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Networks with fourfold connectivity in two dimensions
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The elastic properties of planat,-symmetric networks under stress and at nonzero temperature are deter-
mined by simulation and mean field approximations. Attached at fourfold coordinated junction vertices, the
networks are self-avoiding in that their elemefdsbond$ may not intersect each other. Two different models
are considered for the potential energy of the elements: either Hooke’s law springs or flexible (&ghars
well potentia). For certain ranges of stress and temperature, the properties of the networks are captured by one
of several models: at large tensions, the networks behave like a uniform system of square plaquettes, while at
large compressions or high temperatures, they display many characteristics of an ideal gas. Under less severe
conditions, mean field models with more general shdpagallelogramsreproduce many essential features of
both networks. Lastly, the spring network expands without limit at a two-dimensional tension equal to the force
constant of the spring; however, it does not appear to collapse under compression, except at zero temperature.
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[. INTRODUCTION lular examples ofZ, networks, out-of-plane fluctuations are
suppressed because the network is held against a membrane

Two-dimensional networks are found in many cell struc-having modest bending resistance. In this paper, we study
tures, including the membrane-associated cytoskeleton dfetworks confined to a plane, recognizing that transverse
mammalian erythrocytes, the bacterial cell wall, and thefluctuations will modify some of the predicted elastic behav-
nuclear lamina. The erythrocyte cytoskeleton is an exampléor. We consider two different forms for the potential energy
of a network with at least partials symmetry, in that the 0f a single network element. In one approach, the elements
network elements are frequently connected at sixfold coordiare ideal Hookean springs of force constkgt This model
nated junctiong1,2]. However, networks with lower coordi- mimics the behavior of a polymer network at modest defor-
nation (i.e., fewer linking elements per vertexand hence mations, but is not physical at two-dimensional tensions
lower symmetry tharCg, are also observed in nature. For greater tharks,, where the network expands without bound.
example, the nuclear lamina contains junctions that havdo investigate these latter conditions, we employ a network
fourfold coordination(X shaped [3]. Further, the cortical of flexible tethers obeying a square well potential in which
lattice of the auditory outer hair cgl] and the peptidogly- network elements have a fixed maximal extension. Not only
can network of the bacterial cell wgb] have T-shaped junc- is this network more physical at large deformations, it is also
tions of threefold coordination and obviously low symmetry.
The properties of networks with symmetries lower tt@# B AN\ D i— )
are not well documented. -"..“\‘ " S

Networks with sixfold symmetry are characterized by two ‘ “".‘
independent elastic moduli, as are isotropic materials, and ‘.‘\‘\

their behavior under stress and at finite temperature has been “
investigated both analytically and by simulation. Thus far, "‘-
attention has focused on networks whose elements are bead: | l —
and tethers or identical spring6—8]. In particular, spring \‘“‘
networks with Cg symmetry have been shown to expand
without bound when the in-plane tensile stress exceeds a
specific, temperature-independent threshold, and to collapse

- ‘l"
when the compressive stress exceeds a temperature- \‘

)

S
R
dependent threshold. The elastic moduli are stress dependent &7'“‘ -‘
with the area compression modulus vanishing at the expan- ‘ k l
¥ ¢ P | L XN [

sion point, as one would expect. = e
_In this paper, we explore the characteristics of networks gy 1. snapshot of a square network of Hookean springs with
with fourfold connectivity, a sample configuration at finite gpying constanks, and unstressed spring lengty. This two-
temperature being shown in Fig. 1. We refer to these systemgmensional network patch is subject to nonorthogonal periodic
as square oC,4-symmetric networks, reflecting the elemen- poundary conditions, as indicated by the black background. Results
tary plaquette shape or symmetry under tension. Of coursese from a Monte Carlo simulation performed at a temperatyiie
this is just the simplest example ofGy-symmetric system: of (1/4)kys5 wherekg is Boltzmann’s constant. The configuration
more complex connectivities also are permitted. In many celhas been rotated so that one of its axes lies along thds.

1063-651X/2003/6(1)/01190310)/$20.00 67 011903-1 ©2003 The American Physical Society



TESSIER, BOAL, AND DISCHER PHYSICAL REVIEW B7, 011903 (2003

well described by a simple mean field representation. In both
cases, the networks are self-avoiding in that their elements o
are not permitted to cross one another.

In Sec. Il, we demonstrate how the deformation energy of o
square networks can be expressed in terms of three elastic
moduli, one more than required for isotropic materials in two (a) (b)
dimensions. Both the elastic moduli and the network geom-
etry can be described by mean field approximations, several F|G. 2. Two potentially inequivalent shear modesGy sys-
of which are presented in Secs. Ill and V for springs andems: (a) is pure shear andb) is simple shear. The line outline
tethers, respectively. In Sec. IV, a Monte Carlo simulation ofshows the unstressed object, while the cross-hatched region shows
aC, spring network is reported, including both the stress andhe deformed object.
temperature dependence of the network geometry and elastic
properties; these results are compared with the mean fielgrials or triangular networks under infinitesimal deformation
approaches. Tethered networks are treated in the same fdsee Ref[9] for further reading
mat: the mean field model in Sec. V and full simulations in

Sec. VI. Our conclusions are summarized in Sec. VII. Lastly, 11l. MEAN FIELD APPROXIMATIONS FOR SPRINGS
the details of the simulation techniques are included in an i _
Appendix. For many physical systems, the change in free energy

density arising from a modest deformation varies quadrati-
cally in the magnitude of the deformation with respect to a
reference configuration. The microscopic representation of

When an object deforms in response to a stress, a give$HCh systems may include a network of elements with a de-
element of the object moves from its original positioto a ~ formation energy that is quadratic in their extensioe.,
new positionx’ by a displacement, whereu varies locally springg or in the angular separation between their nearest
across the object. The relevant description of the deformatioReighbors. The simplest of these networks involves identical
is the strain tensam;; , which is related to the rate of change Hookean springseach with a force constant ¢, and an

Il. ELASTIC MODULI

of u with positionx through unstretched length afy) without explicit dependence upon
the angles between neighboring elements. At low tempera-
1|du; dy; Uy duy ture or high tension, triangular networks of such springs have
Uij =5 19_Xj+<?_Xi+ = 19_X|ﬁ_xj : (1) been successfully described by a mean field approach in

which all triangular plaquettes of the network are equilateral

In Hooke’s law materials, the change in the free energy den[6_8]'

sity AF upon deformation is quadratic in the strain tensor _In_the _S|mplest mean field appr_oach, a network is tiled
uj with identical plaquettes, such as triangle<iginetworks or

parallelograms irC,. Why this approximation is so success-

ful in Cg spring networks is that the dominant plaquette
Cijki Uij U (2 shape at low temperature or high tension is an equilateral
triangle, although the length of each side is not necessarily
sg. However, even fourfold networks of springlet alone
tetherg have a degenerate ground state at zero stress, as il-
lustrated by the equal-energy configurations shown in Fig.
3(a). From simulations, the area per plaquette of this network
is 0.68,%, well below thes,? of identical square plaquettes.
Nevertheless, at least three mean field approximations are
useful for describingC, networks of springs and all are

AF=

N| =

ikl

where the material-specific constar@y;,; are the elastic
moduli. In two dimensions, the symmetry af; under ex-
change of andj reduces the number of independent moduli
from 2% to six. In addition, symmetry of th€, network
under x— —x and y— —y shows that all components of
Ciji with an odd number ok or y indices must vanish,
further reducing the number of independent moduli to four.
Lastly, the fourfold rotational symmetry of the network (
——Yy andy—x) provides yet another relation among the
moduli.

Hence, the free energy density involves just three inde-
pendent elastic moduli, and can be written in the form

Afz(KA/2><uxx+uyy>2+wp/z)(uxx—uyy>2+2ﬂsuxy2(, ) () (b)
3

) o FIG. 3. (a) The ground state of th€, spring network is not
where the few independent combinations(yfy; have been ypigque at zero stress: each of these plaquettes has the same energy.
replaced by the area compression modukys, the pure (p) In the variable shap&/S) mean field model, a set of plaquette
shear moduluge,,, and the simple shear modulys,. The  shapes is generated by sampling the position of the point indicated
deformation modes associated with pure and simple sheay the dotted region. The resulting parallelogram has two sides of
are illustrated in Fig. 2. Note that,= u for isotropic ma-  lengths and two ofs,.
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based on the enthalpy for a single plaquette with the shape of s+ o

a parallelogram . S; > o <
leaquette: (ksrlz){(31_ 30)2+ (S~ 30)2}_ TA, 4 Sr s ;;;i?g;;
where pairs of sides have lengthsands,. The number of ﬁ 2
plaquettes in the network equals the number of vertices, but ' z
is half the number of springs. i
In one approximation, all lengths and angles in the net- () (b) ()

work are identical; we refer to this as the square plaquette or

SP model. In a related approximation, the sides are fixed at FIG. 4. Infinitesimal deformations of a square consisting of
$1=S,=5; and the acute included angl is allowed to  springs stretched from their unstressed lengghto a stretched
change; we designate this as the variable angle or VA modelength ofs.. The stretched square is shown in outline with a black
In the least restrictive approach, the plaquettes are identichlbrder, and the infinitesimal deformation is shown as the cross-
parallelograms with one side of fixed length; we call this thehatched region. Modé) measures the area compression modulus,
variable shape or VS model. All three models are most usefuvhile modes(b) and(c) measure the pure and simple shear moduli,
at low temperature where the spring lengths are relativelyespectively.

constant: square plaquettes should dominate at high tension,

while parallelogramseither VA or VS are more appropriate H\,AZHSO2 sing, 0<6</2, 9
near zero stress. Our objective here is to obtain a set of

analytical solutions which can be used for such specific confor the enthalpy in the VA model, whergis the acute angle
ditions. In terms of plaquette variables, we have chosen t®etween neighboring sides of the plaquette. Hor 0, Hys
remain close to the mean characteristics of the netwfank ~ vanishes a®=0, which corresponds to the shear collapsed
instance, two degrees of translational freedom per plaguettestate of lower C,) symmetry. Importantly, this configuration
although we will mention alternative approaches. We havéias a lower enthalpy than E¢B) for all [1>0. Hence,C,

not evaluated the accuracy of a broad collection of meametworks at zero temperature are expected to collapse toward
field models, nor have we discovered one approximation tha€, networks under any positive pressure:

is valid under all conditions.
HCO||>0 or TCO||<O (VA mOdeD. (10)

A. Square plaquette and variable angle approximations This behavior is similar to triangular networks of springs at

In the square plaquette approximation, all plaquettes argero temperature, which expand without bound when the in-
identical squares with a length, to the side when un- plane tension exceed8ks,, and collapse when the pressure
stressed, ands, to the side when subject to a two- (negative tensionis beyondv3kg,8.

dimensional tension. The enthalpy per network vertéxsp For I1<0 (tension, the VA model gives an area per
of this model is plaquette ofA,=s2 (with §=/2) rather thamA,=0 (with
) ) 6=0 for I1>0). Yet even though the enthalpy is lower for
Hsp=Ks(S—8p)“— 757, () the VA model under tension than for the SP model, the con-

stant length constraint is unphysical at high positive tensions.
Thus, the VA model primarily serves to prove that there is a
%ymmetry-breaking step changel&t 0 as# switches from
€0 to /2 and the enthalpy changes frohh,=0 to Hy,
=—rs5. However, the SP model needs to be used to more
accurately estimate the latter enthalpy.
s,=so/(1—1/ks) (SP mode. (6) Before _proce_eding to the third mean fie_ld model_ and full
network simulations, we express the elastic moduli in terms
From this expression, one can see that the spring length arff Spring variables. This is done by determining the change
area per vertex expand without bound beyond a tensioff! the free energy density at zero temperature for the defor-

where each square plaquette has an area per vertx At
zero temperature, the spring length in this approximation i
obtained by minimizing the enthalpy per vertex through th
condition #H gp/ 9s=0. This yields a spring length at a ten-
sion 7 of

given by mation modes in Fig. 4 using two different expressions,
namely, Eqs(3) and(4), noting that Eq(4) must be divided
Texp= Ksp- (7) by s,zr to obtain an energy density. The changes in the free
o _ _ energy density, as well as the strain tensor, are given in Table
By subsituting Eq(6) into Eq. (5), one arrives at | for modes(a)—(c) of Fig. 4. Comparing columns 2 and 4 of

) ) Table | yields the following expressions for the stress depen-
Hsp=KspSo™/ (1 —Ksp/ ) =KspSo /(1 +ksp/TI) - (8)  dence of the elastic moduli in the SP approximation:

wherell = — 7 is the pressure. For networks under compres- Ka=(ksp— 7)/2, (11)
sion, Eq.(8) establishes thatl >0 for [1>0.

Lifting the right-angle constraint but keeping the sides  u,=(ksp+7)/2 (square plaquettesT=0, 7#0),
with fixed lengths, leads to the expression (12
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TABLE I. Change in free energy densityF for deformation  two springs, one of length and the othes,, such that the
modes(a), (b), and (c) in Fig. 4 of a square network of springs potential energy per plaquette is
under stress. Column @nicroscopig refers to the enthalpy change
expressed in spring variables, while columr(cbntinuum is the E=(ks,12)(s—so)2. (14
free energy change using E@®) and the strain tensor in column 3.
We introduce two dimensionless variables

Mode AF (microscopi¢ Strain AF (continuum 5
@  (ksp=7)(8/S)?  Ug=Uyy=dls, 2K a(61s,)?
Uyy=0 o=slsg, (15b)
(b) (kspt 7)(81S;)%  Ug=—dls, 2pp( ols,)? . .
Uy, =(1+8/s) -1 permitting the Boltzmann factor for a single vertéar a
Uyy=0 single plaquetteto be written as
©  (72)(dls)? Uyx=Uyy=0 (1d2)(51s,)?
U= (g;,ZSf) exp(— BE) =exp( — BKs S—So]%/2) =exp( —a[ o~ 1]2()1.6)

In the above expressions, the inverse temperaturg is
Ms=T. (13)  =(kgT) %, wherekg is Boltzmann’s constant.
Equation(16) can be used to construct a probability dis-
All three moduli are linear in the tension, and the simpletribution for plaguette shapes. The mobile vertex which de-
shear modulus vanishes at zero tension, as expected. Furthfifies the plaquette shape moves in a two-dimensional plane.
the compression modulus decreases with increasing tensiaNle defineP(c)o dodé as the probability of finding the
until it vanishes at the blow-up point for the areg,=ks;;  mobile vertex in the range do d# around the locatioa, 6)
both shear moduli increase linearly with tension. in polar coordinates. As Eq16) does not depend upaf the
probability is
B. Variable shape approximation exp — afo— 1]2)0'd0'
Parallelograms represent a less restrictive set of plaquette P(o)odo= Fexp—ala-1P)odo’ 17)
shapes. There are different algorithms for sampling the en-

semble of parallelogram shapes, corresponding to differenthe ensemble average of the area per vertex in the VS model
weights for each shape. The approach taken here is to fix on@iith one side of the plaquette of fixed lenggl) is
side to have a lengtky,, with the shape being determined by
a point moving randomly in a two-dimensional plane, as in- (A,)=so(s)(sin ) = (2/7)sy*{ o), (18
dicated by the shaded region in FigbB A line drawn from
the point to one end of the fixed side determines the leagth where
and angled of the second side of the parallelogram. The B o o
remaining two sides are determined by symmetry. An alter- <0>=J oP(o) o dor= Jexp—a[o—1]9)odo
native approach, which permits two vertices of a parallelo- 0 Jexg—a[o—1]%)odo’
gram to move independently, involves four degrees of trans- (19
lational freedom per plaquette, rather than two degrees of ) )
freedom in either the VS model or the network as a wholeAt low temperature, the integrands in E@.9) are concen-
|ntr0ducing two extra degrees of freedom appears to Comtra.ted aroundr=1, and it is convenient to Change variables
promise the accuracy of the VS approximation. to

One of these extra degrees of freedom can be removed by
forcing one side of the parallelogram to lie in a fixed direc-
tion, so that there are just three degrees of freedom P&Ly that Eq(19)
plaquette, one more than the network as a whole. For spring
networks at low temperatures and zero stress, this model J7 exp(— ae?)(e+1)%de
displays the same temperature dependence as the VS model (o)== > .
to first order. Differences between the mean field models are Jryexp(—as®)(e+1)de
more apparent at nonzero stress and temperature, but are
SO great as to rule out one of the approximations. Please no
that these conclusions apply only @ networks; networks
with higher connectivity, likeCg, behave differently because
of the coupling between adjacent plaquette sides introduced exp(— 0182)8"d8:017(n+1)/2f exp(— &%) &Ndé,
by the extra bonds. (22)

Our mean field model can be evaluated analytically at
zero tension £=0) and low temperaturekgT< kspsoz); the  where the integration limits o are from — o to +o.
model can be treated at arbitrary tension and temperature Hyquation(158 shows thai tends to infinity at low tempera-
numerical integratior{10]. Each plaquette corresponds to ture; as a consequence, the integrands are approximately

e=o—1, (20)

becomes

(21)

panding the polynomials in E¢21) leads to a number of
tegrals of the form
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symmetric about=0 at low temperature, and integrals with 3
odd n must vanish. Integrals even iare easy to evaluate, Bks 5>
leading to
—_—— 1
1 w4
<0’>— 1+ Z (23 16
that th tex i T 32
so that the area per vertex is ~g SP model
2 KeT gl — =V A model
(A)=—5s"| 1+ —]|. (24) A
T KspSo $
From Eg.(24), the VS approximation predicts that the 1 )

plaquette area will increase linearly with temperature, corre-
sponding to a positive thermal expansion coefficient. This is
in contrast toCg networks which display a negative thermal
expansion coefficient both in simulations and in other theo-
retical approachegll]. With one side of fixed length, pure 0
dilations are not achievable in the VS model, so that the area
compression modulus cannot be extracted directly from fluc- 0.5 -0.25 0 0.25 0.5
tuations in area. We return to this point in Sec. V. Tf by

IV. SIMULATION OF SPRING NETWORKS FIG. 5. Area per junction vertefd, )/s,? of a spring network as
a function of reduced tensiof’kg,. The predictions of the square

As emphasized in Sec. lll, square networks assume Blaguette(SP and variable angléVA) approximations are com-
broad range of configurations at any given temperature anglared with the full network simulation for several temperatures:
pressure, except when the network is placed under large temkys,?=32, 16, 4, and 1. Negative tension corresponds to pres-
sion and the elementary plaquettes are stretched into squarasre.

Such a large configuration space is difficult to treat by ana-

lytic approximation, so we have recourse to computer simusimply too high even akBT/ksp302=1/32 for the transition
lations to determine the characteristics of spring networks ato be visible in aC, network. In comparison, the collapse
arbitrary temperature and pressure. The simulations involv&ansition is clearly visible in triangular networks at this tem-
standard Monte Carlo algorithn{$,7,12 for the isobaric perature. We conclude that square networks possess a col-
isothermal ensemble, and are presented in more detail in tHapse transition only at the lowe§t not zerg temperatures,
Appendix. In essence, the Monte Carlo procedure generatesth the much larger configuration space available to square
set of configurations which correctly samples the integranchetworks removing the transition at modest temperatures.

of the partition function, and from which statistically signifi- At large compressions and high temperatures, we expect
cant ensemble averages can be extracted. that the presence of the network springs is unimportant to

We begin our presentation of the simulation results withsome physical properties, and the vertices should behave
the behavior of the network area and then move on to elastimore like an ideal gas. That is, at large compressions,
moduli. Figure 5 shows the area per junction vertex(A,)/s,? should approach the ideal gas limit ofglIls,?,
<A)/sto2 (or the area per plaquejtas a function of ten- wherell = — 7 is the pressure. Certainly, the SP prediction of
sion, which is quoted as the dimensionless ratiy, (nega-  Eq. (6) doesnot possess this limit. The asymptotic behavior
tive values ofr correspond to pressyreThe figure contains of the network area can be obtained by plotting the area as a
the square plaquette prediction found by squaring(Bg.as  function of 1/8ITs,?, which is done in Fig. 6, where high
well as the simulation results for several temperatures: pressures are on the left-hand side of the figure. The ideal gas
KeT/kspSo’=1/32, 1/16, 1/4, and 1. First, note that the gen-behavior of the network is most apparent g8llis,><0.2;
eral features of the SP model are reflected in the simulatiothe lowest temperature Systeﬂ{b(r/kspsozz 1/32) is the first
of the full network. Indeed, the agreement is at the factor ofo deviate from an ideal gas.

2 level for a significant fraction of the range of tensions  The area compression modulus is presented in Fig. 7,
shown in the figure, and the agreement is particularly good ajhere the reduced modulu,/ks, is plotted against the
large 7/ks, where the network is stretched into squarereduced tension/ks,, a choice of variables suggested by the
plaquettes. mean field expression E(L1). For stretched networks at low

Under compression, the values(#,)/s,” in the network  temperature KeT/kgSo°<1/4), the compression modulus
are much lower than the SP prediction at low temperaturesracks the square plaquette prediction remarkably well over a
i.e., KgT/kgSo”<1/16. At the lowest temperature displayed broad range of tension, and vanishesratks, as predicted
(kBT/kspsozi 1/32) the drop in the area below=0 is a hint by Eq. (11). Of course, this is not a surprise given the good
of the collapse transition referred to in H4O) for the vari-  agreement of the SP prediction displayed in Fig. 5 for the
able angle model, although it may be that the temperature isame range of conditions. However, for modest tensions, or
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1 1.5
——1
0.8 j Bkpse® —ma—4
[9\]
< 0.6 o
~ S
A b o =
V o4 Bl so M
——2
— . 8
0.2
—A—32
= [deal gas
0 1 1
0 1 2 3 -0.5 0 0.5 1
1/B s T/ ks

FIG. 6. Area per junction verte¢A,)/s,? for a spring network FIG. 7. Area compression modulis, /ks, of & spring network
under compressiofil= — 7. The area is plotted as a function of Shown as a function of reduced tensiafk,. The full network

1/B11s,2 (high pressure on the left-hand side of the gjaphthat ~ Simulation is shown forgksp302=32, 16, 4, and 1. The square
the ideal gas prediction for the area is just a straight line with unitPl2quette(SP) calculation is from Eq(11). The ideal gas expecta-
slope. The full network simulation is shown f@kys,>=2, 8, and 10N for the compression modulus g, =11=—17.

3 Although the area and the compression modulus display
networks under compression, the agreement is nowhere nel§€al gas behavior over a large range of compression, neither
as good, and the compression modulus drops below thép NOr us vanishes at high temperatures, contrary to ideal
square plaquette prediction for the two lowest temperaturegas eXpeCtationS. That the shear moduli are nonzero reflects
and lies above the SP prediction for the two highest temperdlow the presence of bonds tends to make the network more
tures. Also visible on Fig. 7, the compression modulus fol-figid, an effect noted in studies of other netwofs]. Fig-

lows along the ideal gas value at low temperature and high

pressure, wher& ,=11=— 7. In addition, Fig. 7 illustrates

thatK , increases with temperature for networks under mod-

est compressionk, is a factor of 3 higher at<BT/kspsO2

=1 than athT/kSpsoZ:UlG for tensions near zero. Lastly,

K drops near=0 for kBT/kSps(,Z: 1/32, reflecting the con- <
traction in the network area seen in Fig. 5, although the

behavior ofK , does not appear to signal a phase transition.

The pure shear modulus is displayed as a function of tem- @
perature in Fig. 8. As expected, the agreement between the~ 0.5
square plaquette approach and the full network is best when =
the network is stretched at'ks;>0.5. Further, the general

—o—1

rise of u,/Ksp With increasing tension is also in moderately —=—4

good agreement with the SP approximation. However, the —&—8

behavior of the network under compression, or near zero — 16

pressure, is significantly different from the square mean field

result. We do not believe that the nonzero valueugf at — — —-SP model
kBT/kspsoz=1/16 and under compression is a finite size ef- 0 :

fect: no systematic decreaseyr) is observed as the system -0.5 0 0.5 1
size increases from 144 to 1600 vertices. Lastly, we present 7]k

the simple shear modulus in Fig. 9. The network agrees with *P

the square plaquette approximation @f= 7 at the largest FIG. 8. Pure shear modulys, /ks, of a spring network shown

tensions for all temperatures considered. Further, the agregs a function of reduced tensiofk,. The full network simulation
ment with the SP model improves as the temperature dgs shown forgkspgozzle, 8, 4, and 1. The square plaquette calcu-
creases, and is excellentlegT/kspsozz 1/32. lation is from Eq.(12).
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1 10 H
T/ ke
8 [
——0.5
—a—0.3
o 6 F ——0
s
<
(%
2y
2
0 L
1 0 0.5 1
T/ ksp ksT / ksp 5'02
FIG. 9. Simple shear modulugs/ks, of a spring network FIG. 11. Temperature dependence of the compression modulus

ShOWI’l as a funCtiOI’l Of reduced tensi@”(sp. The fU” netWOrk ﬂKASOZ for a spring network over a range of pressures with
simulation is shown forﬁksp302=32, 4, 2, and 1. The square kBT/kspsozél.
plaquette calculation is from E@13).

function of temperature at fixed stress. As shown in Fig. 10,
X the area per vertex both increases and decreases as a function
pression at zero temperature. of temperature, depending on the stress. The area increases

Fllglgresl 5._9 empk;asmi thed stress depen(?er::ge Oflt(;‘e n&lith T for all the systems under compression, implying that
work by plotting results at fixed temperature. In Figs. 10 andy,e peqyork has a positive thermal expansion coefficient for
11 we show a selection of simulation results plotted as 1= — +~0. However. for some of the networks under ten-

sion, the area initially decreases with increasing temperature,

4 corresponding to a negative thermal expansion coefficient
Ik (negative thermal expansion coefficients are also observed in
sp

ures 8 and 9 suggest that bqihy and us vanish under com-

T v B Cg networks[11]). Inspection of sample configurations dem-

——0.5 onstrates why this happens: at low temperatures and moder-

3 } — =03 ate tension, network plaquettes have the form of squares,
. 0 with the spring lengths not too far from their unstressed val-

ues. As the temperature increases slowly from 0, the
*—-03 spring lengths are still close 8, but the plaquettes become
——-05 parallelograms and other shapes favored by entropy, result-
2 W ing in a decrease of area. Figure 10 also displays the VS
prediction of the network area at zero stress according to Eq.
(24). Over the range of temperature investigated, the pre-

dicted values are in very good agreement with simulations.
Lastly, the temperature dependence of the area compression

Lr modulus is displayed in Fig. 11. Not unexpectedly, the net-
work softens as the temperature increases.
0 V. MEAN FIELD MODEL FOR TETHERED NETWORKS
0 0.5 1 As with the spring network, we now ask whether there is
’ a mean field model in which a single fluctuating plaquette
kT /[ ksp 50> roughly mimics the behavior of the network as a whole. As

with the springs, our approach is to tile the network with

FIG. 10. Temperature dependence of the area per junction vertgxarallelograms with one pair of sides having fixed length

(A,)/s,® of a spring network for a selection of pressures with while the length of the other pair is determined by the posi-
kBT/kspsozs 1. The variable shape calculation is from E24). tion of a randomly moving vertex, as in Fig(8. The fixed
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side is chosen to have a length equal to the mean length of a 1
tether in one dimension, namels,,,,/2. This is similar to ——e—— Square well network
choosing a length o$, for springs, although the low tem-
perature fluctuations in tether length are dramatic compared 0.8
to those of springs. Again, we note that this is just one algo-
rithm for sampling the shapes of parallelograms; an in-
equivalent approach is to fix one vertex and allow two mov- ¥ 0.6
ing vertices to define two adjacent sides of the plaquette. =
However, introducing additional degrees of translational X
freedom reduces the accuracy of the model. 1

We evaluate this model analytically at zero tensifor $ 04
7# 0, the calculation can be performed numerically, as dem-
onstrated in Ref[10]). With one side fixed, the mean area

per plaquette is simply 0.2

1
~[ofemes o s?singdgds 2 " . : . .
@ZZ oJo SmaS =2 ) - 0
N fgfgma’ssinﬁdeds 37 30 20 -10 0 10 20 30
Tsmaxz / kBT
The elastic moduli can be obtained from the fluctuations in )
the height of a parallelogram with a fixed base. Whgp FIG. 12.. Mean area per Ve':t‘éAu)éSmax for a tethered network
vanishes on account of the fixed length of the parallelogran®s & function of reduced tensias,q /ksT. Under moderate com-
base, Eq(A3) for the free energy density reads pression S;.« /keT<—10), the system behaves like an ideal gas.
Over the range of tensions displayed, the mean field predictions of
AF= (KA+Mp)(Uyy2/2)+2Msty2- (26)  Sec. V lie within a few percent of the datsee Ref[10]).
The same logic that leads to Ed#&\4)—(A6) now gives <—10. Under tension4>0), the network initially expands
5 rapidly, but finally approaches its asymptotic value of
3% (A,)Sma’=1 dictated by the maximum tether length. This

BKat pp)(Ay)= (uyy*) Ty —(y)?’ @7 Yehavior is in contrast to springs, which can expand without

limit. At zero stress, the numerical value GA,)/s.,’ is
(y)? found to be 0.23, which is very close to Z/30.21 pre-
Bus(Ay)= 4(u,2) - (X2 —(x)2’ 28 gicted by the mean field approach of E5). In fact, when
Y the parallelogram approximation of Sec. V is extended to
where ,y) are the coordinates of the moving vertex andnonzero tensiofil0], the predictions are within a few percent
(A,) is the mean area of the parallelogram, from E2p)  of the numerical results of Fig. 12.

with one vertex per plaquette. It is trivial to show tHat) The area compression modull(s, is proportional to the
:<y2>zsmax2/4 and(y)=4s,,/3m, so that reciprocal of the tangent to the area vs tension curve, so we
expectK 5 to diverge at large tension, where the area changes
B(Ka+ Iu'p)smaxzz 47=12.6, (29 only very slowly. This behavior can be seen in Fig. 13, where
K clearly increases with tension. Thus, the vanishing gf
BitsSmay’=32/37=3.40 (mean field for tetheis under tension seen in spring networks in Fig. 7 is absent with

(30) tethers. However, the behavior of the shear moduli is similar
_ _ . . in the two networks: the plaquettes in both networks fluctu-
The elastic moduli under tension can be obtained by numeriate ever more tightly about square shapes at large tension,

cal integration10]. meaning that their shear resistance increases. This feature
can be seen in Fig. 13 for tethers, and in Figs. 8 and 9 for
VI. SIMULATIONS OF TETHERED NETWORKS springs. Indeed, a linear increase in shear resistance with

] ) ] ‘tension can be observed in all of these figures. At zero stress,

The first thing to note about tethers compared to springs ig,e SUMB(Ka+ tp) Sma from Fig. 13 is 11.7, close to the
that, while the square well potential sets a fundamentalyean field prediction of Eq(29). Similarly, the observed
length scales,,, for the netvyork, it does not provide an \alue Ofﬁﬂssmaxz is 3.0, close to Eq(30).
energy scale. Thus, the only independent thermodynamic pa-
rameter in the network is the dimensionless combination
TSmar ks T, Wherer is the two-dimensional tension, as usual.
The mean area per vertéd,)=(A)/N is displayed as a We investigate two different planar networks with four-
function of this parameter in Fig. 12. Under compression, théold connectivity: N vertices linked together by struc-
area approaches that of an ideal ¢as)=kgT/II, where tural elements, which may be either springs or tethers but are
the pressurdl is equal to—7, particularly for TsmalekBT not allowed to cross one another. Examined at both nonvan-

VIl. SUMMARY
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40 — where the compression modulus vanishes. Of course, the
—e— compression she_ar moduli also inqrease with tension just as they do for
—&— pure shear springs: at large tensions, the network plaquettes ever more

—=— simple shear resemble squares and resist deformation in their shape.

<
30
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elastic modulus

APPENDIX: SIMULATION TECHNIQUE

The C, network in our simulations consists bf vertices
with fourfold connectivity, linked together by a total of\2
230 220 -10 0 10 20 30 elements or bonds. The periodic network shape is described
2 by two nonorthogonal vectorsl and V which define the
TSmax” / kT boundaries of the repeat unit, a parallelogram. For the spring
FIG. 13. Elastic moduli of tethered network as a function of the N€twork, the enthalpyi is simply
reduced tensions,,,”/kgT.

H=(ke/2) X (si—Sp)2—7A (springs, (A1)
ishing temperaturel and tensionr, the networks are de- :
scribed by three elastic moduli in two dimensions—the com
pression moduluK,, pure shear modulug,, and simple

shear modulugts. In general, the large fluctuations in net-

work shape present even®t 0 require that the geometrical constraint that all bond lengtts must be less thag, ... A

and elastic properties be determined by Monte Carlo S'm”|aéonfiguration is propagated using a Monte Carlo technigue in

tion. I_—|owever, under some condmon;s, the netwprk can l:?(?/vhich trial moves are made on the positions of all vertices
described by one of several mean field approximations INnd on the boundary vectors of the network

which all plaguettes have the shape of squares or parallelo- (i) Trial moves are made sequentially on the set of verti-

grams. : . o . o
Spring networks are useful for describing polymer Sys_ces by displacing each one randomly within a maximum dis

tanceA, in each Cartesian direction, and evaluating the re-
tems at modest temperatures and stress. Our model SySteerIting change in enthalppH of a single vertex move.
consists of identical springs with force constég and un-

. ) . Clearly, a change in a vertex position may only result in a
stressed Ie_ngtlso. _The S|r_nu_lat|ons show _that the area in- change in energy, since a vertex move does not change the
creases with tension until it expands W'th.OUt boundrat 565 of the system. The move is accepted according to the
= ksp- Cor_respondlng_ly, the aréa compression modulus deéonventional Boltzmann weight expBAH), whereg is the
creases with increasing ten5|on.unt|I it var!lsheSraﬂ(Sp. inverse temperatured( 1=kgT).

The two shear modulis, and u, Increase W.'th FenS|on, as (ii) Trial moves are made on the two boundary vectdrs
expected where the plaquettes become similar in sfpee 4y by displacing each one randomly within a maximum
resistance to sheabut fluctuate dramatically in siz8ess

ot ; When th awork i biect t distanceAy in each Cartesian direction, and rescaling the
resistance to (_:ompressDo en the network 1S subject to positions of the vertices simultaneously. Changing the peri-
compression, its area and compression modus not its

: . odic container shape results in a change in a&@aand a
shear moduliapproach those of an |de.‘e_1l gas. However, therechange in enthalpAH from which a pseudo-Boltzmann
does not appear to be a phase transition to a collapsed st ight
except at zero temperature. This behavior is in contrast to
triangulated networks, in which the collapse transition is W=exd — BAH+NIn(1+AA/A)] (A2)
clearly visible at a temperature-dependent threshold in stress.

Hookean springs do not provide an accurate description afan be constructed 2]. One boundary rescaling is attempted
a physical network at large stress because the spring can fier every N positional moves(i.e., the procedure involves
stretched without limit. To provide insight into networks un- one trial move on each vertex, followed by one boundary
der these conditions, we also investigate tethered networksescaling.
in which the bond elements are hard tethers whose length The values ofA, andA,, while fixed during the simula-
may range freely between 0 aisg,, but not beyond. Teth- tion of a givenT and 7, are adjusted to give reasonable ac-
ered networks approach a maximal areal\lcr(ﬁax2 at large  ceptance rates.
tension; their compression modulus necessarily diverges un- In our calculational method, the elastic moduli are ex-
der these conditions, in contrast to ideal spring networkdracted from fluctuations in the shape of the periodic bound-

‘where the sum is over all spring®f the network, each with
force constankg, and unstressed lengty. For a tethered
network, the enthalpy just contains the terrA, with the
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aries of the network. From Sec. I, the change in free energyeen rotated so as to lie along tkexis in this representa-

density for deformations around an equilibrium state can béion, even thoughy andV randomly sample Cartesian space

expressed in terms of the strain tensgras in the simulation. In terms of the boundary vectors, &)

corresponds to the familiar

AF=(Kal2) (Ut Uyy) >+ (1p/2) (U= Uyy) >+ 2125l 2.
1BKA=(AA2)/{A). (A8)

(A3) ) . .
Equations(A4) and (A5) can be combined to give

Being quadratic in the strain tensor combinatiegs+uy,,

Uxx— Uyy, anduy,, this expression implies that the fluctua- VBup=(1BKA) —4(A,Ay). (A9)

::3[?(;5”? these combinations should be Gaussian, with eXpe(ffinaIIy, Eq. (A6) is just

UBms= (AN (Ayy/L,)?). Al10
<(uxx+ uyy)2>: 1/,3KA<A>, (A4) Bus < ><( yX y) > ( )
All of the simulations are performed with=196, and a

2\
((Ugx=Uyy) %) = LIBup(A), (AS) total of 2100 configurations are generated at each pressure/

o temperature combination, although the first 100 configura-
(U ) =1/ABug(A). (AB) tions are discarded to remove any dependence on the initial

The strain tensor can be written in terms of the boundarfonf'gurat'on' Each configuration in the ensemble is sepa-

vectorsU andV which have coordinates rated by 2000 attempted moves per vertex, which is a suffi-
ciently large number to strongly reduce the correlation be-
U=(Ly+A,0 andV=(Ay,,L,+A)), (A7) tween successive configurations. With this data set, we

estimate that the uncertainties in geometrical quantities such
wherel, andL, are the equilibrium values of the boundary as the area are about 1%, and the uncertainties in the elastic
vectors at a given temperature and pressure. Notdhets  moduli are about 10%.

[1] T. J. Byers and D. Branton, Proc. Natl. Acad. Sci. U.B2. [7]1 D. E. Discher, D. H. Boal, and S. K. Boey, Phys. RevbE&

6153(1985. 4762(1997).
[2] For a review, see T. L. Steck, i@ell Shape: Determinants, [8] W. Wintz, R. Everaers, and U. Seifert, J. Phys7,11097
Regulation and Regulatory Roledited by W. Stein and F. (1997.
Bronner(Academic, New York, 1989 Chap. 8. [9] L. D. Landau and E. M. LifshitzTheory of ElasticityPerga-
[3] U. Aebi, J. Cohn, L. Buhle, and L. Gerace, Natit®ndon mon, London, 195p
323 560(1986. [10] F. Tessier, Ph.D. thesis, Simon Fraser University, 1999, p. 59.

[4] M. C. Holley and J. F. Ashmore, Natuféondon 335 635 [11] D. E. Discher and P. Lammert, Phys. Rev5E 4368(1998.
(1988; J. Cell. Sci.96, 283(1990; M. C. Holley, F. Kalinec, [12] W. W. Wood, J. Chem. Physl8, 415 (1968; see also J. P.

and B. Kacharjbid. 102 569 (1992. Hansen and |. R. McDonal@heory of Simple Liquid&xford

[5] A. L. Koch, Am. Sci.72, 327 (1990. University Press, New York, 1986

[6] D. H. Boal, U. Seifert, and J. C. Shillcock, Phys. Rev4§ [13] M. Plischke, D. C. Vernon, B. Joos, and Z. Zhou, Phys. Rev. E
4274(1993. 60, 3129(1999.

011903-10



