since �D� � �N � �� by �application��
we get

�D� � � ��x�M�N � 	�

��� By lemma ��
 ���� if �D � � M �N�x�� 	 and �D � � N � �� then there is a type � that
�D �� x� � �M � 	 and �D � � N � �� The rest of the proof is as in ����

The following lemma generalizes lemma ���� and will be needed to prove that every strongly
normalizing term is typable in system D�

Lemma ��� ��� If �D� � �M �N�x�N� � � �Nk� 	 � then �D� � � ���x�M�N�N� � � �Nk� 	 �

�	� If �D � �M �N�x�N� � � �Nk� 	 and �D � � N � �� then �D � � ���x�M�N�N� � � �Nk� 	 �

Proof � We proceed by induction on hk� j	 ji�

��� If k � �� we conclude by lemma ��� ���� If 	 � 	� � 	�� by ���elim�� we have

�D� � �M �N�x�N� � � �Nk� 	� and �D� � �M �N�x�N� � � �Nk� 	��

By the induction hypothesis� we have

�D� � � ���x�M�N�N� � � �Nk� 	� and �D� � � ���x�M�N�N� � � �Nk� 	��

��



and thus� �D� � � ���x�M�N�N� � � �Nk� 	 �

We can now assume that 	 is prime and k 	 �� Since �D� � � M �N�x�N� � � �Nk� 	 � by lemma
��� ���� there are types � and 	 � where 	 is a prime factor of 	 � such that�

�D� � �M �N�x�N� � � �Nk��� � � 	 � and �D� � �Nk� ��

By the induction hypothesis� we have

�D� � � ���x�M�N�N� � � �Nk��� �� 	 ��

and thus� �D� � � ���x� M�N�N� � � �Nk� 	
�� Since 	 is a prime factor of 	 �� by application�s� of

���elim�� we have �D� � � ���x�M�N�N� � � �Nk� 	 �

��� In the base case k � �� we use lemma ��� ���� The rest of the proof is identical to that of
����

The following lemma will be needed in showing that a term has a head�normal form i� it is
solvable �see de�nition ������

Lemma ��� If the term M � �x� M� or the term M � M�N� is typable in system D� with a
nontrivial type� then M� itself is typable in system D� with a nontrivial type�

Proof � Assume �D� � � �x�M�� � or �D� � �M�N�� �� We proceed by induction on the typing
derivation� The last rule cannot be an axiom since the terms involved are not variables and � �� ��

If the last rule is �abstraction�� then we must have

�D� �� x� � �M�� 
�

with � � � � 
� and since � is nontrivial� 
 is nontrivial�

If the last rule is �application�� then we must have

�D� � �M�� � � � and �D� � � N�� ��

Since � is nontrivial� � � � is nontrivial�

If the last rule is ���intro�� we have

�D� � �M � �� and �D� � �M � ���

and � � �� � ��� Since � is nontrivial� either �� or �� is nontrivial� The result follows from the
induction hypothesis�

If the last rule is ���elim�� we have

�D� � �M � �� � ���

and either � � �� or � � ��� Since � is nontrivial� in either case� �� � �� is nontrivial� The result
follows from the induction hypothesis�

We can now prove the following fundamental theorem about type�checking in system D�� It
is a dual of lemma ��	� in the sense that it shows that in system D�� typing is preserved under
reverse 
�reduction� This theorem �rst proved by Coppo� Dezani� and Venneri �
�� also appears in
Krivine ��	��

�	



Theorem ��	 ��� If �D� � � N � 	 and M ��� N � then �D� � �M � 	 �

�	� If �D� � �M � 	 and M
�

��� N � then �D� � � N � 	 �

Proof � Assume thatM ��� N and �D� ��N � 	 � We proceed by induction on hjM j� j	 ji� where
jM j is the size of M and j	 j is the size of 	 �

��� The case where 	 � � is trivial�

If 	 � 	� � 	�� since �D� � � N � 	� � 	�� by ���elim�� we have

�D� � � N � 	� and �D� � � N � 	��

Since j	�j � j	 j and j	�j � j	 j� by the induction hypothesis�

�D� � �M � 	� and �D� � �M � 	��

and by ���intro�� we have �D� � �M � 	� � 	��

Thus� from now on� we can assume that 	 is prime� The case whereM is a variable is impossible�

IfM � �x�M�� then we must have N � �x�N� whereM� ��� N�� and �D� ���x�N�� 	 where
	 is prime� By lemma ��� �	�� there are some types � and 
 such that 	 � � � 
� and we have

�D� �� x� � � N�� 
�

Since jM�j � jM j� by the induction hypothesis� we have

�D� �� x� � �M�� 
�

and by �abstraction�� we get �D� � � �x�M�� � � 
� that is� �D� � �M � 	 �

If M � M�M�� there are three cases� Either N � N�M� where M� ��� N�� or N � M�N�

where M� ��� N�� or M � ��x�M��N� and N �M��N��x��

If N � N�M� where M� ��� N�� we have �D� � � N�M�� 	 where 	 is prime� By lemma ���
���� there are some types � and 	 � where 	 is a prime factor of 	 � such that

�D� � � N�� �� 	 � and �D� � �M�� ��

Since jM�j � jM j� by the induction hypothesis� we have

�D� � �M�� �� 	 ��

and since �D� � �M�� �� we get
�D� � �M�M�� 	

��

Since 	 is a prime factor of 	 �� by application�s� of ���elim�� we get

�D� � �M�M�� 	�

The case where N �M�N� and M� ��� N� is similar to the previous case�

�




If M � ��x�M��N� and N �M��N��x�� since �D� � �M��N��x�� 	 � by lemma ��� ���� we have

�D� � � ��x�M��N�� 	�

��� is obtained by induction on the number of steps inM
�

��� N using lemma ��	 and theorem
��� ����

Theorem ��� fails for system D� even for terms M that type�check in D� as shown next� Let
M � �y� ���x� y��yy��� We have M ��� N � �y� y� and clearly N � �y� y type�checks in D with
type 	 � 	 � where 	 is a base type� However� we prove that M does not type�check in D with
the type 	 � 	 � even though M type�checks in D with type � � �� � 	�� � � �� � 	��

Indeed� if �D � �y� ���x� y��yy��� 	 � 	 � by lemma ��� �	�� we must have

�D y� 	 � ��x� y��yy�� 	�

Since 	 is prime� by lemma ��� ���� we must have

�D y� 	 � �yy�� �

for some type �� Now� � is not necessarily prime� but since � is a type in D� � is a conjunction
of prime types di�erent from �� and thus� by application�s� of ���elim�� we can assume that
�D y� 	 � �yy�� � where � is prime� Again� by lemma ��� �	�� we must have

�D y� 	 � y� � � ��

where � is a prime factor of ��� But now� � � �� is not a prime factor of 	 since 	 is a base type�
which contradicts lemma ��� ���� Thus� M does not type�check in D with the type 	 � 	 �

We now prove that every strongly normalizing term M is typable in system D� This theorem
�rst proved by Pottinger ��
�� also appears in Krivine ��	��

Lemma ��
 If a term M is strongly normalizing� then it is typable in system D�

Proof � We proceed by induction on hd�M�� jM ji� where d�M� is the depth of the reduction tree
from M and jM j is the size of M � There are two cases� the �rst one being the case where M is in
head�normal form� the second one where it is not�

If M is in head�normal form� it is of the form M � �x� � � � �xm� yN� � � �Nk� and the proof is
similar to that of lemma 	��	� Since jNij � jM j and d�Ni� 
 d�M�� by the induction hypothesis�
each Ni is typable in D� and by lemma 
��
� we can assume that they are typable in the same
context� that is�

�D �� x�� ��� � � � � xm� �m� y� � � Ni� 	i�

if y �� xi for all i� or
�D �� x�� ��� � � � � xm� �m � Ni� 	i�

if y � xi� Now� letting
� � � � �	� � � � �� 	k � 
��

��



for any base type 
� with � � �i if y � xi� it is immediate �using lemma 
��	� that we have

�D �� y� � � �x� � � ��xm� yN� � � �Nk� 	�

with 	 � ��� � � � �� �m � 
� if y �� xi for all i� or

�D � � �x� � � ��xm� yN� � � �Nk� 	�

with 	 � ��� � � � �� �m � 
� and �i � � if y � xi�

If M � �x� � � ��xm� ���y� P �Q�N� � � �Nk has head�redex ��y� P �Q� then

N � �x� � � ��xm� P �Q�x�N� � � �Nk

is such that d�N� � d�M�� and clearly we also have d�P �Q�x�N� � � �Nk� 
 d�N� and d�Q� 
 d�N��
By the induction hypothesis�

�D �
�� x�� �

�
�� � � � � xm� �

�
m � P �Q�x�N� � � �Nk� 
�

and
�D �

��� x�� �
��
� � � � � � xm� �

��
m � Q� ��

and by lemma 
��
� letting �i � ��i � ���i � there is a context � such that

�D �� x�� ��� � � � � xm� �m � P �Q�x�N� � � �Nk� 
�

and
�D �� x�� ��� � � � � xm� �m � Q� ��

By lemma ��� ���� we have

�D �� x�� ��� � � � � xm� �m � ���y� P �Q�N� � � �Nk� 
�

and thus�
�D � � �x� � � � �xm� ���y� P �Q�N� � � �Nk� 	�

with 	 � ��� � � � �� �m � 
��

We are now ready to prove the fundamental theorems characterizing the terms that have head�
normal forms� the terms that are normalizable� and the terms that are strongly normalizing� in
terms of typability in the systems D� and D� These theorems are proved in Krivine ��	�� Before
we do so� we de�ne the notion of a solvable term� a notion that turns out to be equivalent to the
property of having a head�normal form �a result due to Wadsworth��

De�nition ���� A closed term M is solvable i� there are terms N�� � � � � Nk� where k 	 �� such
that� MN� � � �Nk

�
��� �x� x� A nonclosed term M is solvable i� its closure is solvable�

If a term M is not closed and FV �M� � fx�� � � � � xmg� its closure is �x� � � ��xm� M � and M
solvable means that there are terms N�� � � � � Nk such that

��x� � � ��xm� M�N� � � �Nk
�

��� �x� x�

��



Thus� if k � m� this means that

�xk�� � � ��xm� M �N��x�� � � � � Nk�xk�
�

��� �x� x�

and if k 	 m� this means that

M �N��x�� � � � � Nm�xm�Nm�� � � �Nk
�

��� �x� x�

Thus� solvability can also be de�ned by saying that a term �closed or open� is solvable i� there
is a substitution � for some of the free variables of M and some terms N�� � � � � Nk such that�
M ���N� � � �Nk

�
��� �x� x�

It is also easy to see thatM is solvable i� for every term Q� there is a substitution � for some of
the free variables in M and some terms N�� � � � � Nk such that�M ���N� � � �Nk

�
��� Q� Indeed� this

second de�nition implies the �rst by picking Q � �x� x� Conversely� if M ���N� � � �Nk
�

��� �x� x�

then M ���N� � � �NkQ
�

��� Q� Finally� we prove our three major theorems� A version of the next
theorem was �rst obtained by Coppo� Dezani� and Venneri �
��

Theorem ���� For any term M of the �untyped� ��calculus� the following properties are equiv�
alent�

��� M is solvable�

�	� M has a head�normal form �i�e�� there is some head�normal form N such that M
�

��� N��

��� M is typable in system D� with a nontrivial type�

��� Every quasi�head reduction from M is 
nite� In particular� the head�reduction from M is

nite�

Proof � ���� �	�� If M is solvable� then there are terms N�� � � � � Nk such that

��x� � � ��xm� M�N� � � �Nk
�

��� �x� x�

where m � � if M is closed� Since �x� x is typable with the type 	 � 	 where 	 is any nontrivial
type� by theorem ���� ��x� � � ��xm� M�N� � � �Nk is also typable in D� with the nontrivial type
	 � 	 � Then� by application�s� of lemma ��
� M itself is typable in D� with a nontrivial type�

�	�� �
�� This follows from theorem 	����

�
�� ���� This is trivial�

��� � ���� If M is equivalent to a head�normal form� clearly its closure is equivalent to a
head�normal form� and thus we assume that M is closed� By assumption�

M
�

��� �x� � � ��xm� xiQ� � � �Qk�

where �x� � � � �xm� xiQ� � � �Qk is a closed head�normal form� Let

Ni � �y� � � ��yk�z� z�

and Nj any arbitrary term for j �� i� � 
 j 
 m� Then� it is immediate thatMN� � � �Nm
�

��� �z�z�
and M is solvable�

�




It should be noted that the implication ���� �	� follows directly from lemma 	��	 and theorem
���� and no detour via the solvable terms is necessary� Furthermore� this implication shows that
every head�normalizable term is typable in D� with a nontrivial type of a rather special kind �since
the types arising in lemma 	��	 are quite special�� Next we consider normalizable terms� A version
of the next theorem was �rst obtained by Coppo� Dezani� and Venneri �
��

Theorem ���� For any term M of the �untyped� ��calculus� the following properties are equiv�
alent�

��� M is normalizable�

�	� There exist a context � and a type �� both ��free� such that �D� � �M � ��

��� Every quasi�leftmost reduction from M is 
nite� In particular� the leftmost reduction from
M is 
nite�

Proof � ���� ���� This follows from lemma 
��� and theorem ����

���� �	�� This follows from theorem 
����

�	�� ���� This is trivial�

The implication ���� ��� shows that every normalizable term is typable in D� with an ��free
�context and� type of a rather special kind �since the types arising in lemma 
��� are quite special��
Finally� we consider strongly normalizing terms� A version of the next theorem was �rst obtained
by Pottinger ��
��

Theorem ���� For any term M of the �untyped� ��calculus� the following properties are equiv�
alent�

��� M is strongly normalizing�

�	� M is typable in system D�

Proof � ���� ���� This follows from lemma ����

���� ���� This follows from theorem �����

Other interesting results can be obtained� for example the �nite developments theorem �see
Krivine ��	��� In the next section� we characterize the terms that have a weak head�normal form�
This result appears to be new�

� P�Candidates for Weakly Head�Normalizing ��Terms

In this section� we generalize theorem 	�� and theorem ���� to the terms that are weakly head�
normalizable� First� we need to adapt de�nition ��	 so that our results apply to weakly head�
normalizable ��terms� We thank Mariangiola Dezani for suggesting a simpli�cation in the de�nition
of a weakly nontrivial type� The di�erence between head�normalizable ��terms and weakly head�
normalizable ��terms is that any ��abstraction �x�M is considered a weak head�normal form� even
if M has a head redex�

��



De�nition ��� A type � is ��free i� � does not occur in �� A type is weakly nontrivial i� either
� is a base type and � �� �� or � � � � 	 where 	 is weakly nontrivial and � is arbitrary� or
� � �� � �� where �� or �� is weakly nontrivial� or � � � � �� A type is weakly trivial i� it is not
weakly nontrivial��

De�nition 	�� remains unchanged� as well as de�nition 	��� but we repeat de�nition 	�� for
convenience�

De�nition ��� Properties �P����P	s� are de�ned as follows�

�P�� x � P � for every variable x�

�P�� If M � P and M ��� N � then N � P �

�P	s� If M is simple� M � P � N � �� and ��x� M ��N � P whenever M
�
��� �x� M �� then

MN � P �

From now on� we only consider sets P satisfying conditions �P����P	s� of de�nition 
��� De��
nition 	�	 remains unchanged� as well as the remarks on stubborn terms following this de�nition�
However� we need to modify de�nition 	�
� Given a set P � for every type �� we de�ne ����� � � as
follows�

De�nition ��� The sets ����� are de�ned as follows�

����� � P � where � �� � is a base type�

����� � �� where � is a weakly trivial type�

��� � 	 �� � fM j M � P � and for all N � if N � ����� then MN � ��	 ��g�

where � � 	 is weakly nontrivial�

��� � 	 �� � ����� � ��	 ���

where � � 	 is weakly nontrivial�

By de�nition 
��� a type is weakly trivial if either it is �� or it is of the form � � 	 where 	
is weakly trivial �except for � � ��� or it is of the form � � 	 where both � and 	 are weakly
trivial� We could have de�ned ����� by changing the second clause to ����� � �� and by dropping the
conditions � � 	 weakly nontrivial and � � 	 weakly nontrivial� However� it would no longer be
true that ����� � � for every weakly trivial type� and this would be a serious obstacle to the proof
of lemma 
��� The following lemma shows that the property of being a P�candidate is an inductive
invariant�

Lemma ��� If P is a set satisfying conditions �P����P�s�� then the following properties hold for
every type �� ��� ����� contains all stubborn terms in P �and in particular� every variable�� �	� �����
satis
es �S	� and �S��� ��� If � is weakly nontrivial� then ����� also satis
es �S��� and thus it is a
P�candidate�

�In an earlier version� we were also considering types � � � where � is ��free� among the weakly nontrivial types�

However� as suggested by Mariangiola Dezani� it is simpler to use the type � � ��

��



Proof � We proceed by induction on types� If � is a base type� then by de�nition ����� � P if
� �� �� and ����� � �� Then� ��� and ��� are clear by �P�� and by �P�� �note that �S	� is trivial�� If
� �� �� then �S�� is trivial since ����� � P �

We now consider the induction step�

�	� We prove that �S�� holds for weakly nontrivial types� If � � 	 is weakly nontrivial� then
there are two cases� �a� the type 	 is weakly nontrivial� and by the de�nition of ��� � 	 ��� we have
��� � 	 �� � P � �b� � � � � �� In this case� since ����� � �� it is clear from de�nition 
�	 that
��� � ��� � P �

If � � �� � �� is weakly nontrivial� then �� or �� is weakly nontrivial� Assume �� is weakly
nontrivial� the case where �� is weakly nontrivial being similar� By the induction hypothesis�
������ � P � and since ���� � ���� � ������ � ������� it is clear that ���� � ���� � P �

The veri�cation of ��� and ��� is obvious for weakly trivial types� since in this case� ����� � ��
Thus� in the rest of this proof� we assume that we are considering weakly nontrivial types�

��� Given a type � � 	 � by the induction hypothesis� ��	 �� contains all the stubborn terms in P �
Let M � P be a stubborn term� Given any N � ������ obviously� N � �� Since we have shown that
MN is a stubborn term in P when M � P is stubborn and N is arbitrary� we have MN � ��	 ���
Thus� M � ��� � 	 ��� If � � �� � ��� by the induction hypothesis� all stubborn terms in P are in
������ and in ������� and thus in ���� � ���� � ������ � �������

��� We prove �S�� and �S	��

�S��� Let M � ��� � 	 �� and assume that M ��� M �� Since M � P by �S��� we have M � � P
by �P��� For any N � ������ since M � ��� � 	 �� we have MN � ��	 ��� and since M ��� M � we have
MN ��� M �N � Then� applying the induction hypothesis at type 	 � �S�� holds for ��	 ��� and thus
M �N � ��	 ��� Thus� we have shown that M � � P and that if N � ������ then M �N � ��	 ��� By the
de�nition of ��� � 	 ��� this shows that M � � ��� � 	 ��� and �S�� holds at type � � 	 �

If � � ������ by the induction hypothesis� �S�� holds for ������ and ������� and thus for ��������� �
������ � �������

�S	�� LetM � P be a simple term� and assume that �x�M � � ��� � 	 �� wheneverM
�
��� �x�M

��
If � � 	 � � � �� then we saw that ��� � ��� � P � In this case� �S	� is trivial� Thus� we now
assume that � � 	 is weakly nontrivial and not � � ��

We prove that for every N � if N � ������ then MN � ��	 ��� The case where M is stubborn has
already been covered in ���� Assume that M is not stubborn� First� we prove that MN � P � and

for this� we use �P	s�� If M
�
��� �x� M �� then by assumption� �x� M � � ��� � 	 ��� and for any

N � ������ we have ��x� M ��N � ��	 ��� Recall that we assumed that � � 	 is weakly nontrivial and
not � � �� This implies that 	 is weakly nontrivial� Then� by �S��� ��x�M ��N � P � and by �P	s��
we have MN � P � Now� there are two cases�

If 	 is a base type� then ��	 �� � P since 	 �� �� and MN � ��	 �� �since MN � P��

If 	 is not a base type� the term MN is simple� Thus� we prove that MN � ��	 �� using �S	�
�which by induction� holds at type 	�� The case where MN is stubborn is trivial� Otherwise�

	�



observe that if MN
�
��� Q� where Q � �y�P is an I�term� then the reduction is necessarily of the

form
MN

�
��� ��x�M

��N � ��� M
��N ��x�

�
��� Q�

where M
�
��� �x� M � and N

�
��� N �� Since by assumption� �x� M � � ��� � 	 �� whenever

M
�
��� �x�M �� and by the induction hypothesis applied at type �� by �S��� N � � ������ we conclude

that ��x� ��M ��N � � ��	 ��� By the induction hypothesis applied at type 	 � by �S��� we have Q � ��	 ���
and by �S	�� we have MN � ��	 ���

Since M � P and MN � ��	 �� whenever N � ������ we conclude that M � ��� � 	 ���

For the proof of the next lemma� we need to add two new conditions �P
w� and �P�n� to
�P����P	s��

De�nition ��� Properties �P
w� and �P�n� are de�ned as follows�

�P
w� If M � �� then �x�M � P �

�P�n� If M �N�x� � P � then ��x�M�N � P �

Note that by �P
w�� terms of the form �x�M are automatically in P � no matter what M is�

Lemma ��� If P is a set satisfying conditions �P����P�n�� and M �N�x� � ��	 �� for every N � ��
then �x�M � ��� � 	 ���

Proof � The lemma is obvious if � � 	 is weakly trivial� since in this case� ��� � 	 �� � �� If
� � 	 � � � �� by �P
w�� �x� M � P � and since ��� � ��� � P � the result holds� Thus� in the
rest of this proof� we assume that � � 	 is weakly nontrivial and not � � �� This implies that 	
is weakly nontrivial�

We prove that for every every N � if N � ������ then ��x� M�N � ��	 ��� We will need the fact
that the sets of the form ����� have the properties �S����S	�� but this follows from lemma 
�
� since
�P����P	s� hold� By �P
w�� we have �x�M � P �

Next� we prove that for every every N � if N � ������ then ��x�M�N � ��	 ��� Let us assume that
N � ������ Then� by the assumption of lemma 
��� M �N�x� � ��	 ��� Since 	 is weakly nontrivial� by
�S��� we have M �N�x� � P � By �P�n�� we have ��x�M�N � P � The rest of the proof is identical
to that of lemma 	�
�

Lemma ��� If P is a set satisfying conditions �P����P�n�� then for every term M � ��� for
every substitution � such that ��y� � ����� for every y� � � FV �M�� we have M ��� � ������

Proof � We proceed by induction on the proof �D� � �M � �� The lemma is obvious if � is a
weakly trivial type� since in this case� ����� � �� Thus� in the rest of this proof� we assume that
we are considering weakly nontrivial types� The rest of the proof is identical to that of lemma 	���
with �nontrivial� replaced by �weakly nontrivial��

Theorem ��	 If P is a set of ��terms satisfying conditions �P����P�n�� then �� � P for every
weakly nontrivial type � �in other words� every term typable in D� with a weakly nontrivial type
satis
es the unary predicate de
ned by P��

	�



Proof � Apply lemma 
�
 to every term M in �� and to the identity substitution� which is
legitimate since x � ����� for every variable of type � �by lemma 
�
�� Thus� M � ����� for every term
in ��� that is �� � ������ Finally� by lemma 
�
� if � is weakly nontrivial� �S�� holds for ������ that is
�� � ����� � P �

As a corollary of theorem 
��� we show that if a term M is typable in D� with a weakly
nontrivial type� then the weak head reduction fromM is �nite �and so�M has a weak head�normal
form��

De�nition ��
 Given a termM � ���y�P �Q�N� � � �Nk� wherem 	 � and k 	 �� the term ��y�P �Q
is the weak head redex of M � A weak head reduction is a reduction sequence in which every step
reduces the weak head redex� A weak quasi�head reduction is a ��nite or in�nite� reduction sequence
s � hM��M�� � � � �Mi� � � �i such that� for every i 	 �� if Mi is not the last term in the sequence s�
there is some j 	 i such that Mj ��� Mj�� is a weak head�reduction step� A term is in weak
head�normal form i� it has no weak head redex� that is� either it is a ��abstraction �x� M�� or it
is of the form yN� � � �Nk� where k 	 �� The variable y is called the head variable� A term is weak
head�normalizable i� the weak head reduction from M is �nite�

Note that the last step in a �nite weak quasi�head reduction is necessarily a weak head�reduction
step� Also� any su�x of a weak quasi�head reduction is a weak quasi�head reduction� The main
advantage of weak quasi�head reductions over weak head�reductions is that �P�� obviously holds
for terms for which every weak quasi�head reduction is �nite�

Theorem ���� If a term M is typable in D� with a weakly nontrivial type� then every weak
quasi�head reduction from M is 
nite� As a corollary� the weak head reduction from M is 
nite
�and so� M has a weak head�normal form��

Proof � Let P be the set of ��terms for which every weak quasi�head reduction is �nite� To
prove theorem 
���� we apply theorem 
��� which requires showing that P sati�es the properties
�P����P�n�� The remark made at the beginning of the proof of lemma 	��� also applies here� If
every weak quasi�head reduction sequence is �nite� since the reduction tree is �nite branching� by
K�onig�s lemma� the subtree consisting of weak quasi�head reduction sequences is �nite� Thus� for
any termM from which every weak quasi�head reduction sequence is �nite� the length of a longest
weak quasi�head reduction path in the reduction tree from M is a natural number� and we will
denote it as l�M�� Now� �P�� is trivial� and �P�� follows from the de�nition�

�P	s�� Let M be simple� and assume that every weak quasi�head reduction from M is �nite�
We prove that every weak quasi�head reduction from MN is �nite by induction on l�M�� Let
MN ��� Q be a reduction step� Because M is simple� MN is not a redex� and we must have
M ��� M� or N ��� N�� If M� is simple� since l�M�� � l�M�� the induction hypothesis yields
that every weak quasi�head reduction fromM�N is �nite� If N ��� N�� because we are considering
weak quasi�head reductions fromMN � there is a �rst step where a weak head reduction is applied�
and it must be applied to M � Thus� we must have MN ��� MN�

�
��� MNi ��� M�Ni� Since

l�M�� � l�M�� the induction hypothesis yields that every weak quasi�head reduction from MN� is
�nite� Otherwise� M� � �x�P � and by assumption� every weak quasi�head reduction from ��x�P �N
is �nite� Thus every weak quasi�head reduction from MN is �nite�

	�



�P
w�� Assume that every weak quasi�head reduction from M is �nite� By de�nition� �x�M is
a weak head normal form� and the result is trivial�

�P�n�� Let k be the index of the �rst weak head�reduction step in any weak quasi�head reduction
from ��x�M�N � We prove by induction on k that every weak quasi�head reduction from ��x�M�N
is �nite� If k � �� then ��x� M�N is a weak head�redex� However� by the assumption� every
weak quasi�head reduction from M �N�x� is �nite� Now� consider any weak quasi�head reduction s
from ��x� M�N of index k 	 �� The �rst reduction step from ��x� M�N is either ��x�M�N ���

��x�M��N or ��x�M�N ��� ��x�M�N�� In either case� the index of the �rst weak head�reduction
step in the weak quasi�head reduction tail�s� is k� �� and by the induction hypothesis� we get the
desired result�

The converse of theorem 
��� is true� if a ��term is weak head�normalizable� then it is typable
in D� with a weakly nontrivial type �� First� we prove the following weaker result�

Lemma ���� Given a term M � yN� � � �Nk� there are nontrivial types � and �� where � is
a base type� such that �D� y� � � M � �� Given a term M � �x� M�� for any type �� we have
�D� �M � � � ��

Proof � Let � � � � � � �� � � � with k occurrences of �� It is easy to see that we have

�D� y� � � yN� � � �Nk� ��

If M � �x�M�� for any type �� by the ��axiom� we have

�D� x� � �M����

and thus �D� � �x� M�� � � ��

Note that there are weakly head�normalizable terms that are not head�normalizable� If 
 �
�x� xx� then �x� �

� is in weak head�normal form� but it is not head normalizable since 

 is not�

We are now ready to prove the theorem characterizing the ��terms that are weakly head�
normalizable in terms of type�checking in D�� However� we do not have a notion of �weak solv�
ability��

Theorem ���� For any term M of the �untyped� ��calculus� the following properties are equiv�
alent�

��� M has a weak head�normal form �i�e�� there is some weak head�normal form N such that
M

�
��� N��

�	� M is typable in system D� with a weakly nontrivial type�

��� Every weak quasi�head reduction from M is 
nite� In particular� the weak head�reduction
from M is 
nite�

Proof � ���� ���� This follows from lemma 
��� and theorem ����

���� �	�� This follows from theorem 
����

�	�� ���� This is trivial�

It should be noted that the implication ��� � ��� shows that every weakly head�normalizable
term is typable in D� with a weakly nontrivial type of a rather special kind �since the types arising
in lemma 
��� are quite special��

		



� Conclusion	 Open Problems	 and Challenges

We have shown four metatheorems �theorems 	��� 
��� ���� and 
��� about interesting classes of ��
terms� using a fairly generic version the reducibility method� Obviously� the proofs do not di�er very
much� but even though we have made some progress in isolating some of their common ingredients
�for example� the P�candidate conditions �S��� �S��� �S	��� we have not yet succeeded in extracting
what they really share in common� Thus� we have our �rst challenge�

Challenge �� Find a common generalization of the four proofs of the theorems 	��� 
��� ����
and 
���

The method of P�candidates can also be applied to various typed ��calculi� including system
F� and we worked out a generalized version of reducibility for such typed calculi �see Gallier ���
and �
��� To de�ne this version of realizability� it was necessary to de�ne a new class of applicative
structures� called pre�applicative structures� in which the carriers are equipped with preorders� and
the various inductive conditions on candidates of reducibility can be viewed as sheaf conditions �
Families of realizers are sheaves w�r�t� a suitable notion of cover �see Gallier �
��� It is worth noting
that pre�applicative structures are models of reduction rather than models of convertibility � There
is a preorder 
 on each carrier� to model reduction� Although models of convertibility have been
studied extensively �starting with some seminal work of Dana Scott and Gordon Plotkin�� we feel
that the surface has been barely scratched when it comes to models of reduction�

Our work seems to indicate that the notion of cover is very robust� In the next paragraphs�
which assume some familiarity with Gallier �
�� we clarify this previous statement� Given a pre�
applicative structure A � �A����T �with preorder 
�� given a family S � �S����T � where S� � A��
the family S is a P�sheaf i�

�S�� S� � P� �

�S�� If M � S� and M 
 N � then N � S��

�S	� If Cov��C�M�� and C � S�� then M � S��

The family S � �S����T can be viewed as a functor

S�Aop � Sets�

by letting S�M� � f� j M � S�g� Then� �S	� can be written as�

�S	� If Cov��C�M�� and � � S�N� for every N � C� then � � S�M��

It can be veri�ed that S is a sheaf with respect to the cover algebra Cov on A �see Gallier �
���

This brings us to our second challenge�

Challenge �� Is there a notion of pre�applicative structure applying to both untyped terms
and typed terms"

Close examination of the approach in this paper and in Gallier �
�� shows that there seems to
be six parameters in reducibility proofs�

��� The class of ��terms

��� The type system T

	




�	� The property P to be proved�

�
� The class of pre�applicative structures A�

��� The notion Cov of cover�

��� The de�nition of realizability �the sets of realizers �������

We now come to our bigest challenge�

Main Challenge 	� Is there a generalization of the reducibility method applying to untyped
terms and typed terms� and to various type systems and properties"

We conjecture that covers will play a central role� but their de�nition may need adjustements�
Finally� as if we did not have enough trouble already� one more nagging questions remains�

What about dependent types" �this seems hard��

In a recent paper� McAllester� Ku#can� and Otth ��
�� prove various strong normalization results
using another variation of the reducibility method� Although we see their approach as much less
fundamental and too restrictive �it only seems to deal with strong normalization�� it would be
interesting to understand how this method relates to the method presented in this paper or in
Gallier �
�� The papers by Hyland and Ong ���� and by Michel Parigot ����� also present proofs of
strong normalization� using new variants of the reducibility method� The technical details are very
di�erent� and we are unable to make a precise comparison at this point� Clearly� further work is
needed to clarify the connection between these approaches and ours�
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