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Abstract  

In this technical report, we investigate modeling, control, and coordination of mobile ma- 
nipulators. A mobile manipulator in this study consists of a robotic manipulator and 
a mobile platform, with the manipulator being mounted atop the mobile platform. A 
mobile manipulator combines the dextrous manipulation capability offered by fixed-base 
manipulators and the mobility offered by mobile platforms. While mobile manipulators 
offer a tremendous potential for flexible material handling and other tasks, a t  the same 
time they bring about a number of challenging issues rather than simply increasing the 
structural complexity. First, combining a manipulator and a platform creates redundancy. 
Second, a wheeled mobile platform is subject to  nonholonomic constraints. Third, there 
exists dynamic interaction between the manipulator and the mobile platform. Fourth, 
manipulators and mobile platforms have different bandwidths. Mobile platforms typically 
have slower dynamic response than manipulators. The objective of the thesis is to de- 
velop control algorithms that effectively coordinate manipulation and mobility of mobile 
manipulators. 

We begin with deriving the motion equations of mobile manipulators. The derivation 
presented here makes use of the existing motion equations of manipulators and mobile plat- 
forms, and simply introduces the velocity and acceleration dependent terms that account 
for the dynamic interaction between nianipulators and mobile platforms. Since nonholo- 
nomic constraints play a critical role in control of mobile manipulators, we then study the 
control properties of nonholonomic dynamic systems, including feedback linearization and 
internal dynamics. Based on the newly proposed concept of preferred operating region, we 
develop a set of coordination algorithms for mobile manipulators. While the manipulator 
performs manipulation tasks, the mobile platform is controlled to  always bring the con- 
figuration of the manipulator into a preferred operating region. The control algorithms 
for two types of tasks - dragging motion and following motion - are discussed in detail. 
The effects of dynamic interaction are also investigated. 

To verify the efficacy of the coordination algorithms, we conduct numerical simula- 
tions with representative task trajectories. Additionally, the control algorithms for the 
dragging motion and following motion have been implemented on an experimental mobile 
manipulator. The results from the simulation and experiment are presented to support 
the proposed control algorithms. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

Traditionally, robotic manipulators are bolted onto floor. The workspace of such a Jxed- 
base manipulator is a limited volume of the space that can be reached by the end-effector 
of the manipulator. Tasks must be carefully structured so that the manipulator can reach 
parts to be assembled. This is typically achieved by means of conveyor belts or other 
transporting devices. 

In the recent years, there has been a great deal of interest in mobile robots [I, 2,  31. A 
mobile robot is typically a mobile platform or vehicle, equipped with a computer(s) and 
various sensors. The study of mobile robots is mostly concentrated on a central question: 
how to move from here to there in a structured/unstructured environment. It  involves 
many issues such as motion planning, navigation, sensor fusion, and localization. 

The subject of this thesis is mobile manipulators. A mobile manipulator consists of a 
ma.nipulator and a mobile platform (or a mobile robot). The manipulator is mounted on 
the top of the mobile platform. A mobile manipulator combines the dextrous manipulation 
capability offered by fixed-base manipulators and the mobility offered by mobile platforms. 
A mobile manipulator has a considerably larger workspace than a fixed-based one. 

Mobile manipulators have many potential applications in manufacturing, nuclear re- 
actor maintenance, construction, planetary exploration [4, 5, 61. A conceptual example of 
such applications utilizing mobile manipulators is depicted in Figure 1.1. In the figure, 
multiple mobile manipulators cooperatively perform material handling tasks. 

The objective of this thesis is to investigate modeling, control, and coordination of 
mobile manipulators. The emphasis will be placed on coordinating manipulation and 
mobility of a single mobile manipulator. While performing manual tasks, humans always 
coordinate the body movement and arm movement in a natural and elegant manner. For 
instance, when writing on a blackboard, one positions his/her arm in a comfortable posture 
by laterally moving his/her body rather than reaching out his/her arm. In a sense, humans 
execute an optimal coordination algorithm to take full advantage of (fine) hand motions 
and (gross) body motions. Therefore, this study is motivated to develop coordination 
al.gorithms that enable mobile manipulators to perform tasks efficiently and effectively. 

Mobile manipulators offer a tremendous potential for performing material handling and 



Figure 1.1: Multiple agents working in a coordinated environment. 

other tasks. At the same time, they bring about a number of challenging problems rather 
than simply increasing the structural complexity. The following issues will be addressed 
in this thesis: 

Combining a manipulator and a platform creates redundancy. 

r A wheeled mobile platform is subject to  nonholonomic constraints. 

There exists dynamic interaction between the mobile platform and the manipulator. 

r Manipulators and mobile platforms have different bandwidths. Mobile platforms 
typically have slower dynamic response than manipulators. 

1.2 Previous Works 

Study of the coordination and control of mobile manipulators spans several different re- 
search domains. Some of them have been extensively studied while others are fairly new 
and relatively little research has been done. Major issues related t o  the topic include 
the kinematic and dynamic modeling and the control of a wheeled mobile platform, the 
path planning of the mobile robot, the coordination strategy of locomotion and manip- 
ulation of the mobile manipulator, the dynamic interaction of the manipulator and the 



mobile platform, and force control issues if the manipulator is required to  interact with 
an environment. 

In this section, the previous works related to the above issues are reviewed. The 
control and path planning problems of wheeled mobile robots have recently drawn a lot 
of attentions in nonlinear control community because of its unique properties due to  the 
presense of nonholonomic constraints. Therefore, the review on the nonholonomic systems 
with emphasis on the control characteristics of wheeled mobile platforms is given in details 
which are pertinent to Chapter 2 and 3. However, there is only a limited literature available 
on the issues of coordination and dynamic interaction of a mobile manipulator although 
the advantage of a mobile manipulator over a conventional fixed-base manipulator has 
been widely acknowledged. We provide a careful review on these issues which are closely 
related to Chapter 4 and 6, followed by a brief review on force control which is relevant 
to Chapter 5. 

Nonholonomic Systems 

A classical example of nonholonornic systems is a rigid disk rolling on a horizontal plane 
without slippage in [7], which is equivalent from the control perspective to  a wheeled cart 
driven by two wheels. As a matter of fact, a car-like system in general is a nonholonomic 
system except a few examples of omnidirectional vehicles [8,9, 10, 11, 121. Other examples 
of nonholonomic systems can be seen in 

Underwater vehicle [13, 141 

0 Robotic fingers [15, 161 

r Space Manipulators [17, 18, 191 

r Falling cat and astronaut maneuvering [20, 21, 221 

For more extensive treatment of nonholonomic systems in general, the reader is referred 
to  errn nark and Fufaev [23]. Also a good survey of the recent development in terms of 
nonholonomic motion planning is given by Li and Canny [24]. 

Path Planning of a Mobile Robot as a Nonholonomic System 

As mentioned earlier, significant efforts in terms of the study of mobile robots from 
nonholonomic system's perspective have been focused on the path planning problem and 
nonlinear control. Laumond [25] provided a proof by construction for controllability of 
four-wheeled mobile robots. Later he proved controllability of a two-wheeled mobile robot 
with n trailers based on the analysis of Lie brackets. Jacobs and Canny [26] developed a 
path planning algorithm for a mobile robot with a minimum turning radius which enables 
to generate a robust collision-free path that is a suboptimal solution in length. Barraquand 
and Latombe [27] presented a path planning algorithm for a four-wheeled model under 
an unstructured environment and extended the result for the mobile robot with a trailer. 



Latombe [28] discretized the configuration space and apply A* algorithm to search an 
obstacle-free path for a four-wheeled model. 

Motion Control of a Wheeled Mobile Robot 

Motion control of the mobile robots are largely divided into two approaches, i.e., open- 
loop control and closed-loop control, the latter of which is our case. For the open-loop 
control approach, Lafferriere and Sussmann 1291 proved that a nilpotent or feedback- 
nilpotentizable system can be steered between two arbitrary points with control efforts 
along a set of P. Hall bases which consists of distributions and systematically chosen Lie 
brackets of a system. They also showed that two-wheeled cart, four-wheeled cart, and four- 
wheeled cart with a trailer are nilpotentizable by appropriate feedback transformation. 
Murray and Sastry [30, 311 introduced a chained form for two-input nonholonomic control 
systems and developed the algorithm which steers the system to  the desired destination by 
using sinusoidal inputs. Sordalen [32] showed that a two wheeled cart model dragging n 
trailers can be transformed into the chained form by choosing a different set of generalized 
coordinates. 

Brockett [33] proved that, for a control system without drift which is subjected to one 
or more nonholonomic constraintsf, there exists no smooth static state feedback law which 
asymptotically stabilizes the system to a point. This work clearly showed the direction of 
studies not to be pursued by presenting no existence of certain type of solutions. Based 
on Brockett's result, there have been several alternative approaches proposed to avoid 
violating his claim. Campion et al. 1341 and Samson and Ait-Abderrahim[35] indepen- 
dently showed that although their cart models are both locally controllable and reachable, 
there is no pure smooth state feedback law that can locally stabilize this class of system. 
Manayama et al. [36] used a two-wheeled model for tracking control and proved the asymp- 
totic convergence of the linearized system to the desired trajectory by using a Lyapunov 
function. Samson and Ait-Abderrahim [37] derived the sufficient conditions in terms of 
desired velocities (linear velocity and steering velocity) to ensure the global convergence 
of a two-wheeled vehicle, and showed that the desired trajectory has to keep moving to 
assure asymptotic convergence. Samson [38,39] and Pomet [40] used a time-varying state 
feedback control to stabilize a mobile robot to a point. Also Pomet et al. [41] proposed 
a hybrid strategy to improve the convergent speed, in which a time-invariant feedback is 
used when the system is far from the desired point and a time-varying feedback is used 
in the neighborhood of the desired point. Relating to [38, 39, 40, 411, Gurvits and Li [42] 
proved that a general affine control system without drift cannot be exponentially stabilized 
by any smooth time-periodic feedback law. Bloch et al. [43,44] presented a discontinuous 
controller for a knife-edge example which consists of an open-loop strategy, followed by a 
set of discontinuous feedbacks to make the origin stable for any initial condition. Canudas 
de Wit and Sordalen [45] proposed a piecewise smooth controller to render the origin ex- 
ponentially stable for any initial condition. Using a two-wheeled model, they showed that 
the convergent speed is much faster than those using time-varying feedback. Although the 
feedback law was not differentiable at some points, it was proved that the motion of the 

'This is exactly the case for a wheeled mobile robot in general. 



vehicle is smooth even when it passes the non-differentiable points. In our approach, the 
result from [37] is utilized to assure the stable motion of the mobile platform. 

There is another large group of studies on mobile robots which deals with building 
environmental maps from visual or acoustic sensory information to  enable mobile robots 
to enter, navigate, and explore in a well-structured environment like a hallway or a labo- 
ratory [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 561. However, these studies consider neither 
vehicles with manipulators nor a system's dynamics. 

Mobile Manipulators 

For the coordination and control of mobile manipulators, Seraji [57] treated the base 
degrees-of-mobility equally with the arm degrees-of-manipulation, and solved the redun- 
dancy by introducing a user-defined additional task variable. Pin and Culioli [58] defined 
a weighted multi-criteria cost function which is then optimized using Newton's algorithm. 
Carriker et al. [58] formulated the coordination of mobility and manipulation as a non- 
linear optimization problem. A general cost function for point-to-point motion in Carte- 
sian space is defined and is minimized using a simulated annealing method. Miksch and 
Schroeder [59] proposed a controller design for a mobile manipulator. The controller con- 
sists of a feedforward part which executes off-line optimization along the desired trajectory 
and a feedback part which realizes decoupling and compensation of the tracking errors. 
As a performance criteria to be minimized for the static optimization, they used manip- 
ulability measure, joint ranges, kinetic energy of the system, and actuator torques. This 
approach is computationally expensive and is suitable to global motion planning in which 
the desired trajectory to be followed is precisely known a priori while we are interested in 
local coordination. Liu and Lewis [60, 611 described a decentralized robust controller for 
a mobile robot by considering the platform and the manipulator as two separate systems 
with which two interconnected subsystems are stable if the unknown interconnections are 
bounded. Their model used for simulation consists of a two-link manipulator attached 
on a planar base in which the angular motion of the base is excluded, at  least in their 
simulation, although it is included in the equation of motion. Wien [62] studied a one link 
manipulator on a planar vehicle, and observed the dynamic coupling between manipulator 
and vehicle in simulation. Joshi and Desrochers [63] considered a two link manipulator on 
a moving platform subject to random disturbances in its orientation. However, no linear 
motion or control issue of the vehicle was considered. Hootsmans [64] derived the Mobile 
Manipulator Jacobian Transpose Algorithm with which a manipulator achieves a desired 
trajectory in the presense of dynamic disturbance from a softly-suspended platform. It 
was shown that even with a limited sensing capability, the system is able to perform 
reasonably well with the proposed algorithm. But no nonholonomic constraint is taken 
into account. Among those previous works on mobile manipulators, only three of them 
[60, 62, 63, 641 mentioned or treated dynamic interaction in an explicit form. Motivation 
for many of these previous works stems from identifying the stability criteria so that the 
vehicle does not tip over. In this study, however, we are rather interested in identifying 
how significantly the dynamic interaction affects the performance of a mobile manipulator 
under an ordinary circumstance such as transporting an object. 

Force Control of a Manipulator 



There is an extensive literature regarding force control issues. Whitney [65] traces 
the development of force control algorithms and applications, also providing numerous 
references. For more recent review and comparison, the reader is referred to  [66]. Since 
the early works by Inoue [67] and Paul and Shimano [68], much attention has been given 
to the development of active compliant motion control algorithms. Here we overview five 
representative force control schemes which are widely used2: 

1. Explicit force control [71, 72, 73, 741 - This is essentially an endpoint force servo 
with actuator velocity feedback for damping. The active damping can be replaced 
by passive compliance. Force feedforward term may or may not be used. 

2. Hybrid position/force control [75] - This combines conventional position control and 
explicit force control both of which can be implemented simultaneously in orthogo- 
nal directions along the tool coordinate axes. Some instability problems, however, 
were reported later by An and Hollerbach [76]. 

3. Stiffness control [77] - This implements a six-axis active spring in tool coordinates. 
The sensed forces are converted to offsets from the commanded position trajectory. 

4. Damping control [78] - This implements a six-axis active damper in tool coordinates. 
The sensed forces are converted to offsets from the commanded velocity trajectory. 

5. Impedance control [79] - A common implementation of this scheme achieves compli- 
ant motion by combining stiffness control and damping control. Errors in position, 
velocity, and force are used to determine the joint torque commands. 

The force control scheme used in this study belongs to the first category, i.e., explicit force 
control. More specifically, we use the Proportional-Integral control with active damping 
in the task coordinates plus force feedforward terms. 

1.3 Scope and Outline of Thesis 

The goal of this thesis is to investigate new control and coordination algorithms for a 
mobile manipulator. Under a coordinated environment where multiple agents need to 
work cooperatively for a common task as shown in Figure 1.1, there usually exists a 
leader-follower or master-slave relationship among the agents such that one agent takes a 
leadership and the follower agents support the leader for the smooth and safe execution 
of the common task goal, although each agent may be completely homogeneous and the 
relationship can be switched by necessity. However, unlike the conventional master-slave 
scenario in which a master agent provides a slave agent with very precise directions in 

2For this part of review, the author owes to [69, 701 



terms of what to do (instead of what not to do), it is assumed that each agent possesses 
certain autonomy. In other words, a follower agent has a certain freedom at hand as long 
as it does not interfere with the accomplishment of a common goal. For instance, when 
two agents are to transport a large object, the leader agent follows a given trajectory 
which is assumed to be provided from a higher authority. The follower agent then trails 
the leader agent while supporting the object, but how to change the posture and how to 
coordinate itself is left to the follower's decision. 

This thesis specifically considers the mobile manipulator in the follower's mode in 
addition to  various problems which are innate to  a mobile manipulator in general. One 
of the major issues is the local coordination of locomotion and manipulation which retain 
different kinematic and dynamic characteristics. Before this problem is addressed, the 
whole system has to be modeled carefully so that no misleading conclusion is reached. 

Chapter 2 describes the equations of motion for a manipulator and a mobile platform 
separately. The reason of treating two subsystems separately is twofold. First, since a 
mobile platform has very unique control properties due to  its nonholoizomic nature, the 
modeling of the mobile platform should be addressed independently of the manipulator 
which is holonomic for the sake of clarity. Second, Chapter 3 discusses the design of the 
controller for the mobile platform based on the motion equations introduced in Section 2.2. 
Chapter 2 further derives the motion equations for the mobile manipulator in order to 
investigate the dynamic interaction between the manipulator and the platform. Instead 
of deriving the entire equations from scratch by Lagrange method which obscures the 
physical meaning of each term, a set of equations are derived based on the above motion 
equations obtained separately so that dynamic interaction forces/torques appear in an 
explicit form. 

Chapter 3 describes the control properties and the design of nonlinear controller of 
wheeled mobile robots. The internal dynamics of the mobile platform including zero 
dynamics is also investigated by using the proposed controller. The results are verified by 
simulation and experiments. 

Based on the controller designed in Chapter 3, the two different scenarios are tested; 
dragging and following. In the dragging, a manipulator is kept passive, i .e. ,  compensated 
for gravity and friction, and a human operator drags the end effector such that the whole 
system of mobile manipulator will largely follow the trajectory of the end effector. In 
the following, the manipulator is equipped with a force control scheme so that the mobile 
manipulator is able to push against an object while following the motion of the object 
simultaneously. Chapter 4 presents the coordination strategy of a mobile manipulator with 
the introduction of the concept of preferred operating regions which is used throughout 
the thesis. The simulation results of the dragging scenario in Chapter 4 demonstrate 
the efficacy of the control and coordination strategy by means of a couple of sample 
trajectories. 

Chapter 5 describes the force control scheme and the coordination strategy which are 
used in the following scenario. Since the control algorithm for the experimental mobile 
platform is commonly used in both the dragging and following experiments, it will be 



presented in Chapter 7. 

In the above examples, the manipulator and the mobile platform are treated as separate 
subsystems and no consideration is made in terms of dynamic interaction between the 
two subsystems. This negligence does not cause a significant problem in practice if the 
inertia of the platform is relatively massive comparing to that of the manipulator or if the 
motion of the platform is very slow. If these assumptions do not hold, then the dynamic 
interaction should be taken into account for better performance. Based on the equations 
of motion derived in Section 2.3, Chapter 6 investigates the significance of the dynamic 
interaction by simulations. Unlike for the two previous cases, i.e., dragging and following, 
the manipulator is position-controlled in an active manner so that the end effector traces 
a desired trajectory. The same coordination technique is then used t o  generate the motion 
of the mobile platform. Through some sample trajectories, Chapter 6 shows the dynamic 
effect of the motion of the manipulator on the mobile platform and vice versa. 

Chapter 7 reports the experimental results corresponding to Chapter 4 and 5 by using 
a mobile manipulator which consists of a PUMA 250 robotic arm and a LABMATE 
platform. The description of the experimental setup is given first, followed by the control 
scheme. In the experiments of the dragging motion, a similar trajectory to  one of those 
chosen for the simulation in Chapter 4 is tested for comparison purpose. For the following 
motion, the human operator guides the end effector along a semi-circular trajectory while 
resisting against the pushing manipulator. Then the motion of the manipulator which 
is controlled to maintain the contact force effects the platform so that the whole system 
results in following the motion of the human operator. 

Finally, the contributions and future work are summarized in Chapter 8. 



Chapter 2 

Modeling of Mobile Manipulators 

In this chapter, we first describe the equations of motion of a robot manipulator and 
of a wheeled mobile platform. Based on these equations, we then describe a method 
for establishing the equations of motion of a mobile manipulator which incorporates the 
dynamic interactions between the mobile platform and the manipulator. 

2.1 Equations of Motion of Manipulators 

Equations of motion for a manipulator can be obtained by forming Euler-Lagrange's equa- 
tion on the basis of Lagrange's energy function. The resulting differential equations de- 
scribe the motion in terms of the joint variables and the structural parameters of the 
manipulator. An alternative approach to  the modeling of the manipulator dynamics is 
to consider each link as a free body and obtain the equations of motion for each link 
on the basis of Newton's and Euler's laws. The two methods lead to exactly the same 
answers, i.e., the relationship between a set of generalized coordinates and corresponding 
generalized forces, while there exist certain merits and demerits for each method. More 
details of the methods can be found in any introductory book on robotics or mechanics, 
e.g., [80, 81, 82, 83, 84, 71. In this section, we review the equations of motion for a ma- 
nipulator by using the Euler-Lagrange formulation and introduce necessary notations for 
deriving the equations of motion of mobile manipulators. The manipulator is assumed to 
be comprised of a serial chain of n + 1 rigid links including the base. As shown in Figure 
2.1, we attach an inertial frame to the base and call it frame 0. Then we choose frames 1 
through n such that frame i is rigidly attached to link i. Note that the frame 0 is chosen 
differently when the dynamic interaction between a mobile platform and a manipulator 
mounted on the platform is taken into account, which will be discussed in Section 2.3. 

In order to represent a relative, kinematic relationship precisely between two adjacent 
links, we follow the Denavit-Hartenberg convention which is commonly used as a kinematic 
representation method in robotics community [85]. For the sake of completeness, we briefly 
explain the Denavit-Hartenberg notation. We follow the convention given in [82] in terms 
of frame numbering scheme while some of the robotic literature use a different manner 
[80,86]. Figure 2.2 shows a pair of adjacent links, link i- 1 and link i, and their associated 
joints, joint i - 1, i, and i + 1. The relationship between the two links is described by the 
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Figure 2.1: Serial manipulator with N degrees-of-freedom. 

relative position and orientation of the two coordinate frames attached to the two links. 
The relative location of the two frames can be completely determined by the following 
four parameter (see Figure 2.2.) 

a; the length of the conlmon normal, equal to the shortest distance between the 
zi-1 axis and the z; axis. 

d; the offset, the distance from the origin of the i - 1 coordinate frame to the 
intersection point of the zi-1 axis and the x; axis measured along the zi-1 axis. 

a; the twist,  the angle between the zi-1 axis and the t;. axis about the x; axis in 
the right-hand sense. 

0; the angle between the x;-1 axis and the x; about the zi-1 axis in the 
right-hand sense. 

By using the above four parameters, the following 4 x 4  homogeneous matrix represents 
the transformation from frame i to frame i - 1. 

r cos 6; - cos a; sin 0; sin a; sin 9; ai cos 8; 1 
-4;-1 = sin 9; cos ai cos 0; - sin ai cos Bi a; sin 9; I sin a; cos a; (2.1) 

0 0 1 

Then the transformation matrix relating frame i to the base frame (frame 0) is given 
by 

T, = A: A; . . . ~ i - l  i = I, ..., n (2.2) 

Let q = (ql, . . . , qn) be generalized coordinates for which joint variables, (el,. . . , On), 
are commonly chosen. Let K and V be the total kinetic energy and potential energy stored 
in the dynamic system. The Lagrangian is then defined by 



Figure 2.2: Link parameters and coordinate frames. 

Using the Lagrangian, equations of motion are obtained by 

d aL: dL  
- Q i  i = 1, ..., n 

dt aqi dq; 

where Q; is the generalized force corresponding to the generalized coordinate q;. 
The kinetic energy and potential energy for the link i are given by 

where Ti is defined in Equation (2.2), J; is the pseudo-inertia matrix of the link i, mi is 
the mass of the link i, gT = [go,,go,,g,,, O ]  describes the gravitational acceleration with 
components in terms of the base coordinate frame, and di)  is the vector pointing from the 
origin of frame i to the centroid of the link with respect to  frame i. 

The Lagrangian motion equations for the n-link manipulator can then be represented 
as a second-order nonlinear differential equation: 

where 



Figure 2.3: Schematic of the wheeled mobile platform. 

Equation (2.7) can be rewritten as a set of second-order vector differential equations 

where M ( q )  is the symmetric inertia matrix, C(q, q) is the matrix of Coriolis and cen- 
trifugal effects, the vector G(q) denotes the gravity terms, and Q is the generalized force 
vector. 

2.2 Equations of Motion of Wheeled Mobile Platforms 

In this section, we describe the equations of motion of a wheeled mobile platform. Such a 
mobile platform is subject to both holonomic and nonholonomic constraints. Therefore, we 
first discuss constraint equations, followed by derivation of the motion equations. Finally, 
we present a state space realization of the motion equations and the constraint equations. 

2.2.1 Constraint Equations 

We consider a wheeled mobile platform whose schematic top view is shown in Figure 2.3. 
We assume that the mobile platform has two co-axis wheels driven by two independent DC 
motors, and has four passive supporting wheels a t  the corners (not shown in the figure). 
The following notations will be used in the derivation of the constraint equations and 
dynamic equations. 

Po: the intersection of the axis of symmetry with the driving wheel axis; 
PC: the center of mass of the platform; 
d:  the distance from Po to PC; 
b: the distance between the driving wheels and the axis of symmetry; 



T :  the radius of each driving wheel; 
m,: the mass of the platform without the driving wheels and the rotors of the 

DC motors; 
m,: the mass of each driving wheel plus the rotor of its motor; 
I,: the moment of inertia of the platform without the driving wheels and the 

rotors of the motors about a vertical axis through Po; 
I :  the moment of inertia of each wheel and the motor rotor about the wheel 

axis; 
I,: the moment of inertia of each wheel and the motor rotor about the wheel 

diameter. 

The mobile platform is subject to three constraints. The first one is that the mobile 
robot can not move in the lateral direction, i.e., 

where (x,, yo) is the coordinates of point Po in the inertia frame C,, and 4 is the heading 
angle of the mobile robot measured from "X-axis. The other two constraints are that the 
two driving wheels roll and do not slip: 

i, cos 4 + &, sin 4 + b$ = ri, 

5, cos 4 + i0 sin 4 - b$ = re1 

where 8, and 81 are the angular positions of the two driving wheels, respectively. 
Let the generalized coordinates of the mobile robot be q = (x,, yo,4, 8,, 8,). The three 

constraints can be written as follows 

where 

We define a 5 x 2 dimensional matrix as follows 

- cb cos 4 cb cos q5 
cb sin 4 cb sin 4 

s(4) = [sl(q) s2(9>1 = c (2.17) 
1 0 
0 1 

where c = 7-126. The two independent columns of matrix S(q) are in the null space of 
matrix A(q), that is, A(q)S(q) = 0. We define a distribution spanned by the columns of 
S(4) 

A = span{s1(9), s 2 ( q ) )  

The involutivity of the distribution A determines the number of holonomic or nonholo- 
nomic constraints [34]. If A is involutive, from the Frobenius theorem [87], all the con- 
s traints are integrable (thus holonomic). If the smallest involutive distribution containing 



A (denoted by A*) spans the entire 5-dimensional space, all the constraints are non- 
holonomic. If dim(A*) = 5 - k, then k constraints are holonomic and the others are 
nonholonomic. 

To verify the involutivity of A, we compute the Lie bracket of sl(q) and s2(q). 

which is not in the distribution A spanned by sl(q) and s2(q). Therefore, at  least one 

as2 asl 
~ 3 ( 9 )  = [ ~ l ( 9 ) ,  ~2(9)l  = -31 - - 

aq S2 = aq 

. . 
of the constraints is nonholonomic. We continue to compute the Lie bracket of sl(q) and 

s3(q) 
- rc2 cos q5 - 
-re2 sin 4 as3 as1 

s4(9) = [s1(q), s3(q)l = -S1 - -83 = 0 
aq 89 0 

0 

rc cos 4 
0 
0 

which is linearly independent of sl(q), s2(q), and ss(q). However, the distribution spanned 
by s1(q),s2(q),s3(q) and ~ ~ ( 9 )  is involutive. Therefore, we have 

It follows that, among the three constraints, two of them are nonholonomic and the third 
one is holonomic. To obtain the holonomic constraint, we subtract Equation (2.13) from 
Equation (2.14). 

2b$ = r(B, - dl) (2.19) 

Integrating the above equation and properly choosing the initial condition of $, 6,, and 
61, we have 

4 = c(6, - 61) (2.20) 

which is clearly a holonomic constraint equation. Thus + may be eliminated from the 
generalized coordinates. 

The two nonholonomic constraints are 

k ,  sin 4 - yo cos q5 = 0 

k ,  cos 4 + 9, sin 4 = cb(8, + B1) 

where cb = $ as defined early. The second nonholonomic constraint equation in the above 
is obtained by adding Equations (2.13) and (2.14). It is understood that + is now a short- 
hand notation for c(B, - 01) rather than an independent variable. We may write these two 
constraint equations in the matrix form 



where the generalized coordinate vector q is now defined as 

and A(q) is given by 

a n  a12 a13 a14 ] - [ - s in4  ~ 0 ~ 4  0 0 ] (2.25) 
= [ 2 a22 a23 a24 

- - cos4 - sin 4 cb cb 

2.2.2 Dynamic Equations 

We use the La,grange formulation to establish equations of motion for the mobile robot. 
The total kinetic energy of the mobile base and the two wheels is 

1 
K = -rn(?: + j1:) + m,cd(9, - el)(io cos q5 - i, sin 4) 

2 

where 

Lagrange equations of motion for the nonholononiic mobile robot system are governed by 

where q; is the generalized coordinate defined in Equation (2.24),  Q; is the generalized 
force, a;j is from Equation (2.25)) and XI and X 2  are the Lagrange multipliers. Substituting 
the total kinetic energy (Equation (2 .26))  into Equation (2.27),  we obtain 

mZl - m,d(dj sin # + 4' cos 4 )  = XI sin 4 + A2 cos 4 (2.28) 

mZ2 + rn,d($cos q5 - 42 sin 4) = -A1  cos q5 + X2 sin 4 (2.29) 

rn,cd(!i2 cos # - sin $) + (1c2 + 1,)el - 1c~8;2 = TI - cbX2 (2.30) 
-m,cd(!i2 cos 4 - Z l  sin #) - 1c2& + ( Ic2  + I ~ ) &  = 7 2  - cbX2 (2.31) 

where 71 and 7 2  are the torques acting on the two wheels. These equations can be written 
in the matrix form 

M(cl)q + C(q, q) = E(q)r  - AT(q)A (2.32) 



where A(q) is defined in Equation (2.25) and 

I 
m 0 -meed sin #I mccd sin 4 
0 m mccd cos 4 -m,cd cos 4 

M ( q )  = -meed sin 4 meed cos 4 1c2 + I, -1c2 I (2.33) 

m,cd sin 4 -m,cd cos 4 -Ic2 Ic2 + I w  

[ -m,dd2 cos4 1 
-mCdd2 sin 4 

'(0.0) = 1 * 

2.2.3 State Space Realization 

In this subsection, we establish a state space realization of the motion equation (2.32) and 
the constraint equation (2.23). Let S(q) be a 4 x 2 matrix 

cb cos 4 cb cos 4 
cb sin 4 cb sin 4 

whose columns are in the null space of A(q) matrix in the constraint equation (2.23), i.e., 
A(q)S(q) = 0. From the constraint equation (2.23), the velocity q must be in the null 
space of A(q). It follows that q E span{sl(q), sz(q)}, and that there exists a smooth 
vector q = [ql v2]T such that 

4 = S(d77 (2.36) 

and 

= S(9)li + S(4)77 

For the specific choice of S(q) matrix in Equation (2.35), we have 7 = 6, where 6 = 
[or 

Now multiplying the both sides of Equation (2.32) by sT(q) and noticing that s ~ ( ~ ) A ~ ( ~ )  = 
0 and ST(q)I3(q) = 12,2 (the 2 x 2 identity matrix), we obtain 

Substituting Equation (2.37) into the above equation, we have 
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Figure 2.4: Schematic of the mobile manipulator. 

By choosing the following state variable 

we may represent the motion equation (2.39) in the state space form 

= f (z) + g(+ 

where 

It is noted that the dependent variables for each term have been omitted in the above 
representation for clarity. All the terms are functions of the state variable x only. Since q 
is not part of the state variable, it is replaced by S(q)q. 

2.3 Equations of Motion of Mobile Manipulators 

In this section, we present the equations of motion for a mobile manipulator in such a way 
that the dynamic interaction between the mobile platform and the manipulator appears 
explicitly in the equations, which will be utilized in Chapter 6. Figure 2.4 shows the 
schematic of the mobile manipulator considered here. 



The motion equation of the manipulator subject t o  the vehicle motion is given by the 
following form1 [60]. 

where qT denotes the n-dimensional Lagrangian coordinates of the manipulator, MT is 
the inertia matrix2 whose elements have been defined by Equation (2.8), CT1 represents 
Coriolis and centrifugal terms given by the Equation (2.9), CT2 denotes Coriolis and cen- 
trifugal terms caused by the angular motion of the platform, rT is the input torque/force 
for the manipulator, and R, is the inertia matrix which represents the effect of the vehicle 
dynamics on the manipulator. Comparing Equation (2.42) with Equation (2.7), we note 
that CT2(qT, qT, 4;) and RT(qT, q,) q, are the terms added to  the equation of motion of the 
manipulator. They represent the dynamic interaction caused by the motion of the mobile 
platform. The expressions for CT2 and R, are given below. 

Suppose that the configuration of a platform is uniquely determined by m independent 
variables3 , qq, = [qUl , q,2, . . . , qumlT. Letting the homogeneous transformation matrix from 
the base frame ( C B )  of the manipulator to  the inertial frame (C,) denoted by T,(q,), the 
transformation matrix, from the i-th frame of the manipulator which is now mounted 
on the platform to the inertial frame is given by 

With the aid of ?;, the elements of CT2 and R, are given by the following formulations. 

m m n  

[% Jh " I 4v, j  . qv,k 
j=l k = l  h=i dqi aqv,jaqu,k 

The first term in the RHS of Equation (2.44) characterizes Coriolis effect on link i of 
manipulator due to the coupling of velocities of link k of manipulator and variable qv,j of 

platform where 1 < j 5 m and 1 < k 5 n. Functional dependence of c!? with respect t o  
q, is also explained in Appendix B. Similarly, the second term represents the totality of 
centrifugal forces exerted on link i by q,,j of platform if j = k, and Coriolis forces exerted 
on link i due to  the velocity coupling of two platform coordinates, i .e. ,  q, j and q,,k where 
j # k. 

'Note that  the gravity term is hereafter dropped from the motion equation of the manipulator unless 
noted otherwise, since only the planar motion is taken into account for the  platform, i.e., no translation 
along the inertial z-axis or no pitching/rolling motion considered. 

2 ~ h e  functional dependence of hf:'') is described in Appendix A t o  show t h a t  the matrix is independent 
of the platform variables, q,, by using a similar method t o  [89]. 

3 ~ h i s  m should not be confused with the number of kinematic constraints in t h e  previous section. 



Collecting the velocity terms into C,, Equation (2.42) then simplifies to  

Next, the motion equation of the platform has the following form [60, 901: 

where Mul and Cul are the mass inertia matrix and the velocity dependent terms of the 
platform which are defined in Equations (2.33) and (2.34), respectively, MU2 and CU2 
represent the inertial term and Coriolis and centrifugal terms due to  the presence of the 
manipulator, T, is the input torque to the vehicle, E, is a constant matrix, X denotes 
the vector of Lagrange multipliers corresponding to  the kinematic constraints, and R, 
represents the inertia matrix which reflects the dynamic effect of the arm motion on the 
vehicle. Note tha.t R, is obtained by transposing Rr (compare Equations (2.45) and 
(2.50)). The three terms of Equation (2.47) which are not present in the equation of the 
platform alone, Equation (2.32), are defined by the following formulations. 

n m n  

c = 2 C C C trace Qj Q u , ~  t 
j=l k = l  h=j 

The first term in the RHS of Equation (2.49) characterizes Coriolis effect on platform 
coordinate q,,; due to the coupling of velocities of link j of manipulator and platform 
coordinate q,,k where 1 2 j < n and 1 5 k < m. The second term represents the sum 
of centrifugal forces exerted on platform coordinate q,,; by link j of manipulator if j = k, 
and Coriolis forces exerted on q,,k due to the velocity coupling of two different links of 
manipulator. 

Collecting the inertial terms and the velocity terms of Equation (2.47) into Mu and 
C,, respectively, it simplifies to  

Next, we represent the motion equations of the mobile manipulators in the state space 
form. Using Equations (2.36) and (2.37), and multiplying Equation (2.51) by ST, we have 

sT(Mu5'+ + M , S ~  + C,) = S~E,T, - S ~ R ~ ~ , .  (2.52) 

by noting that S ~ A ~  = 0. 



Similarly substituting q, into Equation (2.46), we have 

Using the state space variable x = [q,T q,T qT we obtain 

where 

Applying the following feedback, 

we simplify the state equation as: 



Chapter 3 

Feedback Control of Wheeled 
Mobile Platforms 

In this chapter, we discuss feedback control of wheeled mobile platforms whose dynamic 
model has been established in Section 2.2. The discussion is focused on feedback lin- 
earization of the dynamic system characterizing wheeled mobile platforms. We first show 
that the system of wheeled mobile platform (in fact, any dynamic system subject to  non- 
holonomic constraints) is not input-state linearizable by using any smooth static state 
feedback. We then investigate the input-output linearization and decoupling of the sys- 
tem. Two types of outputs have been addressed. In the first type of output, the center 
point of the mobile robot on the wheel axis is intended to  be controlled. It is known 
that the point on the wheel axis cannot be controlled using a static feedback [91, 921. We 
show that the center point can be controlled to  track a trajectory by using a dynamic 
nonlinear feedback. The dynamic feedback for achieving the input-output linearization 
and decoupling has been developed through a three-step algorithm. The second output 
takes the coordinates of a reference point in front of the mobile robot. The input-output 
linearization of the system under this output is possible by simply using a static nonlinear 
feedback. 

We also investigate the internal dynamics of the mobile platform system in this chapter. 
Of particular interest is that the system has unstable internal dynamics under the look- 
ahead control. The unstable behavior is confirmed by numerical simulations and physical 
experiments. 

3.1 Input-S tate Linearization 

In this section, we study the input-state linearization of the control system (2.41) described 
in Section 2.2 using static state feedback. To simplify the discussion, we first apply the 
following state feedback 



where p is the new input variable. The closed-loop system becomes 

where 

T h e o r e m  1 System (3.2) is not input-state linearizable by a smooth state feedback 

Proof:  If the system is input-state linearizable, it has to  satisfy two conditions : the 
strong accessibility condition and the involutivity condition [93, p.1791. We will show that 
the system does not satisfy the involutivity condition. 

Define a sequence of distributions 

Then the involutivity condition requires that the distributions Dl, D2, . . . , D6 be all 
involutive, with 6 being the dimension of the system. Dl = span{gl) is involutive since 
g1 is constant. Next we compute 

It is easy to verify that the distribution spanned by the columns of S(q) is not involutive. 
(Actually, if the distribution were involutive, the two constraints (2.21) and (2.22) would 
be holonomic.) It follows that the distribution D2 = span{gl, Lflgl) is not involutive. 
Therefore, the system is not input-state linearizable. 

Corollary 1 System (2.41) is not input-state linearitable by a smooth state feedback. 

Proof:  A proof similar to that of Theorem 1 can be carried out. Alternatively, system 
(3.2) can be regarded as a special case of system (2.41). 

3.2 Input-Output Linearization and Decoupling 

Although the dynamic system of a wheeled mobile robot is not input-state linearizable 
as shown in the previous section, it may be input-output linearizable. In this section, we 
study the input-output linearization of two types of outputs. First, the coordinates of 
the center point Po are chosen as the output equation. It will be shown that the input- 
output linearization is not possible by using static state feedback, but is possible by using 
a dynamic state feedback. Second, the coordinates of a reference point P, in front of the 
mobile robot is chosen as the output equation. In this case, the input-output linearization 
can be achieved by using a static state feedback. Nevertheless, the internal dynamics when 
the mobile robot moves backwards is unstable. 



3.2.1 Controlling the Center Point Po 

Since the mobile robot has two inputs, we may choose an output equation with two 
independent components. A natural choice for the output equation is the coordinates of 
the center point Po, i.e., 

r i  

Together with this output equation, we will consider the state equation (3.2), assuming 
that the nonlinear feedback (3.1) is applied t o  cancel the dynamic nonlinearity. To verify 
if the system is input-output linearizable, we compute the time derivatives of y. 

where 
cb cos # cb cos # 
eb sin # eb sin # I 

Since y is not a function of the input p ,  we differentiate once more. 

where the second term on the right-hand side is evaluated to  be 

- sin 4 
~ ~ ( X I V  = c2b(n: - $1 [ cos 4 ] 

Now that y is a function of the input p,  the decoupling matrix of the system is Sl(x). 
Since Sr(x) is singular, the system is not input-output linearizable and the output can not 
be decoupled by using any static state feedback [94, 95, 911. 

3.2.2 Dynamic Feedback Control 

As shown above, the mobile robot under the output equation (3.3) is not input-output 
linearizable with any static feedback of the form 

Nevertheless the input-output linearization may be achieved by using a dynamic feedback 
of the form [93, 961 

We follow the dynamic extension algorithm [93, pp.258-2691 to  derive f((-, .), gt(., .), a(-, -), 
and P(. ,  .) if they exist a t  all. We divide the algorithm into three steps. 

S t ep  1: Since the rank of the decoupling matrix Sl(x) in Equation (3.4) is one, we first 
apply a static feedback to linearize and decouple one output from the others. For the 



mobile robot, there are two outputs y = [yl y2IT. We choose to  Linearize yl and decouple 
it from y2. Substituting the following static feedback into Equation (3.4) 

the closed-loop input-output map is then 

It is clear that yl = ul ,  that is, the first output yl is linearized and controlled only by ul. 
Thus ul can be designed to achieve the performance requirements for yl. On the other 
hand, y2 is still nonlinear. Further, it is also driven by ul. 

Step 2: We substitute the static feedback (3.8) into Equation (3.2) to  obtain the new 
state equation 

We now differentiate the second output with respect to  the new state equation i = 
f2(x)  + g2(x)u, hoping that u2 will appear in the derivative of ya. In the following differ- 
entiation, ul is treated as a (time-varying) parameter. 

~2 = cb(q1 + 772) s in4 

y2 c 2 b  (v1 2 - + t a n 4  u1 
1 

= 3 sin 4 
b(q? - 1);)(71 - 72)- + tan 4211 

211 2c2b(71 + 772) 
+c(.:1 - 772)&57 + cosd u2 

It is seen that u2 appears in the third-order derivative of y2. We note that y?) has the 
following structure 

YF' = Qi(x) + Q2(x)u1 + 8311 + Qnuz (3.11) 

where Qi(x) can be easily identified. 



Figure 3.1: Dynamic feedback controller of a mobile robot. 

Step 3: Noting Equation (3.11), y2 will be linearized if we apply the following feedback 

with v = [vl, v2IT being the reference input. However, this feedback depends on G I ,  
which can be eliminated by introducing an integrator on the first input channel. Formally, 
we utilize the following dynamic feedback 

where is one-dimensional and 

After applying the above dynamic feedback, we finally obtain two linearized and decoupled 
subsystems: 

It is noted that the first subsystem is now of third order due to the introduction of the 
integrator on its input channel. This concludes the dynamic extension algorithm. 

The overall dynamic feedback control of the mobile robot is depicted in Figure 3.1. 
The first feedback (3.1) is to cancel the dynamic nonlinearity in order to  simplify the 
subsequent discussion. The second feedback (3.8) is t o  linearize yl  and also decouple it 
from ya. The third feedback represented by Equations (3.13) and (3.14) is to linearize y2. 



Finally we comment on the invertibility of the system [97, 981. Since the differential 
output rank p* of this particular system is computed by [96] 

which is equal to the number of outputs, the system is right-invertible [97]. This guarantees 
the success of the above dynamic extension algorithm since a right-invertible system can 
always be locally decoupled via a dynamic state feedback [97]. Furthermore, since the 
different output rank is equal to the number of inputs, the system is also left-invertible 

[gal. 

3.2.3 Look-Ahead Control 

In Section 3.2.1, we showed that the center point Po of the mobile robot cannot be con- 
trolled by using a static feedback. A dynamic feedback is necessary. In this section, we 
present an alternative control method. The method is motivated from vehicle maneuver- 
ing. When operating a vehicle, a driver looks at  a point or an area in front of the vehicle. 
We define a reference point PT which is L distance (called look-ahead distance) from Po 
(see Figure 2.3). We take the coordinates of PT in the fixed coordinate frame as the output 
equation, i.e., 

y = h(x) = 
x2 + L sin q5 [ xi+Lc0s0 I (3.17) 

To verify if the system is input-output linearizable with this output equation, we compute 
the derivatives of y. 

Since y is not a function of the input p,  we differentiate it once more. 

The input p shows up in the second order derivative of y. Clearly, the decoupling matrix 
in this case is @(x). Since the determinant of @(x) is (-2c2bL), it is nonsingular as long 
as the look-ahead distance L is not zero. It follows that the system can be input-output 
linearized and decoupled [93]. The nonlinear feedback for achieving the input-output 
linearization and decoupling is 

Applying this nonlinear feedback, we obtain 



Therefore, the mobile robot can be controlled so that the reference point PT tracks a 
desired trajectory. The motion of the mobile robot itself, particularly the motion of the 
center point Po, is determined by the internal dynamics of the system which is the topic of 
the next section. We note that the look-ahead control method degenerates to  the control 
of the center point if L = 0. 

3.3 Internal Dynamics 

3.3.1 Derivation of Internal Dynamics 

In this section, we study the behavior of the internal dynamics including the zero dynamics 
of the mobile platform system under the look-ahead control. For a general discussion of 
internal dynamics and zero dynamics, see Chapter 6 of [99] or [loo]. 

We first construct a diffeomorphism by which the overall system can be represented in 
the norm form of nonlinear systems [99]. Since the relative degree of each output is two, we 
may construct four components of the needed diffeomorphism from the two outputs and 
its Lie derivative, i.e., hl(x), Lfhl(x), h2(x) and Lfh2(x). Since the state variable x 
is six dimensional, we need two more components. We choose the two components to  be 
8, and e l .  Thus the proposed diffeomorphic transformation would be 

To verify that T(x) is indeed a diffeomorphism, we compute its Jacobian. 

It is easy to check that $$ has full rank1. Thus T(x) is a valid state space transformation. 
The inverse transformation x = T-l(z) is given by 

x1 = - L cos(cz5 - C Z ~ )  

x2 = 23 - L sin(cz5 - cz0) 

e,. = z5 

el = z, 

'The terms denoted by * do not affect the computation of the rank. 



We partition the state variable z into two blocks 

After applying the feedback (3.18), the system of the mobile robot is represented in the 
following normal form. 

where 

cb sin # - cL cos # -cb cos # - cL sin 4 
w(al, z2) = r 1 ( z )  

-cb sin # - cL cos # cb cos # - cL sin # 

It is understood that # in the expression of w(zl, a2) is a short-hand notation for c(z.5 - 
z6). Together, the linear state equation (3.22) and the linear output equation (3.24) 
are an equivalent representation of the input-output map (Equations (3.19) and (3.20)). 
Equation (3.23) represents the unobservable internal dynamics of the mobile robot under 
the look-ahead control. 

The zero dynamics of a control system is defined as the dynamics of the system when 
the outputs are identically zero (i .e. ,  y = 0, $ = 0, y = 0, ...). If the outputs are 
identically zero, it implies that z1 = 0, and the zero dynamics is 

Thus, z2 remains constant while the outputs are identically zero. The zero dynamics 
is stable but not asymptotically stable. In other words, if the reference point P, remains 
still, so does the mobile robot (or more specifically, the wheels do not move). 

We now look at  the internal dynamics while the reference point is in motion. More 
specifically, we are interested in the internal motion of the mobile robot when it moves 
straight forward or backward. Let the mobile robot be initially headed in the positive XI 
direction. We assume that the reference point is controlled to  move in the negative X1 
direction. The velocity of the reference point is then 



where ~ ( t )  > 0. Substituting this into the internal dynamics (3.23)) we obtain 

cbsin45 - cL cos4 
-cb sin 45 - cL cos 45 I 

A solution of this internal dynamics is 

where cl is a constant. That is, the two wheels rotate a t  exactly the same angular velocity 
and the mobile platform moves straight in the negative X1 direction. 

We now study the stability of the internal motion described by Equations (3.26) and 
(3.27). We first change the state variable so that the stability of the internal motion in z2 
can be formulated as the stability of equilibrium points in C. 

T 
We may express the internal dynamics in terms of C = [ G & ] . 

This system has an equilibrium subspace characterized by 

We may not draw any conclusion based on the linear approximation of the internal dy- 
namics which has an eigenvalue at the origin. We will utilize the Lyapunov method to 
establish the stability condition. Consider the following candidate for a Lyapunov function 

In a neighborhood of EO V(C) = 0 if ( E EC, and V(C) > 0 if $! EC. Thus V(() is 
positive definite with respect to  EC, and may serve as a Lyapunov function for testing the 
stability of EC. We compute the derivative of V(C) with respect to  the time 

Since t(t) > 0, v(() is also positive definite with respect to EC. Therefore the equilibrium 
subspace EC is not stable. 

On the other hand, if the reference point is controlled to move in the positive X1 
direction, the velocity of the reference point is 



where ~ ( t )  > 0. Using the same Lyapunov function, we can similarly show that 

along the forward internal motion. Therefore, the forward internal motion is stable. In- 
tuitively, if the mobile platform is "pushed" at the reference point, the internal motion 
is not stable. If it is "pulled" or "dragged" at the reference point, the internal motion is 
stable. 

3.3.2 Simulation 

Simulations and experiments have been conducted to verify the theoretical analysis pre- 
sented in the preceding section. In particular, simulations and experiments are focused 
on the verification of unstable behaviors when the mobile robot is commanded to  move 
backward. The desired trajectory is 

where Vz > 0 is the desired velocity. The following parameters are used in both simulations 
and experiments: L = 0.487m and b = 0.171m. 

Depending on the initial conditions of the state variable x ,  the following three cases 
are examined in simulations and experiments: 

1. The initial value of xl and 22 are chosen such that the actual reference point coincides 
with the desired trajectory at t = 0, i.e., 

The initial values of B,, Bl, 771, and 772 are all set to  zero. Consequently, the initial 
heading angle is zero. 

2. The initial values of 0, and 8, are chosen such that the initial heading angle q5(t = 
0) = c(B,(O) - Bl(0)) = 0.1 degrees. All other initial conditions are the same as in 
case 1. 

3. The initial conditions are the same as in case 1. However, a disturbance in the 
heading angle is introduced in the middle of the trajectory. In the simulation, the 
disturbance is introduced by adding A4 = 0.1 degrees to  the actual heading angle 
for two sampling intervals 3.0 seconds later. In the experiment, the disturbance is 
introduced by placing a copy of magazine on the floor. When one of the driving 
wheels runs over the magazine, the heading angle is altered slightly due to different 
floor conditions at  the two wheels. 

The sampling rate of the simulations is 100 Hz. The trajectories of the point Po (see 
Figure 1 )  is shown in Figure 3.3. Note that Po is positioned at the origin at  time zero 



Figure 3.2: The trajectories of the reference poiilt (simulation). 

for both figures. Also note that the trajectories for the Case 1 coincide with the X-axis 
a t  Y = 0 of both figures. For the matter of convenience, the trajectories of Po for the 
Case 3 is repeated in Figure 3.4 in which a box and the tip of the line extended from 
the corner of the box represent the platform and the reference point, respectively. The 
presence of turnaround is evident in Figure 3.4. In Figures 3.2 and 3.3, it is seen that 
the platform starts to  swivel as soon as a disturbance occurs while, with no disturbance 
(Case I), the platform keeps moving backward with the constant heading angle, = 0. 
These figures shows that a small disturbance can easily cause the trajectory to  depart from 
the equilibrium motion of moving backward to  the other equilibrium motion of moving 
forward. 

3.3.3 Experiments 

Experiments are conducted using a LABMATE2 mobile platform which is controlled with 
the sampling rate of 9 Hz. The trajectories of the reference point and Po on the wheel axis 
for the three cases are shown in Figure 3.5 and 3.6, respectively. Also the heading angles 
are shown in Figure 3.7. Note again that the trajectory for the Case 1 coincides with the 
X-axis in each figure. Figure 3.7 clearly shows the turnaround of the platform under the 
influence of the disturbances. The discrepancy in terms of the shape of the trajectories 
between the simulations and the experiments is due to the fact that, in the simulation the 

'LABMATE is a trademark of Transitions Research Corporation. 
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Figure 3.3: The trajectories of the point Po on the wheel axis (simulation). 

Figure 3.4: The trajectory of the mobile platform in Case 3. 



Figure 3.5: The trajectories of the reference point (experiment). 
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wheels of the platform were controlled at  acceleration level, while in the experiments they 
were controlled at velocity level because of practical limitations. 

A positional offset is tested as a different type of disturbance. As shown in Figure 3.8, 
the desired trajectory (dashed line) has a small offset in the Y direction (AY = 7mm) from 
the initial position of the LABMATE. The figure shows that the platform converges on 
the desired trajectory while it turns around on the way. Therefore it has been proved that 
both positional and rotational displacement can cause a departure from the equilibrium. 
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Figure 3.6: The trajectories of Po on the wheel axis (experiment). 
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Figure 3.7: The heading angles of the mobile platform (experiment). 
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Figure 3.8: The trajectory of the mobile platform with an offset (experiment). 



Chapter 4 

Coordinated Control of Mobile 
Manipulators: Dragging Task 

4.1 Motivation 

When a human writes across a board, he positions his arm in a comfortable writing con- 
figuration by moving his body rather than reaching out his arm. Also when humans 
transport a large and/or heavy object cooperatively, they tend to  prefer certain config- 
urations depending on various factors, e.g., the shape and the weight of the object, the 
transportation velocity, the number of people involved in the task, and so on. A mo- 
bile manipulator consists of a mobile platform and a robot manipulator. When a mobile 
manipulator performs a manipulation task, it is desirable to  bring the manipulator into 
certain preferred configurations by appropriately planning the motion of the mobile plat- 
form. If the trajectory of the manipulator end point in a fixed coordinate system (the 
world coordinate system) is known a priori, then the motion of the mobile platform can 
be planned accordingly. However, if the motion of the manipulator end point is unknown 
a priori, e.g., driven by a visual sensor or guided by a human operator, the path planning 
has to  be made locally and in real time rather than globally and off-line. This chapter 
presents a planning and control algorithm for the platform in the latter case, which takes 
the measured joint displacement of the manipulator as the input for motion planning, and 
controls the platform in order to  bring the manipulator into a preferred operating region. 
While this region can be selected based on any meaningful criterion, the manipulability 
measure [80] is utilized in this study. By using this algorithm, the mobile platform will be 
able to  "understand the intention of its manipulator and respond accordingly." Since the 
mobile platform is subject to nonholonomic constraints, the control algorithm is developed 
using nonholonomic system theory. 

This control algorithm has a number of immediate applications. First, a human oper- 
ator can easily move around the mobile manipulator by "dragging" the end point of the 
manipulator while the manipulator is in the free mode (compensating the gravity only) 
[go]. Second, if the manipulator is force-controlled, the mobile manipulator will be able 
to  push against and follow an external moving surface [ lol l .  Third, when two mobile ma- 
nipulators transport a large object with one being the master and the other being slave, 



this algorithm can be used to control the slave mobile manipulator to  support the object 
and follow the motion of the master, resulting in a cooperative control algorithm for two 
mobile manipulators. 

What makes the coordination problem of locomotion and manipulation a difficult one 
is twofold. First, a manipulator and a mobile platform, in general, have different dynamic 
characteristics, namely, a mobile platform has slower dynamic response than a manipu- 
lator. Second, a wheeled mobile platform is subject to nonholonomic constraints while a 
manipulator is usually unconstrained. These two issues must be taken into consideration 
in developing a planning and control algorithm. 

4.2 Preferred Operating Regions 

There are a few ways to define a preferred operating region. The simplest case is a single 
point which can be determined by a specific criterion based on the nature of tasks or 
constraints to  which the mobile manipulator is subject. The other choice will be a spatial 
operating region whose shape should be a function of maneuverbility of a manipulator and 
a platfornl and/or a priori knowledge of the moving surface which the mobile manipulator 
must follow. One such example is an ellipse or ellipsoid if the heterogeneity of constraints 
is taken into account, e.g., the lateral motion of a platform is constrained. 

It is natural to  define the center of the operating region to  be the most preferred point. 
It is then desirable that the mobile manipulator stays near the center of the region when 
the system stops moving. It is obvious that this is not a problem with a single point case 
since it guarantees the reference point to  keep track of the optimal point all the time. One 
major drawback of the preferred operating region of a single point is that even a slight 
departure from such a point triggers the motion of the system. 

The difference in terms of dynamic responses between a manipulator and a platform 
should also be taken into consideration, since the bandwidth of a platform is generally 
lower than that of a manipulator. If the task does not require a large motion or if it 
contains a high bandwidth motion, then it is preferred that the mobile platform does not 
respond until the deviation reaches a predetermined threshold value. This is especially 
true if such a deviation is aligned with the direction to which the mobile platform is 
constrained, because compensating in such a direction requires a large maneuvering from 
the platform. On the other hand, if the preferred operating region is chosen to  be too 
large, a workspace limit may be encountered or it may cause a large interaction force. 

In order to specify a preferred operating region, we will use the concept of manipulabil- 
ity measure introduced by Yoshikawa [go]. The location of the preferred operating region 
will be determined by maximizing the manipulability measure. The size of the region 
will be determined by the dynamic characteristics of the mobile platform. For instance, 
if the region is a single point, the mobile platform must respond to the motion of the 
moving surface in such a way that the configuration of the manipulator is kept fixed in 
the optimal configuration in terms of the manipulability measure. A illustrative example 
for the PUMA type manipulator mounted on a platform is given in Figure 4.1 in which 
only the first three joints are considered to  compute the manipulability measure. In the 
figure, the manipulator configuration shown in the bold line yields the globally maximal 



Figure 4.1: Example of preferred configuration of mobile manipulator. 

manipulability and others depict optimal configurations with varying end effector height. 

4.3 Control Scheme 

Two separate controllers are used for the two subsystems, i .e . ,  mobile platform and ma- 
nipulator. Under the scenario of interest, the manipulator is only compensated for its own 
gravitational and frictional forces in a feed-forward manner, regardless of the status of the 
mobile platform. A human operator then drags the end-effector of the manipulator, and 
the coordination strategy to  be described in the next section will issue control commands 
to the platform. The platform is therefore controlled based on the current status of the 
manipulator as well as the platform itself. In this section, we present the control algo- 
rithm of the mobile platform which is a generalization of Look-Ahead Control described 
in Section 3.2.3. 

The location of the reference point is not restricted except on the wheel axis which 
requires the dynamic feedback control (see the previous chapter 3.2.1 and 3.2.2). The 
reference point was chosen on the symmetry axis of the platform in Section 3.2.3. Suppose 
that the reference point P, is given by ( w x T ,  "y,) with respect to  the platform coordinate 
frame, a moving frame whose origin is fixed at  Po (Figure 4.2). Note that " x ,  # 0 has to  
be assured in order to  avoid the reference point on the wheel axis. Taking the coordinates 
of the reference point in the inertial frame as the output equations, 

21 + ' x ,  cos Q) - ' yT  sin 4 
y = h ( x )  = 

x2 + VxT sin 4 + ' yT  cos q!~ J 
Input-output linearizability of the system with the above output equations is easily verified 
by checking the decoupling matrix which is given by 



"y , Desired Trajectory 

Figure 4.2: Schematic of the mobile platform with 2-DOF manipulator. 

where 

G l l  = c((b - " y,) cos 4 - "x, sin 4) 

Q I 2  = c((b + "y,) cos 4 + "x, sin 4)  

@21 = ~ ( ( b  - "y,) sin 4 + "x, cos 4) 

@ 2 2  = c((b + 'y,) sin 4 - "x, cos 4)  

The determinant of the decoupling matrix is then given by 

From Equation (4.3), "x, # 0 implies the invertibility of the decoupling matrix which 
also implies the existence of nonlinear static state feedback achieving the input-output 
linearization and decoupling. 

4.4 Coordination Strategy 

For simplicity, a two link planar manipulator attached on the platform (Figure 4.2) is 
considered in this discussion. Let 8 1  and O2 be the joint angles and L1 and L2 be the link 
length of the manipulator. Also let the coordinates of the base of the manipulator with 
respect to  the platform frame ' X - " Y  be denoted by ("xb, "yb). We set the reference point to  
the end point of the manipulator at a preferred configuration. We choose as the preferred 
configuration the one that maximizes the manipulability measure of the manipulator. If 
we specify the position of the end point as the desired trajectory for the reference point, 
the mobile platform will move in such a way that the manipulator is brought into the 
preferred configuration. 

The manipulability measure can be regarded as a distance measure of the manipulator 
configuration from singular ones at which the manipulability measure becomes zero. At 
or near a singular configuration, the end point of the manipulator may not easily move 
in certain directions. The effort of maximizing the manipulability measure leads to keep- 
ing the manipulator configuration away from singularity. This notion is very important 



especially when a mobile manipulator is required to respond to motions whose range is 
unknown a priori. 

The manipulability measure is defined as [ g o ] :  

where 0 and J ( 8 )  denote the joint vector and Jacobian matrix of the manipulator. If we 
consider non-redundant manipulators, Equation (4 .4)  reduces to 

w = I det J ( 9 )  I (4 .5)  

For the two-link manipulator shown in Figure 4.2,  the manipulability measure w is 

Note that the manipulability measure is maximized for 82 = f 90' and arbitrary d l .  We 
choose O2 = +90° and dl = -45' to be the preferred configuration, denoting them by dl ,  
and 02,. Then the coordinates of the reference point with respect to the platform frame 
vX-vY is given by 

We emphasize that and " y ,  are constant and will be used in the representation of the 
output equation, Equation (4 .1) .  As mentioned in the previous section, the manipulator 
is regarded as a passive device whose dynamics is neglected. It is assumed that a human 
operator drags the end effector of the manipulator. The position of the end effector is 
given as the desired trajectory for the reference point P,. The manipulator will be kept in 
the preferred configuration provided that the reference point is able to follow the desired 
trajectory. Any tracking error of the reference point will leave the manipulator out of 
the preferred configuration, resulting in a drop of manipulability measure. To count for 
measurement and communication delay, the current position of the end effector is made 
available to the mobile platform a fixed number of sampling periods later in the simulation. 
Five sampling periods of delay are introduced in the simulation described below. 

4.5 Simulation Results 

We conducted simulations to verify the coordination strategy. In the simulation, the mobile 
platform is initially directed toward positive WX-axis at rest and the initial configuration 
of the manipulator is 81 = -45' and O2 = 90'. Two cases corresponding to two paths 
shown in Figure 4.3 are simulated: 

Case (i): A straight line perpendicular to the "X-axis or the initial forward direction 
of the mobile platform, 

Case (ii): A forward slanting line by 45 degree from "X-axis. 



Figure 4.3: Two paths used in the simulation. 

The velocity along the paths is constant. The sampling rate is 0.01 sec. The linear 
state feedback gains for the two subsystems, Equations (3.19) and (3.20), are chosen so 
that the overall system has a natural frequency w, = 2.0 and a damping ratio ( = 1.2. 
The higher damping ratio is to simulate the slow response of the mobile platform. For 
each simulation, we plot the trajectory of Po, the trajectory of the reference point P,, 
the manipulability measure, the joint angles of the manipulator, the heading angle of the 
platform, and the velocity of the Po. 

1. Figure 4.4 shows the trajectory of point Po, in which a box1 represents the mobile 
platform. Note that the desired trajectory is given for the reference point P,. Po 
has no desired trajectory. Figure 4.5 shows the desired and actual trajectories of 
the reference point P,. Note that the two trajectories coincide. The manipulability 
measure, and the velocity of point Po are shown in Figure 4.6 and 4.9, respectively. 
Figure 4.6 shows a little degradation of manipulability measure corresponding to  the 
early maneuver by the mobile platform. The negative value in Figure 4.9 indicates 
that the mobile platform moved backwards for a short period of time at the very 
beginning in order to achieve the needed heading angle. Note that the motion of 
the platform, or more precisely the trajectory of point Po is not planned. Therefore, 
the exhibited backward motion is not explicitly planned and is a consequence of the 
control algorithm. The presence of such backward motion depends on the direction 
of a desired trajectory, the desired velocity, and the location of the reference point. 

'These boxes are not equally distributed in time. 



Figure 4.4: Trajectory of the point Po for Case (i). 

2. The results for the slanting trajectory are shown in Figures 4.10 through 4.15. Sim- 
ilarly to  Case (i), Figure 4.11 shows that the reference point precisely follows the 
desired trajectory. From Figure 4.12, the degradation of manipulability measure 
is somewhat bigger than that of the previous case. Figure 4.15 indicates that no 
backward motion occurs this time. 



Figure 4.5: Desired and actual trajectories of the reference point for Case (i). 
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Figure 4.6: Manipulability measure for Case (i). 
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Figure 4.8: Heading angle for Case (i). 



Velocity 

Figure 4.9: Velocity of the point Po for Case (i). 

Figure 4.10: Trajectory of the point Po for Case (ii). 



Figure 4.11: Desired and actual trajectories of the reference point for Case (ii). 
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Figure 4.12: Manipulability measure for Case (ii). 
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Figure 4.13: Joint angles for Case (ii). 
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Figure 4.15: Velocity of the point Po for Case (ii). 



Chapter 5 

Coordinated Control of Mobile 
Manipulators: Following Task 

5.1 Motivation 

Thc task of the mobile manipulator in this chapter is to push against and to follow a 
moving surface, as illustrated in Figure 5.1. It is motivated from multiple cooperative 
mobile manipulators transporting a common object. If one of them is designated to be a 
leader and tlze others to be followers, the followers must be able to  keep in contact with 
and follow the object in order to cooperatively transport the object. The moving surface 
in this case is the object itself. 

The focus in this chapter is on control and coordination of the mobile manipulator 
which is, unlike the previous chapter, under influence of external forces. The objective is 
then to  develop control algorithms for the mobile manipulator so that the end effector of 
the manipulator maintains contact with the moving surface. The lnotion of the moving 
surface is assumed to be unknown. We will not address the issues of navigation and 
obstacle avoidance, and we will assume that the mobile manipulator operates in an obstacle 
free environment. 

mobile platform r-l- 
Figure 5.1: A mobile manipulator pushing against a moving surface. 



Controller Platform 

Figure 5.2: Controller architecture of the mobile manipulator. 

The manipulator is equipped with a flat-surfaced palm as the end effector which makes 
contact with the moving surface. A six-dimensional force/torque sensor is installed a t  the 
wrist of the manipulator. The approach taken here is to have the manipulator force- 
controlled in order for the palm to maintain contact with the moving surface. The mobile 
platform is controlled t o  configure the manipulator in a preferred operating region in terms 
of manipulability measure. 

5.2 Force Control Algorithm of Manipulator 

The objective of the mobile platform is to keep the configuration of the manipulator 
within the preferred operating region while maintaining contact with a moving object. 
A schematics of the overall mobile manipulator controller is shown in Figure 5.2. As 
shown in Figure 5.2, the controller of the manipulator is self-contained in the sense that 
it is controlled based on its force and position sensing only. The inputs to the mobile 
platform controller, however, are the measured joint position of the manipulator and its 
own position reading with respect to the inertial frame. In this section, we present the 
force control algorithm implemented for PUMA 250 manipulator. The controller for the 
LABMATE mobile platform which is cornmonly used in both experiments, the dragging 
and following tasks, wit1 be described in the next chapter. 

It is assumed that the object moves at  a reasonably slow speed such that the con- 
tact point with the object is always located within the workspace of the manipulator by 
controlling the motion of the mobile platform. 

It can be easily seen that position control is not a suitable choice for the current 
objective since any position error may result in a separation or cause a large contact 
force. Here we adopt a variation of the hybrid control scheme proposed by Raibert and 
Craig [102]. It has a couple of noteworthy differences from conventional hybrid control 
approaches [102, 103, 1041. First, in our study, the exact geometry of the surface of the 



Figure 5.3: Schematic of a PUMA250 mounted on a LABMATE mobile platform. 

moving object is not required. The surface is only assumed to be smooth and convex. 
Second, the use of passive joints plays a key role for the purpose of object following1. In 
our experiments the three joints at wrist serve as passive joints. Making use of the passive 
joints yields a practical advantage that such passive joints allow the end effector to align 
itself to the moving surface if a contact is made by a surface rather than by a point. If it 
is purely a point contact, then it will require either a priori knowledge of the trajectory 
of a moving surface or the exploration process of local geometry at the point of contact. 
In either case, all six joints have to be actively controlled. 

We apply the following explicit force control law2. The integral control was chosen due 
to its characteristics of a zero steady state error and a low-pass filter when a small gain is 
used [105, 661. The active damping term is effective to achieve stable contact and avoid 
bounces and vibrations especially if the contact surface is rigid [71.]. 

where: 

{H) = the hand coordinate system (see Figure 5.3) 
[ K j p ]  and [Kf;] = force servo gains 
[IC,] = active damping gain 
[J] and [ J ] ~  = the hand coordinate Jacobian matrix and its transpose 

'A passive joint is defined as a joint for which only gravity and friction are compensated. 
'All three degrees-of-freedom are used for controlling forces. Hence there is no position control used 

though it can be easily combined with force control. 



Figure 5.4: Diagram of the explicit force control scheme. 

FT = the desired force exerted on the hand 
A F ~ =  the force error with respect to  { H )  
5: = the z-directional velocity with respect to  {H) 
q = the joint velocities 

rj = the contribution to  actuator torques from the force control subsystem 
r j f  = the force feed-forward term 
re = the force feedback term 

The actuator torque r is given by 

where 79 represents the gravity and friction compensations. Note that the gravity and 
friction compensations are active for all six joints while rj is generated only for the first 
three joints. The diagram of the force control law, Equation 5.1 is depicted in Figure 5.43 

5.3 Coordination Strategy 

Similarly to Section 4.4, the preferred operating region for this task is determined by 
maximizing the manipulability measure. On computing the manipulability for PUMA 
250, we consider the first three joints only, neglecting the degrees of freedom placed a t  the 
wrist and neglecting the displacements in the direction of the joint axes. 

Let 6'; and Li, i = 1 ,2 ,3 ,  be the joint angles and the Link lengths of the manipulator as 
shown in Figure 5.3. Also let the coordinates of the manipulator base with respect to the 
platform frame "X-VY be denoted by ("xb,"yb).  We choose the prelerred configuration of 
the manipulator that maximizes the manipulability measure as stated above. If the ma- 
nipulator changes its configuration while following the moving object, the mobile platform 
will move in such a way that the manipulator is brought into the preferred configuration 
where the manipulability measure is maximized. 

The manipulability measure for PUMA250 is given by 

w = L2L3 I (L2 sin 82 + Lg sin(& + e3)) sin 83 I 
3The gravity and friction compensations are omitted in this figure. 



Note that and L1 do not affect the value of w. Since La is equal t o  Lg for PUMA 
250, the maximal manipulability measure is then obtained by 82 = 54.74' and 63 = 70.53' 
denoted by 82r and 83r, respectively. If the displacement of the end effector along the t 
axis of the inertial frame is taken into account, then obtaining a set of joint angles which 
yields maximal manipulability amounts t o  solving a constrained nonlinear optimization 
problem which is formulated as follows. 

max ( det J(8) ( 
B (5-4) 

subject to: .Ze = re(%) (5.5) 

where J(6) is the manipulator Jacobian which is a function of 01, 62 and 83, Ze is z coor- 
dinate of the end effector with respect t o  the inertial frame, and ze(Q) is a function of 82 
and O3 since el does not affect 3,. The optimal posture of the manipulator with varying 
5, is illustrated in Figure 4.1, 

Choosing so that both the link 2 and the link 3 are placed in parallel to the symmetry 
axis of the platform, the coordinates of the reference point with respect to  the platform 
frame "X-"Y  is given by 

"2 ,  = vxb + La sin $2,. + L3sin(82r + 03,.) (5.6)  

'YT = v ~ b  (5.7) 

Note that 'x, and V y ,  are constant, and they will be used in the representation of the 
output equations which will be introduced in the next chapter. 



Chapter 6 

Dynamic Interaction 

6.1 Introduction 

In order to  fully utilize the advantages offered by a mobile manipulator, it is necessary 
to understand how to properly and effectively coordinate the motions of the mobile plat- 
form and the manipulator. We have approached the coordination problem by looking at 
the new issues introduced by the combined system that are not present in the individ- 
ual component. First, combining a mobile platform and a multi-link manipulator creates 
redundancy. A particular point in the workspace may be reached by moving the manip- 
ulator, by moving the mobile platform, or by a combined motion of both. Second, the 
mobile platform and manipulator dynamically interact with each other. Third, there are 
two modes of dynamic responses. The dynamic response of a manipulator is, in gen- 
eral, faster than that of a mobile platform. The first issue was addressed in Chapter 4 
in which a local coordination of the mobile manipulator was successfully demonstrated. 
However, the dynamic interaction between the manipulator and the mobile platform were 
not considered in the development. 

The focus of this chapter is on the second issue, that is, the dynamic interaction be- 
tween the manipulator and the mobile platform. The third issue also shall be addressed 
indirectly. Based on the motion equations for the mobile manipulator derived in Sec- 
tion 2.3,  a nonlinear feedback that completely compensates the dynamic interaction is 
developed. Then, the effect of the dynamic interaction on the tracking performance is ex- 
amined by comparing four different cases: (1) without any compensation of the dynamic 
interaction at  all; (2) the mobile platform compensates the dynamic interaction caused 
by the manipulator; (3) the manipulator compensates the dynamic interaction caused by 
the mobile platform; and (4) with full compensation of the dynamic interaction with each 
other. 

6.2 Feedback Control 

It this section, we will design a nonlinear feedback controller for the mobile manipulator 
using the feedback linearization method. We first present our choice of output equations 
for the trajectory tracking purpose. Since a nonholonomic system such as this one is 



Figure 6.1: 2-DOF arm mounted on the mobile platform. 

not input-state linearizable [go], we will instead achieve input-output linearization by the 
designed nonlinear feedback. For the sake of simplicity, we consider a two link planar 
manipulator mounted on a mobile platform as shown in Figure 6.1. 

6.2.1 Output  Equations 

Since the mobile platform has two inputs and the two link manipulator also has two 
inputs (the two joint torques), we may have up to  four independent outputs. The task 
for the mobile manipulator is for the end point of the manipulator t o  follow a desired 
trajectory specified in the inertial frame w X - W Y .  We stress that the desired trajectory 
in general cannot be followed by the manipulator alone, without the aid from the mobile 
platform. We will choose output equations based on the following considerations. Since 
the manipulator is faster in dynamic response, it should be controlled to  track the desired 
trajectory as much as possible. While doing so, the manipulator may overly stretch out 
and nearly reach the boundary of its workspace. The mobile platform should be controlled 
in such a way that it brings the manipulator into a preferred configuration as we discussed 
in Chapter 4. 

In Figure 6.1, Pe is the actual location of the end point of the manipulator. The 
coordinates of P, in the platform coordinate frame "X-"Y are given by 

"x, = Ll cosol + L2 c0s(O1 + B2) 

"ye = L1 sin el + L2 sin(& + 02) 

In order for the end point to track the desired trajectory, we choose the two coordinates 
of P, as part of the output equation. Because the desired trajectory for the entire mobile 
manipulator is specified in the inertial frame and the coordinates are expressed in the 
platform coordinate frame, the desired values for these two components of the output 
equation will be computed based on the desired trajectory and the actual location of the 
platform in the inertial frame. Since we assume that the wheels of the platform do not 



slip, the actual location of the platform will be integrated from the angular position of the 
wheels measured by the encoders. 

Having chosen the two components of the output equation as above, the manipulator 
will try to track the desired trajectory, with the platform being stationary or in motion. 
We now choose the other part of the output equation, aiming at making use of the motion 
of the platform. The idea is to control the platform in such a way that it always bring the 
manipulator into a preferred configuration. Again we define the preferred configuration 
in the same way as we did in Chapter 4, i.e., the configuration of the manipulator in 
which the manipulability measure is maximized. The manipulability measure w is given 
by Equation 4.6 which is repeated here 

w = I  det J,  I= LlL2 Isin82 I 
Therefore, the manipulability measure is maximized for O2 = f 90' and arbitrary el. We 
choose O2 = +90° and = -45O, denoting them by el, and 02,. The manipulator in this 
configuration is shown in Figure 6.1 by the thick solid lines. The actual configuration of 
the manipulator is shown by the thick dashed lines. The end point of the manipulator 
in the preferred configuration is denoted by P,, called the reference point. By choosing 
el = -45' and assuming L1 = L 2 ,  the reference point is located on the symmetry axis. 
We note that the reference point is always fixed relative to  the platform coordinate frame. 
The coordinates of the reference point with respect to  the inertial frame are given by 

w x, = xo + (L1 cos 81, t L2 cos(B1, t 02, ) )  cos 4 
w 

(6.3) 
y, = yo + (LI sin 81, + Lz sin(O1, + 02,.)) sin 4 (6.4) 

where (x,, yo) is the coordinates of the centroid of the platform in the inertial frame, PC 
which is assumed to  coincide with the mid point on the wheel axis Po, i .e. ,  d = 0 in Figure 
4.2. We will choose these two coordinates of the reference points as the other part of the 
output equations. The desired values for these two output components will be set as the 
actual location of the end point of the manipulator. That is, the platform is controlled so 
that P, is brought to  the location of P,, which effectively brings the configuration of the 
manipulator into the preferred one. 

Thus the output equation has four components which are given by 

Having defined the output equation, we then design a controller that allows the output to 
track its desired values. 

6.2.2 Input-Output Linearization 

We now derive a nonlinear feedback to  linearize the input-output relationship of the system 
described by the state equation (2.56) and the output equation (6.5). To do so, we 
differentiate the output equation twice, resulting in the following: 



where v, = [vT qT]T, and 

I c(b cos 4 - 2L sin 4) c(b cos 4 + 2L sin 4) 
c(bsinq5t2Lcos4) c(bsin4-2Lcos(b) 

@(x) = 
0 0 

0 0 
0 0 

- Ll sin dl - L2 sin(& + 82) - L2 sin(& + 82) 
Ll cos 81 + L2 C O S ( ~  + 82) Lz C O S ( ~ ~  + 82) 

In the expression of @(x) above, c is a constant equal to  r/2b. Note that there are certain 
cases under which the above decoupling matrix becomes singular. 

(1) L = 0 : This singularity occurs if the reference point is chosen on the wheel axis 
as pointed out in 1351. 

(2) O2 = 0 :  This corresponds to the case in which the arm is fully stretched. 
(3)  O2 = 180' and L1 = L2 : The second link is retracted and the end effector point 

coincides with the base point of the manipulator. 
(4) 4 = 0 and b = 2L: This does not occur for our choice of L. 
(5) (b = t a n b l ( M )  or tan-'(=) : 4 is unlikely to hit these exact values in 

practice. 

Applying the nonlinear state feedback given by 

we obtain the following linear and decoupled input-output relationship: 

To complete the controller design, it is necessary to stabilize each of the above four sub- 
system with another constant state feedback. Therefore, the entire controller for the 
mobile manipulator consists of nonlinear feedbacks (2.55) and (6.7), followed by a linear 
feedback. 

6.3 Simulation Results 

We conduct simulations to evaluate the effect of the dynamic interaction by using a mo- 
bile manipulator model. In the simulations, the following three different trajectories are 
examined. For each trajectory, the mobile platform is initially placed at the origin facing 
toward the positive X-axis of the inertial frame, implying the heading angle to be zero. 
The initial joint angles of the manipulator are el = -45' and O2 = $90'. The whole 
system is assumed to be stationary at t = 0. 



Figure 6.2: Example of the Case (i). 

(i) Straight line with a constant velocity along 145' direction with respect to the initial 
heading angle (Figure 6.2). 

(ii) Circular trajectory with o = 1r/3 and the radius of 0.25 m (Figure 6.4). 
(iii) The platform follows a straight line at  a constant velocity t o  90' direction, and the 

arm follows an oscillatory motion along "X-axis. (Figure 6.6). 

The following four different cases are compared for each trajectory in terms of the 
compensation of the dynamic interaction: 

Both the platform and the arm compensated, 
r Only the arm compensated, 

Only the platform compensated, and 
No compensation of the dynamic interaction used. 

The controller for each of the four cases above is obtained by either considering or dropping 
the terms representing the dynamic interactions in Equations (2.52) and (2.53). Major 
parameters of the model used in the simulations are as follows: 

The parameters for the platform are based on those of LABMATE platform of Tran- 
sition Research Corporation. For the manipulator, MI =Mz =4.0kg, L1 =L2 =0.4m, and 
Il=12=0.0533kgm2, where Mi,  Li, and Ii are the mass, the length of link, and the mo- 
ment of inertia about the center of mass for i-th link. The center of mass is assumed to 
be at  the mid point of the link. 

Case (i): Figure 6.3 presents the tracking errors of the reference point. The two cases 
without the dynamic compensation for the platform show larger tracking errors than the 
other two cases with compensation while the platform is making a large maneuver at  the 
early stage. 

Case (ii): The tracking errors of the reference point from the circular trajectory are 
plotted in Figure 6.5. Significance of having the compensation on the manipulator is 
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Figure 6.3: Tracking errors for the Case (i). 

more evident than in the previous result. It is also observed that the absence of the 
compensation on the platform does not degrade the performance in terms of the tracking 
error. 

Case (iii): The previous two cases clearly demonstrates the importance of the compen- 
sation of the dynamic interaction given by the platform to the manipulator. In those cases, 
however, the motion of the platform is controlled locally in the sense that it solely depends 
on the kinematics of the manipulator rather than a preplanned trajectory. Therefore it is 
difficult to  observe the interaction from the manipulator to the platform. For the current 
case, the platform is to  follow an independent trajectory while a manipulator is doing a 
different task. Figure 6.6 shows an example in which no compensation is employed on any 
of the system. The oscillatory motion of the manipulator causes a waving motion of the 
platform (see the right lower figure of Figure 6.6 which is the heading angle of the plat- 
form). The tracking errors of the reference point of the platform are shown in Figure 6.7. 
Clearly the two cases with the compensation on the platform show superior results to  the 
other two without the compensation. In the first two cases, the motion of the manipulator 
is dynamically compensated by the platform, hence the tracking error converging to zero. 

Figure 6.8 shows how the manipulator is affected at the end effector point by the 
accelerative motion of the platform1. In the figure, there are two lines emanated from 
each point within the workspace of the manipulator. A solid line represents the linear 
acceleration observed at the end effector which is caused by the unit magnitude of linear 
acceleration of the platform in positive "X direction, A gray line represents the linear ac- 
celeration at the end effector which is caused by the unit magnitude of angular acceleration 
of the platform. The effect of linear acceleration (solid line) displays the non-symmetric 
distribution due to the right-elbow configuration of the manipulator. 

'Note that velocity terms are neglected. 
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Figure 6.4: Example of the Case (ii). 
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Figure 6.5: Tracking errors for the Case (ii). 
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Figure 6.9 illustrates how the motion of the platform is affected when the manipulator is 
accelerated at  the end effector point in the positive "X direction2. Each solid line emanated 
from a black dot in Figure 6.9 signifies two components; x component represents the linear 
acceleration and y component the angular acceleration of the platform. It is observed that 
there is a certain region where the platform is hardly affected by the end-effector motion 
along "X direction. A similar observation can be made for Figure 6.10. There exists a 
region where the platform is insensitive to  the end-effector motion along "Y direction. 
This analysis can be useful for the cases in which the direction of a manipulatory task 
frequently used is known a priori. 

'In Figures 6.8 through 6.10, 'X coincides with WX 



Figure 6.8: Effect of the motion of the platform on the manipulator. 



Figure 6.9: Effect of the motion of the manipulator on the platform ("X-direction). 



Figure 6 . lo:  Effect of the motion of the manipulator on the platform ("Y-direction). 



Chapter 7 

Experiments 

In this chapter, the experimental results for two different scenarios are presented: the 
dragging task and the following task which are described in Chapters 4 and 5, respectively. 
First, the description of the experimental setup is given. Secondly, the control scheme 
specific for the experimental mobile platform is presented, Next the experimental results 
for the dragging case are provided, followed by the results for the following case. 

7.1 Experimental Setup 

The experimental mobile manipulator consists of a PUMA 250 6-DOF manipulator and 
a LABMATE platform whose picture is shown in Figure 7.1. The manipulator has a 
flat-surface palm which is equipped with a Zebra six-dimensional force/torque sensor. 
Next, the hardware architecture of the experimental setup is depicted in Figure 7.2. The 
system uses two 80286-based IBM PC/AT; one for the PUMA 250 and the other for the 
LABMATE platform. The former computer is equipped by an AMD29000 high speed 
floating point coprocessor and is used as the host computer. It is configured in such a 
way that  the 280286 processor performs all the I/O interface operations (user interface and 
sensor/manipulator interface) while the AMD29000 carries out the real-time computations 
of the control algorithm. The PC/AT has a parallel interface to  the PUMA Unimation 
controller, through which the desired joint torque values are directly written t o  the DACs 
(Digital-Analog Converters) and the encoder counts are read back t o  the PC/AT. The 
second PC/AT which is connected with the host PC/AT via a parallel interface merely 
serves as a data transmitter between the host PC/AT and the LABMATE platform due 
to the low bandwidth of the platform. 

The kinematic and dynamic parameters for the PUMA 250 are presented in Table 7.1 
where C. O.M. represents the distance from the i-th joint axis t o  the center of mass of link 
i. Note that the joints 4 and 6 are locked, and that the joint 5 is position-controlled so 
that the palm surface becomes vertical with respect to the inertial frame. The parameters 
for the LABMATE are listed in Table 7.2. The notations in Table 7.2 have been defined 
in Section 2.2. The Zebra force/torque sensor uses a set of semiconductor strain gauges 
and has the capability of measuring log of minimum force, 20kg of maximum force, and 
1000kg-nzm of maximum moment. 



Figure 7.1 : Mobile manipulator used in the experiments. 

Table 7.1: Parameters of the PUMA 250. 

Parameters 
Link Number 

1 
2 
3 
5 

Table 7.2: Parameters of the LABMATE platform 

Link Length 
[ml 

0.318 
0.203 
0.203 
0.093 

Parameters 
d 
b 
T 

rn.2 
mw 
IC 
I, 
ITTI 

Values 

0 
0.171 
0.075 
94.0 
5 .o 

6.609 
0.010 
0.135 

Torque Const. 
[ D A C I N  m] 

174 
154 
250 
-890 

Link Mass 
[kg] 
1.5 
2.4 
1.1 

0.54 

Units 
m 
m 
m 
kg 
kg 

kgrn2 
kgm2 
kgm2 

C.O.M. 
[ml 
0 
0 

0.06 
0.054 

Link Inertia 
[k9m2] 
0.00045 
0.145 
0.052 

0.00727 



LABMATE plalform 

12MHz. '286-based PC (I) 

Figure 7.2: Hardware architecture for the experimental setup. 



7.2 Control Scheme of LABMATE Mobile Platform 

In this section, we present the controller for LABMATE platform which is a little different 
and simplified from the one described in Chapter 3 and Section 4.3 due to the physical 
limitation of the mobile platform1. 

Here we consider only one nonholonomic constraint, which reflects the fact that  the 
platform must move in the direction of the axis of symmetry, i. e. ,  

jr, cos 4 - 5, sin 4 = o (7.1) 

where (x,, yo) is the coordinates of the origin of the platform frame, Po, in the inertial 
frame (see Figure 5.3). Again the reference point for the platform is selected such that  
it corresponds to  the end point of the manipulator a t  a preferred configuration a t  which 
the ma.nipulability measure is maximized. As mer~tioned in Section 5.3, thc coordinates 
of the reference point with respect to the platform frame are defined by Equations (5.6) 
and (5.7). Denoting the reference point with respect to  the inertial frame by ( " x T , " y T ) ,  
the coordinates are given by 

By ta.king the coordinates of the reference point to be the output equation 

the necessary and sufficient condition for input-output linearization is that  the decoupling 
matrix ha,s full rank [93]. With the output equation (7.4), the decoupling matrix @ for 
the system is - - 

where 

Gll = cosd 

G12 = -V yT cos # - 'xT sin 4 
= sin # 
= -" yT sin 4 + "X, cos 4 

The nonlinear feedback for achieving input-output linearlization as well as input-output 
decoupling is then given by [go]: 

u = (7.10) 

The Linearized and dccoupled subsystems are described by: 

- 

We can not directly command the motor torques. 

6 9 



Figure 7.3: Trajectory of the Po and the motion of platform. 

7.3 Experimental Results of Dragging Task 

The control algorithm stated in Section 4.3 and 4.4 and modified as above is implemented 
with the experimental mobile manipulator. Under this scenario, only the first three joints 
of the manipulator are taken into account, i .e. ,  no wrist joints are considered. The sam- 
pling rates of PUMA 250 and LABMATE are 250 and 16 Hz, respectively. In the ex- 
periment the end effector of the mobile manipulator which is at rest and in an optimal 
configuration at the  beginning is dragged by a human operator. For comparison purpose it 
is dra.gged along the  direction normal t o  the initial heading direction of LABMATE, which 
corresponds t o  the first trajectory in the simulations. Figure 7.3 shows the trajectories 
of the origin of the platform frame (Po) and the reference point. The former trajectory 
indicates the platform initially goes backward and then starts moving forward. This ob- 
servation agrees with the simulation result in the previous section though their transient 
behaviors are somewhat different. Figure 7.5 depicts the velocity of the point Po of LAB- 
MATE, which also exhibits the presense of the initial backup. Note that  dragging ceases 
a t  about 14 seconds. Manipulability measure is shown in Figure 7.7. The manipulability 
slightly drops a t  the beginning and is maintained at  the same level while the platform is 
in motion. I t  then comes back to a nearly optimal configuration after dragging stops. The 
slight degradation during motion is mainly due t o  the communication delay. 

7.4 Experimental Results of Following Task 

In the following scenario, the manipulator is initialized in the optimal configuration in 
terms of manipulability measure, hence the platform remains still at  the beginning. The 
manipulator is force-controlled according to  the method described in Section 5.2 such that  



Figure 7.4: Trajectories of the reference point. 

Time (ser) 

Figure 7.5: Velocity of the point Po of LABMATE. 
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Figure 7.6: Joint angles of PUMA 250. 

Manipulability 

Figure 7.7: Manipulability measure. 



Figure 7.8: Trajectory of the reference point. 

-1 

Figure 7.9: Experimental trajectory of the mobile platform. 



Figure 7.10: Heading angle. 

a normal force exerted on the palm is regulated at a prescribed value. The motion of the 
platform is planned and controlled according to Section 5.3 and 7.2. 

In the experiment a human operator guides the end effector of the manipulator. The 
control rates for the manipulator and the platform are 200 Hz and 16 Hz, respectively. 
Note that the sampling rate of the manipulator is slower than the one used in the dragging 
experiment. This is due to the presence of a force sensor. The trajectory of the reference 
point which is roughly a circular arc is depicted in Figure 7.8. It can be seen from the 
figure that the reference point is able to track the desired trajectory very well. The motion 
of the mobile platform is shown in Figure 7.9, accompanied by the trajectory of the point 
on the wheel axis. 

The heading angle of the platform following the object motion is shown in Figure 7.10 
in which the transition of the heading angle is more clearly seen. 

The manipulability measure is shown in Figure 7.11. Since the maximal possible value 
of the manipulability measure is 1.6 for the manipulator, it is clear from Figure 7.11 that 
the manipulator is being kept in a good configuration in terms of manipulability while the 
entire system is in motion. The measured forces are shown in Figure 7.12. The desired 
normal force exerted at the palm is linearly increased until it reaches 15 Newtons (the 
dotted line in the upper half of Figure 7.12). The normal force is maintained near the 
desired vahle although some fluctuation is observed. The two curves in the lower half of 
Figure 7.12 are the measured tangential forces in the x- and y-axis of the hand coordinates. 



Figure 7.11: Manipulability measure. 

Figure 7.12: Measured forces. 



Chapter 8 

Summary 

8.1 Contributions 

In this thesis proposal, we have investigated modeling and feedback control of mobile ma- 
nipulators. A mobile manipulator under consideration in this study is made of a robotic 
manipulator and a mobile platform. It combines the manipulation capability of the ma- 
nipulator and the mobility of the mobile platform. The study is focused on finding control 
algorithms that effectively coordinate manipulation and mobility. The main contributions 
of the study are summerized below. 

Modeling of mobile manipulators.  We developed an approach for deriving mo- 
tion equations of the mobile manipulator. In this approach, motion equations of 
the mobile manipulator are derived based on the already available motion equations 
of the manipulator and the mobile platform, rather than from scratch. The addi- 
tional velocity and inertial coupling effects between the manipulator and the mobile 
platform are properly taken into consideration. In addition to  being simple, this 
approach allows us to  conveniently investigate the dynamic interaction between the 
manipulator and mobile platform. 

e Feedback control  of wheeled mobile platforms. We studied control properties 
of the dynamic system that describes the motion of a wheeled mobile platform. 
Such a, system is subject to  nonholonomic constraints and has a number of unique 
properties. In particular, we showed that a nonholonomic system is not input- 
state linearizable, but possibly input-output linearizable with a proper choice of 
the output equation. For the wheeled mobile platform, if the output equation is 
chosen to  be the coordinates of a point on the wheel axis, the system is not input- 
output linearizable by using any static state feedback. In this case, we showed that 
a dynamic state feedback makes the input-output linearization possible. For other 
choice of the output equation, we showed that a static state feedback is sufficient for 
input-output linearization purpose. In particular, the look-ahead control method is 
introduced, in which the output equation is chosen as the coordinates of a reference 
point in front of the platform. 



T h e  internal  dynamics a n d  zero dynamics.  We investigated the internal dy- 
namics of the wheeled mobile platform under the look-ahead control method. We 
showed that the zero dynamics of the system is stable, but the internal dynamics is 
not always stable. In particular, we proved, by means of Lyapunov's second method, 
that the internal dynamics when the platform is controlled to  move backwards is un- 
stable. The existence of such unstable internal motions has been verified by both 
simulation and experiment. 

Coordinat ion of manipulation a n d  mobility. We developed a coordination 
algorithm for the mobile manipulator based on the concept of preferred operating 
region. With the coordination algorithm, the mobile platform moves in response 
to the motion of the manipulator in such a way that the manipulator is always 
maintained in the optimal configuration in terms of the manipulability measure. 
The algorithm has been utilized to perform two types of tasks: dragging motion and 
following motion. 

Dynamic  interaction. Based on the motion equations of the mobile manipulator, 
the dynamic interaction between the manipulator and the mobile platform has been 
investigated through simulations on selected trajectories. The simulation results 
indicated that, depending on the type of the trajectory chosen, the compensation of 
the dynamic interaction of the platform affected by the manipulator is more effective 
than that of the manipulator caused by the motion of the platform, or vice versa. 

Experiments .  The dragging motion and the following motion with explicit force 
control scheme have been implemented on the experimental mobile manipulator 
which consists of a PUMA 250 and a LABMATE platform. In the dragging motion, 
similar results have been obtained to  those in the simulation. In the following motion 
where the mobile manipulator follows a moving object while the manipulator exerts 
a force to the object to  support it, i t  has been shown that the mobile manipulator 
successfully follows the trajectory of a human operator while maintaining the contact 
force pushing against the palm of the operator. 

8.2 Works to be done 

e The dynamic interaction described in Chapter 6 will be tested on the experimental 
mobile ma.nipulator. This is aimed at  investigating the significance of the dynamic 
interaction under practical circumstances. 

Alternative approaches which provide a mobile manipulator with more flexibility will 
be investigated. The current coordination strategy chooses the preferred operating 
region to be a single point where the manipulability measure is maximized. This 
implies that even a slight departure from the point of the manipulator results in 
the motion of the mobile platform to  compensate it. This may not be desirable in 
certain situations. For instance, if the motion of the manipulator is contained in the 
neighborhood of the optimal posture, the mobile platform then should not respond 



even if the manipulator is deviated from the best posture. 

Effects of an external force will be taken into account under certain circumstances. 
This consideration renders more applicability of the proposed coordination algorithm 
since, in many cases, the interaction with an environment is ubiquitous. 



Appendix A 

Functional Dependence of 
(ij > Inertial Matrix, M~ 

. . 
The objective of this appendix is to  prove that ~ , ( ' 3 )  is independent of platform coor- 
dinates, q,. The proof is a little different from [89] in the sense that we do not assume 
any specific structure for the platform, e.g., serial link chain, while [89] was based on 
the manipulator consisting of N serial links. Therefore some of the matrix simplification 
techniques used in [89] do not apply to our case. 

Let 

Then ~ ! ' j ) ( k )  is defined as 

a% a q  
~ $ ~ j ) ( k )  = trace - J~ 

[ a q i  x] 
Assuming i 2 j without loss of generality, 

i-2 a ~ f - 1  ~ i ~ j ) ( k )  = trace T, A: A: . . . - A:+, . . . A:-' Jk 
8% 

i-2 . . . A;-' Jk = trace [T,A?A: .. . A;-, QiAi - lA?  



where the matrix Qi is 

Q; .If [ O O O 1 for a rotational joint i 
0  0  0 0  
0 0  0 0  

and 

Q~ ef 1 O O O O 1 for a prismatic joint i 
0 0 0 1  

Now we focus on the underbraced portion of Equation (A.3). Denoting the underbraced 
part by U ,  it is represented by 

u = QTAQ; (A.6) 
T 

where A = T: T: Tv T?-~ Ti:.. 

Suppose that T,, T p l ,  and T:_;' are given by the following forms 

where R and p represent 3 x 3 rotational matrix and 3-dimensional translational column 
vector, respectively, and the functional dependence of each term is given by 

Substituting the above symbols into Equation (A.7), A has the following form 

where * = (P: + P : R ~ ) ( R I P ~  t PI) + p T ~ ; p ,  + p:p, + 1. 
Now we examine functional dependence of U = QT A Q; by checking four different 

cases in terms of the type of the two joints, i and j. 

Both i and j are revolute joints 

Then 

~ : j ( k )  is therefore independent of qv, 90, . . . , qj-1. 



Both i and j are prismatic joints 

Then 

0 0 0 0  
0  0  0  0  

Q i = Q j = l 0  i ]  where l = [ i ]  

0 0 0 0  

M ; ~ ( L )  is therefore independent of q,, qo, . . . , qj-1. 

i is revolute and j is prismatic 

Thus A@(L) is independent of q,, qo, . . . , qj-1. 

i is prismatic and j is revolute 

Thus hdfj(k) is independent of q,, qo,. . . , qj-1. 

From Equations (A.9) through (A.12), it is shown that ~ , ' j  is independent of the 
platform variable, q,. 



Appendix B 

Functional Dependence of 
(i> Velocity Term, Cr2 

In this appendix, we examine functioizal dependence of the velocity term in terms of 
platform coordinate, q,,. The velocity term is defined by Equation (2.44) which is restated 
below for convenience. 

m m n  

trace [z ~h qv , j  . qv,k 
j=1 k=l h=i 

Let 
m n m m n  

(i) d$ 

The two terms on the RHS are then defined as 

cZkl(h)  = trace - J~ [ a q V , j a ~ *  " I h , j  . Cik 

( h )  = trace - J~ [ a a , j a q v , k  a.ihT I Rv,j . qv,k 

Assuming i 2 k without loss of generality, 

( h )  = trace [T, A: A: . . . A::: Qi A:-' . . . A;-' Jh  

= trace [A:-' . . . A:-' J~ A;-'~ . . . . , , A;-~T 



where the matrix Q is defined in Equations (A.4) and (A.5). 
Denoting the underbraced portion in Equation (B.2) by V, it is given by 

aTv where I' =  TO^ - T~ T,Y~ 4;. 
k-l 8qv.i 

Suppose that T,, Tf-l, and TiWl are represented by the following forms 

Rk-1 Pk-1 Ri-i pi-i 

The derivative of T, with respect to q,,j is then given by 

Depending on the type of joints, i and k, V is computed to the four different cases. 

Both i and k are revolute joints 

r Both i and k are prismatic joints 

r i is revolute and k is prismatic 

i is prismatic and 6 is revolute 

From Equations (B.6) through (B.9), V is independent of platform variable q, if and 
only if 8 ~ : ~  R, is independent of q,. If the platform involves no rotational motion, then 
R, becomes identity matrix, implying 8 ~ : ~  vanishes. Therefore q,,j is assumed to be a 
rotational variable about an arbitrary axis originated at the origin of the inertial frame. 
Without loss of generality, q,j may be chosen to be a parameter for one of commonly 
used representation methods of rotation, i. e., Euler angles, Roll-Pitch-Yaw angles, angle- 
axis representation [%]. It is then straight forward to show that d ~ : ~  R, becomes a 
skew-symmetric matrix which does not include the variable, q,j. 
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