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ABSTRACT 

 

ENVIRONMENTAL AND GENETIC INFLUENCE ON COGNITION IN ALS-FTD 
SPECTRUM DISEASE 

 

Katerina Placek 

 

Corey T. McMillan 

Murray Grossman 
 

Amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD) are 

earlier-onset, fatal neurodegenerative diseases that progressively rob affected 

individuals of their cognitive faculties and their ability to move freely, produce 

coherent speech, and be their former selves. Diagnosis precedes death by <10 

years, and current interventions are limited to palliative or disease-slowing 

therapies. Recent seminal research has revealed that ALS and FTD are 

phenotypic extremes on a continuous spectrum with shared symptoms, 

pathobiology, and genetics. Despite increased knowledge of ALS-FTD spectrum 

disease, prognostication and therapeutic development are limited by immense 

phenotypic heterogeneity. One source of this heterogeneity is cognition: 

individuals across the ALS-FTD disease spectrum suffer varying degrees of 

decline in cognition due to neurodegeneration in the frontal and temporal lobes. 

Cognition is inextricably linked to functional ability and survival, and is thus a 

promising candidate for a prognostic marker and therapeutic target. With this in 

mind, the goal of my thesis work is to elucidate factors that influence the 

heterogeneity of cognitive impairment and corresponding frontotemporal 

neurodegeneration in ALS-FTD spectrum disease. I pursue this goal by studying 
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 clinical, demographic, genetic, anatomic, and biologic data from deeply- 

phenotyped patient populations and applying robust statistical approaches 

including multimodal, nonparametric, and machine learning analyses. My work 

demonstrates strong environmental and genetic contribution to cognition and 

frontotemporal disease anatomy in ALS-FTD spectrum disease, and suggests 

their importance to advancements in clinical care and therapeutic development. 
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CHAPTER 1: INTRODUCTION 
 

In this chapter, I summarize prior scientific contributions to the study of factors 

influencing cognition in ALS-FTD spectrum disease. I begin by providing a broad 

overview of ALS-FTD spectrum disease with a focus on shared clinical, biologic, 

and genetic features. I then turn to the specific issue of heterogeneity in cognitive 

impairment, and review preliminary evidence for environmental and genetic 

influence on its presentation. I finally discuss how analytic approaches 

incorporating multimodal data sources and nonparametric and data-driven 

techniques can be used to study outstanding questions regarding environmental 

and genetic influence on cognition in ALS-FTD spectrum disease. 
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ALS-FTD SPECTRUM DISEASE 
 

Amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD) are 

earlier-onset, fatal neurodegenerative diseases that progressively rob affected 

individuals of their cognitive faculties and their ability to move freely, to produce 

coherent speech, and to be their former selves. Diagnosis precedes death in 

typically less than ten years, and currently-available treatments are only palliative 

or serve to slow disease course. Historically, ALS and FTD comprised separate 

areas of research due to their respective neurological classifications as diseases 

of the motor system or of higher order cognition and behavior. These conditions 

are modernly thought of as two extremes on a continuous ALS-FTD disease 

spectrum rather than distinct neurodegenerative conditions due to seminal 

research from the past two decades demonstrating considerable overlap in 

clinical presentation, common underlying pathobiology and neuroanatomy, and 

shared genetic architecture. In this section, I will first briefly review the classic 

disease profiles of ALS and FTD, and then discuss key clinical, pathobiologic, 

neuroanatomic, and genetic evidence for the existence of these 

neurodegenerative conditions along a continuous disease spectrum. 

 
 

Disease Profile of ALS 
 

ALS, which is also referred to colloquially as Lou Gehrig’s disease in the United 

States and as motor neuron disease (MND) in the European Union, is 

characterized by progressive degradation of the voluntary motor system resulting 

in paralysis, and ultimately death. Symptom onset occurs from ages 40 - 70 but 
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is also noted in individuals in the 20s and 30s, and a recent meta-analysis found 

that 1.75 (1.55-1.96)/100,000 people per year worldwide are newly affected 

(Marin et al. 2017). Diagnosis requires clinically-evident symptoms of upper 

motor neuron (UMN) degeneration (e.g. spastic tone, deep tendon reflex) and 

clinical, neuropathological, or electrophysiological evidence of lower motor 

neuron (LMN) degeneration (e.g. weakness, muscle atrophy) (Brooks et al. 

2000). Symptoms can occur in bulbar or spinal musculature and on ipsilateral or 

contralateral sides of the body. Because ALS is a progressive disease and 

patients may come to clinical attention with a sub-clinical syndrome, the 

internationally recognized El Escorial criteria provide four categories of ALS 

based on diagnostic certainty: Suspected, Possible, Probable, or Definite ALS. 

Worsening of neuromuscular function over time is accompanied by progressive 

gray matter (GM) loss in the motor cortex and white matter (WM) degeneration in 

the corticospinal tracts and corpus callosum as evident through magnetic 

resonance imaging (MRI) and diffusion tensor imaging (DTI) (Foerster, Welsh, 

and Feldman 2013; Bede and Hardiman 2018), although extra-motor 

neurodegeneration is also observed. An estimated 10% of patients with ALS 

have a family history of disease often associated with a genetic mutation in 

C9ORF72 (Renton et al. 2011; DeJesus-Hernandez et al. 2011), SOD1 (D. R. 

Rosen et al. 1993), or TARDBP (Kabashi et al. 2008; Sreedharan et al. 2008); 

and a minority of patients (~10%) without a family history also have C9ORF72 

mutations (Taylor, Brown, and Cleveland 2016). Disease mechanism in patients 

with and without a genetic mutation is yet unknown; abnormal protein inclusions 
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composed of TDP-43 are found post mortem in ~97% cases, with the remaining 

showing fused in sarcoma (FUS) pathology associated with point mutations in 

the FUS gene (~1%) or showing superoxide dismutase pathology associated with 

point mutations in the SOD1 gene (Al-Chalabi et al. 2012). Death typically occurs 

20 - 48 months from initial symptom onset (Chiò et al. 2009), and is most 

frequently due to respiratory failure but can also result from other causes 

including cardiac failure (Corcia et al. 2008; Gil et al. 2008; D. R. Rosen et al. 

1993). Currently, Riluzole (brand name: Rilutek) and Edavarone (brand name: 

Radicava) are the only two treatments for ALS approved by the Food and Drug 

Administration (FDA), and have mild impact on disease course and nonspecific 

mechanisms of action. Riluzole targets excitotoxicity as a purported cause of 

neuronal death (Van Den Bosch et al. 2006), and its potential mechanisms of 

action include the inhibition of glutamatergic transmission, inactivation of voltage- 

gated sodium channels, and interference with events following transmitter 

binding at excitatory amino acid receptors (Doble 1996). Meta-analysis of four 

clinical trials indicate that Riluzole usage mildly prolongs survival by 2-3 months 

(R. G. Miller et al. 2007). The exact mechanism of action of Edavarone is also 

unknown, but its therapeutic effect of slowing the rate of progression of functional 

motor disability is attributed to its antioxidative properties (Cruz 2018; Abe et al. 

2014). Current clinical and preclinical therapeutic development for ALS includes 

highly-specific antisense oligonucleotide (ASO) therapies for patients carrying 

SOD1 mutation or C9ORF72 repeat expansion and formulation of viral therapies 

(Ly and Miller 2018). 
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Disease Profile of FTD 
 

Profound and worsening impairments in higher-order cognition, language, and 

social behavior comprise the predominant symptoms of FTD. FTD is named for 

the cerebral loci of neurodegeneration – in the frontal and temporal lobes - 

responsible for three main observed syndromes: behavioral variant FTD 

(bvFTD), semantic variant primary progressive aphasia (svPPA), and nonfluent 

agrammatic primary progressive aphasia (naPPA). Each syndrome has its own 

diagnostic criteria, with executive deficits, personality change, and apathy 

characterizing bvFTD (Rascovsky et al. 2011), and discrete impairments in word 

comprehension and agrammatism characterizing svPPA and naPPA, 

respectively (Gorno-Tempini et al. 2011). The bvFTD syndrome is roughly four 

times more prevalent than naPPA or svPPA (Hogan et al. 2016). Age at 

symptom onset ranges from 21-80 years, with most cases occurring between 40- 

64, (Coyle-Gilchrist et al. 2016) and meta-analyses estimate incidence at 2.7- 

4.1/100,000 (Onyike and Diehl-Schmid 2013), making FTD the 2nd most common 

form of dementia among individuals less than age 65. Clinical FTD syndromes 

are distinguished by progressive patterns of atrophy observed through structural 

MRI (Meeter et al. 2017). Early atrophy in the orbital and dorsolateral prefrontal 

cortex, anterior cingulate cortex, and insula are observed in bvFTD (Pan et al. 

2012), whereas early atrophy in the left anteroinferior temporal lobe are observed 

in svPPA, and in the left inferior frontal cortex and insula in naPPA (Gorno- 

Tempini et al. 2004). All three syndromes feature progressive atrophy over 

disease course, with subcortical structures including the thalamus, basal ganglia, 
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and amygdala increasingly involved in bvFTD (Devenney et al. 2015), and 

increasing extent of left and right hemispheric atrophy in svPPA and naPPA 

(Rogalski et al. 2011; Bonner, Ash, and Grossman 2010; Grossman 2010). 

Around 30% of FTD patients have a family history of disease which can be 

largely attributed to pathogenic mutations in C9ORF72, MAPT, and GRN 

(Greaves and Rohrer 2019), although C9ORF72 mutations are also found in 

<10% of sporadic cases (Majounie et al. 2012). FTD is pathologically 

heterogeneous, and post-mortem study shows abnormal protein inclusions in the 

brain tissue composed of pathologic forms of TDP-43 in ~45-50% of cases, Tau 

in ~45% of cases, and fused-in-sarcoma (FUS) protein in <10% of cases (Irwin, 

Cairns, et al. 2014). The underlying pathologic protein can only be ascertained 

through association with a known pathogenic mutation (e.g. TDP-43 with 

C9ORF72) or, in mutation-negative cases, upon autopsy (Irwin, Cairns, et al. 

2014). Death can occur as rapidly as 2 years and as prolonged as 12 years after 

initial symptom onset (Coyle-Gilchrist et al. 2016). There is no FDA-approved 

therapy for FTD; current treatments are palliative in nature and include 

antidepressant and antipsychotic medications for symptom management (Boxer 

and Boeve 2007; Tsai and Boxer 2016). Current therapeutic development 

includes ASOs directed towards patients carrying C9ORF72 repeat expansions 

and MAPT mutations, adeno-associated virus (AAV) therapies directed towards 

patients carrying GRN mutations, and monoclonal antibodies (mAb) targeting 

pathologic Tau (Boxer et al. 2020). 
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Clinical Features of ALS-FTD Spectrum Disease 
 

While symptomatically distinct in canonical diagnoses, FTD and ALS co-occur 

and their considerable phenotypic overlap confers clinically-observable evidence 

for their existence along a continuous disease spectrum. Broad recognition of 

phenotypic overlap between ALS and FTD is noted in scientific and medical 

literature beginning in the 1980s and 1990s (Neary et al. 1990), however early 

case studies dating to the 1920s provide the first known descriptions of 

phenotypic overlap (Nitrini 2014). The earliest known report comes from France 

in 1921, and describes a male patient with ALS who developed impaired 

cognition late in disease course. Three years later, in 1924, Brazilian physicians 

described a 25 year-old female patient who exhibited "absolute indifference to 

everything around her" and whose “association of ideas was done extravagantly" 

– now recognized as symptoms of apathy and executive dysfunction often 

observed in bvFTD; they further noted that her health declined before her death 

one year later, leaving her ultimately bed-ridden due to severe muscular atrophy. 

Contemporary population-based studies indicate 10-15% of patients with 

ALS meet criteria for a diagnosis of FTD and that nearly half manifest non- 

dementing impairment in cognition and/or behavior consistent with extra-motor 

frontal and temporal lobe neurodegeneration (Montuschi et al. 2015; Phukan et 

al. 2012; Elamin et al. 2013; Beeldman et al. 2016). Importantly, these 

impairments are not confounded by motoric disability, suggesting that 

neurological function beyond the motor system is affected in ALS. Point 

estimates of the proportion of the ALS patient population exhibiting behavioral 
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dysfunction and impairments in discrete cognitive domains have historically 

differed, due in part to the use of different neuropsychological screening tools. 

Current estimates have improved due to the use of a validated, now widely- 

accepted, screening instrument specifically designed to measure cognition, 

language, and behavior in the context of debilitating motor impairment which is 

inherent to ALS (Abrahams et al. 2014). Behavioral dysfunction occurs most 

frequently in ~40% of patients, and 20-30% of patients show executive, verbal 

fluency, and language impairments; impairments memory and visuospatial 

function are less common, affecting only 9-12% of patients (Crockford et al. 

2018). Importantly, comorbid FTD and the development of extra-motor 

impairments in cognition, language, and/or behavior in patients with ALS are 

associated with more accelerated functional decline (Elamin et al. 2013), 

advanced disease stage, (Crockford et al. 2018) and shorter survival (Elamin, 

Phukan, Bede, Jordan, Byrne, Pender, and Hardiman 2011a; Hu et al. 2013), 

relative to motor-only ALS. 

Relatively less is known about the development of ALS in patients with 

initial  FTD.  Population-based  studies  report  that  4-9%   of patients   with   

FTD develop symptoms of ALS (Rosso, Donker Kaat, et al. 2003; Mercy et al. 

2008; J. K. Johnson et al. 2005; Seelaar et al. 2007); however, few studies 

specify the degree of UMN and LMN involvement, and other clinical descriptors 

of ALS (e.g. site of symptom onset, El Escorial diagnosis) are lacking. A smaller 

cohort-based clinical study including 38 FTD patients reported higher 

percentages of FTD patients who also meet criteria for ALS (~13%) and a higher 
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percentage of patients with FTD who show clinical evidence of minor motor 

system dysfunction such as occasional fasciculations, mild wasting or weakness 

(~30%) (Burrell et al. 2011); these differing estimates likely reflect sample 

characteristics. Others have also reported similar proportions based on post 

mortem evidence of motor neuron degeneration in patients diagnosed with FTD 

during life (Josephs et al. 2006). 

Formal diagnostic categories for the co-occurrence of ALS and FTD were 

not established until 2013 with the so-called ‘Strong criteria’ for the diagnosis of 

frontotemporal cognitive and behavioral syndromes in ALS (Strong et al. 2009). 

Revised as of 2017 to incorporate additional language and social cognition 

deficits (Strong et al. 2017), the Strong criteria now include four syndromes 

collectively considered as ‘ALS frontotemporal spectrum disorder’: ALS- 

cognitively impaired (ALSci), ALS-behaviorally impaired (ALSbi), ALS-cognitive- 

behavioral impairment (ALSbci), and ALS-FTD. ALSci and ALSbi are diagnosed 

based on discrete impairments in cognition (including verbal fluency or at least 

two demonstrated executive or language impairments) or behavior (including 

apathy, or at least two other behavioral symptoms), respectively, whereas 

ALSbci captures individuals who fulfill criteria for both ALSci and ALSbi. The 

diagnostic category of ALS-FTD is more phenotypically heterogeneous, and 

applies to individuals with evidence of progressive deterioration of behavior or 

cognition who also have either 1) at least three behavioral or cognitive symptoms 

of bvFTD, 2) at least two behavioral or cognitive symptoms of bvFTD together 

with loss of insight or psychotic symptoms, or 3) fulfillment of criteria for svPPA or 
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naPPA. 
 

No distinct classification criteria exist for motor neuron degeneration 

symptoms in the context of FTD, and El Escorial classification is applied as for 

patients with initial ALS. The labels ‘ALS-FTD’, FTD with motor neuron disease 

(FTD-MND), and FTD-ALS are all used in the literature to categorize patients 

with initial FTD who also show symptoms of ALS; here, I will use the term FTD- 

ALS to denote this category of patients. This term inherently describes a 

heterogeneous group of patients who may have initial bvFTD, naPPA, or svPPA 

followed by comorbid with symptoms of ALS, and indeed bvFTD-ALS, naPPA- 

ALS, and svPPA-ALS patients have all been clinically observed (Vinceti et al. 

2019; Coon et al. 2011), although data on relative frequency are lacking. There is 

evidence of motor phenotype and survival differences between FTD-ALS 

phenotypic subgroups, such that in one study, language-dominant FTD-ALS was 

associated with bulbar-onset motor symptoms and shorter survival in comparison 

with bvFTD-ALS (Coon et al. 2011), consistent with shorter survival from 

symptom onset in bulbar-onset ALS (Chiò et al. 2009). 

 
 

Common Pathobiology of ALS-FTD Spectrum Disease 
 

Patterns of neurodegeneration in ALS and FTD reflect differences in motoric, 

cognitive-behavioral, and blended phenotypes, but typically involve a common 

pathologic substrate and overlap in affected neuroanatomic regions link the two 

diseases in pathobiology. 

ALS and FTD frequently share a common underlying proteinopathy, with 
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cytoplasmic inclusions predominantly composed of TDP-43, an acronym for 

transactive response DNA-binding protein – 43 kiloDalton, found in ~97% of ALS 

and ~50% of FTD cases post mortem (Neumann et al. 2006; Arai et al. 2006). 

TDP-43 is encoded by the TARDBP gene on chromosome 1 and is ubiquitously 

expressed in tissues throughout the body. In its non-pathologic state, TDP-43 is 

localized to the nucleus where it serves to regulate transcription, stabilize RNA, 

and process mRNAs for alternative splicing (Ratti and Buratti 2016). Researchers 

have also demonstrated a role for TDP-43 in axonal outgrowth with particular 

implications for motor neuron development (Fallini, Bassell, and Rossoll 2012). 

Pathologic TDP-43 differs from normal TDP-43 in that it is mislocalized from the 

nucleus to the cytoplasm, undergoing hyperphosphorylation and – in most, but 

not all (E. B. Lee et al. 2017), cases – ubiquitination, which encourage its affinity 

to aggregate into abnormal inclusions (Buratti and Baralle 2012). The exact 

pathomechanism of TDP-43 inclusions is debated (E. B. Lee, Lee, and 

Trojanowski 2011), and evidence for both loss of function and gain of function 

mechanisms has been presented (Hergesheimer et al. 2019). 

Though its pathomechanism remains unknown, TDP-43 pathology 

demonstrates a key role in the neurodegenerative phenotypes across the ALS- 

FTD disease spectrum. TDP-43 pathology is specified into five subtypes (A, B, C, 

D, and E) based on ubiquitination, cortical distribution, and neuronal morphology, 

and each subtype corresponds to particular clinical syndromes (Mackenzie et al. 

2011; Mackenzie and Neumann 2017; E. B. Lee et al. 2017). For example, Type 

A pathology features many neuronal cytoplasmic inclusions (NCIs) and short 
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dystrophic neurites (DNs), predominates in cortical layer II, and is most 

commonly observed in bvFTD and naPPA phenotypes (Mackenzie et al. 2011). 

Type B pathology features moderate NCIs, few DNs, and distribution across all 

cortical layers (Mackenzie et al. 2011). Type B pathology predominates in ALS 

and in FTD with motor neuron degeneration, leading some to propose subtype 

specification as an account for clinical overlap between ALS and FTD (Burrell et 

al. 2016). 

Disease staging systems for TDP-43 pathology in ALS and bvFTD 

demonstrate neuroanatomic overlap in disease vulnerability and suggest the 

sequential spread of pathology. In a pathological staging system based on post 

mortem study of 39 bvFTD cases, TDP-43 pathology is proposed to disseminate 

from the orbital frontal cortex, gyrus rectus, and amygdala caudally to the motor 

cortex, and – most rarely - the visual cortex (Brettschneider et al. 2014). In a 

similar staging system in 76 ALS cases, TDP-43 pathology is proposed to 

disseminate sequentially from the motor cortex, brainstem motor nuclei, and 

spinal motor nuclei rostrally to the prefrontal and temporal cortices, with rare 

involvement of the hippocampus (Brettschneider et al. 2013); others have 

additionally shown that extra-motor pathologic burden is more severe in cases 

with clinical phenotypes of ALS-FTD and ALSci relative to ALS (Prudlo et al. 

2016). The sequential involvement of anatomic regions itself suggests a 

pathologic ‘spread’ underlying the course of ALS-FTD spectrum disease, and in 

vitro and non-human studies indeed suggest evidence of cell-to-cell spread of 

pathologic TDP-43 aggregates (Braak et al. 2013). Isolated pathologic 
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aggregates spread cell-to-cell in vitro in a prion-like manner (Feiler et al. 2015; 

Nonaka et al. 2013), and introduction of human pathologic TDP-43 in a mouse 

model recapitulates sequential staging seen in human studies (Porta et al. 2018). 

Together with staging studies in humans, this research indicates similar 

vulnerability of the motor, frontal, and temporal cortices to TDP-43 pathology 

across the ALS-FTD spectrum in an anatomically contiguous manner. 

 
 

Shared Genetic Architecture of ALS-FTD Spectrum Disease 
 

In addition to overlapping clinical phenotypes and common pathobiology, FTD 

and ALS are further linked through a shared genetic architecture. This complex 

architecture features pathogenic mutations occurring in familial and sporadic 

forms of disease, as well as susceptibility loci that confer increased risk of ALS- 

FTD spectrum disease including in cases negative for pathogenic mutations. 

Before discussing pathogenic mutations and risk factors in the ALS-FTD 

spectrum, it is necessary to clarify some key terminology. ‘Familial’ refers to the 

occurrence of a disease in an individual with a family history of that, or a similar, 

disease, and ‘sporadic’ refers to the occurrence of a disease in an individual with 

no known family history. The distinction between familial and sporadic disease 

may be subject to ascertainment bias due to differences in history-taking or 

applied family pedigree criteria (Turner et al. 2017). An estimated 30% of FTD 

cases and <10% of ALS cases occur in individuals with familial disease (Ferrari, 

Manzoni, and Hardy 2019), with the remainder classified as apparent sporadic. 

The phrases ‘familial disease’ and ‘genetic disease’ are often conflated in the 
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literature, as the majority of familial disease can be attributed to a known 

pathogenic mutation inherited in a Mendelian fashion. However, pathogenic 

mutations can also occur in individuals with sporadic disease (i.e. no family 

history of disease). The term ‘pathogenic’ is used to describe genetic mutations 

that are capable of causing disease, whereas susceptibility loci describe allelic 

variations that are associated with disease but not (or not yet) causally linked to 

disease incidence. These loci are typically identified through genome-wide 

association studies (GWAS), and in many cases consist of single base-pair 

changes in the genome called single nucleotide polymorphisms (SNPs). 

Pathogenic mutations in the same genes are found in individuals with 

FTD, ALS, and blended ALS-FTD spectrum phenotypes. Interestingly, 

pathogenic mutations in TARDBP - the gene encoding TDP-43 - are rare (Van 

Deerlin et al. 2008; Kabashi et al. 2008), observed in an estimated <1% of 

familial and sporadic ALS (Turner et al. 2017) and even less frequently in  

patients with FTD (Benajiba et al. 2009; Caroppo et al. 2016). Hexanucleotide 

(GGGGCC) repeat expansions in the noncoding promoter region of C9ORF72 on 

chromosome 9 are the most common genetic cause of both familial and sporadic 

forms of disease across the ALS-FTD spectrum (Renton et al. 2011; DeJesus- 

Hernandez et al. 2011). A 2012 study of 4448 patients with ALS and 1425 

patients with FTD reported that 37.6% of familial ALS and 25.1% of familial FTD 

harbor C9ORF72 mutations, and that 7% of sporadic ALS and 6% of sporadic 

FTD patients harbor C9ORF72 mutations (Majounie et al. 2012). Translation of 

the hexanucleotide repeat yields five forms of dipeptide repeat proteins (DPRs) 
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that aggregate to form intracellular inclusions (Mori et al. 2013), and have 

demonstrated neuronal toxicity (Freibaum and Taylor 2017). Moreover, 

C9ORF72 repeat expansions are causally associated with TDP-43 pathology 

(Chew et al. 2015), and aggregated DPRs both induce and are induced by 

intracellular aggregation of phosphorylated TDP-43 (Nonaka et al. 2018; 

Solomon et al. 2018), suggesting a cumulatively synergistic pathology. 

Several additional - although rare - pathogenic mutations in other genes 

have also been causally associated with ALS, FTD, and blended ALS-FTD 

spectrum phenotypes. These include mutations in coding for proteins including 

sequestosome-1 (SQSTM1) (Le Ber et al. 2013), ubiquilin-2 (UBQLN2) (Synofzik 

et al. 2012), optineurin (OPTN) (Pottier et al. 2015), coiled-coil-helix coiled-coil- 

helix domain containing 10 (CHCHD10) (Bannwarth et al. 2014), TANK binding 

kinase 1 (TBK1) (Freischmidt et al. 2015), dynactin-1 (DCTN1) (Münch et al. 

2005), cyclin-F (CCNF) (Williams et al. 2016), and TIA1 (TIA1) (Mackenzie et al. 

2017). Interestingly, these rare mutations offer additional genetic insight into 

molecular mechanisms of ALS-FTD spectrum disease and implicate cellular 

waste disposal pathways, immune system signaling, and gene expression 

regulation (Ferrari, Manzoni, and Hardy 2019). 

Susceptibility loci further suggest shared genetic architecture along the 

ALS-FTD disease spectrum. Many case-control GWAS have been separately 

performed in ALS (Nicolas et al. 2018; van Es et al. 2009; van Es et al. 2007; van 

Rheenen et al. 2016) and in FTD (Ferrari et al. 2014; Ciani et al. 2019). One 

GWAS from 2010 focused on ALS-FTD disease spectrum phenotypes with 
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confirmed TDP-43 pathology (N=515) and identified multiple SNPs near 

TMEM106B mapping to a single linkage disequilibrium block on 7p21 (Van 

Deerlin et al. 2010); however, this study was restricted to unrelated individuals 

with mutations in GRN. A recent repeat of this GWAS approach in 517 unrelated 

Caucasian patients who screened negative for GRN and other pathogenic 

mutations associated with ALS-FTD spectrum disease identified additional SNPs 

near C9ORF72, UNC13A, DPP6, and HLA-DQA2 (Pottier et al. 2019). A joint 

meta-analysis of public GWAS data from 4,377 ALS patients and 435 pathology- 

proven FTD patients with TDP-43 also demonstrated shared genetic risk across 

the ALS-FTD spectrum at SNPs near UNC13A and SPG8, with p values for the 

locus near UNC13A increasing in significance after conditioning on C9ORF72 

(Diekstra et al. 2014). More recently, novel approaches incorporating genome- 

wide conjunction and conditional analyses studied the joint association between 

discrete phenotypes along the ALS-FTD spectrum (ALS, FTD with TDP 

pathology, sporadic FTD) and additional neurodegenerative phenotypes 

(Alzheimer disease, corticobasal degeneration, Parkinson disease, and 

progressive supranuclear palsy) (N=124,876), conditioning p values for identified 

loci based on shared association with two or more phenotypes (Karch et al. 

2018). Over 20 loci were identified, including at known loci (e.g. near UNC13A 

and C9ORF72) and at novel loci (e.g. near NSF and ERGIC1). Additional 

approaches further suggest that susceptibility loci may contribute to the genetic 

architecture underlying the ALS-FTD spectrum disease in a polygenic manner, 

though this was demonstrated in a population of healthy individuals from the UK 



17 
 

Biobank study (Hagenaars et al. 2018). 

 
 

Neuroanatomy of ALS-FTD Spectrum Disease 
 

The lack of current neuroimaging biomarkers for TDP-43 pathology precludes 

study of its anatomic distribution in vivo (Feneberg et al. 2018), but MRI and DTI 

enable the in vivo study of neurodegeneration across the ALS-FTD spectrum and 

suggests similar anatomic overlap as seen in post mortem study of TDP-43 

pathology. Cross-sectional studies of patients grouped by diagnosis recapitulate 

known disease neuroanatomy associated with ALS and FTD phenotypes (Omer 

et al. 2017), and demonstrate anatomic overlap in the orbitofrontal and anterior 

cingulate cortices, corticospinal tracts, and corpus callosum including between 

ALS patients without clinically-evident cognitive impairment and bvFTD patients 

(Crespi et al. 2018; Ferraro et al. 2018). Blended ALS-FTD disease spectrum 

phenotypes (e.g. ALS-FTD, ALSci, FTD-ALS) show more extensive 

neurodegeneration relative to discrete ALS or FTD syndromes. For example, one 

recent study of ALS in the context of language-variant FTD observed left 

precentral gyrus GM atrophy in patients with naPPA-ALS in addition to canonical 

naPPA-associated atrophy in the left inferior frontal gyrus, pars opercularis and 

triangularis, and left temporal pole (Vinceti et al. 2019). ALSci and ALS-FTD 

patients show increasing extramotor GM neurodegeneration in regions including 

the inferior, middle, and superior temporal gyri, orbitofrontal cortex, superior 

frontal gyrus, anterior cingulate cortex, and insula relative to frank ALS (Schuster 

et al. 2014; Agosta et al. 2016), and WM damage extending beyond the 



18 
 

corticospinal tracts and corpus callosum to include the uncinate and superior 

longitudinal fasciculi (Sarro et al. 2011; Agosta et al. 2016). 

MRI-based disease-staging systems and longitudinal neuroimaging 

provide perhaps the most approximate insight into the spread of ALS-FTD 

spectrum disease in vivo. DTI data from patients with ALS and from patients 

bvFTD have been staged cross-sectionally and longitudinally according to 

severity and extent of WM neurodegeneration and confirm anatomic patterns of 

TDP-43 pathology staging systems (Kassubek, Müller, Del Tredici, Lulé, et al. 

2018; Kassubek, Müller, Del Tredici, Hornberger, et al. 2018; Kassubek et al. 

2014; Müller and Kassubek 2018). Others have staged cross-sectional 

multimodal imaging data with neuropsychological evaluation to demonstrate 

sequential cognitive involvement corresponding to GM and WM 

neurodegeneration in ALS, suggesting earlier-stage involvement of the middle 

frontal cortex relating to executive impairment (Lulé et al. 2018). Longitudinal 

study of GM atrophy in ALS, while inherently limited by shorter patient survival, 

demonstrates progressive degeneration extending from the motor cortex rostrally 

and inferiorly into frontotemporal regions, and to the thalamus and caudate 

bilaterally (Menke et al. 2014). In FTD, longitudinal study of patients grouped by 

clinical variant shows worsening of focal atrophy; for example svPPA show 

greater percent atrophy changes in the left inferior temporal lobe relative to 

bvFTD, whereas bvFTD show greater percent atrophy in the ventromedial 

prefrontal cortex relative to naPPA (Lu et al. 2013). 
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ENVIRONMENTAL AND GENETIC INFLUENCES ON COGNITION 
 

Though a phenotypic spectrum, shared pathobiology and neuroanatomy, and 

common genetic architecture demonstrate a robust link between ALS and FTD, 

considerable heterogeneity between affected individuals precludes prognosis 

and therapeutic development. One source of heterogeneity of particular clinical 

importance is in cognition. Across the ALS-FTD spectrum, presence and severity 

of impaired cognition is consistently linked to rapid functional decline (Elamin et 

al. 2013), greater extent and severity of frontotemporal neurodegeneration 

(Agosta et al. 2016), greater caregiver burden (Caga et al. 2019), and shorter 

survival (Elamin, Phukan, Bede, Jordan, Byrne, Pender, and Hardiman 2011a; 

Hu et al. 2013). In this section, I review existing evidence for influences of 

environmental and genetic factors on impaired cognition, and discuss key 

knowledge areas that are lacking. 

 
 

Environmental Influences 
 

Environmental modifiers of disease refer to factors external to the individual that 

can influence facets of disease including incidence and phenotype. Numerous 

and diverse environmental factors have been associated incidence of ALS-FTD 

spectrum disease. These include the association of cigarette smoking, athletic 

activity, environmental toxin exposure, and military service with increased odds 

of ALS incidence (Sutedja et al. 2007; Veldink et al. 2005; Huisman et al. 2013; 

Weisskopf et al. 2005; Bozzoni et al. 2016), and traumatic brain injury with 

increased odds of FTD incidence in veterans (Kalkonde et al. 2012) and in 



20 
 

sporadic FTD (Rosso, Landweer, et al. 2003). However, in terms of cognition, 

identified environmental factors come from a narrower category and largely relate 

to cognitive engagement over the lifespan. 

The discovery of the relationship between cognitive engagement and 

cognitive impairment comes from research on Alzheimer’s disease dementia by 

Dr. Yaakov Stern, who coined this phenomenon ‘cognitive reserve’ (Stern 2002). 

In a seminal series of work published in the 1990s, Dr. Stern demonstrated that 

individuals with higher years of education or more cognitively-taxing occupations 

had more advanced stages of Alzheimer’s disease as measured by rate of 

memory decline (Stern et al. 1999), temporoparietal blood perfusion seen 

through PET imaging (Stern et al. 1994), and survival (Stern et al. 1995). This led 

to the theory that cognitively-stimulating lifetime experiences like education may 

provide a ‘reserve’ that compensates for the neuropathological changes of 

Alzheimer’s disease, thus delaying the onset of clinical manifestation. Both 

functional and biologic mechanisms have been proposed to underlie 

observations of cognitive reserve. Functional accounts posit that increased 

frontal executive resources cultivated through lifetime cognitive engagement 

allow compensation for medial temporal lobe disease. Neuroimaging studies are 

most often cited as supporting functional accounts of cognitive reserve, and 

include reports of increased frontal connectivity in highly-educated individuals 

associated with attenuated memory decline, brain hypometabolism, and 

hippocampal volume loss (Franzmeier et al. 2017; Pudas et al. 2018). Biologic 

accounts referred to in the literature as ‘brain reserve’ propose that 
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neuroanatomic differences might also underlie observations of cognitive reserve. 

In support of this, one study in healthy elderly individuals demonstrate greater 

frontoparietal GM volume related to higher levels of education (Solé-Padullés et 

al. 2009). 

Evidence for cognitive reserve has been also observed in FTD, but differs 

in manifestation from Alzheimer’s disease. Primary atrophy in the frontal and 

temporal lobes characterizes disease phenotypes across the ALS-FTD spectrum, 

inherently compromising access to proposed frontal executive resources 

hypothesized to facilitate functional compensation for neurodegeneration in 

classic accounts of cognitive reserve. Research in patients with bvFTD supports 

this idea, as more cognitively-demanding premorbid occupational status relates 

to more rapid decline in executive function but not in semantic memory, a 

cognitive domain that is relatively spared in patients with bvFTD (Massimo et al. 

2019). Both higher occupational and educational attainment relate to lower 

cerebral blood flow (Borroni et al. 2009) and lower glucose metabolism (Spreng 

et al. 2011; Perneczky et al. 2007) in the frontal cortex in patients with bvFTD, 

demonstrating compromised frontal lobe activity. Furthermore, cognitive 

engagement is differentially associated with survival in FTD compared to 

Alzheimer’s disease, with more cognitively-demanding premorbid occupation 

relating to longer survival from symptom onset in bvFTD but shorter survival from 

symptom onset in Alzheimer’s disease (Massimo et al. 2015). 

While prior research has identified cognitive engagement as an 

environmental contributor to cognitive impairment, several limitations necessitate 
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further study to understand its influence in the ALS-FTD disease spectrum. First, 

prior research on cognitive reserve in ALS-FTD spectrum disease have been 

limited to a single phenotype – bvFTD – and explicitly excluded individuals with 

motor symptoms. Thus, it is yet unknown whether this phenomenon extends to 

influence cognition in patients with other ALS-FTD spectrum phenotypes 

including ALS-FTD, svPPA, and naPPA. Furthermore, prior studies have not yet 

explored structural brain integrity, or how cognitive reserve may mediate the 

relationship between brain structure and cognitive impairment. These lead to the 

following unanswered question in environmental influence on cognition in ALS- 

FTD spectrum disease: how does cognitive reserve relate to structural 

neuroanatomy and cognitive impairment in heterogeneous phenotypes across 

the ALS-FTD spectrum? 

 
 

Genetic Influences 
 

Prior discussion of genetics in this introduction largely related to the incidence of 

disease; however, accumulating evidence suggests genetic influence on 

phenotypic heterogeneity in ALS-FTD spectrum disease. This includes earlier 

age at disease onset, more rapid symptom progression, and shorter survival in 

C9ORF72 mutation carriers relative to non-carriers (Byrne et al. 2012; Suh et al. 

2015; Umoh et al. 2016; Irwin, McMillan, et al. 2014; Moore et al. 2020), and in 

patients screening positive for SNPs near UNC13A (Chiò et al. 2013). Additional 

evidence suggests that the relationship between genetics and phenotypic 

heterogeneity in ALS-FTD spectrum disease extends to cognition and implicates 
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both pathogenic mutations and SNPs. 
 

In the context of ALS-FTD spectrum disease, the majority of research on 

genotype-phenotype relationships in cognition has been focused on C9ORF72. 

First, in addition to causal association with frank ALS, frank FTD, and varied 

phenotypes along the ALS-FTD disease spectrum, C9ORF72 mutations increase 

the likelihood that an ALS patient will develop symptoms of FTD. One population- 

based study in the US (N=781) reported behavioral symptoms of FTD in 14.8% 

of ALS patients who were carriers compared to only 1.7% of non-carriers (Umoh 

et al. 2016), whereas another population-based study in Ireland (N=191) reported 

behavioral symptoms in 50% of carriers compared to 12% non-carriers (Byrne et 

al. 2012). C9ORF72 mutations are also linked to rate of cognitive decline across 

the ALS-FTD spectrum, with one study showing more rapid decline on a verbal 

fluency measure of executive function (Irwin et al. 2013) and another showing 

more rapid decline in visuospatial and memory function in addition to executive 

function (Mahoney et al. 2012). Psychiatric symptoms have also been reported in 

C9ORF72 mutation carriers across the ALS-FTD disease spectrum (Snowden et 

al. 2012; Devenney et al. 2017). Neuroanatomic differences in C9ORF72 carriers 

relative to non-carriers are also widely observed both in vivo and post mortem. A 

comprehensive literature review conducted in 2015 show heterogeneity of 

findings across published studies of neuroimaging in C9ORF72 carriers likely 

due to differences in clinical phenotype and disease stage (Prado et al. 2015). 

However, studies accounting for these potential confounds show more extensive 

extramotor GM and WM degeneration particularly in frontotemporal regions in 
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ALS (Bede et al. 2013), which also correspond to cognitive impairment (Floeter 

et al. 2016). Post-mortem, C9ORF72 mutation carriers display TDP-43 pathology 

in the cerebellum and hippocampus, which are rarely observed in non-carriers 

(Mackenzie, Frick, and Neumann 2014). Interestingly, the associations between 

C9ORF72 mutation status, cognitive impairment, and neuroanatomic 

susceptibility appear to be epigenetically modulated: hypermethylation of the 

C9ORF72 promoter shows evidence of neuroprotection in terms of cognitive 

decline, MRI measures of structural brain integrity, and post-mortem 

neuropathologic burden (Russ et al. 2015; McMillan et al. 2015). 

A small, yet growing body of evidence demonstrates that genetic influence 

on cognition extends beyond study of known pathogenic mutations to also 

include susceptibility loci. These include quantitative trait loci (QTL) analyses that 

probe the association between a genetic locus and variation in a continuous, 

rather than binary (e.g. having disease vs. not having disease), disease trait. A 

SNP near TMEM106B originally identified as a susceptibility locus for TDP-43 

pathology in GRN mutation carriers was found to relate to impaired cognition on 

a task of executive function in patients with ALS (Vass et al. 2011). In bvFTD 

patients, genotype-phenotype relationships are also observed. Risk genotype at 

a SNP near the MOBP gene was found to associate with more severe WM 

neurodegeneration in the corona radiata and superior and inferior longitudinal 

fasciculi, more severe GM neurodegeneration in the precuneus and superior 

temporal gyrus, and shorter survival from symptom onset in a mixed cohort of 

sporadic, mutation-negative bvFTD patients with underlying Tau and TDP-43 
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pathology (Irwin, McMillan, et al. 2014). In another study, SNPs near MAPT, 

GRN, SORT1, and MOBP related to distinct WM neurodegeneration in the 

superior longitudinal fasciculus and midbrain in sporadic, mutation-negative 

patients with varying ALS-FTD spectrum disease phenotypes (McMillan et al. 

2014). The majority of ALS-FTD spectrum disease occurs in the absence of a 

family history disease or known pathogenic mutation, suggesting that the 

susceptibility loci mentioned here, and others yet unexplored, may influence 

variance in dementia for a larger proportion of ALS-FTD spectrum disease. 

Here, I have discussed promising evidence for genetic influence on 

cognition in the ALS-FTD spectrum, yet much work in this area remains. The 

majority of prior work focuses on studies of individuals carrying C9ORF72 repeat 

expansions, and research in mutation-negative individuals is considerably less 

established. Many SNPs associated with incidence of ALS-FTD spectrum 

diseases have been identified, yet few have been studied in regards to 

quantitative or qualitative trait associations with cognition. Prior efforts to 

characterize the quantitative disease associations with single SNPs have been 

limited to the study of a single clinical phenotype or to the use of a single 

research modality, and potential polygenic contribution to cognition in ALS-FTD 

spectrum disease remains relatively unexplored. These lead to the following 

unanswered questions: Do SNPs associated with risk of ALS-FTD spectrum 

disease show quantitative-trait relationships with cognition and disease 

neuroanatomy? Do they do so in a polygenic manner? 
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MULTIMODAL, NONPARAMETRIC, AND MACHINE-LEARNING 
APPROACHES 

 
Thus far, I have described how ALS-FTD spectrum disease features complex 

overlap in clinical, neurobiologic, anatomic, and genetic characteristics. I have 

also reviewed prior literature in this field to identify outstanding research 

questions pertaining to how heterogeneity in the cognitive status of affected 

individuals may be shaped by environmental and genetic factors. In this section, I 

turn to discuss how these research questions can be addressed, focusing on 

multimodal, nonparametric, and machine learning approaches. 

Research employing multimodal data involves the collection and analysis of 

data from several, rather than single, sources. Deep phenotyping of patient 

populations with ALS-FTD spectrum disease requires data from multiple, diverse 

modalities, including clinical evaluation, demographic information, 

neuropsychological assessment, neuroimaging acquisition, genetic screening 

and genome sequencing, and post mortem neuropathologic analysis (Toledo et 

al. 2014). Each modality is able to characterize a specific and different facet of 

the disease process. For example, neuropsychological assessments are used to 

characterize and quantify cognitive impairment syndromes (Abrahams et al. 

2014; Strong et al. 2017), structural MRI reveals the anatomy of 

neurodegeneration underlying patient syndromes (Menke et al. 2017; Meeter et 

al. 2017), and neuropathologic and genetic study identify potential molecular 

causes and modifiers of disease (Neumann et al. 2006; Renton et al. 2011; 

DeJesus-Hernandez et al. 2011). The concurrent consideration of data from 
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multiple modalities allows for a characterization of disease that extends beyond a 

broad categorical diagnosis (i.e. clinical phenotype) to additionally describe the 

collection of the finest details about the condition (i.e. endophenotype) (Irwin, 

Cairns, et al. 2014). Multimodal approaches are critical to establish 

endophenotypes, for example, a patient with a clinical phenotype of ‘ALS’ could 

be endophenotyped as ‘a mutation-negative patient with sporadic ALS who has 

impaired executive function and structural MRI evidence of extramotor frontal 

lobe neurodegeneration’. Endophenotypes, in turn, are critical for the 

development and application of precision medicine therapies designed to target 

specific aspects of disease (e.g. ASOs designed to target C9ORF72 repeat 

expansions). 

In addition to enabling deep endophenotyping, multimodal data collection 

provides the opportunity to evaluate the reproducibility and robustness of 

research findings across complementary, yet distinct, datasets. Data collection 

from neurodegenerative patient populations suffers limitations in sample size and 

is often inconsistent in protocol across research centers, thereby precluding 

studies of direct reproducibility. Multiple modalities of data collected on the same 

patient cohort or, alternatively, different modalities of data collected on 

independent patient cohorts, offers a partial solution to this problem by increasing 

the number of datasets a researcher can study. With an increased number of 

datasets, researchers can assess the reliability of an observed effect and 

evaluate whether differing sources of data converge on a common finding (Bachli 

et al. 2020). For example, a genetic risk factor for cognitive impairment in ALS 
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might be further evaluated in relation to in vivo frontotemporal neurodegeneration 

through structural neuroimaging and post mortem burden of pathology. 

Irrespective of modality, data collected from patients often violate 

assumptions of statistical normality (e.g. homeoscedasticity) and thus make the 

use of parametric statistical methods inappropriate for their analysis (Pett 2015). 

Permutation-based tests are a class of nonparametric statistical methods that 

test the null hypothesis by calculating the probability of observing an outcome in 

the original data relative to random permutations of the data. Efficient 

permutation methods have been adopted for usage in healthcare datasets, 

including large and computationally-expensive neuroimaging and genetic 

datasets (Winkler et al. 2014; Conneely and Boehnke 2007). These methods 

have been previously employed to analyze both neuroimaging and genetic data 

from patients with ALS-FTD spectrum disease (McMillan et al. 2015; McLaughlin 

et al. 2017), suggesting their utility in further study of multimodal data from this 

patient population. 

In addition to nonparametric approaches, machine-learning has been 

employed in the study of neurodegenerative disease (Dinov et al. 2016; 

Hongming Li et al. 2019), including in bvFTD (Schroeter et al. 2014; Bachli et al. 

2020) and in ALS (Grollemund et al. 2019; Hothorn and Jung 2014). Machine 

learning uses computationally-powerful statistical techniques to make inferences 

and predictions from large datasets and techniques have been developed for use 

with single as well as multiple datasets (James et al. 2014). One machine 

learning technique developed for the analysis of multimodal data is sparse 
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canonical correlation analysis (sCCA). sCCA evaluates multivariate associations 

between two data sets while prioritizing sparsity by penalizing variables that 

contribute minimally to the statistical model (Witten, Tibshirani, and Hastie 2009; 

Witten and Tibshirani 2009). Importantly, variable selection from sCCA is data- 

driven in nature, chosen through analysis rather than by a researcher. Recently, 

sCCA was employed to identify SNPs associated with selective distributions of 

GM and WM disease in FTD patients (McMillan et al. 2014), and to identify 

compromised neuroanatomic networks related to executive, language, and 

behavioral phenotypes in patients with FTD (Avants et al. 2014). These prior 

studies suggest the utility of sCCA in further investigation of genotype-phenotype 

relationships in ALS-FTD spectrum disease. For example, this method could be 

used to evaluate multivariate relationships between patient genotypes (e.g. at 

SNPs) and performance on multiple neuropsychological measures of cognition. 

The aforementioned multimodal, nonparametric, and machine learning 

approaches are ideally suited to the study of environmental and genetic factors 

influencing heterogeneous cognitive phenotypes in the context of ALS-FTD 

spectrum disease. Multimodal data collection enables deep endophenotyping of 

patients including cognitive, anatomic, and genetic profiling, and allows the 

evaluation of candidate environmental and genetic modifiers across multiple 

datasets. Nonparametric analyses of these multimodal datasets (e.g. through 

computationally-efficient permutation methods) is essential, as observational 

patient data are demonstrably heterogeneous and often do not conform to 

theoretical distributions of statistical normality. Additionally, sCCA, a machine- 
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learning approach, can be used to integrate modalities into endophenotypes by 

identifying relationships in data-driven subsets of variables across large datasets 

of differing modalities, allowing for the exploration of multivariate relationships 

between cognition and environmental / genetic factors. With this suitability in 

mind, I combine multimodal, nonparametric, and data-driven approaches in the 

series of research studies comprising the subsequent chapters of this thesis with 

the goal of elucidating environmental and genetic influences on cognition in ALS- 

FTD spectrum disease in a statistically-robust manner. 
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OVERVIEW OF DISSERTATION STUDIES 
 

In this dissertation, I present three research studies evaluating how cognition in 

ALS-FTD spectrum disease is shaped by factors innate (i.e. genetic) and 

external (i.e. environmental) to affected individuals. I address the following 

specific questions: 

1. How does lifetime cognitive engagement relate to cognition and disease 

neuroanatomy in ALS-FTD spectrum disease? 

2. Do common genetic variants that confer risk for ALS-FTD spectrum 

disease relate to cognition and disease neuroanatomy? 

3. Is there evidence of polygenic contribution via common genetic variants to 

cognition and disease neuroanatomy? 

I address the first research question in an initial study investigating whether 

education and premorbid occupation level of patients with ALS-FTD spectrum 

disease relates to heterogeneity in cognition and neurodegeneration. I use a 

retrospective cohort design to study 55 patients and 90 controls with detailed 

demographic information, neuropsychological evaluation, and in vivo structural 

MRI from the UPenn Integrated Neurodegenerative Disease Biobank (Toledo et 

al. 2014). I include patients with genetic or autopsy confirmation of Tau or TDP- 

43 pathology in an effort to exclude dementia patients with underlying 

Alzheimer’s disease pathology, and – in an effort to capture the phenotypic and 

genetic heterogeneity of ALS-FTD spectrum disease – include patients ranging in 

clinical phenotype and genetic mutation status. To approximate cognitive 

engagement across the lifespan, I define a cumulative index of cognitive reserve 
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based on years of completed education and ordinal scoring of premorbid 

occupational complexity. I identify regions of gray matter atrophy from 

nonparametric permutation analyses of voxel-wise gray matter probability from 

T1-weighted MRI in patients relative to controls, and examine the relationship 

between the cognitive reserve index and severity of gray matter atrophy in 

identified regions in patients. I further examine how cognitive performance relates 

to both cognitive reserve index and to gray matter regions associated with the 

reserve index. Given the common frontal distribution of disease in ALS-FTD 

spectrum patients, I hypothesize that cognitive reserve relates to less atrophic 

frontal cortex gray matter and preserved performance on frontally-mediated 

neuropsychological measures. 

Next, in the second study, I investigate genetic influence on cognition and 

disease anatomy in ALS-FTD spectrum disease. Specifically, I test whether 

common genetic variation at rs12608932 (closest gene: UNC13A) – a locus that 

previously achieved genome-wide association with both ALS and FTD - further 

contributes to cognition, in vivo neurodegeneration, and post mortem pathologic 

burden. I again use a retrospective cohort design of 190 patients and 113 

controls from the UPenn Integrated Neurodegenerative Disease Biobank (Toledo 

et al. 2014), but focus my investigation here on patients with initial onset of ALS 

who also have sporadic and mutation-negative forms of disease. The 190 total 

patients studied describe two cohorts; one with T1-weighted structural MRI 

(N=109), a subset of whom also had neuropsychological evaluation (N=88), and 

another with post mortem tissue samples graded for TDP-43 pathology (N=102). 
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I additionally study 84 controls from the publicly-available Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) with genotyping at rs12608932 and T1-weighted 

MRI. I identify regions of cortical thinning from nonparametric permutation 

analyses of voxel-wise cortical thickness measurements in patients relative to 

controls, and examine the relationship between rs12608932 genotype and 

severity of cortical thinning in identified regions in patients and ADNI controls. I 

continue to evaluate rs12608932 genotype and study its relation to cognitive 

performance and to burden of TDP-43 pathology. Based on prior associations of 

rs12608932 and risk for ALS and FTD, and with reduced survival in ALS, I 

hypothesize that rs12608932 genotype associates with greater frontotemporal 

disease in ALS as evident in reduced cortical thickness in vivo, more impaired 

cognitive performance, and greater burden of TDP-43 pathology post mortem. 

Finally, in the third study, I build on prior evidence for single-allelic 

contribution to cognition and disease neuroanatomy from the second study to 

further evaluate potential polygenic contribution using a multivariate approach. I 

collaborate with investigators across institutions from the international Clinical 

Research in ALS and related disorders for Therapeutic Development (CReATe) 

Consortium to study an unprecedented cohort of 339 patients with longitudinal 

neuropsychological evaluation and genotyping at loci of common genetic 

variation that previously achieved genome-wide association with ALS or joint 

association with ALS and FTD. I use sCCA, an unsupervised machine learning 

approach, to identify a subset of loci that maximally contribute to cognitive 

heterogeneity in this cohort and derive a data-driven polygenic risk score for 
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impaired cognition from model estimates. I further evaluate this machine-learning 

derived polygenic risk score relative to anatomic disease burden in independent 

neuroimaging and autopsy cohorts from the UPenn Integrated 

Neurodegenerative Disease Biobank (Toledo et al. 2014). These include 114 

ALS patients and 114 controls with T1-weighted MRI and 88 ALS patients with 

post mortem tissue samples graded for TDP-43 pathology and neuronal loss. I 

hypothesize that the machine learning will reveal a subset of genetic loci 

associated with cognitive dysfunction profiles in ALS in a polygenic manner, and 

that follow-up analyses in independent neuroimaging and autopsy cohorts 

converge to characterize quantitative traits associated with polygenic risk from 

identified loci. 

Each study – though addressing a distinct and specific research question – 

shares the common goal of elucidating factors that modify cognition and disease 

anatomy in ALS-FTD spectrum disease. Critically, the environmental and genetic 

factors targeted in my research can provide novel and cost-effective biomarkers 

with potential for actionable use in patient prognostication and in clinical trials. 
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CHAPTER 2 
 

Cognitive reserve in frontotemporal degeneration: 
Neuroanatomic and neuropsychological evidence 

 
Katerina Placek, Lauren Massimo, Christopher Olm, Kylie Ternes, Kimberly Firn, 
Vivianna Van Deerlin, Edward B. Lee, John Q. Trojanowski, Virginia M.Y. Lee, 

David Irwin, Murray Grossman, and Corey T. McMillan. Neurology, 2016, 
87:1813-1819. 

 
 

Abstract 
 

In this study, we evaluate if cognitive reserve (CR) contributes to inter-individual 

differences in frontal gray matter (GM) and executive impairment that underlie 

heterogeneity in the disease course of confirmed frontotemporal lobar 

degeneration (FTLD) pathology. Fifty-five patients with autopsy confirmation or a 

pathogenic mutation consistent with underlying tau (FTLD-Tau) or TDP-43 

(FTLD-TDP) pathology and 90 demographically-comparable healthy controls 

were assessed with T1 MRI and neuropsychological measures (Mini  Mental 

State Exam, letter fluency, forward digit span, Rey complex figure, and Boston 

Naming Test). CR was indexed using a composite measure of education and 

occupation. We identified reduced GM density in FTLD patients relative to 

controls, ran regression analyses relating reduced GM density to CR index, and 

correlated regions of GM associated with CR with performance on 

neuropsychological measures. FTLD patients exhibited reduced bilateral 

frontotemporal GM relative to controls, consistent with the known anatomic 

distribution of FTLD pathology. CR index was positively associated with letter 

fluency and with GM density in right dorsolateral prefrontal cortex, orbitofrontal 
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cortex, rostral frontal cortex, and inferior frontal gyrus. Furthermore, letter fluency 

correlated positively with mean GM density in frontal GM regions associated with 

CR. Our results indicate that executive control and verbal ability assessed by 

letter fluency in FTLD is mediated in part by CR and frontal GM reduction. The 

identification of factors influencing cognitive and anatomic heterogeneity in FTLD 

suggests that CR should be considered in symptom detection, prognosis, and 

treatment. 
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Introduction 
 

Frontotemporal lobar degeneration (FTLD) is a pathologic spectrum of 

progressive neurodegenerative conditions affecting the frontal and temporal 

lobes that are associated with executive, social, and language impairments 

(Irwin, Cairns, et al. 2014). The disease course of FTLD is highly variable across 

individuals, including age at onset (J. K. Johnson et al. 2005), rate of decline 

(Josephs et al. 2011), and survival (Hodges et al. 2003). While some biologic 

mechanisms have been proposed to account for this heterogeneity (Gallagher et 

al. 2014; McMillan et al. 2015), environmental factors contributing to disease 

course remain obscure. 

Cognitive reserve (CR) theories suggest environmental factors including 

education and occupation provide a ‘reserve’ against the clinical manifestation of 

neurodegenerative disease despite significant pathological burden (Stern 2009). 

Individuals with high CR may compensate for dementia-associated 

neurodegeneration by increasing recruitment of frontal executive resources to 

improve cognitive performance and delay symptom detection (Kemppainen et al. 

2008; Bosch et al. 2010). In patients with FTLD, access to frontal executive 

resources is compromised early in disease course due to frontal tau or TDP-43 

pathology. Prior research on CR in FTLD-spectrum disorders is largely limited to 

behavioral variant frontotemporal dementia (bvFTD) patients with unconfirmed 

FTLD pathology, and has largely focused on brain metabolism and other 

functional measures (Perneczky et al. 2007; Borroni et al. 2009; Spreng et al. 

2011). There is a thus a need for investigation of CR in FTLD-spectrum patients 
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with confirmed FTLD pathology using structural measures of brain integrity. 
 

Recent evidence from autopsy-confirmed FTLD patients suggests that 

higher occupational attainment is associated with longer survival from symptom 

onset (Massimo et al. 2015). From this perspective, FTLD patients with higher 

occupational attainment may detect dementia symptoms earlier than lower 

occupational attainment patients because of their increased frontally-mediated 

work demands, therefore giving the impression that they are surviving longer. 

This is in contrast with traditional CR accounts based on Alzheimer’s disease 

(AD) that suggest that higher CR factors such as education and occupational 

attainment are associated with shorter survival. 

Critically, since AD has a neuroanatomic distribution of disease distinct 

from FTLD, including less frontal lobe disease, it is reasonable to speculate that 

CR may function differently in patients with FTLD. However, to our knowledge, 

the anatomic and cognitive profiles associated with CR in patients with confirmed 

FTLD remain unknown. Given the frontal distribution of disease in FTLD, we 

hypothesized that CR would be positively associated with frontal cortex grey 

matter (GM) and with frontally-mediated neuropsychological measures. 

 
 

Methods 
 

Participants. 
 

We report 55 patients recruited from the Penn Frontotemporal Degeneration 

Center at the University of Pennsylvania and clinically diagnosed by a board- 

certified neurologist (M.G., D.I.) using published criteria for a clinical syndrome 



39 
 

associated with FTLD pathology (Gorno-Tempini et al. 2011; Rascovsky et al. 

2011; Armstrong et al. 2013; Strong et al. 2009). Inclusion criteria for this study 

required a post-mortem neuropathological diagnosis or genetic screening (see 

Neuropathological Diagnosis and Genetic Screening), an ante mortem T1- 

weighted MRI scan, neuropsychological assessment, and known occupational 

status and years of education. Patients’ clinical syndrome included behavioral 

variant FTD (bvFTD; N=34), amyotrophic lateral sclerosis (ALS) with FTD (ALS- 

FTD, N=7), nonfluent-agrammatic primary progressive aphasia (naPPA, N=6), 

corticobasal syndrome (CBS, N=4), semantic-variant primary progressive 

aphasia (svPPA, N=1) progressive supranuclear palsy (PSP, N=2), and ALS with 

mild cognitive impairment (ALS-MCI, N=1). Disease duration was defined as time 

of symptom onset, based on caregiver report of the earliest clinical feature, until 

time of MRI acquisition. Disease duration can alternatively be calculated as 

months between first diagnosis and clinical appointment and post hoc analyses 

confirm that we see similar results when using this calculation (all p<0.05). 

To identify regions of significant GM atrophy in FTLD (see below), we 

additionally recruited 90 demographically-comparable healthy controls who self- 

reported a negative history for neurologic or psychiatric disease, and completed 

an initial screening of Mini-Mental State Examination (MMSE)>27 (M. F. Folstein, 

Folstein, and McHugh 1975). Demographic features of FTLD patients and 

controls are summarized in Table 1. There were no significant differences in  

age, education, gender, or CR index (see below) between controls and patients 

(all p values >0.05). 
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Neuropathological Diagnosis. 
 

Neuropathologic diagnoses of FTLD-Tau and FTLD-TDP were established 

according to consensus criteria (Mackenzie et al. 2010) by expert 

neuropathologists (J.Q.T.; E.B.L.) using immunohistochemistry with established 

monoclonal antibodies specific for pathogenic tau (mAb PHF-1) (Otvos et al. 

1994) and TDP-43 (mAbs p409/410 or 171) (Neumann et al. 2009), as previously 

reported (Toledo et al. 2014). Twenty patients had a primary FTLD-spectrum 

neuropathologic diagnosis at autopsy including corticobasal degeneration (CBD; 

N=2), PSP (N=5), Pick’s disease (N=3), referred to here collectively as FTLD-Tau 

disorders, or FTLD with TDP-43 inclusions (N=10), designated here as FTLD- 

TDP. Among those individuals with neuropathological confirmation of FTLD, five 

also had genetic mutations (see below). 

 
 

Genetic Screening. 
 

DNA was extracted from peripheral blood or brain tissue following the 

manufacturer’s protocols (Flexigene (Qiagen) or QuickGene DNA whole blood kit 

(Autogen) for blood, and QIAsymphony DNA Mini Kit (Qiagen) for brain tissue). 

Samples were genotyped for the C9ORF72 hexanucleotide-repeat using a 

modified repeat-primed polymerase-chain reaction and the MAPT (exons 1, and 

9-13), GRN (entire coding region), and TARDBP genes were sequenced to 

identify pathogenic mutations as previously described (Toledo et al. 2014). 

Sequencing data was analyzed using Mutation Surveyor software (Soft Genetics, 

State College, PA). Genetic screening revealed that a total of 40 patients (five 
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also with neuropathological confirmation) had a known pathogenic mutation 

associated with FTLD-Tau or FTLD-TDP disorders, including mutations in MAPT 

(N=7) (Hutton et al. 1998), as well as C9ORF72 expansions (N=20) (DeJesus- 

Hernandez et al. 2011; Renton et al. 2011) or mutations in the GRN (N=11) 

(Baker et al. 2006), or TARDBP (N=2) (Van Deerlin et al. 2008) genes, 

respectively. 

 
 

Standard Protocol Approvals, Registrations, and Patient Consents. 
 

All patients and controls participated in an informed consent procedure 

approved by an Institutional Review Board convened at the University of 

Pennsylvania. 

 
 

Cognitive Reserve Index. 
 

We assessed CR using a composite measure of education and occupation 

similar to previous reports (Borroni et al. 2009; Premi et al. 2013). Education was 

recorded in years and ranked with a score ranging from 1 to 4: (1) ≤12 years 

(primary or secondary education; N=13); (2) >12 and <16 (some post-secondary 

education; N=8); (3) 16 years (college education; N=11); and (4) >16 years 

(graduate education; N=23). Occupation was ranked on a 1-4 point scale based 

on US census categories: (1) Unskilled laborers (N=2); (2) Operative and service 

workers (N=5); (3) Managers, administrators, clerical and sales (N=20); (4) 

Professional and technical workers (N=28). We report a CR index as the sum of 

education and occupation ranks. 
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Neuropsychological Assessment. 
 

Neuropsychological assessment was performed within approximately two months 

from date of scan (M=2.20, SE=0.53; Range=0-16). Letter fluency is a measure 

of executive control and verbal ability and was assessed by the number of unique 

words beginning with “F” a patient was able to generate in one minute (excluding 

proper nouns and numbers) (Tombaugh, Kozak, and Rees 1999). The MMSE is 

a 30-point questionnaire that evaluates global dementia severity (Crum, Anthony, 

Bassett, and Folstein 1993a). Forward digit span, a measure of auditory-verbal 

short-term memory, was assessed with repetition of increasingly longer 

sequences until the patient erred; the maximum number of digits on a correct trial 

was recorded (Wechsler 2008). Rey figure copy, a measure of visuospatial 

constructional ability, required patients to copy a modified Rey complex figure 

and was scored for accuracy on a 12-point scale (Libon et al. 2011). The Boston 

Naming Test, a measure of confrontational word retrieval, required patients to 

orally name 30 line drawings; the total number of correct responses made  

without aid of a stimulus cue was recorded (Kaplan, Goodglass, and Weintraub 

2001). Forward digit span was unavailable for two patients, Rey copy was 

unavailable for five patients, and Boston Naming Test was unavailable for 11 

patients. 

In addition to reporting raw patient performance on neuropsychological 

assessments, we report the proportion of patients impaired on each task relative 

to published normative data of healthy controls matched to the mean age and 

mean education of our patients where available (Tombaugh, Kozak, and Rees 
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1999; Crum, Anthony, Bassett, and Folstein 1993a; Shirk et al. 2011); we report 

patient performance on Rey copy relative to normative data based on healthy 

controls recruited by the FTDC who were matched to the mean age and mean 

education of our patients (N=22 (50% Female); Age, years: M=61.81, SD=4.97; 

Education, years: M=15.73, SD=2.37). We defined patient impairment on each 

task as performance at or greater than 1.96 standard deviations, equivalent to 

p<0.05, below normative data from healthy controls. 

We used linear regression to relate performance on neuropsychological 

measures to CR index including age at assessment as a nuisance covariate. We 

report one-tailed p values as we predicted higher CR index to relate to better 

performance on neuropsychological measures. 

 
 

Neuroimaging Acquisition and Preprocessing. 
 

High-resolution T1-weighted MPRAGE structural scans were acquired using a 3T 

Siemens Tim Trio scanner with an 8-channel head coil, with T=1620ms, 

T=3.09ms, flip angle=15°, 192x256 matrix, and 1mm3 voxels. T1-weighted MRI 

images were then preprocessed using ANTs Cortical Thickness software 

(Tustison et al. 2014). Briefly, each individual dataset was deformed into a 

standard local template space in a canonical stereotactic coordinate system. 

Advanced Normalization Tools (ANTs) provides a highly accurate registration 

routine using symmetric and topology-preserving diffeomorphic deformations to 

minimize bias toward the reference space for computing the mappings and to 

capture the large deformation necessary to aggregate images in a common 
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space. Then, we used N4 bias correction to minimize heterogeneity (Tustison et 

al. 2010), the ANTs Atropos tool to segment images into six tissue classes 

(cortex, white matter, CSF, subcortical grey structures, brainstem, and 

cerebellum) using template-based priors and to generate probability maps of 

each tissue. GM probability images, the sum of the cortical, subcortical, and 

brainstem probability images, were then transformed into Montreal Neurological 

Institute (MNI) space, smoothed using a 2 sigma full-width half-maximum 

Gaussian kernel, and downsampled to 2mm isotropic voxels. 

 
 

Neuroimaging Analyses. 
 

We used randomise software implemented in FSL to perform nonparametric, 

permutation-based statistical analyses (Winkler et al. 2014). Briefly, permutation- 

based statistical testing is robust to concerns regarding multiple comparisons 

since, rather than a traditional assessment of two sample distributions, this 

method assesses a true assignment of factors (e.g., group, CR index) to GM 

relative to many (e.g., 10,000) random assignments. We adopt a priori statistical 

thresholds consistent with similar prior reports that include FWE–correction for 

group comparison of GM (Ash et al. 2014), and to minimize Type II error (not 

observing a true regression result) we employ uncorrected p-values for GM 

regressions. 

Analysis 1. First, we evaluated regions of reduced GM in FTLD patients 

relative to controls using a nonparametric group comparison analysis. For this 

analysis we constrained analysis using an explicit mask that was restricted to 
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include only high probability GM (>0.5). We report clusters that survive a  

p<0.001 (FWE) threshold and cluster extent of >50 adjacent voxels relative to 

10,000 random permutations. 

Analysis 2. Second, we conducted two regression analyses to test 

whether CR index is associated with GM density in FTLD patients (Analysis 2a) 

and in healthy controls (Analysis 2b), and restricted both analyses to a mask 

defined by regions of reduced GM in patients relative to controls from Analysis 1. 

This mask was used so that we could focus our interpretation of CR in the 

context  of  GM  regions  affected by FTLD. Otherwise, it would be difficult to 

interpret how regions of GM that are not different from controls contribute to 

cognitive function in domains impaired in FTLD syndromes. Refer to Table 4 for 

whole-brain analyses that do not include an explicit mask of reduced GM density. 

We report clusters that survive a p<0.05 (uncorrected) threshold and 

cluster extent threshold of >50 adjacent voxels relative to 10,000 random 

permutations. Analysis 2a (FTLD patients) included disease duration and age at 

MRI as nuisance covariates, and Analysis 2b (healthy controls) included age at 

MRI as a nuisance covariate in an effort to control for factors associated with 

individual differences in GM but not specifically associated with CR. 

Analysis 3. In a third and final set of analyses, we used Pearson 

correlations to examine the relationship between regions associated with CR in 

FTLD patients and performance on neuropsychological measures. For each 

patient, we extracted the mean GM density in each region identified as 

associated with CR index from Analysis 2a. We then correlated mean GM 
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density with performance on each neuropsychological test and report Bonferroni- 

corrected p-values. 

 
 

Results 
 

Neuropsychological assessment. 
 

Patients demonstrated most impairment on letter fluency (70.91% impaired) 

consistent with compromised frontal resources relative to other domains 

including attention on forward digit span (18.87% impaired), visuospatial function 

on Rey copy (56% impaired), non-specific global cognitive impairment on MMSE 

(58.18% impaired), and language deficits on the Boston Naming Test (36.36% 

impaired) (Table 1). Regression analyses indicated that higher CR index was 

associated with better performance on letter fluency (95% CI=-0.015, 1.38; 

t=1.96, p=0.028), but not MMSE, forward digit span, Rey copy, or Boston Naming 

Test (all p>0.05). 

 
 

Neuroimaging. 
 

FTLD patients had reduced GM density relative to controls throughout bilateral 

frontal and temporal lobes, consistent with the known pattern of GM disease 

associated with FTLD pathology (Analysis 1, Table 2, Figure 1A). 

By restricting analysis to regions where patients exhibited reduced GM 

density relative to controls, we next found that CR index in patients was positively 

associated with GM density in right frontal cortex, including rostral, orbital, 

inferior, and dorsolateral prefrontal regions (Analysis 2a, Table 2, Figure 1B). 
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Thus, a patient with a higher CR index exhibited higher frontal GM density in 

these diseased regions in comparison to a patient with a lower CR index. We 

found no inverse association between CR index and GM density in any region of 

reduced GM density relative to controls (not shown). 

To examine the specificity of the relationship between CR index and GM 

density in FTLD, we performed a comparable analysis in controls restricted to the 

same GM regions as the regression analysis in patients. We found that CR index 

in controls was positively associated with GM density in the left inferior frontal 

gyrus only (Analysis 2b, Table 2, Figure 1C). 

In patients, frontal GM density related to higher CR index was also 

positively associated with performance on letter fluency (p<0.05), but not MMSE, 

forward digit span, Rey copy, or Boston Naming Test (all p>0.05) (Analysis 3, 

Table 3, Figure 2). This finding was anatomically specific such that regions of 

frontal GM density not related to CR were not associated with performance on 

letter fluency, or MMSE, forward digit span, Rey copy, or the Boston Naming 

Test (all p>0.05) (not shown). 

 
 

Post hoc Analyses. 
 

While our primary analyses use a CR index, we performed post hoc analyses to 

evaluate whether education and occupational attainment alone are similarly 

related to neuroimaging results (Table 5, Figure 3). These post hoc analyses 

largely converge with our CR index analyses: when considered separately, 

educational and occupational category are positively associated with GM density 
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in right frontal cortical regions similar to results obtained when using the CR 

index. Educational category also positively relates to GM density in the right 

caudate and left premotor cortex, and occupational category also positively 

relates to regions in bilateral temporal cortices and in the left frontal cortex. 

To evaluate whether right frontal GM density associated with CR is 

partially driven by sources of heterogeneity in our cohort we also performed post 

hoc logistic regression analyses evaluating neuropathological, genetic, and 

clinical subgroups. First, we observed that mean GM density in right rostral, 

orbital, inferior, and dorsolateral prefrontal regions were not significant predictors 

of tau versus TDP-43 pathological subgroups (all factors p>0.10). Second, we 

observed that each of these four GM regions also were not significant predictors 

of genetic mutation or sporadic forms of disease (all factors p>0.10). Last, we 

evaluated whether the four GM regions associated with CR were significant 

predictors of bvFTD clinical phenotype versus other phenotypes, since bvFTD is 

the predominant phenotype in our cohort. This analysis revealed that one region, 

right dorsolateral prefrontal cortex, (p=0.048) was more reduced in bvFTD 

relative to other phenotypes, however all remaining regions did not differ (all 

p>0.05). Together, these findings are suggestive that these sources of 

heterogeneity are not likely confounding our observed findings related to CR in 

FTLD. 

 
 

Discussion 
 

Our results suggest that CR contributes to inter-individual differences in reduced 
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frontal GM density and executive impairment that underlie heterogeneity in the 

disease course of FTLD. In an analysis restricted to frontal and temporal lobe 

regions of reduced GM density relative to controls, patients with higher CR 

exhibited higher GM density in right frontal cortical regions compared to patients 

with lower CR. Moreover, we demonstrate that regions related to CR in FTLD 

appear to be specific: CR in control participants was only related to higher GM 

density in the left IFG. In FTLD patients, higher frontal GM density in right frontal 

cortical regions was associated with superior performance on letter fluency, a 

neuropsychological measure of executive control and verbal ability indicative of 

frontal lobe integrity. These findings are consistent with a reserve model linking 

preserved frontal anatomic integrity and superior strategic processing to the 

prolonged survival of patients with FTLD who have higher education and 

occupational attainment (Massimo et al. 2015). 

Our findings are consistent with other evidence suggesting that CR is an 

environmental factor influencing the spectrum of disease in FTLD. Prior 

neuroimaging studies of behavioral bvFTD patients with unconfirmed FTLD 

pathology indicate CR may counteract the onset of dementia (Borroni et al. 2009; 

Perneczky et al. 2007; Spreng et al. 2011), while a recent survival analysis in 

patients with autopsy-confirmed FTLD pathology by our group indicates that 

higher occupational attainment is associated with prolonged survival from 

symptom onset (Massimo et al. 2015). These studies suggest that, despite the 

commonality of frontotemporal-predominant neurodegeneration, patients with 

FTLD appear to exhibit heterogeneous disease course that is determined in part 
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by environmental factors related to CR. It is imperative to identify and understand 

potential environmental contributors to the rate of decline in FTLD, as these may 

serve as prognostic markers and eventual therapeutic targets. 

Our analysis of CR in control participants demonstrates specificity of 

higher GM density in right frontal cortex associated with CR in FTLD patients. 

Several other studies have investigated CR in healthy controls, demonstrating a 

positive relationship between CR and structural brain integrity. For example, one 

study demonstrates that in healthy older controls, higher years of education are 

positively associated with GM volume in the superior temporal gyrus, insula, and 

anterior cingulate cortex (Arenaza-Urquijo et al. 2013). While we similarly found a 

positive association between CR index and GM density in the left IFG in our 

healthy control group, this region did not overlap with any region of higher GM 

density associated with higher CR index in our patient group. We interpret this to 

suggest that our findings of higher GM density associated with higher CR in the 

right rostral and orbital frontal cortex, dorsolateral prefrontal cortex, and inferior 

frontal gyrus are specific to FTLD patients. Future work is necessary to evaluate 

the potential role of left IFG in CR in healthy controls, but limited 

neuropsychological data in the current control cohort precludes our ability to 

evaluate the behavioral consequences of this association. 

To our knowledge, no prior studies have examined the association 

between CR and heterogeneity in neuroanatomical structure and cognitive 

function in patients with a clinical FTLD syndrome due to confirmed FTLD-Tau or 

FTLD-TDP pathology. Some studies report that patients with clinically diagnosed 
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FTD who have higher education and occupation exhibit evidence of greater 

frontal disease as measured by regional cerebral glucose utilization and regional 

cerebral blood flow (Borroni et al. 2009; Perneczky et al. 2007; Spreng et al. 

2011). These studies have been interpreted to suggest that CR confers 

compensatory benefit such that individuals with FTD who have higher CR can 

better withstand accumulating frontotemporal pathology than individuals with 

lower CR, and therefore delay symptom presentation. This resembles findings 

reported in Alzheimer’s disease (Kemppainen et al. 2008; Bosch et al. 2010). 

However, differences in patient population and study design necessitate cautious 

interpretation of these results. For example, as many as 16.7% of patients with 

FTD-related syndromes have AD neuropathology (Forman et al. 2006). 

Furthermore, the relationship between higher CR and greater frontotemporal 

pathology is difficult to interpret in this work in the absence of neuropsychological 

data. For example, it is unclear if for the same severity of frontotemporal 

pathology, FTD patients with higher CR demonstrate better cognitive or 

behavioral function than FTD patients with lower CR. Future research is needed 

to provide a more detailed assessment of how structural GM, functional imaging, 

and neuropsychological measures interact in the context of CR. 

Several mechanisms may underlie the association between higher CR 

index and higher right frontal cortex GM density and superior letter fluency in 

FTLD patients. One possible mechanism is inter-individual differences in genetic 

predisposition. For example, genetic studies in healthy twins suggest that there is 

a genetic contribution to normal variation in human cognitive function and brain 
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morphology, including frontal cortex GM volume (Pol et al. 2006). Another 

possibility is that higher frontal GM and superior cognitive function in FTLD 

patients with higher CR may be a function of earlier stages of disease. For 

example, patients with higher education and occupational attainment who are 

more dependent on frontally-mediated executive functions may be more sensitive 

to the emergence of cognitive difficulty, leading to clinical symptom detection at 

an earlier stage of disease. Either of these proposed mechanisms could result in 

patients with higher CR exhibiting relatively higher frontal GM and superior letter 

fluency compared to patients with lower CR. Longitudinal structural and  

functional neuroimaging and neuropsychological assessment in controls and 

FTLD patients are necessary to evaluate individual differences in rates of  

disease progression underlying heterogeneity in FTLD disease course related to 

education and occupation as proxies of CR. 

Our findings contribute to a growing body of evidence for factors thought 

to influence heterogeneity in FTLD disease course, and suggest the 

consideration of both biological and environmental factors. Others suggest that 

risk alleles in single nucleotide polymorphisms, including rs1768208 in myelin 

oligodendrocyte basic protein (MOBP) gene and rs1990622 in the TMEM106B 

gene (McMillan et al. 2014; Gallagher et al. 2014), are associated with greater 

pathology and earlier age of onset and death in FTLD. Moreover, recent 

evidence indicates that epigenetic factors like C9ORF72 promoter 

hypermethylation are associated with reduced neuronal loss and reduced GM 

atrophy in frontal cortex (McMillan et al. 2015). While genetic factors may 
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contribute to heterogeneity in the disease course of FTLD, our exploratory 

analyses suggest that genetic status is not a confounder of the current 

observations. Future research should investigate interactions between 

environmental factors, like CR, and biological factors, like genetics and 

epigenetics, on clinical heterogeneity in FTLD. 

Several potential caveats should be considered in the current study. We 

assessed CR using a composite index of education and occupation. While our 

observation that education and occupation independently also relate to right 

frontal GM, we also observed that each of these measures has some distinct 

frontal associations with GM. Future work evaluating the difference between 

these measures would be valuable. Moreover, future research should also 

consider other environmental factors implicated in CR such as midlife leisure 

activities (Scarmeas et al. 2001). Our patient cohort self-reported predominant 

white race and most received a college education; thus, more racially and 

educationally-diverse samples are needed in future studies of CR in patients with 

FTLD. Another caveat to consider is that the current study cohort included 

several different clinical phenotypes with a majority of our sample being 

comprised of bvFTD and the remaining consisting of primary progressive 

aphasias and movement disorders (e.g., CBS, PSP). While future research is 

necessary to stratify by clinical phenotype, our post hoc analyses suggested that 

only one GM region, right dorsolateral prefrontal cortex, was related to bvFTD. 

Importantly, regions implicated in CR that are most likely to be shared across 

clinical phenotypes, such as right inferior frontal gyrus, did not show differences 
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in GM density. Other sources of heterogeneity in our patient cohort including 

presence/absence of a genetic mutation and FTLD-Tau/FTLD-TDP pathology 

also did not appear to contribute to GM differences in regions related to CR, 

though future studies must address these distinct groups. 

With these caveats in mind, we conclude that CR is an environmental 

factor contributing to heterogeneity in executive control and verbal ability of 

patients with known FTLD pathology mediated by neuroanatomic structure. 

These findings stimulate investigation into additional environmental contributors 

to disease course, and suggest their importance in prognostic considerations and 

treatment trials in patients with FTLD. 
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Table 1. Mean (standard deviation) of frontotemporal lobar degeneration patient 
and control demographics and neuropsychological evaluation. 

 
 FTLD Controls 

N (F) 55 (20) 90 (40) 

Age, years 61.2 (8.07) 60.3 (8.65) 

Education, years 16.1 (3.11) 15.4 (2.49) 

Education, N per rank:   

1 13 14 

2 8 28 

3 11 27 

4 23 21 

Occupation, N per rank   

1 2 - 

2 5 13 

3 20 30 

4 28 47 

CR Index 6.14(1.79) 5.98 (1.55) 

MMSE (max=30) 23.36 (6.85) - 

Proportion impaired (%) 32/55 (58.18)  

Letter Fluency (words/min) 6.04 (4.72) - 

Proportion impaired (%) 39/55 (70.91)  

Forward Digit Span (# repeated) 5.17 (1.71) - 

Proportion impaired (%) 10/53 (18.87)  

Rey copy (max=12) 9.48 (3.56) - 

Proportion impaired (%) 28/50 (56)  

Boston Naming Test (max=30) 20.5 (8.08)  
Proportion impaired (%) 16/44 (36.36) 

Abbreviation: MMSE=Mini-Mental State Examination 
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Table 2. Results of a group comparison analysis showing regions of reduced 
gray matter (GM) density in frontotemporal lobar degeneration (FTLD) patients 
relative to healthy controls (Analysis 1), and results of regression analyses in 
patients (Analysis 2a) and controls (Analysis 2b) showing a positive relationship 
between GM density and cognitive reserve (CR) in regions from Analysis 1. 

 
Neuroanatomic region (BA) L/R MNI p Voxels 

Coordinates value 

Analysis 1. Reduced GM density in FTLD relative to x y z 
controls: 

Occipital Temporal Cortex (37) R 36 0 -46 0.001 8250 

Inferior Temporal Cortex (20) L -34 0 -46 0.001 6966 

Orbital Frontal Cortex (11/25) L -8 24 -26 0.001 838 

Thalamus/Hypothalamus R 2 -10 -14 0.001 586 

Hippocampus R 32 -10 -24 0.001 180 

Parietal Cortex (40) L -62 -28 20 0.001 142 

Hippocampus L -22 -10 -26 0.001 119 

Superior Temporal Cortex (22) R 66 -30 18 0.001 75 

Parietal Cortex (40) R 62 -28 40 0.001 72 

Angular Gyrus (39) R 64 -44 26 0.001 54 

Analysis 2a. Higher GM density associated with higher CR in FTLD: 

Rostral Frontal Cortex (10) R 32 50 20 0.001 133 

Orbital Frontal Cortex (47) R 50 28 -4 0.003 123 

Inferior Frontal Gyrus (44/45) R 52 12 22 0.01 64 

Dorsolateral Prefrontal Cortex (8/9) R 44 6 40 0.005 59 

Analysis 2b. Higher GM density associated with higher CR in controls: 

Inferior Frontal Gyrus (44/45) L -42 18 6 0.003 60 

Abbreviations: BA = Brodmann area; L/R = Left/Right; MNI = Montreal 
Neurological Institute 
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Table 3. In FTLD patients, mean GM density in regions positively associated with 
CR from Analysis 2a are also positively correlated with performance on letter 
fluency, but not on MMSE, forward digit span, Rey copy, or the Boston Naming 
Test (Analysis 3). 

 
 

Letter Fluency 

 
N=55 

MMSE 

 
N=55 

Forward Digit 

Span 

N=53 

Rey Copy 

 
N=50 

Boston 

Naming 

Test 
N=44 

R Rostral 

Frontal 

Cortex 

 
*0.45, p=0.02 

 
0.31, p=0.4 

 
0.082, p>0.99 

 
0.16, p>0.99 

 
0.12, p>0.99 

R Orbital 

Frontal 
Cortex 

 
0.39, p=0.06 

 
0.29, p=0.58 

 
0.098, p>0.99 

 
0.21, p>0.99 

 
0.21, p>0.99 

R Inferior 

Frontal 

Gyrus 

 
**0.51, p<0.001 

 
0.28, p=0.8 

 
0.14, p>0.99 

 
0.39, p=0.1 

 
0.39, p>0.99 

R 

Dorsolateral 

Prefrontal 
Cortex 

 
*0.40, p=0.04 

 
0.23, p > 0.99 

 
0.24, p>0.99 

 
0.34, p=0.32 

 
0.34, p>0.99 

Note. Bonferroni corrected *p<0.05; **p<0.001 
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Table 4. Results of two whole-brain regression analyses examining CR index 
relative to whole-brain GM density in FTLD patients and in controls. We report 
clusters that survive a p<0.05 (uncorrected) threshold and cluster extent 
threshold of >50 adjacent voxels relative to 10,000 random permutations. 
Regression analysis in patients included disease duration and age at MRI as 
nuisance covariates, and regression analysis in healthy controls included age at 
MRI as a nuisance covariate. 

 
Neuroanatomic region (BA) L MNI Coordinates p Voxels 

/ value 
R 

Higher GM density associated with higher CR in FTLD: x y z 

Dorsolateral Prefrontal Cortex (9) R 34 36 38 0.001 479 

Rostral Frontal Cortex (10) R 36 42 10 0.001 455 

Visual Association Cortex (18) L -30 -90 -10 0.001 339 

Fusiform Gyrus (37) R 60 -40 -22 0.001 296 

Visual Association Cortex (19) R 36 -88 -14 0.001 234 

Orbital Frontal Cortex (47) R 50 28 -4 0.003 195 

Premotor Cortex (6) L -26 0 64 0.001 115 

Premotor Cortex (6) R 58 2 44 0.003 110 

Supramarginal Gyrus (40) L -54 -40 40 0.001 106 

Premotor Cortex (6) L -10 -106 2 0.001 90 

Premotor Cortex (6) R 28 6 56 0.001 64 

Supramarginal Gyrus (40) R 56 -40 36 0.004 61 

Middle Temporal Gyrus (21) L -62 -24 -16 0.002 60 

Cerebellum L -34 -86 26 0.002 59 

Rostral Frontal Cortex (10) L -44 46 22 0.004 59 

Middle Temporal Gyrus (21) L -64 -38 -8 0.003 54 

Supramarginal Gyrus (40) R 50 -48 44 0.004 52 

Higher GM density associated with higher CR in 

controls: 

Posterior Cingulate Cortex (31) L -8 -38 -44 0.001 392 

Anterior Temporal Cortex (38) R 46 22 -30 0.001 183 

Inferior Frontal Gyrus (45) L -56 22 12 0.001 117 

Visual Association Cortex (18) L -4 -96 -14 0.001 107 

Visual Association Cortex (18) L -4 -96 14 0.004 74 

Primary Visual Cortex (17) R 8 -82 8 0.005 61 

Orbital Frontal Cortex (11) R 12 34 -26 0.003 56 

Primary Sensory Cortex (1) R 64 -18 34 0.001 52 

Abbreviations: BA = Brodmann area; L/R = Left/Right; MNI = Montreal 
Neurological Institute 
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Table 5. Results of two regression analyses showing a positive relationship 
between GM density and education and occupation in regions from Analysis 1 in 
FTLD patients. We report clusters that survive a p<0.05 (uncorrected) threshold 
and cluster extent threshold of >50 adjacent voxels relative to 10,000 random 
permutations. Regression analysis in patients included disease duration and age 
at MRI as nuisance covariates. 

 
Neuroanatomic region (BA) L/R MNI p Voxels 

Coordinates value 

Higher GM density associated with higher education in x y z 
FTLD: 

Inferior Frontal Gyrus (44)  R 58 10 22 0.002 316 

Rostral Frontal Cortex (10)  R 42 44 10 0.001 194 

Orbital Frontal Cortex (47)  R 50 34 -6 0.002 146 

Caudate (48)  R 12 8 10 0.005 119 

Premotor Cortex (6)  L -50 0 50 0.006 66 

Higher GM density associated with higher 

occupation in FTLD: 

Orbital Frontal Cortex (47)  R 44 30 -14 0.001 1310 

Orbital Frontal Cortex (47)  L -40 30 -16 0.001 508 

Orbital Frontal Cortex (11)  R 8 36 -24 0.001 473 

Middle Temporal Gyrus (21)  R 58 -8 -16 0.002 448 

Inferior Frontal Gyrus (44)  R 58 10 20 0.001 436 

Rostral Frontal Cortex (10)  L -36 56 6 0.002 262 

Anterior Temporal Cortex (38)  R 30 8 -40 0.004 135 

Anterior Temporal Cortex (38)  L -32 18 -36 0.007 87 

Inferior Frontal Gyrus (44)  L -62 -18 -22 0.003 74 

Dorsolateral Prefrontal Cortex (46) L -40 30 22 0.005 65 

Orbital Frontal Cortex (11)  L -8 40 -24 0.007 52 

Abbreviations: BA = Brodmann area; L/R = Left/Right; MNI = Montreal 
Neurological Institute 
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Figure 1. (Analysis 1) Results of a nonparametric t-test showing regions of 
reduced grey matter (GM) density in Frontotemporal Lobar Degeneration patients 
(N=55) relative to demographically-comparable controls (N=90). (Analysis 2a) 
Results of a regression analysis in FTLD patients (N=55) restricted to regions of 
reduced GM density from Analysis 1 (white regions) demonstrating that GM 
density in the right dorsolateral prefrontal cortex, rostral frontal cortex, orbital 
frontal cortex, and inferior frontal gyrus is positively associated with Cognitive 
Reserve (CR) index. (Analysis 2b) Results of a regression analysis in healthy 
controls (N=90) demonstrating that GM density in the left inferior frontal gyrus is 
positively associated with CR index. Color bar represents 1—p-value with yellow 
representing highest significance. 
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Figure 2. Mean GM density in the right rostral frontal cortex, inferior frontal 
gyrus, orbital frontal cortex, and dorsolateral prefrontal cortex positively 
associated with CR from Analysis 2a are also positively associated with 
performance on letter fluency in FTLD patients (N=55). 

A
n

te
ri
o

r 
fr

o
n

ta
l 
c
o

rt
e

x
 

D
o
rs

o
la

te
ra

l 
p

re
fr

o
n

ta
l 
c
o

rt
e

x
 

1
5
 

1
0
 

5
 

0
 

0
.3

 
0

.4
 

0
.5

 
0

.6
 

0
.7

 
0

.8
 

0
.2

 
0

.4
 

0
.6

 

In
fe

ri
o

r 
fr

o
n

ta
l 
g

y
ru

s
 

O
rb

it
o

fr
o

n
ta

l 
c
o

rt
e

x
 

1
5
 

1
0
 

5
 

0
 

0
.3

 
0

.4
 

0
.5

 
0

.6
 

0
.7

 
0

.8
 0

.2
 

G
M

 D
e
n

s
it
y
 

0
.4

 
0

.6
 

0
.8

 



62 
 

Figure 3. Results of a regression analysis in FTLD patients (N=55) restricted to 
regions of reduced GM density from Analysis 1 (pictured in white) demonstrating 
that when considered separately, educational category (A) and occupational 
category (B) each are significantly positively associated with right frontal cortex 
GM density, largely converging with our results using Cognitive Reserve (CR) 
index as a combined metric of educational and occupational category (Post hoc 
Analyses). Color bar represents 1—p-value with yellow representing highest 
significance. 
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CHAPTER 3 
 

UNC13A polymorphism contributes to frontotemporal disease in sporadic 
amyotrophic lateral sclerosis 

 
Katerina Placek, G. Michael Baer, Lauren Elman, Leo McCluskey, Laura 
Hennessy, Pilar M. Ferraro, Edward B. Lee, Virginia M.Y. Lee, John Q. 

Trojanowski, Vivianna M. Van Deerlin, Murray Grossman, David Irwin, and Corey 
T. McMillan. Neurobiology of Aging, 2019, 73:190-199. 

 
 

Abstract 
 

The majority (90-95%) of amyotrophic lateral sclerosis (ALS) is sporadic, and 
 

~50% of patients develop symptoms of FTD associated with shorter survival. The 

genetic polymorphism rs12608932 in UNC13A confers increased risk of sporadic 

ALS and sporadic frontotemporal degeneration (FTD), and modifies survival in 

ALS. Here, we evaluate whether rs12608932 is also associated with 

frontotemporal disease in sporadic ALS. We identified reduced cortical thickness 

in sporadic ALS with T1-MRI (N=109) relative to controls (N=113), and observed 

that minor allele (C) carriers exhibited greater reduction of cortical thickness in 

dorsal prefrontal, ventromedial prefrontal, anterior temporal, and middle temporal 

cortices and worse performance on a frontal-lobe mediated cognitive test 

(reverse digit span). Association between rs12608932 and cortical thickness was 

not observed in an independent control cohort from the Alzheimer’s Disease 

Neuroimaging Initiative (N=84). In sporadic ALS with autopsy data (N=102), 

minor allele homozygotes exhibited greater burden of pTDP-43 pathology in the 

middle frontal, middle temporal, and motor cortices. Our findings demonstrate 

converging  evidence  that  rs12608932  may  modify  frontotemporal  disease  in 
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sporadic ALS, and suggest that rs12608932 may function as a prognostic 

indicator and could be used to define patient endophenotypes in clinical trials. 

 
 

Introduction 
 

Amyotrophic lateral sclerosis (ALS) is a multi-system disorder primarily 

characterized by progressive degeneration of the upper and lower motor neurons 

(UMN, LMN) and affected individuals typically survive 2-5 years from symptom 

onset (Chiò et al. 2009). An estimated ~50% of individuals with ALS also develop 

impairments in at least one cognitive domain including executive function, social 

behavior, or language indicative of extramotor neurodegeneration in the frontal 

and temporal lobes, and about 10% of these individuals develop multi-domain 

impairments consistent with frank frontotemporal degeneration (FTD) (Montuschi 

et al. 2015; Ringholz et al. 2005). While ALS and FTD commonly feature tar 

DNA-binding protein-43kda (TDP-43) pathology (Neumann et al. 2006) and can 

both be caused by pathogenic C9ORF72 repeat expansions (Renton et al. 2011; 

DeJesus-Hernandez et al. 2011), the mechanisms influencing the risk of 

progression from ALS to develop cognitive impairment and FTD have been 

under-evaluated. The presence of FTD is consistently associated with shorter 

survival in ALS patients (Govaarts et al. 2016; Elamin, Phukan, Bede, Jordan, 

Byrne, Pender, and Hardiman 2011b), and therefore it is critical to identify risk 

factors for frontotemporal disease in ALS. 

The vast majority of ALS is considered “sporadic”, with only a small 

proportion of approximately 5-10% of ALS patients featuring a familial history or 
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autosomal dominant source of disease (e.g. C9ORF72 expansions) (Taylor, 

Brown, and Cleveland 2016). Therefore, it is important to consider sources of 

common genetic variation that may influence risk of disease – including FTD - in 

ALS. Case-control genome-wide association studies (GWAS) have identified 

several single nucleotide polymorphisms (SNPs) associated with increased odds 

of having ALS (van Rheenen et al. 2016) or FTD (Van Deerlin et al. 2010). More 

recently, two loci, including rs3849942 in the C9ORF72 gene and rs4239633 in 

the UNC13A gene demonstrate shared genetic overlap between ALS and FTD 

(Karch et al. 2018). The observed rs3849942 SNP is a marker of the C9ORF72 

expansion haplotype (Jones et al. 2013) with no additional genetic influence 

reported. However, loci in UNC13A including rs12608932, that is in high linkage 

disequilibrium (LD) with rs4239633 (D’=0.83), are associated with increased risk 

of sporadic ALS (van Es et al. 2009) and sporadic FTD with underlying TDP-43 

pathology (Diekstra et al. 2014). Clinical studies have further suggested that the 

minor allele (C) of rs12608932 (MAF=0.43) is associated with shorter survival in 

sporadic ALS, which has been demonstrated in multiple populations and under 

both additive and recessive minor allele models (Diekstra et al. 2012; Vidal- 

Taboada et al. 2015; Chiò et al. 2013). 

In this report we perform a multimodal evaluation of rs12608932 to further 

investigate evidence for shared risk between ALS and FTD. Specifically, we test 

the hypothesis that the disease-associated allele (C) in rs12608932 is associated 

with frontotemporal cortical disease in sporadic ALS, including reduced cortical 

thickness, impaired cognitive performance, and increased vulnerability to TDP-43 
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pathology. 
 

Methods 
 

We evaluated 190 sporadic ALS cases distributed across a neuroimaging, 

neuropathological, and/or neuropsychological cohort, described in detail below. 

 
 

Neuroimaging cohort. 
 

We retrospectively evaluated 109 sporadic ALS patients recruited for research 

between 2004 and 2017 from the Penn Comprehensive ALS Clinic and Penn 

Frontotemporal Degeneration Center at the University of Pennsylvania Perelman 

School of Medicine. All patients were diagnosed with ALS by a board-certified 

neurologist (L.E., L.M., M.G., D.I) using the revised El Escorial criteria (Brooks et 

al. 2000), including possible, probable, and definite ALS. All patients were also 

assessed for frontotemporal dysfunction using established criteria (Strong et al. 

2009) and those patients enrolled in research prior to 2009 were retrospectively 

evaluated through a chart review; in total 26 patients were diagnosed with ALS- 

FTD and 11 patients were diagnosed with ALS-cognitive impairment (ALSci). 

To identify regions of significant cortical thinning in ALS, we recruited 113 

demographically-comparable healthy controls who self-reported a negative 

history for neurologic or psychiatric disease and scored >27 on the MMSE. There 

were no statistically significant differences in age, education, or sex between 

controls and ALS (all p values > .05). We assessed participant race and ethnicity 

via self-report. While population diversity is known to influence allele frequency 

across individuals, rs12608932 has a relatively equal minor allele frequency 
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across populations (e.g., European 0.35, Africans 0.33, American 0.30) and post- 

hoc analyses limited to the majority race and ethnicity of our patient population 

(e.g. white non-Latino) remain significant or approach significance. Demographic 

features of ALS and controls are summarized in Table 6. 

All participants participated in an informed consent procedure approved by 

an Institutional Review Board convened at the University of Pennsylvania. 

 
 

Autopsy cohort. 
 

We evaluated neuropathological data from 102 sporadic ALS autopsy cases who 

were diagnosed by a board-certified neuropathologist (JQT, EBL) with ALS due 

to TDP-43 pathology using immunohistochemistry (Lippa et al. 2009; Neumann 

et al. 2006) and published criteria (Mackenzie et al. 2011). This cohort included 

21 patients from the ALS neuroimaging cohort. Autopsy cases were identified 

from the Integrated Neurodegenerative Disease Database (Toledo et al. 2014) 

after excluding cases with a family history of neurodegenerative disease or a 

known genetic mutation associated with ALS (see Genetic Screening). Within  

this autopsy cohort we rated the extent of phosphorylated TDP-43 (pTDP-43) 

intraneuronal inclusions (dots, wisps, skeins) for each sampled region on a semi- 

quantitative ordinal scale: 0 = none/rare, 1 = mild, 2 = moderate, 3 = 

severe/numerous (Toledo et al. 2014). All neuropathological ratings were 

performed by an expert neuropathologist (JQT, EBL) blinded to genotype. 

Demographic features of ALS autopsy cases are summarized in Table 7. 
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Alzheimer’s disease neuroimaging initiative (ADNI) cohort. 
 

To evaluate the disease specificity of any observed neuroanatomic and genetic 

associations we additionally performed cortical thickness analyses in 84 amyloid- 

negative (florbetapir SUVR <1.11) (Landau et al. 2012), cognitively-normal 

healthy controls from the publicly-available Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database. 

 
 

Genetic screening. 
 

DNA was extracted from peripheral blood or frozen brain tissue following the 

manufacturer’s protocols (Flexigene (Qiagen) or QuickGene DNA whole blood kit 

(Autogen) for blood, and QIAsymphony DNA Mini Kit (Qiagen) for brain tissue). 

All patients were screened for C9ORF72 hexanucleotide repeat expansions  

using a modified repeat-primed polymerase-chain reaction (PCR) as previously 

described (Suh et al. 2015), and we excluded any patient with >=30 

hexanucleotide repeats. Of the remaining individuals, we evaluated  family  

history using a three-generation pedigree history as previously reported (Wood et 

al. 2013). For cases with a family history of the same disease we sequenced 45 

genes previously associated with neurodegenerative disease (Toledo et al. 

2014), including four genes known to be associated with ALS (e.g. SOD1 (D. R. 

Rosen 1993), TARDBP (Kabashi et al. 2008), FUS (Kwiatkowski et al. 2009; 

Vance et al. 2009), and VCP (J. O. Johnson et al. 2010)). Sequencing was 

performed using a custom-targeted next-generation sequencing panel (MiND- 
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Seq) (Toledo et al. 2014), and analyzed using Mutation Surveyor software (Soft 

Genetics, State College, PA). We excluded any individuals identified as having a 

pathogenic mutation. 

 
 

SNP genotyping. 
 

All neuroimaging and neuropathology cases were genotyped using peripheral or 

brain DNA, extracted as above, for rs12608932 using a custom-designed Pan 

Neurodegenerative Disease-oriented Risk Allele (PANDoRA) panel designed to 

genotype 92 common and risk allele variants identified in association and other 

studies as modifying risk of disease or a phenotype for several 

neurodegenerative diseases, including ALS as well as FTD, Parkinson’s disease, 

and Alzheimer’s disease (Toledo et al. 2014). While our analyses focus on a 

single genotype, rs12608932, this approach provides a cost-effective manner to 

genotyping that can be used for future comparative studies as previously 

reported by our center (McMillan et al. 2018; McMillan et al. 2014). Briefly, the 92 

SNP Type assays were designed by D3 Assay Design tool (Fluidigm). Allele- 

specific PCR was performed using the 96.96 Dynamic Array integrated fluidic 

circuits (Fluidigm) and genotyping was carried out using the BioMark HD system 

(Fluidigm) according to the manufacturer’s protocol. The genotype call data was 

collected and analyzed using BioMark Genotyping Analysis software. 

All ADNI healthy control data was genotyped using the Illumina 660K, as 

previously described (Del-Aguila et al. 2018). As part of routine quality control 

steps, single-nucleotide polymorphisms (SNPs) with minor allele frequency < 1%, 
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call rates < 98%, Hardy–Weinberg equilibrium p-values >10-6 and individuals with 
 

> 2% missing genotypes were removed before imputation. The dataset was 

imputed, separately, using SHAPEIT/IMPUTE2 with the 1000 Genomes Project 

as the reference panel. All genotypes with dosage levels <0.9 for all three 

possible genotypes or with information scores <0.3 were excluded. Variants out 

of Hardy Weinberg Equilibrium (HWE) (p<1x10-6) or with a genotyping rate below 

95% were also omitted from the analyses. Population structure was inferred by 

principal component (PC) analysis using PLINK v.1.9. PLINK v1.9 was also used 

to find duplicate and related individuals who were eliminated from the analysis. 

 
 

Clinical evaluations. 
 

Detailed clinical evaluations were available for a subset of 88 (79%) sporadic 

ALS patients in the neuroimaging cohort. These patients were clinically  

assessed within approximately two months of neuroimaging acquisition date (M 

=1.62, SD = 2.63) for motor function using the Revised ALS Functional Rating 

Scale (ALSFRS-R) (Cedarbaum, Stambler, Malta, Fuller, Hilt, Thurmond, and 

Nakanishi 1999a) and cognitive function using the Forward and Reverse Digit 

Span, the Visual-Verbal Test (VVT), letter fluency, and the Mini-Mental State 

Exam (MMSE). Forward digit span, a measure of auditory-verbal short-term 

memory, and reverse digit span, a measure of auditory-verbal working memory, 

were assessed in an untimed manner with repetition of increasingly longer 

sequences until the patient erred; the maximum number of digits on a correct trial 

was recorded (Wechsler 1945). Our group has previously demonstrated that the 
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VVT is a brief, untimed measure of cognitive flexibility with minimal motor 

demands appropriate for use in an ALS patient population (Evans et al. 2015). 

Participants first identify a feature shared by three of four simple geometric 

designs, and are next challenged to identify a different feature shared by another 

combination of three of the four same geometric designs; a discrepancy between 

the number correct on the first and second identifications of 10 trials is 

considered a sign of reduced mental flexibility. Letter fluency is a measure of 

executive control and verbal ability (Abrahams et al. 2000), and was assessed by 

the number of unique words beginning with “F” a patient was able to generate in 

one minute (excluding proper nouns and numbers); patients did not complete 

letter fluency if bulbar upper or lower motor symptoms were present upon exam. 

The MMSE is a 30-point questionnaire that evaluates global dementia severity 

(Crum, Anthony, Bassett, and Folstein 1993b); we calculated the percentage 

correct on MMSE as some patients were not able to complete the entire test due 

to motor disability. 

In addition to reporting raw patient performance on neuropsychological 

assessments, we report the percent of patients impaired on each task relative to 

published normative data of healthy controls matched to the mean age and mean 

education of our patients where available (Tombaugh, Kozak, and Rees 1999; 

Weintraub et al. 2009). We report patient performance on the Visual Verbal Test 

relative to normative data based on healthy controls recruited by the Penn 

Frontotemporal Degeneration Center who were matched to the mean age and 

mean education of our patients (N=31 (17 Female); Age, years: M=60.58, 
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SD=12.80; Education, years: M=15.29, SD=2.52). We defined patient impairment 

on each task as performance at or greater than 1.96 standard deviations, 

equivalent to p<0.05, below normative data from healthy controls. 

 
 

Neuroimaging acquisition & processing. 
 

High-resolution T1-weighted MPRAGE structural scans were acquired for 

neuroimaging participants using a 3T Siemens Tim Trio scanner with an 8- 

channel head coil, with T=1620ms, T=3.09ms, flip angle=15°, 192x256 matrix, 

and 1mm3 voxels. T1-weighted MRI images were then preprocessed using ANTs 

Cortical Thickness software (Tustison et al. 2014). Each individual dataset was 

deformed into a standard local template space in a canonical stereotactic 

coordinate system. Advanced Normalization Tools (ANTs) provides a highly 

accurate registration routine using symmetric and topology-preserving 

diffeomorphic deformations to minimize bias toward the reference space and to 

capture the deformation necessary to aggregate images in a common space. 

Then, we used N4 bias correction to minimize heterogeneity (Tustison et al. 

2010) and the ANTs Atropos tool to segment images into six tissue classes 

(cortex, white matter, CSF, subcortical grey structures, brainstem, and 

cerebellum) using template-based priors and to generate probability maps of 

each tissue. Voxel-wise cortical thickness was measured in millimeters (mm) 

from the pial surface and then transformed into Montreal Neurological Institute 

(MNI) space, smoothed using a 2 sigma full-width half-maximum Gaussian 

kernel, and downsampled to 2mm isotropic voxels. 
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Neuroimaging analyses. 
 

We used randomise software from FSL to perform nonparametric, permutation- 

based statistical analyses of cortical thickness images from our ALS and control 

neuroimaging cohorts and the ADNI control cohort. Permutation-based statistical 

testing is robust to concerns regarding multiple comparisons since, rather than a 

traditional assessment of two sample distributions, this method assesses a true 

assignment of factors (e.g., genotype) to cortical thickness relative to many (e.g., 

10,000) random assignments (Winkler et al. 2014). 

First, we identified regions of reduced cortical thickness in ALS relative to 

healthy controls, constraining analysis using an explicit mask restricted to high 

probability cortex (>.4). We report clusters that survive p<.005 threshold-free 

cluster enhancement (TFCE) (Smith and Nichols 2009) corrected for family-wise 

error (FWE) relative to 10,000 random permutations. 

Next, we evaluated whether rs12608932 genotype relates to magnitude of 

reduced cortical thickness in ALS, covarying for disease duration, age, and sex in 

an effort to control for factors associated with reduced cortical thickness but not 

specifically associated with SNP genotype. We restricted this analysis to a mask 

defined by regions of reduced cortical thickness in ALS relative to controls so that 

we could focus our interpretation in the context of cortical degeneration affected 

by ALS. We report clusters that survive p<.01 (uncorrected) threshold  and 

cluster extent threshold of >20 adjacent voxels relative to 10,000 random 

permutations; we employ an uncorrected threshold to minimize the chance of 
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Type II error (not observing a true result). 
 

We performed comparable analyses to evaluate SNP genotype relative to 

cortical thickness in the ADNI control cohort and adopted the same statistical 

thresholds as described above. 

 
 

Statistical analyses. 
 

All additional statistical analyses were performed using R. For assessment of 

ordinal neuropathology data we performed ordinal logistic regression using the 

MASS package in R to investigate whether burden of TDP-43 pathology differed 

according to genotype at rs12608932, covarying for age, sex, and disease 

duration at death. For clinical comparisons, we used multiple linear regression to 

evaluate the association between genotype at rs12608932 and performance on 

forward and reverse digit span, the MMSE, the VVT, and letter fluency; we 

included age, sex, disease duration, ALSFRS-R total score, and cognitive 

diagnosis (i.e. diagnosis of ALS-FTD, ALSci) as covariates in each analysis. 

 
 

Results 
 

Reduced cortical thickness in ALS associated with the rs12608932 minor allele. 

A group comparison of ALS patients relative to healthy controls revealed reduced 

cortical thickness in the bilateral frontal and temporal lobes, consistent with the 

pattern of cortical degeneration associated with ALS-FTD spectrum disorders 

(Table 8, Figure 4). 

To evaluate disease-specific genotype and neuroanatomic associations 
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we restricted our subsequent analyses to regions of reduced cortical thickness 

observed in ALS. Evaluation of rs12608932 under a minor allele additive model 

revealed reduced cortical thickness associated with the minor allele (C) in the 

right anterior temporal lobe, bilateral ventromedial prefrontal cortex, left middle 

temporal gyrus, and left dorsal prefrontal cortex (Table 8, Figure 4A). Evaluation 

of rs12608932 under a minor allele recessive model revealed reduced cortical 

thickness associated with the minor allele (C) in regions including the dorsal and 

dorsolateral prefrontal, ventromedial prefrontal, anterior temporal, and middle 

temporal cortices (Table 8, Figure 4B). 

Investigation of the inverse association between rs12608932 genotype 

(i.e. number of major non-risk allele “A”) and cortical thickness yielded no 

statistically significant findings for either additive or recessive models (not 

shown), suggesting that the rs12608932 minor allele C is specifically associated 

with reduced cortical thickness in these regions. 

To examine the disease specificity of the relationship between 

rs12608932 genotype and reduced cortical thickness in ALS, we performed 

comparable analyses in the ADNI control cohort restricted to the same regions of 

reduced cortical thickness observed in ALS. We observed no relationship 

between cortical thickness and genotype at rs12608932 under minor allele 

additive or recessive models (not shown). 

 
 

Working memory performance associated with rs12608932. 
 

Given the observed association between rs12608932 and frontal and temporal 
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cortices, we evaluated each clinical assessment to investigate potential clinical 

consequences of the observed neuroanatomic and genetic associations. 

We first investigated whether ALSFRS-R relates to rs12608932 genotype. 

Under a minor allele additive model, minor allele heterozygotes (AC) (=3.41, 

p=.04) but not minor allele homozygotes at rs12608932 (CC) (=1.97, p=.35) 

demonstrated higher ALSFRS-R total score compared to major allele 

homozygotes (AA); disease duration (=-.037, p=.1), age (=.059, p=.38), sex 

(=1.53, p=.33), and cognitive diagnosis (ALSci: =-2.34, p=.37; ALS-FTD: =- 

0.88, p=.62) were not found to significantly affect ALSFRS-R Total in this model. 

However, under a minor allele recessive model, we did not observe a significant 

difference in ALSFRS-R Total score between minor allele heterozygotes (AC) 

and minor allele homozygotes (CC) at rs12608932 (=0.34, p=.87) compared to 

major allele homozygotes (AA). To account for the observed difference in 

ALSFRS-R under a minor allele additive model, we covaried for ALSFRS-R Total 

score in all subsequent regressions. 

Under a minor allele additive model, we observed a trend whereby minor 

allele homozygotes at rs12608932 (CC) (=-.81, p=.086) performed worse than 

major allele homozygotes (AA) on reverse digit span after accounting for 

cognitive diagnosis (ALSci: =-1.73, p=.0014; ALS-FTD: =-2.09, p<.00001); 

heterozygous genotype (AC) (=.32, p=.38), disease duration (=-.0022, p=.64), 

ALSFRS-R total score (=-.012, p=.60), and age (=-.0021, p=.89) did not relate 

to reverse digit span performance in this model. 
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Under a minor allele recessive model, minor allele homozygotes at rs12608932 

(CC) (=-0.96, p=.029) performed significantly worse than major allele 

homozygotes (AA) and heterozygotes (AC) on reverse digit span  after 

accounting for cognitive diagnosis (ALSci: =-1.69, p=.0017; ALS-FTD: =-2.08, 

p<.00001); disease duration (=-.0018, p=.69), ALSFRS-R total score (=-.0013, 

p=.95), age (=-.0013, p=.76), and sex (=.55, p=.11), did not significantly relate 

to reverse digit span performance in this model. 

Performance on other neuropsychological tests was not found to associate with 

rs12608932  genotype,  including  forward  digit  span  (CC:  =-.03,  p=.93;  CA: 

=.40, p=.20), letter fluency (CC: =.26, p=.85; CA: =1.61 p=.15), MMSE (CC: 

 

=.036, p=.28; CA: =.006, p=.82), and the VVT (CC: =-.22, p=.67; CA: =-.40, 

 
p=.32). We observed similar results under minor allele recessive models: forward 

digit span (CC: =-.22, p=.57),  letter fluency (CC: =-.39, p=.76), MMSE (CC: 

=.034, p=.26), and the VVT (CC: =.12, p=.80). 

 
 

pTDP-43 pathologic burden associated with rs12608932. 
 

To evaluate converging evidence for our observed genetic and neuroanatomic 

associations, we assessed ordinal neuropathologist ratings of pTDP-43 

pathologic burden in the middle frontal, temporal, and motor cortices, which were 

associated with rs12608932 in the above neuroimaging analyses (Figure 5). 

Minor allele homozygotes (CC) were 8.26 times (95% CI: 2.01, 38.64; p = 
 

.0043) more likely and heterozygotes (AC) were 5.53 times (95% CI: 1.78, 21.21; 
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p = .0057) more likely to have higher TDP-43 burden in the middle frontal cortex 

relative to major allele homozygotes (AA). Minor allele homozygotes (CC) were 

4.40 times (95% CI: 1.25, 16.23; p = .022) more likely to have higher TDP-43 

burden in the temporal cortex and – reaching marginal significance - 3.04 times 

(95% CI: 0.98, 9.72; p = .056) more likely to have higher TDP-43 burden in the 

motor cortex relative to major allele homozygotes (AA); minor allele 

heterozygotes (AC) were not more likely to have higher TDP-43 burden relative 

to major allele homozygotes in either region (both p values > .1). 

We repeated our analysis of TDP-43 pathologic burden in the middle 

frontal, temporal, and motor cortices in our autopsy cohort after excluding 21 

individuals in the autopsy cohort who were also in the neuroimaging cohort. 

Similar to our findings in the entire autopsy cohort, minor allele homozygotes 

(CC) were 28.35 times (95% CI: 4.72, 249.31; p = .00064) more likely and 

heterozygotes (AC) were 11.49 times (95% CI: 2.78, 78.76; p = .0027) more 

likely to have higher TDP-43 burden in the middle frontal cortex relative to major 

allele homozygotes (AA). Minor allele homozygotes (CC) were 11.60 times (95% 

CI: 2.23, 72.49; p = .005) more likely to have higher TDP-43 burden in the 

temporal cortex relative to major allele homozygotes (AA); minor allele 

heterozygotes (AC) were not more likely to have higher TDP-43 burden relative 

to major allele homozygotes (p > .9). We did not observe any statistically 

significant differences in TDP-43 pathologic burden in the motor cortex relative to 

rs12608932 in this smaller cohort. 
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Discussion 
 

In this study, we evaluated whether rs12608932 genotype in UNC13A was 

associated with frontotemporal disease in sporadic ALS using a novel multimodal 

approach integrating genetic, neuroimaging, clinical, and neuropathology data. 

Our results indicate that sporadic ALS patients who are carriers of the 

rs12608932 minor allele (C) show reduced cortical thickness in regions including 

the dorsal and ventromedial prefrontal cortex, anterior and middle temporal 

cortex, and premotor cortex, and that minor allele homozygotes (CC) 

demonstrate worse performance on reverse digit span, a frontal-lobe mediated 

cognitive test. We did not observe a relationship between rs12608932 genotype 

and cortical thickness in the amyloid-negative ADNI healthy control cohort, 

suggesting that the association between rs12608932 and reduced cortical 

thickness is specific to ALS. Furthermore, in our sporadic ALS autopsy cohort,  

we demonstrate that carriers of the rs12608932 minor allele have increased odds 

of pTDP-43 pathologic burden in the middle frontal cortex, middle temporal 

cortex, and motor cortex, consistent with our neuroimaging findings. To our 

knowledge, our study provides novel evidence that the minor allele of 

rs12608932 in UNC13A is associated with in vivo frontotemporal cortical atrophy, 

impaired cognitive performance, and greater burden of pTDP-43 pathological 

inclusions in sporadic ALS. 

rs12608932 was first identified through a two-stage GWAS as a 

susceptibility locus for sporadic ALS with a combined P = 2.53 x 10(-14) (van Es 

et al. 2009). rs12608932 maps to a haplotype block within the boundaries of 
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gene UNC13A, which regulates presynaptic vesicle priming and glutamate 

release at neuromuscular synapses, and mice lacking the UNC13A homolog 

have arrested synaptic vesicle maturation and disrupted glutamatergic 

transmission (Augustin et al. 1999). Subsequent population-based study 

indicated the minor allele (C) at rs12608932 as a risk factor for shorter survival in 

sporadic ALS under both additive and recessive models (Diekstra et al. 2012; 

Chiò et al. 2013; Vidal-Taboada et al. 2015), and as a modifier of physical 

symptom progression on the ALSFRS-R (Vidal-Taboada et al. 2015). In addition 

to risk and progression of sporadic ALS, rs12608932 was also identified to serve 

as a risk locus for sporadic FTLD-TDP (Diekstra et al. 2014), suggesting 

rs12608932 as a potential link between ALS and FTLD-TDP. More recently, an 

additional SNP in UNC13A in high LD with rs12608932 (rs4239633; D’=0.83) 

was identified as demonstrating selective genetic overlap between ALS and FTD 

in GWAS meta-analysis (Karch et al. 2018). 

Our findings corroborate rs12608932 as a genetic link between ALS and 

FTD with TDP-43 pathology, and specifically demonstrate that the minor allele is 

associated with reduced cortical thickness, worse working memory performance, 

and greater burden of TDP-43 pathology in the frontal and temporal lobes. 

Importantly, we use continuous disease traits from multiple modalities (i.e. 

structural imaging, cognitive testing, neuropathology data) to present converging 

evidence that rs12608932 confers increased risk of frontotemporal disease in 

sporadic ALS and relates to patient cognitive performance. This approach offers 

an advance over discovery GWAS that compare only categorical clinical 
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designations (e.g. ALS vs. healthy controls), and allows detailed phenotypic 

characterization associated with rs12608932 genotype. 

Furthermore, the observed relationship between rs12608932 and both 

frontotemporal cortical thinning and burden of TDP-43 pathology are consistent 

with the disease anatomy of ALS-FTD spectrum disorders. Structural MRI 

studies have previously demonstrated progressive frontotemporal gray matter 

degeneration over disease course (Menke et al. 2014; Verstraete et al. 2014; 

Kwan et al. 2013; Verstraete et al. 2012; Keil et al. 2012; Senda et al. 2011; 

Müller et al. 2016), and that degree of frontotemporal cortical thinning relates to 

cognitive-behavioral phenotype (Agosta et al. 2016; Schuster et al. 2014). 

Additionally, staging of neuropathological burden suggests stereotyped 

propagation of TDP-43 from motor regions (brainstem, spinal cord) to frontal and 

temporal neocortex over the course of disease (Brettschneider et al. 2013; Braak 

et al. 2013). Our finding of greater TDP-43 pathologic burden associated with the 

rs12608932 in frontal and temporal neocortex may thus be interpreted to reflect 

more progressive disease propagation in sporadic ALS patients who are minor 

allele carriers. This finding could also be related to TDP-43 pathologic subtype 

(Mackenzie et al. 2011), and future work is necessary to 1) evaluate the influence 

of TDP-43 pathologic subtype on the anatomic distribution and phenotypic 

presentation (e.g. comorbid symptoms of frontotemporal disease) of disease, and 

2) investigate how rs12608932 genotype relates to TDP-43 pathologic subtype. 
 

With this in mind, rs12608932 genotype may potentially be used prognostically to 

evaluate  risk  of  frontotemporal  cortical  disease  in  ALS,  which  has  been 
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previously associated with reduced survival (Govaarts et al. 2016; Elamin, 

Phukan, Bede, Jordan, Byrne, Pender, and Hardiman 2011b). 

The observed relationships between rs12608932, reduced cortical 

thickness in the dorsal and ventromedial prefrontal cortices, and worse 

performance on reverse digit span are congruent with the neuroanatomy of 

working memory. Indeed, functional activation of the dorsal and ventromedial 

prefrontal cortices relates to memory load function and information retrieval on 

tasks of working memory, respectively (Rypma and D’Esposito 1999). 

We also observed a relationship between rs12608932 and reduced 

cortical thickness in the right orbital frontal cortex, right anterior temporal lobe, 

and left middle temporal gyrus. Our group has previously shown that reduced 

cortical thickness in the orbital frontal cortex is associated with behavioral 

disinhibition and apathy in patients with FTD (Massimo et al. 2009), while others 

have shown that cortical thinning in the right anterior temporal lobe and left 

middle temporal gyrus are associated with impaired semantic knowledge and 

theory of mind in patients with FTD (Irish, Hodges, and Piguet 2014; Rohrer et al. 

2009). Impairments in behavior and language are common to both ALS and FTD 

(Beeldman et al. 2018), and prospective studies are necessary to evaluate 

potential rs12608932 associations relative to language and behavioral function 

using more comprehensive neuropsychological batteries like the Edinburgh 

Cognitive Assessment Scale (ECAS) (Abrahams et al. 2014), which were not 

available in this retrospective study. 

Our findings add to an increasing body of evidence in support of a 
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clinicopathologic continuum between ALS and FTD with underlying TDP-43 

pathology, and specifically suggest that genetic polymorphisms may relate to the 

phenotypic presentation of frontotemporal disease in sporadic ALS. This is 

consistent with prior work from our group demonstrating that TDP-43 pathology- 

associated SNPs relate to selective neuroanatomic distribution of cortical atrophy 

and white matter degeneration in patients with sporadic forms of FTD (McMillan 

et al. 2014), modify disease onset and survival in FTD with C9ORF72 repeat 

expansions (“TMEM106B is a Genetic Modifier of Frontotemporal Lobar 

Degeneration with C9ORF72 Hexanucleotide Repeat Expansions (I5-1.008),” 

2014) (Gallagher et al. 2014), and confer risk for impaired executive function in 

ALS (Vass et al. 2011). 

The identification of genetic polymorphisms associated with disease 

phenotypes holds important implications for both basic science research and 

translational application. Our observed association between rs12608932 and 

frontotemporal disease in sporadic ALS motivates further investigation into 

potential mechanisms of disease vulnerability associated with genetic 

polymorphisms. While the function of gene UNC13A has previously been 

characterized (Augustin et al. 1999), future work is necessary to determine the 

extent to which rs12608932 genotype provides an actual disease modifier or is 

an association related to matching downstream transcription sites or other long- 

range interactions (Haiquan Li et al. 2016). In regards to translational application, 

our findings may contribute to patient stratification for clinical trials. Prior research 

has demonstrated baseline differences in patients stratified for SNP genotype 
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and indicate a contribution of genetic polymorphisms in dose-response to 

treatment (D. Wang et al. 2011), leading to the incorporation of genetic 

polymorphisms in the design and analysis of clinical trials (Zhang et al. 2017). 

Several caveats should be considered in the present study. Our data were 

limited according to strict inclusion criteria to investigate the clinical, pathologic, 

and regional anatomical differences in sporadic ALS patients relative to 

rs12608932 genotype. While we establish multiple sources of converging 

evidence for rs12608932 genotype relating to frontal disease, replication of the 

present findings in a large independent cohort using a prospective design is 

necessary. Furthermore, additional research is required to determine the extent 

to which pTDP-43 pathological burden directly or indirectly relates to reductions  

in cortical thickness. In this study, our evaluation of cognitive performance was 

retrospective and limited to measures broadly assessing executive function and 

global cognition. Future studies using revised diagnostic criteria for 

frontotemporal dysfunction in ALS (Strong et al. 2017) and specialized 

assessment of cognitive function in patients with ALS, such as the Edinburgh 

Cognitive and Behavioral ALS Screen (Abrahams et al. 2014), are necessary to 

also assess impairments in other domains including language and behavior. 

Here, we focus on genetic contributions to frontotemporal disease in sporadic 

ALS. However, environmental factors such as those associated with cognitive 

reserve have been demonstrated to influence frontotemporal disease 

neuroanatomy in FTD (Massimo et al. 2018; Massimo et al. 2015; Placek et al. 

2016), also when considered in addition to genetic polymorphisms (Premi et al. 
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2017). Additional study is necessary to examine frontotemporal disease in 

sporadic ALS relative to both genetic polymorphisms and environmental factors 

associated with cognitive reserve. 

With these caveats in mind, our research demonstrates converging 

clinical, neuroimaging, and pathologic evidence supporting the hypothesis that 

the common genetic polymorphism rs12608932 contributes to frontotemporal 

disease phenotype in sporadic ALS. These findings stimulate investigation into 

additional genetic contributors to the nature of disease in sporadic ALS, and 

suggest their importance in prognostic consideration and treatment trials in 

patients with ALS. 
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Table 6. Demographic, clinical, and genetic information for neuroimaging and 
ADNI cohorts. 

 
 ALS Controls ADNI Controls 

N (F) 109 (44) 113 (52) 84 

Age, Y 59.54 (10.96) 61.54 (8.73) 75.44 (6.40) 

Education, Y 15.26 (2.99) 15.35 (2.43) - 

Race, N 

White 

Black 

Multi-racial 

Other 
Unknown 

 
100 

6 

1 

1 
1 

 
90 

22 

1 

- 
- 

- 

Ethnicity, N 

Latino 

Non-Latino 

Other 
Unknown 

 
2 

105 

1 
1 

 
1 

111 

- 

1 

- 

Disease duration, M 38.67 (34.25) - - 

ALSFRS-R 33.81 (7.39) - - 

Forward digit span, 
% impaired 

6.53 (1.45), 
4.54 

- - 

Reverse digit span, 
% impaired 

4.21 (1.70), 
13.63 

- - 

Letter fluency, 
% impaired 

11.29 (5.41), 
23.86 

- - 

Visual Verbal Test, 
% impaired 

7.8 (4.13), 
9.09 

- - 

MMSE, % correct, 
% impaired 

91.82 (14.11), 
25.00 

- - 

rs12608932 genotypes, N 

AA 

AC 
CC 

 
43 

46 
20 

 
- 

- 
- 

 
41 

34 
9 

Abbreviations: Alzheimer’s Disease Neuroimaging Initiative – ADNI; ALS 
Functional Rating Scale-Revised - ALSFRS-R; Mini-Mental State Exam – MMSE 
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Table 7. Demographic, clinical, and genetic information for autopsy cohort. 
 

  
ALS (entire cohort) 

ALS 
(no neuroimaging) 

N (F) 102 (40) 81 (29) 

Age at Death, Y 65.01 (10.83) 66.21 (10.99) 

Race, N   
White 71 

Black 3 

Multi-racial - 

Other 1 

Unknown 27 

Ethnicity, N   
Latino 2 

Non-Latino 72 

Other - 

Unknown 28 

Education, Y 15.18 (3.48) 14.76 (3.44) 

Disease duration at Death, 
Y 

4.83(4.98) 4.87(5.42) 

rs12608932 genotypes, N   

AA 38 30 

AC 47 39 

CC 17 12 
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Table 8. Regions of reduced cortical thickness for ALS relative to controls and 
associated with rs12608932 genotype in ALS. 

 
Neuroanatomic region (BA) L   MNI Coordinates T p Voxels 

/ x y z statistic value 
R 

Reduced cortical thickness in ALS relative to controls1: 25627 

Insular Cortex (13) R 40 22 0 6.72 0.0006  

Inferior Frontal Gyrus (45) L -32 28 2 6.18 0.0001  

Dorsolateral Prefrontal Cortex (9) - 0 46 18 6.12 0.0001  

Inferior Frontal Gyrus (45) R 34 22 8 5.96 0.0007  

Ventromedial Orbital Frontal Cortex (11) R 12 14 -20 5.91 0.0001  

Ventromedial Orbital Frontal Cortex (11) L -12 14 -18 5.79 0.0001  

Middle Temporal Gyrus (21) R 64 -32 10 3.54 0.004  

Reduced cortical thickness associated with rs12608932 minor allele in ALS: Additive model 

Anterior Temporal Lobe (38) R 34 10 -40 3.08 0.002 56 

Ventromedial Prefrontal Cortex (11) L -20 26 -24 3.21 0.001 27 

Middle Temporal Gyrus (22) L -50 -10 -12 2.88 0.003 24 

Dorsal Prefrontal Cortex (10) L -28 44 28 3.56 0.001 23 

Ventromedial Prefrontal Cortex (11) R 16 16 -24 3.66 0.001 21 

Reduced cortical thickness associated with rs12608932 minor allele in ALS: Recessive model 

Anterior Temporal Lobe (20) R 30 10 -44 3.50 0.001 238 

Middle Temporal Gyrus (21) L -50 -10 -14 4.04 0.001 83 

Anterior Temporal Lobe (20) L -56 -8 -28 3.56 0.001 62 

Premotor Cortex (6) L -50 2 42 3.90 0.001 52 

Dorsolateral Prefrontal Cortex (9) R 32 48 34 3.23 0.001 44 

Primary Motor Cortex (4) R 48 -12 40 3.07 0.001 39 

Superior Temporal Cortex (22) R 66 -36 10 3.30 0.001 35 

Orbital Prefrontal Cortex (11) R 8 34 -8 2.81 0.001 31 

Orbital Prefrontal Cortex (11) L -20 30 -24 3.23 0.001 31 

Ventromedial Prefrontal Cortex (47) R 30 22 4 3.45 0.001 30 

Hippocampus (54) R 30 -38 2 2.56 0.003 30 

Insula (13) R 36 -12 2 2.88 0.001 29 

Anterior Premotor Cortex (8) R 36 28 48 4.00 0.001 25 

Dorsal Prefrontal Cortex (10) L -34 52 16 3.16 0.001 25 

Middle Temporal Gyrus (21) R 50 8 -20 2.97 0.003 25 

Abbreviations: BA = Brodmann area; L/R = Left/Right; MNI = Montreal 
Neurological Institute 
Note.1 Cortical regions identified from peak voxel coordinates in an effort to 
describe sub-peaks within a larger, contiguous cluster. 
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Figure 4. Reduced cortical thickness associated with rs12608932 genotype. 
Analyses were restricted to regions of reduced cortical thickness identified in 
sporadic ALS (N=109) relative to healthy controls (N= 113) (light blue regions in 
A and B). A) Patients with sporadic ALS who are carriers of the minor allele (C) 
exhibited greater reduction of cortical thickness in dorsal prefrontal, ventromedial 
prefrontal, anterior temporal, and middle temporal cortices (regions indicated in 
red-yellow heatmap). B) Patients with sporadic ALS who are homozygous (CC) 
or heterozygous (AC) for the minor allele exhibited greater reduction of cortical 
thickness in the frontal and temporal cortices (regions indicated in red-yellow 
heatmap). Heatmaps indicate the associated T-statistic for each voxel, with 
yellow representing the highest value. 
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0.0 3.66 
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Figure 5. Greater burden of pTDP-43 pathology associated with rs12608932 
genotype. Box and whisker plots of pTDP-43 pathologic burden in our sporadic 
ALS autopsy cohort (N=102) show that minor allele homozygotes (CC) and 
heterozygotes (AC) feature greater burden of pathology in the middle frontal 
cortex. Minor allele homozygotes but not minor allele heterozygotes also feature 
greater burden of pathology in the superior/middle temporal cortex and motor 
cortex. 
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CHAPTER 4 
 

Machine learning suggests polygenic contribution to cognitive dysfunction 
in amyotrophic lateral sclerosis 
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James Caress Yuen So, Samuel Maiser, David Walk, Edward B. Lee, John Q. 

Trojanowski, Philip Cook, James Gee, Jin Sha, Adam C. Naj, Rosa Rademakers, 
The CReATe Consortium, Wenan Chen, Gang Wu, J. Paul Taylor and Corey T 
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Abstract 
 

Amyotrophic lateral sclerosis (ALS) is a multi-system disease characterized 

primarily by progressive muscle weakness. Cognitive/behavioral dysfunction is 

observed in as many as 50% of patients, however factors influencing risk for 

cognitive dysfunction remain elusive. Using sparse canonical correlation analysis 

(sCCA), an unsupervised machine-learning technique, we observed that single 

nucleotide polymorphisms collectively associate with baseline cognitive 

performance in 327 ALS patients from the multicenter Clinical Research in ALS 

and Related Disorders for Therapeutic Development (CReATe) consortium. We 

demonstrate that a polygenic risk score derived using sCCA relates to 

longitudinal cognitive decline in the same cohort, and also to in vivo cortical 

thinning in the orbital frontal cortex, anterior cingulate cortex, lateral temporal 

cortex, premotor cortex, and hippocampus (N=114); as well as post mortem 

motor cortical neuronal loss (N=88) in independent ALS cohorts from the 

University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Our 
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findings suggest that common genetic polymorphisms may exert a polygenic 

contribution to the risk of cortical disease vulnerability and cognitive dysfunction 

in ALS. 

 
 

Introduction 
 

As many as half of patients with amyotrophic lateral sclerosis (ALS) manifest 

progressive decline in cognition consistent with extra-motor frontal and temporal 

lobe neurodegeneration, including 14% also diagnosed with frontotemporal 

dementia (FTD) (Montuschi et al. 2015; Beeldman et al. 2016). Comorbid 

cognitive dysfunction is a marker of poorer prognosis in this fatal disease and 

confers risk for more rapid functional decline, shorter survival, and greater 

caregiver burden (Elamin et al. 2013; Crockford et al. 2018; Hu et al. 2013; Caga 

et al. 2019). While linkage analysis and genome-wide association studies 

(GWAS) have identified rare causal mutations (DeJesus-Hernandez et al. 2011; 

Renton et al. 2011; Van Deerlin et al. 2008; Freischmidt et al. 2015) and common 

risk loci (van Rheenen et al. 2016; Nicolas et al. 2018; van Es et al. 2009; 

Diekstra et al. 2014; Karch et al. 2018) linking ALS and FTD, whether and how 

identified variants relate to phenotypic heterogeneity, including in cognition, 

remain largely unexplored. 

The genetic landscape of ALS is largely characterized by ‘apparently 

sporadic’ disease occurring in 90% of patients with neither a known family 

disease history nor an identifiable pathogenic mutation (Turner et al. 2017). 

Population-based studies estimate that only 5-10% of non-familial and 40-50% of 
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familial ALS cases can be attributed to known pathogenic mutations (Umoh et al. 

2016) (e.g. C9ORF72 (Renton et al. 2011; DeJesus-Hernandez et al. 2011), 

NEK1 (Kenna et al. 2016), SOD1 (D. R. Rosen et al. 1993)), but GWAS have 

revealed many loci of common genetic variation that confer risk for ALS and 

FTD. Indeed, recent evidence, supports a polygenic contribution to disease risk 

from common genetic variants (McLaughlin et al. 2017; Ciga et al. 2019). These 

include the largest ALS GWAS to-date which newly identified risk variants in the 

KIF5A gene (Nicolas et al. 2018), and genome-wide conjunction and conditional 

false discovery rate (FDR) analyses demonstrating shared genetic contributions 

between ALS and FTD from common single nucleotide polymorphisms (SNPs) at 

known and novel loci (Karch et al. 2018). 

An accumulating body of research suggests that SNPs associated with 

risk of ALS and FTD demonstrate quantitative trait modification of patient 

phenotype. For example, a SNP in identified as a risk locus for ALS and FTD  

was found to contribute to cognitive decline, in vivo cortical degeneration in the 

prefrontal and temporal cortices, and post mortem pathologic burden of 

hyperphosphorylated TAR-DNA binding protein [43 kDa] (TDP-43) in the middle 

frontal, temporal, and motor cortices (Placek et al. 2019). Another SNP identified 

as a risk locus for FTD with underlying TDP-43 pathology was additionally 

associated with cognition in patients with ALS (Vass et al. 2011). Others have 

recently demonstrated shared polygenic risk between ALS and other traits (e.g. 

smoking, education) and diseases (e.g. schizophrenia) (Ciga et al. 2019; 

McLaughlin et al. 2017; Hagenaars et al. 2018), suggesting that a single variant 
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is unlikely to fully account for observed disease phenotype modification. 

Presently there are no published studies evaluating polygenic contribution to 

cognitive dysfunction in ALS. 

Here we employed an unsupervised machine-learning approach, sparse 

canonical correlation analysis (sCCA), to identify and evaluate a potential 

polygenic contribution to cognitive dysfunction in ALS. Traditional approaches for 

constructing polygenic scores identify variants associated with disease risk 

through GWAS in a univariate manner, and then compute the sum of alleles at 

each identified variant, weighted by their effect sizes. In this study, we used data- 

driven sCCA to identify polygenic associations with a continuous phenotype of 

cognitive performance in ALS. This method employs sparsity to select maximally- 

contributing variants and assigns corresponding weights based on model 

contribution with minimal a priori assumptions. We used sCCA to derive a 

polygenic risk score for cognitive dysfunction in a large longitudinal cohort of 

cognitively characterized patients with ALS or a related disorder participating in 

the Phenotype-Genotype-Biomarker (PGB) study of the Clinical Research in ALS 

and Related Disorders for Therapeutic Development (CReATe) consortium. We 

then evaluated independent neuroimaging and autopsy cohorts of patients with 

ALS from the University of Pennsylvania Integrated Neurodegenerative Disease 

Biobank (UPenn Biobank) (Toledo et al. 2014) to evaluate whether polygenic risk 

for cognitive dysfunction also relates to in vivo cortical neurodegeneration and ex 

vivo cortical neuronal loss and TDP-43 pathology. We focused our investigation 

on SNPs achieving genome-wide significance in the largest published ALS 



95 
 

GWAS (Nicolas et al. 2018), and SNPs identified as shared risk loci for both ALS 

and FTD (Karch et al. 2018). We hypothesized that a sparse multivariate 

approach would reveal a subset of genetic loci associated with cognitive 

dysfunction profiles in ALS in a polygenic manner, and that follow-up analyses in 

independent neuroimaging and autopsy cohorts would converge to characterize 

quantitative traits associated with polygenic risk from identified loci. 

 
 

Results 
 

Heterogeneity of baseline cognitive and motor phenotype in ALS patients. 

Smaller-scale studies have shown that ALS patients have impairments in 

executive, verbal fluency, and language domains, but with relative sparing of 

memory and visuospatial function (Crockford et al. 2018). The Edinburgh 

Cognitive and Behavioral ALS Screen (ECAS) was developed to measure 

cognitive function minimally confounded by motor disability and includes an 

“ALS-Specific” score that captures impairments in language, executive function, 

and verbal fluency domains that are frequently observed in ALS patients, and an 

“ALS-Non-Specific” score that captures less frequently observed impairments in 

memory and visuospatial function, in addition to overall performance  (ECAS 

Total score) (Abrahams et al. 2014). To measure the extent of heterogeneity in 

cognitive dysfunction, we evaluated 327 patients with ALS or a related disorder 

(e.g., ALS-FTD, primary lateral sclerosis (PLS), progressive muscular atrophy 

(PMA)) participating in the PGB study of the CReATe consortium 

(NCT02327845) (Table 9). We used linear mixed-effects (LME) to model 
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variability between individuals in baseline performance and rate of decline on the 

ECAS (Total Score, ALS-Specific Score, ALS-Non-Specific Score, and scores for 

each individual cognitive domain), and on clinical measures of physical disability 

on the ALS Functional Rating Scale – Revised (ALSFRS-R), and clinician ratings 

of upper motor neuron (UMN) and lower motor neuron (LMN) symptom severity; 

each model included covariate adjustment for potential confounders including 

age, education, bulbar onset, and disease duration. We confirmed that cognitive 

and motor performance at baseline are heterogeneous across individuals (Figure 

6A), and correlation analyses suggested that this is independent of disability in 

physical function or clinical burden of UMN/LMN signs (all R<0.2; Figure 6B). 

Together this establishes the heterogeneity of baseline and longitudinal cognitive 

and motor phenotypes within the PGB cohort. 

 
 

Multivariate analyses indicate polygenic contributions to baseline cognitive 

performance. 

To identify potential polygenic contributions to cognitive impairment in ALS we 

employed sCCA (Witten, Tibshirani, and Hastie 2009), an unsupervised 

machine-learning approach enabling identification of multivariate relationships 

between a dataset of one modality (e.g. genetic variables including allele dosage 

of SNPs) and another modality (e.g. clinical measures of motor and cognitive 

function). Traditional CCA identifies a linear combination of all variables that 

maximize the correlation between datasets, resulting in an association of 

variables from one dataset (e.g., SNPs) and variables from another dataset (e.g., 
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clinical scores) (Witten, Tibshirani, and Hastie 2009). The “sparse” component of 

sCCA additionally incorporates an L1 penalty that shrinks the absolute value of 

the magnitude of coefficients to yield sparse models (i.e. models with fewer 

variables) such that some coefficients are zero, and the variables associated with 

them are effectively eliminated from the model. As a result, variables that 

contribute little variance to the model are dropped and instead of a linear 

combination of all model variables, we are able to identify a data-driven subset of 

variables from one dataset that relate to a subset of variables from another 

dataset. Unstandardized regression coefficients resulting from sCCA serve as 

canonical weights indicating the direction and strength of the relationships 

between selected variables. 

We evaluated an allele-dosage dataset comprised of 33 SNPs identified 

as shared risk loci for both ALS and FTD (Karch et al. 2018), and 12 SNPs 

identified as risk loci for ALS from the largest published case-control GWAS 

(Nicolas et al. 2018), with the latter chosen to include loci associated with ALS 

but not specifically with FTD (Figure 6C; Table 11). We included the first two 

principle components from a PCA and binary variables for sex, C9ORF72 repeat 

expansion status, and other mutation status (e.g. SOD1) in this dataset to 

account for inter-individual genetic differences in population structure, sex, and 

mutation status. We then used sCCA to examine the association between this 

genetic dataset and a dataset comprised of adjusted baseline clinical 

performance on functional motor and cognitive measures extracted from LME 

models. 
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After optimizing model sparsity parameters (Figure 7), we ran sCCA 

10,000 times and employed random bootstrapped subsamples of 75% of 

participants in each iteration (Figure 8). We then calculated the median canonical 

correlation, the median canonical weight for each genetic variable, and the 

proportion of times each clinical feature was chosen out of 10,000 iterations as a 

percentage. We report percentages rather than median canonical weight for 

clinical features because the optimized L1 parameter for the clinical dataset was 

the most stringent (i.e. 0.1), thus resulting in only one variable from the clinical 

dataset being chosen in each of the 10,000 iterations. 

To assess model performance under the null hypothesis (no association 

between genetic factors and clinical phenotypes), we similarly ran 10,000 

bootstrap sCCAs using the same L1 and subsampling parameters and in each 

model iteration we randomly permuted each dataset 100 times. We also 

examined the proportion of times each variable was selected by this null model 

(i.e. achieving a non-zero canonical weight), and defined a p value for the true, 

unpermuted model by calculating the probability of observing a canonical 

correlation greater than or equal to the median canonical correlation under sCCA 

modeling of the true data relative to the canonical correlations observed under 

null sCCA modeling of randomly permuted data. 

We observed that a subset of 29 genetic variables were correlated with a 

single clinical feature, achieving a median canonical correlation between the two 

datasets of R=0.35 (95% Confidence Interval: 0.23, 0.42); p=0.019) (Figure 9, 

Figure 10). Over the 10,000 iterations, the most frequently selected clinical 
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variable was the ECAS ALS-Specific score (percentage of times selected: 37%), 

followed by the ECAS Total (29%), Executive Function (17%), Language (9.5%), 

Verbal Fluency (2.3%), ALS-Specific (2.2%), Memory (2%), and Visuospatial 

(0.34%) scores. The ALSFRS-R and UMN and LMN assessments were each 

selected in less than 0.05% of the model iterations. By contrast, performance of 

sCCA modeling under the null hypothesis demonstrated that each clinical 

variable was selected in a largely equal proportion of iterations (all variables 

ranging 5.9% to 9.4%), demonstrating that the true sCCA modeling selected 

cognitive and not motor features beyond what would be expected by chance 

(Figure 11A). 

Of the 29 selected genetic variables, the 12 most highly weighted were 

rs1768208 and rs9820623 (MOBP), rs7224296 (NSF), rs538622 (ERGIC1), 

rs10143310 (ATXN3), rs6603044 (BTBD1), rs4239633 (UNC13A), rs2068667 

(NFASC), rs10488631 (TNPO3), rs11185393 (AMY1A), rs3828599 (GPX3), and 

sex. Twenty-seven of the 29 genetic variables selected were SNPs, and 85% of 

model-selected SNPs (23/27) were shared risk loci for ALS and FTD (Karch et al. 

2018). Modeling under the null revealed that each genetic variable achieved a 

largely equal median weight, and thus there were no stronger model  

contributions from any subset of genetic variables (Figure 11B). The association 

of genetic variants most frequently with the ECAS ALS-Specific score suggests 

polygenic contribution to impairment in domains of cognition frequently impaired 

in patients with ALS (e.g. language, verbal fluency, and executive function) that 

are also the most impaired domains of cognition observed in FTD. 
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Polygenic score captures baseline cognition as well as longitudinal rate of 

cognitive decline, but not motor decline. 

Next we investigated potential polygenic contributions to rate of decline in motor 

and cognitive performance in the CReATe PGB cohort. Investigation of baseline 

performance may only capture differences in cognitive impairment at a single 

(somewhat arbitrary) point in time, but not differences in the trajectory of 

cognitive decline over time. 

To evaluate association with longitudinal decline, we first calculated a 

weighted polygenic score (wPGS) by computing a weighted sum of allele dosage 

for each individual multiplied by the median canonical weights for each genetic 

variant resulting from the prior sCCA. Spearman rank-order correlations between 

the wPGS and adjusted baseline estimates of the 4 clinical features selected in 

10% or more of the 10,000 iterations (e.g. ECAS ALS-Specific, Total, Executive 

Function, and Language scores) resulted in correlation values similar to the 

canonical correlation observed from sCCA (e.g. for ECAS ALS-Specific: 

rs(329)=-0.34, p=2.4×10-10) (Figure 12A), suggesting construct validity. 

We then conducted Spearman’s rank order correlations between the 

wPGS and adjusted rate of decline on each measure of cognitive and motor 

performance using a Bonferroni family-wise error correction. To obtain adjusted 

rates of decline, we extracted individual slope estimates from prior LME (see 

above) for the 277 individuals (85%) with 2 or more observations on the ECAS, 

ALSFRS-R, and UMN and LMN assessments. We observed significant negative 
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relationships between the wPGS and rate of decline on ECAS ALS-Specific 

(rs(277)=-0.21, p=5.3×10-3), ALS-NonSpecific (rs(277)=-0.19, p=0.016), and 

Total scores (rs(277)=-0.26, p=8.1×10-5) (Figure 12B), but not on the ALSFRS-R 

or UMN and LMN scores (all p >0.9). These findings suggest polygenic 

contribution to rate of cognitive – but not motor – decline from the SNPs 

associated with risk of ALS or joint risk of ALS and FTD that were included in this 

analysis. 

 
 

Polygenic score associates with cortical thinning in the UPenn Biobank. 

Cognitive dysfunction in ALS, including performance on the ECAS, has 

previously been attributed to sequential disease progression rostrally and 

caudally from the motor cortex (Lulé et al. 2018; Agosta et al. 2016; Müller and 

Kassubek 2018) and advancing disease stage (Crockford et al. 2018). To 

evaluate the neuroanatomic basis for polygenic contribution to cognitive 

performance in patients with ALS, we applied the wPGS score derived in the 

CReATe PGB Cohort to an independent cohort of patients with ALS from the 

UPenn  Biobank. We used voxel-wise in vivo measures of reduced cortical 

thickness (in mm3) in ALS patients. Cross-sectional measurements of cortical 

thickness were derived from T1-weighted magnetic resonance imaging (MRI) in 

114 patients with ALS and 114 age, sex, and education-matched healthy controls 

who were recruited for research from UPenn (Table 10A). Nonparametric 

modeling using 10,000 random permutations revealed extensive reduction of 

cortical thickness bilaterally in the frontal and temporal cortices of patients with 
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ALS relative to healthy controls (Table 12, Figure 13A). 
 

After identifying regions of reduced cortical thickness in patients with ALS, 

we investigated whether the wPGS derived from sCCA modeling in the CReATe 

PGB cohort contributed to magnitude of reduced cortical thickness in the 

independent UPenn Biobank neuroimaging cohort. Nonparametric modeling 

using 10,000 random permutations with adjustments for potential confounds in 

age, disease duration, and scanning acquisition revealed that a higher wPGS  

(i.e. greater risk) associated with reduced cortical thickness in the orbital 

prefrontal cortex, anterior cingulate cortex, premotor cortex, lateral temporal 

cortex, and hippocampus (Figure 13B, Table 12). Identified frontal and temporal 

lobe cortical regions are known to support the domains of cognitive dysfunction 

characterized by the ECAS (Lulé et al. 2018). These findings provide a potential 

neuroanatomical basis for observed polygenic relationships between the wPGS 

and baseline cognitive performance and rate of decline, and are consistent with 

prior associations of cortical neurodegeneration with cognitive dysfunction in 

patients with ALS (Agosta et al. 2016). 

 
 

Polygenic score associates with neocortical neuronal loss in the UPenn Biobank. 

To complement these in vivo neuroanatomical data, we also explored whether 

polygenic risk for cognitive dysfunction associated with post-mortem anatomical 

distribution of neuronal loss and TDP-43 pathology. We assessed the magnitude 

of neuronal loss and TDP-43 pathological inclusions on an ordinal scale in tissue 

sampled from the middle frontal, cingulate, motor, and superior / middle temporal 
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cortices in 88 autopsy cases with confirmed ALS due to underlying TDP-43 

pathology (Table 10B). We conducted ordinal logistic regression with covariate 

adjustment for age at death and disease duration and found that ALS cases with 

higher wPGS were 2.05 times more likely (95% CI: 1.05, 4.10; p=0.0043) to have 

greater neuronal loss in the motor cortex relative to ALS cases with a lower 

wPGS (Figure 13C); older age at death and longer disease duration were not 

found to influence likelihood of greater neuronal loss (both p>0.05). We observed 

no statistically significant associations between the wPGS and neuronal loss in 

any other region, or between the wPGS and TDP-43 pathology in any other 

region (all p values >.1). These findings suggest that polygenic risk for cognitive 

dysfunction is associated with the neuroanatomic distribution of neuronal loss in 

ALS cases with end-stage disease. 

 
 

Discussion 
 

In this study, we evaluated polygenic contributions to cognitive dysfunction in 

patients with ALS by employing machine learning. We identified polygenic risk for 

cognitive dysfunction from genetic variables associated with risk of ALS and 

FTD, which we further investigated through quantitative-trait evaluations of two 

independent ALS cohorts with in vivo neuroimaging and post-mortem 

neuropathology data. Our results indicate a polygenic contribution to the 

presence and rate of decline of cognitive dysfunction in domains specifically 

impaired in ALS. Converging evidence from independent cohorts further 

demonstrates the generalizability of polygenic contribution to biologically- 
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plausible associations including reduced in vivo cortical thickness and post- 

mortem cortical neurodegeneration, including in the prefrontal and temporal 

cortices. These findings contribute novel evidence in support of polygenic 

contribution to cognitive dysfunction in ALS, quantitative anatomic 

characterization of identified polygenic risk associated with cognitive dysfunction, 

and further detailed phenotypic evidence for genetic overlap between ALS and 

FTD. Below, we highlight clinical, biological, and methodological implications for 

our observations. 

Our findings add to an increasing body of evidence for genetic contribution 

to phenotypic variability in ALS, and support the idea that polygenic variation 

accounts for, at least a portion, of variability in cognitive dysfunction and cortical 

disease burden in ALS. While cognitive impairment has been more frequently 

linked to genetic mutations causally associated with ALS, such as C9ORF72 

repeat expansions (Byrne et al. 2012), studies examining individual variants have 

implicated SNPs as risk factors for ALS and/or FTD (Placek et al. 2019; Vass et 

al. 2011). However, mounting evidence suggests that there are polygenic, rather 

than single allele, modifiers of disease risk and phenotype in ALS and related 

neurodegenerative diseases (Hagenaars et al. 2018; McLaughlin et al. 2017; 

Ciga et al. 2019). Our observation of 27 SNPs collectively associated most 

frequently with the ECAS ALS-Specific score, a combined measure of executive, 

language, and verbal fluency domains most commonly affected in ALS, is 

consistent with the idea of polygenic contribution to phenotypic variability in ALS. 

Notably, our observed polygenic association in the CReATe PGB Cohort appears 
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specific to cognitive variability: we demonstrate relative independence of 

cognitive performance and motor disease severity (i.e. UMN or LMN symptom 

assessments, functional performance on the ALSFRS-R) and observe no 

evidence for polygenic association with motor disease severity. This suggests 

that, in this study, polygenic risk for cognitive dysfunction does not appear to be 

confounded by motor disease severity. 

Of the 27 identified SNPs, the majority (85%) are shared risk loci for ALS 

and FTD (Karch et al. 2018). SNPs in or near the MOBP, NSF, ATXN3, ERGIC1, 

and UNC13A genes were among those with the strongest model contributions 

(i.e. with the highest canonical weights). Relative to random permutations, the 

frequency of the selection of these ALS and FTD loci outweighed their selection 

by chance and outweighed the selection of ALS-only risk genotypes, 

emphasizing the relative contribution of polygenic overlap between ALS and 

FTD. Furthermore, these results suggest a conceptual distinction between 

genetic risk for disease and genetic risk for phenotypic differences within a 

disease. Two of these loci in or near the MOBP gene (rs9820623, rs1768208) 

were amongst the most heavily weighted. Our group has previously shown that 

SNPs mapped to MOBP, including rs1768208, relate to regional 

neurodegeneration in patients with sporadic forms of FTD and shorter survival in 

FTD patients with underlying tau or TDP-43 pathology (Irwin, McMillan, et al. 

2014; McMillan et al. 2014). Our group has also demonstrated an additive dose- 

response relationship between the minor allele of rs12608932 (D’) in UNC13A 

and in vivo cortical thinning in the dorsal prefrontal cortex, greater burden of 
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TDP-43 pathology in the middle frontal and motor cortices at autopsy, and worse 

performance on a measure of working memory associated with executive 

function (Placek et al. 2019). rs538622 near ERGIC1, originally identified through 

conditional FDR as a shared risk locus for ALS and FTD, has also been 

previously demonstrated to contribute to quantitative trait modification in ALS by 

relating to reduced expression of the protein BNIP1 in ALS patient motor neurons 

(Karch et al. 2018). Other top-weighted variants near NSF and ATXN3 indicate 

potential biological plausibility: rs10143310 is found near ATXN3 which encodes 

a de-ubiquitinating enzyme, and polyglutamine expansions in ATXN3 cause 

spinocerebellar ataxia – type 3 (Burnett, Li, and Pittman 2003). rs7224296 near 

NSF tags the MAPT H1 haplotype (Yokoyama et al. 2017) and is associated with 

increased risk for FTD syndromes including progressive supranuclear palsy and 

corticobasal degeneration (Ferrari et al. 2017), as well as Alzheimer’s and 

Parkinson’s diseases (Desikan et al. 2015). 

While the mechanism of polygenic contribution to cognitive dysfunction in 

ALS requires further investigation, we speculate based on our findings that 

identified SNPs may contribute to neuroanatomic disease burden. A weighted 

polygenic risk score derived from the observed multivariate genotype-phenotype 

correlation in the CReATe PGB cohort showed robust relationships in 

independent validation cohorts to both in vivo cortical thinning and post-mortem 

cortical neuronal loss. Anatomically, these findings were largely consistent with 

prior in vivo structural imaging studies of neurodegeneration associated with 

cognitive dysfunction and with ex vivo investigations of cortical thinning in ALS 
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(Lulé et al. 2018; Agosta et al. 2016; Prudlo et al. 2016). Thus, in addition to 

indicating polygenic contribution to cognitive dysfunction in ALS, our findings 

suggest a possible mechanism of observed findings via disease pathophysiology. 

Beyond the potential biological mechanism of identifying polygenic contributions 

to ALS disease heterogeneity, we additionally suggest that sCCA may provide 

a tool for defining polygenic factors of disease risk. While sCCA has been widely 

applied to imaging-genetic studies (Parkhomenko, Tritchler, and Beyene 2009), 

we are unaware of prior applications using sCCA to define and polygenic 

score based on rich clinical phenotypic and biomarker data. Traditional 

approaches to the generation of polygenic scores include using data from 

established, typically case-control GWAS, but practical considerations involve the 

selection of how many variants to include in a model and how to define the 

weights of an appropriate statistical model (Sugrue and Desikan 2019). Critically, 

rather than an arbitrary selection of variants and their weights, the sparsity 

parameter of sCCA facilitates an unsupervised, data-driven method to select the 

number of variants to include in the model and the canonical correlation provides 

data-driven weights to define the statistical model. The positive or negative 

direction of model-derived weights is potentially biologically informative, and 

could reflect ‘risk’ (i.e. positive weight) or ‘protective’ (i.e. a negative weight) 

effects. Further investigation is necessary to clarify the relationships between 

model-selected SNPs and model-derived canonical weight from both biological 

(e.g., some SNPs and/or genes may contribute more strongly to risk factors) and 

mathematical (e.g. weights may be constrained by minor allele frequency) 
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perspectives. Nonetheless, sCCA may provide an optimal method for future 

studies of polygenic variation and direct research efforts towards model-selected 

variants. 

Several limitations should be considered in the present study. Here, we 

focus our analysis on a hypothesized relatively small set of SNPs selected a 

priori from previous large-scale GWAS based on genome-wide association with 

ALS (Nicolas et al. 2018) or shared risk between ALS and FTD (Karch et al. 

2018). Other genetic variants not included in the present study may also 

contribute to cognitive dysfunction in ALS and related disorders, and future 

genome-wide or more broad genotype selection strategies (e.g., targeted 

pathways) are necessary to elucidate discovery of novel genetic contributions to 

cognition that have not been identified through prior case-control studies. 

However, since our focused SNP selection targets previously validated 

genotypes from GWAS studies, these larger scale studies necessitate further 

validation in independent cohorts, many of which are lacking the rich phenotype 

data needed to identify cognitive dysfunction. We derived a weighted polygenic 

score from bootstrap sCCA modeling to further investigate polygenic 

associations with longitudinal clinical and cognitive performance, and to 

investigate polygenic associations with in vivo and post-mortem disease 

neuroanatomy in independent ALS cohorts from the UPenn Biobank. While we 

define our polygenic score from sCCA using adjusted estimates of baseline 

cognitive and motor performance, future work using longitudinal data as the 

starting point to define polygenic associations may further elucidate genetic risk 
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for cognitive dysfunction in ALS. However, our finding that polygenic risk 

associated with baseline cognitive dysfunction also relates to longitudinal 

cognitive decline in the PGB cohort and relevant disease anatomy in 

independent cohorts suggests its relevance to longitudinal cognitive phenotypes 

in ALS. Previous critique of polygenic scores suggest calculation based on 

GWAS-defined odds ratios for univariate risk loci or undue influence by 

population variance limit their use in clinical and prognostic settings (Wald and 

Old 2019). To avoid these potential confounds, our computation of a weighted 

polygenic risk score is based on model-selected parameters derived from an 

analysis including all genetic variants and covariates for genetic mutation status 

and sex in an effort to account for multivariate genetic relationships. We also 

included the first two principal components in our model from a PCA conducted 

in the PGB CReATe cohort in an effort to account for differences in population 

heterogeneity (Price et al. 2006). 

Our analyses focused on the investigation of genetic contribution to 

cognitive dysfunction in ALS, yet it is well established that behavioral impairment 

is also part of the ALS spectrum disease (Lillo et al. 2010). Further research is 

necessary to investigate polygenic risk for behavioral dysfunction in ALS, and 

whether loci included in our calculated polygenic score confer risk for both 

cognitive and behavioral dysfunction. While this study demonstrates converging, 

multimodal evidence for polygenic risk in independent neuroimaging and autopsy 

cohorts, replication in additional, large cohorts that allow for robust cross- 

validation is warranted, however, alternative datasets that contain detailed 
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genetic and cognitive phenotyping for ALS are currently lacking, and the CReATe 

PGB cohort represents the largest of its kind. Future research investigating 

additional, large-scale patient cohorts with genetic and phenotypic data is 

necessary. 

With these limitations in mind, our research demonstrates converging 

clinical, neuroimaging, and pathologic evidence for polygenic contribution to 

cognitive dysfunction and cortical neurodegeneration in ALS. These findings 

should stimulate further investigation into polygenic risk for cognitive disease 

vulnerability in ALS and suggest their importance in prognostic consideration and 

treatment trials. More broadly, this work provides insight into genetic contribution 

to heterogeneous phenotypes in neurodegenerative disease and supports 

evidence for polygenic architecture in these conditions. 

 
 

Methods 
 

Participants: CReATe Consortium 
 

Participants consisted of 339 individuals clinically diagnosed by a board-certified 

neurologist with a sporadic or familial form of amyotrophic lateral sclerosis (ALS), 

amyotrophic lateral sclerosis with frontotemporal dementia (ALS-FTD), 

progressive muscular atrophy (PMA), or primary lateral sclerosis (PLS) who were 

enrolled and evaluated through the CReATe Consortium’s Phenotype-Genotype- 

Biomarker (PGB) study. All participants provided written informed consent. The 

PGB study is registered on clinicaltrials.gov (NCT02327845) and the University 

of Miami IRB (the central IRB for the CReATe Consortium) approved the study. 
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This study entails participant blood DNA samples available for genetic screening 

and longitudinal evaluation at regularly-scheduled visits (ALS, ALS-FTD, and 

PMA: 0 (baseline), 3, 6, 12, and 18 months; PLS: 0 (baseline), 6, 12, 18, and 24 

months). Participants were evaluated at each visit using the ALSFRS-R 

(Cedarbaum, Stambler, Malta, Fuller, Hilt, Thurmond, and Nakanishi 1999b) and 

alternate versions of the Edinburgh Cognitive and Behavioural ALS Screen 

(ECAS) (Abrahams et al. 2014). Upper motor neuron (UMN) and lower motor 

neuron (LMN) burden scores were calculated from a detailed elemental 

neuromuscular examination by summing within and across each spinal region 

resulting in a score ranging from 0 (none) to 10 (worst). Site (e.g. limb, bulbar) 

and date of motor symptom onset were recorded for each participant. We 

excluded nine individuals with missing or incomplete data that precluded 

subsequent analysis and, in an effort to avoid confounds associated with clear 

outliers, three individuals with extreme values at baseline on the ECAS 

Visuospatial Score (i.e. >5 standard deviations from group mean), resulting in a 

total of 327 participants. Of the nine excluded individuals with missing or 

incomplete data, one had no genotyping data available, one had no information 

for UMN burden, and seven had no information for date of motor symptom onset. 

 
 

Genotyping: CReATe Consortium 
 

Peripheral blood mononuclear cell DNA was extracted using the QIAamp DNA 

Blood Mini Kit Qiagen #51106 and quantified using the Quant-iT dsDNA Assay 

Kit (Life Technologies cat#Q33130). The DNA integrity was verified by agarose 
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gel electrophoresis (E-Gel, Life Technologies, cat#G8008-01). Unique samples 

were barcoded and whole genome sequencing (WGS) was performed at the 

HudsonAlpha Institute for Biotechnology Genomic Services Laboratory 

(Huntsville, Alabama) (HA) using Illumina HiSeq X10 sequencers to generate 

approximately 360 million paired-end reads, each 150 base pairs (bp) in length. 

Peripheral DNA was extracted from participant blood samples and screened for 

known pathogenic mutations associated with ALS and related diseases. 

Screening included repeat-primed PCR for C9ORF72 repeat expansions 

and WGS curated and validated via Sanger sequencing for pathogenic mutations 

associated with ALS and/or FTD in ANG, CHCHD10, CHMP2B, FUS, GRN, 

hnRNPA1, hnRNPA2B1, MAPT, MATR3, OPTN, PFN1, SETX, SOD1, SPG11, 

SQSTM1, TARDBP, TBK1, TUBA4A, UBQLN2, VCP. The PGB study also 

includes patients with hereditary spastic paraplegia (HSP) that were excluded in 

the current analysis, but we additionally screened individuals for pathogenic 

mutations in 67 additional genes associated with HSP and seven genes 

associated with distal hereditary motor neuropathy. 

Whole genome sequencing (WGS) data were generated using  paired-end 
 

150 bp reads aligned to the GRCh38 human reference using the Burrows- 

Wheeler Aligner (BWA-ALN v0.7.12)(Heng Li and Durbin 2010) and processed 

using the Genome Analysis Toolkit (GATK) best-practices workflow implemented 

in GATK v3.4.0 (McKenna et al. 2010). Variants for individual samples were 

called with HaplotypeCaller, producing individual variant call format files (gVCFs) 

that we combined using a joint genotyping step to produce a multi-sample VCF 
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(pVCF). Variant filtration was performed using Variant Quality Score 

Recalibration (VQSR), which assigns a score to each variant and a pass/fail label 

and evaluated this in the context of hard filtering thresholds (Minimum Genotype 

Quality (GQ)≥ 20, minimum mean depth value (DP)≥ 10). Variant annotation was 

performed using Variant Effect Predictor (VEP) (Hunt et al. 2018) and in-house 

pipelines including non-coding variant allele frequencies from Genome 

Aggregation Database (gnomAD).(Karczewski et al. 2019) In-house scripts were 

used to identify false positives resulting from paralogous mapping or/and gaps in 

the current human genome assembly. VCFs were further decomposed prior to 

analyses using the Decompose function of Vt (Tan, Abecasis, and Kang 2015). 

To control for population substructure, we additionally derived the first two 

principal components scores for each in the CReATe PBG cohort using principal 

components analysis (PCA) as implemented in Eigenstrat software (Price et al. 

2006). 

From the WGS data we extracted 45 hypothesized variants from WGS  

that previously achieved genome-wide significance for association with ALS 

(Nicolas et al. 2018) or joint association with ALS and FTD via GWAS (Karch et 

al. 2018). Proxy loci were genotyped (linkage disequilibrium (LD) R2 > 0.80) 

when genetic data were not available for previously-published loci. One locus, 

rs12973192, was common to both references, and another locus (rs2425220 

(Karch et al. 2018)) was excluded from analysis due to high level of missingness 

across samples; no LD proxy was identified. We then used Plink software 

(Purcell et al. 2007) to recode participant genotypes according to additive genetic 
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models (e.g. 0 = no minor allele copies, 1 = one minor allele copy, 2 = two minor 

allele copies), since the dominant or recessive nature of the loci included in this 

study remains unknown. 

 
 

Linear Mixed-Effects Modeling of the ECAS and clinical measures 
 

We conducted linear mixed-effects modeling of performance on the ECAS, 

ALSFRS-R, and UMN and LMN scores using the nlme package in R. Each 

model was fit using maximum likelihood. In addition to the ECAS Total Score, we 

analyzed Executive Function, Language, Verbal Fluency, Memory, and 

Visuospatial scores and summary scores (ALS-Specific score, ALS-Non-Specific 

score) each as dependent variables to analyze patient performance in separate 

cognitive domains and in clinically-grouped cognitive domains. Fixed effects 

included age at baseline visit (in years), lag between age of symptom onset and 

age at baseline visit (in years), college education (yes / no), bulbar onset (yes / 

no) and visit time-point (in months), and we included individual by visit time-point 

as random effects. This allowed us to obtain adjusted estimates of baseline 

performance (i.e. intercept) and rate of decline (i.e. slope) per individual, having 

regressed out potential confounding variables as fixed effects. 

We conducted Spearman’s rank-order correlations between baseline 

performance and rate of decline using a Bonferroni family-wise error correction 

for multiple comparisons. 

 
 

Sparse Canonical Correlation Analysis 
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We next conducted sparse canonical correlation analysis (sCCA) to select a 

parsimonious linear combination of variables that maximize the correlation 

between two multivariate datasets using the PMA package in R (Witten, 

Tibshirani, and Hastie 2009). The first dataset comprised scaled intercepts from 

each clinical variable per participant (i.e. adjusted baseline performance on the 

ALSFRS-R, UMN and LMN assessments, and ECAS). The second comprised 

minor allele counts per individual for each of the 45 SNPs (e.g. 0 = no minor 

allele copies, 1 = one minor allele copy, 2 = two minor allele copies), binary 

variables for sex (0 = Female, 1 = Male), C9ORF72 repeat expansion status (0 = 

noncarrier, 1 = carrier), and other mutation status (0 = noncarrier, 1 = carrier) 

and, in an effort to account for potential population differences in population 

variance we also included the raw estimates for the first two principle 

components per participant derived from a PCA conducted in the CReATe PGB 

cohort, which has previously been demonstrated to account for the majority of 

population structure (Price et al. 2006). 

We assumed standard (e.g. unordered) organization of each dataset, and 

selected regularization parameters for the sCCA analysis using a grid search of 

100 combinations of L1 values between 0 (most sparse) and 1 (least sparse) in 

increments of 0.1. We selected the combination of L1 values yielding the highest 

canonical correlation of the first variate for subsequent analysis, as similarly 

reported (Xia et al. 2018). 

Using these L1 parameters, we ran 10,000 bootstrap sCCAs and on each 

iteration employed randomly-generated subsamples comprising 75% of the PGB 
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cohort. From this, we calculated the median canonical correlation for sCCA and 

the median canonical weights for each variable. We utilize the median in these 

estimates rather than the maximum or mean value in an effort to avoid bias from 

outliers and to increase the reliability and reproducibility of model estimates. 

We next investigated model performance under a null hypothesis (i.e. no 

association between clinical and genetic datasets) by using randomly-permuted 

data. Using the same L1 parameters, we again ran 10,000 bootstrap sCCAs and 

on each iteration employed randomly-generated subsamples of 75% of 

participants; however, on each iteration we randomly permuted each dataset 100 

times using the randomizeMatrix function from the picante package in R. We 

calculated a p value by reporting the probability of observing a canonical 

correlation greater than or equal to the median canonical correlation under sCCA 

modeling of the true data relative to the canonical correlations observed under 

null sCCA modeling of randomly permuted data. We also examined the 

proportion (i.e. out of 10,000) of times each variable was selected by the model 

(i.e. achieving a non-zero canonical weight) under true and null modeling. 

 
 

Polygenic Score 
 

To evaluate the applicability of our sCCA model, we used the output of the model 

to calculate a weighted polygenic score (wPGS) for each individual by computing 

a weighted sum of allele dosage across all genotypes for each individual. 

Weights were derived for each genetic variable by using the median canonical 

weight over the 10,000 bootstrap sCCAs. 
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To investigate construct validity, we conducted Spearman’s rank-order 

correlations between the wPGS and adjusted estimates of baseline performance 

(i.e. LME-derived intercepts) on the most frequently selected clinical measure(s) 

selected from sCCA. 

To investigate longitudinal performance associated with the wPGS, we 

conducted Spearman’s rank-order correlations between the wPGS and adjusted 

rates of decline (i.e. LME-derived slopes) on all clinical measures using a 

Bonferroni familywise error correction for multiple comparisons. We restricted this 

analysis to CReATe participants with data at 2 or more timepoints (N=277 out of 

327 participants), or 84.7% of the participant cohort. 

 
 

Participants: UPenn Biobank neuroimaging cohort 
 

We retrospectively evaluated 114 patients with ALS and 114 healthy controls 

matched for age, sex, and education from the UPenn Biobank who were 

recruited for research between 2006 and 2019 from the Penn Comprehensive 

ALS Clinic and Penn Frontotemporal Degeneration Center (Table 10) (Toledo et 

al. 2014). Inclusion criteria for ALS patients consisted of complete genotyping at 

analyzed SNPs, white non-Latino racial and ethnic background (population 

diversity is known to influence allele frequencies across individuals), disease 

duration from symptom onset < 2.5 standard deviations from respective group 

means (to avoid confounds associated with clear outliers), and T1-weighted MRI. 

All patients were diagnosed with ALS by a board-certified neurologist (L.E., L.M., 

M.G., D.I) using revised El Escorial criteria (Brooks et al. 2000) and assessed for 
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ALS frontotemporal spectrum disorder using established criteria (Strong et al. 

2017); those patients enrolled in research prior to 2017 were retrospectively 

evaluated through chart review. All ALS patients and healthy controls participated 

in an informed consent procedure approved by an Institutional Review Board 

convened at UPenn. 

 
 

Participants: UPenn Biobank autopsy cohort 
 

We evaluated brain tissue samples from 88 ALS autopsy cases identified from 

the UPenn Biobank (Toledo et al. 2014) who were diagnosed by a board-certified 

neuropathologist (J.Q.T., E.B.L.) with ALS due to TDP-43 pathology using 

immunohistochemistry (Neumann et al. 2006) and published criteria (Mackenzie 

et al. 2011); this cohort included 21 patients from the ALS neuroimaging cohort. 

Inclusion criteria consisted of complete genotyping at analyzed SNPs, white non- 

Latino racial and ethnic background (population diversity is known to influence 

allele frequencies across individuals), disease duration from symptom onset < 

2.5 standard deviations from respective group means (to avoid confounds 

associated with clear outliers), and brain tissue samples from the middle frontal, 

motor, cingulate, and superior / temporal cortices, and the cornu ammonis 1 

(CA1) / subiculum of the hippocampus for analysis of neuronal loss and TDP-43 

pathology. Nine individuals were missing neuronal loss or TDP-43 pathology data 

for at least 1 sampled region (Table 13). 

 
 

Genetic Screening and SNP Genotyping: UPenn Biobank 
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DNA was extracted from peripheral blood or frozen brain tissue following the 

manufacturer’s protocols (Flexigene (Qiagen) or QuickGene DNA whole blood kit 

(Autogen) for blood, and QIAsymphony DNA Mini Kit (Qiagen) for brain tissue). 

All patients were screened for C9ORF72 hexanucleotide repeat expansions 

using a modified repeat-primed polymerase-chain reaction (PCR) as previously 

described (Suh et al. 2015). Of the remaining individuals, we evaluated family 

history using a 3-generation pedigree history as previously reported (Wood et al. 

2013). For cases with a family history of the same disease we sequenced 45 

genes previously associated with neurodegenerative disease, including genes 

known to be associated with ALS (e.g. SOD1 (D. R. Rosen et al. 1993), TBK1 

(Freischmidt et al. 2015)). Sequencing was performed using a custom-targeted 

next-generation sequencing panel (MiND-Seq) (Toledo et al. 2014) and analyzed 

using Mutation Surveyor software (Soft Genetics, State College, PA). 

For analyses of UPenn Biobank samples, we genotyped peripheral or 

brain cerebellum DNA of each case using the Illumina Infinium Global Screening 

Array through the Children’s Hospital of Philadelphia (CHOP) Center for Applied 

Genomics Core according to manufacturer’s specifications. PLINK (Purcell et al. 

2007) was then used to remove variants with <95% call rate, Hardy-Weinberg 

equilibrium (HWE) p-value < 10-6 and individuals with >5% missing genotypes. 

Using the remaining genotypes from samples passing quality control, we 

performed genome-wide imputation of allele dosages with the Haplotype 

Reference Consortium reference panel r1.1 (McCarthy et al. 2016) on the 

Michigan Imputation Server (Das et al. 2016) to predict genotypes at 
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ungenotyped genomic positions, applying strict pre-phasing, pre-imputation 

filtering, and variant position and strand alignment control. 

 
 

Neuroimaging Processing and Analyses 
 

High-resolution T1-weighted MPRAGE structural scans were acquired for 

neuroimaging participants using a 3T Siemens Tim Trio scanner with an 8- 

channel head coil, with T=1620ms, T=3.09ms, flip angle=15°, 192x256 matrix, 

and 1mm3 voxels. T1-weighted MRI images were then preprocessed using 

Advanced Normalization Tools (ANTs) software (Tustison et al. 2014). Each 

individual dataset was deformed into a standard local template space in a 

canonical stereotactic coordinate system. ANTs provide a highly accurate 

registration routine using symmetric and topology-preserving diffeomorphic 

deformations to minimize bias toward the reference space and to capture the 

deformation necessary to aggregate images in a common space. Then, we used 

N4 bias correction to minimize heterogeneity (Tustison et al. 2010) and the ANTs 

Atropos tool to segment images into six tissue classes (cortex, white matter, 

cerebrospinal fluid, subcortical grey structures, brainstem, and cerebellum) using 

template-based priors and to generate probability maps of each tissue. Voxel- 

wise cortical thickness was measured in millimeters (mm3) from the pial surface 

and then transformed into Montreal Neurological Institute (MNI) space, smoothed 

using a 3 sigma full-width half-maximum Gaussian kernel, and downsampled to 

2mm isotropic voxels. 

We used randomise software from FSL to perform nonparametric, 
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permutation-based statistical analyses of cortical thickness images from our 

neuroimaging cohort. Permutation-based statistical testing is robust to concerns 

regarding multiple comparisons since, rather than a traditional assessment of two 

sample distributions, this method assesses a true assignment of factors (e.g. 

wPGS) to cortical thickness relative to many (e.g., 10,000) random assignments 

(Winkler et al. 2014). 

We first identified reduced cortical thickness in ALS patients relative to 

healthy controls. We constrained analysis using an explicit mask restricted to 

high probability cortex (>0.4) and report clusters that survive p<0.05 threshold- 

free cluster enhancement (TFCE) (Smith and Nichols 2009) corrected for family- 

wise error relative to 10,000 random permutations. 

We next evaluated whether wPGS relates to magnitude of reduced 

cortical thickness, covarying for age, disease duration, and scanner acquisition in 

an effort to control for factors associated with reduced cortical thickness but not 

specifically associated with polygenic risk. We constrained analysis to an explicit 

mask including regions of reduced cortical thickness identified relative to healthy 

controls (see above). We report clusters that survive uncorrected p<0.01 with a 

cluster extent threshold of 10 voxels relative to 10,000 random permutations; we 

employ an uncorrected threshold to minimize the chance of Type II error (not 

observing a true result). 

 
 

Neuropathology Processing and Analyses 
 

Extent of neuronal loss and of phosphorylated TDP-43 intraneuronal inclusions 
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(dots, wisps, skeins) in sampled regions from the middle frontal, cingulate, motor, 

and superior / middle temporal cortices, and the CA1 / subiculum of the 

hippocampus were assessed on a semi-quantitative ordinal scale: 0=none/rare, 

1=mild, 2=moderate, 3=severe/numerous. All neuropathological ratings were 

performed by an expert neuropathologist (J.Q.T., E.B.L.) blinded to patient 

genotype. We conducted ordinal logistic regression using the MASS package in 

R to investigate whether extent of neuronal loss rated using Hematoxylin and 

eosin (H&E) and burden of TDP-43 pathology rated using mAbs p409/410 or 171 

(Lippa et al. 2009; Neumann et al. 2009) immunohistochemistry differed 

according to wPGS, covarying for age and disease duration. 
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Table 9: Demographics of ALS patients from the Phenotype-Genotype 
Biomarker study of the CReATe Consortium. 

 
 ALS ALS-FTD PLS PMA 

N 279 13 22 13 

Sex, Male (%) 163 (58.4) 11 (84.6) 11 (50.0) 8 (61.5) 

Number of Visits, 

Mean (SD) 
 

3.09 (1.37) 
 

3.00 (1.15) 
 

2.86 (1.28) 
 

3.38 (1.45) 

Age at Symptom Onset, 

Mean (SD) 
 

56.32 (12.56) 
 

64.00 (9.11) 
 

49.68 (7.39) 
 

48.08 (15.31) 

Symptom Onset to Baseline 
(years), Mean (SD) 

 
3.59 (4.98) 

 
3.62 (2.63) 

 
8.45 (6.12) 

 
7.77 (7.17) 

Site of Symptom Onset, N (%)     

Bulbar 45 (17.1) 4 (33.3) 5 (22.7) - 

Bulbar & Limb 7 (2.7) - 3 (13.6) - 

Bulbar & Other 7 (2.7) 1 (8.3) - - 

Limb 175 (66.5) 3 (25) 13 (59.1) 11 (84.6) 

Limb & Other 22 (8.4) - 1 (4.5) 1 (7.7) 

Other 7 (2.7) 4 (33.3) - 1 (7.7) 

College Education or greater, 

N (%) 
 

196 (71.3) 
 

9 (69.2) 
 

20 (90.9) 
 

10 (76.9) 

Mutation Carrier, N (%) 34 (12.2) 3 (20.0) 0 (0.0) 0 (0.0) 

C9ORF72 22 (7.9) 3 (20.0) - - 

C9ORF72 and UBQLN2 1 (0.4) - - - 

SOD1 8 (2.9) - - - 

SQSTM1 1 (0.4) - - - 

TARDBP 1 (0.4) - - - 

TBK1 1 (0.4) - - - 

Baseline ALSFRS-R (0-48), 

Mean (SD) 
 

35.00 (7.09) 
 

35.00 (5.99) 
 

36.50 (5.95) 
 

33.62 (7.83) 

UMN Score (0-10), 
Mean (SD) 

 
2.70 (1.68) 

 
2.45 (2.00) 

 
4.54 (1.33) 

 
0.87 (0.73) 

LMN Score (0-10), 
Mean (SD) 

 
2.54 (1.48) 

 
2.81 (1.76) 

 
0.59 (0.96) 

 
4.84 (1.93) 

ECAS, Mean (SD)     

ALS Specific (0-100) 80.94 (10.85) 52.62 (12.07) 87.95 (7.47) 81.62 (11.61) 

Language (0-28) 25.85 (2.66) 21.38 (3.93) 26.82 (1.97) 26.62 (1.26) 

Verbal Fluency (0- 24) 16.62 (5.11) 7.83 (5.36) 26.82 (1.97) 16.77 (4.36) 

Executive (0-48) 38.47 (5.94) 24.00(10.51) 26.82 (1.97) 38.23 (7.50) 

ALS Non-Specific (0-36) 28.04 (3.78) 19.69 (8.30) 29.73 (2.76) 27.62 (6.31) 

Memory (0-24) 16.45 (3.54) 9.46 (7.15) 17.95 (2.84) 15.69 (6.20) 

Visuospatial (0- 12) 11.59 (0.79) 11.08 (1.24) 11.77 (0.43) 11.92 (0.28) 

ECAS Total (0-136) 108.97 (13.02) 72.31 (18.53) 117.68 (9.12) 109.23 (16.47) 

Abbreviations: CReATe = Clinical Research in ALS and Related Disorders for 
Therapeutic Development; PLS = Primary lateral sclerosis, PMA = Progressive 
muscular atrophy; ALSFRS-R = Revised ALS Functional Rating Scale; UMN = 
upper motor neuron; LMN = lower motor neuron; ECAS = Edinburgh Cognitive 
and Behavioral ALS Screen; SD = standard deviation 
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Table 10. Demographics of independent neuroimaging and autopsy ALS and 
control cohorts from UPenn. 

 
A. Neuroimaging Cohort 
 ALS Healthy Control 

N (Male) 114 (64) 114 (64) 

Age at MRI in Years, M (SD) 59.34 (10.92) 61.87 (12.18) 

Education in Years, M (SD) 15.09 (2.98) 15.87 (2.47) 

Disease Duration in Years, M 
(SD) 

3.02 (2.52) - 

Mutation Carrier, N (%) 

C9ORF72 

SOD1 

VCP 

 
14 (12.28) 

1 (0.87) 
1(0.87) 

 
- 

- 
- 

Site of Symptom Onset, N (%) 

Bulbar 

Limb 

Cognitive 

 
26 (22.81) 

79 (69.3) 
9 (7.89) 

 
- 

- 
- 

ALSFRS-R, M (SD) 33.23 (7.32) - 

 
 

B. Autopsy Cohort 

N (Male) 88 (49) 

Age at Death Years, M (SD) 63.72 (10.24) 

Disease Duration at Death in Years, M (SD) 4.24 (3.41) 

Mutation Carrier, N (%) 
C9ORF72 

 
15 (17.04) 

Site of Symptom Onset, N (%)  

Bulbar 23 

Limb 60 

Cognitive 3 

Respiratory 1 

Unknown 1 

Abbreviations: ALSFRS-R = ALS Functional Rating Scale – Revised; M = Mean, 
SD = standard deviation 
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Table 11: List of genetic variants analyzed. 
 

 
Marker Name 

 
Nearest Gene 

 
Chr 

1000 

Genome 
GMAF 

 
GRCh38 Position 

 
Proxy Marker 

 
Proxy HG19 Position 

rs2068667 NFASC 1 0.208 chr1:204948552 rs11240317 chr1:204920322 

rs11185393 AMY1A 1 0.368 chr1:104209379 rs67205957 chr1:104752258 

rs515342 ASB1 2 0.214 chr2:238458655 rs508986 chr2:239337691 

rs9820623 MOBP 3 0.406 chr3:39452367 rs6765697 chr3:39493239 

rs13079368 MOBP 3 0.275 chr3:39471060 rs1464047 chr3:39526874 

rs1768208 MOBP 3 0.323 chr3:39481512 rs616147 chr3:39534481 

rs10463311 TNIP1 5 0.431 chr5:151031274 - - 

rs3828599 GPX3 5 0.417 chr5:151022235 rs4958872 chr5:150402334 

rs538622 ERGIC1 5 0.32 chr5:172920676 rs2446192 chr5:172352369 

rs17111695 NAF1 5 0.183 chr5:151052885 rs12518386 chr5:150438085 

rs757651 REEP2 5 0.016 chr5:138455779 rs149312547 chr5:137792021 

rs10488631 TNPO3 7 0.059 chr7:128954129 rs12539741 chr7:128596805 

rs17070492 LOC101927815 8 0.208 chr8:2563763 - - 

rs7813314 BC045738 8 0.2 chr8:2558274 rs6996532 chr8:2417678 

rs10869188 C9ORF72 9 0.49 chr9:72614090 rs7032232 chr9:75229116 

rs870901 AK097706 9 0.133 chr9:107086201 rs60743641 chr9:109854824 

rs10511816 MOBKL2B 9 0.206 chr9:27468463 rs12551344 chr9:27466817 

rs3849943 C9ORF72 9 0.183 chr9:27543384 - - 

rs3849942 C9ORF72 9 0.183 chr9:27543283 - - 

rs13302855 C9ORF72 9 0.086 chr9:27595997 rs34460171 chr9:27594491 

rs3849943 C9ORF72 9 0.183 chr9:27543384 - - 

rs732389 AK294518 10 0.205 chr10:78584745 rs7071538 chr10:80338173 

rs7118388 CAT 11 0.454 chr11:34432600 rs1962369 chr11:34456941 

rs12803540 CAT 11 0.138 chr11:34471200 rs17881488 chr11:34492443 

rs117027576 KIF5A 12 0.00913 chr12:56922819 - - 

rs113247976 KIF5A 12 0.007 chr12:57581917 - - 

rs142321490 KIF5A 12 0.006 chr12:58282349 - - 

rs74654358 TBK1 12 0.012 chr12:64488187 - - 

rs118082508 KIF5A 12 0.005 chr12:5692503 - - 

rs116900480 KIF5A 12 0.006 chr12:58262322 - - 

rs1578303 HTR2A 13 0.204 chr13:47389011 rs144877054 chr13:47962781 

rs10492593 PCDH9 13 0.121 chr13:66919985 rs73208976 chr13:67486924 

rs17446243 TTL/TEL 13 0.116 chr13:40174794 rs78375967 chr13:40751567 
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rs10139154 SCFD1 14 0.428 chr14:30678292 - - 

rs10143310 ATXN3 14 0.339 chr14:92074037 - - 

rs12886280 NUBPL 14 0.412 chr14:31829453 rs35875023 chr14:32298974 

rs6603044 BTBD1 15 0.332 chr15:83015059 rs12904695 chr15:83700365 

rs9901522 PMP22 17 0.18 chr17:14770617 - - 

rs739439 KIAA0524 17 0.105 chr17:28396803 rs35714695 chr17:26719788 

rs2240601 MSI2 17 0.192 chr17:57673751 rs16942143 chr17:55748611 

rs2285642 GGNBP2 17 0.407 chr17:36556904 rs10707226 chr17:34916453 

rs7224296 NSF 17 0.472 chr17:46722680 rs9912530 chr17:44836302 

rs12973192 UNC13A 19 0.278 chr19:17642430 - - 

rs12608932 UNC13A 19 0.43 chr19:17641880 rs12973192 chr19:17753239 

rs4239633 UNC13A 19 0.28 chr19:17631660 rs71162163 chr19:17744075 

rs75087725 C21orf72 21 0.003 chr21:44333234 - - 

Abbreviations: CReATe = Clinical Research in ALS and Related Disorders 
for Therapeutic Development; GMAF = global minor allele frequency; Chr = 
chromosome; GRCh38 = Genome Reference Consortium Human Build 38; 
HG19 = Human Genome Project 19 
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Table 12: Peak voxel coordinates for regions of reduced cortical thickness for 
ALS relative to healthy controls and associated with increased weighted 
polygenic score in patients with sporadic ALS from the independent validation 
cohort from UPenn. 

 
L/ MNI Coordinates T p 

Neuroanatomic region (BA) R x y z statistic value Voxels 

Reduced cortical thickness in ALS relative to healthy controls1: 

      <.001 42994 

Anterior cingulate cortex (32) L -2 48 10 7.2   

Dorsolateral prefrontal cortex (9) L -2 48 18 7.08   

Anterior premotor cortex (8) L -2 30 36 6.76   

Orbitofrontal cortex (11) R 8 26 -26 6.71   

Insula (13) R 40 16 -12 6.46   

Insula (13) R 36 22 4 6.37   

Anterior prefrontal cortex (10) R 26 58 0 6.32   

Insula (13) R 42 2 0 6.26   

Dorsolateral prefrontal cortex (9) R 2 48 18 6.22   

Anterior cingulate cortex (32) R 2 30 22 6   

Reduced cortical thickness associated with wPGS in ALS: 

Lateral temporal cortex (21) L -66 -46 -8 3.01 0.003 34 

Premotor cortex (6) R 36 -14 70 3.05 0.001 23 

Premotor cortex (6) L -14 -8 76 3 0.002 21 

Orbital prefrontal cortex (47) R 34 42 -8 2.67 0.005 18 

Lateral temporal cortex (21) L -66 -44 6 2.54 0.002 13 

Anterior cingulate cortex (32) R 14 40 0 2.59 0.004 13 

Hippocampus (54) L -24 -30 -8 2.74 0.004 10 

Abbreviations: BA = Brodmann area; L/R = Left/Right; MNI = Montreal 
Neurological Institute 
Note.1 Cortical regions identified from peak voxel coordinates in an effort to 
describe sub-peaks within a larger, contiguous cluster. 
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Table 13: Number of UPenn ALS autopsy cases for each neuropathological 
measurement in each sampled neuroanatomical region. 

 

Region 
Neuropathological 

Measurement 
N 

Middle frontal cortex Neuronal loss 87 

Middle frontal cortex TDP-43 87 

Cingulate cortex Neuronal loss 88 

Cingulate cortex TDP-43 87 

Motor cortex Neuronal loss 84 

Motor cortex TDP-43 86 

Superior / middle temporal cortex Neuronal loss 87 

Superior / middle temporal cortex TDP-43 84 

CA1 / subiculum (hippocampus) Neuronal loss 88 

CA1 / subiculum (hippocampus) TDP-43 85 

Abbreviations: CA1 = cornu ammonis 1; TDP-43 = TAR DNA binding protein - 43 
kiloDaltons 
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Figure 6. Clinical and genetic heterogeneity in ALS patients from the CReATe 
Phenotype-Genotype Biomarker study. A) Standard deviation from mean 
baseline performance and rate of decline on each clinical variable for each 
participant. B) Correlation matrix between baseline performance and rate of 
decline on each clinical measure across all participants. C) Categorical coding for 
each genetic variable for each participant (see next page). 
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Figure 7. Gridsearch for sparse canonical correlation analysis parameters. Each 
column indicates 1 of 100 unique combinations of L1 parameters (ranging 0.1 to 
1) applied to clinical and genetic datasets, and each row lists a variable entered 
into the sCCA. The heatmap denotes the canonical weight strength between 
clinical variables and genetic variables within each column; warmer colors 
indicate positive weights and cooler colors indicate negative weights. 

Correlation 

L1:Clinical 

L1:Genetic 
Language 
Verbal Fluency 
Executive 
Memory 
Visuospatial 
ALS−Specific 
ALS−NonSpecific 
ECAS Total 
ALSFRS−R 
UMN 
LMN 
rs11185393 
rs2068667 Weights Correlation 
rs515342 
rs9820623 
rs13079368 
rs1768208 
rs757651 
rs3828599 
rs17111695 
rs538622 
rs10488631 
rs7813314 
rs10511816 
rs3849943 
rs3849942 
rs13302855 
rs10869188 
rs870901 
rs732389 
rs7118388 
rs12803540 
rs17446243 
rs1578303 
rs10492593 
rs12886280 
rs6603044 
rs739439 
rs2285642 
rs7224296 
rs2240601 
rs4239633 
rs12608932 
rs10463311 
rs17070492 
rs117027576 
rs118082508 
rs113247976 
rs116900480 
rs142321490 
rs74654358 
rs10139154 
rs10143310 
rs9901522 
rs12973192 
rs75087725 
Sex 
C9ORF72 
Other Mutation 
Principal Component 1 
Principal Component 2 

1 

0.5 

0 

−0.5 

−1 

0.4 

0.3 

0.2 

0.1 
L1:Clinical 

1 

0.8 

0.6 

0.4 

0.2 

0 
L1:Genetic 

1 

0.8 

0.6 

0.4 

0.2 

0 



132 
 

Figure 8. 10,000 iterations of sparse canonical correlation analysis modeling 
using bootstrapped subsampling. Each column indicates 1 of 10,000 iterations 
from randomly-bootstrapped subsamples of 75% of participants in the CReATe 
PGB cohort, and each row lists a variable entered into the sCCA. The heatmap 
denotes the canonical weight strength for each clinical variables and genetic 
variables within each column; warmer colors indicate positive weights and cooler 
colors indicate negative weights. 
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Figure 9. p value calculation for sparse canonical correlation analysis modeling. 
Histogram showing the frequency of canonical correlations achieved for sCCA 
modeling under the null hypothesis across 10,000 randomly bootstrapped sCCAs 
of randomly permuted data. The vertical turquoise line demonstrates the median 
canonical correlation achieved under sCCA modeling of the original, unpermuted 
data, and the p value is calculated as the proportion of times the median 
canonical correlation was achieved for sCCA modeling of randomly permuted 
data. 
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Figure 10. Sparse polygenic relationship between clinical and genetic variation in 
ALS patients from the CReATe Phenotype-Genotype Biomarker study. sCCA 
selected Edinburgh Cognitive and Behavioral ALS Screen (ECAS) subscores 
and 29 genetic variables which resulted in the maximal correlation between 
clinical and genetic variates in the CReATe PGB cohort. The color key denotes 
which variables were selected for inclusion in the model: Green = selected, Gray 
= not selected. The heatmap denotes the median canonical weight associated 
with each relationship between each selected SNP and the ECAS Score, with 
warmer colors indicative of positive weights and cooler colors indicative of 
negative weights. 
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Figure 11. Variables selected sparse canonical correlation analysis modeling 
using original, unpermuted data and, under the null hypothesis, randomly- 
permuted data. A) Bar graphs demonstrating the proportion of times out of 
10,000 randomly-bootstrapped sCCAs that each of the 11 clinical variables were 
selected by sCCA using randomly permuted (turquoise) and original (coral) data. 
B) Bar graphs demonstrating the number of times out of 10,000 randomly- 
bootstrapped sCCAs that each of the 45 investigated SNPs were selected by 
sCCA using randomly permuted (turquoise) and original (coral) data. SNPs are 
organized according to prior genome-wide association with ALS or joint 
association with ALS and FTD. 
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Figure 12. Correlation between weighted polygenic risk score and cognitive 
performance in ALS patients from the CReATe Phenotype-Genotype Biomarker 
study. Weighted polygenic risk score correlates with A) adjusted baseline 
performance on the Edinburgh Cognitive and Behavioral ALS Screen (ECAS) 
ALS-Specific, Total, Executive Function, and Language scores, and B) rate of 
decline on the ALS-Specific, ALS-NonSpecific, and Total scores. 
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Figure 13. Cortical thickness and neuronal loss related to weighted polygenic 
risk score in independent cohorts from UPenn. 

 
A) ALS patients (N=114) from an independent cohort at UPenn displayed 
widespread cortical thinning relative to age, sex, and education-matched healthy 
controls (N=114) in the frontal and temporal lobes. The heatmap indicates the 
associated T-statistic for each voxel, with light yellow representing the highest 
value. 

 
 

 
 

B) ALS patients (N=114) from an independent cohort at UPenn with higher 
weighted polygenic risk score exhibited greater reduction of cortical thickness in 
the orbital prefrontal cortex, anterior cingulate cortex, premotor cortex, lateral 
temporal cortex, and hippocampus. The heatmap indicates the associated T- 
statistic for each voxel, with light blue representing the highest value. 
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C) Beeswarm boxplots of ordinal neuronal loss score (0 = none/rare, 3 = severe) 
in ALS cases at autopsy from an independent cohort at UPenn (N=88) showing 
that greater ordinal neuronal loss score is associated with higher weighted 
polygenic risk score. 
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CHAPTER 5 
 

Research from the past several decades has demonstrated inextricable clinical, 

biologic, and genetic linkage between ALS and FTD, such that the two diseases 

are contemporarily conceptualized as occurring as clinical extremes on a 

continuous spectrum. Affected individuals experience disease onset often in 

middle age and diagnosis precedes death typically in less than 10 years. There is 

no cure for disease, and current treatments are only palliative or disease-slowing 

in nature. Despite advances in modern understanding of the cause and 

consequence of ALS-FTD spectrum disease, profound phenotypic heterogeneity 

precludes clinical prognostication and efforts for therapeutic development. 

Critically, cognition is a major source of phenotypic heterogeneity and impaired 

cognition confers increased risk for decreased functional ability during disease 

course and shorter survival. The goal of my thesis work has been to elucidate 

factors that influence cognition and underlying disease neuroanatomy in ALS- 

FTD spectrum disease, with the ultimate goal of defining prognostic markers and 

potential targets for disease-modifying therapies. In a series of three original 

research studies, I demonstrate strong environmental and genetic contribution to 

severity of cognitive impairment and frontotemporal disease neuroanatomy in 

ALS-FTD spectrum disease. 

In the first study, I show environmental contribution from lifetime cognitive 

engagement to verbal executive control and gray matter atrophy in a 

phenotypically and genetically diverse cohort of patients. Specifically, my results 

indicate that higher education and occupation – considered singly or cumulatively 
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in a cognitive reserve index – relate to reduced gray matter atrophy in right- 

lateralized prefrontal cortical regions functionally linked to executive processes, 

and relate to less impaired performance on a measure of verbal executive 

control. I further demonstrate through analysis of data from healthy controls that 

this association is specific to patients. In answer to my first research question, 

“How does lifetime cognitive engagement relate to cognition and disease 

neuroanatomy in ALS-FTD spectrum disease?”, these findings suggest that 

lifetime cognitive engagement contributes to heterogeneity of verbal executive 

control and underlying neurodegeneration in functionally-associated prefrontal 

cortical regions. 

In the second study, I demonstrate converging, multimodal evidence that 

common genetic variation at rs12608932 in UNC13A, a previously-identified risk 

locus for ALS and FTD, further contributes to frontotemporal disease in patients 

with sporadic ALS-FTD spectrum disease with initial ALS. My findings indicate 

that patients carrying the rs12608932 minor allele exhibit more severe in vivo 

cortical thinning in prefrontal, motor, and temporal cortices and greater 

impairment on a measure of working memory under both additive and recessive 

minor allele modeling. Consistent with in vivo findings, analyses in a separate 

autopsy cohort show that carriers of the rs12608932 minor allele have greater 

burden of post mortem TDP-43 pathology in the middle frontal cortex, middle 

temporal cortex, and motor cortex. In answer to my second research question, 

“Do common genetic variants that confer risk for ALS-FTD spectrum disease 

relate to cognition and disease neuroanatomy?”, my results demonstrate 
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converging multimodal evidence of contribution via common, single-allelic 

genetic variation at rs12608932 to frontotemporal disease phenotype. 

Last, in the third study, I demonstrate that common genetic variation further 

contributes to cognition and underlying disease neuroanatomy in a polygenic 

manner. Using machine learning conducted in a large, multicenter patient cohort, 

I find polygenic contribution predominantly from SNPs conferring joint risk for 

ALS and FTD to cognitive performance in ALS patients both at baseline and 

longitudinally. I derive a polygenic risk score for cognitive dysfunction based on 

these results, and show that ALS patients at higher polygenic risk have greater 

cortical atrophy in the prefrontal, premotor, and temporal cortices and the 

hippocampus. I further show in an independent autopsy cohort that ALS patients 

at higher polygenic risk demonstrate more severe neuronal loss in the motor 

cortex. In answer to the question, “Is there evidence of polygenic contribution via 

common genetic variants to cognition and disease neuroanatomy?”, this study 

provides quantitative trait evidence for polygenic contribution from common 

genetic variants to cognition and frontotemporal disease neuroanatomy in ALS- 

FTD spectrum disease. 

Collectively, this body of work aids scientific understanding of factors 

shaping heterogeneous cognitive phenotypes in ALS-FTD spectrum disease and 

offers biomarkers for actionable use in patient prognostication and clinical trials. 

In this final chapter, I now consider avenues for future research stemming from 

my thesis work and conclude by remarking on the implications this work holds for 

the field. 
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Limitations & Future Directions 
 

My thesis work motivates a number of avenues for future research on factors 

contributing to heterogeneous phenotypes in ALS-FTD spectrum disease and 

suggests methods applicable for similar study in other phenotypically 

heterogeneous neurodegenerative diseases. 

The work in this dissertation presents evidence in favor of strong 

contribution from both lifetime cognitive engagement and common genetic 

variation to cognition and disease neuroanatomy in ALS-FTD spectrum disease, 

leading to a subsequent line of inquiry: Do these factors interact to influence 

phenotypic heterogeneity? A few recent studies, while limited to patients with 

FTD, suggest that such interaction may occur. Presymptomatic individuals either 

positive for a pathogenic mutation in C9ORF72, MAPT, or GRN or with a strong 

familial disease history display higher premorbid frontal and total GM volume 

relating to greater educational attainment (Gazzina et al. 2019; Premi et al. 

2017); interestingly, risk genotype at a SNP near TMEM106B was found to 

enhance this relationship in mutation carriers relative to non-carriers (Premi et al. 

2017). Another study in a symptomatic FTD cohort ranging in clinical phenotypes 

and mutation status showed that risk genotype at a polymorphism near the 

SCLA4 gene magnified the association between an index of lifetime cognitive 

engagement and reduced frontal cerebral blood flow (Premi et al. 2015). With 

these findings in mind, it is reasonable to surmise that similar interactions may 

occur between lifetime cognitive engagement and common genetic variation at 

single loci or considered in a polygenic manner. This train of thought could be 
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further extended to examine potential interactions between genetic factors and 

other environmental factors not specifically associated with lifetime cognitive 

engagement, such as smoking (Sutedja et al. 2007), physical activity (Huisman 

et al. 2013), and traumatic brain injury (Kalkonde et al. 2012; Rosso, Landweer, 

et al. 2003), which have been associated with risk for ALS and FTD. In a similar 

vein, epigenetic modification of genes associated with ALS and FTD (e.g. 

C9ORF72 (McMillan et al. 2015; Russ et al. 2015)) could be also explored 

relative to environmental factors. Thus, one avenue for future work is to examine 

how environmental and genetic factors may interact or concurrently influence 

cognition and disease anatomy across ALS-FTD spectrum disease. 

A second logical extension of my thesis work regards the broader study of 

genetic factors. I limited my investigation of common genetic variants in my 

thesis work to loci previously identified as conferring risk for ALS and FTD to 

explore quantitative-trait relationships with cognition and disease anatomy in a 

hypothesis-driven manner. However, in recent years, whole-genome sequencing 

has become increasingly cost-effective and technological advances have 

enabled greater computational efficiency for the analysis of extremely large data 

sets (e.g. 3.2 billion reads from ~38x genome coverage). Another interesting 

avenue for further study is thus the study of the whole genome relative to 

cognition and neuroanatomy in ALS-FTD spectrum disease. For example, 

sparse, machine learning approaches like sCCA could investigate genotype- 

phenotype relationships between a dataset comprising whole genome 

sequencing and a dataset comprising quantitative phenotypic characterization 
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(e.g. neuropsychological evaluation, voxel-wise neuroimaging data). Some 

intriguing and innovative research studies over the past decade from the 

Alzheimer’s disease literature offer insight into the potential use of genome-wide 

data relative to complex quantitative phenotypes. These include the development 

of a voxel-wise GWAS techniques designed to identify genetic loci associated 

with regional heterogeneity in structural neuroimaging these methods has been 

applied to identify both SNP-based and gene-based loci associated with brain 

volume in healthy elderly participants and mixed cohorts of controls and patients 

from ADNI (Stein et al. 2010; Hibar et al. 2011). More recent studies from the 

Alzheimer’s disease literature also describe techniques for analyzing genome- 

wide data relative to neuropathological categorization and relative to clinical 

phenotypic variation (Beecham et al. 2014; Moreno-Grau et al. 2019). It is 

therefore not unreasonable to suggest these techniques could be adopted to the 

study of genetic factors influencing heterogeneity in cognition and disease 

anatomy, ascertained through multiple modalities including neuropsychological 

evaluation, neuroimaging, and post mortem neuropathological examination, in 

ALS-FTD spectrum disease. 

A third extension of the work presented here concerns the expansion of 

data sources and the methods used to analyze them. Based on my defined 

research questions, I chose to study data from symptomatic patients with ALS- 

FTD spectrum disease and to use specific nonparametric and machine learning 

methods. Other data sources, including from biofluid biomarkers (Benatar, 

Turner, and Wuu 2019; van der Ende et al. 2019) and functional neuroimaging 
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(Ferraro et al. 2018; Olm et al. 2018; Mutsaerts et al. 2019), reflect disease 

processes in presymptomatic individuals with familial disease history or genetic 

mutations. For example, serum and CSF levels of phosphorylated neurofilament 

heavy (pNfH) and neurofilament light (NfL) increase longitudinally in advance of 

clinically manifest ALS (Benatar et al. 2019). A potential future line of research 

could thus investigate environmental and genetic factors relative to cognition and 

frontotemporal disease anatomy in presymptomatic individuals. Results from this 

proposed research in presymptomatic ALS-FTD could then be subsequently 

investigated in symptomatic patient cohorts, with analyses stratified for mutation- 

negative and sporadic forms of disease. In addition to data sources reflecting 

early disease stage, my thesis work could be extended to utilize other 

unsupervised machine learning methods to identify genetic factors associated 

with disease. These include methods integrating prior knowledge (e.g. GWAS 

effect sizes for loci associated with disease risk) into model estimates (Blatti et al. 

2020), and methods designed to identify quantitative trait loci associated with 

data collected from patients with different disease groups (H. Wang et al. 2012). 

In the context of ALS-FTD spectrum disease, such machine learning methods 

could be used to integrate effect sizes from ALS and FTD GWAS into model 

estimates of genetic risk for impaired cognition, and to identify loci associated 

with multiple phenotypes (e.g. identify loci associated with impaired cognition and 

frontotemporal atrophy). 

A final avenue for future research stems from the ubiquitous need for 

independent replication of scientific findings, including those presented in the 
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current body of work. As noted in the introduction, I have endeavored to adopt 

robust statistical approaches including the incorporation of multiple modalities in 

an attempt to validate my findings across datasets, given the absence at the time 

of study of additional, independent cohorts sufficient data necessary for true 

replication. I have incorporated analysis of complementary, independent datasets 

(e.g. from ADNI, the CReATe Consortium, and the UPenn Integrated 

Neurodegenerative Disease Biobank) to evaluate null hypothesis in control 

cohorts and seek converging evidence from additional biomarkers for my results, 

when possible. Tremendous efforts for multicenter, cross-institutional, and 

international observational research studies have been made through the recent 

formation of entities including the CReATe consortium and the ARTFL–LEFFTDS 

Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) research consortium 

(H. J. Rosen, Boeve, and Boxer 2020). True replication of the environmental and 

genetic influence on cognition and disease anatomy that I demonstrate through 

my work will likely only be accomplished through continued support for and 

research participation in these, and other, collaborative endeavors. 

 
 

Conclusions and Implications for the Field 
 

The research studies I have pursued for my thesis addressed the critical clinical 

need for the identification of factors influencing heterogeneity in cognition and 

disease anatomy in ALS-FTD spectrum disease. The availability of rich, 

multimodal data from large patient cohorts was critical to my study design and to 

the strength of evidence I was able to present in support of robust contribution 
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from environmental and genetic factors to cognition and underlying disease 

anatomy in ALS-FTD spectrum disease. 

My thesis work holds implications for future advancements in clinical care and 

therapeutic development and stimulates further research. The environmental and 

genetic factors elucidated through my research hold potential to improve 

prognostication in clinical care and therapeutic development with appropriate 

validation. Routine patient genotyping, generated through a minimally-invasive 

procedure in an increasingly cost-effective manner, may be used to investigate 

pharmaco-genomic interactions in ongoing clinical trials. Patient genotyping and 

measures of lifetime cognitive engagement (e.g. education and occupation) could 

further be used to stratify patients in clinical trials to alleviate potential confounds 

associated with the profound phenotypic heterogeneity observed in ALS-FTD 

spectrum disease. In addition to stratification, environmental and genetic factors 

might also serve as potential therapeutic targets. For example, cognitive 

engagement and associated frontal cortical function might be targeted early in 

disease course through digital (e.g. smartphone applications) or neuromodulatory 

(e.g. transcranial direct current stimulation) strategies. With these clinical and 

therapeutic implications in mind, my work stimulates future research on genetic 

and environmental factors influencing heterogeneity in patient phenotype. My 

work has demonstrated the critical utility of large, multimodal datasets in 

elucidating disease-modifying factors, and accordingly implicates that further 

support and maintenance of collaborative data-collection on patient populations 

is necessary to conduct scientifically-rigorous and clinically-meaningful studies. 
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