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ABSTRACT

We show how to treat boundary divergences in heterotic string the-
ory covariantly and unambiguously. The method applies even to theories
with nonvanishing tadpoles; in this case the Fischler-Susskind mechanism
suffices to ensure unambiguous amplitudes. No splitting or projection of
supermoduli space is needed.

One way to quantize a field theory is to quantize small fluctuations about a

classical ground state configuration. At tree level the vanishing vev of the fluctu-

ations at a classical vacuum identifies an extremum of the classical potential. At

higher loop level, if the vev of the fluctuation of any massless state at the classical

vacuum does not vanish, then physical amplitudes will diverge due to processes in

which a state propagates for a very long time before it disappears into the vacuum.

In particular, such divergences signify the instability of the naive tree-level

vacuum, making it unsuitable as a starting point for a perturbation expansion. As

in any perturbative dynamical symmetry breaking problem, one needs to deter-

mine appropriate background shifts order by order in the coupling constants. To do

this it is necessary to cut off diagrams which in real space have long on-shell lines,

and to introduce compensating shifts in the background as a counterterm. The
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good limit to lead to finite, unambiguous amplitudes can be successfully achieved

when the background shift obeys a finite, loop corrected equation of motion as the

cutoff is removed. Then we can obtain the effective action with the true vacuum

configurations as well as a well-defined perturbation theory.

We claim that string theory works same way. If there is any divergence due to

the massless modes, with a good cutoff choice we can renormalize the amplitudes

by shifting the vacuum properly. There is a subtlety not found in field theory. In

string theory, given a surface, it is impossible to say what precisely is the length

of any internal tube. There are no precise interaction points on a surface whose

separation we could measure because we do not have any preferred metric choice1.

The fundamental observation of Fischler and Susskind is that the two trou-

bles we have in string theory, namely, the nonexistence of natural IR cutoff and

the broken world-sheet conformal invariance due to the divergences, cancel each

other[1], leaving us with a well-defined prescription to get the loop corrected string

equation of motion.

The mechanism proposed in [1] and refined in [2][3][4] (and elsewhere) works as

follows. We must impose a single cutoff on both worldsheet conformal field theory

and on our moduli integrals. Then we introduce proper counterterms, requiring

a good limit as the cutoff is removed. These counterterms can be interpreted as

changes in the space-time background fields and thus we find modified field equa-

tions. This cutoff requires us to choose some additional data not contained in the

given Riemann surface. In [1][3][5] and elsewhere this choice was made implicitly

via a coordinate choice. Analogous constructions were given for fermionic strings

in [6][7] and elsewhere.

It is desirable to disclose the geometrical data needed to specify a cut off co-

variantly. Formalisms in which all chosen geometrical objects are explicitly visible

are called “covariant”; thus for example special relativity is not covariant because

the choice of a particular metric has been implicitly made. One normally works in

1 In fact this has been considered as a merit of string theory because the ultraviolet

divergences in quantum field theory are precisely due to the overlapping of such inter-

action points, and string theory can avoid it. While the ultraviolet finiteness in string

theory can be ensured by the modular invariance, still many interesting string theories

suffer from infrared divergences.



special “inertial” coordinates in which this metric is a constant; by acknowledging

the metric and assigning its appropriate transformation properties we can promote

the formulas of special relativity (e.g. Maxwell’s equations) to coordinate-invariant

status.

In the bosonic string case Polchinski used the choice of world sheet metric,

simultaneously cutting off narrow necks and defining the normal ordering needed

to insert background corrections off the usual mass shell[4]. In this talk we will

make a different choice, one better suited to fermionic string, but the principle is

similar[8]. In any case, having brought this choice of extra data into view, one

can investigate the circumstances under which it drops out. This turns out to

determine the background shifts, much as the tree-level condition of conformal

invariance determines the tree-level effective action[9]. Remarkably one finds that

the resulting consistency condition coincides with the stability (no-tadpole) condi-

tion[1], a fact which was less surprising at tree level [9]. The condition also arises

from enforcing brst decoupling, as conjectured by Mansfield [10] and shown in a

simple case in [6][7].

All of our considerations can be extended to the super case [11] [12]. These

will provide a proper way to handle the divergences of string amplitudes at the

boundary of the moduli space. There has been some confusion in the literature

on the super case (see [11]), much of which can be traced to the use of explicit

coordinates for supermoduli space. As discussed above, coordinate-dependent for-

malisms have hidden an implicit choice of cutoff prescription [13][14][15].

To put the issues in focus, suppose we are given a volume form µ on the

complex plane of the form µ = |q|−2 dq ∧ dq̄+ (regular), where q is the standard

complex coordinate. The integral of µ over the unit disk diverges. We can try to

define Iδ =
∫
|q|>δ

µ, but we must keep in mind that this depends not only on δ

and the form µ, but also on the choice of coordinate q used to exclude δ-ball. If

q′ = aq+ bq2 + · · · is another coordinate centered at zero then we can define I ′δ by

excluding {|q′| < δ}; then

I ′(δ) = I(δ)− 4πi log |a|+O(δ). (1)

Thus if we propose to find a “counterterm” to add to I(δ) so as to get a good limit

as δ → 0, the former must also depend on the same choice of q in a way which



cancels the dependence in I(δ). Note that as the cutoff is removed it is only the

magnitude of a, the first Taylor coefficient, which matters; were µ more divergent

we would have needed more coefficients.

In this talk we shall describe the two ingredients used in [11][12]. We use

the extended moduli space [16] to introduce proper cutoffs and factorizations of

string amplitudes. The necessary geometrical facts can be obtained by the the

Beilinson-Kontsevich action of Virasoro on that space [17]. The boundary can be

analyzed by the operator formalism from [18][19](while a general reference is [20]),

and the generalization of the “conformal normal ordering”(CNO) prescription of

Polchinski[21] is used to describe the inserted states which generate the brst

anomaly.

LetMg,n be the moduli space of smooth Riemann surfaces with g handles and

n labeled points. We also denote by Pg,n the extended moduli space of pointed

surfaces, which consists of triples X̃ ≡ (X,Pi, zi) for 1 ≤ i ≤ n. zi are local

complex coordinates defined on some open neighborhood of the marked points Pi

such that zi(Pi) = 0. Of course, the explicit mention of Pi is redundant; once zi

is given we have Pi = {zi = 0}, so sometimes we will write X̃ = (X, zi). Given

X̃ we can always throw away zi to obtain (X,Pi) ∈ Mg,n, i.e. we always have

a projection π : Pg,n → Mg,n. Another way, which will be more suitable to

fermionic strings, to think about π is that π(X, z) = (X, [z]), where [z] is z taken

modulo multiplication by any local holomorphic function not vanishing at P .

Note that for a given puncture different coordinates preserving the origin

always project to the same point in Mg,n. For convenience consider the one

puncture case and let G be some analytic map on the plane C which preserves the

origin. Infinitesimally

G(w) = w −
∞∑

n=0

ǫnw
n+1. (2)

Then the composition z′ = G ◦ z is a new local coordinate centered at the same

point P as before. Since we can compose the maps G, we see that π : Pg,1 → Mg,1

is a principal fiber bundle. The Lie algebra of its group we will call the positive

Virasoro algebra, Vir+.

Even if G moves the origin we can still define the above action, but now it

moves the point P . For example if G(w) = w− ǫ−1, then z
′ = z− ǫ−1 vanishes at



P ′ 6= P , where P ′ is defined precisely by z(P ′) = ǫ−1. In fact we can even define

an action on Pg,1 of any G : C → C which is holomorphic and single-valued on

some neighborhood of the origin (excluding 0 itself) and meromorphic at 0. The

Lie algebra of such G we call Vir. To define the action suppose first that z is a

well-defined map to the unit disk of C and G is well-defined on this disk, except

at 0. Excise the unit z-disk from X and reattach it using the map G restricted

to an annulus. This gives a new surface X ′ with a new local coordinate z′. If we

like, we can instead begin with a smaller disk and rescale everything to arrive at

the same action; then if the original z or G is defined on some arbitrary domain,

we just cut out a small enough disk around P and apply the above prescription2.

Our convention for generators for Vir is that ℓn generates the transformation

G ◦ z = z − ǫzn+1. This diffeomorphism is generated by a vector field v = vz ∂∂z

on C:

ℓn ↔ −zn+1 ∂

∂z
. (3)

Strictly speaking only real vector fields generate diffeomorphisms; thus only

generators of the form ǫnℓn+ ǭnℓ̄n make sense, where the numbers ǭn are complex

conjugate to ǫn. But having said that we see the sense in which ǫnℓn by itself gives

a vector in the complexified tangent of Pg,1. In fact it is a holomorphic tangent.

We will denote the action of Vir on Pg,1 by i
X̃
(v), a tangent to Pg,1 at X̃

corresponding to v ∈ Vir. We have seen that for v ∈ Vir+ this deformation of X̃

is vertical; it does not affect π(X̃) = (X,P ). More generally i
X̃
(v) will project to

some tangent on M, denoted by π∗iX̃(v). We stress that Vir does not act directly

on Mg,1, however; if X̃ = (X,P, z) and X̃ ′ = (X,P, z′) then i
X̃
(v) and i

X̃′
(v) will

in general project to different vectors on Mg,1.

To choose a local coordinate z is to find a section of Pg,1. Let σ be such a

choice: σ(X,P ) ≡ (X,P, z(X,P )). Note that z(X,P )(Q) for fixed X is a function

of two points on X, with the property that z(X,P )(P ) = 0. Also we require that

it is holomorphic in Q, but not necessarily in P or X. We certainly cannot al-

ways choose σ globally. If we could, then dz(X,P )|P would be a nowhere-vanishing

cotangent field, but this does not exist unless X is a torus. If we allow σ to

2 Strictly speaking what we get in this way is not an action of the group of G’s but

rather of its Lie algebra Vir.



jump by a phase, though, then there is no further obstruction. That is, we take

σ to be defined on patches; across patch boundaries we permit jumps of the form

z′(X,P )(Q) = eiα(X,P )z(X,P )(Q) where α is a real function independent of Q. In-

finitesimally, then, z and z′ are related by the action of a single generator, namely

ℓ0− ℓ̄0. We will see that a coordinate family defined up to U(1) will be all we need

to cut off string amplitudes [4].

Given a point (X,P ) of Mg,1 we have no preferred X̃ in Pg,1 which projects

to (X,P ). Even if X̃ is given, we still don’t know how to lift a tangent V ∈

T(X,P )Mg,1 to Ṽ ∈ T
X̃
Pg,1; any Ṽ with π∗Ṽ = V will do. If we have a slice σ near

(X,P ), though, then we can simply require that Ṽ be parallel to the slice [8].3

Suppose for example that near Q our coordinate family obeys

zP (·) = zQ(·)−∆PQ, (4)

where ∆PQ = zQ(P ) is a small number and X is fixed. Certainly zP (·) is centered

at P and holomorphic in both P and Q. Keeping X fixed, a coordinate for the

modulus corresponding to the P in Mg,1 is then just u(X,P ) = zQ0
(P ), the

location of P in one fixed coordinate system.

The most general coordinate family is given to first order in ∆PQ by

zP (·) = zQ(·)−∆PQ +
∞∑

n=0

(En∆PQ + Fn∆̄PQ)zQ(·)
n+1 +O(∆2

PQ). (5)

for some coefficients En, Fn depending on P . The extra terms are just a family of

transformations (2), not necessarily holomorphic in P , reducing to the identity at

P = Q. We then read off

σ∗

(
∂

∂u

)
= i

X̃

(
ℓ−1 − Enℓn − F̄nℓ̄n

)
, general coord family. (6)

The last term comes from the O(∆PQ) term of z̄P (·). If En = Fn = 0, (6) reduces

to CNO family given in [21] as (5) reduces to (4).

After we have the necessary data, we would like a way to exclude a tube around

the divisor ∆ of once-pinched curves, and hence cut off string integrals, which

3 Note that this use of the word “slice” has nothing to do with the slices of [14][15].



typically diverge there. We can do this locally as follows. Choose a coordinate q on

Mg such that q ≡ 0 on ∆ but dq is nowhere zero on ∆. Then let Mg,δ = {|q| > δ}.

The first condition means that dq annihilates the tangent to ∆, or in other words

that dq is in the “conormal” bundle to ∆. The second condition says that dq

“trivializes” the conormal bundle. Since in general this bundle is not trivial,

q cannot be globally defined. Even if it were, however, we would still need to

investigate the effects of different choices of cutoff (choices of transverse coordinate

q) on our answers.

Given any local choice of q as above, and in particular a holomorphic choice,

we can write any other choice as

q′ = F (~m(1), ~m(2), q) · q , (7)

where F is a function on Mg which never vanishes on ∆. In general F is some

arbitrary function. As q → 0, we can find a more special F .

Consider a Riemann surfaceX1 of genus g1 with one puncture P1, and another

X2 of genus g2 with puncture P2. Given a complex number q 6= 0, we would like

to construct a nearly-pinched surface X. Choose local coordinates z1, z2 near

P1, P2. We can now excise the disks {|zi| < |q|} and glue {|q| < |z1| < 1} to

{|q| < |z2| < 1} via the map z2 = q/z1; as q → 0 we recover the pinched surface.

What we have defined is not a unique isomorphism Mg1,1
×C×Mg2,1

≃ Mg but

rather a map [22]

∞ : Pg1,1 × C× Pg2,1 → Mg. (8)

It is certainly many-to-one, since P is infinite-dimensional.

To get coordinates for Mg we begin with a family of X1 parameterized by

mi
(1), i = 1, · · · , 3g1 − 2. (One modulus describes the location of P1) and repeat

for side two. Now choose families σ1,2 of local coordinates. Composing σ1,2 with

the above map ∞ gives us the desired map A : Mg1,1
× C × Mg2,1

→ Mg, and

with its coordinates ~m(1), ~m(2), q for Mg near ∆, but now A depends on σ1 and

σ2. If we change σi to σ
′
i then the same values of ~m(1), ~m(2), q will correspond to

a different surface X ′. Phrased differently, changing σi to σ
′
i induces a coordinate

change

~m(i) 7→ ~m′
(i)(~m(i), q) (9)



q 7→ q′(~m(i), q) . (10)

It is of course the change in q which interests us most.

We claim that under this transformation (7) takes the form

q′ = F1(~m(1))F2(~m(2))q +O(q2) . (11)

The coefficient of q on the right side is the transition function for the conormal

bundle on ∆, since q2 can’t contribute to dq|q=0. We know that ∆ has the product

structure ∆ ≃ Mg1
×Mg2

. What (11) says is that the conormal bundle also has

a natural product structure, which let us introduce the counterterms for each

side independently. It is this “factorization” that makes the Fischler-Susskind

mechanism work; in the fermionic case it will again hold, and it will eliminate the

integration problem[11][12].

The Polyakov measure has an elegant formulation [23][18]. Suppose we want

to insert one external state ψ on X. Given tangent vectors V1, · · · , V̄3g−2 to Mg,1

at some X we seek an alternating form µψ(V1, · · · V̄3g−2). Choose any P, z and

compute |X̃〉. Next choose vi ∈ Vir such that i
X̃
(vi) projects down to Vi. Thus

each vi is ambiguous by the addition of ℓn, n ≥ 0.

Let us define a form on Pg,1

µ̃ψ(v1, · · · , v̄3g−2) :=
(
b(vT1 ) · · · b̄(v̄

T
3g−2)|X̃〉, ψ

)
.

Now suppose ψ is brst-exact, ψ = (Q+Q)λ. We find

µ̃(Q+Q)λ = dµ̃λ. (12)

Sometimes µ̃ψ is actually the lift of a form µψ on Mg,1, just as with the

Polyakov measure [18][8]. This happens when ψ satisfies:

Lnψ = bnψ = 0, n ≥ 0 . (13)

If (13) is not satisfied we can obtain a form µψ by brute force, as follows: locally

choose any section σ of Pg,1 → Mg,1, and let

µψ,σ ≡ σ∗µ̃ψ ,



the pullback. Thus at (X,P ) ∈ Mg,1

µψ,σ(V1, · · · , V̄3g−2) = µ̃ψ(σ∗V1, · · · , σ∗V̄3g−2) , (14)

where the RHS is evaluated at σ(X,P ). As we explained in [8], (14) reproduces

the “b̂” prescription of [4]; the corrections to b−1 are clearly visible in (6) and the

following paragraph. When ψ satisfies the physical conditions (13), the existence

of the global σ does not matter, since in any case µψ,σ is independent of σ.

As pointed out in [4], however, states which violate (13) can enter into the fac-

torization formula. Still no global choice of σ is necessary. The relevant factorizing

states do satisfy a weaker form of (13), namely

(L0 − L̄0)ψ = (b0 − b̄0)ψ = 0. (15)

In this case µψ,σ is at least insensitive to U(1) changes in σ, and we can choose

a global coordinate family defined modulo U(1). Now we need to use (6) in (14)

explicitly. In particular an insertion of ψ will be accompanied by b̂−1
ˆ̄b−1 times

du ∧ dū, where again u is the location of the insertion point and

b̂−1 = b−1 − Enbn − F̄nb̄n. (16)

Substituting the special family with F̄1 = − 1
8R, etc, we recover the prescription

in [4].

In fact the brst anomaly due to the divergences of string amplitudes at the

boundary of the moduli space which can be analyzed in terms of the factorization

formula are precisely due to the massless states satisfying (15), which can be

compensated by a background shift also satisfying (15). Consider the Polyakov

measure and factorize

µ =

∫
d2q

|q|2

∑

a

qha q̄h̄a

〈
b0b̄0φa(P1;z1)

〉

X1

〈
φa(P2;z2)

〉

X2

, (17)

where 〈 〉X is defined with b̂ zero mode insertions and {φa} is a basis of the Hilbert

space at the marked point. Thus we can get the tadpole brst anomaly: insert a

brst exact state Qχ on X1 to get total derivative (12)and integrate the boundary

integral over {|q| > δ} with a cutoff δ to get

anomaly =
∑

ha=h̄a

δ−ha−h̄a

〈
χb̄0φa(P1;z1)

〉

X1

· 2πi · iZa
(g2)

, (18)



where iZa
(g2)

is the vev of φa on X2.

Now we want to have a background shift δ(g2)φb.g. such that

〈
[Qδ(g2)φb.g.](P1;z̃1)

〉

X1

= −anomaly , (19)

where z̃1 = z1/δ. From (15) we must choose δ(g2)φb.g. satisfying (b0−b̄0)δ
(g2)φb.g. =

0. Requiring that (18) cancel (19) gives a condition for the required massless

background shift

Qδ(g2)φb.g. =
∑

ha=h̄a

[δ]−L0−L̄0 b̄0φa · 2πZ
a
(g2)

, (20)

where as δ → 0 only ha = h̄a = 0 survives. (20) leads to the loop corrected effective

field equations. When a background satisfies these equations, brst spurious states

decouple.

Now we can return to the ambiguity schematically given by (1). When we

use the coordinates discussed below (8), we see from (11) that the log in (1) splits

into two pieces. It turns out that (20) ensures that one of these terms vanishes; a

similar term from the insertion of Qχ on X2 takes care of the other[12].

Next, let us consider the fermionic string case. Supermoduli space M̂g has

a compactification by stable super curves[24]. These are built from smooth super

Riemann surfaces (SRS) joined by separated, universal degenerations. Now how-

ever, there are two distinct degenerations [24][25], the super (or Neveu-Schwarz)

pinches and the spin (or Ramond) pinches. In this talk we will deal only with

super pinches, since in the heterotic string in flat spacetime only spacetime bosons

can disappear into the (tree-level) vacuum.

A density of compact support has a well-defined integral (see e.g. [26][20]).

Thus to integrate µ we can take any open cover {Uα} of the compactified M̂g and

any associated partition of unity {ρα}. If a given Uα does not intersect ∆ then we

simply integrate
∫
Uα

ραµ without further difficulty. Thus we see that in principle

there is interesting physics only at the boundary ∆.4 In practice it will almost

certainly be helpful to employ the methods of [14][27][28][15][29][30] to compute

integrals on the interior of M̂g, but these methods are not our present concern.

4 The preceding argument is due to E. Witten.



We do need to understand the boundary. There is a well-defined integral over

a supermanifold-with-boundary [26], so we now turn to the super version of the

remarks made before on how to exclude a tube surrounding ∆.

The space P̂g,1 consists of SRS with a chosen “point” P and local supercon-

formal coordinate z = (z, θ) centered at P . We put “point” in quotes because

in general it is a problematic construction in superspace; in our case however, P

is again wholly redundant once z is given. In fact we can again project P̂g,1 to

M̂g,1 by sending (X, z, θ) to (X, [z]) where [z] is z taken modulo multiplication

by invertible local functions. Given such a z we recover P as “the point where

z = Dz = 0,” and clearly f · z defines the same P for invertible f .

We now get an action of the Neveu-Schwarz algebra Diff S1|1 on P̂g,1. The

algebra consists of superconformal vector fields meromorphic near the origin of

the z, θ plane. Once given a fixed local coordinate z, θ we can obtain a coordinate

family analogous to (6), which we will call the generalization of the “superconfor-

mal normal ordering” (SCNO) family. But let us first consider the SCNO family

analogous to (4). Suppose that Q is a point located at (z, θ) = (u, ζ). (More

precisely, Q = [z − u+ ζθ].) Then to Q we associate

(zQ, θQ) = (z − u+ ζθ, θ − ζ), (21)

a superconformal coordinate centered at Q. This association is not natural, as one

finds by starting with another (z′, θ′). For now, however, (z, θ) will be fixed while

(zQ, θQ) vary with Q.

The infinitesimal transformation ǫℓ−1 takes (z−u+ ζθ, θ− ζ) to (z−u+ ζθ−

ǫ, θ− ζ). But the same thing can be accomplished by sending u 7→ u+ ǫ. We thus

have

σ∗

(
∂

∂u

∣∣∣
Q

)
= iσ(Q)(ℓ−1), SCNO family. (22)

A similar argument shows that

σ∗

(
∂

∂ζ

∣∣∣
Q
+ ζ

∂

∂u

∣∣∣
Q

)
= −2iσ(Q)(g−1/2), SCNO family. (23)

It will be convenient to define a function on Mg,1 with values in the algebra:

k−1/2 ≡ g−1/2 +
1
2ζℓ−1 . (24)



Then

σ∗

(
∂

∂ζ

∣∣∣
Q

)
= −2iσ(Q)(k−1/2) . (25)

Just as before, a more general coordinate family differs from (21) by a family of

superconformal transformations; for such a σ the RHS of (22), (23), (25) receive

corrections involving the derivatives of σ, similar to (6).

Once again we can make a plumbing construction: given SRS with punc-

tures and local superconformal coordinates we sew them to get a pinching family

parametriz even and odd moduli ~mi, ~τi, i = 1, 2, and an even coordinate t[25]. (t

is the square root of our previous q.) Again a modification of z1, z2 by rescaling

(ℓ0 transformation) rescales t, while other changes add only O(t2) terms:

t′ = F1(~m1, ~τ1)F2(~m2, ~τ2)t+O(t2), (26)

analogous to (11). Thus we once again find a product structure both at ∆ and

near ∆, as expressed by the preferred family of pinching coordinates related by

(26).

For heterotic string the Polyakov density now takes a form very parallel to the

bosonic case [31][32][19][33]. If V1, · · · , V3g−3,Υ1, · · · ,Υ2g−2 are a basis of tangents

to M̂g with Vi even and Υα odd, define corresponding v1, · · · ν2g−2 in the Neveu-

Schwarz algebra and let

µ(V1, . . . , V̄1, . . . ,Υ1, . . .) ≡
〈[
B̄(v̄3g−3) · · · δ[B(ν2g−2)] · · ·B(v3g−3) · · ·

]
(P ;z)

〉

X
.

(27)

The operators δ[B(ν)] are discussed extensively in [32][19][33]. With this definition

µ transforms as a density. Similarly one can define µ̃ψ for an inserted state ψ,

and relation (12) again holds. Given a family σ of superconformal coordinates,

one again defines a density µψ,σ on M̂g using (14). For the SCNO coordinate

family described before we see that an insertion of ψ should be accompanied by

B(ℓ−1)B̄(ℓ̄−1)δ[B(−2k−1/2)], times [dudū|dζ], where k−1/2 is defined in (24). The

insertion equals − 1
2b−1b̄−1δ[β−1/2 +

1
2ζℓ−1], which in turn is − 1

2b−1b̄−1δ(β−1/2).

Performing the integral over ζ then differentiates |X̃〉, since ζ enters nowhere else;

thus we recover the usual picture-changing formalism.

As in the bosonic case for the factorization of the fermionic string amplitudes

on the extended moduli space we need to insert the states with the generalization



of the SCNO coordinate family. This generalization accompanies the corrections

corresponding to the vector fields extending to holomorphically to the pinching

point.

Now again with the necessary background shifts to compensate the brst

anomaly, we can define unambiguous, finite integral by requiring the cancellation of

choice dependence, which leads to the loop corrected equations of motion, ensuring

the brst decoupling[11][12].
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