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We develop and solve a continuum theory for the piezoelectric response of nanotubes under applied uniaxial
and torsional stresses. We find that the piezoelectric response is controlled by the chiral angle, the aspect ratio,
and two dimensionless parameters specifying the ratio of the strengths of the electrostatic and elastic energies.
The model is solved in two limiting cases and the solutions are discussed. These systems are found to have
several unexpected physical effects not seen in conventional bulk systems, including a strong stretch-twist
coupling and the development of a significant bound charge density in addition to a surface charge density. The
model is applied to estimate the piezoelectric response of a boron nitride nanotube under uniform tensile stress.
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I. INTRODUCTION

Nanotubes and nanowires are a family of one dimensional
structures whose properties can be tailored by their chemical
composition, size, and shape. The lateral dimensions of these
structures can be reduced to the nanometer scale, a feature
that is exploited in almost all applications envisioned for
these objects. Carbon nanotubes are the prototypical member
of this family; they are the simplest chemically and are
known to exhibit a diversity of electronic behaviors that are
determined by the boundary conditions imposed on their
electronic wave functions when they are mapped onto a cy-
lindrical surface. While this sensitivity makes for rich theo-
retical study, it also makes carbon nanotubes �CNTs� difficult
to use in applications since tubes must be identified and
sorted according to their lattice structures. Boron nitride
nanotubes �BNNTs� are the III-V analog of CNTs and are an
attractive alternative to CNTs because they have similar me-
chanical properties, are chemically inert over a wide range of
conditions, and, importantly, are all semiconducting with a
band gap that is nearly independent of the chirality.

A BN nanotube is a heteropolar structure with a lower
lattice symmetry than the carbon nanotube. Importantly, a
twofold rotation about a perpendicular axis through the tube
interchanges its A and B sublattices; this is a symmetry op-
eration of the carbon nanotube but not of the boron nitride
tube. In early theoretical work, it was appreciated that this
allows for a nonzero electric polarization in the ground state
of the heteropolar tube1 and a linear coupling of the polar-
ization to a uniform strain,2 i.e., BN nanotubes are
piezoelectric.3 Interestingly, the piezoelectricity is a property
inherited from the flat BN sheet, while the electric polariza-
tion of an unstrained tube is a new property that only occurs
when the sheet is wrapped to form a nanotube.

The description of piezoelectricity in a one dimensional
nanotube differs fundamentally from the analogous formula-
tion for a three dimensional crystal. In an ordinary three
dimensional piezoelectric material described within the stan-
dard Landau-Devonshire theory, its macroscopic polarization
�a vector� is linearly coupled to a uniform strain field �a
tensor� through a third-rank piezoelectric tensor. Physically,
this reflects the fact that bound charges arise from a diver-

gence of the polarization, and these bound charges are mu-
tually electrostatically coupled by the Coulomb interaction
which diverges at small momentum proportional to 1/q2.
Thus, the free energy contains a term that is bilinear in the
polarization that remains constant in the long wavelength
q→0 limit. As a consequence, a uniformly strained three
dimensional piezoelectric induces a state of uniform bulk
polarization and the bound charges reside precisely at the
sample boundaries.

This state of affairs is upset for a one dimensional piezo-
electric because the Coulomb potential that couples the
bound charges has only a softer −log q long wavelength di-
vergence in one dimension. Thus, the analogous electrostatic
coupling bilinear in the polarization vanishes in the long
wavelength limit. The consequences of this are quite inter-
esting and were partially explored in our previous work.4 In
essence, the strain and polarization must be treated as inho-
mogeneous fields, whose equilibrium forms can be obtained
by minimization of an appropriate free energy that contains a
nonlocal coupling between the one dimensional strain gradi-
ents. As a consequence, a uniform applied mechanical stress
generally induces a state of nonuniform strain in a nanotube
or nanowire, and the bound charge redistributes from the
tube end into its interior in a self-consistent fashion. The
distribution of the equilibrium strain and polarization fields
depends on a subtle interplay of their elastic and electrostatic
interactions. Experimentally, available nanotubes are ex-
pected to fall in a parameter regime where the elastic inter-
actions dominate the problem so that most real materials,
including BN nanotubes, are elastically “stiff.”

A second rather interesting consequence of this nonlocal
theory occurs when different strain fields are separately
coupled to the electric polarization. Elimination of the polar-
ization then induces a bilinear coupling between different
strain gradients. A striking consequence of the induced cou-
pling occurs on a nanotube where both tube extension �lon-
gitudinal strain� and tube torsion �transverse strain� couple to
the polarization field. Here, a uniform tensile or compressive
stress induces extension or compression and a concomitant
torsion in its equilibrium state. This conversion of a longitu-
dinal to a torsion stress is impossible in a macroscopic ho-
mogeneous tube or cylinder, though it would generically oc-
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cur in the elastic theory of a helical filament. We conclude
that the appearance of an anomalous elastic response of this
type is a macroscopic manifestation of the underlying
�atomic scale� chirality of the structure.

In this paper, we develop a theory for this anomalous
elastic response and apply it to study the equilibrium strained
state of a family of BN nanotubes. We find that it has a rather
rich structure, depending on the relative strengths of the elas-
tic and electrostatic interactions and on the chiral angle of
the tube. Nonetheless, these anomalous couplings turn out to
be fairly small and will likely be difficult to observe directly
in ordinary experimental environments. Physically, this re-
flects the fact that finite radius BN are mechanically stiff
structures that tend to be dominated by their bare elastic
interactions, weakly perturbed by the electrostatic effects of
the type considered here.

The rest of this paper is organized as follows. In Sec. II,
we develop a continuum theory appropriate for one dimen-
sional �1D� systems and discuss limiting cases. In Sec. III,
we present exact numerical and approximate analytic solu-
tions for the various parameter regimes. In Sec. IV, we apply
our results to chiral BNNTs and calculate their piezoelectric
response. Finally, in Sec. V, we summarize our results and
present conclusions.

II. FREE ENERGY FORMALISM

We consider a piezoelectric nanotube with radius R and
length L, and let the tube axis be the z axis. In what follows,
we assume that L�R�a0, where a0 is the B-N lattice spac-
ing. In this limit of large aspect ratio and large tube radius, a
continuum theory is appropriate.

The tube is placed under a constant external stress, which
we partition into its longitudinal component fs and torsional
component f t. The applied stresses induce strain fields �s�z�
�stretch� and �t�z� �twist�. The induced polarization is related
to these strains through P�z�=es�s�z�+et�t�z�, where es and
et are the linear piezoelectric constants that depend on the
chiral angle �. For a general chiral nanotube, both es and et
are nonzero. For the two high symmetry classes of nano-
tubes, only one piezoelectric coefficient is nonzero, es for
“zigzag” nanotubes and et for “armchair” nanotubes. The
special cases where only one elastic degree of freedom
couples to the polarization have no induced cross coupling
terms and were considered previously.4

The free energy of the system can be written as the sum of
three terms,

G = Gelastic + Gelectro. − �
i
�

0

L

f i�i�z�dz , �1�

where Gelastic is the elastic contribution, Gelectro. is the elec-
trostatic contribution, and the last term represents the work
done by the applied stress, and the sum runs over s and t. The
elastic contribution is

Gelastic = �
i,j

1

2
Cij�

0

L

�i�z�� j�z�dz , �2�

where the indices i and j run over s and t and we have
introduced four 1D elastic moduli Cij. The diagonal 1D elas-

tic moduli are radius dependent quantities with units
of energy/length and are given by Css=2�RC11 and
Ctt=2�RC66. C11 and C66 are two dimensional �2D� elastic
constants in the conventional Voigt notation and are the rel-
evant intensive variables, with units of energy/area, which
depend on the nanotube chemistry. The off-diagonal term,
Cst, is small and decreases as 1/R2 in the limit of large radius
tubes. We therefore ignore this term by setting Cst=0 in all
that follows.

Using the fact that the bound charge density is
related to spatial derivatives of the strains through
��z�=−�iei��i�z� /�z, the electrostatic contribution to the free
energy can be written as

Gelectro. = �
i,j

eiej

2
�

0

L �
0

L ��i�z�
�z

V�z − z��
�� j�z��

�z�
dzdz�,

�3�

where again the sums on i and j are over s and t. Here,
V�z−z�� is a Coulomb kernel describing the electrostatic in-
teraction between rings of charge centered at positions z and
z� along the tube axis. es and et are 1D piezoelectric con-
stants with units of charge. They may be obtained by rotating
the piezoelectric constants for an infinite 2D sheet onto the
symmetry axes of a tube.3 The threefold symmetry of an
infinite hexagonal lattice reduces the number of independent
2D piezoelectric constants to 1, which we take as e2�exxx
with units of charge/length. If we define the chiral angle as
the angle between the nanotube axis and a 2D primitive
translation vector ��=30° is the zigzag configuration and
�=0° is the armchair configuration�, then the 1D piezoelec-
tric constants are given by

es = Ce2 sin�3�� ,

et = − Ce2 cos�3�� , �4�

where C is the nanotube circumference.3 These expressions
are derived neglecting finite radius corrections due to the
tube curvature. However, these expressions agree with nu-
merical results to within 15% for the smallest nanotubes con-
sidered, with better agreement for larger radius tubes where
curvature effects are reduced.

The polarization induced along the tube is composed of
dipoles with both a longitudinal and an azimuthal compo-
nent. The longitudinal component accounts for the electro-
static energy given in Eq. �3�. The total dipole moment of the
azimuthal polarization integrates to zero, but higher order
moments do not vanish and may contribute to the energy.
The energy from these interacting rings of dipoles is of the
form

Grings � − �a0

R
�2ei

�ej
�

R
� � dxdx��i�x�K�x − x��� j�x�� ,

�5�

where the integral is written in terms of the dimensionless
variable x=z /R and ei

� is the appropriate piezoelectric con-
stant giving the local azimuthal polarization in terms of the
induced strains. The important result is that the kernel goes
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asymptotically as K�x��1/x2m+1, where m is approximately
the number of 2D unit cells in one tube circumference. This
kernel decays so fast that we may approximate it with a delta
function. This term then has the same functional form as
Gelastic. However, as we will see below, the terms we will
keep in Gelastic scale with the radius as R2, whereas all terms
in Grings scale as 1 /R3. Since we are interested in the limit of
large radius tubes, this energy represents a minor correction
to the elastic energy of the system and will be ignored.

The strain field may be discontinuous at the boundaries of
the nanotube. To account for this, we let �i�z�=gi�z�H�z�,
where gi�z� is a continuous function of z and H�z�=1 for
0�z�L and 0 otherwise. Writing �i�z� in this form is con-

venient because it allows us to keep track of the delta func-
tion contributions to �i��z� at the boundary of the nanotube.
In particular, it removes any ambiguity that might arise in an
expression such as �i��0�. In what follows, we will call both
�i�z� and gi�z� the strain field since they agree over the
length of the tube.

We extract the dimensional dependence of the energies in
Eq. �1� by expressing all lengths in units of the tube radius
and all radius dependent quantities by their relevant intensive
quantities. We define a scaled length x=z /R and the dimen-
sionless aspect ratio as �1=L /R. Then, after integrating the
electrostatic free energy by parts, the free energy is given by

G = �R2�
0

�1

dx	C11gs
2�x� + C66gt

2�x�
 − R�
0

�1

dx	fsgs�x� + f tgt�x�


+ 2�2Re2
2�

0

�1

dxdx�
�2V�x − x��

�x�x�
	sin2�3��gs�x�gs�x�� − 2 cos�3��sin�3��gs�x�gt�x�� + cos2�3��gt�x�gt�x��


− 4�2Re2
2V��0 + ��

0

�1

dx	sin2�3��gs
2�x� − 2 sin�3��cos�3��gs�x�gt�x� + cos2�3��gt

2�x�
 , �6�

where V��0+ � indicates the one-sided right derivative of the
Coulomb kernel. It may be that V��0+ �=	, but there is an
equal and opposite infinity in the double integral so that the
energy always remains finite.

The equilibrium strain fields are obtained by minimizing
G with respect to the strains and satisfy

g��x� − 2V��0 + �
g��x� + �
0

�1

dx�
�2V�x − x��

�x�x�

g��x�� = �� .

�7�

For notational simplicity, we have defined a strain “vector”
as g��x�= �gs�x� ,gt�x�� and an elastic limit “vector” as

�� = ��s ,�t�, where �s= fs / �2�RC11� is the value of the
uniaxial strain in the absence of piezoelectric effects and
�t= f t / �2�RC66� is the value of the torsional strain in the
absence of piezoelectric effects. The matrix 
 is given by


 = 2�� �2 sin2�3�� − �2 sin�3��cos�3��
− �3 sin�3��cos�3�� �3 cos2�3��

� ,

�8�

where we have introduced two dimensionless constants,
�2=e2

2 / �RC11� and �3=e2
2 / �RC66�, which measure the rela-

tive strengths of the electrostatic and elastic response. Note
that C11 and C66 are generally of the same order of magni-
tude, so �2 and �3 will also be of the same order of magni-
tude.

We will see below that the solutions to Eq. �7� asymptoti-
cally approach the elastic limit with a characteristic decay

length controlled by �2 and �3. There are two limiting cases
of interest. When the tube is much longer than the decay
length ��1�2��2, 2��3�, the strains are near their elastic
limits over most of the tube length, with deviations from the
elastic limit near the tube ends. Such systems are dominated
by their elastic response to the applied stress, and we call this
the elastically dominated limit. Conversely, when the tube is
much shorter than the decay length ��1�2��2, 2��3�, the
strains never decay to their elastic limits. Such systems are
dominated by their electrostatic response to the applied
stress, and we call this the electrostatically dominated limit.
Solutions for these two limiting cases will be explored in the
next section.

The matrix 
 is not invertible; therefore, the strains are
not linearly independent. We find that the strains are related
by

gt�x� = �t +
�3 cos�3��
�2 sin�3��

	�s − gs�x�
 . �9�

Plugging this relationship into Eq. �7� allows us to write the
equilibrium equation in terms of gs�x� alone,

gs�x� = �s − 2V��0 + �	gs�x� − �


+ �
0

�1

dx�
�2V�x − x��

�x�x�
	gs�x�� − �
 , �10�

where we have defined two new constants,
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 = 2�	�2 sin2�3�� + �3 cos2�3��
 �11�

and

� = 2� cos�3��	�3 cos�3���s + �2 sin�3���t
 . �12�

In order to solve Eq. �10�, an appropriate Coulomb kernel
must be specified. In the simplest continuum model where
the kernel describes the interaction of charged rings at posi-
tions x and x� on a tube, the Coulomb kernel is given by

V�x − x�� =
1

2�
�

0

2� d�

��x − x��2 + sin2��� + 	1 − cos���
2
.

�13�

This kernel diverges logarithmically as x→x� and leads to an
infinite energy for surface charges. Using this kernel, the
boundary condition on the strain fields is es�s�0�+et�t�0�
=0. A divergent energy is an artifact of our continuum model
and signals the breakdown of the model at short distances. It
is useful to replace the divergent kernel with a softened ker-
nel,

Vsoft�x − x�� =
1

�x − x�� + �
, �14�

which retains the correct long-range behavior but remains
finite as x→x�. This kernel allows the presence of a nonzero
surface charge, with the “cost” of a surface charge controlled
by the cutoff �. The tube radius forms a natural length scale
below which the continuum model breaks down, suggesting
that �1 is an appropriate cutoff. In Ref. 4, it was shown
that using the softened kernel with �=1 gave nearly identical
results for the strain, charge density, and potential across the
tube as those obtained using the divergent kernel. The only
notable difference is that the softened kernel gives a nonzero
surface charge which is replaced by a logarithmically diver-
gent bound charge density at the boundaries with no surface
charge for the divergent kernel. These are indistinguishable
for all practical purposes.

Once the charge density is computed, the potential along
the tube is determined by

U�z� = �
0

L

V�z − z����z��dz�. �15�

After expressing all lengths in terms of the tube radius and
integrating by parts, the potential becomes

U�x� = �
i

ei

R
�

0

�1

gi�x��
�V�x − x��

�x�
dx�. �16�

Differentiating this expression and writing all constants in
terms of intensive variables allow us to relate the potential to
the strain through

�U�x�
�x

=
e2

�2 sin�3��
	�s − gs�x�
 . �17�

Integrating this expression gives the potential as an integral
over the strain field,

U�x� =
e2

�2 sin�3���x

�1/2

dx��gs�x�� − �s� , �18�

where we have set the potential to zero at the middle of the
tube.

Once gt�z� is obtained through Eq. �9�, the change in the
azimuthal angle � at a point z is given by Rd�=gt�z�dz. The
total twist induced along the tube is therefore given by

�� = �
0

�1

dxgt�x� , �19�

where we have transformed to the scaled length. Following
the usual convention, the total twist is positive if the tube
rotates in the counterclockwise direction and negative if it
rotates in the clockwise direction. Notice from Eq. �9� that
for a general chiral tube, there is a coupling between
longitudinal and torsional strains such that a uniaxial stress
alone ��t=0� is sufficient to induce twisting in the nanotube.
This coupling vanishes in the high symmetry zigzag and
armchair nanotubes, as may be seen by writing Eq. �9� as
�2 sin�3��	gt�x�−�t
=�3 cos�3��	�s−gs�x�
. For armchair
nanotubes, sin�3��=0, which forces gs�x�=�s but sets no
restrictions on gt�x�. Likewise, for zigzag nanotubes,
cos�3��=0, which forces gt�x�=�t but sets no restrictions on
gs�x�. For a general chiral tube, the origin of this “stretch-
twist” coupling lies in the electrostatic term in the free en-
ergy. In regions where one flavor of strain has large spatial
gradients, the bound charge density due to that flavor of
strain is also large. The overall bound charge density may be
lowered in that region by gradients in the other flavor of
strain that produce bound charges of opposite sign. The equi-
librium strain fields are those that create a bound charge
density profile that gives the lowest electrostatic free energy
consistent with Eqs. �9� and �10�.

If we consider a system with �t=0, then Eqs. �9� and �19�
give

�� = C
cos�3��
sin�3��

, �20�

where C= ��3 /�2��	�s−gs�x�
dx. We will see below that for
a system under tensile stress, �s�gs�x� for all x. In this case,
C�0, and the sign of the total induced twist in the nanotube
is entirely determined by the sign of the chiral angle
�mod 2� /3�. We find that ���0 for right-handed nanotubes
and ���0 for left-handed nanotubes. Therefore, the sign of
the induced twist may be used to determine the handedness
of a chiral piezoelectric nanotube. There is no known order
parameter for the handedness of a chiral nanotube that can be
built up out of the two primitive vectors of the 2D hexagonal
lattice and the translational vector of the nanotube. As such,
an unambiguous assignment of nanotube handedness is dif-
ficult with structural information alone. A measurement of
the sign of the stretch-twist coupling allows one to easily
make this assignment.

A nonpiezoelectric chiral nanotube will also couple
stretch and twist to some degree due to the rearrangement of
the atomic basis upon stretching. This effect is absent in our
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formalism because we have set Cst=0, when in reality this
quantity is small but nonzero for a chiral nanotube. It is
worth noting that the electrostatically induced stretch-twist
coupling described above is in general several orders of mag-
nitude larger than the coupling in nonpiezoelectric nano-
tubes. The torsional strain induced in a piezoelectric system
can easily be of the same order of magnitude as the uniaxial
strain.

III. EQUILIBRIUM SOLUTIONS

The equilibrium solutions for the strain fields gi�z�
	Eqs. �9� and �10�
, the bound charge density
��z�=−�iei��i�z� /�z, and the electrostatic potential U�z�
	Eq. �18�
 were determined using finite element analysis to
solve Eq. �10�. Convergence of the solution was monitored
by increasing the number of finite elements in increments of
100 until the difference in successive solutions was less than
1% at the end of the tube where the convergence is the
slowest.

A. Elastically dominated limit

The elastically dominated limit is defined by the condition
that 2��2, 2��3��1. We investigate the case of a tube un-
der constant uniaxial stress in the absence of torsional stress.
The equilibrium strain fields for several chiral angles are
presented in Fig. 1. The strain fields rapidly relax to their
elastic limits and over much of the tube �s�x��s

and �t�x�0. Near the boundaries of the tube, the electro-
static interactions effectively increase C11, suppressing the
longitudinal strain. Importantly, notice that for chiral tubes,
�t�x��0 for all x even though �t=0. Because the longitudi-
nal and torsional strains couple through spatial derivatives,

the chiral tubes develop some nonzero twist near the tube
ends. The total twist induced in the tube reaches a maximum
at �=15° and goes to zero as �→0° or �→30°.

The bound charge density and the electrostatic potential
are plotted in Fig. 2. The charge density is localized at the
ends of the tube and decays rapidly on the interior. Not
shown are delta functions in the charge density right at the
tube boundary. These are surface charges which appear be-
cause the polarization is nonzero at the tube boundary with
the soft kernel. The potential varies rapidly near the tube
ends due to the presence of the induced bound charges. On
the interior of the tube, the potential varies slowly and re-
sembles the electrostatic potential produced by two opposite
point charges at the ends of the tube. Almost the entire po-
tential drop across the tube occurs near the tube boundaries.

Both the bound charge density and the potential are maxi-
mized by letting �=30° and decrease monotonically as
�→0. We find that the total potential difference across the
tube is well fitted by �U�sin�3��. Therefore, under longi-
tudinal stress, the piezoelectric response is insensitive to
small perturbations around the zigzag configuration.

A striking feature of Figs. 1 and 2 is that the effects of the
chirality only manifest themselves at the ends of the tube.
The bulk of the tube responds to an applied stress as an
ordinary elastic medium. This is a somewhat surprising re-
sult because it implies that boundaries are necessary for chi-
ral effects to appear and that the bulk of the tube has no
“knowledge” of its own chirality. Although this is evident
from our free energy formalism, an explanation of this effect
based on the symmetry properties of the tube is desirable and
is the subject of current investigations.

An approximate analytic solution to Eq. �10� may be ob-
tained with a perturbation expansion and gives
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FIG. 1. Equilibrium solutions for a piezoelectric tube in the
elastically dominated limit using the soft kernel. The upper panel
shows the induced uniaxial strain for tubes of various chiralities,
while the lower panel shows the corresponding induced torsional
strains. The graph is broken along the x axis in order to show details
near the tube boundary. The graphs were generated using �s=1,
�t=0, �1=1000, �2=10/�, �3=2�2, and e2=�5/� �charge/length�.
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gs�x� = �s − ��s − ��� 1

�x + ��2 +
1

��1 − x + ��2� . �21�

This expression always gives the correct asymptotic decay to
the elastic limit far from the tube ends. If the system is very
far into the elastic limit, so that �2��2 /�2��1, then this
expression holds over the entire length of the tube. Using Eq.
�18� to compute the potential difference, �U=U��1�−U�0�,
across a tube under uniaxial stress only gives

�U = CU −
4�e2 sin�3���s

�1 + �
. �22�

The constant CU can be determined numerically. If the
system is extremely elastic 	�2��2 /�2��1
, then
CU=4�e2 sin�3���s /�.

We may use Eq. �9� to obtain gt�x� from gs�x�, and then
compute the total twist along the tube using Eq. �19�. For a
tube under uniaxial stress only, this gives

�� = C� −
4��3 sin�3��cos�3���s

�1 + �
. �23�

The constant C� can be determined numerically. If the
system is extremely elastic 	�2��2 /�2��1
, then
C�=4��3 sin�3��cos�3���s /�.

Equations �22� and �23� show that, for systems in the
elastic limit, the induced potential and the total twist essen-
tially do not scale with tube length. This is a consequence of
the fact that the bound charge density is localized near the
tube ends with a decay length set by material parameters,
independent of length.

B. Electrostatically dominated limit

The electrostatically dominated limit is defined by the
condition 2��2, 2��3��1. Again, we investigate a tube un-
der uniaxial stress only ��t=0�. In Fig. 3, we plot the equi-
librium strain fields for several chiral angles. Note that in this
case, the tube is shorter than the strain decay length, and the
strain fails to relax to its elastic limit. The tube develops
significant torsional strain along its entire length unless it is
in one of the high symmetry configurations.

The bound charge density and the electrostatic potential in
the electrostatic limit are plotted in Fig. 4 for several chiral
angles. The bound charge density is nearly linear throughout
the interior of the tube and vanishes at the middle of the tube
by symmetry. Near the boundaries, the charge density begins
to develop a logarithmic divergence, which is cut off because
of the soft kernel. Not shown are delta functions in the
charge density right at the tube boundary. Again, these are
surface charge densities that arise due to our use of the soft
kernel. The potential is also nearly linear along the entire
length of the tube and vanishes at the center due to symme-
try. Near the boundaries, there are small, nondivergent cor-
rections to the linear behavior. A linear electrostatic potential
profile is what we would naively expect from the conven-
tional three dimensional �3D� case, but note the remarkably

different conditions which give rise to the linear potential in
this case. In the 3D case, the linear potential is produced by
true surface charges interacting via a long-range electrostatic
interaction. In this 1D case, the linear potential is produced
by a nearly linear bound charge density interacting via a
short-range electrostatic interaction.

Inspection of the strains in Fig. 3 shows that they may be
well fitted by quadratic curves. An approximate analytic so-
lution may be obtained in the form gs�x�co+c2�x−�1 /2�2,
where
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FIG. 3. Equilibrium solutions for a piezoelectric tube in the
electrostatically dominated limit using the soft kernel. The upper
panel shows the induced uniaxial strain for tubes of various chirali-
ties, while the lower panel shows the corresponding induced tor-
sional strains. The graphs were generated using �=1, �1=1000,
�2=10000/�, �3=2�2, and e2=�5000/� �charge/length�.

0 100 200 300 400 500
x

30
20

10

0

0

10

20

30

ρ
(c
h
ar
g
e/
le
n
g
th
)

0

-0.05

-0.10

-0.15

U
(c
ha
rg
e/
le
ng
th
)

0

-0.1

-0.2

-0.3

-0.4

-0.5

FIG. 4. Equilibrium solutions for a piezoelectric tube in the
electrostatically dominated limit using the soft kernel. The upper
panel shows the induced bound charge density for tubes of various
chiralities, while the lower panel shows the corresponding electro-
static potential along the tube. The graphs were generated using
�=1, �1=1000, �2=10000/�, �3=2�2, and e2=�5000/�
�charge/length�.
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This expansion is accurate to within a few percent provided
that , ���1, which is generally true if �2, �3�1. The ex-
ception occurs if �→� /6, in which case �→0 for any �2,
�3. Even in this case, the expansion differs from the numeri-
cal results only near the tube ends and still gives acceptable
agreement with the numerical results for the potential and
total twist. For the potential across the tube, we find

�U = ��s − c0��1 −
c2

12
�1

3. �27�

Because ��s−c0��c2, the potential scales nearly linearly
with tube length, an effect anticipated from our numerical
results. The total twist along the nanotube will also have a
nearly linear scaling with length, provided that the system
remains in the electrostatic regime.

IV. BORON NITRIDE NANOTUBES

We now apply our theory to calculate the piezoelectric
response of a BNNT under uniform longitudinal tensile
stress. The 2D elastic constants of a BN sheet are given by5,6

C110.30 TPa nm and C660.10 TPa nm, and the piezo-
electric constant is given by3 e2=0.12 e/bohr. Experimen-
tally, accessible forces are on the nanonewton scale; we ar-
bitrarily assume a force of 1 nN. Typical tube dimensions are
R=1 nm and L=1 �m.

Using these values, we find that �1=1000, �2
=4.4�10−3, �3=1.3�10−2, �s=5.3�10−4, and �t=0. These
numbers show that BNNTs are an extremely elastically
dominated system, and our perturbation formulas given
in Sec. III A apply. Equation �21� agrees with the
numerical results for the strain to better than 0.1%, and

Eqs. �22� and �23�, with CU=4�e2 sin�3���s /� and
C�=4��3 sin�3��cos�3���s /�, give the electrostatic poten-
tial and total twist with even better agreement.

For all chiral angles, the strain fields decay to within 0.5%
of their elastic limits at a depth of 2R and are always within
3% of the elastic limit. The interior of the tube develops no
significant twist and essentially responds as an achiral nano-
tube. The total twist, in radians, induced in the system as a
function of chiral angle is �����=8.7�10−5 sin�3��cos�3��.
The system develops significant surface charges and a bound
charge density that decays rapidly on the interior of the tube,
and the entire potential drop occurs within a few radii of the
tube ends. Using the values from above and converting to SI
units gives the potential across the tube as a function of the
chiral angle as U���=23.0 sin�3�� mV.

Based on these calculations, BNNTs should develop a
rather weak piezoelectric response with almost no induced
twist regardless of chirality. Physically, this is explained by
the exceptionally large elastic constants of the BN sheet,
which are inherited by the nanotube and make it a stiff sys-
tem. BNNTs are so elastically dominated that the predicted
strain decay lengths, between 1 and 2 tube radii, place this
system near the limits of what can be described by our con-
tinuum theory.

V. CONCLUSION

In this paper, we have developed and solved a continuum
theory to describe the piezoelectric effect in 1D tubular sys-
tems. These systems exhibit different physical properties
than their bulk counterparts. Unconventional physical effects
include the development a bound charge density near the
tube ends and a nonlinear electrostatic potential profile along
the tube. Furthermore, the piezoelectric response of these
systems couples longitudinal strain and torsional strains. This
coupling represents a degree of freedom which may be im-
portant in nanotube characterization and nanoscale device
applications.

It would be interesting to measure the nonlinear potential
variation along a nanotube to verify the unconventional pi-
ezoelectric effects described here. BNNTs are the model
physical system in which to realize these effects. However,
BNNTs tend to be stiff structures for which the electrostatic
contributions to the elastic properties are expected to be
small.
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