
A Process Algebraic Approach to the
Specification and Analysis of Resource-Bound

Real-Time Systems

MS-CIS-93-08
LOGIC & COMPUTATION 56

DISTRIBUTED SYSTEMS LAB 14

Insup Lee
Patrice Br6inond-GrCgoire

Richard Gerber

Uliiversity of P e ~ ~ ~ l s y l v a ~ ~ i a
School of Engineering and Applied Science

Computer and I~iforrnat,iolr Science Departn~ent

Philadelphia. PA 19104-6389

January 1993

A Process Algebraic Approach to the
Specification and Analysis of Resource-Bound

Real-Time Systems *

Insup Lee, Patrice Brbmond-Grhgoire
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389

Richard Gerber
Department of Computer Science

University of Maryland
College Park, MD 20742

May 1, 1993

Abstract

Recently, significant progress has been made in the development of timed process
algebras for the specification and analysis of real-time systems. This paper describes
a timed process algebra called ACSR, which supports synchronous timed actions
and asynchronous instantaneous events. Timed actions are used to represent the
usage of resources and to model the passage of time. Events are used to capture
synchronization between processes. To be able t o specify real systems accurately,
ACSR supports a notion of priority that can be used to arbitrate among timed
actions competing for the use of resources and among events that are ready for
synchronization. The paper also includes a brief overview of other timed process
algebras and discusses similarities and differences between them and ACSR.

*This research was supported in part by ONR N00014-89-J-1131, DARPA/NSF CCR90-14621 and
NSF CCR 92-09333.

1 Introduction

Reliability in real-time systems can be improved through the use of formal methods for
the specification and analysis of real-time systems. Formal methods treat system compo-
nents as mathematical objects and provide mathematical models to describe and predict
the observable properties and behaviors of these objects. There are several advantages to
using formal methods for the specification and analysis of real-time systems. They are,
firstly, the early discovery of ambiguities, inconsistencies and incompleteness in informal
requirements; secondly, the automatic or machine-assisted analysis of the correctness of
specifications with respect to requirements; and thirdly, the evaluation of design alterna-
tives without expensive prototyping.

Recently, there has been significant progress in the development of real-time formal
methods [32, 21, 18, 15, 25, 19, 37, 36, 10, 24, 26, 11. Much of this work falls into the
traditional categories of untimed systems such as temporal logics, assertional met hods,
net-based models, automata theory and process algebras. In this paper, we provide an
overview of the Algebra of Communicating Shared Resources (ACSR), which is a real-time
process algebra that we have developed.

Process algebras, such as CCS [29], CSP [17], Acceptance Trees [13] and ACP [4], have
been developed to describe and analyze communicating, concurrently executing systems.
They are based on the premises that the two most essential notions in understanding
complex dynamic systems are concurrency and communication [29]. The most salient
aspect of process algebras is that they support the modular specification and verification
of a system. This is due to the algebraic laws that form a compositional proof system,
and thus, it is possible to verify the whole system by reasoning about its parts. Process
algebras without the notion of time are being used widely in specifying and verifying
concurrent systems. To expand their usefulness to real-time systems, several real- time
process algebras have been developed by adding the notion of time and including a set of
timing operators to process algebras.

The timing behavior of a real-time system depends not only on delays due to process
synchronization, but also on the availability of shared resources. Most current real-time
process algebras adequately capture delays due to process synchronization; however, they
abstract out resource-specific details by assuming idealistic operating environments. On
the other hand, scheduling and resource allocation algorithms used for real-time systems
ignore the effect of process synchronization except for simple precedence relations between
processes. Our algebra provides a formal framework that combines the areas of process
algebra and real-time scheduling, and thus, can help us to reason about systems that are
sensitive to deadlines, process interaction and resource availability.

The computation model of ACSR is based on the view that a real-time system consists

of a set of communicating processes that use shared resources for execution and synchro-
nize with one another. The use of shared resources is represented by timed actions and
synchronization is supported by instantaneous events. The execution of a timed action
is assumed to take one time unit and to consume a set of resources during that time.
Idling of a process is treated as a special timed action that consumes no resources. The
execution of a timed action is subject to the availability of the resources it uses. The
contention for resources is arbitrated according to the priorities of competing actions. To
ensure the uniform progression of time, processes execute timed actions synchronously.
Unlike a timed action, the execution of an event is instantaneous and never consumes any
resource. Processes execute events asynchronously except when two processes synchronize
through matching events. Priorities are used to arbitrate the choice when several events
are possible at the same time.

The rest of the paper is organized as follows. Section 2 provides a general overview of
real-time extensions to process algebras. In Section 3, we briefly introduce the computa-
tion model. In Section 4, we present the syntax of the algebra and describe operational
semantics and examples. Section 5 defines the notion of equivalence and describes a set
of equational laws that can be used to show the equivalence of two terms through syn-
tactic manipulation. The dining philosophers example is used to illustrate the use of the
equational laws in proving that a specification is correct. Section 6 relates the algebra
described in this paper with other real-time process algebras. In particular, we compare
the main features that distinguish these algebras, including time models, timed operators
and priorities. We conclude in Section 7 by discussing possible extensions to the process
algebraic approach.

2 Overview of Real-Time Process Algebras

Following the pioneering work on CCS [27], CSP [16] and ACP [4], process algebras have
been extensively used as a vehicle for the better understanding of concurrency and com-
munication. In general, a process algebra consists of 1) a set of operators and syntactic
rules for constructing processes; 2) a semantic mapping which assigns meaning or inter-
pretation to processes; 3) a notion of equivalence or partial order between processes; and
4) a set of algebraic laws that allows syntactic manipulation of processes. Recently, sev-
eral extensions have been made to process algebras to incorporate the notion of time. We
now discuss several design issues in developing a real-time process algebra and explain
our choices.

Time. The important aspect of a real-time process algebra is the ability to capture the
time at which an event occurs. The domain of time is totally ordered, i.e., for every two

elements that are not equal, one is considered to be earlier than the other. The domain
of time can be either discrete or dense. A time domain is discrete if each element in the
domain has a unique successor; that is, events can occur only at fixed time intervals. A
time domain is dense if there is an element between any two elements in the domain;
that is, an event can happen at any arbitrary moment in time. Although algebras with
the dense time domain are more expressive than those with the discrete time domain, for
most algebras the complete axiomatization is possible only for a discrete time domain.
Thus, most real-time process algebras, including ACSR, are based on discrete time.

Concurrency Semantics. With the addition of time, the behavior of a process is a
sequence of event-time pairs, ((al, t l) , (a2, t2) . . . (a,, t,)), where time denotes the occur-
rence time of the event. There are two approaches to the treatment of events with the
same occurrence time. One is to view them occurring asynchronously, that is, one after
another. This approach, for example, treats a timed behavior ((a , lo), (b , 10)) differently
from ((b, lo), (a, 10)). This approach can be justified as follows: although the two events
are observed to occur at the same time due to the use of discrete time, there may be a
causal dependency between them; for example, the action a might have caused the action
b to occur. The other approach is to view them occurring synchronously, that is, both of
them are occurring at the same time. Thus, the above two timed behaviors are considered
equal and can be represented uniquely by (({a, b), 10)).

Operators. A term of a process algebra represents a process that is transformed into
another process after executing some action. Process algebras include a set of operators,
which are used to construct a complex process term from simpler components. All pro-
cess algebras provide operators that are functionally similar to the following operators:
prefix for sequencing of actions; choice or plus for choosing between alternatives; parallel
for composing two processes to run in parallel; restriction or hiding for abstracting the
details or names of actions; relabeling or renaming for changing the names of actions; and
recursion for describing processes with infinite behaviors. In addition, real-time process
algebras support a variety of operators that deal with time. They are basically to delay
execution for t time units, to timeout while waiting for some actions to occur, and to
bound the time it takes to execute a sequence of actions. However, as we will discuss in
Section 6, each process algebra includes a different set of timed operators to support the
above three capabilities.

Communication. Communication is essential in achieving the cooperation of concur-
rent processes. The common communication primitives are either Zway synchronous
communication or n-way synchronous communication. The 2-way synchronous commu-

nication allows only two processes to synchronize at a time, and thus, communicating
actions are restricted to an action (say a) and its inverse action (z). To prevent further
synchronization with an already established communication, the effect of communication
between two actions, a and ii, is to convert the simultaneous occurrence of the two actions
into the internal T action. For example, in

the left-hand-side process is equal to the right-hand-side process, which lets the processes
a.P and a.Q synchronize, or let the processes 6.Q and a.R synchronize, but not both at
the same time.

N-way communication allows more than two processes to participate in synchroniza-
tion. This means that actions and their inverses are not converted into a special action,
such as 7, since the possibility of further synchronization has to be allowed. For example,
in

a.Pl)a.Ql)a.R = a.(PI)QIIR),

the left-hand-side process is equal to the right-hand-side process, in which all the three
processes are synchronized on the action a.

Abstraction. When dealing with complex systems, it is important to be able to describe
them at different levels of abstraction. Abstraction is supported by disallowing or hiding
an action from being used for communication with another process. Although the identity
of a hidden action is removed from the observed behaviors of a process, their occurrences
still affect the timed behavior of the process. For 2-way communication, P \a represents
the process P with the actions a and a restricted; that is, the action a is not allowed to
occur. The only way that a can happen is if it has already synchronized with a and thus
converted into T . For n-way communication, P \ a represents the process P from which the
occurrence of action a has been hidden. The effect is that the action a can no longer be
used in communication with other processes. When considering time, the hidden action a

is assumed to occur immediately since it can no longer be used for synchronization with
another process.

Resource. It is a fact that the timed behavior of a process depends on the availability
of resources needed to execute the process. For example, consider two processes P and
Q that are ready to execute actions a and b, respectively. If they need the same resource
for execution, which can be used by only one process at a time, the executions of a and
b will have to be interleaved. On the other hand, if there are enough resources, they can
be executed in parallel. Most existing real-time processes support the notion of resources
implicitly in two extreme ways. One extreme is one-to-one assignment of processes to

processors. Thus, if two processes are ready to communicate, the communication will
not be delayed. This view of concurrency is known as maximum parallelism. The other
extreme is to assume that there is only one processor and thus all executions of processes
are interleaved. We take a more realistic view in ACSR, where we assume a limited
number of active resources, each of which is capable of executing one action at a time.

Priority. Priorities are used in every practical real-time systems to provide timely re-
sponses through scheduling of limited resources. Some real-time process algebras implic-
itly support a limited notion of priority, as the execution of an action is favored over delay.
However, many real-time process algebras lack the explicit notion of priority, making it
impossible to model interrupts or real-time process schedulers.

Priority can be provided by associating a priority to an action or by supporting a
prioritized choice operator. In the former, if a has higher priority than b and if both of
them are ready as in a .P + b.Q, the action a is executed. In the latter, the urgency is
represented by the positions of arguments to the choice operator. For example, P +> Q
means that the alternative P has a higher priority than the alternative Q. Although
the relative priorities of actions can be changed within a process with the prioritized
choice operator, the "true dynamic priority" in which the priorities of actions can be
reassigned according to the current state cannot be supported with the prioritized choice
operator. The reason is that action priorities are determined syntactically through relative
positions of the actions as arguments to the choice operator. ACSR supports priorities
that are associated with actions, since this is the approach taken in the design of real-time
operating systems. For example, in rate-monotonic scheduling, priorities are associated
with periodic tasks, with priorities based on the tasks' relative frequencies [23]. Using
the ACSR method, it is straightforward to model a task set which is scheduled under
the rate-monotonic paradigm. On the other hand, this would be quite difficult using the
indexed choice operator, since all of the action possibilities would have to be explicitly
represented for each execution step.

Equational Laws. As pointed out in the introduction, one of the major reasons for
using formal methods like process algebra is to facilitate verification of the correctness
of a specification. The general strategy for showing that a specification S satisfies its
requirement R is to represent both S and R as process terms Ps and PR, respectively.
Then, Ps and PR are reduced to terms Pi and Pfi, which are syntactically equivalent.
The algebraic laws of a process algebra allow the transformation of one process term into
another equivalent term. A sound and complete set of such laws forms the foundation for
analysis technique in any process algebra.

These laws are based on a notion of equivalence between terms. There are many dif-

ferent equivalence relations such as bisimulation and strong bisimulation[l7, 291, testing
preorder[13], etc. The equivalence relation of ACSR is called prioritized strong bisimula-
tion, which is strong bisimulation on a prioritized transition system.

There are two features of process algebras that make them effective in analyzing large
systems. The first is the presence of a hiding or restriction operator that allows one to
abstract away unnecessary details. The second is that equality for the process algebra is
also a congruence relation. This allows the substitution of one component with another
equal component in large systems. Thus, a large system can be broken into simpler
subsystems and then proved correct in a modular fashion.

The Computation Model

The executions of a process are defined by a labelled transition system. For example, a
process PI may have the following behavior:

That is, PI first executes a1 and evolves into P2, which executes a a , etc. Pi represents
the process's state at the ith step of an execution, while a; represents the ith step, or
action taken in the execution. This is a common - almost generic - way of describing a
process behavior. In a process algebra, however, the states Pi are typically described by
a concrete syntax, i.e., a language. Further, there is a finite set of transition rules which
infer the stepwise behavior of the process.'

In our algebra there are two types of actions: those which consume time, and those
which are instantaneous. The time-consuming actions represent the progress of t time
units of a global clock. These actions may also represent the consumption of resources,
e.g., CPUs in the system configuration. On the other hand, the instantaneous actions
(or events) provide a basic mechanism for synchronization and communication between
concurrent processes.

This dual-approach is motivated by the behavior of concurrent processes written in
Ada and related languages. For example, a point-to-point handshaking that takes place
between two tasks (e.g., the instant when a server accepts a select guard) can be modeled
using an instantaneous event. The resource requirements of a task can be modeled by a
sequence of t ime-consuming act ions.

As we show in this section, the two classes of actions have separate priority orderings.
The reason for this follows from the two roles that priority can play in a real-time system.
First, there is the type of priority that comes "from above," i.e., from a specification. This
type is used to "break a tie" between two competing services, and is modeled in ACSR

lThe technique of a structured transition system is not limited to process algebras; e.g. see [34]

by priority on instantaneous events. (In Ada this is called preference control between
guards, whereas in Occam the PRI ALT statement is provided for a similar purpose.)
The other type of priority is introduced "from below," by the system's real-time scheduler.
Naturally, this is modeled by a priority relation on time-consuming actions.

Timed Actions. We consider a system to be composed of a finite set of serially reusable
resources, denoted by R. An action that consumes one "tick" of time is drawn from the
domain P (R x N), with the restriction that each resource be represented at most once.
As an example, the singleton action, {(r, p)), denotes the use of some resource r E R
running at the priority level p. The action 0 represents idling for one time unit, since all
resources are inactive.

We use VR to denote the domain of timed actions, and we let A, B, C range over DR.
We define p(A) to be the set of resources used by the action A; e.g., p({(rl,pl), (r2, p2))) =

{rl, rz}. We also use r,(A) to denote the priority level of the use of the resource r in
the action A; e.g., rrl({(rl, p l) , (r2,p2))) = pl. By convention, if r is not in p(A), then
r,(A) = 0.

Instantaneous Events. We call instantaneous actions events, which provide the basic
synchronization in our process algebra. An event is denoted by a pair (a,p), where a is the
label of the event, and p is its priority. Labels are drawn from the set d U AU { T) , where
if a is a given label, we say that a is its inverse label; i.e., ?i = a. As in CCS, the special
identity label, T , arises when two events with inverse labels are executed simultaneously.

We use VE to denote the domain of events, and let e, f and g range over VE. We use
l(e) and ~ (e) to represent the label and priority, respectively, of the event e.

Finally, the entire domain of actions is V = VR U VE, and we let a and ,B range over
D.

4 The Syntax and Operational Semantics

The following grammar describes the syntax of processes:

p ..- . NIL I A : P I (a,n).P I P + P I PIIP I
P A: (P, P, P) I [PII I P\F I rec X.P I X

NIL is a process that executes no action (i.e., it is initially deadlocked). There are two
prefix operators, corresponding to the two types of actions. The first, A : P, executes
a resource-consuming action A at the first time unit, and proceeds to the process P.
On the other hand, (a, n).P, executes the instantaneous event (a,n), and proceeds to P.
The difference here is that we consider no time to pass during the event occurrence. The

Choice operator P + Q represents nondeterminism - either of the processes may be chosen
to execute, subject to the constraints of the environment and preemption relation. The
operator PI(& is the parallel composition of P and Q.

The Scope construct P A; (Q, R, S) binds the process P by a temporal scope [22],
and incorporates both the features of timeouts and interrupts. We call t the time bound,
where t E N U {m} (i.e., t is either a non-negative integer or infinity). P executes for
a maximum of t time units. The scope may be exited in a number of ways. First, if P
successfully terminates within time t by executing an event labelled with a, then control
proceeds to the "success-handler" Q (here, a may be any label other than T) . On the
other hand, R is a timeout exception-handler; that is, if P fails to terminate within time t ,
then control proceeds to R. Lastly, at any time while P is executing it may be interrupted
by S, and the scope is then departed.

The Close operator, [PII, produces a process P that monopolizes the resources in
I R. The Restriction operator, P\F, limits the behavior of P. Here, no events with
labels in F are permitted to execute. The process rec X.P denotes standard recursion,
allowing the specification of infinite behaviors.

The semantics is defined in two steps. First, we develop the unconstrained transition
A

system, where a transition is denoted as P PI. Within "+" no priority arbitration
is made between actions; rather, we subsequently refine "+" to define our prioritized
transition system, "+,."

4.1 The Structured Transition System

The two rules for the prefix operators are axioms; i.e., they have premises of true. There
is one rule for a time-consuming action, and one for an instantaneous action.

-
ActT A

A : P + P
Ac t I

(a,n).P W P

For example, the process {(rl, pl), (r2, p2)) : P simultaneously uses resources r l and r a
for one time unit, and then executes P. Likewise, the process (a,p).P executes the event
"(a, p)," and proceeds to P.

The rules for Choice are identical for both timed actions and instantaneous events
(and hence we use "a" as the label).

P *. P'
ChoiceL

P + Q % P 1
ChoiceR Q ") Q'

P + Q A Q r

As an example, (a, 7).P + {(rl, 3), (ra, 7)) : Q may choose between executing the event
(a, 7) or the time-consuming action {(rl, 3), (r2, 7)). The former behavior is deduced from
rule ActI, while the latter is deduced from ActT.

The Parallel operator provides the basic constructor for concurrency and communica-
tion. The first rule, ParT, is for two time-consuming transitions.

P % PQ',Q A QQ'
ParT A1 UAZ (P(AI) n p(A2) = 0)

PllQ PQ'llQ'

Note that timed transitions are truly synchronous, in that the resulting process advances
only if both of the constituents take a step. The condition p(Al) n p(A2) = 0 mandates
that each resource is truly sequential, and that only one process may use a given resource
during any time step.

The next three laws are for event transitions. As opposed to timed actions, events
may occur asynchronously (as in CCS and related interleaving models).

p bnJ pl
Par IL

PllQ (9 P'11Q

Q bnJ QQ'

ParIR
PllQ PIIQQ'

(%m) P 9 PQ',Q + QQ'
ParCom

PIIQ (T%m) PQ'llQQ'

The first two rules show that events may be arbitrarily interleaved. The last rule is for two
synchronizing processes; that is, P executes an event with the label a, while Q executes an
event with the inverse label 6. Note that when the two events synchronize, their resulting
priority is the sum of their constituent priorities.

Example 4.1 Consider the following two processes:

P 9 ((a , 3).p1) i- ({(r3,8)) : p 2)

Q $f ((a , ~) . Q I) + ({(TI, 7)) : P2)

The compound process PI(& admits the following four transitions:

(at31
PIIQ---+PIIIQ [byParIL]

(% 5)

pll& --+ PllQ1 [by ParIR]
(~ l8)

PIIQ PI 1IQ1 [by ParCom]
{(TI 77) , (~378)]

PIIQ -----+ P21(Q2 [byParT]

Note than an event transition always executes before the next "tick" of the global clock.

The construction of ParCom helps ensure that the relative priority ordering among events
with the same labels remains consistent event after communication takes places. The
following example shows how the ordering is preserved.

Example 4.2 Consider the following two processes.

def
P = (a,2).Pl + (a,3).P2

def Q = (%5).&1 -k (6,3).Q2

Thus, in P the second choice is preferred, while in Q the first choice is preferred. There
are eight possible transitions for PI/&:

While there are now six possible transitions labelled with T , the addition of priorities
in ParCom ensures that the original relative orderings are maintained. Note that the
r-transition with the highest priority is that associated with the derivative P211Qp These
transitions had the highest priorities in their original constituent processes.

The Scope operator possesses a total of five transition rules, which describe the various
behaviors induced by a temporal scope. The first two rules show that as long as t > 0
and P fails to execute an event labelled with b, the executions of P continue.

P A. Pf
ScopeCT

P a: (Q, R, S) 5 P' A:-, (Q, R, S)
(t > 0)

p PI

ScopeCI (a # b,t > 0)
PL$(Q,R,S) V P~L$(Q,R,s)

The ScopeE (for "end") shows how P can depart the temporal scope by executing an
event labelled with 6. Upon exit, the label 6 is converted to the identity label r (however,
the same priority is retained).

p (b,"! p1
ScopeE

P A",Q, R, S)
kPJQ (t > 0)

The next rule, ScopeT (for "timeout"), is applied whenever the scope times out; that is,
when t = 0. At this point, control proceeds to the exception-handler R.

R -% R'
ScopeT (t = 0)

P A; (Q, R, S) 5 Rf

Finally, ScopeI shows that the process S may interrupt (and kill) P while the scope is
still active.

S 5 St
ScopeI

P A",Q, R, S) 5 St (t > 0)

Example 4.3 Consider the following specification: "Execute P for a maximum of 100
time units. If P executes an event labelled with b in that time, then stop the system.
However, if P fails to finish within 100 time units, then start executing R. At any time
during the execution of P, allow interruption by an event (c , 3), which will halt P, and
initiate the interrupt-handler S." This system may be realized by the following process:
P (NIL, R, (c , 3)s).

The Restriction operator defines a subset of instantaneous events that are excluded
from the behavior of the system. This is done by establishing a set of labels, F (T # F),
and deriving only those behaviors that do not involve events with those labels. Time-
consuming actions, on the other hand, remain unaffected.

ResT
P A' Pf

P\F 3 Pf\F

p ("'"! pt
ResI

P\F Pt\F
(a, .# F)

Example 4.4 Restriction is particularly useful in "forcing" the synchronization between
concurrent processes. In Example 4.1, synchronization on a and Si is not forced, since
PI]& has transitions labelled with a and Si. On the other hand, (PIIQ)\{a} has only two
transitions:

(718) { (T I ,7)7(~3,8))
(PIIQ)\{a) ---) (PiII&l)\{a} and (PI(Q)\{a} -----, (PzllQ2)\{a)

In effect, the restriction declares that a and Si define a "dedicated channel" between P
and Q. CI

While Restriction assigns dedicated channels to processes, the Close operator assigns
dedicated resources. When a process P is embedded in a closed context such as [PII, we
ensure that there is no further sharing of the resources in I. Assume that P executes
a time-consuming action A. If A utilizes less than the full resource set I, the action is
augmented with (r, 0) pairs for each unused resource r E I - p(A). The way to interpret
Close is as follows. A process may idle in two ways - it may either release its resources
during the idle time (represented by 8) , or it may hold them. Close ensures that the
resources are held. (Instantaneous events are not affected.)

P A" Pf
CloseT

-41 uA2 (A2 = ((50) I 7- E/ I - p(A1)))
[PI I + [Pf]I

The operator rec X.P denotes recursion, allowing the specification of infinite behaviors.

Rec
P[rec X.P/X] 2 P'

rec X.P Q P'

where P[rec X.P/X] is the standard notation for substitution of rec X.P for each free
occurrence of X in P.

As an example, consider rec X.(A : X), which indefinitely executes the resource-
A

consuming action "A." By ActT, A : (rec X.(A : X)) ------+ rec X.(A : X), so by Rec,
A

rec X.(A : X) + rec X.(A : X).

4.2 Preempt ion and Prioritized Transit ions

The prioritized transition system is based on preemption, which incorporates our treat-

ment of synchronization, resource-sharing, and priority. The definition of preemption is
straightforward. Let "+", called the preemption relation, be a transitive, irreflexive, bi-

nary relation on actions. Then for two actions a and P, if a 4 P, we can say that "a is
preempted by P." This means that in any real-time system, if there is a choice between
executing either a or p, it will always execute ,B.

Definition 4.1 (Preemption Relation) For two actions, a, P, we say that ,8 preempts
a (a 4 p), if one of the following cases hold:

(1) Both a and ,f? are timed actions in DR, where

(p (~) c p(a)) A (Vr E p(a)..nr(a) I rr(P)) A (3 E ~(P) . r r (a) < rr(P))

(2) Both a and P are events in VE, where w (a) < w (P) A I (a) = I(@)

(3) a and ,BEDE, with I(P) = T and w (P) > 0.

Case (1) shows that the two timed actions, a and p, compete for common resources, and
in fact, the preempted action a may use a superset of p's resources. However, ,fl uses all

the resources at least the same priority level as a (recall that w,(B) is, by convention, 0
when r is not in B). Also, ,O uses at least one resource at a higher level.

Case (2) shows that an event may be preempted by another event sharing the same
label, but with a higher priority.

Finally, case (3) shows the single case in which an event and a timed action are

comparable under "+." That is, if n > 0 in an event (7, n), we let the event preempt any
timed action.

Example 4.5 The following examples show some comparisons Im3,de by the preemption

relation,

a. {(r1,2), (r2,5)} 4 { (r 1 7 7) 9 (r 2 7 5) }

b. {(r1,2) , (rz, 5)) % TI,^), (r293))
c. {(r1,2), (r2,O)) 3 { (T I , 7))
d. {(r1,2), (7-2, 1)) % {(r17 7))
e. (T , 1) + (792)
f. (a , 1) + (b , 2) if a # b

g- (a , 2) 4 (a7 5)
h. { (T I , 2)) (7 - 2 , s) 1 4 (T , 2)

We define the prioritized transition system LL+,," which simply refines "-+" to account

for preempt ion.

CY

Definition 4.2 The labelled transition system "+," is defined as follows: P d, PI
if and only if

a) P 5 P' is an unprioritized transition, and

P b) There is no unprioritized transition P + PN such that cr 4 P .

Example 4.6 This example illustrates the use of synchronization and priorities to model

a semaphore. The event label s, represents the P operation of the semaphore and the

event label s, represents the V operation. The semaphore M is defined as follows:

To see how this works, let PI and P2 be two processes that must execute a critical

section using two robot arms, C R = {(le f t-arm, 1) , (right-arm, 1)) followed by non-

critical section, NCR. We assume that the process PI has priority 1 and the process P2
has priority 2.

PI 0 : PI + (s p , l) .CR : (s,, l) . N C R : Pi

P2 0 : P2 + (s,, 2).CR : (s,, 2) .NCR : Pi

s ef (PlllP2IlM)\{sp,sv)

Before entering the critical section, each process must execute the event s,. By apply-
ing the rules of the operational semantics, we see that there are only three unprioritized
transitions that the system S can take:

(1) s 5 s
(2) S 9 (CR: (sv , l) .NCR: P:)\lP2ll(recX.(O : X + ~ , O) . M)) \ { S , , ~ ,)

(3) S ((RJICR : (sv,2).NCR : Pi)ll(rec X.(0 : X + .%,O).M))\{sp,sV)

Only transition (3) remains admitted by the prioritized transition system. This allows P2
to proceed. From this point and until P2 executes (sv,2), both PI and M will have to
idle, i.e., execute the 0 transitions. The execution of (s,, 2) by P2 releases the semaphore
and subsequently allows PI to acquire it.

5 Bisimulation and Strong Equivalence

Our proof techniques are based on process equivalence, whereby we attempt to prove that
one process P is equivalent to another process Q. Typically, P is a general operational
specification of the problem, while Q is a more complicated implementation. While Q
may have a more complicated syntax, the objective is to show that the two processes
are operationally equivalent. In our paradigm, equivalence between processes is based on
the concept of strong bisimulation [33], which compares the computation trees of the two
processes.

Definition 5.1 For a given transition system "-", any binary relation r is a strong
bisimulation if, for (P, Q) E r and a E V,

1. if P P' then, for some Q', Q &s Q' and (PI, Q') E r , and

2. if Q & Q' then, for some P', P & P' and (PI, Q') E r.

In other words, if P (or Q) can take a step on a, then Q (or P) must also be able to
take a step on a with both of the next states also bisimilar. There are some very obvious
bisimulation relations; e.g. 0 (which certainly adheres to the above rules) or syntactic
identity. However, using the theory found in [27, 28, 291, it is straightforward to show
that there exists a largest such bisimulation over "+," which we denote as "N.') This
relation is an equivalence relation, and is a congruence with respect to the operators [ll].

Similarly, is the largest strong bisimulation over "-+,," and we call it prioritized
strong equivalence.

5.1 Laws

Definition 5.1 provides us with an immediate technique to show whether two processes
are bisimulation-equivalent. Since " N ~ " is the largest prioritized bisimulation, any other
bisimulation is contained in it. One can show, for example, that (A : NIL) + NIL N,

A : NIL by finding a binary relation r such that:

1. ((A : NIL) + NIL , A : NIL) E r, and that

2. r is a bisimulation.

Since r C N ~ , the two processes are then guaranteed to be equivalent. Obviously, in this
case the following r will suffice:

r = {((A : NIL) + NIL , A : NIL)) U {(NIL, NIL))

For more complicated processes, carrying out proofs in such a model-oriented fashion
can be difficult indeed. Finding the right relation r is not a straightforward procedure.
Fortunately, this can be automatically done for finite-state processes [8, 201.

Another alternative is to formulate a general set of equational laws which serve to
characterize bisimulation equivalence. This approach is, after all, the way we manipulate
arithmetic expressions; for example, without appealing to the theory of distributive rings,
we frequently use the law, 3 * (x + y) = 3 * x + 3 * y. The same approach is applied by
process algebras in the domain of concurrent processes.

In fact, the main distinguishing feature of process algebras over other state-transition
models is this: process algebras include a relatively small set of laws which can be used to
prove equivalence in many different situations. As an example, our two processes above
can be proved equivalent by a law which is common to almost every process algebra -
P + NIL = P. This law is true for any process P and thus, it can be used in many
different instances (just as, in arithmetic, we use x + 0 = x).

Table 1 presents our equivalence-preserving laws for ACSR. In the sequel, wherever we
use the equality symbol "=" in showing that two processes are equivalent, it means that
we have used our laws to construct the proof. The bisimilarity of the processes follows
from the soundness of the laws.

Note the use of the summation symbol C in Par(3). The interpretation is as follows:
Let I be an index set representing processes, such that for each i E I, there is some
corresponding process Pi. If I = {il,. . . , in), because of Choice(4) we are able to neglect
parentheses and use the following notation:

C pi d" Pi* + . . . + Pi.
i€ I

and where xiel Pi NIL .
Par(3) is representative of many of the laws, in that its objective is to "undo" a

constructor. That is, it reduces the " \ I " operator to a simpler form - in this case, a
process whose initial steps can be determined by the Prefix and Choice constructors.

Soundness. We claim that the ACSR proof system, A, augmented with standard laws
for substitution, is sound with respect to prioritized strong equivalence.

Theorem 5.1 For any processes P and Q, if A I- P = Q, then P MT Q.

For each axiom P = Q in A, one must construct a bisimulation to show that P M, Q.
Due to space limitation we leave out the details of the proof, which can be found in [5].
Here, however, we can present the simplest case to convey the proof's basic technique.

We claim that the following bisimulation r suffices to establish that P + NIL N, P:

r = { (P + NIL, P) 1 P is an ACSR process) U I D

a
where I D is simply the syntactic identity relation. Obviously, P + NIL d, Q

a
if and

only if P d, Q, since NIL adds nothing to the behavior of a process. And since
(Q, Q) E I D C_ r, and I D is itself a bisimulation, Definition 5.1 is satisfied.

The soundness proofs for the other laws have a similar structure (though some are of
significantly greater complexity). 0.

Completeness. We also claim that that the ACSR laws are complete for finite pro-
cesses; i.e., processes without the "rec" operator. To carry out the proof sketch, we define
a Prioritized Normal Form (PNF) as follows:

Definition 5.2 An ACSR term is in PNF if it is of the form:

where 1) for all indices I , m in I U J we have that al + p,; and 2) each Pi and Qj itself
in PNF .

By induction on the length of a process term, it is routine to show that every finite process
can be transformed to a prioritized normal form using A (see [5] for details). We note that
Choice (5)-(7) are key to enforcing property 1); that is, whenever there are two subterms
R and R' prefixed with a and a', respectively, such that a 4 a', we use one of these laws
to eliminate the subterm prefixed with a. 17

Theorem 5.2 For any finite processes P and Q, if P N, Q, then A t- P = Q.

Table 1: The Set o f ACSR Laws, A

18

Choice(1) P + NIL = P
Choice(2) P + P = P
Choice(3) P + Q = Q + P
Choice(4) (P + Q) + R = P + (Q + R)
Choice(5) A1 : PI + A2 : P2 = A2 : P2 i f Al 4 A2
Choice(6) (a ~ , n l) .PI + (a2, na).P2 = (~ 2 , n2).P2 if (a l , nl) 4 (a2, n2)
Choice(7) A : P + (r, n).Q = (T , n).Q i f n > 0

Par(l) PllQ = QllP
Pad21 (PIIQ)IIR = PII(QIIR)

Par(3) (z ~ i : Pi + C (a j . n j) . Q j) 1 1 (C Bk : R k + C (b l , m l) . ~ l)
ic I ic J k € K [EL

- -

- z (Ai u Bk) : (pill Rk)
i € I , k € K ,
p (A i) n ~ (B k) = @

+ C (a j , n j) . (Q j l l (C Bk : Rk + C (b ~ , m l) . %))
j € J k € K l€L

+ C (bl, m r) . ((C A i : + C (a j , n j) . Q j)) (l ~ l
l € L icI j€ J

+ C (~ , n j + ml).(QjllSl)
jc J , k L ,
aj=bl -

Scope(1) A : P A \ (Q , R , s) = A : (P A ~ - , (Q , R , S)) + S i f t > O

Scope(2) (~ , ~) . P A . (Q , R , s) = (~ , ~) . (P A \ (Q , R , s)) + s ~ ~ ~ > O A ~ # ~

Scope(3) (a , n) . ~ A: (Q , R, S) = (r , n).Q + S i f t > 0 A ti = b

Scope(4) P A ~ (Q , R , S) = R

Scope(5) (P i + P2) A: (Q , R , S) = Pi A\ (Q , R, S) + P2 A: (0, R , S)
Scope(6) (NIL) A: (Q , R, S) = S if t > 0
Res(1) NIL\F = NIL
Res(2) (P + Q)\F = (P\F) + (Q\F)
Res(3) (A : P)\F = A : (P\F)
Res(4) ((a , n).P)\F = (a,n).(P\F) i f a,ii 4 F
Close(1) [NILIT = NIL
Close(2) [P + Q I I = [PII + [Qlr
Close(3) [A1 : PII = (A1 U A 2) : [P] I where A2 = { (r , 0)lr E I - p(A1)}
Close(4) [(a , ~) . P] I = (a , n).[PIr
Rec(1) recX.P = P[recX.P/X]

This theorem can be proved as follows: Using A, P and Q can be transformed into P and
Q, respectively, where both P and Q are in PNF. So assume that

P G (CA; : Pi) + (C(oj ,nj) .Qj) and Q (C B; : Q) + (C(b1, *l).Sl).
~ E I j€ J k E K [EL

The remainder of the proof follows by induction on the maximum depth of ? and Q.
If the maximum depth is 0 then I Q NIL, and we are done. Otherwise, assume
i) 9-*, PI. (The proof for the other direction, e.g., starting with Q, is identical). There
are two possible cases:

* A
case 1: cr is a timed action A. Then P 4, P', and for some i E I, A : P I = Ai : Pi.
Since P wT Q, Q 5. Q1 . So for some k E K, A : Q' e Bk : Rk. Further, Pi N, Rk, SO

by induction, A k Pi = Rk; thus, A I- A; : P; = Bk : Rk. SO for all i E I, there is some
k E K such that d I- A; : P; = Bk : Rk, and by a similar argument the converse is true
as well.

case 2: cr is an event (a , n). The proof for this case is identical to case 1.

Finally, by using Choice to eliminate redundancies and to regroup terms, it follows
that A k a = Q. The details of the full completeness proof can be found in (51.

5.2 Dining Philosophers Example

This example is derived from the well-known problem of the dining philosophers. To
shorten the presentation, we assume only three philosophers and three forks. Each philoso-
pher spends its time idling and eating. In order to eat, a philosopher needs to use two
forks. The problem is to develop a system in which there is no deadlock and each philoso-
pher always has a possibility to eat in the future. In addition, each philosopher must
meet the following timing requirements. It takes one time unit to pick up the first fork,
and an additional one time unit to pick up the second fork and to eat. After eating, each
philosopher must idle for at least one time unit before attempting to eat again. Finally,
the system will timeout and deadlock if a philosopher does not get his second fork within
two time units after acquiring the first one.

In our specification we use the following derived operator:

P D; Q gf P A; (NIL, NIL, Q)

That is, P be, Q is the process that may execute P for t time units, and then deadlock.
However, at any time during those t time units, Q may "jump in" and take control of
execution. Note that we may use the transition rules for Scope to infer the behavior

of this derived construct. Also, using the laws for Scope we can give their abbreviated
versions for our new derived operator:

A : P b b , S = A : (P b ~ - , S) + S i f t > O by Scope(1)
(a,n).P bb, S = (a,n).(P bb, S) + S if t > 0 A a # b by Scope(2)
(a ,n) .P b b , S = (r , n) . N I L + S i f t > O A a = b by Scope(3)
P bb, S = NIL by Scope(4)
(PI + P2) D! S = PI b! S + P2 b! S by Scope(5)

We present two specifications: one that is incorrect due to deadlock and one that is
correct. In both specifications, three philosophers are represented by processes Do, Dl
and D2, and three forks are represented by resources fo, fl and f2. We assume that for
each 0 5 i 5 2, the forks f; and f(;+1)rnod3 are located to the left and right, respectively, of
the philosopher D;. The process D; uses the event e; to represent that the ith philosopher
has finished eating.

First Specification. The philosopher process D;, for each 0 5 i 5 2, and the system
S are specified as follows:

D; d" 0 : D; + {(f;, 1)) : (D: b; D:')

0: d" {(f;, 1)) : D;

D:' d" ((f i 7 2), (f(i+l)rnod3,2)) : (ei, 0)-0 : Di

s '' 11 Dl 11 D21(h,t~,hl

The process Di may idle for any length of time or pick up the left fork, f;. While holding
the left fork, it waits for the right fork, f(i+l)mod3. If it gets the right fork within two
time units, i.e., executes the action {(fi, 2), (f(i+l)mod3, 2)) via interrupt, it signals the
completion of eating through the event (e;,O). Otherwise, it times out and behaves as
NIL. The system S is specified as the three processes composed in parallel. In addition, S
is closed over the resources fo, fi and fi since they are used only by the three philosopher
processes.

To simplify the subsequent discussion, we write F i for the action using the fork(s)
denoted by I at priority 1 and the fork(s) denoted by J at priority 2. For example,

In addition, we write F for ifo, fl, f 2) and extend the closure notation to actions as
follows:

[AII = A U { (r , 0)lr E I - p(A).)

One of the possible transitions of the system, S, is

This transition corresponds to the case in which all of the philosophers pick up their left
forks at the same time. At this point the system can only perform two additional Fo12
transitions and deadlock. Other transitions are not possible due to resource conflicts.

Second Specification. To prevent deadlock, we let each philosopher take the fork with
the lower number first. The only difference between this solution and the previous one is
the process D2, which is defined as follows:

Note that the Fo12 transition that leads to deadlock in the previous system is no longer
possible. We now prove the correctness of the new system S.

Expanding S with the definitions of D; gives

It can then be rewritten by Par(3):

= [(0 : (D o ll Dl 1) D2))
+ (Fo: (D& b",: 11 Dl 1) D2))
+ (FI : (Do) (Di D?)I D2))
+ (Fo : (Do (1 Dl 11 DL b",;))

+ (FOI : (DL I>",: 11 Di b",; 11 D2))
-k (Foi : (Do 11 D: D:' 11 D: be2 D:))]F

and by Close(3):

We apply preemption, i.e., Choice(5), to obtain:

Let's write this as S gf [FoilF : B1 + [FO1IF : B2. The process B1 can be written by the
definitions of DL, Di , D2:

B1 = [(Fo : DL) D",: 11 (Fl : Di) b",; 1 1 0 : D2 + F o : (DL bi D ~)] F

B1 = [Fo : (DL b",:) + D: 11 Fl : (Di b",a + D: 11 0 : D2 + F o : (DL bi D ~)] F

by Par(3) and the definition of Dy:

B1 = [Fol : (DL b",: 11 Di be, D: 11 D2)
+ ~ , 1 ~ : (DL b: D: (1 (el , 0).0 : Dl 11 D2)]F

by Close(2), Close(3) and Choice(5):

and by Par(3):
B1 = Ft2 : (el,O).[(Dh b; D: (1 0 : Dl 11 &)IF

We let
1 def

B1 = [(DL D: 11 0 : Dl 11 D2)]F

and obtain by Scope(1) and substituting with the definition of Dg and D2:

This can then be rewritten by Par(3):

B; = [Fo: (D:, b;D: 11 Dl 11 D2)
+ Fol : ((eo, O).0 : DO 11 Dl I(D2)]F

and by Close(3), Choice(5), Par(3) and Close(4):

Substituting the definitions of Dl and D2 gives

Which can then be rewritten by Par(3):

Bi = [Fol] F : (eo, 0). [(0 : (Do 11 Dl 1 1 D2))
+(PI : (Do II D: b",D:' I1 02))
+(Fo : (Do 11 Dl II D: b; D:))
+(Po l : (DO (1 D: b",D:' 11 DL b; D;))]F

By Close(2), Close(3) and Choice(5) we obtain

Therefore,
B1 = ~i~ : (el, o).[F"]F : (~o ,o) . [Fo~]F : B2

A similar reasoning applied to B2 gives

Since S 5 [FOIIF : B1 + [FOIIF : B2, it can easily seen that the second specification
does not deadlock and that each process Di will be able to execute (e;, 0) in the future as
required by the problem statement. In addition, one can observe that the system is free
of starvation although Dl gets to eat more often than the other philosophers.

6 Related Work

In this section, we compare ACSR to other real-time process algebras and also review the
notions of priority supported in other process algebras. Since there is a large amount of
work in the area of real-time process algebra, we limit our comparison to work that is
more closely related to ACSR. Unlike ACSR, none of these algebras support an explicit
notion of resources or priorities. For the work on priority, we restrict our discussion to
process algebras, although the notion of priority has been added to other formal models
such as Petri nets. They are briefly reviewed in [12].

6.1 Real-Time Process Algebras

Hennessy and Regan [14] present a process algebra TPL (Temporal Process Language),
which extends CCS by a timed action a. The timed action a denotes idling until the next
clock cycle and thus is equivalent to the idle action 0 of ACSR. The maximal progress
is assumed in TPL, that is, if P1Q can communicate, the communication is immediate;
otherwise, it can be delayed and time progresses. For example, a .P + b.Q can idle, but
(a.P + b.&)l~.Q cannot idle and T (the result of communication of a and Z) must occur
immediately.

Yi [38] develops Timed CCS, which is basically an extension of TPL to continuous
time. The process c(t).P behaves as P after idling t units of time, where t is a positive real
number. The model includes one important property, called persistency, which means that
if a process can perform an action a, it remains possible after any time delay. Because of
this property, it is not possible to model deadline without employing a watchdog process.

Moller and Tofts [30] describes Temporal CCS. This algebra is definable over an ar-
bitrary time domain but it is developed only for a discrete time domain in their paper.
The process (t) .P behaves as P after exactly t units of time, and 6.P behaves as P, but
is willing to wait any amount of time before actually proceeding. Unlike TPL or Timed
CCS, the process a. P does not let time pass without performing the action a. For timeout,
Temporal CCS supports two types of choice operator: the strong choice (+) and the weak
choice ($). The process P + Q behaves as either P or Q with the choice made at the
time of the first action. Thus, any initial passage of time must be allowed by both P and
Q. The process P @ Q behaves like P + Q, except that if only one of the operands may
allow delay greater than t units of time, then the other operand will be dropped from the
computation at the occurrence of a delay of t time units. The weak choice can be used
to specify timeout.

There exist a number of models that have incorporated the notion of time into untimed
CSP. This has been accomplished by extending the language with timing constructs and
providing denotational time-based semantics. Each of these formalisms, depending on its
notion of equivalence, uses assorted combinations of timed traces, histories, failures, ready
sets and/or divergences as part of behaviors. The meaning of a process term is the set of all
possible behaviors. The best known real-time extension to CSP is the work by Reed and
Roscoe (Timed CSP) [35]. They add time to CSP by introducing a delay operator wait
t, where t is a positive real. To ensure bounded nondeterminism, the time between any
two consecutive events of a sequential process is assumed to be greater than a predefined
constant 6 > 0. Unlike other process algebras, the semantics of the language is given
by a denotational semantics called the timed-failure model. Because of the dense time
domain, the language is no longer axiomatizable. For verification, Davies and Schneider
developed a proof system that can be used to show that Psat f , where the formula f is

in timed-failure trace logic [9].
Nicollin and Sifakis [31] presents the Algebra of Timed Processes (ATP), which extends

a combination of CCS and ACP with a unique feature, the unit-delay operator (1- J). The
process LPJ (Q) behaves as P if P starts executing before the next time unit; otherwise,
after the delay of one time unit, it behaves as Q. It is equivalent to the process

8 : NIL A, (NIL, Q, P)

of ACSR. ATP supports both timed actions and instantaneous asynchronous events. It
differs from ACSR in that there is no notion of resource and thus all timed actions are
assumed to be resource compatible with one another. Similarly to ACSR, time progresses
synchronously, whereas events have asynchronous semantics. In fact, the separation of
timed actions and instantaneous events in ACSR is inspired by ATP.

6.2 The Semantics of Priority

In [2] Baeten, Bergstra and Klop add the notion of priority to a finite subset of ACP
without the presence of T-events. This is accomplished by the introduction of a partial
order over actions, ">", as well as a priority operator, "8." As an example, if a > b, then

Thus in the parlance of ACSR, we would say that a preempts b. In this light, a "8-free"
agent P would be interpreted under "+", whereas O(P) would be interpreted using "+,".
One major difference between [2] and ACSR is that preemption is "greedy"; that is, in
general 8(P) I$(&) does not have the same meaning as 8(P I Q), where I represents parallel
composition. The reason for this fact is that the priority of the synchronous action, "alb,"
does not depend on the priorities of its two constituent actions, "a" and "b."

An interesting result of [2] is that the axioms needed to characterize 8 cannot be added
to ACP7s unprioritized axiom systems, and remain sound with respect to a ready or failure
semantics. Instead, the finer-grained ready-trace semantics is introduced to give meaning
to prioritized processes.

A bi-level priority semantics for CCS is treated in [7], in which events are divided into
two subsets: those of low priority (e.g., r , a , b) , and those of high priority (e.g., 7,a,b).
Events may synchronize only with inverses of the same priority, which limits the range
of priorities to a two-element, total order. When synchronization occurs between two
unprioritized events (e.g., a and a), the result is the unprioritized T. Similarly, when a
and 3 synchronize, the result is 1 . This 1-event is the only preemptive action, which gives
rise to the following law: for any unprioritized a,

In 161, Camilleri and Winskel extend CCS with a prioritized choice operator. Akin
to Occam's PRI ALT, this construct selects the input event of highest priority. Also
concentrating on Occam, Barrett [3] provides prioritized semantics within the context
of CSP. He proceeds to show that in certain contexts, the introduction of priority can
preclude the necessity for fairness assumptions. Again, the emphasis in [3] is on guards
at the receiving end of a channel.

7 Conclusions

We have described a timed process algebra called ACSR that supports the notions of
resources and priorities. ACSR employs a synchronous semantics for resource-consuming
actions that take time and an asynchronous semantics for events that are instantaneous.
There is a single parallel operator that can be used to express both interleaving at the
event level and lock-step parallelism at the action level.

ACSR's algebraic laws are derived from a term equivalence based on prioritized strong
bisimulation, which incorporates a notion of preemption based on priority, synchronization
and resource utilization. As illustrated with the dining philosophers example, these laws
can be used to rewrite process terms in proving the correctness of a real-time system.

There are two areas of research that should be explored to extend the capability of
ACSR. The first extension is to support dynamic priorities. ACSR supports only static
priority; i.e., the priorities of actions and events cannot change during the execution of a
process. Since modeling of many real-time scheduling algorithms, such as earliest deadline
first, first-come-first-served, etc., requires dynamic priorities, it would be useful to support
dynamic priority in timed process algebras. This requires some method to capture the
state information and then use that information in reassigning priorities. The second
extension is to allow dense time so that a timed action can take an arbitrary non-zero
amount of time.

We are currently implementing a toolkit based on ACSR, which includes a user inter-
face, a rewrite system based on the proof system A, a bisimulation checker and a model
checker using RTL [19]. We have found that it is rather difficult to use ACSR for non-
trivial examples without computer assistance for syntax-checking, and for carrying out
analysis. This toolkit will allow us to evaluate the effectiveness of the algebraic approach
such as ACSR for the specification and analysis of large, complex real-time systems.

Acknowledgement. The authors gratefully acknowledge the comments and sugges-
tions made by the referees in improving the quality of this paper. The work described
in this paper was significantly benefited from discussions with the members of Real-Time
Group at the University of Pennsylvania.

References

[I] R. Alur and D. Dill. Automata for modeling real-time systems. In Proc. of 17th
ICALP, LNCS 443, pages 322-335. Springer Verlag, 1990.

[2] J. Baeten, J. Bergstra, and J. Klop. Ready-Trace Semantics for Concrete Process
Algebra with a Priority Operator. Computer Journal, 30(6):498-506, 1987.

[3] G. Barrett. The Semantics of Priority and Fairness in Occam. In Proc. of 5th Int.
Conf. Math. Foundations of Programming Semantics, LNCS 442. Springer-Verlag,
1990.

[4] J. A. Bergstra and J. W. Klop. Algebra of Communicating Processes with Abstraction.
Journal of Theoretical Computer Science, 37:77-121, 1985.

[5] P. Brkmond-Grkgoire, J.Y. Choi, and I. Lee. The Soundness and Completeness of
ACSR (Algebra of Communicating Shared Resources). Technical Report MS-CIS-
93-59, Univ. of Pennsylvania, June 1993.

[6] J. Camilleri and G. Winskel. CCS with Priority Choice. In Proc. of IEEE Symposium
on Logic in Computer Science, 1991.

[7] R. Cleaveland and M. Hennessy. Priorities in Process Algebras. Information and
Computation, 87:58-77, 1990.

[8] R. Cleaveland, J. Parrow, and B. Steffen. A Semantics-Based Verification Tool for
Finite-State Systems. In Proc. of Protocol Specification, Testing, and Verification,
IX, pages 287-302. Elsevier Science Publishers B.V., 1990.

[9] J. Davies and S. Schneider. An Introduction to Timed CSP. Technical Report PRG-
75, Oxford University Computing Laboratory, UK, August 1989.

[lo] A. Gabrielian and M.K. Franklin. Multilevel Specification of Real-Time Systems.
Comm. of ACM, 35(5):51-60, 1991.

[ll] R. Gerber. Communicating Shared Resources: A Model for Distributed ReaLTime
Systems. PhD thesis, Department of Computer and Information Science, University
of Pennsylvania, 1991.

[12] R. Gerber and I. Lee. A Resource-Based Prioritized Bisimulation for Real-Time
Systems. Technical Report MS-CIS-90-69, University of Pennsylvania, Department
of Computer and Information Science, September 1990. To appear in Information
and Computation.

[13] M. Hennessy. Algebraic Theory of Processes. MIT Press Series in the Foundations
of Computing. MIT Press, 1988.

[14] M. Hennessy and T. Regan. A Process Algebra for Timed Systems. Technical Report
5/91, Univ. of Sussex, UK, April 1991.

[15] T. Henzinger, Z. Manna, and A. Pnueli. Temporal Proof Methodologies for Real-
Time Systems. In Proc. of ACM Principles of Programming Languages, 1991.

[16] C. A.R. Hoare. Communicating sequential processes. Communications of the A CM,
21(8):666-676, August 1978.

[17] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[18] J. Hooman. Specification and Compositional Verification of Real-Time Systems. PhD
thesis, Eindhoven University of Technology, 1991.

[19] F. Jahanian and A.K. Mok. Safety analysis of timing properties in real-time systems.
IEEE Transactions on Software Engineering, SE-12(9):890-904, September 1986.

[20] P. C. Kanellakis and S. A. Smolka. CCS Expressions, Finite State Processes, and
Three Problems of Equivalence. Information and Computation, 86:43-68, 1990.

[21] R. Koymans. Specifying Message Passing and Time-Critical Systems with Temporal
Logic. Real-Time Systems, 16(11), November 1990.

[22] I. Lee and V. Gehlot. Language Constructs for Distributed Real-Time Programming.
In Proc. IEEE Real- Time Systems Symposium, 1985.

[23] C.L. Liu and J.W. Layland. Scheduling algorithms for multi-programming in a hard-
real-time environment. Journal of the A CM, pages 46 - 61, January 1973.

[24] N. Lynch and H. Attiya. Using Mappings to Prove Timing Properties. Technical Re-
port MIT/LCS/TM-412b, Laboratory for Computer Science, Massachusetts Institute
of Technology, 1988.

[25] 2. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

[26] M. Merritt, F. Modungo, and M. Tuttle. Time-Constrained Automata. In CONCUR
'91, August 1991.

[27] R. Milner. A Calculus for Communicating Systems. LNCS 92, Springer-Verlag, 1980.

[28] R. Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer Science,
25:267-310, 1983.

1291 R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[30] F. Moller and C. Tofts. A Temporal Calculus of Communicating Systems. In Proc.
of CONCUR '90, pages 401-415. LNCS 458, Springer Verlag, August 1990.

[31] X. Nicollin and J. Sifakis. The Algebra of Timed Processes ATP: Theory and Ap-
plication. Technical Report RT-C26, Institut National Polytechnique De Grenoble,
November 1991.

[32] J.S. Ostroff and W.M. Wonham. Modelling, Specifying and Verifying Real-time
Embedded Computer Systems. In Proc. of IEEE Real-Time Systems Symposium,
pages 124-132, December 1987.

1331 D. Park. Concurrency and Automata on Infinite Sequences. In Proc. of 5th GI
Conference. LNCS 104, Springer Verlag, 1981.

[34] Gordon Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, Computer Science Dept., Aarhus University, 1981.

[35] G.M. Reed and A.W. Roscoe. Metric Spaces as Models for Real-Time Concurrency.
In Proc. of Math. Found. of Computer Science. LNCS 298, Springer Verlag, 1987.

[36] F.B. Schneider, B. Bloom, and K. Marzullo. Putting Time into Proof Outlines.
Technical Report TR-93- 1333, Cornell University, March 1993.

[37] A.C. Shaw. Reasoning About Time in Higher-Level Language Software. IEEE Trans-
actions on Software Engineering, 15(7):875-889, 1989.

[38] Wang Yi. CCS + Time = An Interleaving Model for Real Time Systems. In Proc.
of Int. Conf. on Automata, Languages and Programming, July 1991.

