A Theorem Proving Approach Towards
Declarative Networking

Anduo Wang' Boon Thau Loo!
Changbin Liu' Oleg Sokolsky' Prithwish Basu?

! Computer and Information Sciences Department, University of Pennsylvania,
3330 Walnut Street, Philadelphia, PA 19104-6389
2 Network Research Group, BBN Technologies,
10 Moulton Street, Cambridge, MA 02138
{anduo, changbl,boonloo,sokolsky}@seas.upenn.edu pbasu@bbn.com

Abstract. We present the DRIVER system for designing, analyzing
and implementing network protocols. DRIVER leverages declarative net-
working, a recent innovation that enables network protocols to be con-
cisely specified and implemented using declarative languages. DRIVER
takes as input declarative networking specifications written in the Net-
work Datalog (NDlog) query language, and maps that automatically
into logical specifications that can be directly used in existing theorem
provers to validate protocol correctness. As an alternative approach, net-
work designer can supply a component-based model of their routing de-
sign, automatically generate PVS specifications for verification and sub-
sequent compilation into verified declarative network implementations.
We demonstrate the use of DRIVER for synthesizing and verifying a
variety of well-known network routing protocols.

1 Introduction

In this paper, we present the DRIVER (Declarative Routing Implementation and
VERification) system for designing, analyzing and implementing network proto-
cols within a unified framework. Our work is a significant step towards bridging
network specifications, protocol verification, and implementation within a com-
mon language and system. The DRIVER framework achieves this unified capa-
bility via the use of declarative networking [13,12], a declarative domain-specific
approach for specifying and implementing network protocols, and theorem prov-
ing, a well established verification technique based on logical reasoning.

DRIVER leverages our prior work on a declarative network verifier (DNV) [18]
which demonstrates that one can leverages declarative networking’s connection
to logic programming by automatically compiling high-level declarative network-
ing program written in the Network Datalog (NDlog) query language into formal
specifications, which can be directly used in a theorem prover for verification.
The proving process guided by the user is then carried out in a general-purpose
theorem prover and proofs are mechanically checked. Declarative networking
programs that have been verified in DRIVER can be directly executed as imple-
mentations, hence bridging specifications and implementations within a unified
declarative framework.

In addition to verifying declarative networking programs using a theorem
prover, the DRIVER system enables a similar transformation of verified for-
mal specifications (limited to fragment of second order logic) to NDlog program

for execution. This enables a network designer to either directly verify network
implementation specified in NDlog or conceptualize and verify the design of a
network in components aided by a theorem prover prior to implementation.

2 Background

Declarative networks are implemented using Network Datalog (NDlog), a dis-
tributed logic-based recursive query language first introduced in the database
community for querying network graphs. In prior work, it has been shown that
traditional routing protocols can be implemented in a few lines of declarative
code [13], and complex protocols in orders of magnitude less code [12] compared
to traditional imperative implementations. This compact and high-level lan-
guage enables rapid prototype development, ease of customization, optimizabil-
ity, and the potentiality for protocol verification. When executed, these declar-
ative networks perform efficiently relative to imperative implementations, as
demonstrated by the P2 declarative networking system [1].

2.1 Datalog Language

NDlog is primarily a distributed variant of Datalog. We illustrate NDlog using a
simple example of two rules that computes all pairs of reachable nodes:

rl reachable(@S,N) :- 1ink(@S,N).
r2 reachable(@S,D) :- 1ink(@S,N), reachable(@N,D).
Query reachable(@S,D).

The rules r1 and r2 specify a distributed transitive closure computation,
where rule r1 computes all pairs of nodes reachable within a single hop from all
input links (denoted by neighbor), and rule r2 expresses that “if there is a link
from S to N, and N can reach D, then S can reach D.”

NDlog supports a location specifier in each predicate, expressed with the
@ symbol followed by an attribute. This attribute is used to denote the source
location of each corresponding tuple. For example, all reachable and 1ink tuples
are stored based on the @S address field. The output of interest is the set of all
reachable(@S,D) tuples, representing reachable pairs of nodes from S to D.

2.2 Soft-state Storage Model

Declarative networking incorporates support soft-state [15] derivations commonly
used in networks. In the soft state storage model, all data (input and derivations)
has an explicit “time to live” (TTL) or lifetime, and all tuples must be explicitly
reinserted with their latest values and a new TTL, or they are deleted.

The soft-state storage semantics are as follows. When a tuple is derived,
if there exists another tuple with the same primary key but differs on other
attributes, an update occurs, in which the new tuple replaces the previous one.
On the other hand, if the two tuples are identical, a refresh occurs, in which the
existing tuple is extended by its TTL.

For a given predicate, in the absence of any materialize declaration, it is
treated as an event predicate with zero lifetime. Since events are not stored, they
are primarily used to trigger rules periodically or in response to network events.

Property/ Network Design
Invariant Model

Verification I Specification

T;lmr_ e1m NDlog
Tov1ng g ificati
Amioms pecification
l E Implementation
Interactive i
Theorem i Protocol
Proving ! Execution
1

Fig. 1. Overview of DRIVER

3 Overview of DRIVER

Figure 1 provides an overview of DRIVER’s basic approach towards unifying
specifications, verification, and implementation within a common declarative
framework. The approach is broken up into the following four phases: design,
specification, verification, and implementation.

In the initial design phase of DRIVER, a network designer develops a concep-
tual model for the routing protocol. In practice, this step may be optional, but
having such a model is often useful both from the implementation standpoint,
and for verifying one’s protocol design.

Based on the design, two options are available. First, NDlog networking pro-
grams can be synthesized from the design, and then the NDlog implementations
can be directly verified in an theorem prover. Second, the designer can first
verify the design using a theorem prover and then automatically generate the
corresponding NDlog program.

Considering the first option, DRIVER takes as input NDlog program repre-
sentation of the routing protocol we are interested in. In order to carry out the
formal verification process, the NDlog programs are automatically compiled into
formal specifications recognizable by a standard theorem prover (e.g. PVS [2],
Coq [3]) using the aziom generator, as depicted in the left-part of Figure 1.

At the same time, the protocol designer specifies high-level invariant proper-
ties of the protocol to be checked via two mechanisms: invariants can be written
directly as theorems in the theorem prover, or expressed as NDlog rules which
can be automatically translated into theorems using the axiom generator. The
first approach increases the expressiveness of invariant properties, where one can
reason with invariants that can be only expressible in higher order logic. The
second approach has restricted expressiveness based on NDlog’s use of Datalog,
but has the added advantage that the same properties expressed in NDlog can
be verified in both theorem prover and checked at runtime.

From the perspective of network designers, as depicted in the left part of
Figure 1, they reason about their protocols using the high-level protocol specifi-
cations and invariant properties.The NDlog high-level specifications are directly
executed and also proved within the theorem prover. Any errors detected in the
theorem prover can be corrected by changing the corresponding NDlog programs.
Our initial DRIVER prototype uses the PVS theorem prover, due to its substan-

tial support for proof strategies which significantly reduce the time required in
the interactive proof process. However, the techniques describe in this paper are
agnostic to other theorem provers. We have also verified some of the properties
presented in this paper using the Coq [3] proof assistant.

As a second option, DRIVER allows the network designer to first utilize a
theorem prover to check the protocol design. This requires a network designer
first develop formal specifications for the routing protocol of interests. Once
the formal representation of the protocol is verified by the prover, corresponding
NDlog programs are then generated for execution. Similar to the first option, this
approach is made possible by the use of NDlog, which is particularly amenable to
the translation into formal specification recognizable by existing theorem provers
(and vice versa), due to its logic-based nature.

Reference [18] provides details on the translation process from NDlog pro-
grams into formal specification in theorem prover, as well as several verification
use cases for standard network routing protocols. In the rest of the paper, we
focus on the second approach.

4 Implementing Networks from Verified Specifications

We present the second option for bridging network verification and implemen-
tation as described in the previous section. In this approach, a network designer
first develops component-based models for their networks. These models are then
used to generate formal specifications that can be directly verified in PVS, and
the verified PVS specifications can be further compiled into NDlog programs for
execution.

Our main driving example is based on a component-based model of routing
protocols. Given this model, a large family of routing protocols can be imple-
mented simply by customizing subcomponents. The use of components provides
the usual benefits of modularity and re-usability. More importantly, in our con-
text, it enables a straightforward translation to formal specifications for verifi-
cation in PVS or any other general purpose theorem prover.

Our approach of representing and verifying system implementation as com-
ponents and predicates is adapted from similar techniques in hardware verifica-
tion [5, 16], where circuits can easily be modeled by composing together electri-
cal components. Interestingly, component-based abstractions have similarly been
explored in the networking literature (e.g. [11,14,17]), where network protocols
are typically composed from existing ones by layered (vertically) or bridging
(horizontally) with existing protocols.

4.1 Component-based Model

Before going into the specifics of routing implementations derivation from veri-
fied specification, we first provide an introduction to the component-based model
adapted from hardware verification, and describe its translation to PVS axioms
and equivalent NDlog programs. The translation is made possible via the use
of predicative specifications [5,16]. In a nutshell, each component is specified as
a predicate (relation) over all its external attributes. The external attributes
constitute the component’s interface, whereas the internal sub-components con-
stitute its implementation in terms of sets of constraints.

To illustrate, we consider an example component ¢ shown in Figure 2 (a)
with input I1, I2 and output 0. This component is implemented in terms of
three sub-components c1, c2, c3, as shown in Figure 2 (b).

11+

11—
12—

275

()) O]

Fig. 2. Component Representation

The predicative specification of the corresponding component in PVS is then
written as:

c(I1,I2,03): INDUCTIVE bool =
EXISTS (01,02): c1(I1,01) AND c2(I2,02) AND c3(01,02,03)

c1(I,0): INDUCTIVE bool Constraints ct1(I,0)
c2(I,0): INDUCTIVE bool = Constraints ct2(I,0)
c3(I1,I2,0): INDUCTIVE bool = Constraints ct3(I1,I2,0)

The top-level component c is defined as the conjunction of its sub-components.
Within each subcomponents c1-c3, there are additional constraints ctl-ct3
which are typically a conjunction of predicates. We use PVS Inductive defi-
nition to ensure that all components represent the smallest sets satisfying the
constraints in the body.

Translating to Datalog programs: Given the above PVS axioms, there is a
straightforward translation to equivalent Datalog programs, by leveraging the
proof-theoretic semantics of Datalog. For instance, the following four Datalog
rules t1-t4 implement component C:

t1 ¢(I1,12,0) :- c1(I1,01), c2(I2,02), c3(01,02,03).
t2 c1(I,0) := ct1(I,0).
t3 ¢2(I1,0) :— ct2(1,0).

t4 ¢3(I1,I2,0) :- ct3(I1,I2,0).
Query c(I1,I2,0).

The above translation is feasible as long as each individual set of component
constraints (i.e. ct1, ct2 and ct3) can be specified as conjunction of set of pre-
defined predicates. Additional location specifiers are supplied by the network
designer as part of the model in order to compile the equivalent distributed
NDlog programs with the correctly annotated location specifiers. Together with
the above rules, one can further specify the output of interest in Query statement,
which in this case is simply the ¢ component, i.e. c(I1,12,0).

Adding soft-state constraints: To support protocol verification in dynamic
networks via soft-state semantics as described in Section 2.2, we add two addi-
tional attributes Tc and T1 to each component’s interface, as shown in Figure 2
(¢c). Tc and T1 denote the creation time and lifetime of each component respec-
tively. The creation times Tc are typically a variable in PVS specification, and

lifetimes T1 are soft-state lifetimes initialized by the network designer. To illus-
trate by a concrete example, consider the component c introduced earlier. The
equivalent PVS specification capturing soft-state semantics is as follows:

c(I1,12,03,Tc,T1l): INDUCTIVE bool =
EXISTS (01,02,Tc1,T11): c1(I1,01,Tc1,T11) AND c2(I2,02,Tc2,T12) AND
c3(01,02,03,Tc3,T13) AND validate(Tc,Tl,Tc1,T11,Tc2,T12,Tc3,T13)

We further add a validate component as a subcomponent to impose the
constraints that only components active within the same period can interact
with each other. The validate component also determines the creation time Tc
and lifetime T1 for the top-level component based on those of sub-components.
For example, consider the following PV'S specification of a validate component:

validate(Tc,T1,Tc1,T11,Tc2,T12,Tc3,T13): INDUCTIVE bool =
T1=TTL AND Tc1<Tc<=Tc1+T1l1l AND Tc2<Tc<=Tc2+T1l2 AND Tc3<Tc<Tc3+T1l3
AND Tc=max(Tc1,Tc2,Tc3)

The above validate subcomponent takes as input the lifetimes of all the
other components, and ensures that the creation time Tc of the resulting com-
ponent is set to the max of all creation times among its components, and that
T1 is set to the specified soft-state lifetime (TTL) of the component c. The
validate also includes additional constraints that ensure that only active com-
ponents whose lifetimes overlap within the same time window are allowed to
interact with each other.

The translation to equivalent Datalog program is straightforward and we
omit for brevity.

4.2 Distance Vector Protocol

To demonstrate the component-based model and translation to PVS specifica-
tions and NDlog programs, we provide a representative example based on the
distance-vector protocol. This protocol is typically used for inter-domain rout-
ing, i.e. computing shortest-paths within a local area network or administrative
domain (Internet service provider). On the other hand, the path vector protocol
presented earlier is generally used for computing routes across over administra-
tive domains. Interestingly, mapping from one protocol to another only require
only minor changes to the component specifications.

In the distance vector protocol, each router in the network executing the
protocol maintains a routing table, and periodically advertises its current best
routes to its neighbors, and updates its routing knowledge when receiving route
advertisements from neighbors. Figure 3 shows the component-based model for
an instance of the distance-vector protocol in which route advertisements are
generated every 5 seconds, and all received routes are stored at each node for 10
seconds to recompute current best hops along shortest paths with minimal hop
cost.

The model consists of three main components: hop, hopMsg and bestHop
respectively, depicted as bold boxes in Figure 3. Besides these three top-level
composite components that are built upon sub-components, we introduce a set of
atomic components depicted by regular (not in bold) boxes, to represent input
data (representing a node’s prior knowledge of the network) or a pre-defined
function (for arithmetic and path concatenation). For example 1ink denotes the

hop hop

[S) link] 2 IS) | hopMsg| ¢
\—TCWTC \—TH—@’R
T 10 T] 10

(a.1) 2

hopMsg @2

bestHop

D bestHopCost
| bestHop Tel g 5 TL
11 E&HW*C 2 1M
C2 -
g Tos (validate |>—10

€3

@]

N link |pp | hon
5 validate '__0 D °p Te
—| periodic [1€ Te 7z

b (©

Fig. 3. Component Representation

set of neighbors for each node, and f_compute is a function computing best route
cost.

Figure 3 (a) shows hop component with attributes $,D,Z,C is used to com-
pute all possible routes from S to D via next hop Z with cost C. The component
actually have two instances: the left hop component instance (a.1) is derived via
a direct one-hop link, whereas in (a.2) the component instance computes hops
of increasing hop cost recursively from advertisements received from neighbors
(hopMsg).

Since hops have associated lifetimes, soft-state attributes described in Sec-
tion 4.1 are added as additional attributes to each component. The PVS speci-
fication for hop is as follows:

hop(S,D,Z,C,Tc,T1l): INDUCTIVE bool =
(1ink(S,D,Tc,10) AND Z=D AND T1=10 AND C=1) OR
(EXISTS (C2:Metric): hopMsg(S,D,Z,C2,Tc2) AND T1=10 AND Tc=Tc2+5)

Since route advertisements are triggered every 5 seconds, the additional con-
straint Tc=Tc2+5 defined by the validate component requires that the creation
time of each newly computed hop to be advanced accordingly. For ease of ex-
position, we unfold the validate component constraints into the above PVS
specification.

Figure 3 (b) shows the hopMsg component that denotes a route advertise-
ment. The component’s implementation is represented by the conjunction of
constraints imposed by all its internal components bestHop, link, periodic,
f_compute and validate. The periodic component is a special atomic compo-
nent periodic used to periodically trigger route advertisement at node S at time
Tc. f_compute is a function used to compute new route costs from existing route
advertisement and link costs. The PVS specification for hopMsg is as follows:

hopMsg(N,D,S,C,Tc,T1): INDUCTIVE bool =

(EXISTS (Tc2,Tc3,C1,C2:Time): periodic(S,5,Tc) AND
bestHop(S,D,Z,C1,Tc2,10) AND link(S,N,C2,Tc3,10) AND
Tc2<Tc<=Tc2+10 AND Tc3<Tc<=Tc3+10 AND C=C1+C2 AND T1=0)

Intuitively it means S will send N a route to reach destination D of cost C
via itself if and only if S knows a best route to reach D of cost C1, as indicated
by bestHop(S,D,Z,C1,Tc2,10), and that S is N’s direct neighbor with a link of
cost C1. Note that validate component above sets the creation time of hopMsg
as that of the triggering component periodic, and in addition requires all the
internal components to be alive during the same window of period.

Finally, Figure 3 (c¢) shows the bestHop component, which is formalized in
PVS as follows:
bestHop(S,D,Z,C,Tc,T1): INDUCTIVE bool =

bestHopCost(S,D,C,Tc,10) AND hop(S,D,Z,C,Tc,10)

For each pair of source S and destination D, the above PVS specifications
computes the next hop Z with minimal cost C along the shortest path to the
destination. The component utilizes a subcomponent bestHopCost that is used
to compute the min aggregation over attribute C of hop to select the best (lowest)
cost. We view this aggregation as an atomic service provided by bestHopCost
and specify it in PVS as follows:

bestHopCost (S,D,MIN_C,Tc,T1l): INDUCTIVE bool =
(EXISTS (Z:Node): hop(S,D,Z,MIN_C,Tc) AND T1=10 AND
(FORALL (C:Metric): (EXISTS (Z:Node): hop(S,D,Z,C,Tc,10))=>MIN_C<=C))

Given the above PVS specifications and additional information on location
specifiers of predicates, the following NDlog program can be automatically gen-
erated.

dv1 hop(@s,D,D,C,Tc,10):-1ink(@S,D,C,Tc,10).
dv2 hop(@s,D,Z,C,Tc,10) :-hopMsg(@S,D,Z,C,Tc2) ,Tc=Tc2+5
dv3 bestHopCost (@S,D,min<C>,Tc,10) :- hop(@S,D,D,C,Tc,10).
dv4 bestHop(@S,D,Z,C,Tc,10) :- bestHopCost(®@S,D,C,Tc,10),
hop(@S,D,Z,C,Tc1,10), Tcl<Tc<=Tc1+10.
dv5 hoplMsg(@N,D,Z,C,Tc,0):- periodic_dv(@S,5,Tc), link(@S,N,C2,Tc2,10),
bestHop(@S,D,Z,C1,Tc1,10),C=C1+C2,Tc2<Tc<=Tc2+10,Tc1<Tc<=Tc1+10.

The above NDlog program implements the declarative distance-vector proto-
col as presented in references [13,12]. The min keyword in rule dv3 is a built-in
aggregation construct commonly used in database query languages, and it corre-
sponds to the min computation in the bestHopCost component. The interested
reader is referred to these references on detailed performance evaluation of the
above declarative protocol using the P2 declarative networking engine.

4.3 Example Proofs: Convergence and Divergence Analysis

Given the PVS specifications, one can verify a variety of properties of the
distance-vector protocol. Assuming distance vector is executed every 5 seconds,
and all soft-state predicates have a lifetime of 10 seconds, network convergence
can be expressed as:

bestHopCost_converge: THEOREM
EXISTS (j:posnat): FORALL (S,D:Node) (C:Metric) (i:posnat):
(i>j)=> bestHopCost(S,D,C,5%i,10) = bestHopCost(S,D,C,5%j,10)

Given an input network, the distance-vector protocol requires a number of
rounds of communication among all nodes, for route advertisements (in the form
of hopMsg) to be propagated in the network. In the above theorem, the existential

quantified variable j denotes the initial number of periodic intervals (set to be at
least the network diameter) required to propagate all route advertisements. The
theorem states that for any arbitrary time i after j, the value of bestHopCost
converges (i.e. no longer changes).

The distance-vector protocol converges in the static case. However, in a dy-
namic network with link failure, the protocol can diverge, caused by a well-known
problem known as the count-to-infinity problem where the protocol diverges in
the presence of link failures. In a network of three nodes a,b,d with link failure
occurred at time 100, divergence is captured by the following theorem:

bestHop_count_to_infinity: THEOREM
FORALL (a,b,d:Node) (t:Time) (c:Metric):(t>100 AND bestHop(a,d,b,c,t,10))
=>(EXISTS (t’:Time) (c’:Metric):
(t’>t AND c’>c AND bestHop(a,d,b,c’,t’,10)))

The theorem above states that the distance vector protocol will diverge after
link failure, because the best hop from a to d will increase indefinitely over time,
a symptom of the count-to-infinity problem. Due to space constraints, we omit
the proofs of the above theorem. The proof for the convergence case is relatively
straightforward. The divergence proofs require us to supply additional axioms
that describe link dynamics within a three-node cycle. We have also verified that
the count-to-infinity problem exists in a cycle of nodes, and well-known fixes such
as the split-horizon solution can avoid any two-node cycle, and that this solution
is insufficient for preventing count-to-infinity problem in three-node cycle. For a
complete list of theorems and proofs, refer to reference [7].

5 Related Work

In addition, we briefly compare the DRIVER system with existing work on
network protocol verification and development.

Model checking is a collection of algorithmic techniques for checking temporal
properties of system instances based on exhaustive state space exploration. Re-
cent significant advances in model checking network protocol implementations
include MaceMC [10] and CMC [8]. Compared to DRIVER’s use of theorem
proving, these approaches are sound as well, but not complete in the sense that
the large state space persistent in network protocols often prevents complete
exploration of the huge system states. They are typically inconclusive and re-
stricted to small network instances and temporal properties.

Classical theorem proving has been used in the past few decades for verifi-
cation of network protocols [2,6,9,4]. Despite extensive work, this approach is
generally restricted to protocol design and standards, and cannot be directly
applied to protocol implementation. A high initial investment based on domain
expert knowledge is often required to develop the system specifications accept-
able by some theorem prover (up to several man-months). Therefore, even after
successful proofs in the theorem prover, the actual implementation is not guar-
anteed to be error-free. DRIVER is hence a significant improvement over existing
usage of theorem proving [2,9] which typically require several man-months to
develop the system specifications, a step that is reduced to a few hours through
the use of declarative networking.

In summary, compared with existing tools, by adopting a theorem-proving
based approach that can be integrated with component-based declarative pro-
tocol development, DRIVER provides a unifying framework that bridges speci-
fication, verification, and implementation.

6 Future Work

We are exploring more automatic proof support to make DRIVER more ap-
proachable to non theorem proving expert. Most general-purpose theorem provers
utilize an interactive proof process that requires experience of the proof system
of these provers. To ease the user-directed proof construction, we plan to in-
troduce into DRIVER network-specific proof strategies by leveraging the PVS
built-in proof strategy language [2], hence lowering the barrier for adoption by
network designers.

References

P2: Declarative Networking System. http://p2.cs.berkeley.edu.

PVS Specification and Verification System. http://pvs.csl.sri.com/.

The Coq Proof Assistant. http://coq.inria.fr.

K. Bhargavan, D. Obradovic, and C. A. Gunter. Formal verification of standards
for distance vector routing protocols. J. ACM, 49(4):538-576, 2002.

5. A. Camilleri, M. Gordon, and T. Melham. Hardware verification using higher-order
logic. Technical Report 91, Computer Laboratory, University of Cambridge, June
1986.

6. R. Cardell-Oliver. On the use of the hol system for protocol verification. In
TPHOLs, pages 59-62, 1991.

7. DNV use cases for protocol verification. http://www.seas.upenn.edu/~anduo/dnv.html.

8. D. Engler and M. Musuvathi. Model-checking large network protocol implemen-
tations. In NSDI, 2004.

9. A. P. Felty, D. J. Howe, and F. A. Stomp. Protocol verification in nuprl. In CAV.
Springer-Verlag, 1998.

10. C. Killian, J. Anderson, R. Jhala, and A. Vahdat. Life, death, and the critical
transition: Finding liveness bugs in systems code. In NSDI, 2007.

11. E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
Modular Router. ACM Transactions on Computer Systems, 18(3):263-297, 2000.

12. B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica.
Implementing Declarative Overlays. In ACM SOSP, 2005.

13. B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative Routing:
Extensible Routing with Declarative Queries. In ACM SIGCOMM, 2005.

14. Y. Mao, B. T. Loo, Z. Ives, and J. M. Smith. MOSAIC: Unified Platform for
Dynamic Overlay Selection and Composition. In CoNEXT, 2008.

15. S. Raman and S. McCanne. A model, analysis, and protocol framework for soft
state-based communication. In SIGCOMM, pages 15-25, 1999.

16. M. Srivas, H. Ruef}; and D. Cyrluk. Hardware verification using PVS. 1997.

17. The Ensemble Distributed Communication System.
http://dsl.cs.technion.ac.il/projects/Ensemble/.

18. A. Wang, P. Basu, B. T. Loo, and O. Sokolsky. Declarative Network Verification.

In 11th International Symposium on Practical Aspects of Declarative Languages

(PADL), 20009.

=N

