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Abstract 

We propose a programming paradigm that tries to get close to both the semantic simplicity of rela- 
tional algebra, and the expressive power of unrestricted programming languages. Its main computational 
engine is structural recursion on sets. All programming is done within a "nicelyn typed lambda calculus, 
as i n  Machiavelli [OBB89]. A guiding principle is that how queries are implemented is as important as 
whether they can be implemented. As in relational algebra, the meaning of any relation transformer is 
guaranteed to be a total map taking finite relations to finite relations. A naturally restricted class of pro- 
grams written with structural recursion has precisely the expressive power of the relational algebra. The 
same programming paradigm scales up, yielding query languages for the complex-object model [AB89]. 
Beyond that, there are, for example, efficient programs for transitive closure and we are also able to 
write programs that move out of sets, and then perhaps back to sets, as long a s  we stay within a (quite 
flexible) type system. The uniform paradigm of the language suggests positive expectations for the opti- 
mization problem. In fact, structural recursion yields finer grain programming therefore we expect that 
lower-level, and therefore better optimizations will be feasible. 

1 Introduction 

Apart from its simplicity, the major selling point of the relational model is the availability of simple query 
languages with well-understood properties. Realistic database programming calls, however, for more flex- 
ibility, and more expressiveness, than relational algebra (say) offers. To meet these needs, practical query 
languages add somewhat ad-hoc features (certain aggregate operators, "group-by") and when even this fails, 
programmers use query languages embedded in general-purpose ones. 

We see a t  least two problems with embedded query languages. The first problem is the  mismatch 
between da ta  models and type systems (the infamous "impedance mismatch" problem). Good progress has 
been made in overcoming this problem (see for example, Pascal-R, Galileo [Sch77, AC083]), and in fact, 
the present paper builds on Machiavelli [OBB89]. But there is also a second problem, which stems from the 
universality of the languages in which we try t o  integrate database manipulation primitives. Suppose we 
have already achevied a smooth integration of the data  model in the type system, and consider a function 
whose inputs and output have the type of relations ( i . e . ,  set of tuples, notation {al x . . . x a,) ). Thinking 
wishfully, call such a function a relation transformer. In relational algebra, the meaning of any relation 
transformer is guaranteed to be a total map taking finite relations to  finite relations. Not so in the powerful 
languages we just mentioned, where potential non-termination will mess up the semantic picture. We can 
program everything, but proving/understanding properties of such programs becomes much more difficult, 
and while good optimization techniques that have been developed for relational algebra, it is safe to  say 
tha t  optimization techniques for relational algebra embedded in a general-purpose programming language 
are non-existent (one usually resorts t o  doing things like: if we are calling a relational expression from within 
an  iteration, then factor out the call, etc., ). This is X a p v O 6 ~ c  (Charybdis). 

t ~ h i s  paper has appeared in the proceedings of the 3rd International Workshop on Database Programming Languages, 
Naphlion, Greece, August 1991. Breazu-Tannen was partially supported by grants ONR N000-14-88-K-0634, NSF CCR-90- 
57570, and ARO DAALOS89-C-0031PRIME. Buneman was partially supported by grants ONR NOOO-14-88-K-0634 and NSF 
IRI-8610617, and by a UK SERC visiting fellowship at Imperial College, London. 



Back to  ClcvXXa (Scylla). Relational algebra has a simple and safe semantics, but where does it fall 
short? The main practical problem is that there is no way of moving outside flat relations; we cannot expect 
the relational algebra to  produce a set of sets, an ordered list, or even an integer. In fact a lot of work, 
under the title of normalization theory, was done to end up with flat relations. The "band-aid" approach 
of throwing in count, average, group-by, etc., is unsatisfactory. On a more conceptual level, relational 
algebra does not "scale-up", and new primitives had to be invented to  deal with the complex object model. 
Even so the main concern in the design of languages for the complex object model, has been absolute 
expressiveness [BK86, HS88, AB89]. The optimization techniques, and the concerns for correctness have yet 
t o  be discussed. 

We will instead put forward a programming paradigm that tries to  get close to  both the semantic 
simplicity of relational algebra, and the expressive power of unrestricted programming languages. Its main 
computational engine is structural recursion on sets. All programming is done within a "nicely" typed 
lambda calculus, as in Machiavelli [OBB89]. A guiding principle is that how queries are implemented is as 
important as if they can be implemented. To summarize the main advantages: 

a As in relational algebra, the meaning of any relation transformer is guaranteed t o  be a total map taking 
finite relations t o  finite relations. (see [BS91] for the denotational, and operational semantics of such 
languages, and for reasoning about such programs). 

a Relational queries have a natural representation using structural recursion. In fact, as we shall see, 
a naturally restricted class of programs written with structural recursion has precisely the expressive 
power of the relational algebra/calculus (section 3). 

a The same programming paradigm scales up, yielding query languages for the complex-object model [AB89] 

a Beyond that, there are, for example, efficient programs for transitive closure (section 4). Moreover, we 
are also able t o  write programs that move out of sets, and then perhaps back t o  sets, as long as we 
stay within a (quite flexible) type system. 

a The uniform paradigm of the language makes a strong suggestion that the optimization problem can 
be studied in such a language. The correspondence between restricted forms of structural recursion 
and the relational algebra indicates that we can import existing optimization techniques directly into 
the language. In fact, we expect that lower-level, and therefore better optimizations will be feasible. 
More general possibilites are suggested by lazy evaluation. 

a The same programming paradigm scales up, yielding query languages for the complex-object model [AB89] 
(section 4). 

a Finally, we believe that in this paradigm, particularly because of the good fit of the type system and 
the data  model, the database manipulations can be better integrated with other programming features, 
even references and modules. 

Concretely, we will use the following programming constructs. 

In combinator style, we will write @(e, f ,  u) for h. The typing is O(e, f ,  u) : { a )  + P provided that e : ,8 , 
f : a - - P , a n d  u : p x p + p .  

In combinator style, we will write Q(e, i) for g. The typing is Q(e, i) : { a )  -, P provided that e : ,B , and 
i : a x p + , B .  

Intuitively, these definitions are based on the fact that all finite subsets of a set can be generated 
either by repeated unions starting from singleton sets (and add the empty set, which is also finite) or by 
repeated insertions of elements, starting from the empty set. In fact, these two kinds of definitions are not 



independent, one can express each by the other (and the correspondence extends to  the associated reasoning 
by structural induction) as shown in [BS91]. There is however a fundamental subtlety: the meaning of h is 
uniquely defined by either set of clauses above, but in order for this meaning to exist, we must require that 
the meanings of u and e form a commutative-idempotent monoid on the range of the meaning of @(e, f ,  u), 
respectively that on the range of the meaning of Q(e, i), the meaning of i satisfies [BS91] (with a slight abuse 
of notation that confuses syntax and semantics) 

i(x, i(y, S))  = i(y, i(x, S ) )  
i(x, i(x, S))  = i ( x ,  S )  

Using an obvious analogy, we will call condition (1) commutativity, and condition (2) idempotence. Such 
conditions make programming with sets more challenging, but also more interesting. Moreover, in our 
experience, verification of these conditions is often closely related to proving the correctness of the programs 
in question. 

As an example, consider a program that takes a set and a linear order and returns a strictly ordered list 
of the elements of the set. We can write this with either one of the constructs presented above. With the 
first construct, the operation u is merging of strictly ordered lists; this is clearly associative, commutative 
and idempotent, and nil (the empty list) is an identity for merging. With the second construct, i is insertion 
in a strictly ordered list, which satisfies the equations (1) and (2). Both implementations use equality tests 
for the elements of the set, and thus are restricted to  sets over equality types. 

Throughout this paper we shall write our examples without type decorations/tags on primitive con- 
structs, but one must assume that the decorations are there. These decorations can always be reconstructed 
from the context. For more clarity, we will occasionally specify the type of expressions. A more subtle 
problem is whether our primitives can be typed in a polymorphic manner (thus leaving the type decorations 
off). This is particularly challenging in the case of tuples/records (see [OB88] and references therein). One 
example of a rich polymorphic type system for relational databases is to be found in Machiavelli [OBB89], 
and its ideas can be equally successfully applied to the language we consider here. To improve readability 
we also occasionally write binary functions in infix notation (as we did with union). 

2 First-order relational queries 
We begin with the simple queries that are specified using disjunction, F V G (provided F and G have 
exactly the same free variables), conjunction, F A G (provided F and G have no common free variables), 
and existential quantification 3x .F  . In relational algebra, these are implemented via union, cartesian 
product (as defined in relational algebra, not in set theory! also known as disjoint join) and projection. 

Union is a primitive in our language too. To show how to  implement the others with structural recursion 
we make the abbreviation @"(f) = a ( @ ,  f , U )  where f : CY -+ {y) . This is correctly defined since U and 0 
form a commutative-idempotent monoid. Moreover, we will use 

for tuple concatenation and 

TI :a1  x . . . x c Y , + c Y ~ ,  x . . . xa , ,  where I = ( i l  ,..., i k )  

for tuple projection. 
Define 

map f = @u(Xx-{f (.))I map : (a  + P )  - { a )  + {PI  
pairwith S r = map (Xs.rlJs) S 

R x  S = @"(pairwith S )  R 

III(R) = map TI R 

Looking at query specification from the vantage point provided by a language like the one we are 
considering, we naturally take a more computational view of query safety. For example, since we do not 



want to  rule out working with databases of algorithms, i.e., sets of tuples of functions, we regard equality 
as domain specific. This is why we have isolated above the disjoint join, which does not require equality 
on the domain. The query specifications we have considered so far do not allow constructions like R(x,x) ,  
R(x, 3) and R(x, y) A R(y, 2) . Note, however, that these formulas are equivalent to  R(x, y) A x = y , 
3y.R(x, y) A y = 3 , and R(x, y) A R(w, r )  A w = y . We take the view that "variable coincidence" which is 
so easily expressed in logical languages, but can be-depending on the domain-nontrivial computationally, 
is treated explicitly via equality in the domain. We consider formulas like y = 3 , and w = y to be domain 
specific, and we will perform a conceptual domain abstraction, by encapsulating everything that is specific 
to  it in formulas of a domain logic. ' We do not care really what form this logic takes, but we care that only 
formulas defining computable predicates on the domain be used. If F is a query specification, cp is a formula 
in the associated domain logic, and all the free variables of cp are already in F (are limited), then F A p is 
a query specification. In relational algebra this corresponds to selection, and in our language selection it is 
implemented by 

filter p = @"(Xr. if p(r) then {r) else 0) filter : ( a  4 bool) 4 {a) -+ {a) 
up(R) = filter p R 

where R implements F and p is the implementation of the domain specific selection formula p. 
One can conceive of more flexible ways to limit the variables of the selection formula. For example, 

3y.R(x, y) A y > 1 A z = y - 1 is perfectly safe. We note however, that this only amounts to a little additional 
computation on the query R(z,  y) y > 1 , computation that is easily expressible in our language. 

What about negation (corresponding in relational algebra to difference)? Implementing it requires 
membership testing, therefore equality. The ability to  specify negation in queries is therefore domain specific 
(we can't, for example, do it in a database of algorithms.) To emphasize this point, we would like t o  see the 
specification of negation as a particular case of the domain specific selection that we just mentioned. This 
follows, if we regard membership as an aggregate operator. In general, aggregate operators map relations 
to  other types, related to  the domain. Hence, aggregate operators are a kind of "feedback" to  selection, 
allowing the relations to  contribute to  the domain specific logic. With this 

To implement member : {a)  -+ ( a  4 bool) we use the abbreviation @v(Q) = @(false,Q,V) where 
Q : a -+ bool . This is again correctly defined since V and false form a commutative-idempotent monoid. 
Then 

member S r = av(Xs.s = r )  S 

3 Structural recursion and the relational algebra 

We have seen in the previous section that  only a limited use of structural recursion was needed to  implement 
the operators of the relational algebra. The empty set, the union, and the relation variables (i.e., variables of 
type set of tuples) are common to  the two formalisms. The implementation of (disjoint) join and projection 
used only cPu and concatenation and projection of tuples. Selection used in addition if-then-else, and finally 
difference used and equality of tuples. 

We will show in this section that,  in fact, this is a tight correspondence: the project-join algebra, 
the positive relational algebra (add selection) and the full relational algebra are, respectively, semantically 
equivalent to  certain sublanguages of our language, organized around the operations mentioned above. In 
order to perform this translation uniformly we must augment the relational algebra with relation and tuple 
variables. Its syntax is given by: 

where v ranges over relation variables, and t ranges over tuple variables. The project-join algebra is the 
sublanguage of A generated without selection and difference; and the positive algebra is the sublanguage 
generated without difference. 

'This leads to the interesting issue of the relationship between safety conditions on one hand, and parametric polymorphic 
data abstraction on the other hand. 



First, we give the sublanguage of our typed calculus with "union-recursors", which corresponds to the 
project-join algebra. The syntax of tuple expressions is given by (t ranges over tuple variables) 

The expressions in this first sublanguage are given by (v ranges over relation variables) 

All these expresions are assumed to  be well-typed according to the conventions stated before. 
We will now give a translation that associates to each expression E in the sublanguage an expression 

in the project-join algebra (enriched with singleton sets of tuple variables). 

-- 
In the last of these, E1[E2/{t)] means substitute for all occurences of the subexpression {t) in z. 
It is readily checked that the translation is well-defined, that expressions without free tuple variables are 
translated into expressions without free tuple variables, and that the free relation variables are exactly 
preserved by the translation. 

An obvious property of this translation is that if there are no free tuple variables in E, then there are 
no tuple variables in E, i.e. the result of translating a combinator (with respect to tuple variables) is an 
expression in what is normally regarded as relational algebra. To show that,  in general, this translation 
preserves meaning we have to describe the meaning of expressions with free (relation or tuple) variables, 
so we take their meanings are functions from valuations (environments) for these variables to values. By 
thinking of the semantic domain as the domain of such functions on relation variables, we need not worry 
about these variables, since they cannot get bound in these restricted languages. However, because tuple 
variables get bound, we must, as  usual, prove something about expressions with free tuple variables. 

Lemma 3.1 For any tuple variable environment p, and any expression E 

Proof sketch. By induction on the structure of E. The only non-trivial step involves the translation 
of au(At.E1) Ez and follows from two equalities. First, for any El and Ez 

which is shown by induction on E2. Second, for any two expressions A1, An in the project-join algebra 
(enriched with singleton sets of tuple variables) 

and this is shown by induction on A1. (Here, p[r/t]  is the environment which maps t to  r and all other 
tuple variables s t o  ~ ( s ) . )  

In section 2, we have shown how to  translate expressions of the join-project algebra, without free 
tuple variables into £-expressions without free tuple variables. That translation is easily shown to preserve 
meaning. Putting the two translations together we obtain 

Theorem 3.2 £-expmssions without free tuple variables can be translated into semantically equivalent ex- 
pressions in the project-join algebra, and conversely. 



Note that the translations are not, in general inverses. Also note that the translations are not dependent 
on the relations being flat: the tuple expressions are polymorphic in the types of the components. 

We now add conditionals to the language of E-expressions, and show that this corresponds to adding 
selection to the project-join algebra. We define the larger sublanguage 

E' ::= v 1 0 1 {T) I E' U E' 1 QU(Xt.E1) E' 1 if P then E' else £' 

where P ranges over predicate expressions, of which we need stipulate only that they be of type bool, that 
their free variables be tuple variables, and that if P is a predicate, so is its negation, 7 P .  

Since if P then El else E2 is equivalent to (if P then El else 0 ) U (if TP then E2 else 0 ), it 
is sufficient to concern ourselves with expressions of the form if P then E else 0 . We will translate the 
£'-expressions into the expressions of the positive relational algebra (the project-join algebra extended with 
selection) again enriched with singleton sets of tuple variables. 

The translation is as before, with the addition of the translation of expressions of the form if P then E else 0 . 
Suppose the free (tuple) variables of P are t l ,  . . . , tk . Define 

if P then E else 0 = III,(a,,,F(~ x i t l )  x . .  . x {tk)) 

where IE and 7 are defined as follows. Let be of type {crl x . - -  x a,) and then let tE be a tuple 
variable of type a1 x . . . x a,. Then IE is the index vector such that tE = ~ ~ , ( t ~ ( l t ~ ( (  + .  . J J tk )  . Moreover, - 
P = P[rI, ( t ) / t l , .  . . , ?rI,(t)/tk] where Ii is the index vector such that t i  = ~ r ~ , ( t ~ I l t ~ l l  .. - \Itk) . 

As a result of this translation, uA,y  is, as required by the algebra, defined over a combinator. This 
means that there are no free variables in T (P)  to interfere with the substitution that occurs in the translation 
of Qu(. . . , . . .). Thus we are in a position to use our existing machinery to establish the equivalence of our 
language E' with the relational algebra extended with expressions of the form U A ~ , ~ ( A ) .  We have 

Theorem 3.3 El-expressions without free tuple variables can be translated into semantically equivalent ex- 
pressions in the positive relational algebra, and conversely. 

Note that,  provided our predicates contain equality, intersection can be defined as 

El n E2 = Q,(Xtl.@,(Xt2.if t l  = t2 then {t l)  else 0 ) E2) El 

This is the first point in our discussion of the equivalence of languages that we need to  assume equality on 
the underlying domain. 

Our selection predicates have so far been limited to boolean expressions built up from predicates on 
tuples. We now consider what happens if we allow predicates on sets, i.e. we add to our language E' 
predicates using the "or-recursor" Q"(X1.P) E .  From the equivalence of this expression (using the obvious 
semantics) and 

-. Empty(@,(Xt.if P then { t )  else 0 ) E) 

we see that the or-recursor buys us nothing more than an emptiness test, and we may as well consider 
extending the predicates in our language E' with expressions of the form Enlpty(E), which now makes the 
language non-monotonic. 

Note that,  if nothing else, the type system of our language dictates that the only place a predicate such 
as Empty(E) can occur is within a conditional. The translation of the simplest conditional containing an 
emptiness test is given by 

- - 
if Empty(E1) then E2 else 0 = E  \ IIl,(Ez x E l )  

where I2 is the vector of the first arity(E2) indices. It is immediate that this translation preserves meaning. 
To complete the translation we must now work inductively on the structure of the predicate in a conditional, 
for example: 

if PI A P2 then E else 0 = if PI then E else 0 n if P2 then E else 0 
- 

if YP then E else 0 = E \ if P then E else 0 

We therefore obtain the main and final result of this section: 

Theorem 3.4 El-ezpressions, augmented with or-recursors in their predicates, and without free tuple vari- 
ables can be translated into semantically equivalent expressions in the relational algebra, and conversely. 



4 Complex objects, transitive closure, and grouping 

Without going into the details of the complex object model, we remark that it makes a good match with 
our language's type system [BJ089, OBB891. In this section we will first show that our language is at least 
as expressive as Abiteboul and Beeri's algebra (and therefore calculus) for complex objects [AB89]. We 
have already shown how to express cartesian product and difference(secti0n 2). The Abiteboul-Beeri algebra 
has an operation called replace which combines the relational algebra's selection and projection operations, 
moreover allowing algebraic operations to be applied recursively to subobjects. We implement it simply as 

replace p f S = map f (filter p S )  

The ability to  apply algebraic operations recursively to sub objects is provided automatically by our type 
system: f and p can a t  their turn contain other program constructs. 

Finally, the Abiteboul-Beeri algebra features two truly higher-order operations: powerset (self-explanatory) 
and collapse which maps a set of sets into their union. We implement these as follows. 

collapse = Qu (XS.S) 

collapse : {{a)) + {a)  

powerset = Q((0) , Xx.{0) U {{x)) , X(S1, S2). map U cartprod(S1, Sz)) 

powerset : {a) + {{a)) 

To see that the commutative-idempotent monoid requirement is satified for the definition of powerset, note 
that semantically 

map U cartprod(S~, SZ) = { A1 U A2 I A1 E SI , Ag E Sz ) 

Abiteboul and Beeri show that this (quite small) collection of operations is equivalent to a powerful higher- 
order logical calculus of nested tuples and sets. Interestingly, they also show that transitive closure (which, 
as shown by Aho and Ullman [AU79], cannot be implemented in relational algebra), can, in fact, be specified 
as a query in this calculus: it is the least transitive relation containing the given one among all subsets 
of the (cartesian) squaring of the set of all elements that occur in the relation. Since in our language we 
can implement the Abiteboul-Beeri algebra, we can also implement their calculus, hence transitive closure. 
Unfortunately, it is clear that the resulting algorithm is severely inefficient. However, we will show next that 
the language we consider can express a much better algorithm for transitive closure, using structural recursion 
on the empty-insert presentation of sets.First we will need relation composition, which is in fact expressible 
in relational algebra R o S  = n(l,4)(uxt.x2(t),T3(t)(R x S))  . Now, consider i : ( a  x a )  x {a x a) + {a x a) 
defined by 

i ( r , T ) = { r )  U T U { r ) o T  U T o { r )  U T o { r ) o T  

and then 
fun TC(0) = 0 

I TC(Insert(s, R)) = i(s, TC(R)) 

We will have to verify that this is correctly defined, that is, that the semantics of i satisfies the commutativity 
and idempotence conditions (see section 1) on the right set of values, and moreover, that the meaning of TC 
is in fact the transitive closure operator. In what follows we will perpetrate a slight abuse of notation by 
writing semantic proofs of semantic facts in programming syntax. (In fact, the proofs for the next lemma 
can all be formalized in syntax too, by using one of the logics described in [BSgl].) We still need one more 
notation: the semantic transitive closure is denoted by R - R+ . 

Lemma 4.1 1. Q is transitive. If T is transitive then i (r ,  T)  is also transitive. 

2. Let T be transitive. Then i(r, i(s, T)) = i(s,  i(r ,T)) and i(r,  i(r, T) )  = i(r, T) 

3. If T is transitive then i(r, T )  = ({r) u T)+ . 

4. i(rl  R+) = ({r) U R)+ . 



The key observation in proving part 1 is the following simple fact: for any R,  {s) o R o {s) G {s) . Part 2, 
which implies that T C  is correctly defined, (working with arange consisting only of transitive relations), is 
shown using part 1. Part 3 follows immediately from part 1, and part 4 from part 3.Part 4 of the lemma - - 
is the essential step in showing by structural induction on the empty-insert presentation of sets, that for any 
R, TC(R) = R+ . This algorithm resembles Warshall's algorithm, except that we are doing edge insertion 
rather than node insertion. To actually obtain Warshall's algorithm, suppose we are given a set of nodes 
V : {a) and a set of edges E : {a  x a ) .  

fun W(0) = E 
( W(Insert(v,A)) = W(A) U W(A) o {(v, v)) o W(A) 

One can show that W is correctly defined and that for any A G V , W(A) is the set of pairs of nodes 
which are connected by paths whose intermediate nodes all belong to A. It  follows that W(V) gives the 
desired transitive closure. Warshall's algorithm runs in O(n3) time while the edge insertion algorithm runs in 
O(en2) time(n is the number of nodes and e is the number of edges) .In any case, these are efficient algorithms 
for transitive closure (compare with the complex object algebra query mentioned before). In the spirit of 
Warshall's algorithm, one can also represent Floyd's shortest paths algorithm.Abitebou1 and Beeri also show 
that their calculus (and algebra) can simulate grouping which is an operation akin to the one obtaining a 
set-valued function out of a relation. Given a complex object R : (a1 x a2) , and a "domain" for its first 
projection, i . e . ,  D : { a l )  such that II1(R) D , grouping returns the complex object of type {a1 x {az)) 
whose meaning is 

[grouping(D, R)] = {(z,T) I t E D and T = {y I (t, y) E R)) 

Aggregation by groups is a useful feature, especially in conjunction with other aggregate operators. It is 
somewhat ironical that whereas query languages are set oriented, the relational data model deals only with 
flat relations. In many applications, one needs to construct a set of elements satisfying certain properties 
(e.g., all parts supplied by a supplier), to be subsequently manipulated by some computation (e.g.,find total 
cost of all parts used in a composite part). Indeed, the plethora of "explosion" diagrams in any industrial 
catalog, points to the ever present need for such an operation. All practical query languages introduce a 
grouping operation, and this operation plays a central role in LDL [NT89], which is based on a complex 
object model. As in the case of transitive closure we give a direct implementation of grouping, which avoids 
the use of powerset. To do so, first we define 

fun so(@) = D x (0) 
I gD(hsert((z, y), 5')) = map f go(S) 

where f stands for 
A(%, T) .  if z = z then (2, Insert(y, T)) else (r ,  T )  

and then we take grouping(D, R) = gD(R) . It is not hard to see that this definition is correct (that is, the 
commutativity and idempotence conditions are satisfied), since the range of go here consists only of graphs 
of functions D - {a2);. In connection with other work [BNST87], we remark that the grouping operator 
along with the empty-insert presentation of sets gives interesting expressions for negation, difference and 
union ofsets. 

5 Pump, partition, and hom 

FAD [BBKV88], LDL [NT89] and Machiavelli [OBB89] all have a construct related to structural recursion 
on sets. FAD and Machiavelli come closest with the operators pump, respectively horn, which are equivalent 
to the following 

fun h(0) = e 
I h({z)) = f(z)  
1 h(Sl u S2) = u(h(Sl), h(S2)) where Sl n S 2  = 0 

- 

2For all we know, i may be commutative and idempotent on all relations, not only on the transitive ones, but checking this 
fact seems to be better left to a machine! The restriction to transitive relations is sufficient for our purposes. 



and where u is not required to be idempotent (but, of course, u and e must form a commutative monoid). 
LDL defines a predicate partilion(Sl,Sz,S3) which imposes the disjointness of 4 and S2. For example 
consider the rules for computing the sum of a set of integers: 

This style of programming was found to be very useful in defining aggregates, such as sum, count, average 
etc., . Pump, horn, and LDL constructs based on partition as above, have a natural denotational semantics. 
The problem is that their operational semantics is quite contrived. In the case of pump and hom, the 
evaluator must evaluate sets eagerly and then do time consuming dynamic tests for equality of values. Of 
course,this rules out working with sets of functions for example. Even for sets of, say, integers, mapping a 
function over a disjoint union may yield a non-disjoint one, which fed into hom would yield a run-time error. 
One would like to  obtain statically an assurance that the program goes through, but it seems that only a 
few very simple programs can be shown correct in this sense. The operational semantics of partition is such 
that all possible partitions are generated (whereas any partition will do). 

We can, however, express the same functions without using such problematic constructs, and by staying 
within the framework we have described. One way of doing this would be to replace the definition of h above 
with 

fun h(0) = e 
I h(Insert(z, S)) = if 3: E S then h(S) else u(f (z),  h(S)) 

A cleaner method is to convert sets to  bags and then to do structural recursion on bags. (see [BS91] 
for such recursion constructs). Indeed, this is suggested by the fact that such programs plus dropping 
the disjointness/partition conditions work just fine for computing aggregate operators on bags. It  is then 
sufficient to  program the fundamental function that coerces a set into a bag. To do this by structural 
recursion we need the appropriate commutative-idempotent monoid structure on bags. This is given by 
the "max" operation, and implementing it requires that the elements of the underlying type have equality. 
We would like to  note, however, that perhaps one of the most interesting features about using structural 
recursion on sets as advocated in this paper (with idempotent operations) is the ability to program flexibly 
with objects which lack equality (such a s  relations of algorithms) while this is quite restricted in the other 
languages mentioned. 

6 Further research 
We expect that the linguistic techniques proposed here will also be applicable in dealing with incomplete 
objects [INKSl], a data model that captures the ideas of incomplete specifications. In particular, we are 
interested in studying the semantic properties of or-objects as sets of possible worlds. 

The transitive closure algorithms (section 4) seem to underscore the ability of structural recursion to 
represent efficient interesting algorithms. We intend to  investigate other such representations. In addition to 
transitive closure, and generalizing that idea, Abiteboul and Beeri show that their complex object calculus can 
simulate (stratified) recursive queries. We conjecture that their calculus should be able t o  simulate structural 
recursion, hence that their calculus and our language are equivalent in terms of absolute expressiveness. One 
of the main points of this paper, however, is that structural recursion may allow the implementation of 
better algorithms (for the same functionality). In particular, we intend to  investigate ways of transforming 
recursive queries into efficient programs with structural recursion. Our paper demonstrates that structural 
recursion yields finer grain programming than relational or complex object algebras. This should allow for 
importing all classical query optimization techniques, and, in principle, for more optimizations. Searching 
for such optimizations is perhaps the most important topic for further research here. Optimizations could 

3This is apparently a more general form of definition than the one we used so far, since in addition to h(S) ,  we also have 
separate occurrences of S on the right hand side of the second clause. The difference is similar to the one between iteration and 
primitive recursion in defining arithmetic functions. Kleene's technique for representing the predecessor function in the lambda 
calculus, which uses pairing, can also be applied here and we can express this more flexible form of definition in terms of the 
one we gave originally. 



be based on semantic equalities such as 

filter p (Qu(Ar.S) R) = +,(AT. filter p S)  R 

Qu(Ar.S) (filter p R) = @,(AT. if p(r) then S else 0) R 

For example, using these identities, we can perform the following classic optimization. Using (3) twice 

Now, suppose that p only test the components of rlls which are in s, for example, r : a1 x x a, , s : 
x - . .  x /?,, and p is At.~,,,+k(t) = 0 . Then, taking pi to be As.T~(s) = 0 , the expression is further 

equivalent to Qu(Ar. @,(AS. if pl(s) then {r((s) else 0) S )  R . Using (4) we get 

+u(Ar. Q,(As.{rlls)) (filter p' S)) R = R x up,(S) 

which is cheaper to compute than up(R x S)  . 
Another example would be to replace +u(Ar. map f S) R with the equivalent map f (Qu(Ar.S) R) . 

The following identity may also yield optimizations 

<PU(Xs.T) (map f R) = Qu(Xr. T[f(r)/s]) R 

Clearly, more work is needed, especially in investigating more general constructs than a,. In a different 
vein, we intend to investigate optimizations that would result from a lazyevaluation of set expressions. 
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